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Abstract

A parametrization of a multidimensional Markov chain model (MDMC) is studied with
the goal of capturing texture in training images. The conditional distribution function of
each row in the image, given the previous rows, is described as a one-dimensional Markov
random field (MRF) that depends only on information in the immediately preceding rows.
Each of these conditional distribution functions is then an element of a Markov chain
that is used to describe the entire image. The parametrization is based on the cliques
in the MRF, using different parameters for different clique types with different colors,
and for how many rows backward we can trace the same clique type with the same
color. One of the advantages with the MDMC model is that we are able to calculate the
normalizing constant very efficiently thanks to the forward-backward algorithm. When
the normalizing constant can be calculated we are able to use a numerical optimization
routine from R to estimate model parameters through maximum likelihood, and we can
use the backward iterations of the forward-backward algorithm to draw realizations from
the model. The method is tested on three different training images, and the results show
that the method is able to capture some of the texture in all images, but that there is
room for improvements. It is reasonable to believe that we can get better results if we
change the parametrization. We also see that the result changes if we use the columns,
instead of the rows, as the one-dimensional MRF. The method was only tested on images
with two colors, and we suspect that it will not work for images with more colors, unless
there are no correlation between the colors, due to the choice of parametrization.
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1 Introduction

If we are looking for petroleum in the Earth’s subsurface, it can be to great help if we
know how the rock types in the subsurface are distributed. There are certain elements
that need to be in place for petroleum to be generated and stored, and if we have an
image of the rocks in the subsurface we are able to look for these elements. We must
for example have some kind of porous rock that can contain petroleum, like sandstone,
with some dense rock above, like shale, that makes sure the petroleum does not escape.
Reflection seismology is a tool to gather data about the rock types in the subsurface,
and from this data one can make an image of how the rock types are distributed. The
problem is that the method is not 100% accurate, and there will always be a lot of noise
in the images. We want to be able to remove this noise, so that we are better able to say
where petroleum can be stored.

To be able to remove the noise, we must first have some prior information about what
the images should look like. One method is to look at how rock types are distributed on
the surface, and assume that our image should be similar to this. An important aspect
in this approach is how we say that two images are similar. It is then common to talk
about texture in the images. Texture can be described as the underlying information
that makes us able to say if two images are similar or not. For the human eye it is often
easy to say that two images have the same texture, but it can be hard to say exactly
what the texture is. If we are able to describe the texture in the images of the rocks on
the surface, we could try to add this same texture into our images of the noisy data.

In statistics we have a method for this called Bayesian inversion. If the prior informa-
tion about the texture is formulated as a probability distribution, called the prior model,
we can draw images from this distribution that fits with the observed noisy data by using
Bayesian inversion. Since the prior model should have high probabilities for images that
contain the texture we are looking for, the realizations we draw should contain just this
texture. What we have to do is in other words to create a probability distribution that
describes the texture we want to have in the image. Since it is not always an easy task
to say exactly what the texture of an image is, it is also hard to create such a probability
distribution.

The common method when creating such a prior model is to use a training image.
A training image is for example an image of how the rock types on the surface are dis-
tributed, but it could also be an image manufactured by a geologist or some other person
that has knowledge about how rocks are typically distributed. Once we have the training
image we have to create the prior model that describes the texture in the image. When
we draw realizations from this model they should then have the same kind of texture as
the training image. Creating such a model is not always an easy task, and in this thesis
we are going to look at a general model with the goal that it should be useful for several
types of texture.
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(a) Sisim (b) Channel (c) Ellipse

Figure 1: The training images.

Markov random fields (Besag 1973) (MRF) have been used a lot in analysis of image
textures. The problem with MRF is that it can be computationally expensive to calcu-
late the normalizing constant if the field is large. Therefore there has been a lot of focus
on how to calculate this constant efficiently, or how to get a good estimate of it. Another
option is to find alternative models. One such model that has shown to capture texture
well is the multidimensional Markov chain model (Qian & Titterington 1991) (MDMC).
The advantage with MDMC is that we are able to use the forward-backward algorithm
(Baum, Petrie, Soules & Weiss 1970) to calculate the normalizing constant even if the
field is quite large. In this thesis we are going to use such a MDMC when we create our
prior model. The same method was also explored by Nerhus (2008), but we will here use
a different kind of parametrization.

The thesis starts by introducing some theory about Markov chains and Markov
random fields, before we show how to use the forward-backward algorithm on a one-
dimensional MRF. Then we show how we create a parametric multidimensional Markov
chain model, and how we estimate model parameters by maximum likelihood from train-
ing images. We test our method on the three training images in Figure 1. Image 1(a)
is generated by sequential indicator sampling, and we call it Sisim. Image 1(b) is hand-
drawn by a geologist, and it show rivers or channels, we call it Channel. Image 1(c) is
a realization from a marked Poisson random field, with ellipses as the marks, we call it
Ellipse. We finish the text by displaying and discussing some results.

2 Markov chains and parametric models

As the goal of this thesis is to create a parametric model of a multidimensional Markov
chain, we will start by saying a few general words about parametric models and Markov
chains. Parametric models are simply models that have some parameter θ = {θ1, θ2, ..., θT } ∈
RT . In some cases the parameters will have a physical interpretation, it could for example
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be a parameter for wind and one for temperature in a model that describes the weather.
In other cases it is harder to say exactly what the parameters mean. In this text we will
indicate a parametric model by writing π(x|θ). Note that this does not mean that we
condition on the value of θ, as θ is a constant and not a stochastic variable.

If we have a sequence of stochastic variables x = {x1, x2, ..., xn} ∈ Λn, where xi ∈
Λ = {0, 1, ..., L − 1}, we say that they form a Markov chain if they have the Markov
property

π(xi|xi−1, xi−2, ..., x1, θ) = π(xi|xi−1, xi−2, ..., xi−r, θ). (1)

When the conditional distribution function of xi given all previous variables is indepen-
dent of {x1, x2, ..., xi−r−1}, as above, we say that it is an r’th order Markov chain. The
full distribution function is given by

π(x|θ) = π(x1|θ)π(x2|x1, θ) · · ·π(xr|xr−1, ..., x1, θ)
m∏

i=r+1

π(xi|xi−1, ..., xi−r, θ). (2)

Markov chains have a lot of applications, and can be found in physics, economics, social
sciences, and even in music. The reason is that one can very often assume that a process
has the Markov property. In most cases a Markov chain is considered a process in time,
where xi is then the value at time i. We are instead going to look at Markov chains in a
spatial setting, where xi is the value at a position i. A chain like the one above will only
make sense if the spatial setting is one-dimensional, as we are then able to talk about
’previous’ variables as all variables on one side of xi. For higher dimensions we instead
have something called Markov random fields, where the Markov property occurs in a bit
different manner. More on this in the next section.

