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Abstract

Understanding the dynamics of film boiling is crucial for predicting its heat transfer properties. Besides the complete
breakdown of film boiling (Leidenfrost point), the most prominent transition is the change from a steady state to an
unstable and oscillating vapor film. Here we consider the stability of saturated planar non-horizontal film boiling, with
particular attention given to its dependence on inclination angle. Based on the lubrication approximation and a quasi-
equilibrium evaporation model, we derive a model for transient film boiling dynamics. We investigate the stability of
its steady-state solution by locally applying potential flow linear stability analysis. We show how the behavior will be
an inclination dependent mixture of Kelvin–Helmholtz and Rayleigh–Taylor type instabilities, and a relatively simple
stability criterion is derived. We also show how the transient lubrication model is incapable of predicting the former
kind of instability. The model’s ability to predict the inclination dependence of stability limits is tested against an
experimental data set from the literature, and we see that the model displays reasonable accuracy considering its lack
of free empirical parameters.
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1. Introduction

When a heated solid surface is submerged in a liquid
with a considerably lower saturation temperature, a va-
por phase will begin to nucleate at the surface of contact.
The resulting relationship between the surface superheat
and the heat flux is the boiling curve (Dhir, 1998), also
called the Nukiyama curve, named after the person who
first characterized it in the 1930s (Nukiyama, 1934). At
moderate superheat, in the nucleate boiling regime, the
boiling curve exhibits the intuitive behavior of increasing
heat flux with increasing superheat. However, this will
only continue up to the critical heat flux (CHF), which
signals the transition from nucleate boiling to film boiling,
and is seen as a counterintuitive decrease in heat flux with
increasing surface temperature. The drop in heat flux is
due to the formation of a continuous vapor film between
the solid and the liquid, which has an insulating effect on
the heat transfer. In some practical situations film boil-
ing is desirable, and in some it is not. In either case it is
of interest to predict the dynamics of the vapor film, and
under which conditions it may become unstable. Instabili-
ties indicate a change in heat transfer properties, and may
also precede vapor film collapse (Leidenfrost point) (Dhir,
1998).

Predicting the overall heat transfer efficiency of film
boiling is important for various industrial concerns. This
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includes the relatively common case of quenching hot solid
surfaces with water (Dhir, 1998), but also the more ex-
otic case of cryogens boiling when spreading on top of
water (Hissong, 2007). The stability limits and break-
down of film boiling are also important, as they are be-
lieved to be the triggering mechanism for vapor explo-
sions (rapid phase transition) in nuclear fuel-coolant in-
teractions (Fletcher, 1995; Berthoud, 2000) and liquefied
natural gas (LNG) (Luketa-Hanlin, 2006; Cleaver et al.,
2007).

The problem to be solved in this work is illustrated in
Fig. 1. This is a case of two-dimensional saturated natural
convection film boiling on a heated solid plate. Since the
model assumes a state of film boiling, it is only applicable
at surface temperatures above the value at the fluid’s CHF.
At the same time, it is assumed that the surface temper-
ature is low enough that radiation heat transfer may be
neglected. As shown by Jouhara and Axcell (2009), this is
valid for quite a wide range of surface temperatures.

The objective is to predict the spatiotemporal behavior
of the liquid–vapor interface, mathematically represented
by the film thickness function h(x, t). The plate is sub-
merged at a given angle α, and particular attention is
given to how the dynamics change depending on this incli-
nation. Under common conditions the formed vapor film
is very thin, of the order of 100 µm (Dhir, 1998; Jouhara
and Axcell, 2002). Since this is likely to be much thinner
than the tangential length scale, thin-film flow theory is
applicable for the analysis of the vapor film dynamics. A
common way of approaching thin-film flow is by use of the
lubrication approximation (Kundu et al., 2007, Sec. 8.3),
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which exploits the large difference in length scales in order
to simplify the Navier–Stokes equations. When combined
with the mass-conservation principle, this will reduce the
full set of governing equations and boundary conditions to
a single highly nonlinear scalar PDE (Myers, 1998).
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Figure 1: Illustration of the planar film boiling problem. A wall at
angle α supplies heat to a boiling liquid, which feeds vapor into the
vapor film in between. Buoyancy then drives vapor flow along the
wall.

The dynamics of thin liquid films on solid surfaces,
including analysis by the lubrication approximation, has
been extensively reviewed in the past by Oron et al. (1997),
Myers (1998) and Craster and Matar (2009). Considerable
analysis has been done specifically on horizontal evaporat-
ing or condensing liquid films, e.g. by Burelbach et al.
(1988). The case of an evaporating liquid film falling down
an inclined plane has been treated by authors such as Joo
et al. (1991). The case of film boiling is different, as the
thin film consists of vapor, not liquid. Some work has
been done on analyzing film boiling dynamics with thin-
film models, such as in Panzarella et al. (2000), Kim et al.
(2015) and Kim and Kim (2016). However, these were for
the purely horizontal case, with no net tangential flow or
significant shear forces. In terms of stability analysis, hor-
izontal film boiling has uniform but time-dependent base
states. The vertical and inclined cases are different, as they
have steady but non-uniform base states. Such steady so-
lutions have been studied since the work of Bromley (1950)
in the 50s, and have since been elaborated by many au-
thors, such as Koh (1962), Bui and Dhir (1985), Kolev
(1998) and Jouhara and Axcell (2009). While they show
some variations due to different assumptions regarding liq-
uid dynamics outside the film, most have the same general

form of h ∼ x1/4, with x being the distance along the solid
surface. There are few works on film boiling considering
the effect of inclination away from the vertical. Examples
are Nishio and Chandratilleke (1991) and Kim and Suh
(2013).

The purpose of the present study is to investigate the
limits of stability of the steady solutions found in non-
horizontal film boiling. Particular attention is given to the
interplay of Kelvin–Helmholtz and Rayleigh–Taylor insta-
bility mechanisms, and how this depends on inclination
angle. The goal is to achieve this analysis with a relatively
simple model, in order to gain insight and practically use-
ful expressions. While Kim and Suh (2013) consider the
inclination dependence of film boiling stability, the actual
onset of instability in their model is given by the critical
Reynolds number, an empirical parameter that is fitted to
the experiments. The present work avoids any free em-
pirical parameters, and thus offers ab initio predictions on
stability.

In Sec. 2 we derive a transient model for inclined pla-
nar saturated film boiling based on the lubrication ap-
proximation. The result is a fourth-order highly nonlinear
parabolic PDE for the vapor film thickness. We show that
the equation has an analytical approximate steady-state
solution, with a corresponding expression for the average
tangential vapor velocity.

