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Summary

Missing data is a concept used to describe the values that are, for some reason, not observed in
datasets. Most standard analysis methods are not feasible for datasets with missing values. The
methods handling missing data may result in biased and/or imprecise estimates if methods are
not appropriate. It is therefore important to employ suitable methods when analyzing such data.

Cardiac surgery is a procedure suitable for patients suffering from different types of heart
diseases. It is a physical and psychical demanding surgical operation for the patients, although
the mortality rate is low. Health-related quality of life (HRQOL) is a popular and widespread
measurement tool to monitor the overall situation of patients undergoing cardiac surgery, espe-
cially in elderly patients with naturally limited life expectancies [Gjeilo, 2009].

There has been a growing attention to possible differences between men and women with
respect to HRQOL after cardiac surgery. The literature is not consistent regarding this topic.
Gjeilo et al. [2008] studied HRQOL in patients before and after cardiac surgery with emphasis
on differences between men and women. In the period from September 2004 to September
2005, 534 patients undergoing cardiac surgery at St Olavs Hospital were included in the study.
HRQOL were measured by the self-reported questionnaires Short-Form 36 (SF-36) and the Brief
Pain Inventory (BPI) before surgery and at six and twelve months follow-up. The SF-36 reflects
health-related quality of life measuring eight conceptual domains of health [Loge and Kaasa,
1998]. Some of the patients have not responded to all questions, and there are missing values
in the records for about 41% of the patients. Women have more missing values than men at all
time points.

The statistical analyses performed in Gjeilo et al. [2008] employ the complete-case method,
which is the most common method to handle missing data until recent years. The complete-case
method discards all subjects with unobserved data prior to the analyses. It makes standard sta-
tistical analyses accessible and is the default method to handle missing data in several statistical
software packages. The complete-case method gives correct estimates only if data are miss-
ing completely at random without any relation to other observed or unobserved measurements.
This assumption is seldom met, and violations can result in incorrect estimates and decreased
efficiency.

The focus of this paper is on improved methods to handle missing values in longitudinal
data, that is observations of the same subjects at multiple occasions. Multiple imputation and
imputation by expectation maximization are general methods that can be applied with many
standard analysis methods and several missing data situations. Regression models can also give
correct estimates and are available for longitudinal data. In this paper we present the theory of
these approaches and application to the dataset introduced above. The results are compared to
the complete-case analyses published in Gjeilo et al. [2008], and the methods are discussed with
respect to their properties of handling missing values in this setting.

The data of patients undergoing cardiac surgery are analyzed in Gjeilo et al. [2008] with
respect to gender differences at each of the measurement occasions; Presurgery, six months,
and twelve months after the operation. This is done by a two-sample Student’s t-test assuming
unequal variances. All patients observed at the relevant occasion is included in the analyses.
Repeated measures ANOVA are used to determine gender differences in the evolution of the
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HRQOL-variables. Only patients with fully observed measurements at all three occasions are
included in the ANOVA.

The methods of expectation maximization (EM) and multiple imputation (MI) are used to
obtain plausible complete datasets including all patients. EM gives a single imputed dataset that
can be analyzed similar to the complete-case analysis. MI gives multiple imputed datasets where
all dataset must be analyzed separately and their estimates combined according to a technique
called Rubin’s rules. Results of both Student’s t-tests and repeated measures ANOVA can be
performed by these imputation methods.

The repeated measures ANOVA can be expressed as a regression equation that describes the
HRQOL-score improvement in time and the variation between subjects. The mixed regression
models (MRM) are known to model longitudinal data with non-responses, and can further be
extended from the repeated measures ANOVA to fit data more sufficiently. Several MRM are
fitted to the data of cardiac surgery patients to display their properties and advantages over
ANOVA. These models are alternatives to the imputation analyses when the aim is to determine
gender differences in improvement of HRQOL after surgery.

The imputation methods and mixed regression models are assumed to handle missing data
in an adequate way, and gives similar analysis results for all methods. These results differ from
the complete-case method results for some of the HRQOL-variables when examining the gender
differences in improvement of HRQOL after surgery.
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1
Introduction

The aim of this thesis is to study methods that handle missing values in longitudinal data. Longi-
tudinal data come from repeated observations of a sample of units over multiple occasions, and
are also denoted panel data, hierarchical or multilevel data, Such data have a correlated structure
of observations measured on the same subjects that has to be taken into account when handling
the missing values.

The focus of my project thesis last semester [Dragset et al., 2008] was methods to handle
missing data, with an application of the method of multiple imputation (MI) on a cross-sectional
dataset. Cross-sectional data are measurements observed once on each unit without relation to
the time difference. The data were previously analyzed in Klepstad et al. [2003], with focus on
scores from the Brief Pain Inventory (BPI). The variables of this questionnaires were scaled to
intervals, which resulted in challenges when imputing on these variables. This is explained in
Dragset et al. [2008]. The method of multiple imputation is further examined in this thesis, with
emphasize on application for longitudinal data.

The longitudinal data studied in this paper are previously analyzed in Gjeilo et al. [2008], and
consists of 534 patients undergoing cardiac surgery at St Olavs Hospital in Trondheim. Health-
related quality of life (HRQOL) are measured by the self-reported Short-Form 36 (SF-36) and
the Brief Pain Inventory (BPI) questionnaires. The patients are intended to be observed at base-
line, that is before surgery, and then repeatedly at six and twelve months after surgery. These
repeated measurements make us able to monitor the gender differences at each time point and
the gender difference in evolution in time after surgery. The two statistical analyses employed
to examine these differences are the Student’s t-test for the differences at each time point and
the repeated measures ANOVA to examine the differences in improvement pattern. Both these
methods require balanced data, that is all subjects are measured at all time points. The opposite
is denoted unbalanced design, and is characterized by an unequal number of measurements for
the units in the study.

As much as 40% of the subjects included in the study have missing values for one or more
measurement occasions. In Gjeilo et al. [2008] the complete-case analysis is used to obtain
balanced and complete data, that is all units that have one or more missing values in their records
are excluded from the analysis. This leads to deletion of considerable amounts of information
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CHAPTER 1. INTRODUCTION

in the data. Further the results can be biased, that is skewed expectatins and erroneous standard
deviations, and the statistical power are decreased.

Comprehensive research is performed on the field of missing data, and several methods are
developed during the last decades. The alternatives of methods for analyses of longitudinal
data are numerous, including imputation methods of expectation maximization and multiple
imputation, mixed regression models, and marginal models estimating the correlation in data
externally.