3 Markov random fields

Markov random fields (MRF) are often used to describe texture in images. The image is
represented on a grid S={1, 2, ..., n}, where the dimension of the grid usually corresponds
to the dimension of the image. For images like those in Figure 1 we would use a grid like
the one in Figure 2(a), while the grid in Figure 2(b) is better suited for one-dimensional
images. These figures also show how the nodes can be numbered, we use i ∈ {1, 2, ..., n}
to denote node number i in the grid. Each node will have a value (color), and we let a
stochastic variable xi ∈ Λ = {0, 1, ..., L− 1} denote the value of node number i. We let
x = {x1, x2, ..., xn} ∈ Λn be a multivariate stochastic variable describing the entire image.
If we want the value of several nodes in a subset C ⊆ S of the grid we use the notation
xC = {xi, i ∈ C}, and for all nodes in S that are not in C we use x−C = {xi, i /∈ C}.
One such subset that we are going to use later is {i, i+ 1, ..., i+ k}, this will be denoted
by {i : i+ k}, so that xi:i+k = {xi, xi+1, ..., xi+k}.

Another subset that we are going to use is what we call a neighborhood. A neighbor-
hood δi ⊆ S is a subset of the grid around node number i. The set δ = {δ1, δ2, ..., δn} of
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(a) (b)

Figure 2: Example of a two-dimensional grid (a) and a one-dimensional grid (b). The
numbers show one way to number the nodes.

(a) (b)

Figure 3: Some examples of neighborhoods, the red nodes compose the neighborhood of
the green node. Note that the green node is not part of its own neighborhood. Figure
(a) shows a typical neighborhood in a two-dimensional grid, while Figure (b) is a typical
neighborhood in a one-dimensional grid.

the neighborhoods around all nodes in S is called the neighborhood system. The require-
ments for a neighborhood system is that a node can not be part of its own neighborhood,
i /∈ δi, and if i is in the neighborhood of j, then j must also be in the neighborhood
of i, that is i ∈ δj ⇔ j ∈ δi. If i ∈ δj we say that i and j are neighbors. Figure 3
show some examples of neighborhoods. Neighborhoods can also be empty, in which case
the nodes are independent, or the neighborhood can consist of all other nodes in the grid.

Related to neighborhoods we have something called cliques. A clique c ⊆ S is a
subset of the nodes in the grid such that each node in c is neighbor with all other nodes
in c, or i ∈ δj∀i, j ∈ c, i 6= j. When we talk about cliques we will either be talking about
clique types, or just cliques. The difference is that with clique type we do not care about
the position of the clique in the grid, only what the clique looks like (i.e. we do not
care about translation). We will use the notation c̄ when we mean the clique type of
the clique c. The set of all cliques in S is called the clique system C, and we will use C̄
to indicate the set of all different clique types. In most cases a neighborhood will have
several different clique types related to it, in Figure 4 we show the different clique types
for the neighborhoods in Figure 3.
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(a) (b)

Figure 4: The different clique types, up to translation, corresponding to the neighbor-
hoods from Figure 3, the blue nodes are part of the clique, white nodes are not. If we
place the green center node of the neighborhood in Figure 3(a) over any of the blue nodes
in one of the cliques in (a), all other nodes in the clique should be covered by the red
neighborhood. This means that the node is neighbor with all other nodes in the clique.
The same is true for the neighborhood in Figure 3(b) and the cliques in (b).

We have a MRF if the value of node number i, given all other nodes in S, only
depends on nodes in the neighborhood δi, that is if

π(xi|x−i, θ) = π(xi|xδi , θ), ∀i ∈ {1, ..., n}. (3)

We call this the Markov property. We need to know this conditional distribution function
for all nodes i. It can be difficult to create a model from this formulation, and to illustrate
why let us rewrite the distribution functions π(xi|x−i, θ) by using Bayes rule, getting

π(xi|x−i, θ) =
π(x|θ)∑
xi
π(x|θ)

. (4)

The notation
∑

xi
means to sum over all possible values of the variable xi. To get a

valid model we have to choose the conditional distribution functions π(xi|x−i, θ) such
that they are mathematically consistent with the joint distribution function π(x|θ). This
can be difficult when there are a lot of variables, as there often are, and it would in other
words be better first to find π(x|θ), as we could then calculate the conditional distribution
functions afterwards. Thanks to the Hammersley-Clifford theorem (Besag 1973) we are
able to do just this if we make one important assumption. We must assume that if
π(xi|θ) > 0 for all xi, then π(x|θ) > 0 for all x (all values of x are possible). This is
called the positivity condition. Under this assumption the theorem states that we have
a MRF on the form (3), with respect to the neighborhood system δ, if and only if the
joint distribution function is given by

π(x|θ) =
exp

{
−
∑

c∈C Vc(xc|θ)
}

z(θ)
, (5)
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where C is the clique system corresponding to δ. The sum in the exponent is over all
cliques c in the clique system C. The functions Vc(xc|θ) are called potential functions,
as in some physical cases they correspond to potential energy. The normalizing constant
z(θ) is given by

z(θ) =
∑
x

exp

{
−
∑
c∈C

Vc(xc|θ)

}
,

and is generally unattainable, as x ∈ Λn and therefore has Ln possible values. For the
images in Figure 1, where L = 2 and n = 125 × 125, this would be a sum with about
104700 terms!

It is quite easy to define π(x|θ), all we have to do is to define the cliques and the
potential functions. Once this is done we can use (4) to find the conditional distribution
functions. It should be noted that

π(xi|x−i, θ) ∝ π(x|θ) = exp

{
−
∑
c∈C

Vc(xc|θ)

}

= exp

{
−
∑

c∈C:i∈c
Vc(xc|θ)−

∑
c∈C:i/∈c

Vc(xc|θ)

}

∝ exp

{
−
∑

c∈C:i∈c
Vc(xc|θ)

}
,

where the sum in the exponent is over all cliques that contain i, since all potential
functions of cliques that does not contain i will be constants. The cliques containing i
must by definition only contain nodes that are in the neighborhood of i, so the function
will only depend on xδi , fulfilling (3).

3.1 Defining a MRF by defining potential functions

Defining a MRF means that we have to define the potential functions. We want a
parametric probability distribution, so the potential functions should contain a parameter
θ. The potential function should also focus on the fact that we wish to capture the texture
in the image, so we must identify some way to do this. We are going to focus on when a
set of nodes has the same value. If we for different sets of nodes can say something about
how often the set should have the same value, for all of the possible values, then we should
also be able to say something about the texture in the entire image when we combine
this information. As we are working with MRF it is obvious to choose the different clique
types as the sets of nodes to look at, and the parameter to give us information about the
color, so in this text we will use potential functions on the form

Vc(xc|θ) =
∑
l∈Λ

θc̄,lI(xi = l;∀i ∈ c), (6)
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where

I(xi = l;∀i ∈ c) =

{
1 if xi = l; ∀i ∈ c,
0 else.

