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Abstract

In this text we will look at two parameter estimation methods for Markov random fields
on a lattice. They are maximum pseudo-likelihood estimation and maximum general
pseudo-likelihood estimation, which we abbreviate MPLE and MGPLE. The idea be-
hind them is that by maximizing an approximation of the likelihood function, we avoid
computing cumbersome normalising constants. In MPLE we maximize the product of
the conditional distributions for each variable given all the other variables. In MG-
PLE we use a compromise between pseudo-likelihood and the likelihood function as the
approximation. We evaluate and compare the performance of MPLE and MGPLE on
three different spatial models, which we have generated observations of. We are specially
interested to see what happens with the quality of the estimates when the number of
observations increases. The models we use are the Ising model, the extended Ising model
and the Sisim model. All the random variables in the models have two possible states,
black or white. For the Ising and extended Ising model we have one and three parameters
respectively. For Sisim we have 13 parameters. The quality of both methods get better
when the number of observations grow, and MGPLE gives better results than MPLE.
However certain parameter combinations of the extended Ising model give worse results.
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1 Introduction

Spatial analysis is a branch of statistics were the random variables also have geometric or
geographic properties. It has applications to diverse subjects as seismology, meteorology
and image analysis. The last subject mentioned is related to the topic of this paper. The
spatial models we consider are binary Markov random fields (Hurn, Husby & Rue 2003)
on a lattice, each site or pixel can be associated with a random variable. The variables
have two possible states, either black or white.

If we want to estimate the model parameters with maximum likelihood estimation
(MLE), we need to compute the normalizing constant. It can be obtained by summing
over all possible configurations of the field. However, the total number of combinations
will increase exponentially with the field’s size, so even with only two states the com-
putation soon becomes infeasible. Several methods have been developed to circumvent
this problem. A recursive scheme to find the constant is presented by Reeves & Pettitt
(2002), a weakness with the method is that the field can not be too large. The maximum
likelihood estimate can also be obtained by using algorithms which involve Markov chain
Monte Carlo (MCMC) simulation (Geyer & Thompson 1992). Besag (1974) proposes
maximum pseudo-likelihood estimatation (MPLE), where we ignore the constant by us-
ing an approximation to the likelihood function. As long as the interaction between the
pixels are weak MPLE is a good replacement to MLE (Geyer & Thompson 1992). In cases
of strong interaction, MPLE can be used as initial value in a MCMC method. Huang
& Ogata (2002) propose maximum generalized pseudo-likelihood estimation (MGPLE).
In this method they consider blocks of the field, instead of only one pixel at the time as
we do in MPLE. The normalizing constant is computed for each block and the method
can be considered as a compromise between MLE and MPLE. The recursive method by
Reeves & Pettitt (2002) can be used to compute the constant.

The purpose of this text is to empirically study the performance of the maximum
pseudo likelihood and maximum pseudo block likelihood estimators for discrete Markov
random fields when the number of observations increases. We will consider several mod-
els, and see if the results differ much for the two methods. In chapter 2 we establish
our notation and explain some of the theory behind Markov random fields, pseudo- and
general pseudo-likelihood. In chapter 3 we explain the spatial models we will use. In
chapter 4 we give more details about the implementation. In chapter 5 we present our
results and discuss them. At last we give some conclusions in our closing remarks.

2 Theory

2.1 Markov random fields

In this text our random fields are random variables on lattices with N = M ×M pixels.
The position of the sites is given by a set of indexes I = {1, ..., N}. As shown in figure
1, they are ordered in each row from left to right, and the rows are ordered from top
to bottom. Our random field is a set of random variables denoted as x = {xi : i ∈ I},
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Figure 1: The ordering of indexes for a 3× 3 lattice

each xi takes value in a finite set X . The variables given by the subset A ⊆ I and its
complement Ac are denoted as xA = {xi : i ∈ A} and x−A = {xi : i ∈ I\A}, respectively.

We now define two important concepts, neighbourhoods and cliques. We say that
each pixel i has a number of adjacent pixels which we call its neighbourhood, we denote
this by ∂i ⊆ I\{i}. A pixel may not be in its own neighbourhood, so the largest possible
neighbourhood of i is given by the set of all indexes excluded itself. Which pixels we
define to be in the neighbourhood differ, figure 2 shows three typical neighbourhood
structures. If j ∈ ∂i we denote it as i ∼ j. We require the neighbourhood relations to
be symmetric, so j ∈ ∂i ⇔ i ∈ ∂j . The next concept ,the clique, is defined to be any
subset of sites where every pair of these sites are neighbours. The shape and size of
the cliques depend on the neighbourhood structure we choose. In figure 3(a) we have a
lattice with neighbourhood structure from figure 2(a). With this structure only sites that
are horizontally or vertically adjacent to each other can be neighbours. Thus the largest
possible clique consists of two sites. If we choose the structure from figure 2(b),then sites
that are diagonally adjacent also become neighbours. The largest possible clique in this
case consist of four sites.

Our field is called a Markov random field (MRF) if the conditional distribution of a
pixel given the rest, only depends on its neighbours,

π(xi|x−i) = π(xi|x∂i
),∀i. (1)

We also require that the field fulfil the positivity condition (Besag (1974)) π(x) > 0, which
means that all the XN possible configurations for x may occur. Even if this condition
and equation (1) are satisfied, it does not mean that it will be easy to use equation (1) to
construct a joint density for π(x). To solve this problem we use the Hammersley-Clifford
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(a) (b) (c)

Figure 2: Three examples of common neighbourhood structures

(a) (b)

Figure 3: Examples of cliques with neighbourhood structure 2(a) and 2(b) respectively
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theorem (Hurn et al. 2003). The theorem states that a distribution satisfying π(x) > 0
for all configurations in X |I| is a Markov random field if and only if it has a joint density
on the form

π(x) =
1
Z
exp

{
−
∑
C∈C

ΦC(xC)

}
. (2)

The function ΦC(xC), which is often called a potential function, describes the interaction
between the random variables, and C is the set of all cliques. Z is the normalising constant

Z =
∑
x

exp

{
−
∑
C∈C

ΦC(xC)

}
. (3)

Essential for the random fields are their model parameters, the interaction between sites
depend on them. The paramters can either be scalars or vectors. For the parameter
estimation we will do in this paper, the conditional distribution in equation (1) is of
great importance. If we use the joint density in equation (2), it can be expressed as

π(xi|x∂i
) =

π(x)
π(x∂i

)
∝ exp

{
−

∑
C∈C:i∈C

ΦC(xC)

}
. (4)

The only cliques we consider are the ones who contain xi.
To illustrate Markov random fields we will use the Ising model (Grimmet (1987))

as an example. It was first presented as model for ferromagnetism where each variable
has two possible states, either spin up or spin down, in our case the states are black or
white. We define that a site has four neighbours, as in figure 2(a), and the cliques are
the sets of horizontal and vertical neighbour pairs. The dependency between variables
xi and xj is given by a parameter β. If it has a positive value, the variables tend
to have the same colour as the majority of its neighbours, the opposite occurs if β is
negative. The dependency between variables increases with the size of |β|. We use
ΦC(xC) = −βI(xi = xj) as potential function, then (2) can be written as

π(x) =
1

Z(β)
exp

β∑
i∼j

I(xi = xj)

 , (5)

where the sum consists of all possible neighbour pairs, and each pair contributes to the
sum only once. If β is unknown and we have an observation x of the Ising model, a
maximum likelihood estimate for the parameter can be found by maximizing the log
likelihood function,

l(β; x) = β
∑
i∼j

I(xi = xj)− log Z(β). (6)

The normalising constant

Z(β) =
∑
x

exp

β∑
i∼j

I(xi = xj)

 (7)
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is obtained by summing over all possible configurations for x. With an M ×M lattice
and two possible states the total number of configurations are 2M×M . Even with a small
4× 4 lattice, the sum consists of 65536 terms. In this paper we use 64× 64 grids, so its
obvious that a brute force approach is not feasible.