The focus on methods of multiple imputation introduced by Rubin [1976, 1987] and the ex-
pectation maximization algorithm by Dempster et al. [1977] are growing within most research
communities exposed to missing data nowadays. Common statistical software implement these
methods and make new features accessible. Especially the iterative algorithm of multiple im-
putation, denoted MICE, has been extensively used, and was first introduced by Schafer [1997].
Royston [2004, 2005] have implemented multiple imputation by MICE in Stata [2007].

Mixed regression models (MRM) are described under a variety of names, and some of the
first to be published were variance components models [Dempster et al., 1981], random-effects
models [Laird and Ware, 1982] and random regression models [Bock, 1983]. The correlation
structure of the data are fitted by random effects, for example the random intercepts and slopes
effects. These models are similar to the covariance pattern models (CPM) introduced by Jennrich
and Schluchter [1986]. CPM reflect the covariance in data through estimation of a specified
correlation structure. A third type of regression models for longitudinal data were introduced
during the 80’s, denoted generalized estimating equations (GEE) [Liang and Zeger, 1986, Zeger
and Liang, 1986, Zeger et al., 1988]. GEE are a quasi-likelihood estimating processes that
are able to give unbiased results under some missing data assumptions, but are not as general
as imputation by EM and MI, or the mixed regression models and covariance pattern models.
The attractiveness of this method is rather focused on its ability to analyze both discrete and
continuous outcome variables.

Recent work on the regression models introduced above are found in Hedeker and Gibbons
[2006], Fitzmaurice et al. [2009] and Diggle et al. [2002], and a more applied setting for Stata
users are given in Rabe-Hesketh and Skrondal [2008]. We observe that there are a set of com-
mands specially designed to analyze longitudinal datasets, and these are labeled with the prefix
xt-. Some of these commands will be described through this paper.

The structure of this paper is based on the methods described above. Chapter 2 introduces
concepts and definitions of missing data and examples of situations where missing values typ-
ically occur. The complete-case method and other deficient methods are presented in Section
2.2, followed by the imputation methods and more complex methods. An overview of methods
to handle longitudinal data are given in Chapter 3, including a description of repeated measures
ANOVA, mixed regression models, covariance pattern models and methods for discrete outcome
variables. The dataset analyzed in Gjeilo et al. [2008] are described in Chapter 4 with empha-
size on the missing data structure and the observed correlation structure. The application of the
complete-case method, imputation methods and the regression models are explained in Chapters
5, 6 and 7, including results of the respective methods. Discussion of methods and results are
given in Chapter 8, followed by a conclusion that summarizes the most important results and
features of the methods.
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2
Theory

To describe methods that handle missing values in dataset and to evaluate the properties of these
methods we introduce some definitions and concepts that are helpful throughout the report.

2.1 Missing data

Day [1999] defines missing data as follows

”Missing data refers to a data value that should have been recorded but,
for some reason, was not”.

Missing data are also referred to as non-response or unobserved data, and occur in most types of
studies. Missing values can occur due to failure of measurement, data loss, out-of-range data and
data loading issues, units fail to answer all questions, loss of follow-up or other plausible reasons.
It is important to handle the problem of missing data in a proper way to obtain unbiased results
that can be used in research. We can characterize the missing values based on occurrence in
time, for example do intermittent missing values correspond to unobserved values at some time
points where the subject is measured at occasions both before and after the missing occasion.
This may be due to panel waves (subjects missing the whole occasion) or subjects omitting the
specific item at that time point. Another type of missing values is dropout that occur when
subjects terminates all further observation through the study. This may happen when subjects
relocate, decides to end the study, die or just due to random reasons.

The issue of missing data is widespread within the field of clinical trials, especially when the
study is of longitudinal structure. The objects that are measured are denoted units or subjects.
These subjects can be humans, which is often the case in clinical studies, but may as well be
animals, plants or groups of individuals, to mention some examples.

2.1.1 Notation

The notation of missing data were introduced by Rubin [1976] and is still in use as the common
notation. The data that are planned to be observed are denoted Xi for the covariate matrix and
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CHAPTER 2. THEORY

Yi for the dependent variable vector, both for subject i and intentionally observed for n time
points. Further we can partition the dependent variable vector Yi in the observed variable vector
Y O
i and the missing variable vector YM

i , thus we get Yi = (Y O
i , Y

M
i ).

R is the missing data distribution that describes the occurrence of missing data in the dataset.
Rij is a dichotomous variable (takes two levels of values), equal to one if the value of the
dependent variable is observed for subject i at time point j, and zero if Yij is missing. This
missing data distribution is important to describe the reasons for missing data, the missing data
mechanism. There are three main missing data mechanisms described in the literature, these are
denoted MCAR, MAR and MNAR. These concepts are explained slightly different by various
authors, the notation described here are based on Hedeker and Gibbons [2006].

2.1.2 MCAR

Missing completely at random (MCAR) is the assumption that missing data occur totally random
without any relation to the other observed or unobserved data. This is the most basic missing data
mechanism and assumes missing data to occur for completely random reasons. The distribution
of missing values R are thus assumed to be independent of both covariates and the dependent
variable as

P(R|Y,X) = P(R). (2.1)

Figure 2.1 displays graphically the principle of MCAR.

Figure 2.1: Graphical display of the missing data mechanism MCAR. Y represents the depen-
dent variable vector (Y O,YM ), X are observed covariate variables, Z are variables representing
reasons for missing data and R is the missing data distribution [Schafer and Graham, 2002].

A less stringent case of MCAR is the covariate-dependent MCAR. This missing data mech-
anism is dependent on the fully observed covariates Xi, expressed as

P(R|Y,X) = P(R|X). (2.2)

This special case of MCAR allows the fraction of missing data to vary across variables. An
example of a situation where the covariate-dependent MCAR is more appropriate than the strict
MCAR mechanism is when the fraction of missing data varies in time. It is important to include
predictors for the missing data in the given analysis. In the above example the time variable
must be included in the covariate matrix of the analysis to yield unbiased results.

Another example of a covariate-dependent MCAR mechanism is found in a study on patients
aged 18 to 70, where all the patients are asked to answer a questionnaire. The elder patients may
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2.1. MISSING DATA

have higher proportions of missing data. This can be related to their age, not necessarily by the
values of the unobserved data. Again, it is important to include the variable age as a covariate
since the missing data may be explained by this variable.

A graphical presentation of covariate-dependent MCAR is given in Figure 2.2.

Figure 2.2: Graphical display of the missing data mechanism covariate-dependent MCAR. Y
represents the dependent variable vector (Y O,YM ), X are observed covariate variables, Z are
variables representing reasons for missing data and R is the missing data distribution [Schafer
and Graham, 2002].