This means that if all nodes in the clique c have the same value l, the potential function
will return the parameter θc̄,l. Each parameter can then be interpreted as the potential
for a clique type to have a certain value on all nodes. Having this information for all
clique types and all colors will hopefully be enough to capture the texture in an image.

3.2 One-dimensional MRF

We are now going to look at a one-dimensional MRF where the neighborhood is k nodes
on each side of i, or δi = {i − k : i − 1, i + 1 : i + k}. Figure 3(b) shows an exam-
ple where k = 3, and Figure 4(b) show the different clique types corresponding to this
neighborhood. Note that such a neighborhood will have 2k different clique types. To see
this we refer to Figure 4(b), where we see that the leftmost node is always part of the
clique (blue), while the each of the last k = 3 nodes are either part of the clique (blue)
or not part of the clique (white). To get all different clique types, all combinations of
blue/white must be used on these last nodes. Thus there are 3 nodes where each has two
possible ’values’, and we end up with 23 = 8 different clique types.

We are later going to use a one-dimensional MRF based on such a neighborhood as
part of a multidimensional Markov chain model. This means that we must show that
the MRF can be formulated as a Markov chain. To show this we need to show that it
has the Markov property (1), which we can show by finding the distribution functions
π(xi|x1:i−1, θ). Using Bayes rule we get

π(xi|x1:i−1, θ) =
π(x1:i|θ)
π(x1:i−1|θ)

∝ π(x1:i|θ) =
∑
xi+1:n

π(x|θ) =
∑
xi+1:n

exp

{
−
∑
c∈C

Vc(xc|θ)

}
.

(7)
Let us now move all exponentials with potential functions of cliques that does not contain
any of the nodes {i : n} outside the sum. We then have to separate all cliques into two
sets, one set C−i:n = {c ∈ C : c

⋂
{i : n} = ∅} with all cliques that does not contain any

of the nodes {i : n}, and one set Ci:n = C \ C−i:n with all other cliques. We can then
rewrite (7) by

π(xi|x1:i−1, θ) ∝
∑
xi+1:n

exp

− ∑
c∈C−i:n

Vc(xc|θ)−
∑
c∈Ci:n

Vc(xc|θ)


= exp

− ∑
c∈C−i:n

Vc(xc|θ)

 ∑
xi+1:n

exp

− ∑
c∈Ci:n

Vc(xc|θ)


∝
∑
xi+1:n

exp

− ∑
c∈Ci:n

Vc(xc|θ)

 .
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What we have left now in the exponent is a sum over all cliques that contain at least
one of the nodes {i : n}. Some of these cliques will also contain some of the nodes
{i− k : i− 1}, since these nodes are in the neighborhood of i, but none will contain any
of the nodes {1 : i− k − 1}. This means that xi given x1:i−1 is independent of x1:i−k−1,
which is the same as the Markov property of a k’th order Markov chain.

4 Forward-backward for one-dimensional MRF

The forward-backward algorithm (Baum et al. 1970) is a recursive method that lets us
calculate the normalizing constant of certain probability functions, called general factoris-
able models by Reeves & Pettitt (2004). Once we are able to calculate the normalizing
constant we can also calculate likelihoods, and we are able to draw samples in a very
efficient manner (Friel & Rue 2007). We are now going to show how the method can be
derived for a one-dimensional MRF like the one described in Section 3.2.

The algorithm iterates through the grid one node at the time, and to derive it we
need to formulate the distribution function (5) by

π(x|θ) =
exp

{
−
∑n−k

i=1 gi(xi:i+k|θ)−
∑n

i=n−k+1 gi(xi:n|θ)
}

z(θ)
, (8)

where

gi(xi:i+k|θ) =
∑
c∈Ci

Vc(xc|θ), i ∈ {1 : n− k},

gi(xi:n|θ) =
∑
c∈Ci

Vc(xc|θ), i ∈ {n− k + 1 : n},

and here the set Ci ⊂ C is defined by Ci = {c ∈ C : i ∈ c, c
⋂
{1 : i − 1} = ∅}. This

means that it is the set of all cliques that contain i but none of the nodes {1 : i − 1}.
If k = 3 this would be one each of the types of cliques shown in Figure 4(b), and the
leftmost node in the clique would be node number i. We are still summing over all cliques
c ∈ C, the only difference from (5) is that we have selected the order in which to do the
sum. It will be clear why we want it on this form when we now show how to derive the
forward-backward algorithm. The first part of the algorithm, the forward iterations, let
us calculate the normalizing constant. The backward iterations can be used to draw a
sample from the distribution function.

4.1 Calculating the normalizing constant

The distribution function for the MRF is given by (8). Let us now define

h(x|θ) = exp

{
−
n−k∑
i=1

gi(xi:i+k|θ)−
n∑

i=n−k+1

gi(xi:n|θ)

}
.
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The normalizing constant is then given by

z(θ) =
∑
x

h(x|θ) =
∑
x1

· · ·
∑
xn

h(x|θ).

It is very computational expensive to calculate this directly since x has Ln possible values.
What we instead do is that we calculate it recursively by taking one of the sums

∑
xi

at the time. Let us see how and why this works by doing it step by step. We start by
summing out x1 from h(x, θ)

h(x2:n|θ) =
∑
x1

h(x|θ) =
∑
x1

exp

{
−
n−k∑
i=1

gi(xi:i+k|θ)−
n∑

i=n−k+1

gi(xi:n|θ)

}

= exp

{
−
n−k∑
i=2

gi(xi:i+k|θ)−
n∑

i=n−k+1

gi(xi:n|θ)

}∑
x1

exp {−g1(x1:1+k|θ)} .

Here we use the notation h(x2:m, θ) to indicate that x1 is not part of the variable after
we have summed it out. On the second line we moved all terms not containing x1 outside
the sum. The important thing to note here is that the sum over x1 on the second line
now can be described as a function of the variable x2:1+k, we denote this function by

z1(x2:1+k|θ) =
∑
x1

exp {−g1(x1:1+k|θ)} ,

ending up with

h(x2:m|θ) = exp

{
−
m−k∑
i=2

gi(xi:i+k|θ)−
n∑

i=n−k+1

gi(xi:n|θ)

}
z1(x2:1+k|θ).

We call z1(x2:1+k|θ) the first forward variable. It has Lk possible values, one for each
value of x2:1+k. If we calculate all of these values we can use them in the next iteration
when we sum out x2 from h(x2:n|θ)

h(x3:n|θ) =
∑
x2

h(x2:n|θ) =
∑
x2

[
exp

{
−
n−k∑
i=2

gi(xi:i+k|θ)−
n∑

i=n−k+1

gi(xi:n|θ)

}
z1(x2:1+k|θ)

]

= exp

{
−
n−k∑
i=3

gi(xi:i+k|θ)−
n∑

i=n−k+1

gi(xi:n|θ)

}∑
x2

[exp {−g2(x2:2+k|θ)} z1(x2:1+k|θ)]

= exp

{
−
n−k∑
i=3

gi(xi:i+k|θ)−
n∑

i=n−k+1

gi(xi:n|θ)

}
z2(x3:2+k|θ).