In Sec. 3 we show how scales based on these steady so-
lutions can give a useful dimensionless formulation of the
model based on a few dimensionless numbers. We high-
light how the values of these numbers depend on position
and orientation. In Sec. 4 we find under which conditions
the previously found steady-state solutions will turn unsta-
ble, and which wavelengths will be prominent once that oc-
curs. This is done in two different ways. First, this is done
by performing linear stability analysis of the PDE from the
lubrication approximation, and then by locally applying
potential flow stability analysis to the steady-state solu-
tion from the lubrication model. Both lead to their own
stability criteria, with some similarities and some differ-
ences. As will be shown, the former method lacks predic-
tive capabilities for a prominent stability mechanism. We
go on to analyze why.

In Sec. 5 we leave the dimensionless world for a while in
order to show practical results for a specific case involving
water film boiling over a range of superheat degrees. In
Sec. 6 we compare predictions from the stability analysis
with certain experimental measurements by Kim and Suh
(2013). Finally, the important messages of the present
study are summed up in Sec. 7.

2. Lubrication approximation model

We aim to model the behavior of the film thickness
function h(x, t), in the setup illustrated in Fig. 1. In order
to do this, we make the following assumptions:
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• We assume that the thickness of the film is much
smaller than its length scale. This allows the appli-
cation of the lubrication approximation.

• We assume that the thermo-physical properties of
the vapor, such as density and viscosity, can be treated
as constant.

• We assume that the evaporation rate is small enough
that it is in quasi-equilibrium, thus locking the in-
terface temperature to the saturation temperature.
This has the secondary effect of also neglecting any
thermo-capillary effects, since the interface temper-
ature will be constant.

• We neglect any effect the liquid dynamics may have
on pressure, i.e. the interface pressure on the liquid
side is given by the hydrostatic pressure.

• The pressure jump across the liquid–vapor interface
is given by surface tension alone, i.e. we are neglect-
ing the vapor thrust effect.

• We neglect any van der Waals contributions to the
film pressure (disjoining pressure).

2.1. Mass flow rate from lubrication approximation

In the case of thin-film flow of an incompressible fluid,
we may apply the classical lubrication approximation (Kundu
et al., 2007, Sec. 8.3). This assumption uses the large dif-
ference in the film’s tangential and perpendicular length
scales to neglect the inertial and time-differential terms in
the Navier–Stokes equations. The momentum equations
reduce to

∂p

∂x
= ρvgx + µv

∂2u

∂z2
, (1)

and

∂p

∂z
= ρvgz. (2)

Here p is the pressure, u is the x-directed velocity, µv is
the vapor viscosity, ρv is the vapor density, and gx, gz are
the gravitational acceleration projected along the x and
z-directions, respectively. According to the definition of
the inclination angle α in Fig. 1, we have that

gx = −g sinα, (3)

gz = g cosα, (4)

where g is the gravitational acceleration. Under the as-
sumption that ∂p/∂x is independent of z, which will be
justified in Sec. 2.2, we find from Eq. (1) that the second
derivative of u with respect to z is constant at a given x,
and can be written as

∂2u

∂z2
= − 1

µv
D(x), (5)

where we have defined the driving force D(x),

D(x) ≡ ρvgx −
∂p

∂x
. (6)

The expression in Eq. (5) implies a parabolic velocity pro-
file with a given curvature. In order to find this profile
we need two additional pieces of information, and these
are the boundary conditions at the solid wall (z = 0) and
at the liquid-vapor interface (z = h). At the solid wall,
the no-slip condition simply implies that u = 0. At the
liquid–vapor interface, we assume continuity of tangential
velocity and shear stress. Here we will make no specific
assumptions about the interface tangential velocity, but
rather investigate the two extreme possibilities: These are
the assumption of zero velocity (u = 0), and the assump-
tion of zero shear stress at the interface (∂u/∂z = 0). In
either case, this leads to the same kind of expression for
the mass flow rate along the film,

M(x) = W
ρvh

3

βµv
D(x), (7)

whereW is the depth of the film in the symmetry direction,
and the difference from the two assumptions enter through
the factor β, with values

β =

{
12 Maximum shear stress.

3 Zero shear stress.
(8)

When β = 12, the tangential interface velocity is zero.
When β = 3, the tangential interface velocity is 3/2 times
the average vapor velocity. In reality, the value of β would
be somewhere in between, but we see that in any case the
order of magnitude of M(x) stays the same. A discussion
on estimating the actual value of β from the viscosity ratio
can be found in Appendix A.

2.2. Pressure model

In order to use the expression Eq. (7), we will need a
model for the driving force Eq. (6), and thus the pressure
gradient ∂p/∂x in the film. With the boundary condition
p(z = h) = pv,i, the solution to Eq. (2) is

p = pv,i − ρvgz (h− z) , (9)

where pv,i is the pressure at the vapor side of the liquid-
vapor interface. Since neither pv,i nor h are functions of
z, we see that ∂p/∂x will be independent of z, as assumed
earlier. The pressure jump at the interface is given by the
surface tension contribution,

pl,i − pv,i = σκ, (10)

where pl,i is the interface pressure on the liquid side, σ
is the surface tension, and κ is the interface curvature.
The curvature can be calculated from the film thickness
function by

κ =
∂2h
∂x2(

1 +
(
∂h
∂x

)2)3/2
≈ ∂2h

∂x2
, (11)
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where the final approximation can be used for long waves
where ∂h/∂x � 1, which will be applicable here. The
liquid pressure at the interface is given by the hydrostatic
contribution corresponding to the vertical position of the
interface,

pl,i = p0 − ρlgζ, (12)

where p0 is a reference pressure, ρl is the liquid density,
and ζ = ζ0−h cos(α) is the vertical position of the interface
(see Fig. 1). The latter depends on x as

∂ζ

∂x
= sin(α)− cos(α)

∂h

∂x
. (13)

If we combine Eqs. (9), (10), (12) and (13), we find that

∂p

∂x
= −ρlg sin(α) + ∆ρg cos(α)

∂h

∂x
− σ∂κ

∂x
, (14)

where ∆ρ ≡ ρl − ρv. The driving force is thus given by

D(x) = ∆ρg

[
a+ b

∂h

∂x

]
+ σ

∂κ

∂x
, (15)

where we have defined the short-hands

a = sinα, (16)

b = − cosα. (17)

Note that in this pressure model both the vapor thrust
and van der Waals terms have been neglected, for the same
reasons as those presented by Panzarella et al. (2000).

2.3. Heat transfer and evaporation

The evaporation is driven by a heat flux across the
vapor film, caused by a temperature difference between
the wall and the liquid-vapor interface. When consider-
able evaporation or condensation occurs across a liquid–
vapor interface, the liquid interface temperature Ti is not
actually exactly at the thermodynamic saturation temper-
ature Tsat of the fluid. For moderate evaporation rates, we
may linearize this effect through the following constitutive
equation,

Ti − Tsat = Kj, (18)

where j is the evaporation mass flux, and K is the non-
equilibrium coefficient whose value can be estimated from
kinetic gas theory (Burelbach et al., 1988; Oron et al.,
1997; Panzarella et al., 2000). For strong evaporation
there may also be a slight temperature discontinuity at
the liquid-vapor interface. In this work we take the quasi-
equilibrium limit, which implies a temperature that is con-
tinuous, and equal to the saturation temperature at the
interface, i.e. Ti = Tsat. In fact, we state that the entire
bulk of the liquid is at the temperature Tsat, i.e. we have
so-called saturated film boiling. This has the consequence
that all the heat conducted into the interface from the
vapor side is spent on evaporation. Accounting for any

further heating of the liquid above Tsat would require a
non-equilibrium model.

