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Abstract 

 The fields of life cycle assessment (LCA) and integrated assessment (IA) modelling today have 
similar interests in assessing macro-level transformation pathways with a broad view of 
environmental concerns. Prevailing IA models lack a life cycle perspective, while LCA has 
traditionally been static- and micro-oriented. We develop a general method for deriving 
coefficients from detailed, bottom-up LCA suitable for application in IA models, thus allowing 
IA analysts to explore the life cycle impacts of technology and scenario alternatives. The 
method decomposes LCA coefficients into life cycle phases and energy carrier use by 
industries, thus facilitating attribution of life cycle effects to appropriate years, and consistent 
and comprehensive use of IA model-specific scenario data when the LCA coefficients are 
applied in IA scenario modelling. We demonstrate the application of the method for global 
electricity supply to 2050 and provide numerical results (as supplementary material) for future 
use by IA analysts.  

1 Introduction 

1.1 Motivation and aims 

Curbing greenhouse gas (GHG) emissions is a necessary requirement for achieving the 
international policy objectives of avoiding dangerous interferences with the climate system 
(UNFCCC, 1992). Life cycle assessment (LCA) and integrated assessment models (IAMs) are 
two complementary tools for assessing the GHG emission reduction potential of technologies 
(Edenhofer et al., 2014; Hertwich et al., 2016a). LCA offers a systematic, bottom-up framework 
and process for attributing environmental impacts that occur in complex international supply 
chains to one product. LCA strives to achieve extensive coverage of supply chain activities 
associated with production, use and waste handling of products. It also strives to achieve 
extensive coverage of types of environmental impacts, including toxic effects on humans and 
ecosystems, and natural resource use or depletion (Hauschild et al., 2013; Hauschild and 
Huijbregts, 2015; Hellweg and Milà i Canals, 2014). IAMs are widely used to explore potential 
strategies to mitigate future climate change (Krey, 2014; O’Neill et al., 2014; Schwanitz, 
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2013)1. Under the principal assumption that different combinations of primary energy resources 
and energy transfers and transformations can provide substitutable energy services, the models 
select (and substitute) resource and technology alternatives so that costs are minimized or 
welfare is maximized, subject to constraints (e.g., on emissions allowances, resource 
availability or technology availability). Important reports targeted to policy makers and the 
public devote significant attention to scenarios produced by IAMs (Edenhofer et al., 2014; IEA, 
2014; Johansson et al., 2012). 

Existing LCA literature is for the most part concerned with assessing environmental impacts 
associated with one (small) reference unit (e.g., 1 kWh of electricity) in a static framework. 
While such assessments can offer useful insights, they carry no notion of absolute magnitude 
or timing of effects at regional or global levels. Hence, they provide limited basis for assessing 
long-term technology transformation pathways, especially under scenarios of rapid and large-
scale deployment of new technologies (Arvesen and Hertwich, 2011; Dale and Benson, 2013). 
Also, while any LCA attributes effects occurring in various supply chains to a specific product, 
most LCAs do not capture other types of consequences of products that one may infer 
considering broader economic or policy contexts, such as indirect land use change emissions 
induced by bioenergy products2. IAMs, on the other hand, put their focus on representing the 
dynamics that shape natural and human systems over long time-scales and under large-scale 
changes in the economic setting. However, IAMs have more narrow boundaries in terms of 
environmental impacts and do not represent life cycle effects of products, or represent such 
effects only partially and/or only implicitly via interactions between energy system and macro-
economy modules (Pauliuk et al., 2017). 

We see two principal ways in which LCA can be useful for IA modelling. One is to integrate 
LCA results in IA modelling so that indirect emissions of technology and scenario alternatives 
can be explored, and potentially taken into account in the decision-making routines of the IAMs. 
Technology selection in state-of-the-art IAMs typically considers some types of indirect 
emissions, such as methane leakages from fossil fuel production and land use change-related 
emissions from biomass production, while not considering many other indirect emissions (e.g., 
emissions from producing metals for power plants). More fully considering indirect emissions 

                                                 
1 In this work, by IAMs we refer broadly to models that are used to explore transformation pathways and to 

evaluate climate mitigation policies (Clarke et al., 2014; Riahi et al., 2012), as distinct from aggregated models 
that monetize climate change impacts in order to perform cost-benefit analysis of climate policy. AIM, GCAM, 
IMAGE, MESSAGE and REMIND are examples of models that fall into the former category (Edmonds et al., 
2012). In addition, we are concerned with models that carry explicit representations of individual energy 
technologies, as distinct from models lacking technology-level detail. 

2 So-called consequential LCA (CLCA) is an exception (Zamagni et al., 2012). CLCA is much less frequently 
applied than conventional (sometimes termed attributional) LCA, but a significant number of CLCA studies do 
exist. Perhaps in particular, CLCA is used in literature to study bioenergy (Creutzig et al., 2015). 
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of technology alternatives can yield more consistent evaluations, and thus potentially affect 
optimal technology selection or overall effectiveness of mitigation strategies in IAMs. The 
relative importance of indirect emissions may increase over time and increasingly stringent 
emission reduction targets, as technologies with zero or low direct emissions (e.g., electric 
vehicles, fossil fuel combustion with carbon capture) gradually replace those using fossil fuels. 
The second way LCA can be useful is to improve environmental impact assessment or broaden 
the range of environmental concerns addressed in IAMs. Most state-of-the art IAMs have an 
explicit description of non-CO2 greenhouse gas emissions and air pollution (e.g, Strefler et al. 
(2014), Gernaat et al. (2015), Rao et al. (2017)), and recently have also considered water 
demands (e.g., Mouratiadou et al. (2016)), but lack many other crucial environmental impact 
dimensions. LCA routinely supports assessment of the effects of hundreds of pollutants, 
resource flows and land, incorporating environmental mechanisms (e.g., toxic effects on 
ecosystems or humans) not currently addressed by IAMs (Masanet et al., 2013). When we refer 
to impact indicator results in this article, we refer broadly to any indices of environmental 
impacts or natural resource requirements computed using impact assessment methods from 
LCA (Frischknecht et al., 2016). 

The aims of this article are the following: 

i) To develop a general method for deriving energy and impact indicator results from 
detailed, bottom-up LCA such that the results are suitable for application by IA 
modellers.  

ii) To apply the method to calculate energy and impact indicator results for the global 
electricity system to 2050, for future use by IA practitioners. 

 The method allows for capturing technology variations and changes between geographical 
regions and over time. It enables consistent use of IAM-specific scenario data (e.g., emission 
factors, lifetime, load factors) in combination with LCA coefficients. This is achieved mainly 
by a separate treatment of main life cycle stages with a unit conversion adapted to the stage and 
technology in question, and by a decomposition of coefficients into individual energy carriers, 
industries and energy service types. IA modellers may combine the energy results derived from 
LCA with IAM-specific emission factors so as to determine emissions related to combustion of 
energy fuels on a life cycle basis. They may use the impact indicator results derived from LCA 
to address types of impact other than those commonly associated with combustion, such as toxic 
effects of pollution loads. 
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1.2 Existing literature  

A few attempts have been made in literature to combine LCA and IAM perspectives for the 
purpose of long-term and large-scale assessment. A notable study by Daly et al. (2015) couples 
a national United Kingdom energy system optimization model with a multiregional economic 
input-output model in order to investigate the significance of indirect emissions for national 
energy system transformations, explicitly accounting for domestic and nondomestic indirect 
emissions associated with energy supply. Their results indicate that domestic indirect emissions 
have little significance, while nondomestic indirect emissions appear significant and would, if 
included in an ambitious domestic emission reduction target and in absence of commensurate 
non-domestic mitigation, double the marginal abatement cost of meeting the target. The study 
assumes non-domestic emission intensities follow baseline trends, i.e. that no climate policies 
are implemented outside the United Kingdom. An accompanying study by the same authors 
identifies that the optimization model selects increased electrification and use of nuclear power 
as a cost-optimal strategy to mitigate the nondomestic indirect emissions (Scott et al., 2016). 
Dandres et al. (2011) use a computable general equilibrium model together with LCA in order 
to address economy-wide consequences of bioenergy policy. The authors report the finding that 
bioenergy policy increases environmental impacts owing to effects of price changes, while also 
underlining that “more work is needed to evaluate” the approach used. 

The aforementioned studies rely on economic input-output analysis (Daly et al., 2015; Scott 
et al., 2016) or a mapping between economic input-output sectors and detailed, bottom-up LCA 
activities (Dandres et al., 2011) to determine emission multipliers. All studies rely on price 
information to convert between monetary and mass units. Another study implements generic 
LCA-type indicators derived from theoretical considerations in a system dynamics model (Dale 
et al., 2012b). A general advantage of approaches that do not require detailed technology 
information is that, owing to relatively easy data compilation, extensive coverage of energy 
technology and fuel types can be achieved, as indeed is the case in the above-cited works. 
Another advantage of employing multiregional input-output (MRIO) analysis (Daly et al., 
2015; Scott et al., 2016) is that international trade and geographical differences in production 
are generally better captured in MRIO than in LCA. 