2.1.3 MAR

MAR is the short form for missing at random and describes how the missing data distribution
R is dependent on both observed covariates Xi and the observed dependent variable vector Y O

i ,
but not on the unobserved variable vector YM

i . This is expressed as

P(R|Y,X) = P(R|Y O, X). (2.3)

We illustrate the missing data mechanism by a simple example. Missing values due to sub-
ject dropout is a common issue in longitudinal data, and occur when subjects that have entered a
study do not respond at a given time or any subsequent time points. This kind of missing values
may be related to the observations measured prior to dropout. Thus the missing data distribution
is assumed to be related to the observed dependent variable vector Y O

i of the dropout subjects.
This can be found for example in a study of mental health, where the dropout subjects have
lower scores than the remaining subjects.

The observed values of the dependent variable are related to the missing values through
the correlation structure of the data. In the previous section we described covariate-dependent
MCAR, and emphasized the importance of including covariates in the analysis model that ex-
plain possible reasons of missing values, and this is equally important for the MAR mechanism.
In addition it is essential to specify the correct variance-covariance matrix of the distribution
of the data. If these factors are not proper implemented, the analyses may not necessarily be
consistent with the underlying MAR mechanism and we can get biased estimates although the
method are expected to give unbiased results.

An expression often used in the literature of missing data is ignorable missing. Ignorable
missing is a collective term that requires the missing data mechanisms MCAR and MAR, and in
addition the parameters of the data model and for the missing data mechanism must be distinct.
This means that data can be analyzed without respect to the missing data distribution. The
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CHAPTER 2. THEORY

opposite situation of non-ignorable missing refers to the missing data mechanism explained
below, and must be handled with caution.

2.1.4 MNAR

Missing not at random (MNAR) is the missing data mechanism where missing values are as-
sumed to be related to the unobserved dependent variable vector YM

i in addition to the remaining
observed values. This is expressed as

P(R|Y,X) = P(R|YM , Y O, X). (2.4)

An example of the MNAR mechanism is when special values of a dependent variable lead
to non-response. When investigating smoking habits we may experience that missing data rely
on the actual value of the unobserved measurements, the subjects that are heavy smokers often
omit the questions about smoking while non-smokers gladly fulfill these questions.

There are no ways to confirm or reject MAR versus MNAR, since the unobserved dependent
variable vector YM

i is involved. There are developed methods that can handle data with missing
data due to the unobserved values and some of these are presented in Section 2.4, and MNAR
missing data is a topic of intense and emerging research [Hedeker and Gibbons, 2006].

2.1.5 Missing data patterns

In the literature different missing-data patterns are presented, and these are important for the
types of methods that are recommended used for each specific dataset. Some of the single
imputation methods explained in Schafer and Graham [2002] rely on missing data to occur only
as dropout, while the method of expectation maximization described in Section 2.3.1 handle
complex missing data patterns. Some frequently used examples of missing-data patterns are the
univariate, monotone and arbitrary patterns displayed in Figure 2.3. The univariate missing data
pattern can be described as one single variable containing unobserved values due to dropout,
while the monotone non-response pattern includes several variables with missing values. These
variables can be sorted in a way that consecutive variables have equal or more missing values.
In a longitudinal study with units lost to follow-up, a monotone missing-data pattern may occur.
Arbitrary missing data patterns are more complex allowing missing values in all variables and
at all time points.

2.1.6 Criteria for methods to handle missing data

Appropriate methods to handle an analysis of data with missing values are characterized by three
criteria to yield valid inferences about the data. The first two criteria are given by Rässler et al.
[2008], while the criterion of consistency (3) are presented in Carpenter and Kenward [2007].

1. Estimates of coefficients of the missing data analysis must be approximately equal to the
population estimates (that includes for example means and variance estimates).

2. The confidence intervals for estimates (with a significance level α) should have the prop-
erty of covering the true population mean at least (1-α)×100% of the time.
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Figure 2.3: Graphical display of missing data patterns, (a) univariate pattern, (b) monotone
pattern and (c) arbitrary pattern. Rows correspond to units and columns correspond to variables,
X’s are completely observed variables and Y ’s are partially observed variables [Schafer and
Graham, 2002].

3. The methods must lead to consistency, which means that the confidence intervals are
expected to be narrower when the number of units increases in the data set.

The methods described in Section 2.2 do not meet the criteria above, but, if data are assumed
to be ignorable, the methods in the subsequent Sections 2.3, 3.4 and 3.5 are stated as proper
methods to handle missing data analyses.

2.2 Simple but deficient methods

There are two main categories of deficient methods explained in Schafer and Graham [2002].
The first is those excluding units with missing values, denoted complete-case analysis and ex-
plained in the following section. The second category is those replacing missing values with
an alternative best guess. The latter is denoted single imputation methods and are described in
Section 2.2.2. Note: There exists a single imputation method that meets the criteria of methods
to handle ignorable missing data outlined in Section 2.1.6. This method will be explained in
Section 2.3.1.

2.2.1 Complete-case analysis

One of the more widespread and straight forward ways to handle missing data is the complete-
case analysis. Other names for this method are listwise deletion and case deletion. It excludes
all units in the dataset with one or more unobserved values. This leads to a complete dataset that
consists of units with completely observed variables. Many of the statistical software packages
(for example SPSS and Stata) employ this as default, which, in addition to being simple makes
this method well-known and often applied.

The complete-case analysis requires data to be strict MCAR to be valid, that is the missing
values are independent of all the covariates and observations at other measurement occasions.
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This is a rather strong assumption, especially for longitudinal data, and are seldom met. Vi-
olation of this assumption can typically lead to selection bias. For example, consider a group
of patients that participates to a questionnaire prior to a medical treatment. The same group
of patients are requested to answer the questionnaire again after this treatment. Suppose that
only the patients that still fell ill return the questionnaire, while the cured patients don’t. The
results will be too pessimistic for these patients due to selection bias. The opposite situation is
also possible, and will give more uplifting results than realistic. The degree of bias depends on
the extent of violation of the assumption of MCAR, the proportion of excluded patients and the
analysis being implemented [Rässler et al., 2008].

Even if the data can satisfy the MCAR assumptions, there are several problems arising. A
small percentage of missing values can lead to a considerable proportion of excluded units, even
when data are MCAR. An example is found in a dataset where a high number of variables are
measured, and many of the units have a few missing values. The percentage of missing values
will be low, but a considerable number of units with non-observed variables may be excluded.
This decreases the amount of data to be analyzed and also the power of the statistical results. The
number of units is limited in most studies due to economic, ethic or other reasons, and with the
complete-case analyses these samples are further confined. The complete-case method might be
inefficient, even in case of MCAR, since the number of units decrease. In multivariate cases this
gets even worse. The degree of inefficiency depends strongly on the fraction of excluded units.

In studies where data can be assumed MCAR and only a small proportion of units are ex-
cluded, this method can be a sensible choice. It is easy to implement and makes the way forward
to the real analysis short. But it should be handled with caution, if the small group of deleted
units keeps a large proportion of one feature, the analysis can still be biased.