2.2 Likelihood approximation

2.2.1 Pseudo-likelihood

In this paper we have stated several times that estimating a parameter from the likelihood
function is often a dead end because of the normalising constant. A different approach
to the problem is needed. Instead of the likelihood function, we use approximations
were we avoid computationally expensive constants. Besag (1974) proposes the pseudo-
likelihood, which is the product of conditional distributions for each variable given all
the other variables. Since we have a Markov random field a variable only depends on its
neighbours. If we have an observation x and parameter θ the log pseudo likelihood is

lp(β; x) =
N∑
i=1

log π(xi|x∂i
, β). (8)

By maximizing the expression above with respect to θ we get the maximum pseudo
likelihood estimate. This is done by numerical optimization, the method will be explained
in chapter 4.1.

For the Ising model each site has four neighbours and the conditional distribution on
the form of equation (4) is

π(xi|x∂i
) ∝ exp

β∑
i∼j

I(xi = xj)

 . (9)

The expression above is easy to normalize, xi has only two possible states so it becomes

π(xi|x∂i
) =

exp
{
β
∑

i∼j I(xi = xj)
}

exp
{
β
∑

i∼j I(xi = xj)
}

+ exp
{
β
∑

i∼j I(xi 6= xj)
} . (10)

Then equation (8) can be written as

lp(β; x) =
N∑
i=1

log
exp

{
β
∑

i∼j I(xi = xj)
}

exp
{
β
∑

i∼j I(xi = xj)
}

+ exp
{
β
∑

i∼j I(xi 6= xj)
} . (11)

2.2.2 Generalized pseudo-likelihood

With the pseudo-likelihood we considered one pixel at the time and normalized its condi-
tional distribution. Huang & Ogata (2002) proposes a natural extension to this, the gen-
eralized pseudo-likelihood. Instead of considering one site at a time we look at larger sets
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(a) (b)

Figure 4: The sites ∂g(i) are colored black, in 4(a) we have used neighbour structure from figure
2(a), and in 4(b) we have used the structure from 2(b)

or blocks of sites. For each site i we define a group of adjacent sites denoted as g(i). The
random variables given by the site g(i) and its complement, are xg(i) = {xk : k ∈ g(i)}
and x−g(i) = {xk : k /∈ g(i)}. For g(i) we may choose any size or shape we want, and
they do not have to be the same for all sites, but we have to consider the cost of finding
the normalising constant and the simplicity of the implementation. In this paper we
have chosen the blocks to be quadratic for all sites i. As in pseudo-likelihood we take
advantage of that we are dealing with Markov random fields, we define a set

∂g(i) =
⋃
k

∂k\g(i), (12)

where k ∈ g(i). The set consists of the sites adjacent to g(i). Which sites we consider
adjacent are decided by the neighbourhood structure we choose. In figure 4 we have shown
∂g(i) for two different neighbourhood structures. Then the approximation of interest, the
product of conditional distributions for each xg(i) given the rest, becomes

Lg(θ; x) =
N∏
i=1

π(xg(i)|x∂gi
, θ). (13)

If we maximize it with g(i) = {i} we get the maximum pseudo-likelihood estimate, if we
use that g(i) consists of all sites in I we get the maximum likelihood estimate.

Again we will use the Ising model as an example. For the pseudo-likelihood we only
had to consider four neighbour pairs for each pixel i, now we have to look at all pairs in
g(i)∪ ∂g(i). For xg(i) = {xk : k ∈ g(i)} and x∂g(i)

=
{
xl : l ∈ ∂g(i)

}
we define the statistic

Gi(xg, x∂g) =
∑
k∼j

I(xk = xj) +
∑
k∼l

I(xk = xl), (14)



7

where j ∈ g(i) and l ∈ ∂g(i). The neighbour pairs enters the sum only once. For a set of
sites g(i) we get the conditional distribution

π(xg(i)|x∂g(i)
) =

exp
{
βGi(xg, x∂g)

}∑
xg

exp
{
βGi(xg, x∂g)

} . (15)

In the denominator we have summed all possible configurations of xg to get the normal-
ising constant. The log GPL is then given by

lg(β; x) =
N∑
i=1

log
exp

{
βGi(xg, x∂g)

}∑
xg

exp
{
βGi(xg, x∂g)

} . (16)

Even if our blocks are small compared to the full lattice, a straightforward computation
of the denominator will be both inefficient, and most often infeasible. In the next chapter
we will look at an more effective way to compute the normalising constant.

3 Spatial Models

In the introduction we promised we would look at parameter estimation for several mod-
els, one of them is of course the Ising model. Since we have used it as an example on
several occasions, we concentrate on the other models in this chapter. The models we
consider are binary Markov random fields were the variables have two states, black or
white. We also use toroidal boundary conditions, which means that for an Ising model
with N = M ×M sites, the neighbourhood of site M is ∂M = {M − 1, 1, 2M,N}. It is
the same principle for the other models, but the neighbourhood structure may vary.

3.1 Extended Ising model

This model is similar to the Ising model in the way that it uses the same neighbourhood
structure. The difference is that we use three parameters instead of just one. We have a
new abundance parameter α and we split the β parameter into βh and βv which influences
the horizontal and vertical neighbour relations, respectively. The joint density for the
model can be written as

π(x) =
1

Z(β)
exp


N∑
i=1

αxi + βh
∑
i∼j

I(xi = xj) + βv
∑
i∼l

I(xi = xl)

 , (17)

where i ∼ j and i ∼ l in the equation above are all the horizontal and vertical neighbour
pairs, respectively. The normalising constant is

Z(β) =
∑
x

exp


N∑
i=1

αxi + βh
∑
i∼j

I(xi = xj) + βv
∑
i∼l

I(xi = xl)

 . (18)
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If we want the pseudo-likelihood we need the normalized conditional distribution on the
form of (4),

π(xi|x∂i
) =

exp
{
αxi + βh

∑
i∼j I(xi = xj) + βv

∑
i∼l I(xi = xl)

}
∑

y exp
{
αy + βh

∑
i∼j I(y = xj) + βv

∑
i∼l I(y = xl)

} , (19)

where the sums over i ∼ j and i ∼ l each consist of two terms. In the denominator we
sum over the two possible states for xi. If we use vector notation φ = (α, βh, βv)T , the
log pseudo-likelihood becomes

lp(φ; x) =
N∑
i=1

log
exp

{
αxi + βh

∑
i∼j I(xi = xj) + βv

∑
i∼l I(xi = xl)

}
∑

y exp
{
αy + βh

∑
i∼j I(y = xj) + βv

∑
i∼l I(y = xl)

} . (20)

If we want the general pseudo-likelihood, we define the the sets g(i) and ∂g(i) in the
same way as before. The sites given by g(i) are quadratic blocks of the lattice. As before
we define the sets of random variables xg(i) = {xk : k ∈ g(i)} and x∂g(i)

=
{
xl : l ∈ ∂g(i)

}
.