We see that the second forward variable is given by

z2(x3:2+k|θ) =
∑
x2

[exp {−g2(x2:2+k|θ)} z1(x2:1+k|θ)] .
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Repeating this possess we get that forward variable number i is given by

zi(xi+1:i+k|θ) =
∑
xi

[exp {−gi(xi:i+k|θ)} zi−1(xi:i−1+k|θ)] , i ∈ {2 : n− k} ,

and that

h(xi:n|θ) = exp

−
n−k∑
j=i

gj(xj:j+k|θ)−
n∑

j=n−k+1

gj(xj:n|θ)

 zi−1(xi:i+k−1|θ), i ∈ {2 : n− k} .

(9)
For the last few iterations the forward variable is given by

zi(xi+1:n|θ) =
∑
xi

[exp {−gi(xi:n|θ)} zi−1(xi:n|θ)] , i ∈ {n− k + 1 : n} ,

and

h(xi:n|θ) = exp

−
n∑
j=i

gj(xj:n|θ)

 zi−1(xi:n|θ), i ∈ {n− k + 1 : n} . (10)

The last forward variable will then be equal to the normalizing constant, since we have
summed out all xi from h(x|θ)

z(θ) = zn(θ). (11)

Since we in each iteration need to do the Lk different calculations of the forward variables,
and each is a sum with L terms, we end up with a total of O(nLk+1) calculations. Thus
we are restricted mostly by the size k of our neighborhood, but also by how many values
L each node can have. Remember that each value is intended to represent a rock type,
and typically there are not a lot of different rock types, so in most cases k is the main
limiting factor.

4.2 Likelihood

We can find the likelihood of a parameter θ given a realization y of the MRF by simply
calculating

L(θ|y) =
1
z(θ)

exp

{
−
n−k∑
i=1

gi(yi:i+k|θ)−
n∑

i=n−k+1

gi(yi:n|θ)

}
, (12)

where z(θ) can be calculated as above. This can for example be used in maximum
likelihood estimation of the parameter θ.

4.3 Sampling by backward iterations

To draw a sample from the MRF we can start by drawing a sample of xn, and then
iterate backwards while drawing samples depending on what we already drew. Drawing
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a sample of xn means that we need the marginal probability π(xn|θ), which we find by
summing out all other variables x1:n−1 from π(x|θ). This gives us

π(xn|θ) =
∑
x1:n−1

π(x|θ) =
∑
x1:n−1

h(x|θ)
z(θ)

=
h(xn|θ)
z(θ)

.

Inserting (10) into this, with i = n, we get

π(xn|θ) =
exp {−gn(xn|θ)} zn−1(xn|θ)

zn(θ)
.

For the next steps we need the conditional distribution function

π(xi|xi+1:n, θ) =
π(xi:n|θ)
π(xi+1:n|θ)

=
h(xi:n|θ)
h(xi+1:n|θ)

.

We have h(xi:n|θ) given from either (9) or (10), depending on the value of i. If n− k <
i < n we get

π(xi|xi+1:n, θ) =
exp

{
−
∑n

j=i gj(xj:n|θ)
}
zi−1(xi:n|θ)

exp
{
−
∑n

j=i+1 gj(xj:n|θ)
}
zi(xi+1:n|θ)

=
exp {−gi(xi:n|θ)} zi−1(xi:n|θ)

zi(xi+1:n|θ)
.

If 1 < i ≤ n− k we will have

π(xi|xi+1:n, θ) =
exp

{
−
∑n−k

j=i gj(xj:j+k|θ)−
∑n

j=n−k+1 gj(xj:n|θ)
}
zi−1(xi:i+k−1|θ)

exp
{
−
∑n−k

j=i+1 gj(xj:j+k|θ)−
∑n

j=n−k+1 gj(xj:n|θ)
}
zi(xi+1:i+k, θ)

=
exp {−gi(xi:i+k|θ)} zi−1(xi:i+k−1|θ)

zi(xi+1:i+k|θ)
.

Finally, for i = 1 we get

π(x1|x2:m, θ) =
exp {−g1(x1:1+k|θ)}

z1(x2:1+k|θ)
.

Since each of these probability functions only have L possible values, π(xi = l|xi+1:n, θ)
for l = {0 : L − 1}, we are able to calculate the probability of each, and it is easy to
draw a sample from them. In the worst case we have to do L computations at each step,
which means O(nL) computations total. Since we use the forward variables during the
sampling procedure, we have to store them during the forward iterations. This means
that we must be able to store nLk values.
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4.4 Logarithmic version

In many cases we will get numerical problems if we try to compute the forward variables
as shown above. This is due to the fact that the probability π(x|θ) will be very small
when x has a large amount of possible values. In these cases we can instead store the
forward variables on logarithmic scale, as this helps us avoid the numerical problems.
We will now show how this can be done. We start with the first forward variable, and
define

υ1(x2:1+k|θ) = log(z1(x2:1+k|θ)),
⇒z1(x2:1+k|θ) = eυ1(x2:1+k|θ).

For the other forward variables we get

zi(xi+1:i+k|θ) =
∑
xi

e−gi(xi:i+k|θ)+υi−1(xi:i−1+k|θ) if 1 < i ≤ n− k,

⇒ υi(xi+1:i+k|θ) = log

(∑
xi

e−gi(xi:i+k|θ)+υi−1(xi:i−1+k|θ)

)
if 1 < i ≤ n− k,

and

zi(xi+1:n|θ) =
∑
xi

e−gi(xi:n|θ)+υi−1(xi:n|θ) if n− k < i ≤ n,

⇒ υi(xi+1:n|θ) = log

(∑
xi

e−gi(xi:n|θ)+υi−1(xi:n|θ)

)
if n− k < i ≤ n.

To calculate υi(xi+1:i+k|θ) without getting numerical problems we can use a simple trick.
If we in the exponent add and subtract a constant q we get

log

(∑
xi

e−gi(xi:i+k|θ)+υi(xi:i−1+k|θ)+q−q

)
= q + log

(∑
xi

e−gi(xi:i+k|θ)+υi(xi:i−1+k|θ)−q

)
.

Now if we choose q = maxxi(−gi(xi:i+k|θ) + υi−1(xi:i−1+k|θ)) we will end up with

υi(xi+1:i+k|θ) = q + log(e0 + eQ) = q + log(1 + eQ),

where we haveQ = minxi(−gi(xi:i+k|θ)+υi−1(xi:i−1+k|θ))−q. This means that we always
will have Q ≤ 0. It is easy to substitute these variables into the sampling procedure,
depending on i we get

π(xn|θ) = exp {−gn(xn|θ) + υn−1(xn|θ)− υn(θ)} ,
π(xi|xi+1:n, θ) = exp {−gi(xi:n|θ) + υi−1(xi:n|θ)− υi(xi+1:n|θ)} , n− k < i < n,

π(xi|xi+1:n, θ) = exp {−gi(xi:i+k−1|θ) + υi−1(xi:i+k−1|θ)− υi(xi+1:i+k|θ)} , 1 < i ≤ n− k,
π(x1|x2:n, θ) = exp {−g1(x1:1+k|θ)− υ1(x2:1+k|θ)} .
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For the likelihood we will get

L(θ|y) = exp

{
−
n−k∑
i=1

gi(yi:i+k|θ)−
n∑

i=n−k+1

gi(yi:n|θ)− υn(θ)

}
. (13)

This version of the forward-backward algorithm is very useful.