With the lubrication approximation, the energy equa-
tion in the vapor film reduces to

∂2T

∂z2
= 0, (19)

i.e. the temperature profile is linear. This means that
in this approximation, the heat flux conducted into the
liquid–vapor interface is equal to the heat flux conducted
from the wall to the vapor. In reality, some energy must
be spent heating the newly added vapor from Tsat to the
temperature in the vapor film, the so-called sensible heat
effect, but this is negligible when the lubrication approxi-
mation applies. If one wanted to account for this, it may
be achieved by slightly adjusting the effective latent heat
of evaporation, and therefore it will not affect the qualita-
tive conclusions of this work.

Since the liquid is assumed to be uniformly at its sat-
urated state, all heat reaching the liquid–vapor interface
will be spent on evaporation. This energy balance can be
expressed as

q̇|z=h = Lj (20)

where q̇ is the heat flux and L is the latent heat of evapo-
ration. Since we stay in the regime of negligible radiation
heat, the heat flux reaching the liquid–vapor interface is
given by Fourier’s law alone, which states that

q̇|z=h = kv
∂T

∂z

∣∣∣∣
z=h

= kv
∆T

h
, (21)

where the last equality follows from Eq. (19). Here, kv

is the vapor thermal conductivity and ∆T is the differ-
ence between wall temperature and saturation tempera-
ture (wall superheat). If we combine Eq. (20) and Eq. (21),
we may write the mass flux as a function of film thickness,

j =
Q

h
, (22)

where we have defined the constant

Q =
kv∆T

L
. (23)

2.4. Mass conservation

We now consider mass conservation in a control volume
of vapor film from xL to xR, i.e. of length ∆x = xR − xL.
The conservation principle implies that the rate of change
of mass contained in this volume of vapor film must be
equal to the net mass flow rate into it. With a constant
density, this becomes

Wρv
∂

∂t

∫ xR

xL

h(x)dx+M(xR)−M(xL)

= W

∫ xR

xL

j(x)dx (24)
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Given the mass flow rate of Eq. (7) and an evaporation
mass flux model of the form Eq. (22), Eq. (24) becomes

∂

∂t

∫ xR

xL

h(x)dx+
h3(xR)

βµv
D(xR)− h3(xL)

βµv
D(xL)

=
Q

ρv

∫ xR

xL

1

h(x)
dx (25)

In the limits ∆x → 0 and h � ∆x, Eq. (25) reduces to
the PDE

∂h

∂t
+

1

βµv

∂

∂x

[
h3

(
∆ρg

(
a+ b

∂h

∂x

)
+ σ

∂κ

∂x

)]
=

Q

ρvh
, (26)

which is the governing equation for the film thickness h(x, t)
in this set of approximations.

2.5. Approximate steady-state solution

We seek a steady-state solution to this problem, h̄(x),
and assume that such a solution will be so slowly varying
in space that the surface tension contribution to the mass
flow rate is negligible. The full equation Eq. (25) then
reduces to(

h̄3

[
a+ b

∂h̄

∂x

])
R

−
(
h̄3

[
a+ b

∂h̄

∂x

])
L

=
βµvQ

ρv∆ρg

∫ xR

xL

1

h̄(x)
dx. (27)

It turns out that an exact analytical solution to Eq. (27)
can be found, and it is

h̄(x) =

(
4β

3

µvQ

ρv∆ρga

)1/4

x1/4. (28)

Curiously, the solution Eq. (28) is independent of b. This
is possible because solutions in the form h̄ ∼ x1/4 has the
property that h̄3∂h̄/∂x is constant, and thus the contribu-
tion of the b-term to the flux gradient is zero.

A steady-state solution with the properties h̄ ∼ x1/4

and h̄ ∼ a−1/4 has been presented before by authors such
as Nishio and Chandratilleke (1991) and Kim and Suh
(2013). However, Eq. (28) includes the factor β, which
in a simple way shows the effects of the possible range of
assumptions that could be made for the liquid flow. What
is typically not discussed in relation to this solution is its
inconsistency with the lubrication approximation in the
h(x)→ 0 limit. Physically, we would expect the mass flow
rate M(x) to approach zero, but with the expression in
Eq. (15), h3D(x) and thus M(x) incorrectly approaches a
finite value, giving infinite velocity. Fortunately this error
is small for small aspect ratios and/or inclinations close to
vertical.

If we accept the film thickness function given by Eq. (28),
we may calculate the average vapor velocity at position x

by considering total mass conservation,

ū(x) =
Q

ρvh̄(x)

∫ x

0

1

h̄(x′)
dx′

=
∆ρga

βµv
h̄2(x)

=

√
4

3β

∆ρgQa

µvρv

√
x. (29)

The above shows the dependence of ū on both position
x and the position-dependent film thickness h̄. Both are
useful forms. The vapor velocity will increase in propor-
tion to

√
x, and as we will see, eventually the velocities

will be large enough for Kelvin–Helmholtz instabilities to
be important.

3. Scales and dimensionless numbers

3.1. Scales of film boiling dynamics

A planar film boiling case is given by fluid properties,
an inclination angle α, a superheat ∆T , and a plate length
x0. We define the scales of a given case by the steady-
state solution Eq. (28) at x = x0. In order to highlight
the effects of inclination, we use the corresponding vertical
(a = 1) case as a reference. Thus the length scale, used
for both x and z, is

h0 =

(
4β

3

µvQ

ρv∆ρg
x0

)1/4

= a1/4h̄(x0). (30)

We use the average vapor velocity as the velocity scale,

u0 =
∆ρg

βµv
h2

0 =

√
4

3β

∆ρgQ

µvρv
x0 =

ū(x0)√
a
. (31)

This enables us to define a time scale,

t0 =
h0

u0
=

βµv

∆ρgh0
=

(
3β3µ3

vρv

4Qx0(∆ρg)3

)1/4

. (32)

3.2. Dimensionless numbers

The dimensionless numbers used in this work, and their
common definitions, are shown in Tab. 1. If we insert
the film thickness Eq. (28) and the velocity Eq. (29) into
the general definitions in Tab. 1, we get the film-boiling
specific expressions,

Bo =
∆ρgh2

σ
=

1

σ

√
4β∆ρgµvQ

3ρva
x0, (33)

Re =
ρv∆ρgah3

βµ2
v

=

(
64ρv∆ρgQ3a

27βµ5
v

x3
0

)1/4

, (34)
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Table 1: Summary of dimensionless numbers used in this work, and their common definitions.