We denote the vertical and horizontal neighbour pairs as k ∼ v and k ∼ h respectively,
then we define the statistic,

Gi(xg(i), x∂g(i)
;φ) = α

∑
k

xk, (21)

+ βh

(∑
k∼h

I(xk = xhj
) +

∑
k∼h

I(xk = xhl
)

)
(22)

+ βv

(∑
k∼v

I(xk = xvj ) +
∑
k∼v

I(xk = xvl
)

)
(23)

were hj , vj ∈ g(i) and hl, vl ∈ ∂g(i). The expression we want to maximize then becomes

lg(φ; x) =
N∑
i=1

log
exp

{
Gi(xg(i), x∂g(i)

;φ)
}

∑
xg(i)

exp
{
Gi(xg(i), x∂g(i)

;φ)
} . (24)

In the denominator we sum over all possible configurations for the block given by g(i).

3.2 Sisim, a geologically inspired model

For the Ising and extended Ising model we have two types of neighbour pairs, with
one and three parameters respectively. Now we take a large step away from this, and
introduce a model with 13 parameters, we use vector notation θ = (θ0, θ1, ..., θ12)T . The
parameters θ1, θ2..., θ12 correspond to 12 types of neighbour pairs, and θ0 is an abundance
parameter. In figure ?? we have shown all the types of neighbour pairs in a 3× 3 clique.

This model is an attempt to recreate a given picture generated with sequential indi-
cator simulation, we call it Sisim, so all the parameters have given values, contrary to
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the Ising models were the parameter values may vary. The potential function for the
model is ΦC(xC) =

(
θ0
∑

i xi +
∑

i∼js θsxixjs

)
, were j ∈ ∂i, and the index s indicates

which type of neighbour pair we have. If s = 1 we see in figure 5 that we have 6 possible
neighbour pairs, if s = 8 or s = 12 we have only one pair. Note that we take the product
of the adjacent variables, we do not use an indicator functions as we have done for the
former models. The joint density for this model can then be expressed as

π(x) =
1

Z(θ)
exp

−
 N∑
i=1

θ0xi +
∑
i∼js

θsxixjs

 , (25)

were i ∼ js consists of all the possible neighbour pairs. The normalising constant

Z(θ) =
∑
x

exp

−
 N∑
i=1

θ0xi +
∑
i∼js

θsxixjs

 , (26)

is found in the same manner as before. The normalized conditional distribution of xi
given the other variables is expressed as

π(xi|x∂i
) =

exp
{
−
(
θ0xi +

∑
i∼js θsxixjs

)}
∑

y exp
{
−
(
θ0y +

∑
i∼js θsyxjs

)} , (27)

since i has 24 neighbours, i ∼ js now consists of the same number of pairs. We use the
expression above to get the log pseudo likelihood, which becomes

lp(θ; x) =
N∑
i=1

exp
{
−
(
θ0xi +

∑
i∼js θsxixjs

)}
∑

y exp
{
−
(
θ0y +

∑
i∼js θsyxjs

)} . (28)

To get the general pseudo-likelihood, we define the the sets g(i) and ∂g(i) in the same
way as before. For the sets of random variables xg(i) = {xk : k ∈ g(i)} and x∂g(i)

={
xl : l ∈ ∂g(i)

}
, we define the statistic

Gi(xg, x∂g) =
∑
k

xk +
∑
i∼js

θsxixjs +
∑
i∼ls

θsxixls , (29)

were js ∈ g(i) and ls ∈ ∂g(i). The general pseudo-likelihood then becomes

lg(θ; x) =
N∑
i=1

log
exp

{
−Gi(xg, x∂g)

}∑
xg

exp
{
−Gi(xg, x∂g)

} . (30)

To get the estimated parameters we maximize equations (??) and (??) with respect to
θ.



10 Spatial Models

(a) θ1 (b) θ2 (c) θ3

(d) θ4 (e) θ5 (f) θ6

(g) θ7 (h) θ8 (i) θ9

(j) θ10 (k) θ11 (l) θ12

Figure 5: Examples of the 12 types of neighbour pairs for a 3× 3 clique.
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4 Practical issues with implementation

4.1 Optimization

To obtain an estimated parameter β̂ with MPLE or MGPLE we need to solve the opti-
mization problems,

β̂ = argmax
β

lp(β; x) (31)

β̂ = argmax
β

lg(β; x), (32)

respectively. There exists several robust and efficient numerical methods that solve opti-
mization problems (Nocedal & Wright 2000). One can either implement one of them, or
use bulit-in functions in mathematical software tools like MATLAB or R. We have done the
latter, we have used the function nlm 1 in R, which stands for non-linear minimization
and is a Newton-type algorithm. Since it is minimization method we use that

β̂ = argmax
β

l(β; x) = argmin
β
{−l(β; x)} . (33)

The Newton method is a line search algorithm, in each iteration we compute a search
direction, and how far we move along it. The next iterate is given by

βk+1 = βk+1 + εkpk, (34)

where the positive scaler εk is referred to as the step length, and pk is the search direc-
tion. When l(βk; x) satisfies several conditions (Nocedal & Wright 2000), convergence is
achieved. In the Newton method we compute the Hessian and gradient of l(βk; x), and
search along the direction

pk = −∇2l(βk; x)−1∇l(βk; x). (35)

In nlm the Hessian and gradient are computed numerically.

4.2 Simulation of observations

The purpose of this text is to study the quality of parameter estimates when the number
of observations of a field x increases. Since we do not have any observations, we simulate
them with Gibbs’ sampling (Hurn et al. 2003) and a method called Coupling from the
past (Propp & Wilson 1996). In figure 6 we have generated some realizations of the Ising
model.