5 The multidimensional Markov chain model

A multidimensional Markov chain (MDMC) is, as the name might reveal, a Markov
chain where each element of the chain is also a Markov chain. This means that each
conditional distribution function (1) is a Markov chain, with xi as a set of stochastic
variables. Generally this can be done any number og times, but we are only going to
look at the two-dimensional case. Our motivation is to use a MDMC model to describe
a two-dimensional image. Qian & Titterington (1991) showed that this can be used to
capture texture in much the same way as a two-dimensional MRF. We let the image x
be represented on a two-dimensional grid S of size m× n, and use xij ∈ Λ to denote the
value of node number j from the left on row number i from the top, which means that
i ∈ {1, ...,m} and j ∈ {1, ..., n}. We then let xi = {xi1, ..., xin} ∈ Λn represent a row,
while x = {x1, ..., xm} ∈ Λmn represents the entire image.

We let the conditional probability function for each of the rows, given the previous
rows, have the Markov property (1), by letting it depend only on the r immediately
preceding rows. The full distribution function of the image is then given by (2). For each
row we will use a one-dimensional MRF based on a neighborhood like the one described
in 3.2, except that we will also include information from the previous rows. Since a
one-dimensional MRF can be formulated as a Markov chain, as described in Section 3.2,
we now have a two-dimensional Markov chain. Figure 5 illustrates how the model works.

5.1 Parametrization

We said that each row will condition on the r previous rows. The information from the
previous rows must then be added into the one-dimensional MRF. To make sure we get
a valid model we must add the information into the potential functions. We have a lot
of options for how we want to do this, and how good our model becomes could possibly
depend a lot on how we do it. We choose to use potential functions on the form (6).
By using this formulation we can say that we ask the following question: Do the nodes
in the clique have the same value, and if they do, what value is it? The answer to the
question is given by what parameter is returned, as each parameter θc̄,l represents that
a type of clique c̄ has the same value l on all nodes. The value of the parameter then
represents the potential for this value on all nodes. When we now include information
from the previous rows it is natural to extend this question, so that it not only includes
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Figure 5: This figure illustrates how the MDMC model works. The distribution of
each row, given all previous rows, is a one-dimensional MRF that conditions only on r
previous rows (yellow). The MRF itself is defined by a neighborhood system where the
neighborhood of a node (green) is the k closest nodes on each side (red). In this example
r = 3 and k = 2.

the nodes in the clique, but also nodes from the previous rows. The question we are going
to ask is: If the nodes in the clique have the same value, then how many rows backward
can we trace the same clique still having the same value? To get the answer we again
use the parameters, by letting the parameter that is returned also represent how many
rows backward we can trace the clique with the same value. One parameter will then
represent that we can go no rows backward, another will represent that we can go one
row backwards (but not more), and so on, while also taking into account the clique type
and the color of the nodes. As we only condition on r rows, we will stop counting if we
get to the r’th row. Mathematically we can write

Vc(xi,c|θ) =

{
θc̄,l,ρ if xij = l∀i, j ∈ {i− ρ : i, c},

0 else,

where ρ is the smallest integer that satisfy xi−ρ−1,j 6= l for j ∈ c and 0 ≤ ρ ≤ r. Figure
6 gives an example of how this parametrization works.

A question now is, how many parameters does such a model give us? Well, we have
2k different clique types c̄, L different values for l, r + 1 possible values for ρ, and this
gives us T = (r+1)L2k parameters. If we want to use large values for k, r or L we might
need to reduce the number of parameters somehow. One way to do this is to ignore
some of the clique types. We can for example ignore all clique types that contain more
than d nodes. This should not hurt the model too much, as large cliques are somewhat
redundant since they can be separated into sets of smaller cliques. As an example of this
we again use Figure 4(b), where we see that the first seven cliques are all a subset of the
last and largest clique. The number of different clique types that we are not ignoring is
then given by

ηk,d =
d−1∑
s=0

k!
s!(k − s)!

. (14)
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(a) (b) (c) (d)

Figure 6: These figures illustrate when we get different parameters θc̄,l,ρ for a clique c
depending on the r = 3 previous rows. The clique is the blue nodes in the lowest row,
we assume that all nodes in this clique have the same value l (otherwise no parameter
is returned). In (a) at least one of the yellow nodes has a different value than l, which
means we can go ρ = 0 rows backward. The value of the pink nodes are irrelevant. In
(b) the blue nodes on the second lowest row also have the value l, while at least one of
the yellow nodes above has a different value. This means we are able to go ρ = 1 rows
backward. The pink nodes are again irrelevant. Also in (c) the blue nodes have the value
l, while at least one of the yellow nodes has a different value. Thus we get ρ = 2. For
(d) all blue nodes have the value l, and ρ = r = 3. In all four figures the white nodes are
not part of the clique, and thus their value is irrelevant.

To show how we get to this result we once again refer to Figure 4(b). We see that
there are three cliques with two nodes, one for each way that the right blue node can be
combined with two white nodes (two white nodes since one blue plus two white means
total three nodes, which is the size of k). There will also be three cliques with three
nodes, as we get one for each way that the two right blue nodes can be combined with
one white node. There are one each of the other cliques, as three white nodes can only
be combined in one way with zero blue nodes, and visa versa. In other words, if the
cliques shall have s+ 1 nodes total, we will get one clique for each way s blue nodes can
be combined with k − s white nodes. This number is given by

(s+ (k − s))!
s!(k − s)!

=
k!

s!(k − s)!
.

Adding this up for all clique types where s + 1 ≤ d gives us (14). The number of
parameters are then T = (r + 1)Lηk,d.

5.2 Parameter estimation by maximum likelihood

To calculate the likelihood of a parameter θ given a training image y we use the forward
backward algorithm on one row at the time to calculate (12), and then we use

L(θ|y) = L(θ|y1) · · ·L(θ|yr, y∗1:r−1)
m∏

i=r+1

L(θ|yi, y∗i−r:i−1),

where a * indicates the rows that are not part of the one-dimensional MRF. We want the
value of θ that maximizes L(θ|y), and to estimate this value we use a built in optimization
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routine from R called nlm. Nlm is short for non linear minimization, and uses a
Newton-like algorithm. Since it is a minimization method we instead have to find the
value of θ that minimizes −L(θ|y), this is of course the same value that maximizes L(θ|y).
To be able to calculate the likelihood we must use logarithms, otherwise the values are
just too small/big and we get numerical problems. Logarithms will work since the value
of θ that maximizes L(θ|y) will also maximize log(L(θ|y)). Using logarithms we get

log(L(θ|y)) = log(L(θ|y1)) + · · ·+ log(L(θ|yr, y∗1:r−1)) +
m∑

i=r+1

log(L(θ|yi, y∗i−r:i−1)).