The current work adopts a different strategy, making use of physical, rather than monetary, 
accounting of product systems, and a bottom-up, rather than top-down, calculation technique 
for determining indirect energy use and environmental impact coefficients. The chief 
motivation for adopting this approach when analysing current and prospective technologies is 
to strive for high-precision projections, avoiding high uncertainty associated with aggregation 
in MRIO and conversion between monetary and mass units. In addition, owing to greater 
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coverage of pollution types, bottom-up LCA facilitates meaningful assessment of a larger 
portfolio of impact categories (including effects of toxic pollution loads to soil and water) than 
contemporary MRIO. It also can account more explicitly for the effects of climate policies on 
the carbon intensity of the underlying energy system.  

Another category of studies perform LCA of scenario results emanating from IAM or energy 
system model runs (Arvesen and Hertwich, 2011; Arvesen et al., 2014; Bergesen et al., 2016; 
Berrill et al., 2016; Gibon et al., 2017; Hertwich et al., 2015; Portugal-Pereira et al., 2016; Singh 
et al., 2012; Volkart et al., 2017), with or without consideration of future technological changes, 
and portraying snapshots of impacts in a given (future) year or evolution of impacts over time. 
With the exception of Volkart et al. (2017), these studies mainly focus on assessment results 
(as opposed to describing procedures or discussing methodological aspects), and they do not 
address the topic of deriving LCA-based coefficients for application in IAMs.  

 To our knowledge, no attempts have been made in the existing literature to develop formal 
procedures for how LCA, where activities are described bottom-up and in physical terms, can 
be incorporated into IAM while ensuring consistent use of IAM-specific data (e.g., emission 
factors) and attribution of life cycle effects to appropriate years, and avoiding the uncertainty 
associated with conversions between mass and monetary units.  

2 Overview of study 

As stated in the introduction section, this study has a twofold aim: to develop a general 
method for deriving LCA coefficients for use in IAMs, and to demonstrate the application of 
the method for the case of future global electricity supply. Before presenting the method in 
Section 3 and results for the case study of electricity in Section 4, the current section provides 
an overview of the study in terms of data sources and modelling framework used, and 
connections to other, related studies. In the following Subsection 2.1, we explain the selection 
of electricity supply as a case study and provide an account of main assumptions and data 
sources. We then, in Subsection 2.2, introduce the THEMIS LCA analytic model framework 
used in this work. Subsection 3.2 further details the study design and clarifies connections to 
related studies. 

2.1 Case description: electricity supply 

In 2010, one quarter of global GHG emissions was caused by fossil fuel combustion in power 
plants (Edenhofer et al., 2014). Electricity generation is important for climate change mitigation 
(Luderer et al., 2014; Rogelj et al., 2015; Wiebe, 2016; Williams et al., 2012), because it is 
relatively easy to decarbonize (compared to, e.g., transport), as many low-carbon energy 
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sources by their nature generate electricity (e.g., wind, nuclear and solar power). From an LCA 
point of view, electricity generation makes an interesting case study because various different 
types of power plants, while serving the same function, operate by very different mechanisms 
and exhibit very different supply chains.  

We adopt multiregional and prospective life cycle inventory data for photovoltaic power, 
concentrating solar power, hydropower, wind power, coal power and natural gas power from 
Hertwich et al. (2015), with some incremental improvements to the data. The data incorporates 
regional variations and future technological improvements of electricity production through 
changes in basic parameters such as photovoltaic module efficiency, fossil fuel power plant 
efficiency, insolation and wind load factors, as well as through shifts towards higher-
performance technology generations (e.g., from crystalline silicon photovoltaic to thin-film 
photovoltaic). 

Nuclear power and biomass power are not addressed in Hertwich et al. (2015). In the current 
work, we adopt life cycle inventory data from the Ecoinvent LCA database to cover nuclear 
power (Dones, 2007; Ecoinvent, 2010), assuming that these data are representative for all 
regions and over time. In addition, we establish life cycle inventories for electricity from 
biomass, modelling two different biomass feedstocks (or sources). One biomass feedstock is 
boreal forest residue, modelled using data from Singh et al. (2014). The other feedstock is 
lignocellulosic (second generation) bioenergy crops. Data for modelling this feedstock are 
obtained largely from scenario results produced by the global land use model MAgPIE 
(Bodirsky et al., 2012; Klein et al., 2014; Lotze-Campen et al., 2008). The MAgPIE results 
describe crop yields, land requirements, carbon dioxide emissions from land use, irrigation 
water demand, nitrogen and phosphorus fertilizer use, and nitrous oxide emissions related to 
fertilization across world regions and years, under nine policy scenarios representing different 
assumptions about carbon pricing, the type of bioenergy crops available and whether irrigation 
is allowed or not. Further, the MAgPIE results are supplemented by data gathered or derived 
from other sources, notably Nemecek and Kägi (2007), Njakou Djomo et al. (2013) and Njakou 
Djomo et al. (2015). A full account of data and assumptions used to model bioenergy crops is 
provided in the supplementary material. 

Table 1 lists the electricity generation technology types modelled using LCA, and their 
classification into aggregated technology categories. Also shown are assumed market shares 
(Hertwich et al., 2015) for detailed technology types (e.g., ground-installed polycrystalline 
silicon solar photovoltaics) that we use to aggregate results into main technology categories 
(e.g., solar photovoltaics). The market shares are not a necessary element of our general method 
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to derive LCA coefficients for use in IA modelling, but are introduced here for our case study 
of electricity because the aggregation into main technology types may be practical for results 
interpretation and application in IA modelling. The assumed market shares are constant across 
regions modelled using LCA.     

Table 1 
Overview of the 27 individual power generation technology types modelled using LCA, classified into 14 main 
technology types, with information on assumed market shares by year (2010, 2030 and 2050). Market share values 
give the assumed relative percentage shares of detailed technology types within the main technology type category 
to which they belong. In cases where there is only one detailed technology type per main technology category, the 
market share is 100%. The market share values are based on own assumptions or adopted from Hertwich et al. 
(2015). As explained in the main text, for biomass from crops, we present LCA results for nine scenarios reflecting 
different policy assumptions, but this is not reflected in this table. 

Main technology type Detailed technology type or attribute Assumed market share 
2010 2030 2050 

Solar photovoltaics Polycrystalline silicon (poly-Si), ground 67% 25% 15% 
Solar photovoltaics Polycrystalline silicon (poly-Si), rooftop 22 % 8.3% 5.0% 
Solar photovoltaics Cadmium-telluride (CdTe), ground 1.1% 25% 30% 
Solar photovoltaics Cadmium-telluride (CdTe), rooftop 0.4% 8.3% 10% 
Solar photovoltaics Copper indium gallium selenide, ground 6.5% 25% 30% 
Solar photovoltaics Copper indium gallium selenide, rooftop 2.2% 8.3% 10% 
Concentrating solar Parabolic trough 50% 50% 50% 
Concentrating solar Central tower 50% 50% 50% 
Hydropower Reservoir 660 MW (remote) 20% 20% 20% 
Hydropower Reservoir 360 MW (near) 80% 80% 80% 
Wind, onshore Wind farm 150 MW 100% 100% 100% 
Wind, offshore Wind farm 350 MW, concrete foundations 50% 50% 50% 
Wind, offshore Wind farm 350 MW, steel foundations 50% 50% 50% 
Coal without CCS Subcritical 72% 66% 66% 
Coal without CCS Supercritical 0% 0% 0% 
Coal without CCS Integrated gasification combined cycle  28% 34% 34% 
Coal with CCS Subcritical 100% 11% 11% 
Coal with CCS Supercritical 0% 19% 19% 
Coal with CCS Integrated gasification combined cycle  0% 70% 70% 
Natural gas without CCS Natural gas combined cycle (NGCC) 100% 100% 100% 
Natural gas with CCS Natural gas combined cycle (NGCC) 100% 100% 100% 
Nuclear Boiling water reactor (BWR) 30% 30% 30% 
Nuclear Pressurized water reactor (PWR) 70% 70% 70% 
Crop-based biomass without CCS Crops for growing lignocellolusic biomass 100% 100% 100% 
Residue biomass without CCS Forest residues 100% 100% 100% 
Crop-based biomass with CCS Crops for growing lignocellolusic biomass 100% 100% 100% 
Residue biomass with CCS Forest residues 100% 100% 100% 

A special note is required for hydro. As is evident from Table 1, two hydropower facilities 
are modelled, one of which is situated in a remote location and the other not. The life cycle 
inventory data for both of these cases are based on two planned projects in Chile. Owing to 
comparatively large transport and infrastructure requirements for the remotely situated plant, 
life cycle impacts for this plant are up to one order of magnitude higher than that of the other, 
non-remote plant (Hertwich et al., 2015; Hertwich et al., 2016b). Ideally, a larger population of 
power plants should serve as a basis of the modelling, but such assessments are currently not 
available. As a result of this big difference in impacts between the two cases, aggregated results 
for hydropower are highly sensitive to the market shares assigned to each case.  
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In the current study, all the life cycle inventory data sets are incorporated into the multi-
regional and prospective model framework THEMIS that will be described in Subsection 2.2. 
The impact indicator categories considered in the case study of electricity supply are the ReCiPe 
version 1.08 categories freshwater ecotoxicity, freshwater eutrophication, human toxicity, 
ionizing radiation, land occupation, marine eutrophication and mineral resource depletion 
(Goedkoop et al., 2014; ReCiPe, 2012)3, as well as four categories representing requirements 
for individual materials, namely aluminium, cement, copper and iron (Singh et al., 2015). 
Climate change impacts and impacts related to local air pollution are excluded from this list, as 
such impacts are preferably addressed by IA analysts by utilizing LCA energy coefficients in 
combination with IAM-specific emission factors for fuel combustion. 