A special case of the complete case method is the available case analysis, sometimes re-
ferred to as pair-wise deletion or pair-wise inclusion. This method deals with one analysis at the
time, and includes all units where all the variables are observed. For a longitudinal study where
each of the measurement occasions are examined separately, only those units with unobserved
values at that single time point are excluded from the analysis. As long as no comparison of the
analyses at the different measurement occasions are performed this is a legal analysis method,
and leads to a higher number of included units in each analysis. As stated above, the degree
of bias and efficiency depends on the proportion of excluded units, thus this method can reduce
some of the bias and lead to higher efficiency. However the issue of bias and inefficiency is still
present, and an additional disadvantage is that different groups of units contribute to the analysis
at different time points depending on the missing-data pattern.

2.2.2 Single imputation

In a statistical setting the expression imputation is applied with replacement of missing values
by values estimated from covariates or other observed values [Rosner, 2006]. The estimation
function can be based on available information from the observed data of the unit itself and
from other units with (similar) observed values. No units are excluded from the analysis, thus
the original number of included units is maintained at all time points. There are many ways
to estimate these imputations and some of these are described in Schafer and Graham [2002],
including hot deck imputation, marginal mean imputation, conditional mean imputation and
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conditional distribution imputation. A special case of single imputation is the hierarchical scales
imputation, outlined in Fayers and Machin [2007].

The extent of the bias of results are different for the above mentioned single imputation
methods. Some of these imputation methods may give approximately unbiased estimates. The
underestimation of variance in the estimates is common for all the single imputation methods,
and is also the reason why these methods are unsuitable for data that are not missing completely
at random (MCAR). Expectation maximization algorithm and multiple imputation are both ex-
tensions of the single imputation methods, and are more appropriate for data with missing values
since they model the variation in a better way. This is explained further in Section 2.3.

An imputation model is a useful tool to make imputations for unobserved values in a dataset.
It describes the conditional distribution of the missing values dependent on other variables in
the dataset, and also possibly on other variables important for the missing-data structure. The
imputation model must not be confused with the analysis model, that is used to examine the
dataset, for example to do inference about a sample. All variables with missing values and
variables that can predict or explain the missing values are included in the imputation model,
and can be thought of as multivariate responses. This way of structurizing the variables makes
the imputation model a device to preserve important features of the joint distribution of non-
observed variables. The analysis model on the other hand, makes distinctions between dependent
and independent variables, and keeps up this relationship of variables throughout the analysis.

Last observation carried forward

The method of last observation carried forward imputes values for unobserved data based on
former observed values, thus it is one of the single imputation methods described above. This
method applies especially to longitudinal data where the units are observed at several occasions,
and some units are lost-to-follow up or have intermittent missing values. It imputes values equal
to the last observed response for the variable for each unit. This method gives potentially bias for
all types of plausible missing-data mechanisms, and is almost never good fitted to the expected
behavior. It should practically never be used according to Carpenter and Kenward [2007].

2.3 Imputation methods

In the section above we have described the missing data mechanisms MCAR (including depen-
dent MCAR), MAR and MNAR, and the properties of these mechanisms. Both MCAR and
MAR mechanisms are referred to as ignorable missing, and can be analyzed without loss of
information. It must be emphasized that this relies on the use of analysis methods based on the
full likelihood function [Diggle et al., 2002]. The expectation maximization (EM) algorithm and
multiple imputation (MI) are imputation methods that provide unbiased parameter estimates and
their belonging standard errors as required by the criteria in Section 2.1.6.

2.3.1 Expectation maximization

Expectation maximization (EM) is a method of obtaining estimates of coefficients from an anal-
ysis on base of Bayesian thinking, introduced by Dempster et al. [1977]. It applies maximum
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likelihood estimation (ML) to draw population inferences based on observed values from a full
likelihood function. Schafer and Graham [2002] describes the EM algorithm as follows:

”The key idea of EM is to solve a difficult incomplete-data estimation problem by iteratively
solving an easier complete-data problem.”

For monotone missing data patterns (results of dropout, see Figure 2.3) the full-distributional
likelihood can be expressed in closed form, and the log-likelihood function may be expressed
as a sum of functions, each function dependent of one parameter only. Maximum likelihood
(ML) estimates are calculated by maximizing the log-likelihood function with respect to each
parameter separately. For some models the full likelihood function exists, but the log-likelihood
does not represent the parameters distinctly and thus maximizing the factors separately will not
necessarily maximize the likelihood. Especially for complex missing data structures like the
unstructured pattern in Figure 2.3 the direct calculation of ML estimates is not feasible. Iterative
methods to approximate the full likelihood function have been developed for situations where
explicit calculation of ML estimates are not available [Diggle et al., 2002].

The expectation maximization algorithm is a general iterative algorithm for ML estimation in
incomplete-data problems. It applies the observed-data likelihood, also referred as the likelihood
ignoring the missing data mechanism [Schafer and Graham, 2002].

The estimated parameter values θ̂ that maximizes the observed-data likelihood function have
attractive properties. The estimated parameters tends to be approximately unbiased in large sam-
ples, and the estimated variances obtained are close to what is theoretically desirable. Thus the
EM algorithm fulfill the criteria of methods handling data with missing values. The method
assumes a large number of data so that the EM estimates can be approximately unbiased and
normally distributed. In addition it assumes data to be ignorable, that is MCAR or MAR mech-
anism. The procedure of the EM algorithm builds on a relatively old ad hoc idea for handling
missing data Diggle et al. [2002]. First we replace the missing values by initial values (for
example estimated values). Then iteration over the following steps are carried out.

1. Estimate parameters of the full likelihood model by maximum likelihood estimation.

2. Re-estimate the ”missing values” assuming the new estimated parameters from second
step is correct.

Iteration must be continued until convergence, that is until values that are re-estimated by the
second step approximate the previous estimated values. The notation ”missing values” is used
to separate the EM algorithm from the ad hoc idea. In EM the ”missing data” are not the
actual missing data Ymis, rather the functions of Ymis appearing in the complete-data likelihood.
The second step above is called the E step, which calculates the conditional expectation of the
”missing data” given the observed data and the estimated parameters θ̂. The first step is denoted
the M step and estimates the new set of parameters from maximization of the observed complete-
data log-likelihood. The algorithm can be quite easily implemented, and each iteration consists
of one run of the E step and one of the M step. EM can be shown to converge reliably if the
observed-data likelihood function is bounded [Diggle et al., 2002].

One drawback for the expectation maximization algorithm is that with large fractions of
missing data the convergence of the iterations can be very slow. In some problems the compu-
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tation of the M step can be difficult because no closed form of the likelihood function exists.
Diggle et al. [2002] presents some extended algorithms of EM that gives solutions for the prob-
lems above. Some statistical analysis software available for EM estimation are described in
Acock [2005] and Schafer and Graham [2002].