We have in Section 4.4 already explained how L(θ|yi, y∗i−r:i−1) can be calculated by a
logarithmic form of the forward-backward algorithm. If we take the logarithm of Equation
(13) we get

log(L(θ|yi, y∗i−r:i−1)) = −
n−k∑
j=1

gj(yi,j:j+k|y∗i−r:i−1, θ)−
n∑

j=n−k+1

gj(yi,j:n|y∗i−r:i−1, θ)−υn(θ).

Thus what we do is that we just sum over the potential functions for the entire row, and
then subtract the normalizing constant.

6 Results

We are now going to see if this method is able to capture the texture in the three train-
ing images from Figure 1. Since these images only have two different colors we have
xi ∈ {0, 1} and thus L = 2. The method is defined by k, r and d, which is the size of
the neighborhood, the number of rows we condition on, and the largest number of nodes
we use in our cliques. After specifying a value for these we run the optimization routine
to get the estimated value of θ that maximizes L(θ|y), where y is one of the training
images in Figure 1. We can then use this value of θ to draw samples from π(x|θ) by
the forward-backward algorithm. The training images have a size of 125 × 125 pixels,
and the realizations we create will have the same size. To get rid of any potential edge
errors we first create a realization of size 145×145, and then remove a border of 10 pixels.

The realizations must then be evaluated to see if they contain the same texture as
the training image. One way to do this is to just look at the realizations. In some cases
this is very efficient, especially when the realizations are obviously wrong, but in some
cases it can be hard to say if the images have the same texture. It is then better to
create some tests that look for properties in the images, and see if the realizations have
the same value on these properties as the training image. The properties we have looked
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Figure 7: This image is used to illustrate two things. 1) The red rectangles show hor-
izontal and vertical pairs and quadruplets. If all nodes inside the rectangle are black
we say that it is a black pair/quadruplet. To calculate for example vp we simply count
how many vertical black pairs there are in the image, and divide by the total number
of vertical pairs. 2) The image has three black objects. From any node inside an object
we can reach all other nodes in the object by going only up, down, left or right, without
having to cross any white nodes. The image has four white objects if we count them in
a similar manner.

at are
pb : Percent of the nodes in the image that are black.
vp : Percent of vertical pairs that are black.
hp : Percent of horizontal pairs that are black.
vq : Percent of vertical quadruplets that are black.
hq : Percent of horizontal quadruplets that are black.
o : Number of black objects.

mho : Mean height of black objects.
mwo : Mean width of black objects.
lo : Size of the largest black object.

The first five of these are all local properties, they look at just a few nodes at the time
and give the percentages of how often the property occurs in the image. A vertical pair
is a set of two nodes where one is right above or under the other. For horizontal pairs the
nodes are right next to each other on the same row. Horizontal and vertical quadruplets
are the same thing, but with four nodes. Figure 7 illustrates what we mean.

The last four properties are more global, where large sets of nodes (objects) are con-
sidered at once. A black object is defined as a set of nodes where you from any node can
reach any of the other nodes in the object by going only up, down, left or right without
having to cross any white nodes. In Figure 7 there are three black objects. The hight and
width of an object is simply the number of nodes from the top to the bottom and from the
left side to the right side of the object. The size of the object is the number of nodes in it.

It should be noted that even if the realizations get the same values on these properties
as the training image does, we still can not conclude that it is a perfect realization of
the texture, since there are endless other properties that we have not tested, and many
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Sisim Channel Ellipse
pb 0.333 0.277 0.295
vp 0.297 0.252 0.280
hp 0.238 0.214 0.232
vq 0.265 0.228 0.266
hq 0.170 0.150 0.169
o 83 3 36

mho 13.78 112.0 25.33
mwo 4.614 40.0 6.361
lo 444 2352 618

Table 1: The training images scores at the nine properties. The first five local properties
are shown as the percent of the entire image. Realizations from the models we create
will be tested and compared to these numbers.

might give different values for the realizations than for the training image. However the
properties we have chosen should at least give us an indication of how well the method
works.

We expect that we will get better results for the local properties than for the global
properties, since the model is very locally defined with the neighborhoods and the cliques.
It might also be differences in the vertical and horizontal properties, since the model is
separated into a set of horizontal MRF. If there are any difference we expect the we are
better at capturing the horizontal than the vertical properties. Another thing that will
be interesting to study is how hq is effected when we use cliques with less than 4 nodes.
The results should be better for this property if we use cliques with 4 or more nodes.

When we compare realizations with the training image it is not enough to just look
at a few realizations, so what we do is that we create 500 realizations and test all of
them. We can then make histograms displaying how the scores from the realizations are
distributed, and we can compare this to the score of the training image. Table 1 show
what scores the training images have on the nine properties.

We separate the results into three parts, one for each training image. For each image
we try thirteen models, as shown in Table 2. In the first four models we change k while
r and d are unchanged. Then we change d and keep the others unchanged in the next
four models, before we have four models where we change r. In the last model we see
what happens if we use the columns, instead of the rows, as the one-dimensional MRF.
In practice this means that we just rotate the training image 90 degrees before we run
the optimization. Note that model 3 and 6, and model 8 and 11, are actually the same.
This is because we want to see how k, r and d effect the results, and this is easier to see
with such a setup. We will therefore refer to model 3/6 or 8/11 if we comment on these.
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Model k r d T

1 2 4 3 40
2 3 4 3 70
3 4 4 3 110
4 5 4 3 160
5 4 4 2 50
6 4 4 3 110
7 4 4 4 150
8 4 4 5 160
9 4 2 5 96
10 4 3 5 128
11 4 4 5 160
12 4 5 5 192
13 4 4 5 160

Table 2: The different models we try for the training images. In models number 1-4 we
change k, the size of the neighborhood, while in models number 5-8 we change the size
d of the largest cliques we use. In models number 9-12 we change the number of rows r
that each of the one-dimensional MRF condition on. The last model is the same as model
number 8 and 11, but we have used the columns for the one-dimensional MRF instead of
the rows (rotating the training image 90 degrees before we run the optimization). The
models has T parameters.



20 6 RESULTS

6.1 Sisim

The sisim image is different from the two other training images since it is a bit more
unclear, and it is not easy to say exactly what the texture in the image is. This means
that it is probably the easiest texture to get decent realizations from, since it will not
matter too much if the realizations have some small errors.