2.2 LCA modelling framework 

THEMIS (Technology Hybridized Environmental-economic Model with Integrated 
Scenarios) is a multi-regional and prospective LCA modelling framework. THEMIS was 
formally introduced and described by Gibon et al. (2015); published applications of THEMIS 
include Hertwich et al. (2015), Bergesen et al. (2016) and Berrill et al. (2016). In this study, we 
employ THEMIS to produce results for each of the power generation technologies listed in 
Table 1, and for three years (2010, 2030, 2050), two policy scenarios (baseline scenario and the 
BLUE Map climate change mitigation scenario of IEA (2010)) and nine world regions 
(following the region classification of IEA (2010)). 

The current version of THEMIS combines life cycle descriptions of individual power 
generation technologies developed by Hertwich et al. (2016), a process-based life-cycle 
assessment database (Ecoinvent, 2010)4, and adapts the data so as to represent important 
regional differences and changes over time towards 2050. The adaptations include changing the 
electricity mix depending on region and year, following either the baseline or climate change 
mitigation scenario. Furthermore, THEMIS takes into account scenarios for future 
improvements in performance parameters for selected industrial processes (i.e., aluminium; 
copper; nickel; iron and steel; metallurgical grade silicon; flat glass; zinc; and clinker 
production). For example, in THEMIS, steel production in 2050 benefits from lower hard coal 
coke input to blast furnace reduction per unit of iron, as well as lower energy fuel requirements, 
cleaner electricity (in particular when the climate change mitigation scenario is analysed) and 
reduced emission intensities, compared with steel production in 2010. For a full description of 

                                                 
3 ReCiPe is a prominent and widely applied method for life cycle impact assessment. 
4 Ecoinvent is a database providing life cycle inventory data sets for a large number of processes, for example 

minerals extraction and materials production. 



10 
 

the treatment of technological change in THEMIS, see the supplementary material to Gibon et 
al. (2015).  

One limitation of the current version of THEMIS is that it does not include any changes in 
the characteristics of transport activities over time. Potential future decreases (due to 
technological innovations) or increases (due to a shift towards less accessible or lower quality 
resources) in the energy required to extract energy fuels (Hall et al., 2014) or metals (Norgate 
and Haque, 2010; Norgate et al., 2014) from the ground are also not considered. In general, 
selected technology representations are adapted to different years in THEMIS. 

2.3 Study design and links to other studies 

Fig. 1 illustrates connections between elements (data, procedures, results) of the current study 
as well as other, related studies. Also included in the figure are references to relevant sections 
in the present article. The figure reiterates the information from Subsections 2.1 and 2.2 that 
life cycle inventory data sets for a suite of electricity supply options were compiled for Hertwich 
et al. (2015) and integrated into the multi-regional and prospective LCA model framework 
THEMIS. THEMIS additionally takes into account future projected technological progress in 
selected industrial processes (Subsection 2.2 and Gibon et al. (2015)). The current article 
presents a general method to derive LCA coefficients for use in IA modelling (Section 3), and 
uses THEMIS to apply the method for the case of electricity supply (Section 4 and 
supplementary material). 

As the figure also indicates, two related studies apply the derived LCA coefficients in IA 
modelling. Pehl et al. (2017) integrate the LCA energy coefficients in the REMIND IAM in 
order to explore life cycle greenhouse gas emissions associated with future global electricity 
systems, and to investigate the degree to which endogenizing life cycle emissions impact the 
computed optimal technology selection. In the second related study, Luderer et al. (under 
review) make use of both the LCA energy and impact indicator results to compare climate 
mitigation strategies for the power sector in terms of their performance by a range of 
environmental impact and natural resource use criteria.   
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Fig. 1. Schematic illustration of the connections between data, procedures and results presented in the present 
study as well as in other, related studies. References cited in figure: Hertwich et al. (2015); Gibon et al. (2015); 
Pehl et al. (2017); Luderer et al. (under review). Numbers in parentheses refer to sections in current study in 
which relevant descriptions or data are available. SM = Supplementary material of current study. LCI = Life 
cycle inventory. *Biopower and nuclear power are not addressed in Hertwich et al. (2015) and Gibon et al. 
(2015) but are included in the current work (see Subsection 2.1).  

3 Method to derive LCA coefficients 

This section presents the method for calculating and organizing results obtained from LCA 
in such a way that the results can form a suitable interface with IA modelling. As remarked in 
the introduction section, the interface may be made up of two types of LCA results, energy 
results or impact indicator results. The former option allows IA analysts to use IAM-specific 
emission factors for carbon dioxide and air pollutants to determine energy-related emissions on 
a life cycle basis. The latter option involves characterization and aggregation of different types 
of pollutants or natural resource use into a set of impact categories defined in the LCA, and 
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may be particularly useful for IA analysts seeking to address types of impacts not already 
addressed in the IAM (e.g., impacts caused by releases of toxic or eutrophying substances to 
water in connection with mining or agricultural activities). The computations of LCA energy 
and impact indicator results both involve a separate treatment of life cycle stages, as will be 
described in subsection 3.2. Additional procedures are described in subsection 3.3 for the 
computation of LCA energy results to identify individual energy carriers, industries and energy 
services, hence allowing IA analysts to take advantage of available IAM-specific emission 
factors. 

It should be noted that while the LCA energy results can be used to address greenhouse gas 
emissions and air pollution associated with combustion, industrial process-based emissions 
(Müller et al., 2013), methane leakages from fossil fuel supply (Brandt et al., 2014; Gernaat et 
al., 2015), land use-related emissions (Bodirsky et al., 2012; Popp et al., 2013), methane 
emissions from hydropower reservoirs (Hertwich, 2013), sulphur hexafluoride leakages from 
electric equipment (Arvesen et al., 2015; Turconi et al., 2014) and other non-combustion 
emissions may constitute significant sources of greenhouse gas emissions or environmental 
impact. Some remarks on non-combustion greenhouse gas emission sources and an explanation 
of how they are dealt with in the present work are offered in the supplementary material.  

3.1 Mathematical representation and notation 

We follow the general terminology of LCA (JRC, 2010; Matthews et al., 2015) and its 
mathematical representation in terms of input-output algebra (Miller and Blair, 2009). LCA 
requires a systematic mapping of activities associated with production, use and waste handling 
of products. Any activity initially identified typically has both its own life cycle and its own 
supply chain, raising the need to map a further set of activities, again raising a need to map yet 
further activities. The complete set of activities that through such causal chains can be linked 
to the product being studied together make up a product system. Further, the activities targeted 
for special modelling attention, or for which data have been established specifically for the 
current work, comprise the foreground system. The remaining activities make up the 
background system (JRC, 2010; Wernet et al., 2016). Depending on the study, background 
activities could include minerals extraction, transport and manufacturing activities, and more.  

Throughout Section 3, we use subscripts to indicate that a variable is dependent on or defined 
for a specific dimension (e.g., year, region), and superscripts to indicate a particular type of 

variable. We use the subscripts t , r ,τ , s and p to denote technology under investigation (i.e., 

in our case study, one detailed power generation technology type shown in Table 1), region, 
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year, scenario and life cycle phase, respectively. Vectors are denoted by lowercase boldface 

(e.g., , , ,
fd

t r sτy ) and matrices by uppercase boldface (e.g., ,sτA ).  

We denote the demand that is imposed on the system (e.g., to deliver one unit of electricity 
from onshore wind power for a given technology, region, year and scenario) by the column 

vector , , ,
fd

t r sτy . This demand vector has only one non-zero entry: The demand for the product 

being studied (e.g., onshore wind power for a given technology, region, year and scenario) is 
set to one and all others are set to zero, so that the impacts of the one product can be isolated. 

The superscript ‘fd’ denotes ‘final demand’ and is used to distinguish , , ,
fd

t r sτy from , , , ,t r s pτy , 

which we introduce next. Further, the direct requirements matrix ,sτA  holds information on all 

interrelationships between the activities that make up a product system. In ,sτA , the entry in 

row i  and column j  represents the direct input from activity i  to activity j  per unit of output 

j . In the approach and exposition of this paper, we assume that all modelled technologies (i.e., 

in our case study of electricity, the full set of technologies shown in Table 1) are described in 

the matrix ,sτA . This is the reason why, in our definition, ,sτA  is not technology- and region-

specific.  