Name Definition Description

Bond number Bo = ∆ρgh2

σ Buoyant vs capillary forces.

Reynolds number Re = ρvuh
µv

Inertial vs viscous forces.

Weber number We = ρvu
2h
σ Inertial vs capillary forces.

Aspect ratio ε = h
x0

Film thickness vs film length.

We =
ρv(∆ρg)2a2h5

β2σµ2
v

=
1

σ

(
1024(∆ρg)3Q5a3x5

0

243β3ρvµ3
v

)1/4

,

(35)

ε =
h

x0
=

(
4βµvQ

3ρv∆ρgax3
0

)1/4

. (36)

We see that in the film boiling case, we have the relation

We =
aReBo

β
, (37)

since the buoyant and viscous forces become directly re-
lated in the lubrication approximation. When referring to
the reference (vertical) case, we add a subscript 0 to the
dimensionless numbers. The angular dependence of these
numbers are

Bo = a−1/2Bo0, (38)

Re = a1/4Re0, (39)

We = a3/4We0, (40)

ε = a−1/4ε0. (41)

In some cases it is useful to substitute the full plate length
x0 for the film thickness h in the definition of the Bond
number. We label this BoX , and it is defined as

BoX =
∆ρgx2

0

σ
. (42)

An overview of typical values for these scales and dimen-
sionless numbers is shown in Tab. 2.

4. Linear stability analysis

We now wish to investigate the conditions where the
steady-state solution Eq. (28) is stable with respect to
small perturbations. This is done by two different ap-
proaches:

• In Sec. 4.1, we apply linear stability analysis to the
dimensionless version of the PDE from the lubrica-
tion approximation, Eq. (26).

• In Sec. 4.2, we use the classical result from poten-
tial flow stability analysis for the shear flow of two
immiscible fluids in a gravitational field. We then

Table 2: Overview of possible values for scales and dimensionless
numbers, here for boiling water with case parameters ∆T = 100–
200 K and X0 = 0.5–10 cm. These ranges of ∆T and X0 yield a
range of values for each scale and dimensionless number, based on
expressions found in Sec. 3. The max/min limits of these ranges are
shown in this table.

Min Max Unit Eq.

h0 120 300 µm (30)
u0 0.94 6.0 m s−1 (31)
t0 0.048 0.12 ms (32)
Bo0 0.0021 0.013 – (33)
Re0 5.3 84 – (34)
We0 0.0010 0.10 – (35)
ε0 0.0024 0.027 – (36)
BoX 4.0 1600 – (42)

use the steady-state solution from the lubrication ap-
proximation to insert expressions for the vapor film
thickness and the velocities on either side of the in-
terface.

As will be shown, the two approaches give consistent re-
sults in some respects, but will also have significant qual-
itative differences.

4.1. Lubrication approximation

4.1.1. Dispersion relation

If we use the length and time scales defined in Sec. 3.1,
as well as the approximate expression for curvature in
Eq. (11), the PDE in Eq. (26) can be written in dimen-
sionless form as

∂H

∂τ
+

∂

∂X

[
H3

(
a+ b

∂H

∂X
+ c

∂3H

∂X3

)]
=

3ε0
4

1

H
, (43)

where H, τ and X are the dimensionless film thickness,
time and position, respectively, and we have defined c =
1/Bo0. Eq. (43) can be classified as a fourth-order nonlin-
ear parabolic equation with a source term. Such thin-film
equations with inclination have been studied previously by
e.g. Myers (1998), but commonly in the context of falling
liquid films, not buoyant vapor films. The specific form
in Eq. (43) may be solved numerically by semi-implicit
methods, as demonstrated by Aursand (2017).
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The steady-state solution Eq. (28) takes on an espe-
cially simple dimensionless form,

H̄(X) =

(
ε0X

a

)1/4

. (44)

This is thus a steady-state solution of Eq. (43) for c = 0.
We see that for a vertical plate, H̄(1/ε0) = 1, as was in-
tended by the scaling. We now investigate the stability of a
steady solution H̄(X) by considering solutions to Eq. (43)
that are equal to the steady solution with a small added
transient perturbation, H(X, τ) = H̄(X) + η(X, τ). The
perturbation can be written as η(x, t) = Af(X, τ), where
A is a small number giving the magnitude of the pertur-
bation, and f(X, τ) is the shape of the perturbation. If
we insert this into Eq. (43), use Eq. (44) for H̄(x) and its
derivatives, and assume that H̄(x) ∼ O (1), we obtain the
following PDE for the perturbation η(X, τ),

∂η

∂τ
+ cH̄3 ∂

4η

∂X4
+

3cε0
4H̄a

∂3η

∂X3
+ bH̄3 ∂

2η

∂X2

+

(
3aH̄2 +

3bε0
2H̄a

)
∂η

∂X
+

9ε0
4H̄2

η

= O
(
A2
)

+O
(
ε20
)
, (45)

We may then investigate the initial evolution of a plane
wave disturbance f(x, t) = exp [i (kX − ωτ)], where k is
the wavenumber and ω is the complex angular frequency.
If we insert this form for η into the PDE Eq. (45), and
discard the higher order terms in A and ε0, we get the
following dispersion relation,

ω =3aH̄2k +
3bε0
2H̄a

k − 3cε0
4H̄a

k3

+ i

[
H̄3k2

(
b− ck2

)
− 9ε0

4H̄2

]
. (46)

4.1.2. Stability

The disturbance is unstable if the imaginary part of
ω is positive. We see that in this model, the only source
of instability is the b-term (Rayleigh-Taylor type buoy-
ant effect), and this will be present only if b > 0. When
b > 0, we have unconditional stabilization due to surface
tension for all wavenumbers above the maximum value
k2

max = bBo0. Additionally, there is the evaporation term
(ε0-term) which stabilizes all wavenumbers equally. How-
ever, its effect is most noticeable for small k, where surface
tension has little effect. Thus, for positive b there is a po-
tential for instabilities, but surface tension stabilizes short
wavelengths, and evaporation stabilizes long wavelengths.

