
June 2009
Brynjulf Owren, MATH

Master of Science in Physics and Mathematics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Mathematical Sciences

Numerical Methods for Optical
Interference Filters

Håkon Marthinsen

Problem Description
We study optical interference filters and methods for designing them. The starting point is a
known model which describes the reflectance in terms of the refractive index and layer thickness
of the materials used.

The work will include one or more elements of the following:
- Multiple layer model
- Model including a continuous spectrum of frequencies
- Comparison between different optimisation methods

Assignment given: 19. January 2009
Supervisor: Brynjulf Owren, MATH

Preface

This thesis is the culmination of the Master of Technology study programme at the De-
partment of Mathematical Sciences, Norwegian University of Science and Technology
(NTNU).

The idea for this thesis started out as a series of summer internships at the Norwe-
gian Defence Research Establishment (FFI) where I worked with the theory behind
optical interference filters in the department of electro-optics. I pursued this topic in
the mandatory 9th semester report, where I described the physics behind filters, and
formulated the problem of designing a one-layer anti-reflective filter as an optimisa-
tion problem in a Lie algebra. In this thesis, I present an approach for designing filters
that avoids Lie groups and algebras. Several optimisation methods can be employed
in the design process, so I also explore the performance of a selection of methods.

I would like to thank my advisor, Professor Brynjulf Owren for sharing his enthusi-
asm with me, and for being very patient with me during my periods of procrastination.
You have given me inspiration to keep on writing. Also, a big thank you to Atle Rognmo
at FFI for the best summer internships I have had. Last, but not least, to my friends
and loved ones for both calming me and pushing me on when needed.

Only open-source tools were used in the work surrounding this thesis. Specifically,
LATEX was used for typesetting, Asymptote, Inkscape, Xfig and Matplotlib were used for
figures, and Python with the SciPy library was used for the numerical work, everything
under the Linux operating system.

i

ii

Contents

1 Introduction 1

2 Optical Interference Filters 3
2.1 Physical Model . 3
2.2 Dielectric Filters . 9
2.3 The Design Problem . 10

3 The Geometry of the Design Problem 11
3.1 Linear Fractional Transformations . 11
3.2 The Geometry of the Reflectance . 13
3.3 Physically Realisable Transformations . 15

4 Optimisation Methods 17
4.1 Line Search Methods . 17
4.2 Quasi-Newton Methods . 18

4.2.1 The BFGS Method . 18
4.3 Nonlinear Conjugate Gradient Methods 19

4.3.1 Fletcher–Reeves (FR) . 20
4.3.2 Polak–Ribière (PR) . 20
4.3.3 Modified Polak–Ribière (PR+) . 21
4.3.4 Fletcher–Reeves–Polak–Ribière (FR–PR) 21
4.3.5 Hestenes–Stiefel (HS) . 21
4.3.6 Dai–Yuan (DY) . 21
4.3.7 Hager–Zhang (HZ) . 21

4.4 The Levenberg–Marquardt Method . 22

5 Solving the Design Problem 23
5.1 Single-Wavelength Solution . 23

5.1.1 One-Layer Dielectric Anti-Reflective Filters 23
5.1.2 Two-Layer Dielectric Anti-Reflective Filters 24

5.2 Multi-Wavelength Solution . 27
5.2.1 One-Layer Dielectric Anti-Reflective Filters 28

iii

iv CONTENTS

5.2.2 Two-Layer Dielectric Anti-Reflective Filters 28
5.2.3 Multi-Layer Dielectric Anti-Reflective Filters 28

6 Software Design 31

7 Numerical Results 33

8 Conclusion and Future Work 35

A Python Source Code 39

Chapter 1

Introduction

In this thesis we will investigate how optical interference filters are designed. These
filters have many real-world applications, such as anti-reflection coatings [7, Ch. 3] on
camera lenses, high-reflectance mirrors [7, Ch. 5.2] used in laser cavities, and jewellery.
In cameras, anti-reflection filters are employed to ensure that most of the incident
visible light is transmitted through the lens, while most of the incident invisible light
(ultraviolet and infrared) is reflected. This ensures that the detector chip does not
erroneously register invisible light as visible. Laser mirrors need to be as reflective as
possible at the wavelength of the laser, so these can be regarded as the opposite of
anti-reflection filters. Sometimes, optical coatings are applied to jewellery because of
their iridescent properties, which changes the colour of the jewellery depending on
which angle it is viewed.

We will concentrate on design methods for dielectric anti-reflection filters. Dielec-
tric filters contain only materials that are transparent, i.e. materials that do not absorb
light. Most anti-reflection filters are dielectric, since we want as much light as possible
to pass through in a chosen wavelength interval.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Optical Interference Filters

This section follows closely the corresponding section of my previous report [8], but
with a few modifications and corrections. We start by presenting the theory behind
optical interference filters and will then look at the special case of a purely dielectric
filter.

2.1 Physical Model

An optical interference filter is built up of thin discrete layers of materials with various
optical properties. We make a few assumptions to simplify the problem:

• Each layer in the filter is completely characterised by the layer thickness d > 0,
the electric conductivity σ ≥ 0, the electric permittivity ε = εr ε0 ∈ R and the
magnetic permeability µ=µrµ0 ≥ 0. Note that εr can be negative. This is typical
in metals.

• The incident light enters the filter as a monochromatic, sinusoidal plane-wave
travelling along the x-axis, normal to the surface. This assumption implies that
we can forget about the polarisation of the light (see [7, Ch. 2.2.3]).

• The electromagnetic parameters σ, ε and µ are constant within each layer. They
may be frequency-dependant, but because of our assumption that the incoming
light is monochromatic, this is of no consequence.

• The layers are deposited on a relatively thick, non-absorbing substrate and the
medium that surrounds the filter is non-absorbing.

• The substrate is semi-infinite. This implies that after the wave has passed
into the substrate, it will never be reflected back again. Although this is quite
unrealistic, it will help to keep the model simple enough for our use. See [7,
Ch. 2.14] for a description of how to incorporate the effects of a finite substrate.

3

4 CHAPTER 2. OPTICAL INTERFERENCE FILTERS

light

medium 1 2 · · · q substrate

Figure 2.1: An optical interference filter.

See Fig. 2.1 for a schematic representation of a general filter with q layers.
We will follow the presentation in [7, Ch. 2.1–2.5] starting with Maxwell’s equations1

∇×H = J+ ∂D

∂t
,

∇×E =−∂B

∂t
,

∇·D = ρ,

∇·B = 0,

together with the relations

J =σE,

D = εE,

B =µH.

First, we derive the electromagnetic wave equations within a single layer from the
equations above. We eliminate B and D,

∇×H =σE+ε∂E

∂t
,

∇×E =−µ∂H

∂t
,

∇·E = ρ

ε
,

∇·H = 0,

(2.1)

and obtain from these equations and by the assumption that the electromagnetic
parameters are constant,

−∇× (∇×E) =∇2E =σµ∂E

∂t
+εµ∂

2E

∂t 2
,

−∇× (∇×H) =∇2H =σµ∂H

∂t
+εµ∂

2H

∂t 2
.

(2.2)

1See any book on electromagnetism for the derivation of these equations, e.g. [1, Ch. 7].

2.1. PHYSICAL MODEL 5

H

E

z

y

x

Figure 2.2: Orientation of the electric and magnetic fields.

We see that the electric and magnetic field intensities, E and H respectively, both
satisfy the same differential equation.

We are only interested in solutions of Eq. (2.2) representing plane, sinusoidal waves
moving in the x-direction of the form

E = E ŷ = E eiω(t−x/v)ŷ, H = H ẑ =H eiω(t−x/v)ẑ (2.3)

where ω > 0 is the angular frequency, v is the (complex) wave velocity, and E and
H are (complex) constants. Note that this implies that E and H are complex vectors
forming a right-handed set. Only the real parts of these have physical meaning, but
the complex versions simplify the analysis. The real parts are also solutions since
Eq. (2.2) is linear, allowing us to separate the real and imaginary parts. See Fig. 2.2 for
an illustration of the directions of the electric and magnetic field intensities relative
to the propagation direction. We insert Eq. (2.3) into Eq. (2.2) and get the dispersion
relation (solution condition)

−ω
2

v2
= iσµω−εµω2.

Consider the solution in vacuum, where σ= 0, v = c, ε= ε0 and µ=µ0. This gives us
an expression for the speed of light in vacuum

c2 = 1

ε0µ0
.