Gibbs’ sampling is a MCMC method that sequentially updates the state of each
variable xi from its full conditional distribution π(xi|x−i), for the Ising model this dis-
tribution is equation (10), for the extended model in chapter 3.1 it is equation (19), and
for the Sisim model it is equation (27). The initial state of the field before the sampling

1http://sekhon.berkeley.edu/stats/html/nlm.html
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(a) β = 0.4 (b) β = 0.4

(c) β = 0.6 (d) β = 0.6

(e) β = 0.8 (f) β = 0.8

Figure 6: Realizations of the Ising model with different values for β. If β increases, variables
tend to have the same colour as the majority of its neighbours, so we get larger areas of one
colour.
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starts can be, all variables have the same colour, or the state of each variable is randomly
chosen to be either black or white. The sequence of the sites we visit may be in numerical
order or random. We choose to update the variables in a random order. If we have a
random site j, the probability of xj being black is p = π(xj = black|x−j). We draw a
number u uniformly distributed between 0 and 1. If u is smaller or equal to p, we update
xj to be black, if u is larger xj becomes white. To achieve convergence, this has to be
done sufficiently many times. However the Ising model has a property called phase tran-
sition behaviour (Hurn et al. 2003), this means that the Gibbs’ sampler performs poorly
for values of β close to or larger than a critical value β∗ = log(1 +

√
2) = 0.881373. We

explained earlier that for large values of β, variables tend to have the same colour as
the majority of its neighbours. When we update only one variable at the time and the
probability for change of state is small, we experience problems with poor mixing and
thus slow convergence.

Fortunately there are alternative methods that we can use. One is the Swendsen-
Wang algorithm (Swendsen & Wang 1987) which has much better convergence properties
for the Ising model. Coupling from the past (CFTP) is a method that give perfect real-
isations from the distribution of interest, so we do not have to think about convergence.
However if we consider CPU time, this method also performs poorly when β is close to
the critical value. For large values of β we first use CFTP to generate a realisation with
a lower value βl. Then we use this realisation as initial state in the Gibbs’ sampler, thus
we get much faster convergence. For β < 0.70 we use CFTP, whereas for larger values
we use Gibbs’ sampler with a CFTP generated realisation with β = 0.7 as initial state.
For the Sisim model we do not use CFTP, only the Gibb’s sampler.

4.3 Recursions for computing the normalising constant

In this paper we have discussed the issues with normalising constants and the limitations
it gives us. Reeves & Pettitt (2002) propose a recursive scheme to find this constant. The
method is closely related to the forward recursions in the forward-backward algorithm
(Scott 2002) for hidden Markov chains. This method is by far better than a brute force
approach. However, as we mentioned in the introduction, the random field can not be
too large, so we will not use this method to compute the constant for our model on a
64 × 64 lattice, but it is perfect for the smaller blocks in the general pseudo-likelihood
in chapter 2.2.2. First we discuss the recursions for a general model, then we give the
specific recursions for each model.

4.4 Recursion for a general factorisable model

If a discrete valued vector x1:n = (x1, x2..., xn)T has unnormalized probability distribu-
tion q(x1:n), and we have a valid factorization on the form

q(x1:n) = q1(x1, x2, .., xr+1)q2(x2, x3, .., xr+2)...qd(xd, xd+1, ..xn), (36)
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where r < n and d = n− r, we call this a lag-r model. The normalising constant is given
by

Z =
∑
x1:n

q(x1:n) =
∑
xk+1:n

∑
xk

qk(xk:n)
∑
xk−1

qk−1(xk−1:n−1)
∑
x1

q1(x1:r+1). (37)

This constant is computed in the following recursions,

Q1(x2:r+1) =
∑
x1

q1(x1:r+1) (38)

Qt(xt+1:t+r) =
∑
xk

qt(xt:t+r)Qt−1(xt:r+t−1) , (t = 2, ...d) (39)

Z =
∑
xd+1:n

Qk(xd+1:n) (40)

We will only use the recursions above for the Ising model. When we the general pseudo-
likelihood for the Sisim model, we compute the normalising constants with the brute
force approach. This means that the blocks must be small.

4.5 Recursions for an Ising model

In this paper our blocks are quadratic, so a set of sites xg(i) = {xk : k ∈ {1, 2, ..n}} consist
of n = m×m sites. We have from equation (15) the unormalized distribution

q(xg(i) |x∂g(i)
) = exp

{
βGi(xg(i), x∂g(i)

)
}
. (41)

In the spirit of the notation from the prevouis chapter we write it as

q(x1:n) = exp

β
∑
k∼j

I(xk = xj) +
∑
k∼l

I(xk = xl)

 , (42)

where j ∈ g(i) and l ∈ ∂g(i), each neighbour pair enters the sum only once. Before we can
use the recursions on q(x1:n), we need to factorize it. This can be done in many ways, the
only requirement is that it fulfils equation (36). We decide to factorize it in the following
way. If we have a m × m lattice, which is a smaller block of a larger M ×M lattice,
q(x1:n) may be written as the product of d = m2−m factors. The first factor q1(x1:m+1),
consists of all whitin-row interactions in the first row, the interaction between variables
x1 and xm+1, and for xe : e ∈ {1, 2..,m + 1} we have to look at the interaction with
sites in ∂gi . The other d− 1 factors qt(xt:t+m) consists of one whitin-row interaction and
one between-row interaction. If xt+m are on the boundary we also need the contribution
from ∂gi . In figure 7 we have an example with a 4× 4 lattice. For a lattice of arbitrary
size the factors can be written as,

q1(x1:m+1) = exp

{
β

(
I(xm+1 = x1) +

m∑
e=2

I(xe = xe−1) +
m+1∑
e=1

∑
e∼l

I(xe = xl)

)}
,
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Figure 7: The factorization of q(x1:n) on a 4×4 lattice. The interactions within the factors are
the bold edges between the sites, if t + m is on the boundary, we also have contributions from
∂g(i).

qt(xt:t+m) = exp

β
I(xt+m = xt+m−1) + I(xt+m = xt) +

∑
(t+m)∼l

I(xt+m = xl)


for t = 2, ..., n. We use this factorization in the recursions from the previous chapter to
compute the normalising constant for equation (15).

For the extended model from chapter 3.1 we have to separate between the vertical
and horizontal neighbour pairs. For a set xg(i) = {xk : k ∈ {1, 2, ..n}} we denote the
horizontal pairs as k ∼ h and the vertical ones as k ∼ v. From (24) we get the distribution

q(x1:n) = exp{α
n∑
k=1

xk + βh
∑
k∼h

(
I(xk = xhj

) + I(xk = xhl
)
)

(43)

+ βv
∑
k∼v

(
I(xk = xvj ) + I(xk = xvl

)
)
}, (44)

where vj , hj ∈ g(i) and vl, hl ∈ ∂g(i). We use the same factorization as above, and we get

q1(x1:m+1) = exp{α
m+1∑
e=1

xe + βvI(xm+1 = x1) + βh

m∑
e=2

I(xe = xe−1)

+
m+1∑
e=1

(βh
∑
e∼h

I(xe = xhl
) + βv

∑
e∼v

I(xe = xvl
))},
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qt(xt:t+m) = exp{αxt+m + βhI(xt+m = xt+m−1) + βvI(xt+m = xt)

+
∑

(t+m)∼h

βhI(xt+m = xhl
) +

∑
(t+m)∼v

βvI(xt+m = xvl
))}

for t = 2, ..., n.