Another imputation method based upon the likelihood function is multiple imputation de-
scribed in the following section.

2.3.2 Multiple imputation

The method of multiple imputation (MI) is a continuation of the method of single imputation
from a conditional distribution [Schafer and Graham, 2002]. It retains much of the attractiveness
of the single imputation method and gives unbiased results with respect to the estimated variance.
MI produces m plausible datasets where each could have been the complete dataset if all values
were observed. The completed datasets can be combined by easy arithmetic [Rubin, 1987] to
obtain estimates and standard errors that reflect uncertainty in the missing-data and the finite-
sample variation. This method makes use of complete-data techniques and software already
possible which is very favorable.

Figure 2.4: Schematic representation of multiple imputation with m imputed datasets [Schafer
and Graham, 2002].

Multiple imputation is based on a Bayesian way of thinking, in the sense that the distribution
in which the imputations are drawn from is a full-conditional posterior distribution. To perform
MI successfully, the imputations need to be proper according to the criteria in Section 2.1.6.
This means that the uncertainty about the parameters in the imputation model must be taken
into account when imputing unobserved values. Both the missing data and parameters of the
imputation model have distributions, and this feature is important in the MI setting.

2.3.3 Why use MI?

To perform proper multiple imputation we need a prior distribution for the parameters of the
imputation model and a likelihood function for the variables that have unobserved values. If a
large sample is obtained, the likelihood function can be approximated by the imputation model
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as done by EM algorithms, and the prior distribution for the parameters can be uninformative.
Further a posterior distribution [θ, ymis|yobs] must be obtained, where θ represents the sampled
parameters of the imputation model drawn from the prior distribution. The sampled values of
ymis are used as imputations in the dataset. This sampling is done m times to obtain m imputed
datasets. In this procedure the parameters of the imputation model are drawn for each imputa-
tion, so these parameters are unique for each imputation. This way to treat the model parameters
as stochastic variables with uncertainty and not as fixed values (as in prediction) is the impor-
tant property of MI that ensures the variance estimates to be unbiased. The total variance, that
consists of within-imputation and between-imputation variance is therefore approximately unbi-
ased for data assumed MCAR or MAR. The uncertainty is represented in both the parameters of
the imputation model and the random sampling from the imputation model to draw imputations
for the missing values. The EM algorithm on the other hand, estimates the parameters of the
analysis model only once, thus they are considered as fixed parameters.

2.3.4 Imputation model

As for single imputation from a conditional distribution we must create an imputation model to
obtain the imputations. The imputation model must be at least as rich as the analysis models.
This is to ensure that all variables that may contain information about other variables in the
analysis model are represented. In addition some additional variables may be included in the
imputation model, according to Buuren et al. [1999]. These variables are divided in two groups,
variables that are known to have influenced the missing-data pattern, called U-variables, and
variables that explain much of the variance in the unobserved variables, denoted V-variables.
Last step in the determination of the imputation model is to exclude those of the U- and V-
variables that have too many unobserved values within the group of incomplete cases.

2.3.5 Properties

In Schafer and Graham [2002] an example of MI is presented, with a bivariate normal distribu-
tion as base for the full likelihood function. MI does not require all the variables to be normally
distributed, but this assumption is used in many publications about MI. This is because the mul-
tivariate normal distribution is one of the easiest approach to the method. MI shares some of
its properties with the EM algorithm, for example do both rely on large-sample approximations
(though this assumption is stronger for the EM algorithms). MI and EM both use the observed-
data likelihood function to approximate the likelihood function. MI implies uncertainty in the
imputed values through both the parameters of the imputation model and the drawn imputation
values themselves. This stands in contrast to EM that computes the joint likelihood function
with fixed parameters, and imply uncertainty only in the imputed draws from this imputation
model.

Multiple imputation gives unbiased estimates and variance under MCAR and MAR, and
satisfies the criteria for methods to handle missing data. Even if data are MNAR the method of
MI is assumed to be a better method than the above described simple methods [Rässler et al.,
2008]. Software available to perform MI is listed in Schafer and Graham [2002] and Acock
[2005].
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Rubin’s rules

Rubin’s rules Rubin [1987] is a method to combine the results from m imputed datasets for a
scalar parameter. For notation here we use Q as the parameter quantity (for example a regression
coefficient), Q̂ is the estimated value for Q and

√
U denotes the estimated standard error if the

original data were complete. This method assumes a large enough sample to ensure that Q̂ is
approximately normal distributed with mean Q and variance U. There are one estimated Q̂ and
U for each of the m datasets, thus we have the notation [Q(j),U(j)], where j = 1, 2, · · · ,m.

The overall estimate is expressed as

Q̄ = m−1
m∑
j=1

Q̂(j) (2.5)

The uncertainty in Q̂ has two parts, within-imputation variance

Ū = m−1
m∑
j=1

U (j)

and between-imputation variance

B = (m− 1)−1
m∑
j=1

[
Q̂(j) − Q̄

]2

The total variance is a sum of the two parts of variance

T = Ū +
(

1 +
1
m

)
B

Now we have an estimated combined parameter Q̄, with appurtenant standard error
√
T

which is the unbiased estimator for the dataset if no values were missing. To obtain p-values,
Rubin recommended using an approximation to the Student’s t distribution with ν degrees of
freedom

Q̄−Q√
T
∼ tν

ν = (m− 1)

1 +
1(

1 + Ū
m

)
B

2

When the degrees of freedom ν is large, total variance is well estimated and thus the number
of imputed datasets m is large enough.

The number of imputed datasets required varies from dataset to dataset, dependent on the
quality of the imputation model and the structure in the data. Quantities like 5, 10, up to 20
and 50 imputations are advised, and this issue is well discussed in the literature [Schafer and
Graham, 2002]. In recent years the recommended number of imputed datasets m has increased
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due to new methods to estimate the error in results because of a finite number of imputations.
As a rule of thumb the number of imputations should be raised if p-values are to be calculated.
The time to make 10 versus 20 imputed datasets is seldom of large consequence compared to
the effort and time it takes to establish the imputation model.

2.4 Full model-based methods assuming MNAR

All of the methods described above assume the missing data mechanism to be MCAR or MAR,
but in certain situations the assumption that data are MNAR may be plausible. To handle this
the missing data distribution R must be taken into account when unobserved values are to be
imputed. Especially is MNAR potentially the issue in clinical studies, where the patients may
have a high fraction of unobserved values, or possibly drop-out, closely related to the values
that are not observed. Schafer and Graham [2002] presents two main types of model-based
methods that assumes data to be MNAR, that is the selection models and the pattern-mixture
models, both described below. Hedeker and Gibbons [2006] state that several researchers warn
against reliance of a single MNAR model, because the assumptions about the missing data are
impossible to access with the observed data. Thus we should use MNAR models with caution,
and perhaps examine several models to conduct a sensitivity analysis of the missing data.