Let us define the complex refractive index N by

N 2 def= c2

v2
= εrµr − i

σµr

ε0ω
. (2.4)

Further, let us define

N = c

v
def= n − ik,

where n is called the refractive index and k is called the extinction coefficient. Letting
λ

def= 2πc/ω be the wavelength in vacuum, we substitute into Eq. (2.3) and get

E

E
= H

H
= ei(ωt−(2πN /λ)x) = e−(2πk/λ)xei(ωt−(2πn/λ)x). (2.5)

6 CHAPTER 2. OPTICAL INTERFERENCE FILTERS

From this, we readily see that the larger k is, the faster the wave will be absorbed by
the material. This also rules out the possibility of k being negative, as this leads to the
wave amplitude growing exponentially over time. It would only be physically possible
to have k < 0 if we could somehow continuously supply energy to the wave, but this is
outside the scope of this thesis.

Now, since
N 2 = n2 −k2 −2ink,

we get from Eq. (2.4) that

n2 −k2 = εrµr ,

2nk = σµr

ε0ω
.

Since the right-hand side of the last equation and k are both non-negative, we must
also have that n is non-negative.2 Thus, N lies in the closed fourth quadrant of C.

Our next step is to find the relationship between E and H . Let us insert the solution
Eq. (2.3) into Eq. (2.1):

∇×H =σE+ε∂E

∂t

−∂H

∂x
ŷ = (σ+ iεω)E ŷ

i
2πN

λ0
H = i

ωN 2

c2µ
E

ω

c
H = ωN

c2µ
E

H = N

cµ
E .

We define the characteristic optical admittance

y
def= N

cµ
, (2.6)

so that H = yE . Let us denote y in vacuum as y0 = 1/cµ0. Then y = y0N /µr .
Now, let us discuss what happens when the wave crosses an interface between

two layers. We assume that the two layers consist of materials with different optical
properties, otherwise we could consider the two layers as one by simply adding their
thicknesses. This will split the incident electromagnetic wave into two parts at the
interface, with one reflected component and one transmitted component. Let us use

2If we had allowed µr < 0, we could in fact have achieved a material with n < 0. This is the definition
of a metamaterial, but that topic is outside the scope of this thesis.

2.1. PHYSICAL MODEL 7

E E

incident transmitted

HH E

reflected

H

z

y

x

Figure 2.3: Convention defining positive directions for incident, reflected and trans-
mitted waves.

the subscript i for the incident wave, r for the reflected wave and t for the transmitted
wave. There will be no absorption at the interface since it has zero thickness and the
electric and magnetic fields must vary continuously across it.

The electric and magnetic fields always form right-handed sets together with
the direction of propagation. We define the positive direction of the electric field to
always lie in the positive y-direction. This implies that the magnetic component of
the reflected wave will point in the negative z-direction (see Fig. 2.3) and we get

Et = Ei +Er , Ht = Hi −Hr .

Consider now the situation where the filter consists of a single layer with complex
refractive index N , characteristic optical admittance y and thickness d deposited on
a substrate with characteristic admittance ys . As mentioned earlier, we simplify the
situation by assuming that there are no waves in the substrate travelling in the negative
direction. We also define Em and Hm as the electric and magnetic field intensities
in the medium at the first interface, Es and Hs as the intensities in the substrate at
the second interface, E+

m , H+
m , E−

m , H−
m as the intensities of the forward and backward

going waves respectively in the layer at the first interface, and E+
s , H+

s , E−
s , H−

s as the
intensities of the forward and backward going waves respectively in the layer at the
second interface. See Fig. 2.4 for a graphical summary.

Since the electric and magnetic field intensities are continuous across the inter-
faces and since there are no waves travelling in the negative direction inside the
substrate, we have

Es = E+
s +E−

s , Hs = H+
s −H−

s = y(E+
s −E−

s).

We can transform these equations to

E+
s = 1

2

(
Es + Hs

y

)
, E−

s = 1

2

(
Es − Hs

y

)
.

8 CHAPTER 2. OPTICAL INTERFERENCE FILTERS

substrate, ys

Es , Hs

layer, y

E+
s , H+

sE+
m , H+

m

E−
s , H−

sE−
m , H−

m

d

Em , Hm

medium, ym

Figure 2.4: Electric and magnetic fields in a one-layer filter.

At the same moment in time, we can find the electric and magnetic field intensities Em

and Hm at the interface between the medium and the layer by considering Eq. (2.5).
Define

δ
def= 2πN d

λ

so that we simply need to multiply by eiδ for the positive-going wave and e−iδ for the
negative-going wave. We get

E+
m = E+

s eiδ, E−
m = E−

s e−iδ.

We are now ready to find Em and Hm . The electric field intensity is

Em = E+
m +E−

m

= 1

2

(
Es + Hs

y

)
eiδ+ 1

2

(
Es − Hs

y

)
e−iδ

= eiδ+e−iδ

2
Es + eiδ−e−iδ

2y
Hs

= Es cosδ+Hs
isinδ

y
, (2.7)

and the magnetic field intensity is

Hm = H+
m −H−

m

= y(E+
m −E−

m)

= y

2

(
Es + Hs

y

)
eiδ− y

2

(
Es − Hs

y

)
e−iδ

= eiδ−e−iδ

2
yEs + eiδ+e−iδ

2
Hs

= Es iy sinδ+Hs cosδ. (2.8)

We combine Eq. (2.7) and Eq. (2.8) to form the matrix formula[
Em

Hm

]
=

[
cosδ (isinδ)/y

iy sinδ cosδ

][
Es

Hs

]
. (2.9)

2.2. DIELECTRIC FILTERS 9

It is easy to generalise this to the case where we have q layers instead of just one (see [7,
Ch. 2.4]). The result is[

Em

Hm

]
=

(q∏
r=1

[
cosδr (isinδr)/yr

iyr sinδr cosδr

])[
Es

Hs

]
, (2.10)

where the ordering of the matrices in the product is such that the leftmost matrix
corresponds to the layer next to the medium. Let us define a normalised version of
the electromagnetic field[

B
C

]
def=

[
Em/Es

Hm/Es

]
=

(q∏
r=1

[
cosδr (isinδr)/yr

iyr sinδr cosδr

])[
1
ys

]
. (2.11)

Analogously to Eq. (2.6), let us define the input optical admittance

Y
def= Hm

Em
= Hm/Es

Em/Es
= C

B
.

This shows that the input optical admittance is independent of the electromagnetic
fields and only depends on the optical properties of the layers and the substrate.

One of most important quantities in connection with optical filters is the reflect-
ance R which is defined as the ratio of the reflected irradiance to the incident irradi-
ance. Let us define the amplitude reflection coefficient

ρ
def= ym −Y

ym +Y
,

where ym is the characteristic optical admittance of the medium. From [7, Ch. 2.2.1]
we get that R = |ρ|2. Alternatively, we can write

R = |ρ|2 =
∣∣∣∣ ymB −C

ymB +C

∣∣∣∣2

. (2.12)

In Sec. 3.2 we prove that 0 ≤ R < 1 (at least for dielectric filters, which are defined in
the next section).

An important fact that we will need later is that the matrices in Eq. (2.11) all have
determinant equal to one. This means that they are members of the special linear
group SL(2,C).

2.2 Dielectric Filters

An important special case, the case that we will focus our attention on from now on, is
when all layers in the filter consist of dielectric materials, i.e. materials with σ= 0 and

10 CHAPTER 2. OPTICAL INTERFERENCE FILTERS

εr > 0. These conditions imply that k = 0. In other words, dielectric filters are filters
that do not absorb light, only reflect and transmit it. This is important in practice,
where large absorption can cause high temperatures inside the filter itself, potentially
destroying it.

From Eq. (2.11), we see that the matrices only depend on δ and y . Since N = n is
real, by definition, so is δ and y . According to [7, Ch. 2.1], at optical wavelengths, we
can assume that µr = 1, so y = ny0. Thus, we can completely characterise the filter by
{(ni ,δi)}q

i=1 ∈R2q , in addition to the refractive index ns of the substrate. Of course, we
can only choose non-negative ni and δi .

2.3 The Design Problem

We now turn our attention to the design problem. In the case of dielectric anti-
reflection filters, we would like to design a dielectric filter that transmits as much
light as possible in the wavelength interval that we are interested in. Outside that
interval, it does not matter how the filter behaves. We wish to formulate this as an opti-
misation problem. Given the number of layers q of the filter and the refractive index ns

of the substrate, we must find a set of parameters α
def= {αi }q

i=1, where αi
def= (ni ,δi) so

that the reflectance R is minimised in the wavelength interval. Let us discretise the
interval by selecting m wavelengths {λ j }m

j=1 from it. From Eq. (2.12) we see that R is a
function of the input optical admittance Y , the value of which is dependant only on α
(and ns , which is not altered in the optimisation), so we can write Y = Y (α). Next, we
need an objective function f that reaches a minimum at the solution. Let us choose
the sum of squared deviations,

f (α)
def= 1

2

m∑
j=1

R
(
Y (α j)

)2,

where α j def= {α j
i }q

i=1, α j
i

def= (ni ,δi /λ j). Then we can write the optimal solution as

α∗ = argmin f (α).