We see from Eq. (46) that the largest potential for in-
stability is where H̄ is largest, i.e. where H̄ = a−1/4. In
order to investigate total stability, we look at the stability
at this point. For b > 0, there is instability between the
critical wavenumbers,

k2
crit =

1

2c

(
b±

√
b2 − 9cε0a5/4

)
. (47)

However, for a given case with plate length x0, not all
wavenumbers are available for excitation. If we decide that
wavelengths larger than x0 are not allowed, we get a mini-
mum allowable dimensionless wavenumber of kmin = 2πε0.
A sufficient and necessary criterion for stability is that
kmin > kcrit, which can be stated as

4π2 > bBoX
1

2

1 +

√
1− 9a5/4

ε0BoXb2

 . (48)

The above criterion is quite unwieldy, but we may also
state simpler sufficient (but not necessary) criteria for sta-
bility. These are

bBoX < 4π2, (49)

b2

a5/4
<

9

ε0BoX
. (50)

Either one of these is sufficient for stability. Eq. (49) is
satisfied when all allowable wavelengths are stabilized by
surface tension. Eq. (50) is satisfied when the evaporation
effect is sufficient to stabilize all wavelengths until the end
of the plate. Note that Eq. (48) is satisfied for all b ≤ 0
regardless of other conditions, and thus the vertical case
and all liquid-below-vapor orientations are predicted to be
stable.

The most dangerous (fastest growing) wavenumber can
be found as the value of k giving the largest imaginary
value in Eq. (46),

k2
d =

1

2
bBo0, (51)

which in the horizontal (b = 1) limit agrees with the com-
mon Rayleigh–Taylor instability result from lubrication
theory (Kim et al., 2015).

4.2. Potential flow

4.2.1. General thin-film flow

We now disregard evaporation for a moment, and con-
sider the case of a thin vapor film of constant thickness h,
with a solid wall on one side, and an infinite liquid on the
other side. The vapor and the liquid both have a given
base state velocity, uv and ul, respectively. If we apply
potential flow linear stability analysis (Drazin and Reid,
2004) to the liquid–vapor interface in this model case,
the dispersion relation for a small harmonic disturbance
(∼ exp (i[k̃x− ω̃t])) becomes

ω̃ =
k̃ (ρlul + ρ′vuv)

ρl + ρ′v

±

(
k̃3σ

(ρl + ρ′v)
+

k̃gz∆ρ

(ρl + ρ′v)
− k̃2ρlρ

′
v(uv − ul)

2

(ρl + ρ′v)2

) 1
2

. (52)

where ω̃ is the dimensional complex angular frequency, k̃
is the dimensional wavenumber, and we have introduced
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the following shorthand for the effective vapor density due
to the thin-film effect,

ρ′v =
ρv

tanh(k̃h)
. (53)

We may state Eq. (52) in dimensionless form by choosing
a length scale h0 and a velocity scale u0. The result is in
the form

ω = ωR ± ωI, (54)

where ωR is always real, while ωI is imaginary in the case
of instabilities. The latter turns out to be

ωI =

 σ

h0u2
0ρl

(
1 +

ρ′v
ρl

)
 1

2

(
k3 − bBo0k −

(
uv

u0

)2(
1− ul

uv

)2
ρ′v
ρv

We0k
2

1 +
ρ′v
ρl

) 1
2

, (55)

Here ω and k are the dimensionless angular frequency and
wavenumber, respectively, according to the length scale
h0 and the time scale h0/u0. We have introduced Bo0

and We0 according to their definitions in Tab. 1 using h0

and u0. We allow the actual film thickness to be different
from the scale h0, and the deviation is given by the di-
mensionless film thickness H, such that k̃h = kH. Under
the assumption that the waves are long but not extremely
long,

ρv

ρl
� kH � 1, (56)

an assumption that will be checked for self consistency
later, we may perform the simplifications tanh(kH) ≈ kH
and 1 + ρ′v/ρl ≈ 1 and thus simplify Eq. (55) to

ωI =

(
σ

h0u2
0ρl

) 1
2

(
k3 − bBo0k −

(
uv

u0

)2(
1− ul

uv

)2
We0k

H

) 1
2

. (57)

4.2.2. With steady-state film boiling solution

The result in Eq. (57) has so far not included any-
thing specific to film boiling, but is simply an expression
which, besides thermo-physical properties, requires three
inputs in order to consider stability: A film thickness H, a
characteristic vapor velocity uv, and a characteristic liquid
velocity ul. We will now use the results from the steady-
state lubrication analysis of film boiling to get values for
these quantities. First, the dimensionless film thickness is
given by Eq. (44), H̄(X) = (ε0X/a)1/4. Second, we set the
characteristic vapor velocity to be the average velocity in
the film, uv = ū, according to Eq. (29). We can then see

from Eq. (29) and Eq. (31) that at position X the ratio
between average velocity and the velocity scale is

uv(X)

u0
=
√
aε0X. (58)

Third, if we assume the characteristic liquid velocity to be
about half of the interface velocity, we can use the result
in Eq. (A.7) from Appendix A to state that

ul

uv
= 1− β

12
. (59)

If we insert all this into Eq. (57), we get

ωI =

(
σ

h0u2
0ρl

) 1
2

(
k3 − bBo0k − (ε0X)

3
4 a

5
4

(
β

12

)2

We0k

) 1
2

. (60)

Since Eq. (54) involves ±ωI, an imaginary ωI will always
enable an exponentially growing disturbance (instability).
It will be imaginary if the contents of the last square root
in Eq. (60) is negative. We see that there are two terms
that contribute towards instability: A term with the Bond
number Bo0 which represents the Rayleigh–Taylor (RT)
instability, and a term with the Weber number We0 which
represents the Kelvin–Helmholtz (KH) instability. We see
that the RT term is equal at all positions, while the KH
term increases as X3/4 since the vapor velocity is larger
further out in the film. Thus we have the highest potential
for instability close to the end of the plate.

4.2.3. Limits of stability

We may now look at the conditions required for the
film boiling to stay stable across a plate of a given phys-
ical length x0. If the contents of the final square root
in Eq. (60) is positive, we have stability. As mentioned,
the highest potential for instability is at the end of the
plate, where ε0X = 1, so we will look for the conditions
where this position will be stable. We can immediately
see that the film will be stable with respect to very high
k. Thus there may exist some critical wavenumber kcrit

below which there may be instabilities. We find this as

k2
crit = Bo0

(
b+ a5/4ΦKH

)
, (61)

where we have used the vertical special case of Eq. (37),
We0 = Re0Bo0/β, and defined the quantity

ΦKH =
βRe0

144
(62)

as the angle-independent relative importance of the KH
instability. Given the typical ranges for Re0 in Tab. 2,
and given that β ≈ 10, we see that ΦKH ∈ (0.35, 5.625).
Since ΦKH ∼ O (1), we see that the KH instability will
dominate close to the vertical configuration, and that the
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RT instability will dominate close to the horizontal con-
figuration.