We let the total number of foreground processes, covering all technologies and regions 

defined for yearτ , be ,
f

snτ , ,
b

snτ  be the total number of background processes and 

, , ,
fb f b

s s sn n nτ τ τ= +  the combined foreground and background total. We define the following sets: 

T is the set consisting of all technologies; R the set of regions; Τ  the set of years; S  the set of 
scenarios; and P the set of life cycle phases.  

Table 2 provides a list of key intermediate and final calculated variables, and numbers, sets 
and indices used throughout Section 3. 

Table 2 
Overview of key sets and indices, numbers, predetermined variables, and intermediate and final calculated 
variables defined throughout Section 3. Right column lists the section number (SN) in which the symbols are first 
introduced. 

Symbol Description SN 
   
Sets and indices:  

, , , ,T R S PΤ  Sets of all technologies, all regions, all years, all scenarios and all phases.  3.1 
, , , ,t r s pτ  Indices representing specific technology, region, year, scenario and phase.  3.1 

CEC  Set of characterized energy carriers (‘cec’). We use 
{ }, , ,CEC liquids gases solids electricity= . 

3.3.l 
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IND  Set of industry (‘ind’) sectors analysed separately. We use 
{ }, , / ,IND electricity transport iron steel cement=

. 

3.3.2 

,
ec

sFBτ  Set of foreground and background processes delivering energy carriers (‘ec’). 3.3.2 

   
Numbers:  

, ,,f b
s sn nτ τ  Numbers of foreground (‘f’) and background (‘b’) processes, respectively. 3.1 

, , ,
fb f b

s s sn n nτ τ τ= +  Total number of foreground and background processes. 3.1 
pn  Number of life cycle phases. We use 3pn = . 3.1 

cecn  Number of characterized energy carriers. We use 4cecn = . 3.3.2 
indn  Number of industries analysed separately . We use 4indn = . 3.3.2 

,
ec

snτ  Number of processes in the set ,
ec

sFBτ . 3.3.2 
strn  Number of environmental load types defined. 3.2 
impn  Number of impact categories considered. We use 13impn = . 3.2 

   
Predetermined variables:  

, , ,
fd

t r sτy  Final demand (‘fd’) vector ( , 1fb
snτ × ), representing demand imposed on 

system.  

3.1 

,sτA  Direct requirements matrix ( , ,
fb fb

s sn nτ τ× ). 3.1 

, ,
phase

s pτb  Binary correspondence vector ( , 1fb
snτ × ) assigning processes to phase p . 3.2 

, , , ,t r s pτϕ  Multiplication factor for unit conversion. 3.2 
,

,
cec tot

sτC  Matrix of characterization factors ( ,
cec fb

sn nτ× ), used to determine total 
(‘tot’) characterized energy carrier (‘cec’) values for the set CEC .  

3.3.2 

,
ind

sτB  Binary correspondence matrix ( ,
fb ind

sn nτ × ) assigning processes to 
industries represented by the set IND . 

3.3.2 

,
,

cec dir
sτC  Similar as ,

,
cec tot

sτC , but used to determine direct (‘dir’) energy use. 3.3.2 

,sτF  Matrix of environmental load intensities ( ,
str fb

sn nτ× ), defined as in standard 
LCA. 

3.2 

impC  Matrix of impact characterization factors ( imp strn n× ), defined as in 
standard LCA. 

3.2 

   
Intermediate calculated variables:  

, , , ,t r s pτy  Vector ( , 1fb
snτ × ) representing first round of activities in phase p after 

imposing demand , , ,
fd

t r sτy on the system. 

3.2 

, , , ,t r s pτx  Total output vector ( , 1fb
snτ × ). 3.2 

,
, , , ,
cec tot
t r s pτd  Matrix ( 1cecn × ) containing total (‘tot’) characterized energy carrier (‘cec’) 

values for the set CEC .  
3.2 

, ,
ec
r sτA  Direct requirements matrix ( , ,

ec fb
s sn nτ τ× ) containing only the rows of ,sτA  

corresponding to the set ,
ec

sFBτ . 

3.2 

,
, , , ,
ec dir
t r s pτE  Matrix ( ,

ec ind
sn nτ × ) representing the direct use of energy carriers in 

industries represented by the set IND . 

3.2 

,
, , , ,
cec dir
t r s pτD  Similar to ,

, , , ,
cec dir
t r s pτD  (see final calculated variables below), but normalized to 

total output levels for respective industries.. 

3.3 

   
Final calculated variables:  

,
, , , ,
cec dir
t r s pτD  Matrix ( cec indn n× ) representing the direct use of characterized energy 

carriers in industries represented by the set IND .  
3.2 
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,
, , , ,
cec res
t r s pτd  Vector ( 1cecn × ) representing the residual (‘res’) use of characterized 

energy carriers (i.e., energy use not captured by ,
, , , ,
cec dir
t r s pτD ). 

3.2 

, , , ,
ind
t r s pτx  Vector recording total output values for industries represented by the set 

IND . Size: 1 indn× . 
3.3 

, ,
, , , ,
cec dir med
t r s pτD  Similar to ,

, , , ,
cec dir
t r s pτD , but contains median values across technologies and phases 

in ,
, , , ,
cec dir
t r s pτD . 

3.3 

,
, , , ,
imp tot
t r s pτd  Vector ( 1impn × ) containing total impact indicator values. 3.1 

 

3.2 Separate treatment of life cycle phases  

It is a principle purpose of IA modelling to address impacts of future scenarios on large scales. 
In order to best serve this purpose, coefficients derived from LCA for use in IAMs should 
distinguish the construction, operation and end-of-life phases. This is to ensure that IA users 
can attribute construction, operation and end-of-life coefficients to appropriate years and 
combine them with IAM-specific data on technology performance (e.g., emission factors) and 
technology deployment (e.g., new installed capacities, operating capacities) pertaining to the 
same years. Moreover, separating the life cycle phases is necessary if one wants to capture basic 
transition dynamics stemming from the different timing of infrastructure and operational inputs, 
which may be important during periods of rapid transformation (Arvesen and Hertwich, 2011; 
Gonçalves da Silva, 2010; Usubiaga et al., 2017). This subsection describes a generic procedure 
for separating out individual life cycle phases in LCA, taking as a starting point a standard LCA 
set-up with a demand vector containing only one non-zero element. In addition, and the 
procedure allows for construction phase effects to scale in proportion to installation size 
(capacity), and operation phase effects in proportion to utilization. 

We assume that for technology t , region r , year τ  and scenario s , the demand that is 
imposed on the system (e.g., to deliver one unit of electricity by a distinctive technological 

option) is recorded in a demand vector with a single non-zero entry, , , ,
fd

t r sτy (already introduced 

in subsection 3.1), of size , 1fb
snτ × .We let , , , ,t r s pτy be an , 1fb

snτ × vector representing the first 

round of activities in phase p  after imposing the demand , , ,
fd

t r sτy on the system. In other words, 

, , , ,t r s pτy contains any direct inputs for phase p  to the demand being studied. , , , ,t r s pτy may be 

calculated as shown in equation (1), based on , , ,
fd

t r sτy , the direct requirements matrix ,sτA , and 

a binary , 1fb
snτ ×  correspondence vector, , ,

phase
s pτb , assigning foreground processes to life cycle 

phase p . In , ,
phase

s pτb , the entry in row j  is 1 if foreground process j  is associated with life cycle 

phase p , and zero otherwise. Because background processes are used generically and cannot 
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necessarily be unambiguously assigned to a life cycle phase, rows in , ,
phase

s pτb representing 

background processes should contain only zeros. We assume that there are three life cycle 

phases ( 3pn = ), the construction phase, the operation phase and the end-of-life phase.  