In Sec. 5.2 we use this sum of squares formulation to solve the design problem.
Now, let us consider the case where we are only interested in the behaviour at

a single wavelength. We see that we can simply set f = R, i.e. we minimise the
reflectance directly at the wanted wavelength. This design problem can be solved
exactly, as we will see in Sec. 5.1.

Chapter 3

The Geometry of the Design Problem

We generalise the objective function f from Sec. 2.3 to all functions that are only
dependent on the admittance Y (possibly at multiple wavelengths). Since Y =C /B ,
we are not interested in the value of B and C themselves, only the ratio between them.
This means that we can multiply the vector [1, ys]T in Eq. (2.11) by any non-zero, com-
plex number w without changing Y . Let us consider the normalised electromagnetic
field vector at the surface of a one-layer filter:[

B
C

]
w =

[
cosδ (isinδ)/y

iy sinδ cosδ

][
1
ys

]
w =

[
w

(
cosδ+ (iys sinδ)/y

)
w(iy sinδ+ ys cosδ)

]
.

We let

w = 1

cosδ+ (iys sinδ)/y
,

so that [
B
C

]
w =

[
1
Y

]
.

This means that we can interpret each matrix in Eq. (2.11) (representing a layer in the
filter) as a transformation acting on the admittance outputted from the previous filter
layer. Thus, for a multi-layer filter, we arrive at the input optical admittance Y after a
sequence of transformations is applied to ys .

3.1 Linear Fractional Transformations

Linear fractional transformations (also called Möbius transformations) are maps on C
of the form

w 7→ aw +b

cw +d
,

where a,b,c,d ∈ C and ad −bc 6= 0. If we scale a,b,c and d by a common non-zero
factor, we see that we actually get the same transformation by cancellation. By only

11

12 CHAPTER 3. THE GEOMETRY OF THE DESIGN PROBLEM

considering transformations that have ad −bc = 1, we remove this ambiguity. We let
the space of linear fractional transformations satisfying ad −bc = 1 be called M .

The transformation from ys to Y is exactly of this form.

Y = iy sinδ+ ys cosδ

cosδ+ (iys sinδ)/y
.

A more natural form can be achieved if we define the input impedance, medium
impedance and substrate impedance as

Z
def= 1

Y
, zm

def= 1

ym
and zs

def= 1

ys
, (3.1)

respectively. Then

Z = (cosδ)zs + (isinδ)/y

(iy sinδ)zs +cosδ
,

which is the linear fractional transformation in M with a = d = cosδ, b = (isinδ)/y
and c = iy sinδ that transforms zs to Z .

This corresponds exactly to the elements of the original matrix and motivates the
map

π : SL(2,C) → M ,

[
a b
c d

]
7→ aw +b

cw +d
.

It is easy to show that M is a group. Then, since SL(2,C) is a group, an immediate
implication is that π is a group homomorphism, i.e.

π(X Y) =π(X)◦π(Y)

for all X ,Y ∈ SL(2,C). The kernel of π, written kerπ, is the set of elements in SL(2,C)
that get mapped to the identity transformation e(w) = w . We easily find that

kerπ= {I ,−I }.

Let us define the projective special linear group as the quotient group where we col-
lapse all scalar multiples of each element of the special linear group to a single element.
In SL(2,C), this means that we identify every element X with −X :

PSL(2,C)
def= SL(2,C)/{I ,−I }.

Since the kernel is a normal subgroup, we have from the first isomorphism theorem
(see [3, Thm. 34.2]) that M and PSL(2,C) are isomorphic. In other words, M and
PSL(2,C) are structurally identical (in the sense of group theory).

In the case of a dielectric layer,

φ(w) = w cosδ+ i(sinδ)/y

iw y sinδ+cosδ
, (3.2)

3.2. THE GEOMETRY OF THE REFLECTANCE 13

where

δ= 2πnd

λ
and y = ny0,

as detailed in Sec. 2.2. We see that δ and y are both real and determine a unique
element φ ∈ M if we choose δ so that 0 ≤ δ<π. Of course, we can only choose n > 0,
which implies that y > 0. All the corresponding matrices in PSL(2,C) are of the form[

a ib
ic a

]
,

where a,b,c ∈R. Let us calculate the product of two such matrices:[
a2 ib2

ic2 a2

][
a1 ib1

ic1 a1

]
=

[
a2a1 −b2c1 i(a2b1 +b2a1)

i(c2a1 +a2c1) −c2b1 +a2a1

]
Since in general b2c1 6= c2b1, the product is not of the original form. However, if we
generalise to matrices in PSL(2,C) of the form[

a ib
ic d

]
,

with a,b,c,d ∈R, products are of this form. This means that these form a subgroup of
PSL(2,C), and by isomorphism the corresponding transformations form a subgroup
of M . Let us call this subgroup Md (d standing for dielectric).

3.2 The Geometry of the Reflectance

We are interested in how the reflectance R depends on the input impedance Z . From
Eq. (2.12) and Eq. (3.1), we have

R =
∣∣∣∣ ym −Y

ym +Y

∣∣∣∣2

=
∣∣∣∣1/zm −1/Z

1/zm +1/Z

∣∣∣∣2

=
∣∣∣∣ Z − zm

Z + zm

∣∣∣∣2

.

Then the level set for R = R ′ is ZR ′ = {Z ∈C : R = R ′}. This set consists of all Z such that
(Z − zm)/(Z + zm) lies on a circle with radius

p
R ′ centred at the origin. Thus,

ZR ′ =
{

Z ∈C :
Z − zm

Z + zm
=
p

R ′eiθ, for some θ ∈R
}

.

After a little manipulation of the condition and letting Z = x + iy , we can eliminate θ
and get

x2 + y2 −2xzm
1+R ′

1−R ′ =−z2
m .

14 CHAPTER 3. THE GEOMETRY OF THE DESIGN PROBLEM

Im Z

Re Zzm

Figure 3.1: Level sets of R = R ′, 0 ≤ R ′ < 1.

This is the equation for a circle with centre(
zm

1+R ′

1−R ′ ,0
)
,

and radius

zm
2
p

R ′

1−R ′ .

In Fig. 3.1, we have plotted some level sets for 0 ≤ R ′ < 1. We see that the entire open
right half-plane of C is covered by 0 ≤ R ′ < 1. There are two special cases: Z0 = {zm} (a
circle with radius 0), and Z1 = iR (a ‘circle’ with radius ∞).

Let us split the transformation φ(zs) ∈ Md into its real and imaginary parts:

φ(zs) = azs + ib

iczs +d
= (azs + ib)(d − iczs)

c2z2
s +d 2

= zs + i(bd −acz2
s)

c2z2
s +d 2

Since zs > 0, we immediately see that φ(zs) lies in the open right half-plane of C,
corresponding to the level sets for 0 ≤ R ′ < 1. Thus, it is impossible to transform zs into
the closed left half-plane of C. Consequently, R must be less than one.1 Physically, this
means that it is impossible to construct a perfect mirror with only dielectric materials.

In a real-world anti-reflection filter, we would like R = 0 at some wavelength, so we
must find φ ∈ Md that transforms zs to zm . Then we must have φ(zs) = zm , so

zs = zm(c2z2
s +d 2) and bd = acz2

s ,

together with the usual ad +bc = 1. Let us parametrise the possible transformations
by setting

d =
√

zs

zm
t .

1It is possible to get arbitrarily close to R = 1, though.

3.3. PHYSICALLY REALISABLE TRANSFORMATIONS 15

Then

c =± 1

zs

√
zs

zm
−d 2 =±

√
1− t 2

zm zs
,

which implies that we must choose t so that t 2 ≤ 1. We can combine the three equa-
tions to get

b = zm zsc =±
√

zm zs(1− t 2).

Another combination gives us

a = zm

zs
d =

√
zm

zs
t .

This parametrisation actually covers the same elements twice in Md . Elements that
are parametrised by positive t are identified with the elements mapped by negative t
if we switch the sign of b and c . One way to remedy this is to only allow positive square
roots in the expressions for b and c, while letting −1 < t ≤ 1. If we interpret d as time,
we see that we trace out half an ellipse in abc-space as t goes from −1 to 1.

We can write this simpler by letting t = cosθ, where 0 ≤ θ <π. Then

a =
√

zm

zs
cosθ, b =p

zm zs sinθ, c = sinθp
zm zs

and d =
√

zs

zm
cosθ.