5 Parameter estimation and discussion

In the previous chapters we have established the methods maximum pseudo-likelihood
and maximum general pseudo-likelihood estimation, which we abbreviate MPLE and
MGPLE respectively. For the latter we use blocks of size |g(i)| = m × m. When we
want to specify this, we use the abbreviation m ×m MGPLE. We have also explained
some of the theory behind the methods, and dealt with the practical issues of computing
constants, optimization, and how to generate realisations. The foundation has been
constructed, and it is time to reap the benefit of our work. We want to compare the
performance of the methods when we take into consideration the amount of data, the
value of the true parameter and which model we are estimating from. For the MGPLE it
is also interesting to see how it performs when we increase the size of the blocks. In this
chapter we give several examples for each model, and we try to answer these questions.

5.1 Ising model

We simulate observations x1, x2, ...., xK with the methods we explained in chapter 4.2.
The maximum number of realisations are K = 300, and that is also the case for the
other models. The realisations are generated with the true parameter values β =
{0.40, 0.60, 0.80, 0.82, 0.83}. We use the expressions in equation (11) and (16) to get
the log pseudo- and general log pseudo-likelihood,

lp(β; x1, .., xK) =
K∑
k=1

log lp(β; xk) (45)

lg(β; x1, .., xK) =
K∑
k=1

log lg(β; xk), (46)

respectively. To get the estimated parameters from the likelihoods above, we solve the
optimization problems

β̂ = argmax
β

lp(β; x1, .., xK) (47)

β̂ = argmax
β

lg(β; x1, .., xK), (48)

according to the routine outlined in chapter 4.1. For the MGPLE we use blocks of size
2× 2 and 3× 3.
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If we want to evaluate the methods, we repeat the optimization in equation (47) and
(48) n times with new observations generated in each run. There are several statistics
we can use to examine the quality of the estimation. One is the bias of an estimator. If
we have n estimates of a parameter β, in our case n = 50, we define it as

bias(β̂) =
1
n

n∑
i=1

β̂i − β0, (49)

where β0 is the true parameter and β̂i is one of the n estimates. The bias measures the
deviation, both positive and negative, from the true parameter. We prefer the bias to
be as small as possible. In figure 8 we show the bias of MPLE and MGPLE plotted
against the number of realisations. In this figure, and all of its kind, we use log scale on
the x-axis to make the figure easier to interpret. We see that for both methods the bias
approaches 0 when the number of observations increase. However, the biases fluctuate,
especially for k < 100, and they are not giving us any strong indications of which method
performs the best.

The estimated standard deviation

s(β̂) =

√√√√ 1
n− 1

n∑
i=1

(
β̂i −

1
n

n∑
i=1

β̂i

)
, (50)

also contains information about how the methods perform. If it is small we take it as
a good sign. We will use notation sp(β̂) and sm(β̂) when we want to separate between
the standard deviations for MPLE and m×m MGPLE, respectively. In figure 9 we see
that the standard deviations decrease when the number of observations grow. Now it is
easier to separate between the methods. We see most of the time that s2(β̂) and s3(β̂) is
smaller than sp(β̂), and in turn s2(β̂) is smaller than s3(β̂). For k > 200 we the standard
deviations approach a stable level, and in most cases with sp(β̂) slightly higher than the
other two.

It is also interesting to look at the scattering of the n estimates, a confidence interval
can give us a notion of how these values vary. In figure 10 we have plotted the lower and
upper quantile of a 0.95 confidence interval for 1

n

∑n
i=1 β̂i. The intervals for MGPLE are

smaller than the ones for MPLE, and most of the time the 3×3 block again gives slightly
better result than the smaller block. Again we observe that the quality of the estimates
get better for both methods when the number of observations increase.

Figures 8 - 10 show us that the estimates get better when the amount of data increase.
When the numbers of observations exceed 100, there is little differences between the
methods. It is when k is small, we observe the largest difference. Both 3 × 3 and 2 × 2
MGPLE give better result than MPLE. Concerning the size of the blocks, 3 × 3 gives
better result, but the difference is not dramatic. We also see that the choice of true
parameter β has little to say for the success of our estimation.



18 Parameter estimation and discussion

(a) β = 0.4 (b) β = 0.6

(c) β = 0.8 (d) β = 0.82

(e) β = 0.83

Figure 8: The red, blue and brown lines are the biases when we use MPLE, 2×2 MGPLE, and
3× 3 MGPLE respectively.
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(a) β = 0.4 (b) β = 0.6

(c) β = 0.8 (d) β = 0.82

(e) β = 0.83

Figure 9: The red, blue and brown lines are the standard deviations when we use MPLE, 2× 2
MGPLE, and 3× 3 MGPLE respectively.
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(a) β = 0.4 (b) β = 0.6

(c) β = 0.8 (d) β = 0.82

(e) β = 0.83

Figure 10: The lines are the upper and lower quantiles of a 0.95 confidence interval, and the
black line is the value of the true parameter. The red, blue and brown lines are the quantiles
when we use MPLE, 2× 2 MGPLE, and 3× 3 MGPLE respectively.
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5.2 Extended Ising model

In the previous chapter we only had one parameter to consider, and we got good results
for both methods. Now the realisations x1, x2, ...., xK depend on three parameters, and
we want to see how the methods cope with the increased complexity. To get the log
pseudo- and general log pseudo-likelihood, we use equations (19) and (24), and with
φ = (α, βh, βv)T we get

lp(φ; x1, .., xK) =
K∑
k=1

log lp(φ; xk) (51)

lg(φ; x1, .., xK) =
K∑
k=1

log lg(φ; xk). (52)

To get the estimated parameters α̂, β̂h and β̂v, we solve the optimization problems

φ̂ = argmax
φ

lp(φ; x1, .., xK) (53)

φ̂ = argmax
φ

lg(φ; x1, .., xK). (54)

in the same way as before.
For this model we have many possible combinations of the three parameters. First

we try α = 0 and β = βh = βv, and we generate realizations with β = {0.40, 0.80, 0.82}.
We want to see if the methods recognize that they are estimating from an Ising model.
To evaluate the performance of MPLE, 2× 2 MGPLE and 3× 3 MGPLE, we apply the
same statistics as we did in the previous chapter. In figures 11 - 13 we see that that we
do not have any bias when α̂ is found with MGPLE, wheras we do have bias when we
use MPLE. Though we also see that for MPLE the bias of α̂ smaller than the bias of β̂h
and β̂v, so it also recognizes the Ising model. However it is not as spot on as MGPLE.
Again we note that the biases fluctuate before they approach 0.