Figure 8 show how the models perform on the property tests compared to the training
image. We see that there are few large changes when we change k, r or d, and this is
probably due to the inherent noise in the images. Only the fifth model, where we use
d = 2, and the thirteenth model where we use the columns as the one-dimensional MRF,
is really different from the others. In general it seems like the small local properties pb,
vp and hp fit well with the training image, while for the larger local properties vq and
hq, in addition to the global properties, the values seem to be either to high or to low.
The number of objects seems to be too large, and this is of course also linked to the fact
that the width and the height of the objects are to small. If we take a look at realizations
from some of the models, shown in Figure 9, we see that in most realizations there are
too many small objects of only a few pixels in size, and this explains why there are too
many objects and their average size is too small. The larger objects seem mostly to have
the right shape and size, except that some of them are too large, something that is also
seen in the lo test, where we see that the largest objects most of the time are larger
than in the training image. It does not look like there are any large differences in the
performance of the vertical and the horizontal properties, except that hq seems to be a
little better than vq compared to the training image.

When we increase k in models number 1-4 it seems like the width of the objects im-
proves a little, and this should be expected. What is not expected is that also the height
seems to improve a little. This is probably related to the fact that the number of objects
decreases, we probably get fewer of the smallest objects, and thus the average size gets a
little larger. It might also look like there is a very small trend in all the local properties,
where the value of the properties decreases a bit as k increases, and this indicates that
there are less black in the images. It does not look like the largest objects are effected
very much by the change of k. In general it seems like we want large neighborhoods.

In models number 5-8 we change d, and even if this does not seem to have a very
strong effect on the local properties, it is clear in the global properties that we want to
use cliques with more than d = 2 nodes. Realizations from model number 5 are shown in
Figure 9(b), and compared to the other realizations we see that these seem to have more
objects of only a few pixels in size. When we use cliques with more nodes this problem
seems to disappear.

In the next four models we see that changing r will not have a very strong effect,
especially not for the local properties. We would expect that the height of the objects
improve, and it seems that it does so a little, but not very much. In fact the width of
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Figure 8: Test results for the Sisim image. The red line indicate the score for the training
image, while the histograms show how the scores are distributed for 500 realizations from
each of the models. The x-axis show the value of the property, while the y-axis is used
to show what model the histogram corresponds to. The blue line separates the models
that are used to study k, d, or r. The models are specified in Table 2.
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(a) Training image

(b) Realizations from model number 5

(c) Realizations from model number 8/11

(d) Realizations from model number 9

(e) Realizations from model number 13

Figure 9: Realizations from some of the models when the Sisim image was used as training
image. The training image is shown for comparison. It is hard to see clear differences by
just looking at the realizations, but one difference when compared to the training image
is that the realizations have more really small black objects, of only a few pixels in size.
This is especially true for model number 5, the one that performed worst on the property
tests in Figure 8. Another difference is that there are some quite large black objects in
the realizations.
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the objects seem to improve just as much. As a result of the change in width and height
we see that the number of objects also decreases a little. The overall impression is that
we get better results by increasing r, but the gain is very small, so it might not be worth
it compared to the fact that the models get more parameters.

We see that model number 13 performs better on some of the properties, especially o,
hq, vq and mwo. The local properties all increase compared to the other models, which
means we have more black in the images. At the same time we get fewer objects, and this
indicates that the objects in general are getting larger. However the largest object does
not increase a lot, so it is apparently the smaller objects that increase in size. It is un-
expected that the horizontal properties hq and mwo improve when the one-dimensional
MRF are vertical and not horizontal. This might indicate that if the texture contains
objects that are longest in the horizontal direction (as the Sisim image does), then we
should let the one-dimensional MRF be vertical. Realizations of model number 13 are
shown in Figure 9(e).

6.2 Channel

The Channel image describes rivers or channels where sediments have been deposited.
The texture is, unlike the Sisim image, quite clear. An important aspect of the Channel
image is that the channels can not just suddenly end. This means that the channels
should either run into each other, or out through the edge of the image. The easiest way
to see if this property holds is to look at realizations, but it will also be reflected in the
mean width of the objects, as this should be close to the width of the image (125 pixels).
We see from mwo in Figure 10 that this is not true, and in the realizations in Figure 11
we see, as expected, that some objects suddenly end. There are even isolated objects in
the middle of some images.

One of the things we notice from the property tests in Figure 10 is that the local
properties are not as good as they were for the Sisim image. If we look at local prop-
erties and global properties at the same time we realize that the models that perform
well on local properties perform bad on global properties, and visa versa, indicating that
it is problematic to get good values for both at the same time. Comparing horizontal
and vertical properties we see that the method has problems with vq, while hq seems
to be about right in most models. Another thing to note is that this is the only image
where the largest object is not too large compared to the training image, which is not
unexpected since the largest object in the training image is quite large.

When we change k it is clear that all local properties increase, which in general mean
more black in the images. At the same time the number of objects are decreasing, and
the largest object keeps getting larger. The width of the objects are also improving a
little, but not as much as we might have hoped, and it actually looks like the height of
the objects improve more than the width. It is a little bit unfortunate that pb, hp and
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Figure 10: Test results for the Channel image, using the same setup as in Figure 8. The
models are specified in Table 2.
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(a) Training image

(b) Realizations from model number 5

(c) Realizations from model number 8/11

(d) Realizations from model number 9

(e) Realizations from model number 13

Figure 11: Realizations from some of the models, using the Channel image as training
image. The training image is shown for comparison. A general problem for this texture
is that the channels suddenly end in the middle of the image, something we see in all
these realizations.
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vp moves away from the value of the training image, while the other properties moves
toward the value of the training image. This indicates that the objects are more con-
nected, but maybe too much connected, leading to images with too much black. Anyway,
we are quite happy as long as the global properties gets better, so we want to use large
neighborhoods even if this means images with a little too much black.

Increasing d has pretty much the same effect as increasing k, since pb, hp and vp
all move away from the value of the training image, while the other properties move
towards the value of the training image. We now see that the width of the objects im-
prove a lot more than when we just increased k, which means that d is important to
connect the channels so that they do not end in the middle of the image, something we
can see in Figure 11(b) and 11(c), where we look at models number 5 and 8/11. This
change is reflected in all properties, as all have a change in performance when we increase
d, especially when we go from d = 3 to d = 4, and it is therefore clear that we want d ≥ 4.

When we change r we once again observe the same thing as when we changed k and
d, that pb, hp and vp all move away from the value of the training image, while the other
properties move towards the value of the training image. However, the change is only
noticeable when we go from r = 2 to r = 3, as the last three models perform pretty much
the same on all properties. The reason is that when we condition on only two rows we
do not get enough information about how thick the channels should be. The result is
that the realizations have channels without the right thickness, something we can see in
Figure 11(d). Once we have enough rows to get this information we do not gain a lot
by conditioning on any more rows, and thus the result does not change a lot in the last
three models. The shape of the objects in the training image can in other words tell us
something about what value we should choose for r.