3.3 Physically Realisable Transformations

As we saw in Eq. (3.2), an element of Md corresponding to a physical layer with
impedance z = 1/y is of the special form

φ(w) = w cosδ+ i(sinδ)/y

iw y sinδ+cosδ
= w cosδ+ iz sinδ

iw(sinδ)/z +cosδ
. (3.3)

We will now explore how φ transforms points w in the complex plane. Let w = u + iv ,
φ(w) = x+ iy , α+ iβ= eiδ, multiply Eq. (3.3) by the denominator, and separate the real
and imaginary parts. Then we get

x
(
α−βv

z

)
− yβ

u

z
=αu,

xβ
u

z
+ y

(
α−βv

z

)
=αv +βz.

By eliminating α and β, we can transform this to

x2 + y2 −2x
|w |2 + z2

2u
=−z2.

16 CHAPTER 3. THE GEOMETRY OF THE DESIGN PROBLEM

This is the equation for a circle with centre

(x0, y0) =
(|w |2 + z2

2u
,0

)
(3.4)

and radius

r =
√

x2
0 − z2.

If we set δ= 0 in Eq. (3.3), we get φ(w) = w the identity transformation, as expected.
If we set δ = π/2, φ(w) = z2/w . So all possible values that φ(w) can take lie on the
unique circle that goes through w and z2/w with centre on the real line. Note that if
z = w , the circle collapses to a single point.

Now we show that the right half-plane is transformed into the right half-plane. By
checking the sign of x0 − r (the leftmost point of the circle), we will see if it is possible
to end up in the left half-plane. Let u > 0. From Eq. (3.4) we then have that x0 > 0. So

x0 − r = x0 −
√

x2
0 − z2

is positive as long as x2
0 − z2 ≥ 0, (and of course, z 6= 0). We show that this is indeed the

case:

x2
0 − z2 =

(
u2 + v2 + z2

2u

)2

− z2

= (u2 + v2 + z2)2 −4u2z2

4u2

= (u2 − z2)2 + v2(v2 +2u2 +2z2)

4u2

≥ 0.

Thus, we have proved the important fact that any sequence of physically realisable
transformations of the impedance zs will give a result that lies in the open right
half-plane of C. The same result holds if we choose to use admittances instead of
impedances.

Chapter 4

Optimisation Methods

To solve our design problem, we need numerical optimisation methods. In this
chapter, we present the methods that we will use. The presentation here is not rigorous
or complete in any manner. See [9, Ch. 3, 5 and 6] for a more comprehensive survey.

The main goal in optimisation is to find the minimum of some objective func-
tion f : Rn → R. We can formulate this more mathematically: Find an x∗ ∈ Rn so
that

x∗ = argmin
x∈Rn

f (x).

Line search methods and trust-region methods are two of the most used strategies in
numerical optimisation. We will focus on the former of these and present two impor-
tant classes of line search methods that we will apply to the design problem. These
classes are quasi-Newton methods (see Sec. 4.2) and nonlinear conjugate gradient
methods (see Sec. 4.3). Much of the material in this chapter is taken from [9, Ch. 3, 5
and 6].

4.1 Line Search Methods

Line search methods are iterative methods that work as follows. We start at some given
point x0 ∈ Rn , and for each iteration, say iteration k, find a search direction pk ∈ Rn

that is a descent direction, i.e. a direction satisfying pT
k∇ f (xk) < 0. Next, we find a step

length αk satisfying the strong Wolfe conditions

f (xk +αk pk) ≤ f (xk)+ c1αk∇ f (xk)Tpk ,

|∇ f (xk +αk pk)Tpk | ≤ c2|∇ f (xk)Tpk |,

17

18 CHAPTER 4. OPTIMISATION METHODS

with 0 < c1 < c2 < 1.1 This ensures that f decreases sufficiently for the iteration to
converge to a minimiser. According to [9, Lem. 3.1], as long as f is continuously
differentiable and bounded below, we can always find a step length that satisfies the
strong Wolfe conditions. The next iterate is then

xk+1 = xk +αk pk .

The only thing that separate the different line search methods from each other is
the algorithm we use to find pk .

4.2 Quasi-Newton Methods

Quasi-Newton methods are methods that are related to the Newton method. In each
iteration of both methods, we first determine a model function

mk (p) = f (xk)+∇ f (xk)Tp + 1

2
pTBk p, (4.1)

where Bk is a symmetric and positive definite matrix. The model function quadratically
approximates f around xk . We easily find the minimum of mk by differentiating
Eq. (4.1). The minimiser is

pk =−B−1
k ∇ f (xk). (4.2)

As the notation suggests, we use this minimiser as the search direction pk .
In the Newton method, Bk =∇2 f (xk), the Hessian of f . The Hessian may be expen-

sive to calculate (this is the case for us), so instead we make do with an approximation.
The approximation is refined at each step so that, gradually we approach the true
Hessian. This gives us the quasi-Newton methods.

4.2.1 The BFGS Method

The BFGS method2 is one of the most important quasi-Newton methods. It is based
on the idea that ∇mk+1 should match ∇ f at both xk and xk+1. This condition implies
that Bk+1 must satisfy the secant equation

Bk+1sk = yk ,

where
sk

def= xk+1 −xk , and yk
def=∇ f (xk+1)−∇ f (xk).

1Nocedal and Wright [9] suggest using c1 = 10−4 and c2 = 0.9 or c2 = 0.1 for quasi-Newton and
nonlinear conjugate gradient methods respectively.

2Named after Broyden, Fletcher, Goldfarb, and Shanno.

4.3. NONLINEAR CONJUGATE GRADIENT METHODS 19

The strong Wolfe conditions guarantee that the secant equation has a solution, but it
may not be unique. To get uniqueness, we select the symmetric positive definite Bk+1

that lies closest to Bk in the sense of norms:

Bk+1 = argmin
B

‖B −Bk‖W ,

where we use the weighted Frobenius norm

‖A‖W
def= ‖W 1/2 AW 1/2‖F .

The weighting matrix W is defined as W =G
−1
k , where

Gk
def=

∫ 1

0
∇2 f (xk +ταk pk)dτ

is the average Hessian. The unique solution is then

Bk+1 = (I −ρk yk sT
k)Bk (I −ρk sk yT

k)+ρk yk yT
k , (4.3)

where

ρk
def= 1

yT
k sk

.

Eq. (4.3) is called the DFP updating formula.3

From Eq. (4.2) we see that we do not need Bk directly, but rather its inverse. Let us
denote

Hk
def= B−1

k

We want to find an updating formula for Hk+1. By imposing the conditions that we
used to find Bk+1 on Hk+1 instead, we get

Hk+1 = (I −ρk sk yT
k)Hk (I −ρk yk sT

k)+ρk sk sT
k .

This is the BFGS updating formula and is the one that is used in practice.

4.3 Nonlinear Conjugate Gradient Methods

Another important class of line search methods is the class of nonlinear conjugate
gradient methods. They are based on the linear conjugate gradient method (simply
called the CG method), which is a method for solving a linear system of equations,

3Named after Davidon, Fletcher and Powell.

20 CHAPTER 4. OPTIMISATION METHODS

Ax = b, where A is a symmetric positive definite matrix. We can restate this as an
optimisation problem. Find

minφ(x), where φ(x)
def= 1

2
xT Ax −bTx.

The gradient of φ is
∇φ(x) = Ax −b

def= r (x), (4.4)

where r is called the residual of the linear system. In each iteration of the CG method,
we perform the following calculations (see [9, Alg. 5.2]):

αk = ‖rk‖
pT

k Apk
,

xk+1 = xk +αk pk ,

rk+1 = rk +αk Apk ,

βk+1 =
‖rk+1‖
‖rk‖

,

pk+1 =−rk+1 +βk+1pk .

In nonlinear conjugate gradient methods, we find αk with a line search along
pk , calculate βk+1 in one of the ways discussed in the following subsections, and set
pk+1 = −∇ f (xk+1)+βk+1pk (see [9, Alg. 5.4]). By comparison with Eq. (4.4), we see
that substitution of the residuals with the gradient of the objective function f is quite
natural.

In [9, Sec. 5.2] several possibilities for the calculation of βk+1 are suggested. We
present them here and later test their performance on the design problem. Nocedal
barely touches the final two (the DY and HZ methods) because they are relatively new,
so it will be extra interesting to see how they perform.

4.3.1 Fletcher–Reeves (FR)

This is the simplest nonlinear conjugate gradient method, where we simply substitute
the residuals with the corresponding gradients.

βFR
k+1 =

∇ f (xk+1)T∇ f (xk+1)

∇ f (xk)T∇ f (xk)
= ‖∇ f (xk+1)‖

‖∇ f (xk)‖

4.3.2 Polak–Ribière (PR)

Experience has shown that this variant is more efficient and robust than the FR
method.

βPR
k+1 =

∇ f (xk+1)T yk

‖∇ f (xk)‖

4.3. NONLINEAR CONJUGATE GRADIENT METHODS 21

4.3.3 Modified Polak–Ribière (PR+)

For the PR method, the strong Wolfe conditions are not enough to guarantee that pk

is a descent direction, but by setting

βPR+
k+1 = max{βPR

k+1,0},

giving us the PR+ method, we restore this property.