While all wavenumbers k < kcrit can go unstable, not
all the corresponding wavelengths can fit on the plate. If
we again state that we only allow wavelengths shorter than
the plate itself, we get a minimum allowable wavenumber
of kmin = 2πε0. If kmin > kcrit we can expect total stability,
which leads to the stability condition

BoX
4π2

(
b+ a5/4ΦKH

)
< 1. (63)

In Eq. (63), all dependence on surface tension is contained
in BoX . However, if the contents of the parenthesis is
negative, we will have stability regardless of how weak the
surface tension is. This may occur in the α < π/2 region, if
the KH instability is sufficiently balanced by a stabilizing
RT effect. The limiting angle of this region, αmin, is given
by

cos(αmin)

sin5/4(αmin)
= ΦKH. (64)

A decent approximation is then αmin ≈ arctan(Φ−1
KH). Due

to surface tension, the actual onset of instabilities will
happen at some critical angle larger than αmin, where
Eq. (63) is no longer satisfied. However the left hand side
of Eq. (63) is not always monotonous with respect to an-
gle α. If BoX < 4π2, i.e. if the plate length is of the order
of the capillary length (or shorter), there is a potential
for a return to stability as the angle starts to approach
α → π. However, for any reasonable set of parameters
this can only happen very close to α = π, where the usage
of the steady-state lubrication solutions becomes dubious
anyway, so we will limit ourselves to looking for the first
critical angle, αcrit, the smallest angle where Eq. (63) is
satisfied as an equality.

In Fig. 2, we have numerically solved for αcrit in (BoX ,Re0)
space, while indicating typical parameter combinations oc-
curring in the case of water film boiling. We see that at a
given value of BoX , increasing Re0 (e.g. by increasing ∆T )
will cause instabilities to arise at smaller angles. It appears
quite common that the critical angle will be far into the
liquid-below-vapor region (blue regions in Fig. 2). In fact,
for larger plate lengths instabilities can appear at α < 45◦

and lower, due to the high vapor velocities obtained. In
the blue regions, the RT mechanism is stabilizing, so these
instabilities are purely due to the KH mechanism.

4.2.4. Characteristic wavelengths

If we start out with a stable case, and slowly change
a parameter to increase kcrit towards kmin, the instability
that appears first will then obviously be k ≈ kmin, i.e. with
the largest allowable wavelength. As we go further into the
unstable region, the fastest growing allowable wavelength
will keep being k ≈ kmin, until reaching the most dan-
gerous wavenumber, kd. Once kd is within the range of

allowed wavenumbers, it will be the dominant instability.
See Fig. 3 for an illustration.

As before, the expression for kd can be found as the
value of k that gives the largest magnitude to ωI, now
found from Eq. (60). This turns out to be

k2
d =

1

3
Bo0

(
b+ a5/4ΦKH

)
=

1

3
k2

crit, (65)

i.e the most dangerous wavelength is about 1.7 times the
critical wavelength. We may show that the squared most
dangerous wavelength (λd = 2π/kd) becomes akin to a
weighted harmonic (non-normalized) mean based on two
other squared wavelengths, so that

λ2
d =

(
b

1

λ2
RT

+ a5/4 1

λ2
KH

)−1

, (66)

where λRT is the dimensionless Rayleigh–Taylor wavelength
approached at the liquid-above-vapor horizontal configu-
ration,

λRT = 2π

√
3

Bo0
, λ̃RT = 2π

√
3σ

∆ρg
, (67)

and λKH is the dimensionless Kelvin–Helmholtz wavelength
approached at the vertical configuration,

λKH = 2π

√
3

β2

144We0

, λ̃KH = 2π

√√√√ 3h0σ

ρv

(
β
12u0

)2 , (68)

with inclination-dependent weights b = − cos(α) and a5/4 =
sin5/4(α). The symbols λ̃ in Eqs. (67) and (68) indicate the
corresponding dimensional wavelengths. These are consis-
tent with the classical results from potential flow stability
analysis. The ratio between the two wavelengths is

λRT

λKH
=
√

ΦKH. (69)

Since ΦKH ∼ O (1), the wavelengths will mostly be of the
same order of magnitude. Either could be somewhat larger
than the other, and the point of equality is around Re0 ≈
14. Since Eq. (66) has the form of a harmonic mean, if
the wavelengths are very different, the smaller one will
dominate the value of λd at most angles.

We consider the behavior of λd in Fig. 4. It is seen that
it approaches λKH and λRT at the vertical and horizontal
(liquid-above-vapor) configurations, respectively. We also
see that there is absolute stability in the region α < αmin.

We are now able to make a statement about the range
of wavelengths to be expected in a case when going through
the possible orientations. The maximum wavelength ap-
pearing will be approximately equal to the plate length.
The minimum wavelength appearing will be approximately
equal to the minimum value of λd. Since Eq. (66) is not
normalized average, it is possible that the minimum wave-
length is less than min(λRT, λKH), as seen in Fig. 4. In the
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Figure 2: A contour map of αcrit (the solution of Eq. (63) as an equality) in degrees across (BoX ,Re0) space, with β = 10.67. The white
area is the region of global stability. The solid black lines mark specially the angles 45◦, 90◦ and 135◦. The dashed lines indicate the domain
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Figure 4: A plot of the fastest growing wavelength according to Eq. (66), with Bo0 = 0.006 and We0 = 0.013 (reasonable values for water
film boiling), and thus Re0 ≈ 23. Also shown are the limiting wavelengths λRT and λKH, according to Eqs. (67) and (68), respectively. The
RT wavelength is 30% larger, as predicted by the Reynolds number and Eq. (69).

a5/4 ≈ a approximation we may solve for this minimum.
We find that in the case where one of (λRT, λKH) is con-
siderably smaller than the other, the minimum wavelength
is very close to the smallest of the two. The difference
between the minimum wavelength and min(λRT, λKH) is
largest when the latter two are equal, and in this case the
minimum wavelength is about 84% of min(λRT, λKH). In
summary, we have

max(λ) ≈ 1/ε0

min(λ) ≈


λRT +O

(
Φ2

KH

)
, λRT < λKH

λKH +O
(
(1/ΦKH)2

)
, λRT > λKH

2−1/4λRT, λRT ≈ λKH

(70)

We should now check that the resulting wavelengths
satisfy the assumptions of Eq. (56). In terms of wave-
length, this can be stated as 2π � λ � 2πρl/ρv. Since
2πρl/ρv ≈ 104, max(λ) is definitely well below the up-
per limit. Given the typical range of values indicated
in Tab. 2, we get value ranges of λRT ∈ (100, 200) and
λKH ∈ (40, 400). This means that min(λ) is well above
the lower limit of 2π.

4.3. Discussion

It is clear from the analysis in Sec. 4.2 that Kelvin–
Helmholtz type instabilities are significant in the cases
concerned, so much that the critical angle of instability
will usually be less than 90◦ (liquid-below-vapor). At the
same time, the stability analysis based on the lubrication
approximation PDE, Sec. 4.1 predicts unconditional sta-
bility in the vertical and all liquid-below-vapor cases, as

its only source of instability is the Rayleigh–Taylor mech-
anism.