The Channel image is, with the channels going from one side to the other, very
different vertically and horizontally, and we see that the results change a lot when we
use the columns instead of the rows as the one-dimensional MRF in model number 13.
The easiest way to see what the difference is, is by looking at the realizations in Figure
11(e). We see that there are too much white space between the channels, which explain
why the local properties give such small values (less black in the images). The positive
thing is that mwo is increasing, more of the objects go through the entire image, but
from the realizations we see that we still have some dead ends.

6.3 Ellipse

The Ellipse image is a realization of a marked Poisson random field. This means that
objects (marks), of equal size and shape, are uniformly distributed inside the image, and
the number of objects to be used is randomly drawn from a Poisson distribution. In our
case the objects are ellipses, thus the name of the image. Some of the objects will of
course overlap, creating larger objects, but there will always be some isolated objects.
This means that one of the important aspects of the texture is the size and shape of



6.3 Ellipse 27

the objects, especially important is the fact that we do not want objects that are too
small. MRF usually have problems with textures where there are many objects of equal
size, and we expect this to also be true for our MDMC model. To get the best size of
the objects we expect that we must use large neighborhoods and condition on several
previous rows.

Looking at the properties in Figure 12 we see that the average size of the objects at
least seems to be about right, but when we look at realizations from some of the models
in Figure 13 we see that the objects vary much in size, with some objects smaller than
the ellipses in the training image. It seems like most models perform well on both local
and global properties, and there does not seem to be any differences in the vertical and
horizontal properties. We also note that for this image the realizations does not contain
too many objects compared to the training image, something that was a problem for the
two other training images.

Increasing k does not seem to have any effect at all on the local properties, while
it clearly effects the average size and the number of objects. We get fewer objects and
their average size gets larger, while the amount of black in the images stay the same.
We see that compared to the training image these changes in the global properties are
for the worse, which indicates that increasing k alone is not enough to improve the results.

When we in the next four models increase d we see that the performance improves for
pretty much all properties, and especially when we go from d = 3 to d = 4. We also saw
this for the Channel image, so it is clear that we should try to use d ≥ 4. Models number
7 and 8/11 are actually performing almost perfect compared to the training image, but
when we look at realizations from model number 8/11 in Figure 13(c) we see that it
actually does not look quite like the training image.

It is problematic to say anything about the effect of changing r, as model number
8/11 and 12 breaks any possible trends. We would expect the results of model number
12 to be more similar to those of model 8/11, so we even ran the optimization routine
one more time for both models, just to make sure we still got the same result. The result
stayed the same however, and we have the problem of trying to explain why the result
is as it is. It is weird that when we use r = 4 we get such a good result, but when we
increase r by one the result is suddenly a lot worse. We are unable to see any reasonable
explanations.

The realizations of model number 13 perform almost the same on the property tests
as those of model number 8/11. Only one of the properties, vq, give worse results, while
the other either improve or stay the same. Realizations from the model are shown in
Figure 13(e), and these does in fact look more like the training image than those from the
other models. The edges of the objects are more similar to those in the training image,
mostly because the top and bottom of the objects are straighter. Thus this image also
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Figure 12: Test results for the Ellipse image for the thirteen models specified in Table 2.
The setup is the same as for the two other training images.
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(a) Training image

(b) Realizations from model number 5

(c) Realizations from model number 8/11

(d) Realizations from model number 9

(e) Realizations from model number 13

Figure 13: Realizations from some of the models, using the Ellipse image as training
image. The training image is shown for comparison. MRF are known to have trouble
if the texture contains many objects of equal size, and it seems the MDMC model also
have this problem.
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indicate that when the objects are longest in the horizontal direction, then we should let
the one-dimensional MRF be vertical.

7 Closing remarks

In this thesis we have studied a parametrization of a multidimensional Markov chain
model with the goal of capturing the texture in training images. The results above show
us that the method is able to capture a lot of the information in the training images, but
that there is always something missing, something that goes wrong, so it is reasonable
to believe that the model can somehow be improved to give better results. If we want to
use the method we have to choose what values of k, r and d we want to use. The results
does not always give us any clear answers here, but we are at least able to learn something.

The general trend seems to be that increasing k leads to better results. There are
some properties in some of the images that get worse as k increases, but this might be
caused by other factors, for example that we used d = 3 in the four models where we
changed k. The results improve a lot as we increase d from d = 3 to d = 4, so it is at
least clear that we want to use d ≥ 4. However the results does not change as much from
d = 4 to d = 5, so it seems d = 4 is an appropriate value. When it comes to r it seems
that we should choose to condition on just enough rows so that we get the height of most
of the objects in the training image. For images like Channel this means the thickness
of the channels, while in Ellipse it is the height of the ellipses. If the objects are more
varied in size, like in the Sisim image, or the objects are to high to get the entire height,
we will just have to settle for a value, probably choosing the largest value we can while
keeping a decent number of parameters in the model. Overall it seems like model number
7 perform quite good for all three training images, so if unsure about what values to use
for k, r and d it can be a good idea to first try k = 4, r = 4 and d = 4.

We do not have a lot of information about what happens if we increase k, r or d
beyond these values, but it is reasonable to believe that the results might improve. How-
ever this will also give us more parameters, and the optimization will take more time, so
any improvements must be weighted against this loss of efficiency.

It is not easy to say when we should use the columns and when we should use the
rows as the one-dimensional MRF. It obviously depends on the texture in the training
image, and the best thing is probably to try both. The Sisim and Ellipse images seems
to indicate that if the objects are longest in the horizontal direction, then we should let
the one-dimensional MRF be vertical. However the Channel image also has objects that
are longest in the horizontal direction, and the best results here was obtained when the
MRF was horizontal. At least we know for a fact that the method gives different results
when we change from rows to columns, so if it does not work well to use the rows one
might as well try to use the columns and hope the results are better.
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One thing to think about, that we did not have the time to test, is how this parametriza-
tion would work if we had more than two colors in the training image. When we created
the parametrization we had the three training images in mind, and did not really think
about the case where images have more colors. Since the parametrization only takes into
account one color at the time on the nodes in the cliques, we do not really gather any
information about how different colors relate to each other. This is not such a big deal
when we only have two colors, since if we get to the edge of a black object we then always
have to use white in the next object. If we had three colors, say black white and gray,
we would have to choose between gray or white whenever we got to the edge of a black
object. With the current parametrization this information will not be captured by the
parameters. To capture such information we must also use parameters for cliques where
part of the clique has one color, and the other part has another color.

One way to improve the model is therefore to also include parameters that explain
cliques with more than just one color on the nodes. The approach could be similar to
the one we have used, where we trace how many rows backward we find the same clique
with the same colors, but some other method would probably be better, one that also
takes into account what color it changes into. It is clear that this would give us more
parameters, and to reduce the number of parameters it seems like it can be a good idea
to ignore certain clique types, but instead of just ignoring the largest clique types we
could for example ignore certain clique types of all sizes. What clique types to ignore
could for example be selected based on information in the training image.
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