4.3.4 Fletcher–Reeves–Polak–Ribière (FR–PR)

For all k ≥ 2,

βFR–PR
k =


−βFR

k if βPR
k <−βFR

k

βPR
k if |βPR

k | ≤βFR
k

βFR
k if βPR

k >βFR
k .

This method is a modification of the PR method, based on the fact that it is possible to
get global convergence for any βk satisfying |βk | ≤βFR

k .

4.3.5 Hestenes–Stiefel (HS)

This variant is quite similar to the PR method in theoretical convergence properties.

βHS
k+1 =

∇ f (xk+1)T yk

yT
k pk

4.3.6 Dai–Yuan (DY)

From [2], we have

βDY
k+1 =

‖∇ f (xk+1)‖
yT

k pk
.

4.3.7 Hager–Zhang (HZ)

From [4], we have

βHZ
k+1 =

(
yk −2pk

‖yk‖
yT

k pk

)T ∇ f (xk+1)

yT
k pk

.

22 CHAPTER 4. OPTIMISATION METHODS

4.4 The Levenberg–Marquardt Method

OpenFilters uses a nonlinear least-squares method in its optimisation routines. Specif-
ically, the Levenberg–Marquardt method (see [6]). The method is described in [9,
Sec. 10.3]. We have not implemented this method in this thesis, but include it here
since we want to compare our results with the results obtained with OpenFilters.

Chapter 5

Solving the Design Problem

In this chapter, we will first solve the design problem at a single wavelength, then we
will look at the multi-wavelength problem.

5.1 Single-Wavelength Solution

From the previous chapters, we now have all the tools necessary to solve the design
problem at a single wavelength. As we will see, this problem can be solved exactly,
without resorting to numerical methods.

5.1.1 One-Layer Dielectric Anti-Reflective Filters

If all we need is R = 0 at a single wavelength, we can solve the design problem in a
single layer. We need to construct a one-layer dielectric filter that transforms zs to
zm . Applying what we learnt in the previous section, we must find a circle that goes
through both zs and zm and has its centre on the real line. This is the circle with centre
(zm + zs)/2 and radius (zm − zs)/2 (see Fig. 5.1).

Then, from Eq. (3.4) with w = u = zs , we have that

x0 = zs + zm

2
= z2

s + z2

2zs
.

We solve for z and get
z =p

zm zs .

The only thing left to do is to find the layer thickness that gives us the point zm on the
circle. In other words, we must find 0 ≤ δ<π so that φ(zs) = zm . From Eq. (3.3), we get

zm = zs cosδ+ i
p

zm zs sinδ

izs(sinδ)/
p

zm zs +cosδ
= zs

p
zm zs cosδ+ izm zs sinδ

izs sinδ+p
zm zs cosδ

.

23

24 CHAPTER 5. SOLVING THE DESIGN PROBLEM

Figure 5.1: One-layer solution that gives R = 0 at a chosen wavelength.

0.0 0.1 0.2 0.3 0.4 0.5
δ/π

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

R
[%

]

(a) Varying δ, with λ=λ0.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
λ/λ0

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

R
[%

]

(b) Varying λ, with δ=π/2.

Figure 5.2: Optimal one-layer anti-reflective filter with ns = 1.52.

Since zm 6= zs in general, we must have cosδ= 0. The solution is simply δ= π/2. In
physical quantities, the solution is n =p

nmns , d =λ/4n.1 In Fig. 5.1, the input optical
impedance changes continuously from zs to zm along the thick path as we increase
the thickness of the layer from zero to λ/4n. In Fig. 5.2(a) we see how R drops to zero
at δ=π/2, as expected.

5.1.2 Two-Layer Dielectric Anti-Reflective Filters

The major drawback of the one-layer filter from the previous section is that we are
forced to use a material with impedance as close as possible to

p
zm zs . This may

not be physically feasible, but as we shall see in this section, we can get around this

1This actually solves the problem in my report [8] that I used numerical methods to solve, once and
for all.

5.1. SINGLE-WAVELENGTH SOLUTION 25

by introducing another layer to the filter. Each layer corresponds to a circle centred
on the real line in the impedance-plane, one that goes through zs and one that goes
through zm . The circle that goes through zs corresponds to the first layer and can lie
on either the left or the right side of zs . The circle that goes through zm corresponds
to the second layer and must lie on the left side of zm . This is because a circle that
lies on the right side of zm corresponds to a material with impedance larger than
zm , or equivalently, refractive index smaller than one, which is very rare at optical
wavelengths. All we need to do is to make sure that the circles cross at some point.
This crossing point is the impedance after going through the first layer, which has to
be transformed to zm to get R = 0.

We can divide all possible solutions into three different classes by considering the
characteristic impedance z1 of the first layer. The three classes are summarised in
Fig. 5.3.

(a) z1 < zs : The first circle lies to the left of zs . We see this from Eq. (3.4) with
w = u = zs and z = z1 < zs , which gives us that the centre of the circle lies to the
left of zs .

(b) zs < z1 <p
zm zs : The first circle lies to the right of zs , but does not encompass

zm . Complementary to (a), the condition z1 > zs gives us that the centre of the
circle lies to the right of zs . The condition z1 <p

zm zs ensures that the rightmost
point of the circle is less than zm .

(c)
p

zm zs < z1 < zm : The first circle lies to the right of zs , and encompasses zm . As
in (b), z1 > zs , so the centre of the circle lies to the right of zs , but z1 >p

zm zs

ensures that the rightmost point of the circle is to the right of zm .

The characteristic impedance z2 of the second layer must be chosen so that the second
circle intersects the first circle. The possible choices of z2 are such that the second
circle must lie in the shaded areas of Fig. 5.3(a)–(c). As in Fig. 5.1, the thick paths show
how the input impedance changes as we gradually build up the filter, layer by layer.
We could also consider the cases z1 = zs and z1 =p

zm zs , however, they are trivial as
they correspond to one of the circles having radius zero, and are thus equivalent to
one-layer designs. In Fig. 5.3(d), the choices of z1 and z2 that give intersecting circles
lie in the shaded areas.2 These areas correspond to the three classes, as marked in the
figure.

Note that the circles corresponding to the interior of the shaded areas in Fig. 5.3(d)
intersect in two points, so there are actually two possible choices of layer thicknesses
for these solutions, but for simplicity, we choose to explicitly display only one of them
as thick paths. See Fig. 5.4 for an example of how the reflectance as a function of
wavelength differs in the two cases of a class (a) solution.3 We see that when δ1 <π/2,

2This diagram is equivalent to a Schuster diagram (see [7, Fig. 3.8]).
3The refractive indices of this example are taken from the example in [7, Sec. 3.2.2].

26 CHAPTER 5. SOLVING THE DESIGN PROBLEM

(a) z1 < zs . (b) zs < z1 <p
zm zs .

(c)
p

zm zs < z1 < zm . (d) Solution regions.

Figure 5.3: Optimal two-layer anti-reflective filters.

5.2. MULTI-WAVELENGTH SOLUTION 27

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
λ/λ0

0

5

10

15

20

25
R

[%
]

Figure 5.4: Reflectance of the two possible optimal two-layer filters with n1 = 2.20,
n2 = 1.38 and ns = 1.52. The solid curve corresponds to the solution where δ1 <π/2,
while the dashed curve corresponds to π/2 < δ1 <π.

the reflectance curve is flatter around the minimum. Which one of the two cases we
prefer depends on what we want the filter to do.

5.2 Multi-Wavelength Solution

Now we shift our attention to the design of filters that must satisfy some condition
on a whole interval in the spectrum, not just a single wavelength as in the previous
sections. Again, we focus on anti-reflective filters.

As an example, let us design a q-layer anti-reflective filter for the visible spectrum.
According to [11], the visible spectrum spans the wavelength interval from 380 nm
to 750 nm. We construct the least squares objective function f as shown in Sec. 2.3
by discretising the wavelength continuum into m = 50 equidistant wavelengths. We
choose λ0 = 550 nm so that the the part of the x-axis in the figures that correspond to
visible light is approximately the interval 0.69 ≤λ/λ0 ≤ 1.37.

28 CHAPTER 5. SOLVING THE DESIGN PROBLEM

0.7 0.8 0.9 1.0 1.1 1.2 1.3
λ/λ0

0.0

0.5

1.0

1.5

2.0

R
[%

]

Figure 5.5: Optimal one-layer anti-reflective filter in the visible region. The dashed
curve is the original filter, while the solid curve is the optimised filter.