2.4.1 Selection models

A selection model consists of a distribution for the complete data, and a distribution of the
missing-data given the data itself. This means that a joint distribution of the complete data Y and
the missing-data distribution R as

P(Y,R|θ, ξ) = P(Y |θ) · P(R|Y, ξ)

θ is the unknown parameters of the complete-data population, while ξ is the parameters of the
conditional distribution of the missing-data distribution given the complete data. The likelihood
function may be calculated by integrating the equation above over all values of the missing-data
Ymis. The maximum of the likelihood is not always possible to find analytically, so iterative
methods are needed to approximate θ̂’s. Another issue with the selection models is that they are
extremely sensitive to the distributional shape that is chosen for the population.

2.4.2 Pattern-mixture models

The other type of model-based models presented in Schafer and Graham [2002] is the pattern-
mixture models, which groups the whole sample on basis of the missing-data distribution. A
model of this form may be written as

P(Y,R|θ, ξ) = P(R|η) · P(Y |R, ν)

θ and ξ have the same interpretation as above, η represents the proportions of the population
that end up in each of the missing-data groups and ν is the parameters of the complete-data
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distribution given the missing-data group. Pattern-mixture models are suffering from the fact
that it is difficult to estimate ν for the groups containing unobserved values, so heavy restrictions
or unverifiable assumptions must be made. On the other hand, these models are not as sensitive
to the distribution of the population as the above described selection models. Development and
incorporation of full model-based methods into suitable software are necessary to be able to
apply these methods for scientific research. Schafer and Graham [2002] recommend the use
of MI and EM algorithms for handling missing-data problems until the appropriate software is
accessible.
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3
Longitudinal data analysis

Longitudinal studies have both advantages and disadvantages over cross-sectional studies. First,
a longitudinal study can give more powerful results with the same number of subjects compared
with a cross-sectional study. Another way to formulate this is that longitudinal studies need
fewer subjects included in the study to obtain the same statistical power as a cross-sectional
study. Second, in a longitudinal study each subject is measured more than once, and can serve
as his/her own control. The within-subject variability is often smaller than the variance between
subjects, and the between-subject variability can be separated from the measurement error. This
results in more efficient estimators of treatment-related effects compared with cross-sectional
studies. Third, a longitudinal study can measure individual trends, or evolution in time, of de-
pendent variables. This determines growth and changes at individual level, which is not possible
in cross-sectional studies. Finally, these kind of studies allow us to separate the effect of changes
over time within subjects from the differences between subjects at baseline.

Observations from a repeated measures study are assumed clustered dependent since more
observations of the same variable are measured on each subject. This leads to a need of more
sophisticated statistical methods than for ordinary cross-sectional studies. Very common issues
of longitudinal studies are dropout or intermittent missing values at one or more occasions dur-
ing the study. Simple statistical analysis methods do not handle this problem without inducing
possibly biased results. One solution of this is to impute the missing values prior to statistical
analysis. Other methods like mixed regression models and covariance pattern models use all
available data in the analyses, which increases the statistical power and prevents biased esti-
mates.

3.1 Analysis considerations

When modeling longitudinal data there are several properties that must be considered. Quite
simple statistical analyses are available for continuous normally distributed outcome variables
in data without missing values, for example the repeated measures ANOVA. To employ large
sample theory to approximate non-normally distributed variables, the number of subjects m
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allocated in each group should exceed 50. Also the number of observations per subject ni should
be considered. If each subject is measured twice, a simple change score may be calculated. An
example of a change score is to calculate the difference in observations for each subject. This
makes analysis methods for cross-sectional data suitable, such as the analysis of covariance
(ANCOVA). This approach relies on balanced design of data and is not very suitable for data
with missing values. For datasets where the number of observations varies between subjects,
more general methods are required, for example mixed regression models (MRM).

For one-sample analyses, the only terms needed in the analysis model is the random fac-
tors. No between-subject covariates is required since all subjects are assumed to be randomly
sampled from the same population. For two-sample situations the variables that describe the
differences between groups must be included in the model. The terms used above are explained
in the following sections. The last thing to consider for longitudinal data modeling is the vari-
ance/covariance structure of the panel data. This is further explained in the following sections.

3.2 General approaches

A wide range of methods to model longitudinal data are available. The following methods are
discussed in Hedeker and Gibbons [2006]. The simplest method, also denoted as the derived
variable approach, implies combination of the repeated measurements into one summary vari-
able. This causes a longitudinal study to be simplified to a cross-sectional study since each
subject obtain one single combined measurement. A derived variable may for example be an
’averaged over time’-variable, ’changed score’-variable, ’area under a curve’-score or ’linear
trend across time’-variable. A problem with this methods is the strong dependency of balanced
design, which makes it unsuitable for data with missing values.

The second approach to longitudinal data analyses are the univariate repeated measures anal-
ysis of variance (ANOVA). This method requires several assumptions to be met and is therefore
limited in its application but is relatively easy to compute and implement. The most critical as-
sumption for longitudinal data, besides the assumption of balanced data, is sphericity. Sphericity
is defined in Rabe-Hesketh and Skrondal [2008] as the assumption that all pairwise differences
between responses have the same variance. This is rarely met when analyzing longitudinal data,
and violations can lead to skewed F-distributions. ANOVA takes into account that subjects can
have individual baseline observations but no subject-specific evolution in time.

Multivariate ANOVA (MANOVA) is an approach to analyze longitudinal datasets but holds
similar restrictions as the univariate ANOVA described above. It does not handle missing values
in data and in addition it assumes the variables to be measured at the same occasions. It is
therefore not suitable for longitudinal datasets with non-responses.

The fourth approach is the mixed regression models (MRM) that can be used for both cat-
egorical and continuous, and non-normally and normally distributed outcome variables. MRM
give unbiased results if data are assumed ignorable (MCAR and MAR), and allow the measure-
ment occasions to vary among the units. The method handle both time-invariant and time-
varying variables and is therefore a suitable method to analyze longitudinal data with non-
responses. In this report the term mixed regression models refers to the linear mixed regres-
sion models that assumes dependent variables to be continuous, if not specified otherwise. The
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generalized linear mixed regression models are presented in Section 3.6.1.
The method of generalized estimating equations (GEE) is an alternative to the generalized

mixed regression models in the sense that both methods handle some missing values, take time-
varying covariates and different types of outcome variables. The drawback for this method is
the more strict requirement for missing values to be ignorable, missing data are assumed to be
explained by covariates in the model and not by observed values at other measurement occasions.