When we look at the standard deviations in figure 14, we again draw the conclusion
that both methods recognizes the Ising model, and MGPLE is by far the better method.
The standard deviation of α̂ completely hugs the zero line. Though MPLE does not
give as small standard deviations for α̂, we see that it is smaller than s(β̂h) and s(β̂v).
In figure 15 - 17 we see for 2 × 2 and 3 × 3 MGPLE that the confidence interval for
1
n

∑n
i=1 α̂i completely collapses. This is not the case for MPLE, but we see that the

interval is smaller than for the other parameters. Which leads us over to the question
of how the methods compares when it comes to estimating the other parameters. The
difference between the methods are not large. In figure 14 we see that s2(β̂h) and s2(β̂v)
are most of the time smaller than sp(β̂h) and sp(β̂v), however the difference is not large.
For 2×2 and 3×3 MGPLE we see that the the largest block gives the smallest standard
deviation most of the time. By studying figures 15 - 17 we see that the 3× 3 block gives
the narrowest intervals.

Now it is time to move away from the Ising model, and we estimate from realisations
generated with α 6= 0 and βh 6= βv. First we use true values βh = 0.83, βv = 0.80
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(a) α = 0 (b) α = 0

(c) βh = 0.4 (d) βh = 0.4

(e) βv = 0.4 (f) βv = 0.4

Figure 11: We use red, blue and brown for α̂, β̂v and β̂v, respectively. The first column show
the bias when we use MPLE, the solid line, and 2× 2 MGPLE, which is the dotted line. In the
second column we have replotted the dotted line along with the bias we get from using 3 × 3
MGPLE, which is the solid line.
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(a) α = 0 (b) α = 0

(c) βh = 0.8 (d) βh = 0.8

(e) βv = 0.8 (f) βv = 0.8

Figure 12: We use red, blue and brown for α̂, β̂v and β̂v, respectively. The first column show
the bias when we use MPLE, the solid line, and 2× 2 MGPLE, which is the dotted line. In the
second column we have replotted the dotted line along with the bias we get from using 3 × 3
MGPLE, which is the solid line.
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(a) α = 0 (b) α = 0

(c) βh = 0.82 (d) βh = 0.82

(e) βv = 0.82 (f) βv = 0.82

Figure 13: We use red, blue and brown for α̂, β̂v and β̂v, respectively. The first column show
the bias when we use MPLE, the solid line, and 2× 2 MGPLE, which is the dotted line. In the
second column we have replotted the dotted line along with the bias we get from using 3 × 3
MGPLE, which is the solid line.
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(a) α = 0, βh = 0.4, βh = 0.4 (b) α = 0, βh = 0.4, βh = 0.4

(c) α = 0, βh = 0.8, βh = 0.8 (d) α = 0, βh = 0.8, βh = 0.8

(e) α = 0, βh = 0.82, βh = 0.82 (f) α = 0, βh = 0.82, βh = 0.82

Figure 14: The standard deviations of the parameter estimates. We use the same colour code
and layout as in figure 11.
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(a) α = 0 (b) α = 0

(c) βh = 0.4 and βv = 0.4 (d) βh = 0.4 and βv = 0.4

(e) βh = 0.4 and βv = 0.4 (f) βh = 0.4 and βv = 0.4

Figure 15: The quantiles of a 0.95 confidence interval. We use the same colour code and layout
as in figure 11.
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(a) α = 0 (b) α = 0

(c) βh = 0.4 and βv = 0.4 (d) βh = 0.4 and βv = 0.4

(e) βh = 0.4 and βv = 0.4 (f) βh = 0.4 and βv = 0.4

Figure 16: The quantiles of a 0.95 confidence interval. We use the same colour code and layout
as in figure 11.
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(a) α = 0 (b) α = 0

(c) βh = 0.4 and βv = 0.4 (d) βh = 0.4 and βv = 0.4

(e) βh = 0.4 and βv = 0.4 (f) βh = 0.4 and βv = 0.4

Figure 17: The quantiles of a 0.95 confidence interval. We use the same colour code and layout
as in figure 11.
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and α = {0.1, 0.5, 1}. We are specially interested in studying the significance of the
abundance parameter α on our estimation. In the previous section both methods had
great success estimating α = 0, as observed in figures 11 - 17. With α 6= 0 the results tell
a different story. In figures 18 -20 we see that the bias of α̂ increases with true value. This
is also the case with the bias of β̂h and β̂v, though not as much. Note that the intervals
on the y-axes in the following figures are wider than the intervals in the preceding ones.

The significance of α is furthermore observed in figure 21. When α = 0.1 it does not
look that bad, the standard deviations are close to each other. However, when α = 0.5
and α = 0.5, we clearly see all the standard deviations increase, and sp(α̂), s2(α̂) and
s3(α̂) are larger than the others. We experience the same behaviour when we look at the
confidence intervals in figures 22 - 24. When α = 0.1 none of the intervals stand out, but
when α increases it looks worse. All the intervals widen, and the intervals of 1

n

∑n
i=1 α̂i

widens a lot more than the interval for the other parameters.
Since the y-axes have been chosen to accommodate the case with α = 1, it is not easy

to see how MPLE and MGPLE fares when compared to each other when α = 0.1 and
α = 0.5. In the appendix we have in figures 37 - 39 reproduced 21 - 23 with a smaller
interval on the y-axis. For both α = 0.1 and α = 0.5 we see in figure 37 that s2(α̂) most
of the time is smaller than sp(α̂), and in turn s3(α̂) is smaller than s2(α̂). This is also
the case for the other parameters, but it is not as obvious. In figure 38 we see that we
get narrower intervals by using MGPLE, specially for α̂. If we look at the confidence
interval in figure 39, we see that we gain less by using MGPLE, and as mentioned before
the intervals are much wider. This is also the case when α = 1.

In the next example we will use the same values for α, but we will increase the
difference between βh and βv and we will use βh = 0.40 and βv = 0.80. The result of
our evaluations are presented in figures 25 - 31. Note that the intervals on the y-axes are
narrower in these figures than in the preceding ones. We have reproduced figures 29 and
30 in the appendix as figures 41 and . When we look at these figures we draw the same
conclusions as in the previous case. We experience the same problems when α increases.
However in this case the standard deviations in figure 28 are smaller, and the confidence
intervals in figures 29 - 31 are narrower, so the problems are not of the same magnitude.
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(a) α = 0.1 (b) α = 0.1

(c) βh = 0.83 (d) βh = 0.83

(e) βv = 0.80 (f) βv = 0.80

Figure 18: The bias of the parameter estimates. We use the same colour code and layout as in
figure 11.
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(a) α = 0.5 (b) α = 0.5

(c) βh = 0.83 (d) βh = 0.83

(e) βv = 0.80 (f) βv = 0.80

Figure 19: The bias of the parameter estimates. We use the same colour code and layout as in
figure 11.
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(a) α = 1 (b) α = 1

(c) βh = 0.83 (d) βh = 0.83

(e) βv = 0.80 (f) βv = 0.80

Figure 20: The bias of the parameter estimates. We use the same colour code and layout as in
figure 11.
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(a) α = 0.1, βh = 0.83, βh = 0.80 (b) α = 0.1, βh = 0.83, βh = 0.80