5.2.1 One-Layer Dielectric Anti-Reflective Filters

In Fig. 5.2(b), we see how the reflectance of a one-layer filter that has R = 0 at wave-
length λ0 varies with wavelength. We need to find n and δ so that the objective func-
tion f is minimised. By using one of the optimisation methods in Sec. 4, we easily solve
this problem. In Fig. 5.5 we have used the BFGS method of Sec. 4.2.1 to find a minimum
of f . As a starting point, we have used the optimal single-wavelength one-layer design
at λ0 = 550 nm. The solution converged to n =p

nmns and δ= 1.47265264 ≈ 0.4688π
after six iterations. The value of f decreased from 9.459 ·10−4 to 7.241 ·10−4.

5.2.2 Two-Layer Dielectric Anti-Reflective Filters

In Fig. 5.6 we have used the BFGS method to optimise a two-layer filter. We see
that the reflectance is very low in the desired interval. As a starting point, we used
n1 = 2.20,n2 = 1.38 and δ1 = δ2 =π/2. After 51 iterations, we get n1 = 1.3525586,n2 =
1.12379604 and δ1 = δ2 = 1.44751467 ≈ 0.4601π. This reduces f from 0.243185 to
5.0425 ·10−6.

5.2.3 Multi-Layer Dielectric Anti-Reflective Filters

The general case of q layers is very similar to the two-layer case, except that even
better anti-reflective filters are possible. However, the optimisation methods used on
them are the same, so they do not bring anything new to the discussion. We will not
discuss the general case any further in this thesis.

5.2. MULTI-WAVELENGTH SOLUTION 29

0.7 0.8 0.9 1.0 1.1 1.2 1.3
λ/λ0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

R
[%

]

Figure 5.6: Optimal two-layer anti-reflective filter in the visible region.

30 CHAPTER 5. SOLVING THE DESIGN PROBLEM

Chapter 6

Software Design

We performed all the numerical calculations in Python (see [10]) using the SciPy
numerics library (see [5]). We created the following classes:

• OpticalFilter: Consists of a list of Layer objects, an Optimiser object, and a
CostFunction object.

• Layer: Stores the n and δ parameters that define the layer.

• CostFunction: Wrapper for the objective function and its gradient.

• Optimiser: This is the object that modifies the parameters in the Layer objects
so that the function in the CostFunction object is minimised. If the Optimiser
class is instantiated, it is set up to perform the BFGS method that is built into
SciPy. It can also be subclassed so that other optimisation methods can be used:

– NonlinCG: Performs our custom made nonlinear conjugate gradient meth-
ods. The variant is selected on instantiation.

– BFGS: Performs our custom made BFGS method.

The BFGS method and nonlinear conjugate gradient method that came with SciPy
were too complicated for our use, so we stripped them down to only contain the basic
algorithms, and then extended them to perform the wanted optimisation methods.
Most of the error checking and advanced options were not necessary for our case, and
would only slow down the execution speed.

See App. A for the source code.

31

32 CHAPTER 6. SOFTWARE DESIGN

Chapter 7

Numerical Results

We test the optimisation methods on the two-layer anti-reflective filter from Sec. 5.2.2.
We start at n1 = 2.20,n2 = 1.38 and δ1 = δ2 =π/2, and iterate until ‖∇ f (xk)‖∞ < 10−10.
The number of iterations, function and gradient evaluations are recorded in Tab. 7.1.

All the methods converge to the solution shown in Fig. 5.6, but as we see from
the table, the work required to get there varies a lot. The BFGS method is clearly the
best method. Of the nonlinear conjugate gradient methods, the Hager–Zhang method
gives the best results.

In Fig. 7.1, we see that the solution found by OpenFilters gives a much higher
reflectance in the visible wavelength interval than our methods (note that in this figure
the y-axis is not in %). The reason for this is that OpenFilters constrains the allowed
refractive indices, so that the optimisation never reaches low enough indices to get the
result that we have obtained with our methods. The reflectance curve in OpenFilters
before optimisation was identical to the curve calculated by our methods, so we are
pretty confident that our methods are correct.

Method Iterations Function evaluations Gradient evaluations
BFGS 51 52 52

FR 92 384 384
PR 100 379 379

PR+ 120 460 460
FR–PR 108 425 425

HS 312 1403 1375
DY 92 389 389
HZ 72 275 275

Table 7.1: Optimisation of two-layer filter.

33

34 CHAPTER 7. NUMERICAL RESULTS

Figure 7.1: Screenshot of optimal two-layer filter found in OpenFilters.

Chapter 8

Conclusion and Future Work

In this thesis we have presented the physics behind optical interference filters and
formulated the problem of designing them as an optimisation problem. Specifically,
we have focused our attention on the design of dielectric anti-reflective filters, as these
are very important in practice. We looked at the case where we want to minimise
the reflectance at one specific wavelength, and at the case where we minimise the
reflectance over a range of wavelengths.

By examining the geometry of the design problem, we found that we can solve
the single-wavelength problem exactly without resorting to numerical methods. The
multi-wavelength problem, on the other hand, we solved numerically by constructing
a least squares objective function.

We presented two classes of line-search optimisation methods (quasi-Newton
methods and nonlinear conjugate gradient methods), and applied variants of these to
the design problem.

We found that the BFGS method is superior to all the nonlinear conjugate gradient
methods tested on our two-layer test design problem. Of the nonlinear conjugate
methods, we found that the variant by Hager and Zhang was the one that performed
best. Finally, we compared our results with the results calculated by OpenFilters.
OpenFilters is based on the Levenberg-Marquardt algorithm, which is a constrained
optimisation algorithm. This makes comparison difficult, since our methods are based
on unconstrained optimisation. Even though our methods found a better solution
than the one OpenFilters found, the refractive indices found by our methods may be
too low to be physically attainable.

In the future, it would be interesting to see how constrained optimisation methods,
such as quadratic programming, and trust-region methods would work on the design
problem. However, because of time constraints, we had to restrict our attention to the
unconstrained methods presented in this thesis.

We have reached the goal of gaining geometric insight into the interesting problem
of designing filters.

35

36 CHAPTER 8. CONCLUSION AND FUTURE WORK

Bibliography

[1] David K. Cheng: Field and Wave Electromagnetics. Addison-Wesley, 1992.

[2] Y. H. Dai and Y. Yuan: A Nonlinear Conjugate Gradient Method with a Strong
Global Convergence Property. SIAM Journal on Optimization, 10(1):177–182,
2000.

[3] John B. Fraleigh: A First Course in Abstract Algebra. Addison-Wesley, 2003.

[4] William W. Hager and Hongchao Zhang: A New Conjugate Gradient Method with
Guaranteed Descent and an Efficient Line Search. SIAM Journal on Optimization,
16(1):170–192, 2005.

[5] Eric Jones, Travis Oliphant, Pearu Peterson, et al.: SciPy: Open source scientific
tools for Python, 2001–. http://www.scipy.org/.

[6] Stéphane Larouche and Ludvik Martinu: OpenFilters: open-source software for the
design, optimization, and synthesis of optical filters. Applied Optics, 47(13):219–
230, 2008.

[7] H. Angus Macleod: Thin-Film Optical Filters. Institute of Physics Publishing,
2001.

[8] Håkon Marthinsen: Optimisation on Lie Groups Applied to Optical Interference
Filters. Mandatory report written at NTNU, 2009.

[9] Jorge Nocedal and Stephen J. Wright: Numerical Optimization. Springer, 2006.

[10] Guido van Rossum and Fred L. Drake, Jr.: Python Language Reference Manual.
Network Theory, 2006.

[11] Wikipedia: Visible spectrum — Wikipedia, The Free Encyclopedia,
2009. http://en.wikipedia.org/w/index.php?title=Visible_
spectrum&oldid=298452246, [Online; accessed 24-June-2009].