Why does the lubrication approximation fail at cap-
turing the dominant type of instability in cases close to
the vertical? The KH instability is an inertial effect, and
such effects have been neglected in the lubrication approx-
imation. Formally, terms with both ε2 and εRe have been
neglected from the Navier–Stokes equation. However, if
we have intermediate Re in the range of 10–100, as is the
case here, εRe may not be so small, and inertial effects may
be significant. Remarkably, εRe from the steady-state so-
lution in Eq. (28) is independent of both plate length and
inclination, and can simply be stated as

εRe =
4

3

Q

µv
. (71)

Thus εRe depends only on ∆T and fluid properties. For
boiling water with ∆T < 200 K, εRe ≈ 0.25, which is still
small, but far from negligible. We must have ∆T as low
as 80 K to obtain εRe < 0.1.

Note how the stability criterion Eq. (63) agrees with
the sufficient criterion Eq. (49) from the lubrication PDE
in the small Re limit. The additional criterion Eq. (50)
is not accounted for in the potential flow analysis, since
it stems from the source term in the lubrication PDE,
and represents stabilization of very thin films through the
evaporation effect. In reality, this effect may not be able
to stabilize the inertial KH instabilities that are missing
from the lubrication model. Here we consider cases with
intermediate Re, as shown in Tab. 2, and thus we must
prefer the stability analysis of Sec. 4.2.
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It is worth pointing out an inconsistency between the
origins of the parameter β and how it appears in the po-
tential flow analysis. The attentive reader may notice that
the KH term, whose origin is shear, remains nonzero even
in the β = 3 case which represents the case of zero interface
shear in the lubrication model. The crucial point here is
that only two things are carried over from the lubrication
model: The film thickness and the average vapor velocity,
both as a function of β. The proper interpretation of β in
the context of the potential flow stability analysis is that
it shows the effect of the range of possible vapor velocities.
However, it does not reflect the actual assumptions behind
β in the lubrication model. Instead, the shear in the po-
tential flow stability analysis stems from the given vapor
velocity profile and the simplified liquid velocity profile de-
rived in Appendix A. This could in principle be replaced
with a more sophisticated model that is consistent with
the assumptions behind β in the β → 3 limit. However,
this was not deemed necessary since the value in real film
boiling cases is expected to be much closer to the β → 12
limit, in which case the interpretation of β is consistent.

It is interesting to see how the stability criterion Eq. (63)
is affected by other factors, at a given plate length and ori-
entation. First of all, it is clear that increased surface ten-
sion stabilizes both mechanisms through BoX , as expected.
For a given surface tension, the KH mechanism’s strength
is proportional to Re0. This is given by Eq. (34), showing
the dependency ∼ Q3/4. Thus a smaller superheat ∆T will
decrease the Reynolds number, through decreasing both h0

and u0. This creates somewhat of a paradox, as we pre-
dict a very thin but very stable vapor film as ∆T → 0 in
the vertical case, while from reality it is known that film
boiling must break down at some finite ∆T (vapor film
collapse at the Leidenfrost point (Dhir, 1998)). This can
possibly be resolved by introducing additional mechanisms
of instability that become pronounced at very small film
thicknesses, such as van der Waals and thermo-capillary
effects.

Finally, it should be recognized that the final stability
criterion Eq. (63) is obtained through potential flow sta-
bility analysis applied to a steady state derived under the
assumption that viscous forces dominate. Therefore the
results herein must mainly be interpreted qualitatively, or
quantitatively as a rough approximation.

5. Example case

In order to illuminate the results, we consider the ex-
ample of water film boiling at atmospheric pressure. Addi-
tional case parameters to vary are then the superheat ∆T
and the plate length X0. We vary these in the region 100–
250 K and 1–5 cm, respectively. This gives steady-state
film thickness scales of h0 ≈ 130–250 µm.

We may again investigate αcrit, the first angle where
the inequality Eq. (63) is broken and instabilities arise.
The results are shown in Fig. 5. We see that the possibility
of π/2 < αcrit < π is very rare: Either instabilities arise

while still in the liquid-below-vapor configuration, or they
never arise at all (global stability). This means that in
most cases, the initial instabilities arising when rotating
the plate will be caused purely by KH instabilities, not
RT instabilities. We also see that the sensitivity due to
degree of superheat is quite small.

We may also choose a specific plate length, in this case
X0 = 5 cm, and investigate how the dimensional fastest
growing wavelength λ̃d depends on the inclination angle.
Here we get Reynolds numbers in the range Re0 ∈ (40, 60),
and thus ΦKH ∈ (3, 5). This means that the KH effect will
dominate at most orientations, and also that λKH (found
at α = 90◦) is less than λRT (found at α = 180◦), as
shown in Fig. 6. We again observe a relatively weak de-
pendence on superheat, with all cases giving wavelengths
in the range 1–5 cm. We see that when α → π we ap-
proach a single RT wavelength, as λ̃RT only depends on
the (assumed constant) fluid thermo-physical properties.

6. Experimental comparison

Unfortunately there are few experimental works study-
ing the influence of inclination on film boiling stability.
However, one such study was published by Kim and Suh
(2013), which included indirect approximate measurements
of the maximum stable film thickness for water film boil-
ing. The principle behind the measurements is as follows:
A planar film boiling experiment is performed with a plate
much longer than the characteristic wavelengths of insta-
bility. They then assume that the film grows according
to the smooth steady-state solution until its limit of sta-
bility. The film then collapses, and begins growing again
from a very small thickness, thus forming a repeating pat-
tern. Given the approximations that the collapse happens
very rapidly, and resets the film to a thickness of practi-
cally zero, steady solutions of the form ∼ x1/4 will give
the property that

HTC ≈ 4kv

3hmax
, (72)

where HTC is the average heat transfer coefficient over the
long plate, and hmax is the peak film thickness right before
the reset. The authors measured HTC, thus providing
indirect measurement for hmax. This was performed with
a range of α and ∆T values.

From the present model, we may attempt to predict
hmax by searching for the first point where kd becomes an
allowable wavenumber, i.e. numerically solve

kd(x0) = kmin(x0) (73)

for x0, while using Eq. (65) for kd. This is similar to what
was done by Kolev (1998), except that due to the verti-
cal orientation, purely Kelvin–Helmholtz wavelengths were
considered. Once the solution has been found, Eq. (28)
can be used as a predictor for hmax. The vapor properties
should in each case be set according to the average film
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temperature. A comparison with the experimental values
for hmax is shown in Fig. 7 as a function of inclination an-
gle α. The experiments were run with ∆T in the region
100–200 K. However, this parameter was not strictly con-
trolled and has only a small effect on hmax, so these points
were simply grouped together at their α values. The model
predictions were calculated for the edges of this ∆T range,
and plotted as a band of possible values.

The comparison in Fig. 7 is quite close and qualita-
tively similar. It can never be expected to be a perfect
prediction, for two reasons. First, the measurement of
hmax is indirect, and the conversion from the actual mea-
sured quantity, HTC, is dependent on approximations and
assumptions. Second, what is being measured is not a
property of a small (linear) wave disturbance, but rather
an averaged property of a fully developed instability. Thus
the stability analysis in the present work can only be ex-
pected to be an approximate predictor. In that respect, it
appears successful.