 ( ), , , , , , , , , , , , , , , , r , , ,fd phase
t r s p t r s p s t r s s p t T R s S p Pτ τ τ τ τϕ τ= ⋅ ⋅ ⋅ ∈ ∈ ∈Τ ∈ ∈y A y b   (1) 

Here, the circumflex (  ) represents diagonalization of a vector. The multiplication factor 

, , , ,t r s pτϕ (a scalar) is introduced for the purpose of unit conversion, as will be explained at the 

end of this section. The use of equation (1) presupposes that the data are organized in such a 

way that: i) there are no energy use or emissions directly associated with , , ,
fd

t r sτy ; ii) the first 

round of activities after imposing the demand , , ,
fd

t r sτy on the system concerns processes defined 

in the foreground system only (not the background system); and iii) all processes involved in 
first round activities can be unambiguously assigned to a life cycle phase. The two latter 

requirements are achieved through appropriate definition of ,sτA , in the manner illustrated by 

Fig. 2 for the case study of electricity. In the figure, processes labelled ‘Process to deliver 

1 kWh’ represent processes for which there can be a non-zero entry in , , ,
fd

t r sτy , while ‘Immediate 

inputs to 1 kWh process’ indicate the processes that must be uniquely assigned (using , ,
phase

s pτb ) 

to either the construction (‘C’), operation (‘O) or end-of-life (‘E’) phases. Note that ,sτA covers 

both foreground and background systems, but because rows in , ,
phase

s pτb representing background 

processes contain only zeros, equation (1) does not involve any actual modelling for the 
background. 
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Fig. 2. Simplified illustration of the direct requirements matrix, ,sτA , in the case study of electricity supply, 

showing four technological options (cf. Table 1). Parts of the matrix that contain non-zero values are shown in 
colours (schematically). Elements labelled ‘Immediate inputs to 1 kWh process’ indicate the elements that must 
be uniquely assigned (using , ,

phase
s pτb ) to one of the life cycle phases, where ‘C’ denotes construction, ‘O’ operation 

and ‘E’ end-of-life. 

In equation (1), elements of the product , , , , , ,
fd phase

s t r s s pτ τ τ⋅ ⋅A y b  will be measured in relation to the 

single measurement unit used for the demand specified in , , ,
fd

t r sτy . An optional multiplication by 

a unit conversion factor , , , ,t r s pτϕ  is introduced in equation (1) to make it possible to use different 

units for the construction, operation and end-of-life phases respectively. We anticipate that the 
value of , , , ,t r s pτϕ  can be determined based on information already contained in the LCA 

foreground system data (e.g., information about the lifetime, efficiency and capacity factor of 
a thermal power station).  One application of , , , ,t r s pτϕ can be to perform a unit conversion so 

that construction phase requirements are measured in relation to the size of installations, and 
operation phase requirements in relation to the utilization of installations. , , , ,t r s pτϕ  can also be 

seen as a means to avoid imposing LCA-specific assumptions on the IA modelling: For 
example, by measuring requirements of power plant construction in relation to nominal capacity 
(as opposed to power generation), influence of LCA-specific assumptions about power plant 
lifetime and capacity factor on results can be avoided.  
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Table 3 summarizes our selection of measurement units in the case study of electricity 
supply. A further discussion on the use of  is offered in the supplementary material.  

Table 3 
Overview of measurement units selected for main power generation technology types and life cycle phases in the 
electricity supply case study. Two technology types are distinguished: thermal power (i.e., power generated by 
combustion of fossil fuels or biomass, as well as power generation from nuclear fuels), and non-biomass renewable 
power (i.e., power generated from wind, solar or hydro resources). Unit symbols: MW = megawatt; kWh = kilowatt 
hour; yr = year. Asterisk (*) indicates any unit (e.g., gigajoule, tonne-kilometre). 

Technology type Life cycle 
phase 

Unit Remarks  

Thermal Construction */MW Inputs scale in proportion to capacity  
Thermal Operation */kWh Inputs scale in proportion to utilization  
Thermal End-of-life */MW Inputs scale in proportion to capacity  
Non-bio renewable Construction */MW Inputs scale in proportion to capacity  
Non-bio renewable Operation */MW/yr Inputs scale in proportion to capacity, but 

measured per year to eliminate influence of 
lifetime assumption in the LCA  

 

Non-bio renewable End-of-life */MW Inputs scale in proportion to capacity  
  

Having established , , , ,t r s pτy , it is straightforward to determine the total output vector, , , , ,t r s pτx

, for a given technology t , region r , year τ  and scenario s  and life cycle phase p :  

 1
, , , , , , , , ,( ) , , r , , ,t r s p s t r s p t T R s S p Pτ τ τ τ−= − ⋅ ∈ ∈ ∈Τ ∈ ∈x I A y   (2) 

where I  is the identity matrix of appropriate order. 

We now turn to the computation of LCA impact indicator coefficients. We let impn  be the 

number of impact categories considered. We let ,
, , , ,
imp tot
t r s pτd be an 1impn × column vector containing 

total impact indicator scores for a given combination of the parameters t , r , τ , s  and p . 

Having determined , , , ,t r s pτx , it is straightforward to establish the elements of ,
, , , ,
imp tot
t r s pτd using 

standard LCA procedure, as expressed in Equation (3). 

 ,
, , , , , , , , , , , r , , ,imp tot imp

t r s p s t r s p t T R s S p Pτ τ τ τ= ⋅ ⋅ ∈ ∈ ∈Τ ∈ ∈d C F x   (3) 

We let strn be the number of environmental load types defined in the system (in THEMIS, 

1613strn = ). In Equation (3), ,sτF is an ,
str fb

sn nτ× matrix of environmental load intensities (e.g., 

phosphate leaching to ground water from disposal of spoil from coal mining), and impC  an 
imp strn n×  matrix of characterization factors (e.g., representing the potency of phosphate 

released to ground water for eutrophication impacts) (ReCiPe, 2012). 
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3.3 Detailed treatment of energy use 

In addition to distinguishing the three main life cycle phases (Subsection 3.2), our method 
decomposes energy requirements into energy carrier use by industries, and selected energy 
service types. While the method is valid for an arbitrary number of energy carriers, industries 
and energy service types, we select default options and use them in our case study of electricity 
supply: The selected energy carriers comprise liquid, gaseous and solid fuels, and electricity; 
and the selected energy services are freight transport, iron and steel production, and cement 
production. The selection of industries needs to correspond to the energy service types (freight 
transport, iron and steel, and cement), plus electricity, as electricity is a secondary energy form. 
One motivation for separating out key energy carriers, industries and energy services, is to avoid 
imposing LCA-specific assumptions on the IA modelling as far as possible. By this we mean 
that electricity mixes, transport and industry fuel mixes and fuel characteristics (including the 
emission intensities of fuels) should not be predetermined from the LCA side; rather, the IA 
analyst should be given the opportunity to represent such mixes and characteristics consistently 
using IAM-specific representation of these processes. By doing this, one can achieve 
unprecedented coverage of technology change in future-oriented analyses of life cycle impacts5, 
as is demonstrated in the accompanying study by Pehl et al. (2017). Another motivation for 
separating out energy carriers by industries is that it may help to address potential problems of 
double-counting when LCA coefficients are introduced in IAMs6. 

In the following, we first describe an approach for achieving sound treatment of energy flows 
when deriving LCA energy coefficients for use in IAMs (subsection 3.3.1). This is a 
prerequisite for the decompositions of energy requirements into energy carriers, industries and 
energy service types, which are described next (subsections 3.3.2 and 3.3.3).    

3.3.1 Consistent energy accounting 
The Ecoinvent LCA database (and hence THEMIS, which relies extensively on Ecoinvent) 

does not support systematic energy accounting at the point of energy use. The energy content 
of losses in fuel supply chains (notably, such losses can be methane leakages from natural gas 
extraction sites or pipelines, or losses of coal during transport and storage) is not easily 
identifiable and distinguishable from fuel burning. Furthermore, heating value assumptions are 
not necessarily consistent across fossil fuel supply chains, due to internal inconsistencies in 
energy statistics used as data input to describe different parts of fuel supply chains in Ecoinvent 

                                                 
5 Consider, for example, that because the LCA coefficients separate out solid fuels by industries, one can capture 

the life cycle effects of biomass replacing coal in IA scenarios; and because freight transport is separated out, one 
can capture the effects of shifts to low-carbon transport fuels (e.g., biofuels, hydrogen) in IA scenarios. 

6 Such double-counting issues are discussed in Daly et al. (2015) and Volkart et al. (2017). 
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(Arvesen and Hertwich, 2015). The established LCA practice for measuring energy is to 
consistently track energy streams to the point of resource extraction from nature, including 
energy losses along the chain linking energy carrier use and primary energy withdrawal from 
nature (e.g., fugitive methane emissions, loss in energy content of coal during transport and 
storage) (Arvesen and Hertwich, 2015; Frischknecht et al., 2015). The resulting energy quantity 
is often referred to as cumulative energy demand. 

Consistency is ensured when using the cumulative energy demand method in Ecoinvent to 
perform standard LCA-type calculations. However, consistency is not necessarily achieved in 
calculations involving breaking up supply chains into disaggregated segments; in such cases a 
failure to properly handle heating value variations can lead to errors (Arvesen and Hertwich, 
2015). In the context of deriving LCA energy coefficients for use in IAMs, it is also important 
to consider that state-of-the-art IAMs explicitly account for leakages (or losses) of methane in 
fossil fuel production and supply; hence, such methane leaks should be excluded from the LCA 
energy coefficients, in a similar manner as energy loss in thermal electricity production should 
be excluded. Our method to derive LCA energy coefficients resolves both these issues (heating 
value variations, and the need to exclude losses already represented in IAMs) by adopting the 
cumulative energy demand accounting practice in a uniform manner when calculating 
quantities of combustible energy (i.e., liquid, gaseous and solid fuels)7. This is also the case 
when measuring flows representing direct energy use in industrial activities. A further note of 
clarification is included in the supplementary material. 