37

http://www.scipy.org/
http://en.wikipedia.org/w/index.php?title=Visible_spectrum&oldid=298452246
http://en.wikipedia.org/w/index.php?title=Visible_spectrum&oldid=298452246

38 BIBLIOGRAPHY

Appendix A

Python Source Code

#!/usr/bin/python
-*- coding: utf-8 -*-
"""Optical interference filter design optimisation software."""

import numpy
from numpy import pi, eye, array, cos, sin, dot, Inf, isinf, outer, finfo, \

arange, squeeze, zeros
from scipy.optimize import fmin_bfgs, fmin_l_bfgs_b, fmin_cg, line_search
from numpy.lib.scimath import sqrt
import scipy.optimize.linesearch
from matplotlib import rc
from matplotlib.pyplot import figure, axes, plot, xlabel, ylabel, grid, show, \

xlim, ylim

Constants
c0 = 299792458 # Speed of light in free space
mu0 = pi * 4e-7 # Magnetic permeability of free space
z_0 = c0 * mu0 # Impedance of free space
ym = 1 / (c0 * mu0) # Admittance of free space
ns = 1.52 # Refracive index of crown glass
ys = ns * ym # Admittance of crown glass
z_s = 1 / ys # Impedance of crown glass
I = eye(2) # Identity matrix

Basis of parameter space
e1 = array([1.0, 0.0])
e2 = array([0.0, 1.0])

Various needed vectors
vs = array([[1.0], [ys]])
vmm = array([ym, -1.0])
vmp = array([ym, 1.0])

39

40 APPENDIX A. PYTHON SOURCE CODE

Machine epsilon and tolerance
eps = float(finfo(float).eps)
sqrteps = sqrt(eps)
tol = 100.0 * eps

def wrap_function(function, args):
"""Copied from SciPy."""
ncalls = [0]
def function_wrapper(var):

"""Copied from SciPy."""
ncalls[0] += 1
return function(var, *args)

return ncalls, function_wrapper

def vecnorm(var, order = 2):
"""Copied from SciPy. order must not be equal to zero."""
if order == Inf:

return numpy.amax(abs(var))
elif order == -Inf:

return numpy.amin(abs(var))
else:

return numpy.sum(abs(var)**order, axis = 0)**(1.0 / order)

def tau(alpha):
"""tau map from the parameter space P to PSL(2)."""
c_d = cos(alpha[1])
is_d = 1J * sin(alpha[1])
z = z_0 / alpha[0]
return array([[c_d, z * is_d], [is_d / z, c_d]])

def dn_tau(alpha):
"""Calculate the derivative of the tau map wrt. n"""
is_d = 1J * sin(alpha[1])
return array([[0, -z_0 * is_d / (alpha[0]**2)], [is_d / z_0, 0]])

def ddelta_tau(alpha):
"""Calculate the derivative of the tau map wrt. delta"""
ic_d = 1J * cos(alpha[1])
s_d = sin(alpha[1])
z = z_0 / alpha[0]
return array([[-s_d, z * ic_d], [ic_d / z, -s_d]])

def nu(beta):
"""Multi-layer version of tau."""
x = []
for i in xrange(len(beta) / 2):

alpha = beta[2 * i : 2 * (i + 1)]
x.append(tau(alpha))

return x

41

def grad_nu(beta):
x = []
for i in xrange(len(beta) / 2):

alpha = beta[2 * i : 2 * (i + 1)]
x.append(dn_tau(alpha))
x.append(ddelta_tau(alpha))

return x

def R(X):
"""Calculate the reflectance R."""
tmp = dot(X, vs)
rho = dot(vmm, tmp) / dot(vmp, tmp)
return (rho * rho.conjugate()).real[0]

def psi(x):
"""Calculate product of matrices."""
Y = I
for X in x:

Y = dot(X, Y)
return Y

def grad_psi(beta):
"""Calculate the gradient of psi."""
matrices = nu(beta)
d_matrices = grad_nu(beta)
num_layers = len(beta) / 2

product_start = [I, I]
product_end = [I, I]
for i in xrange(num_layers - 1):

tmp = dot(matrices[i], product_end[-1])
product_end.append(tmp)
product_end.append(tmp)
tmp = dot(product_start[-1], matrices[num_layers - 1 - i])
product_start.append(tmp)
product_start.append(tmp)

product_start.reverse()
x = []
for i in xrange(num_layers * 2):

x.append(dot(dot(product_start[i], d_matrices[i]), product_end[i]))

return array(x)

def S(beta, mu):
"""Sum of squares. mu is an array of scaling constants."""
beta_mod = beta.copy()
s = 0.0

42 APPENDIX A. PYTHON SOURCE CODE

for mu_i in mu:
Scale deltas by mu_i and calculate reflectance
beta_mod[1 : : 2] = beta[1 : : 2] * mu_i
R_i = phi(beta_mod)
s = s + R_i**2

return 0.5 * s

def grad_S(beta, mu):
"""Gradient of S."""
beta_mod = beta.copy()
grad_s = zeros(len(beta))

for mu_i in mu:
Scale deltas by mu_i and calculate reflectance
beta_mod[1 : : 2] = beta[1 : : 2] * mu_i
phi_i = phi(beta_mod)
grad_phi_i = grad_phi(beta_mod)
grad_phi_i[1 : : 2] = grad_phi_i[1 : : 2] * mu_i
grad_s = grad_s + phi_i * grad_phi_i

return grad_s

def phi(beta):
"""Objective function phi: P -> R."""
return R(psi(nu(beta)))

def grad_phi(beta):
"""Gradient of phi in beta."""
tmp = dot(psi(nu(beta)), vs)
num = dot(vmm, tmp)
den = dot(vmp, tmp)
rho = num / den
grad_rho = squeeze(dot((vmm - rho * vmp), dot(grad_psi(beta), vs))) / den
return 2 * (grad_rho * rho.conjugate()).real

def cb(beta):
"""Callback for the optimisers. Is called after every iteration."""
for i in xrange(len(beta)):

Ensure that we don’t get negative values.
beta[i] = max(beta[i], 0.0)

class Layer:
"""Class representing one layer in the filter."""
def __init__(self, n = 1.4, delta = pi / 2):

self.alpha = array([n, delta])

class Optimiser:

43

"""Minimising function wrapper."""
def run(self, optFilt):

"""Default minimiser (SciPy BFGS)."""
print "Selected SciPy-BFGS method."
beta = fmin_bfgs(optFilt.costF.f, optFilt.parameters(), fprime = \

optFilt.costF.grad_f, gtol = 1.0e-10, callback = cb)
for i in xrange(len(optFilt.layers)):

optFilt.layers[i].alpha = beta[2 * i : 2 * (i + 1)]

def linesearch(self, f, fprime, xk, pk, gfk, old_fval, old_old_fval, \
warnflag, c2 = 0.9):

These values are modified by the line search, even if it fails
old_fval_backup = old_fval
old_old_fval_backup = old_old_fval
print "f:", f(xk)

alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
scipy.optimize.linesearch.line_search(f, fprime, xk, pk, gfk, \
old_fval, old_old_fval, c2)

if alpha_k is None: # line search failed try different one.
alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \

line_search(f, fprime, xk, pk, gfk, old_fval_backup, \
old_old_fval_backup, c2)

if alpha_k is None or alpha_k == 0:
This line search also failed to find a better solution.
warnflag = 2

return alpha_k, fc, gc, old_fval, old_old_fval, gfkp1, warnflag

class BFGS(Optimiser):
"""BFGS method."""
def run(self, optFilt):

"""Modified version of the BFGS method provided by SciPy."""
print "Selected BFGS method."
x0 = optFilt.parameters()
gtol = 1.0e-10
norm = Inf
disp = 1

maxiter = len(x0) * 200

func_calls, f = wrap_function(optFilt.costF.f, ())
grad_calls, fprime = wrap_function(optFilt.costF.grad_f, ())

gfk = fprime(x0)
k = 0
In = eye(len(x0), dtype = int)
Hk = In
old_fval = f(x0)
old_old_fval = old_fval + 5000

44 APPENDIX A. PYTHON SOURCE CODE

xk = x0
warnflag = 0
gnorm = vecnorm(gfk, order = norm)

while (gnorm > gtol) and (k < maxiter):
pk = -dot(Hk, gfk)

These values are modified by the line search, even if it fails
old_fval_backup = old_fval
old_old_fval_backup = old_old_fval

alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
scipy.optimize.linesearch.line_search(f, fprime, xk, pk, gfk, \
old_fval, old_old_fval, c2 = 0.9)

if alpha_k is None: # line search failed try different one.
alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \

line_search(f, fprime, xk, pk, gfk, old_fval_backup, \
old_old_fval_backup, c2 = 0.9)

if alpha_k is None or alpha_k == 0:
This line search also failed to find a better solution.
warnflag = 2
break

if warnflag == 2:
break

sk = alpha_k * pk
xk += sk
if gfkp1 is None:

gfkp1 = fprime(xk)

yk = gfkp1 - gfk
gfk = gfkp1
cb(xk)
k += 1
gnorm = vecnorm(gfk, order = norm)
if (gnorm <= gtol):

break

try: # this was handled in numeric, let it remaines for more safety
rhok = 1.0 / dot(yk, sk)

except ZeroDivisionError:
rhok = 1000.0
print "Divide-by-zero encountered: rhok assumed large"

if isinf(rhok): # this is patch for numpy
rhok = 1000.0
print "Divide-by-zero encountered: rhok assumed large"

if k == 1: # Modify initial Hessian approximation
Hk = In * dot(yk, sk) / dot(yk, yk)