3.3 Repeated measures ANOVA

In longitudinal datasets some observations are dependent of other observations since more than
one observation may be measured on the same subject. This must be taken into account when
analyzing such types of data. Repeated measures ANOVA is a method to examine possible
differences in means, that is between two or more groups, and from one, two or several samples.
The method models the correlation structure of observations within subjects by the inclusion
of a random subjects effect in the regression formulation. This random subject effect allows
subjects to have individual baseline observations, thus we can partition the variance in explained
variance by the random effect and unexplained variance, also known as the residual error.

3.3.1 Assumptions of repeated measures ANOVA

As stated above the method of repeated measures ANOVA have many assumptions that must be
met to obtain unbiased estimates from the analysis. All subjects must be measured at the same
fixed time points. The data are assumed complete and balanced in terms of time points n, but
the size of the groups h may be unequal. Thus data with missing values must be handled by the
complete-case method or one of the imputation methods prior to the analysis. The dependent
variables are assumed multivariate normally distributed, and the variance-covariance matrix of
the data with respect to the occasions is assumed equal to the compound symmetry structure.
The latter consists of two layers, that is the assumption of homoskedasticity and sphericity.
Homoskedasticity is defined as the variance of the dependent variable to be equal at all measure-
ment occasions, while sphericity refers to the assumption that all pairwise differences between
responses have the same variance, as stated above. This implies that consecutive observations
are equally correlated as observations more distant in time, and that the variance at all occasions
are equal. The assumption of compound symmetry is seldom met for longitudinal data. Rabe-
Hesketh and Skrondal [2008] write that a less strict assumption of sphericity alone is sufficient
for the repeated measures ANOVA to be valid.

Repeated measures ANOVA claims to be fairly robust to violations of normality and ho-
moskedasticity. If sphericity cannot be assumed, the Greenhouse-Geisser or Huynh-Feldt cor-
rection methods can be applied to adjust the degrees of freedom for the F-test (explained in
Section 3.3.2). The idea of these correction methods is to decrease the degree of freedom be-
cause more parameters are necessary to model the covariance matrix.

In the next section some notation is introduced to further explain the method of repeated
measures ANOVA. This notation is also used with mixed regression models, covariance pattern
models and generalized estimating equations in subsequent sections.
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Notation

All sample members in the longitudinal study are denoted subjects. These subjects are the units
measured during the study, and can be patients treated at a hospital, football players on a team
or plants on a field as examples. The dependent variable measured repeatedly on each subject
is called the within-subjects factor. Examples of such within-subjects effects are outcome of
quality of life-questionnaires, type of treatment for patients or quantity of irrigation for plants.
Variables measured on independent groups of sample members are called between-subject vari-
ables, and examples are gender of subjects, the football team, the area of which the plant grows
and so on.

When performing repeated measures ANOVA we have to calculate sum of squares for both
fixed and random terms in our analysis model. First we look at the analysis model expressed as

yhij = β0 + β1tj + β2xh + β3xhtj + v0i + εhij , (3.1)

where h is the number of groups, h = 1, 2, · · · , g, i is the number of subjects in group h,
i = 1, 2, · · · , Nh, and j is the number of measurement occasions, j = 1, 2, · · · , n. An indicator
variable must be created for each of the groups except the chosen baseline category. There are
N =

∑g
h=1Nh subjects included in the dataset. The measurement occasions are assumed equal

for all subjects, and we also assume balanced design. yhij is the outcome variable, assumed
normally distributed and continuous. The rest of the variables can be interpreted as follows:

β0 = grand mean,

β1 = effect of time tj ,

tj = time variable,

β2 = effect of group xh,

xh = group variable,

β3 = interaction coefficient for the group by time interaction,

v0i = individual difference component for subject i,

εhij = measurement error for subject i in group h at time j.

(3.2)

Equation (3.1) may be expressed in matrix form as

yi = Xiβ + Zivi + εi, (3.3)

where yi is the response vector for subject i, Xi is the covariate matrix for subject i, β is the vector
of fixed regression parameters, Zi is the random effects design matrix for subject i, vi denotes
the vector of random subjects effects and εi is the error vector. Note: It is only one random term
in a repeated measures ANOVA, the random subjects effect. In Section 3.4 we explore mixed
regression models with more than one random factor, therefore the matrix representation for
the random effects are introduced here. For the analysis model in Equation (3.1) the covariate
matrix Xi and random effects design matrix Z are represented as

19



CHAPTER 3. LONGITUDINAL DATA ANALYSIS

Xi =


1 ti1 xi xiti1
1 ti2 xi xiti2
...
1 tini xi xitini

 Zi =


1
1
...
1

 . (3.4)

The random subjects variables v0i are assumed normally distributed with mean zero and
variation σ2

v0 , and εhij are similarly assumed normally distributed with mean zero and variation
σ2.

We express the association between random terms in model (3.1) as

E(yhij) = β0 + β1tj + β2xh + β3xhtj

Var(yhij) = V ar(v0i + εhij) = σ2
v0 + σ2

ε ,

Cov(yhij , yhi′j) = 0 for i 6= i′,

Cov(yhij , yhij′) = σ2
v0 for j 6= j′.

(3.5)

The expectation of yhij is only related to the fixed terms of the model, that is the intercept,
the covariate gender, the time variable and the gender by time interaction. In a simple linear
regression model all the variance between observations (assumed independent) are due to the
measurement error ε, and all observations are assumed to have equal variance. This variance
is now partitioned into two parts, the subject-specific variance and the residual variance. The
unexplained variance is decreased because some variance is explained by the variability in the
population of subjects.

The first covariance statement in Equation (3.5) indicates that measurements from different
subjects are independent of each other, while the second covariance statement tells us that mea-
surements of the same subject are correlated equally for any pair of measurements observed on
the same subject. This correlation is denoted the intra-class correlation, and is given as

Corr(yhij , yhij′) =
σ2
v0

σ2
v0 + σ2

ε

.

The covariance matrix of the repeated measures ANOVA model in Equation (3.1) is pre-
sented as 

σ2
v0 + σ2

ε

σ2
v0 σ2

v0 + σ2
ε

σ2
v0 σ2

v0 σ2
v0 + σ2

ε
...

. . .
σ2
v0 · · · σ2

v0 + σ2
ε

 (3.6)

and we observe that it is equal to the above described compound symmetry structure. This is
seldom realistic for longitudinal data because the variance tends to differ between groups and in
time. In addition are consecutive measurements often more correlated than observations more
distant in time.
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3.3.2 Repeated measures ANOVA table

When analyzing a repeated measures ANOVA, we introduce the dot notation to represent the
mean of groups, time points, and subjects. This notation is presented as follows:

ȳ... = average across groups, time points and subjects,

ȳhi. = average for subject i in group h across time points,

ȳh.j = average for group h at time point j across all subjects in the group,

ȳh.. = average for group h across time points and subjects,

ȳ..j = average for time point j across groups and subjects.