We refer to combustible energy flows determined in accordance with the cumulative energy 
demand method as characterized energy carriers, denoted as ‘cec’. For the sake of convenience, 
we let electricity be included in the set of characterized energy carriers, and express the set as

{ }, , ,CEC liquids gases solids electricity= . 4cecn =  is the number of characterized 

energy carriers.   

3.3.2 Energy carrier use by industries 

We let ,
, , , ,
cec tot
t r s pτd be an 1cecn ×  column vector containing total characterized energy carrier 

values for the set CEC  . An expression for determining ,
, , , ,
cec tot
t r s pτd is given in Equation (4). 

 , ,
, , , , , , , , , , , r , , ,cec tot cec tot

t r s p s t r s p t T R s S p Pτ τ τ τ= ⋅ ∈ ∈ ∈Τ ∈ ∈d C x   (4) 

                                                 
7 Appendix A in Arvesen and Hertwich (2015) offers an example illustrating the basic procedure. 
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The analyst should define ,
,

cec tot
sτC such that the values for the combustible energy carriers 

included in the set CEC are calculated in accordance with the cumulative energy demand 
method, and that electricity requirements are captured as well. Electricity requirements may be 

calculated by a simple summation of appropriate entries in , , , ,t r s pτx ,  while making sure that 

electricity represented at different voltage levels in the LCA database is not double-counted 

(this can achieved through Equation (4) and by defining ,
,

cec tot
sτC appropriately).  

We let IND  be the complete set of industries (

{ }, , / ,IND electricity transport iron steel cement= ) and 4indn = the number of industries 

for which we need to identify direct energy carrier use. We define ,
ec

sFBτ as a subset of the set of 

all foreground and background processes which represents processes delivering energy carriers 

(e.g., coal, electricity), and ,
ec

snτ the number of processes included in ,
ec

sFBτ . At a minimum, 

,
ec

sFBτ must include the processes delivering energy carriers to processes that are part of the set 

IND  (activities by any additional processes included in ,
ec

sFBτ  will be zeroed out in the 

calculations that follow). We let ,
ec

sτA  be an , ,
ec fb

s sn nτ τ×  matrix containing only the rows of ,sτA

corresponding to the set ,
ec

sFBτ . Next, we let ,
ind

sτB  be a binary ,
fb ind

sn nτ ×  correspondence matrix 

assigning foreground and background processes to the industry sectors included in IND . In 

,
ind

sτB , a non-zero entry indicates that a process belongs to one of the selected industries. Rows 

representing processes that do not match with any of the selected industries contain only zeros. 

Finally, we let ,
, , , ,
ec dir
t r s pτE  be an ,

ec ind
sn nτ ×  matrix representing the direct use of ,

ec
snτ energy carriers 

by indn  industries (the superscript ‘dir’ denotes ‘direct’). ,
, , , ,
ec dir
t r s pτE  may be calculated according 

to equation (5). 

 

,
, , , , , , , , , , , , r , , ,ec dir ec ind

t r s p s t r s p s t T R s S p Pτ τ τ τ τ= ⋅ ⋅ ∈ ∈ ∈Τ ∈ ∈E A x B   (5) 

,
, , , ,
ec dir
t r s pτE  will typically represent a large number of energy flows individually (e.g., various 

inputs of electricity of different geographical origin, fuel oil burned in various machines or 
devices). There is a need to classify these energy flows into the main energy carrier types 

comprising the set CEC , and to characterize the combustible energy flows using the 
cumulative energy demand method in order to achieve consistent accounting (cf. 

subsection 3.3.1). This implies that entries representing non-electricity energy carriers in ,
, , , ,
ec dir
t r s pτE  
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need to be multiplied by appropriate factors to convert to cumulative energy demand 

equivalence. In order to achieve this, we introduce ,
,

cec dir
sτC  as an ,

cec ec
sn nτ×  matrix collecting 

coefficients to convert non-electricity entries in ,
, , , ,
ec dir
t r s pτE to cumulative energy demand 

equivalence, as well as coefficients allowing for entries representing electricity to be summed 

together. ,
,

cec dir
sτC should be defined such that left-multiplying ,

, , , ,
ec dir
t r s pτE by ,

,
cec dir

sτC  (Equation (6)) 

yields an cec indn n×  matrix, ,
, , , ,
cec dir
t r s pτD , representing direct non-electricity and electricity use in 

the selected industries. 

 , , ,
, , , , , , , , , , , r , , ,cec dir cec dir ec dir

t r s p s t r s p t T R s S p Pτ τ τ τ= ⋅ ∈ ∈ ∈Τ ∈ ∈D C E   (6) 

The characterized energy carrier values in ,
, , , ,
cec tot
t r s pτd  and ,

, , , ,
ec dir
t r s pτD are partially overlapping, as 

the direct energy use in the selected industries are accounted for in both variables. We now 

subtract values in ,
, , , ,
cec dir
t r s pτD  from values in  ,

, , , ,
cec tot
t r s pτd  to obtain residual energy requirements (i.e., 

the energy use occurring in other industries than those comprising the set IND ), as expressed 

in Equation (7). ,
, , , ,
cec res
t r s pτd refers to an 1cecn ×  column vector containing the residual energy 

requirement values. 

 , , ,
, , , , , , , , , , , , , , r , , ,cec res cec tot ec dir

t r s p t r s p t r s p t T R s S p Pτ τ τ τ= − ⋅ ∈ ∈ ∈Τ ∈ ∈d d D 1   (7) 

where 1  is a 1indn × column vector of ones. 

3.3.3 Energy service requirements 
We measure energy service requirements in terms of total output of the industries delivering 

the energy services, in units of tonne-kilometres (for transport) or tonnes (for material 
production). As different industries are represented in different ways in the LCA database, it is 
not possible to provide a general recipe for how to establish numbers on total industry outputs. 
We establish transport requirements by simple summation of freight transport outputs 
(including different types of road, rail and water transport outputs) represented in , , , ,t r s pτx . Life 

cycle accounting of material outputs is less simple and cannot generally be achieved by 
summation of entries in , , , ,t r s pτx . This is because , , , ,t r s pτx  defines outputs from various material 

processing steps that partially form linear chains of processes and partially looped systems (i.e., 
output from one process becomes the input to another process). In this study, we employ the 

algorithm presented by Singh et al. (2015) to determine material requirements. We let , , , ,
ind
t r s pτx
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be an 1 indn×  row vector collecting all industry output levels (here understood as analogous to 

energy service requirements) for the industries represented by the set IND . 

A data set consisting of ,
, , , ,
ec res
t r s pτd  and , , , ,

ind
t r s pτx  together with IAM-specific energy intensity and 

emission intensity factors will contain sufficient information for IA analysts to determine life 
cycle emission estimates. Meanwhile, IAMs differ in their resolution and not all IAMs resolve 
transport and material producing industries explicitly. Hence, we provide energy multiplication 
factors for the industries represented by the set IND  as well, based on LCA model-specific 

data. IA analysts may choose to use these data in lieu of IAM-specific data. We let ,
, , , ,
cec dir
t r s pτD be 

an ,
cec ind

sn nτ × matrix representing the use of ,
cec

snτ energy carriers by indn  industries, normalized 

to the total output levels of the respective industries. ,
, , , ,
cec dir
t r s pτD may be determined from 

equation (8).  

 , ,
, , , , , , , , , , , ,
cec dir cec dir ind
t r s p t r s p t r s pτ τ τ=D D x

   (8) 

Here, the empty circle ( ) indicates division of all entries in column number j of ,
, , , ,
cec dir
t r s pτD

by entry number j  in , , , ,
ind
t r s pτx . 

In the case study of electricity supply, the numerical values in ,
, , , ,
cec dir
t r s pτD are approximately the 

same irrespective of technology and phase. For this reason and in order to simplify data 

exchange, we compute median values across technologies and phases, and let , ,
, ,

cec dir med
r sτD be an 

,
cec ind

sn nτ ×  matrix recording the median values. 

4 LCA coefficient results for illustration 

Table 4 shows, as an illustrative example, LCA energy and impact indicator results obtained 
for solar photovoltaic electricity for year 2010, 2030 and 2050. Results for China are shown as 
an example. The table also clarifies how the numerical results relate to variables defined in the 
exposition of the approach. The rationale for including Table 4 is not to present quantitative 
results per se, but rather the table is included for the purposes of illustration. For the same 
purposes, Figs. 3 and 4 offer illustrative energy results. The complete set of energy and impact 
indicator results is available as electronic supplementary material, and is utilized in the related 
studies Pehl et al. (2017) and Luderer et al. (under review). 



24 
 

Table 4 
Illustrative LCA energy and impact indicator coefficients. Results are shown for solar photovoltaic (PV) electricity, Baseline scenario and China region, as an example. The 
end-of-life phase is omitted here for the sake of brevity, but is included in the numerical results provided as supplementary material. GJ = gigajoule; MW = megawatt; tkm = 
tonne-kilometres; t = tonne; yr = year. 