45

tmp = rhok * outer(sk, yk)
Hk = dot(dot(In - tmp, Hk), In - tmp.transpose()) + rhok * \

outer(sk, sk)

if disp:
fval = old_fval

if warnflag == 2:
if disp:

print "Warning: Desired error not necessarily achieved due to \
precision loss"

print " Current function value: %f" % fval
print " Iterations: %d" % k
print " Function evaluations: %d" % func_calls[0]
print " Gradient evaluations: %d" % grad_calls[0]

elif k >= maxiter:
warnflag = 1
if disp:

print "Warning: Maximum number of iterations has been exceeded"
print " Current function value: %f" % fval
print " Iterations: %d" % k
print " Function evaluations: %d" % func_calls[0]
print " Gradient evaluations: %d" % grad_calls[0]

else:
if disp:

print "Optimization terminated successfully."
print " Current function value: %f" % fval
print " Iterations: %d" % k
print " Function evaluations: %d" % func_calls[0]
print " Gradient evaluations: %d" % grad_calls[0]

for i in xrange(len(optFilt.layers)):
optFilt.layers[i].alpha = xk[2 * i : 2 * (i + 1)]

class NonlinCG(Optimiser):
"""Nonlinear Conjugate Gradient methods."""
def __init__(self, method = "PR+"):

if method == "PR+":
Polak-Ribiere +
print "Selected PR+ method."
self.calc_beta = self.PRP

elif method == "PR":
Polak-Ribiere
print "Selected PR method."
self.calc_beta = self.PR

elif method == "HS":
Hestenes-Stiefel
print "Selected HS method."
self.calc_beta = self.HS

46 APPENDIX A. PYTHON SOURCE CODE

elif method == "FR-PR":
Fletcher-Reeves-Polak-Ribiere
print "Selected FR-PR method."
self.calc_beta = self.FRPR

elif method == "DY":
Dai-Yuan
print "Selected DY method."
self.calc_beta = self.DY

elif method == "HZ":
Hager-Zhang
print "Selected HZ method."
self.calc_beta = self.HZ

elif method == "FR":
Fletcher-Reeves
print "Selected FR method."
self.calc_beta = self.FR

else:
print "Invalid method: " + method + ". Defaulting to PR+."
self.calc_beta = self.PRP

def PRP(self, gfk, gfkp1, pk, k):
return pymax(0, self.PR(gfk, gfkp1, pk, k))

def PR(self, gfk, gfkp1, pk, k):
return dot(gfkp1 - gfk, gfkp1) / dot(gfk, gfk)

def HS(self, gfk, gfkp1, pk, k):
yk = gfkp1 - gfk
return dot(yk, gfkp1) / dot(pk, yk)

def FRPR(self, gfk, gfkp1, pk, k):
betaPR = self.PR(gfk, gfkp1, pk, k)
if k >= 2:

betaFR = self.FR(gfk, gfkp1, pk, k)
if betaPR < -betaFR:

return -betaFR
elif betaPR > betaFR:

return betaFR
else:

return betaPR
else:

return betaPR

def DY(self, gfk, gfkp1, pk, k):
return dot(gfkp1, gfkp1) / dot(pk, gfkp1 - gfk)

def HZ(self, gfk, gfkp1, pk, k):
yk = gfkp1 - gfk
zk = 1.0 / dot(pk, yk)

47

return dot(yk - 2.0 * pk * dot(yk, yk) * zk, gfkp1 * zk)

def FR(self, gfk, gfkp1, pk, k):
return dot(gfkp1, gfkp1) / dot(gfk, gfk)

def run(self, optFilt):
"""Modified version of the nonlinear CG-method provided by SciPy."""
x0 = optFilt.parameters()
gtol = 1.0e-10
norm = Inf
maxiter = len(x0) * 200
disp = 1

func_calls, f = wrap_function(optFilt.costF.f, ())
grad_calls, fprime = wrap_function(optFilt.costF.grad_f, ())

gfk = fprime(x0)
k = 0
xk = x0
old_fval = f(xk)
old_old_fval = old_fval + 5000

warnflag = 0
pk = -gfk
gnorm = vecnorm(gfk, order = norm)
while (gnorm > gtol) and (k < maxiter):

These values are modified by the line search, even if it fails
old_fval_backup = old_fval
old_old_fval_backup = old_old_fval

alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
scipy.optimize.linesearch.line_search(f, fprime, xk, pk, gfk, \
old_fval, old_old_fval, c2 = 0.1)

if alpha_k is None: # line search failed try different one.
alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \

line_search(f, fprime, xk, pk, gfk, old_fval_backup, \
old_old_fval_backup, c2 = 0.1)

if alpha_k is None or alpha_k == 0:
This line search also failed to find a better solution.
warnflag = 2
break

xk += alpha_k * pk
if gfkp1 is None:

gfkp1 = fprime(xk)
beta_k = self.calc_beta(gfk, gfkp1, pk, k)
pk = -gfkp1 + beta_k * pk
gfk = gfkp1

48 APPENDIX A. PYTHON SOURCE CODE

gnorm = vecnorm(gfk, order = norm)
cb(xk)
k += 1

if disp:
fval = old_fval

if warnflag == 2:
if disp:

print "Warning: Desired error not necessarily achieved due to \
precision loss"

print " Current function value: %f" % fval
print " Iterations: %d" % k
print " Function evaluations: %d" % func_calls[0]
print " Gradient evaluations: %d" % grad_calls[0]

elif k >= maxiter:
warnflag = 1
if disp:

print "Warning: Maximum number of iterations has been exceeded"
print " Current function value: %f" % fval
print " Iterations: %d" % k
print " Function evaluations: %d" % func_calls[0]
print " Gradient evaluations: %d" % grad_calls[0]

else:
if disp:

print "Optimization terminated successfully."
print " Current function value: %f" % fval
print " Iterations: %d" % k
print " Function evaluations: %d" % func_calls[0]
print " Gradient evaluations: %d" % grad_calls[0]

for i in xrange(len(optFilt.layers)):
optFilt.layers[i].alpha = xk[2 * i : 2 * (i + 1)]

class CostFunction:
"""The cost function and its gradient wrapper."""
def __init__(self, f = phi, grad_f = grad_phi):

self.f = f
self.grad_f = grad_f

class OpticalFilter:
"""The filter, consisting of one or more layers."""
def __init__(self, layers = [Layer()], optimiser = Optimiser(), costF = \

CostFunction()):
"""Initialise the filter with layers, one standard layer by default."""
self.layers = layers
self.optimiser = optimiser
self.costF = costF

49

def addLayer(self, layer = Layer()):
"""Add a layer to the existing ones."""
self.layers.append(layer)

def optimise(self):
"""Minimise the cost function."""
self.optimiser.run(self)

def parameters(self):
"""Return the parameters of the filter."""
tmp = []
for layer in self.layers:

tmp.extend(layer.alpha.tolist())
return array(tmp)

wl_low = 0.69
wl_high = 1.37
wl_number = 50
wl_div = (wl_high - wl_low) / (wl_number - 1)
wl_factors = arange(wl_low, wl_high + eps, wl_div)
mu = 1.0 / wl_factors

#optFilt = OpticalFilter(layers = [Layer(2.2, pi * 0.5)], costF = \
CostFunction(lambda x: S(x, mu), lambda x: grad_S(x, mu)), optimiser = \
NonlinCG("HZ"))
optFilt = OpticalFilter(layers = [Layer(2.2, pi * 0.5)], costF = \

CostFunction(lambda x: S(x, mu), lambda x: grad_S(x, mu)), optimiser = \
BFGS())

optFilt.addLayer(Layer(1.38, pi * 0.5))
optFilt.addLayer(Layer(1.5, pi * 0.5))

optFilt.optimise()

	Title Page
	Problem Description
	Introduction
	Optical Interference Filters
	Physical Model
	Dielectric Filters
	The Design Problem

	The Geometry of the Design Problem
	Linear Fractional Transformations
	The Geometry of the Reflectance
	Physically Realisable Transformations

	Optimisation Methods
	Line Search Methods
	Quasi-Newton Methods
	The BFGS Method

	Nonlinear Conjugate Gradient Methods
	Fletcher--Reeves (FR)
	Polak--Ribière (PR)
	Modified Polak--Ribière (PR+)
	Fletcher--Reeves--Polak--Ribière (FR--PR)
	Hestenes--Stiefel (HS)
	Dai--Yuan (DY)
	Hager--Zhang (HZ)

	The Levenberg--Marquardt Method

	Solving the Design Problem
	Single-Wavelength Solution
	One-Layer Dielectric Anti-Reflective Filters
	Two-Layer Dielectric Anti-Reflective Filters

	Multi-Wavelength Solution
	One-Layer Dielectric Anti-Reflective Filters
	Two-Layer Dielectric Anti-Reflective Filters
	Multi-Layer Dielectric Anti-Reflective Filters

	Software Design
	Numerical Results
	Conclusion and Future Work
	Python Source Code