(c) α = 0.5, βh = 0.83, βh = 0.80 (d) α = 0.5, βh = 0.83, βh = 0.80

(e) α = 1, βh = 0.83, βh = 0.80 (f) α = 1, βh = 0.83, βh = 0.80

Figure 21: The standard deviations of the parameter estimates. We use the same colour code
and layout as in figure 11.
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(a) α = 0.1 (b) α = 0.1

(c) βh = 0.83 (d) βh = 0.83

(e) βv = 0.80 (f) βv = 0.80

Figure 22: The quantiles of a 0.95 confidence interval. We use the same colour code and layout
as in figure 11.
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(a) α = 0.5 (b) α = 0.5

(c) βh = 0.83 (d) βh = 0.83

(e) βv = 0.80 (f) βv = 0.80

Figure 23: The quantiles of a 0.95 confidence interval. We use the same colour code and layout
as in figure 11.
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(a) α = 1 (b) α = 1

(c) βh = 0.83 (d) βh = 0.83

(e) βv = 0.80 (f) βv = 0.80

Figure 24: The quantiles of a 0.95 confidence interval. We use the same colour code and layout
as in figure 11.
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(a) α = 0.1 (b) α = 0.1

(c) βh = 0.40 (d) βh = 0.40

(e) βv = 0.80 (f) βv = 0.80

Figure 25: The bias of the parameter estimates. We use the same colour code and layout as in
figure 11.
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(a) α = 0.5 (b) α = 0.5

(c) βh = 0.40 (d) βh = 0.40

(e) βv = 0.80 (f) βv = 0.80

Figure 26: The bias of the parameter estimates. We use the same colour code and layout as in
figure 11.
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(a) α = 1 (b) α = 1

(c) βh = 0.40 (d) βh = 0.40

(e) βv = 0.80 (f) βv = 0.80

Figure 27: The bias of the parameter estimates. We use the same colour code and layout as in
figure 11.
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(a) α = 0.1, βh = 0.40, βh = 0.80 (b) α = 0.1, βh = 0.40, βh = 0.80

(c) α = 0.5, βh = 0.40, βh = 0.80 (d) α = 0.5, βh = 0.40, βh = 0.80

(e) α = 1, βh = 0.40, βh = 0.80 (f) α = 1, βh = 0.40, βh = 0.80

Figure 28: The standard deviations of the parameter estimates. We use the same colour code
and layout as in figure 11.
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(a) α = 0.1 (b) α = 0.1

(c) βh = 0.40 (d) βh = 0.40

(e) βv = 0.80 (f) βv = 0.80

Figure 29: The quantiles of a 0.95 confidence interval. We use the same colour code and layout
as in figure 11.
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(a) α = 0.5 (b) α = 0.5

(c) βh = 0.40 (d) βh = 0.40

(e) βv = 0.80 (f) βv = 0.80

Figure 30: The quantiles of a 0.95 confidence interval. We use the same colour code and layout
as in figure 11.
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(a) α = 1 (b) α = 1

(c) βh = 0.40 (d) βh = 0.40

(e) βv = 0.80 (f) βv = 0.80

Figure 31: The quantiles of a 0.95 confidence interval. We use the same colour code and layout
as in figure 11.
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5.3 The Sisim model

We will now estimate the parameters of the model in chapter 3.2. Contrary to the other
models we do not longer choose the true parameter values when we generate observations.
Instead we have given parameters θ0, θ1, ..., θ12, which the observations depend on, and
we want to find out how good the methods estimate them. From equation (28) and (30)
we get

lp(θ; x1, .., xK) =
K∑
k=1

log lp(θ; xk) (55)

lg(θ; x1, .., xK) =
K∑
k=1

log lg(θ; xk), (56)

which is the log pseudo- and general pseudo-likelihood, respectively. To get the estimated
parameter vector θ̂ = (θ̂0, θ̂1, ..., θ̂12)T we solve the problems

θ̂ = argmax
θ
lp(θ; x1, .., xK) (57)

θ̂ = argmax
θ
lg(θ; x1, .., xK). (58)

As before we repeat the optimization above 50 times, and we apply the same statistics
as we did for the Ising models. We will only consider one block, and it is of size 2 × 2.
In the preceding figures we will show the results for some of the parameters. The result
for the rest may be found in appendix A in figures 43 - 48.

In figure 32 we see that the biases approaches 0 when the number of observations
increase. When we look at the standard deviations we see in figure 33 that s2(·) is smaller
than sp(·) most of the time, for k > 100 this difference is small. Furthermore we see that
the standard deviations in 46(a) - 46(a) approach the same level. In figure 34 we draw
the conclusion that the confidence intervals we get by using MGPLE, is a bit norrower
than the ones we get with MPLE.

Another way to test the methods, is to first estimate parameters θ̂ from observations
x1, x2, ...., xK , and then generate new realisations with the estimated parameter. If we
compare the true realisations with the new ones, is it is possible to tell the difference?
The answer to this conundrum is given in figures 35 and 35. In the first row of figure
35 we have generated three realisations with parameters estimated from lp(θ; x1, .., x5).
In the second row we have shown three of the observations. In the third row we have
used lp(θ; x1, .., x50) to estimate the parameter, and in the last row we have shown three
of the 50 observations. We have repeated this procedure in figure35 with MGPLE. By
studying the new realisations we do not notice anything that makes them stand out
compared with the observations, at least not with the naked eye. However we also see
that the observations in rows two and four vary a lot. If we had been able to see a
difference between them and the new realisations, the error of the estimation must have
been severe. In appendix A we have examples were we have used K = 10 and K = 100,
they are shown in figures figures 35 and 35.
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(a) θ0 (b) θ2

(c) θ4 (d) θ7

(e) θ9 (f) θ12

Figure 32: The red and blue lines are the biases when we use MPLE and 2 × 2 MGPLE,
respectively
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(a) θ0 (b) θ2

(c) θ4 (d) θ7

(e) θ9 (f) θ12

Figure 33: The red and blue lines are the standard deviations when we use MPLE and 2 × 2
MGPLE, respectively.
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(a) θ0 (b) θ2

(c) θ4 (d) θ7

(e) θ9 (f) θ12

Figure 34: The lines are the upper and lower quantiles of a 0.95 confidence interval, and the
black line is the value of the true parameter. The red and blue lines are the quantiles when we
use MPLE and 2× 2 MGPLE, respectively.
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(a) k = 5 (b) k = 5 (c) k = 5

(d) k = 5 (e) k = 5 (f) k = 5

(g) k = 50 (h) k = 50 (i) k = 50

(j) k = 50 (k) k = 50 (l) k = 50

Figure 35: Realisations generated with parameters found with MPLE.
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(a) k = 5 (b) k = 5 (c) k = 5

(d) k = 5 (e) k = 5 (f) k = 5

(g) k = 50 (h) k = 50 (i) k = 50

(j) k = 50 (k) k = 50 (l) k = 50

Figure 36: Realisations generated with parameters found with MGPLE.
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6 Closing remarks

The purpose of this paper has been to study and compare the performance of MPLE and
MGPLE. From the results in chapter 5 we draw the conclusion that the methods perform
better when the number of observations increases. We also see that MGPLE is the best
method, and if we use a block of size 3 × 3, we get better result than when we use a
2 × 2 block, though the performance is not dramatically improved. When the number
of observations exceed 100, the difference between the methods dwindles. However there
are nuances in the results for the models we have considered.