Scenario Region Unit Variable name Value by year 
    2010 2030 2030 
     
Residual energy requirements (general symbol: ,

, , , ,
cec res
t r s pτd ): 

Baseline China GJ/MW Residual energy requirements|PV|Construction|Electricity 8.8E+03 2.7E+03 1.8E+03 
Baseline China GJ/MW Residual energy requirements|PV|Construction|Liquids 6.1E+03 2.7E+03 2.2E+03 
Baseline China GJ/MW Residual energy requirements|PV|Construction|Gases 6.1E+03 2.5E+03 1.9E+03 
Baseline China GJ/MW Residual energy requirements|PV|Construction|Solids 1.0E+03 7.8E+02 6.9E+02 
Baseline China GJ/MW Residual energy requirements|PV|Operation|Electricity 5.8E-01 4.1E-01 3.4E-01 
Baseline China GJ/MW Residual energy requirements|PV|Operation|Liquids 5.2E-02 3.5E-02 2.9E-02 
Baseline China GJ/MW Residual energy requirements|PV|Operation|Gases 1.7E+00 1.2E+00 9.7E-01 
Baseline China GJ/MW Residual energy requirements|PV|Operation|Solids 1.5E-02 1.0E-02 8.1E-03 
       
Energy service requirements (general symbol: , , , ,

ind
t r s pτx ): 

Baseline China tkm/MW Energy service requirements|PV|Construction|Freight transport 3.93E+06 1.56E+06 1.07E+06 
Baseline China t iron/MW Energy service requirements|PV|Construction|Iron and steel 8.44E+01 6.45E+01 5.49E+01 
Baseline China t cement/MW Energy service requirements|PV|Construction|Cement 2.60E+01 1.65E+01 1.34E+01 
Baseline China tkm/MW/yr Energy service requirements|PV|Operation|Freight transport 1.47E+02 9.53E+01 7.49E+01 
Baseline China t iron/MW/yr Energy service requirements|PV|Operation|Iron and steel 9.51E-04 6.66E-04 5.44E-04 
Baseline China t cement/MW/yr Energy service requirements|PV|Operation|Cement 1.83E-04 1.27E-04 1.04E-04 
       
Industry direct energy requirements (general symbol: , ,

, ,
cec dir med
r sτD ): 

Baseline China GJ/tkm Industry direct energy requirements|Freight transport|Electricity 1.6E-05 1.6E-05 1.7E-05 
Baseline China GJ/tkm Industry direct energy requirements|Freight transport|Liquids 1.0E-04 1.0E-04 1.0E-04 
Baseline China GJ/tkm Industry direct energy requirements|Freight transport|Gases 0.0E+00 0.0E+00 0.0E+00 
Baseline China GJ/tkm Industry direct energy requirements|Freight transport|Solids 8.9E-13 2.4E-12 3.1E-12 
Baseline China GJ/t iron Industry direct energy requirements|Iron and steel|Electricity 5.1E-01 5.1E-01 5.1E-01 
Baseline China GJ/t iron Industry direct energy requirements|Iron and steel|Liquids 4.3E-02 4.3E-02 4.3E-02 
Baseline China GJ/t iron Industry direct energy requirements|Iron and steel|Gases 3.9E-01 3.9E-01 3.9E-01 
Baseline China GJ/t iron Industry direct energy requirements|Iron and steel|Solids 8.5E+00 8.5E+00 8.5E+00 
Baseline China GJ/t cement Industry direct energy requirements|Cement|Electricity 4.6E-01 4.5E-01 4.5E-01 
Baseline China GJ/t cement Industry direct energy requirements|Cement|Liquids 1.4E+00 1.4E+00 1.4E+00 
Baseline China GJ/t cement Industry direct energy requirements|Cement|Gases 1.0E-02 1.0E-02 1.0E-02 



  

25 
 

Baseline China GJ/t cement Industry direct energy requirements|Cement|Solids 9.2E-01 9.2E-01 9.2E-01 
       
Impact indicator results (general symbol: ,

, , , ,
imp tot
t r s pτd ): 

Baseline China kg 1,4-DCB-Eq/MW Freshwater ecotoxicity|PV|Construction 1.44E+05 4.27E+04 2.93E+04 
Baseline China kg P-Eq/MW Freshwater eutrophication|PV|Construction 1.67E+03 7.66E+02 5.89E+02 
Baseline China kg 1,4-DCB-Eq/MW Human toxicity|PV|Construction 1.89E+06 6.75E+05 4.60E+05 
Baseline China kg U235-Eq/MW Ionising radiation|PV|Construction 4.98E+04 2.71E+04 2.28E+04 
Baseline China m2a/MW Land occupation|PV|Construction 9.11E+04 3.45E+04 2.45E+04 
Baseline China kg N-Eq/MW Marine eutrophication|PV|Construction 5.90E+02 2.22E+02 1.54E+02 
Baseline China kg Fe-Eq/MW Mineral resource depletion|PV|Construction 8.53E+05 7.13E+05 6.56E+05 
Baseline China t Al/MW Aluminium|PV|Construction 2.05E+01 1.06E+01 8.14E+00 
Baseline China t Cu/MW Copper|PV|Construction 9.47E+00 8.15E+00 7.28E+00 
Baseline China t Fe/MW Iron|PV|Construction 8.63E+01 6.74E+01 5.77E+01 
Baseline China t cement/MW Cement|PV|Construction 2.61E+01 1.66E+01 1.35E+01 
Baseline China kg 1,4-DCB-Eq/MW/yr Freshwater ecotoxicity|PV|Operation 1.19E+00 7.92E-01 6.42E-01 
Baseline China kg P-Eq/MW/yr Freshwater eutrophication|PV|Operation 6.60E-02 4.34E-02 3.50E-02 
Baseline China kg 1,4-DCB-Eq/MW/yr Human toxicity|PV|Operation 1.97E+01 1.28E+01 1.01E+01 
Baseline China kg U235-Eq/MW/yr Ionising radiation|PV|Operation 3.36E+00 2.66E+00 2.30E+00 
Baseline China m2a/MW/yr Land occupation|PV|Operation 1.34E+04 9.47E+03 7.74E+03 
Baseline China kg N-Eq/MW/yr Marine eutrophication|PV|Operation 2.14E-02 1.40E-02 1.12E-02 
Baseline China kg Fe-Eq/MW/yr Mineral resource depletion|PV|Operation 4.31E+00 3.03E+00 2.47E+00 
Baseline China t Al/MW/yr Aluminium|PV|Operation 3.82E-05 2.64E-05 2.15E-05 
Baseline China t Cu/MW/yr Copper|PV|Operation 9.39E-05 6.61E-05 5.41E-05 
Baseline China t Fe/MW/yr Iron|PV|Operation 1.02E-03 7.14E-04 5.83E-04 
Baseline China t cement/MW/yr Cement|PV|Operation 1.86E-04 1.29E-04 1.05E-04 
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Fig. 3 displays life cycle indirect energy requirements for a series of power generation 
options. As IAMs already cover all direct energy use (i.e., energy fuel combustion occurring at 
the power plants being studied) and our current aim is to provide coefficients for indirect energy 
use, direct energy use is not treated in our method and not included in Fig. 38. Results for Europe 
and year 2010 are shown here, as an example. For the sake of simplicity, and because 
contributions from the end-of-life phase are uniformly small (< 2% of totals), in this graphical 
representation the construction and end-of-life phases are aggregated into one single category. 
For similar reasons, energy use occurring in iron and steel production, and in cement production 
are aggregated in the figure. Another factor to note is that the results shown in Fig. 3 are 
produced using capacity factor and lifetime assumptions in THEMIS. However, these 
assumptions will effectively be replaced by IAM-specific assumptions when IA analysts utilize 
the numerical results as they are presented in the electronic supplement.  