Note that the prediction has zero fitted or empirical pa-
rameters, as the value of β is calculated from fluid proper-
ties through Eq. (A.6) in Appendix A. In contrast, the
model in Kim and Suh (2013) is dependent on fitting
two parameters to the experiments. Note also how the
stability analysis of the lubrication PDE in Sec. 4.1 pre-
dicts unconditional stability throughout the entire range
of α ∈ [0, π/2] in Fig. 7, and thus the corresponding pre-
dicted hmax would be infinite. We therefore see that in-
cluding Kelvin–Helmholtz effects is crucial.

7. Conclusions

From the model analyses and examples in this work,
we may draw the following conclusions:

• In planar vertical or inclined film boiling, parallel
velocities can become large enough to make Kelvin-
Helmholtz type instabilities important.

• The transient model Eq. (43) based on the lubrica-
tion approximation is not capable of predicting these
Kelvin-Helmholtz type instabilities, only Rayleigh-
Taylor type instabilities. It will thus incorrectly pre-
dict absolute stability in e.g. the vertical case.

• When applying classical potential flow stability anal-
ysis to the steady-state solution of the lubrication
model, both types of instabilities can be predicted.

• We identified an angle αmin, given by Eq. (64), be-
low which there will be stability regardless of sur-
face tension. This angle depends on the vertical case
Reynolds number Re0.

• The full stability criterion, including surface tension
stabilization, is given by Eq. (63). This allows the
numerical calculation of αcrit, the angle of instabil-
ity onset. We saw from Fig. 2 that in most cases,
instabilities arise before reaching the vertical config-
uration, i.e. in the liquid-below-vapor configurations.

In these cases, instabilities are purely due to Kelvin-
Helmholtz effects.

• Once well into the unstable region, the characteristic
wavelength of the instabilities will be an inclination-
dependent harmonic mean like combination of the
Rayleigh–Taylor and Kelvin–Helmholtz wavelengths,
as given by Eq. (66). Due to the way vapor veloc-
ity and film thickness develop in film boiling, the
two wavelength contributions turn out to be quite
similar, as shown in Eq. (69). The range of wave-
lengths possible when passing through all orienta-
tions is summed up in Eq. (70).

• From the practical case of water film boiling in Sec. 5,
we saw that the critical angle and characteristic wave-
lengths are only weakly dependent on the degree of
superheat. Depending on plate length, most cases
will either be globally stable, or have αcrit < 45◦,
with only a small intermediate region. The case
had Kelvin–Helmholtz wavelengths in the range of
1–2 cm, depending on superheat, while the Rayleigh–
Taylor wavelengths were 2.7 cm.

• We saw that the model is reasonably able to pre-
dict how the limit of stability depends on inclination,
based on experimental data from the literature.

The second point does not mean that the standard lu-
brication approximation is useless for describing film boil-
ing in general. However, it does mean that it is likely inca-
pable of correctly describing transient dynamics of inclined
or vertical film boiling. Using the lubrication approxima-
tion to predict dynamics in horizontal film boiling, such
as in Panzarella et al. (2000) and Kim et al. (2015) is still
valid, as these cases do not have significant shear/inertial
forces.

While the stability criterion derived herein may be
somewhat successful at predicting the onset of instabili-
ties, it is not sufficient for simulating the full nonlinear
behavior of the vapor film as the instabilities grow. Doing
this would require a PDE such as Eq. (43), but as we have
shown, this model cannot predict the onset of the Kelvin–
Helmholtz type instabilities. In further work, if one still
wants to avoid solving the full set of governing equations
and boundary conditions, the thin-film model derivation
of Sec. 2 may have to be mended to include inertial terms
to leading order. This may be possible through Karman–
Pohlhausen methods (Dávalos-Orozco et al., 1997), as demon-
strated for a vertically falling liquid film by Alekseenko
et al. (1985). Also, if one also wants to predict vapor film
collapse at lower superheat values, it may be necessary
to include additional instability mechanisms such as van
der Waals forces and thermo-capillary effects (Burelbach
et al., 1988; Oron et al., 1997). Including the latter would
necessitate using a non-equilibrium evaporation model, to
allow for tangential interface temperature gradients.
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Figure 7: A comparison of the angular dependence of hmax from Kim and Suh (2013) with predictions using the present model. The gray
band shows the range of predictions for the same range of ∆T values as the experiments.

Appendix A. Liquid velocity profile

In Sec. 2.1, we avoided having to calculate the liquid
flow outside of the vapor film by introducing the factor β,
which has the values 3 or 12 in the two possible extreme
cases. The former comes from assuming that the liquid
applies no shear stress on the vapor (free surface), while
the latter comes from assuming a zero tangential liquid
velocity. The actual value of β, and thus the actual mass
flow rate from Eq. (7), must be somewhere in between. In
this section we attempt to approximate this value from the
viscosity ratio of the liquid–vapor pair. First we make the
assumption of a reciprocal liquid velocity profile

ul(z) =
C

z
, (A.1)

where C is some constant to be found. This is arguably
ad-hoc, but retains the desired property of both ul and
∂ul/∂z going to zero as z →∞. The boundary conditions
at the liquid–vapor interface give the vapor velocity profile

u(z) =
Dh2

2µv

[(
Ψ + 2

Ψ + 1

)
z

h
−
( z
h

)2
]
, (A.2)

and the liquid velocity profile

ul(z) =
Dh2

2µv

1

(Ψ + 1)

h

z
, (A.3)

where we have defined the viscosity ratio

Ψ =
µl

µv
. (A.4)

The average vapor velocity is then

ū =
Dh2

12µv

Ψ + 4

Ψ + 1
, (A.5)

which may be compared with the average velocity implied
by Eq. (7) to give the relation

β = 12
Ψ + 1

Ψ + 4
. (A.6)

We see that the limit Ψ→∞ corresponds to β = 12, and
that the limit Ψ→ 0 corresponds to β = 3. The viscosity
ratio Ψ at saturation for either water or cryogens is typi-
cally in the range 20–30. For values that large, Eq. (A.6)
is not very sensitive to Ψ, and this range of Ψ gives the
narrow range of β = 10.75±0.25. We see that this is quite
close to the assumption of zero interface velocity (β = 12).
Specifically for boiling water, the value is β = 10.67.

The value of β (or Ψ) decides the ratio between the
interface velocity and the average vapor velocity, and this
can be found as

ui

ū
=

6

Ψ + 4
=

1

6
(12− β) . (A.7)

Note that the rightmost expression in Eq. (A.7) (in terms
of β) does not actually require the assumption of a partic-
ular velocity profile, as long as we can assume that ui/ū
should be a linear function of β between the well defined
extremes β = 3 and β = 12.
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