If we look at the standard deviation and the width of the confidence intervals, we
get the best results for the Ising model, which is not surprising since it is the least
complicated model. For the extended Ising model in chapter 5.2 we see that the outcome
of our estimation depends on the true parameter α. If it is close to 0 we get the best
results. When we estimate from observations generated with α = 0 and βh = βv, both
methods have success with estimating α, but MGPLE is by far the better method. When
α 6= 0 and βh 6= βv we see that the quality of the estimates worsen with the increasing
value of α. For the Sisim model we see both methods do a good job with estimating
the parameters. MGPLE is slightly better in most cases, but this varies between the
parameters. However, for this model we only used a 2× 2 block.

In our examples we have only used blocks of size 3 × 3 and 2 × 2. Unfortunately
we did not have the time to test MGPLE with blocks of larger size. It would also have
been interesting to look at more parameter combinations for the extended Ising model.
If we have βh = 0.40 and βv = 0.80, the results are better than the case with βh = 0.83
and βv = 0.80. We would like to find out if it is because the difference between the
parameters is greater, or if it is because one of them have a small value. However the
computer computations have been very time consuming, with Coupling from the past as
the bottle neck, so we did not have the time to run all the simulations we wanted to.



REFERENCES 51

References

Besag, J. E. (1974), ‘Spatial interacion and the statistical analysis of lattice systems
(with discussion)’, J. Roy. Statist. Soc. Ser. B 36, 192–236.

Geyer, C. J. & Thompson, E. A. (1992), ‘Constrained Monte Carlo maximum likelihood
for dependent data’, J. Roy. Statist. Soc. Ser. B 54, 657–699.

Grimmet, G. (1987), ‘Interacting particle systems and random media: An overview’,
Inetrnational Statistics Review 55, 49–62.

Huang, F. & Ogata, Y. (2002), ‘Generalized pseudo-likelihood estimates for Markov
random fields on lattices’, Ann. Ist. Statist. Math. 54, 1–18.

Hurn, M. A., Husby, O. K. & Rue, H. (2003), A tutorial of image analysis, in J. Møller,
ed., ‘Spatial Statistics and Computational Methods’, Springer.

Nocedal, J. & Wright, S. J. (2000), Numerical Optimization, Springer.

Propp, J. G. &Wilson, D. B. (1996), ‘Exact sampling with coupled Markov chains and ap-
plications to statistical mechanics Carlo simulation’, Random Sructures Algorithms
9, 223–252.

Reeves, R. & Pettitt, A. N. (2002), ‘Efficient recursions for general factorizable models’,
Biometrika 91, 751–757.

Scott, A. L. (2002), ‘Bayesian methods for hidden Markov models: Recursive computa-
tion in the 21st century’, Journal of the American Statistical Association 97, 337–
351.

Swendsen, R. & Wang, J. (1987), ‘Nonuniversal critical dynamics in Monte Carlo simu-
lation’, Physical Review letters 58, 86–88.



52 Figures

A Figures

(a) α = 0.1, βh = 0.83, βh = 0.80 (b) α = 0.1, βh = 0.83, βh = 0.80

(c) α = 0.5, βh = 0.83, βh = 0.80 (d) α = 0.5, βh = 0.83, βh = 0.80

Figure 37: The standard deviations of the parameter estimates. We use the same colour code
and layout as in figure 11.
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(a) α = 0.1 (b) α = 0.1

(c) βh = 0.83 (d) βh = 0.83

(e) βv = 0.80 (f) βv = 0.80

Figure 38: The quantiles of a 0.95 confidence interval. We use the same colour code and layout
as in figure 11.
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(a) α = 0.5 (b) α = 0.5

(c) βh = 0.83 (d) βh = 0.83

(e) βv = 0.80 (f) βv = 0.80

Figure 39: The quantiles of a 0.95 confidence interval. We use the same colour code and layout
as in figure 11.
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(a) α = 0.1, βh = 0.40, βh = 0.80 (b) α = 0.1, βh = 0.40, βh = 0.80

(c) α = 0.5, βh = 0.40, βh = 0.80 (d) α = 0.5, βh = 0.40, βh = 0.80

Figure 40: The standard deviations of the parameter estimates. We use the same colour code
and layout as in figure 11.
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(a) α = 0.1 (b) α = 0.1

(c) βh = 0.40 (d) βh = 0.40

(e) βv = 0.80 (f) βv = 0.80

Figure 41: The quantiles of a 0.95 confidence interval. We use the same colour code and layout
as in figure 11.
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(a) α = 0.5 (b) α = 0.5

(c) βh = 0.40 (d) βh = 0.40

(e) βv = 0.80 (f) βv = 0.80

Figure 42: The quantiles of a 0.95 confidence interval. We use the same colour code and layout
as in figure 11.
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(a) θ0 (b) θ2

(c) θ4 (d) θ7

Figure 43: The red and blue lines are the biases when we use MPLE and 2 × 2 MGPLE,
respectively.
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(a) θ0 (b) θ2

(c) θ4

Figure 44: The red and blue lines are the biases when we use MPLE and 2 × 2 MGPLE,
respectively.
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(a) θ0 (b) θ2

(c) θ4 (d) θ7

Figure 45: The red and blue lines are the standard deviations when we use MPLE and 2 × 2
MGPLE, respectively.
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(a) θ0 (b) θ2

(c) θ4

Figure 46: The red and blue lines are the standard deviations when we use MPLE and 2 × 2
MGPLE, respectively.
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(a) θ0 (b) θ2

(c) θ4 (d) θ7

Figure 47: The lines are the upper and lower quantiles of a 0.95 confidence interval, and the
black line is the value of the true parameter. The red and blue lines are the quantiles when we
use MPLE and 2× 2 MGPLE, respectively.
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(a) θ0 (b) θ2

(c) θ4

Figure 48: The lines are the upper and lower quantiles of a 0.95 confidence interval, and the
black line is the value of the true parameter. The red and blue lines are the quantiles when we
use MPLE and 2× 2 MGPLE, respectively.



64 Figures

(a) k = 10 (b) k = 10 (c) k = 10

(d) k = 10 (e) k = 10 (f) k = 10

(g) k = 100 (h) k = 100 (i) k = 100

(j) k = 100 (k) k = 100 (l) k = 100

Figure 49: Realisations generated with parameters found with MPLE.
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(a) k = 10 (b) k = 10 (c) k = 10

(d) k = 10 (e) k = 10 (f) k = 10

(g) k = 100 (h) k = 100 (i) k = 100

(j) k = 100 (k) k = 100 (l) k = 100

Figure 50: Realisations generated with parameters found with MGPLE.
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