                                                 
8 It may also be noted that besides application in IAMs, the indirect energy use of supplying energy has 

relevance for discussions on the importance of energy for economic growth (Ayres and Voudouris 2014; 
Carbajales-Dale et al. 2014; Hall et al. 2014). 
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Fig. 3. Life cycle indirect energy requirements for 14 main types of power generation for Europe and year 2010, 
broken down into phase (construction and end-of-life total, denoted by C; operational, denoted by O), energy 
carrier used (electricity; liquid, gaseous and solid fuels) and industry in which the use occurs (iron and steel; 
cement; freight transport; and other). Stacked columns represent relative contributions to total indirect energy 
(i.e., sum across all columns and stacked categories within columns equals 100% for each plot). For bio crop, 
results for a scenario assuming no restriction on types of cellulosic biomass crop available and where irrigation is 
allowed are shown as an example (the ‘TAX30_begr_betr_ir’ scenario’; see electronic supplement). Error bars 
indicate extrema totals across technology subcategories relative to the mean across technology type (cf. Table 1). 
Vertical axes are cut at 100%, but some maxima lie above 100%: slightly >100% for solar PV, C, other; and 
350% for hydro, C, other. Numerical values above plots give total indirect energy requirements in units of 
megajoule (MJ) energy input per MJ electricity output and exclude losses in the power production process itself. 
The values are shaded according to their relative magnitude (in reference to the whole set of values), with light 

  Solar PV 0.133   CSP 0.081   Hydro 0.175   Wind onshore 0.034

  Wind offshore 0.045   Coal 0.142   Coal CCS 0.261   Gas 0.107

  Gas CCS 0.145   Nuclear 0.049   Bio crop 0.272   Bio crop CCS 0.317
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Energy carrier

Industry

C O

C OC OC OC O

C O C OC OC O

C OC OC O

0 %

25 %

50 %

75 %

100 %

C

0 %

25 %

50 %

75 %

100 %

C

C OC O C OC O C OC O C OC O

C OC O C OC O C OC O C OC O

C O C OC O C OC O C OC O

C OC OC O C OC O
0 %

25 %

50 %

75 %

100 %

C C O

0 %

25 %

50 %

75 %

100 %

C C O

C O

Electricity Liquids Gases Solids

Other Freight transport

Iron and steel, and cement



28 
 

(heavy) shading denoting small (big) magnitude. PV = photovoltaic; CSP = concentrating solar power; CCS = 
carbon capture and storage; Bio crop = cellulosic biomass from crops; Bio res. = biomass from forest residues.   
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It is evident from Fig. 3 that fossil and biomass fuel-based power generation options 
generally exhibit the highest total indirect energy requirements. This is, in different ways for 
the different options, attributable to extraction or collection, processing and distribution of fuel 
energy sources and carriers. All power plants utilizing carbon capture and storage (CCS) have 
lower efficiencies and additional process inputs compared to their non-CCS counterparts, which 
lead to higher indirect energy per unit of electricity output for CCS cases. Among non-biomass 
renewable alternatives, hydropower and solar photovoltaic power show the highest total 
indirect energy requirements (Fig. 3). For hydro, the comparatively large energy requirements 
are a result of considerable transport requirements for one of the two hydro power facilities 
modelled, namely the facility situated in a remote area. As for solar photovoltaic power, energy-
intensive material processing and manufacturing activities, in particular connected to solar-
grade silicon production, give rise to considerable indirect energy requirements. While Fig. 3 
only shows results for the year 2010, results for 2030 and 2050 reflect substantial technological 
improvements for solar photovoltaic power, as is illustrated by Fig. 4 and discussed later in this 
subsection. A more detailed discussion of Fig. 3, including comparisons with results in 
literature (Raugei and Leccisi, 2016; Warner and Heath, 2012), is presented in the 
supplementary material. 

   
Fig. 4. Total life cycle indirect energy requirements (measured in megajoule (MJ) energy input per MJ electricity 
output) associated with solar photovoltaic (PV) power in China for year 2010, 2030 and 2050, for six individual 
types of PV technologies as well as for the mix of individual types (‘PV mix’, leftmost column in each panel; 
given the assumed market shares of individual technologies displayed in Table 1). Energy requirements are 
broken down into energy carrier (electricity; liquid, gaseous and solid fuels) contributions, correspondingly as in 
Fig. 3, but the current Fig. 4 does not make the separation into life cycle phases. Energy requirements are 
measured as indirect energy input per electricity output. PV technology abbreviations: Poly-Si-G: polycrystalline 
silicon, ground; Poly-Si-R: polycrystalline silicon, rooftop; CdTe-G: cadmium-telluride, ground; CdTe-R: 
cadmium-telluride, rooftop; CIGS-G: copper indium gallium selenide, ground CIGS-R: copper indium gallium 
selenide, rooftop. 

While Fig. 3 displays results for year 2010 only, we also produce results for the years 2030 and 
2050. Fig. 4 details prospective indirect energy requirements results for solar photovoltaic (PV) 
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electricity, showing results for both the aggregate mix of PV technology types (leftmost column 
in each panel) and for each individual type (the six rightmost columns in each panel). Solar PV 
electricity is chosen here as an example because it is a technology for which considerable future 
technological improvements are anticipated (as opposed to, for example, hydropower, which is 
based on relatively mature technology). As is evident from Fig. 4, thin-film PV, here 
represented by cadmium-telluride and copper indium gallium selenide technologies, exhibit 
much lower indirect energy requirements than conventional, poly-crystalline silicon PV. 
Moreover, the indirect requirements of the thin-film technologies decline noticeably over time, 
mainly owing to projected rises in conversion efficiencies9. In our results, the combination of 
i) a shift away from polycrystalline silicon and towards thin-film technologies (cf. Table 1) and 
ii) thin-film technologies becoming more efficient over time, entails a reduction in the energy 
requirements of the average PV electricity mix of 70% from 2010 to 2050. Electricity is an 
important energy carrier in relative terms for PV (compare the relative importance of electricity 
for PV versus other power generation options, evident from Fig. 3), which implies further 
reductions in the life cycle greenhouse gas emissions of PV in scenarios where electricity 
becomes cleaner. 

5 Final remarks 

We believe that potentials exist for the IAM and LCA fields to interact in beneficial ways. 
The IAM community has a strong tradition in analysing transformation pathways on the macro 
level, while for LCA – which traditionally has been micro- and static-minded – this is an 
emerging research interest. The LCA community has decades of experience in developing 
formal procedures for assessing impact types as diverse as, among others, air pollution and 
toxic contamination of soil and water, while IA analysts in recent years have made major strides 
in incorporating various air pollutants as well as aspects of land use and water demand in their 
models. The life cycle perspective is unique for LCA, but LCA lacks the optimization 
perspective of IAM. 

In this article, we present a novel method for deriving LCA-based coefficients suitable for 
application in IAMs. The method decomposes LCA coefficients into life cycle phases and 
energy carrier use by industries, thus facilitating attribution of life cycle effects to appropriate 
years, and consistent and comprehensive use of IA model-specific scenario data (e.g., emission 
factors, lifetime and utilization rates of equipment) when the LCA coefficients are applied in 
IA scenario modelling. The method is flexible with respect to possible use (i.e., it can be applied 
to study any kind of product) and resolution levels of input data (i.e., the life cycle inventory 

                                                 
9 A related discussion is available in Bergesen et al. (2014). 
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data can have any degree of resolution) and output data (i.e., the final LCA coefficients can 
represent any number of energy carriers or industries separately). 

The method is devised for LCA analytic frameworks where activities are described bottom-
up and in physical terms, as opposed to multiregional input-output (MRIO) frameworks as 
employed in other work (Daly et al., 2015; Scott et al., 2016).  Bottom-up LCA and MRIO 
analysis both have their merits and demerits (Subsection 1.2), and we anticipate that both 
techniques will be used in future research addressing the role of life cycle effects in climate 
change mitigation scenarios. In the version of THEMIS used to derive LCA coefficients for 
electricity supply, scenario data inputs to THEMIS itself come from exogenous sources, as 
described in Gibon et al. (2015). A possible future improvement when THEMIS is used in 
conjunction with an IAM, however, would be to obtain scenario data inputs to THEMIS 
specifically from the IAM in question, thus enhancing harmonization of scenario data across 
the LCA and IAM modelling. 

We regard the method presented in this article as a generally applicable and useful method 
to derive LCA coefficients for use in IA modelling, when core structures and data organization 
principles in LCA and IAM are given. The energy accounting based on cumulative energy 
demand (subsection 3.3.1) may usefully be replaced by a simpler procedure if LCA databases 
adopt a more practical and consistent inventory of secondary and final energy (i.e., an inventory 
distinguishing supply chain energy losses and energy use, based on consistent heating value 
assumptions). In the future, parts of the method may be integrated into new and more advanced 
methods – or be replaced by them,  – for example if IAMs should be re-structured to consider 
indirect energy use and emissions in a systematic fashion and with internal consistency. 
Strategies and priorities for taking into account life cycle effects in evaluations of vast-scale 
transformation pathways need to be evaluated continuously, considering the moving frontiers 
of LCA and IAM research and available evidence on the importance of life cycle effects in the 
context of climate change mitigation and sustainability assessment, as well as practical concerns 
such as the need to limit model complexity. With exceptions (Daly et al., 2015; Pehl et al., 
2017; Scott et al., 2016), to date it remains largely unexplored whether, or under what 
circumstances, the types of causality relationships that form the heart of LCA (e.g., wind 
turbines require steel, steel producers require fossil fuels and fossil fuel use causes emissions) 
can have significant influences on optimized global energy and climate mitigation strategies 
(Arvesen et al., 2011; Dale et al., 2012a). 

Finally, it is worth noting that this article is written largely from the standpoint of LCA, and 
to a much lesser degree from the standpoint of IAM. Accompanying articles currently in 
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preparation address this imbalance by applying LCA coefficients for electricity supply in 
integrated assessment (Luderer et al., under review; Pehl et al., 2017).  
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