Further, SS is the sum of squares, calculated as listed in Table 3.1. MS is the Mean of Squares
and is calculated by dividing the sum of squares by the corresponding degrees of freedom. The
sum of squares can be found for all terms in the analysis model in Equation (3.1), and are used
in the calculation of F statistics as described below.

Table 3.1: Repeated measures ANOVA table for the regression model in Equation (3.1). SS is
the sum of squares, g is the number of groups, n is the number of measurement occasions and
Nh is the number of subjects in group h.

Source SS df

Group SSG = n
∑g

h=1Nh(ȳh.. − ȳ...)2 g-1

Time SST = N
∑n

j=1(ȳ..j − ȳ...)2 n-1

Group×Time SSGT =
∑g

h=1

∑n
j=1Nh(ȳh.j − ȳh.. − ȳ..j + ȳ...)2 (g-1)×(n-1)

Subjects in groups SSS(G) = n
∑g

h=1

∑Nh
i=1(ȳhi. − ¯yh..)2 N-g

Residual SSR =
∑g

h=1

∑Nh
i=1

∑n
j=1(ȳhij − ȳh.j − ȳhi. + ¯yh..)2 (N-g)×(n-1)

Total SST =
∑g

h=1

∑Nh
i=1

∑n
j=1(ȳhij − ȳ...)2 (Nn-1)×(n-1)

Group by time interaction

The first term in model (3.1) that we want to investigate is the group by time interaction. The
null hypothesis is formulated as
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HGT : β3 = 0 FGT = MSGT
MSR

= SSGT /(g−1)(n−1)
SSR/(N−g)(n−1) .

F is the statistic that is calculated and compared to the F-distribution, as given in Kvaløy and
Tjelmeland [2000]. If this hypothesis is rejected there are three conclusions that can be drawn:

1. The between-group differences vary across time,

2. The between-group curves are not parallel across time,

3. The group and time effect are confounded by the interaction, and separate group effects
or time effects cannot be estimated.

The latter describes the importance of testing the interaction prior to the main effects. Tests
of the main effects group and time can be carried out if the group by time interaction is insignif-
icant. This is performed in a similar way as the above gender by time interaction.

3.4 Mixed regression models

A repeated measures ANOVA can be thought of as one of the simplest mixed regression models.
A repeated measures ANOVA consists of both random subjects effects and covariates, and in
a similar way a mixed regression model consists of both fixed and random effects (hence the
name mixed model). Fixed factors are the covariates of the model that we want to estimate in
the analysis. Examples of fixed factors are age and gender, and the interaction of fixed factors
can be included in the same way as in a simple regression model. Random factors are variables
in which we are not explicitly interested in estimating coefficients. The reason for inclusion
is to control for the variance related to the random variables. Examples of such variables are
subjects in a repeated measures ANOVA model, schools and children in a multi center study of
children and reading and mothers and children in a study of birth weight. If we can control for
these between-subjects factors we are rewarded with increasing statistical power, which makes
us able to discover correlations among variables that otherwise are hidden.

The following sections are based on the theory in Hedeker and Gibbons [2006], Rabe-
Hesketh and Skrondal [2008] and Fitzmaurice et al. [2009].

3.4.1 Introduction

We have previously explored the univariate and multivariate ANOVA models for repeated mea-
sures. The univariate ANOVA models assumes sphericity which is not a common feature of
longitudinal datasets. Neither of the methods handle missing values in the data, thus we have
to omit subjects with non-responses from the data prior to the analysis and the results may be
biased. The time variable is restricted in these models, all subjects must be measured at the same
fixed time points, and in a MANOVA the distances in time between all consecuting measuring
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occasions must be equal. Both univariate and multivariate ANOVA models have possibilities to
examine group trends across time, but subject-specific trends are not accessible.

Mixed regression models (also denoted MRMs) are more general models to analyze longi-
tudinal data in a flexible and correct way with respect to bias induced by missing values. First,
the variance structure can be specified more generally than the compound symmetry, but less
costly than the alternative unstructured covariance matrix where all variances and covariances
are allowed to be unequal. The time variable can be continuous, and subjects can be measured
at individual time points. The mixed models can handle ignorable non-responses in longitu-
dinal datasets without inducing bias to the estimates, since all subjects with observed values
are included in the study. The sample is assumed representative for the population of subjects.
Compared to complete-case data the mixed models analysis has increased power, which is an
important additional advantage in such analyses. Both time-variant and time-invariant covariates
can be included in mixed models.

Variants of mixed models are known as ’random-effects models’, ’multilevel models’, ’hier-
archical linear models’, ’variance component models’, ’two-stage models’ and ’random regres-
sion models’, to mention some. The common feature for all these models is the inclusion of
random subjects effects into the regression models. The random subjects effects describe each
units deviation from the population mean intercept, and take part in the explanation of the cor-
relation structure in the longitudinal data. Alternatively, they describe the degree of variation
between subjects in the population of subjects.

Simple linear regression models

A simple linear regression model with time variable tij and dichotomous grouping variable xh
can be written as

yhij = β0 + β1tij + β2xh + β3xhtij + ξhij . (3.7)

yhij is the response for subject i, i = 1, 2, · · · , Nh at occasion tij , where the time variable
can be continuous and individual for each subject. The model above assumes all observations
to be independent. This can be expressed by the variance component ξ, that is assumed to be
independent normally distributed with mean zero and common variance σ2.

3.4.2 Random intercepts mixed regression models

In longitudinal data the assumption of independence is violated since we cannot assume obser-
vations on the same subject to be uncorrelated. To control for this correlation we simply add
a random subjects effect to the regression model, thus the variance due to subject-specific fea-
tures is separated from the residual variance. A random intercepts mixed regression model for a
two-sample analysis is presented as

yhij = β0 + β1tij + β2xh + β3xhtij + v0i + εhij . (3.8)

Interpretation of the parameters are equal to the parameters in the repeated measures ANOVA
model as given in Equation (3.3.1). The variance ξhij in Equation (3.7) is partitioned into two
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variance parts, the random subjects effect and the residual error, expressed as

ξhij = v0i + εhij .

The random subjects effects v0i have mean zero and common variance σ2
v0 . The variation due

to subject-specific features is thus separated from the residual and leads to a decrease in the
unexplained variance. The variances σ2

v0 are assumed identical and independent between sub-
jects, and the residuals εhij are assumed identical and independent of each other and the σ2

v0
conditionally on yhij . This leads to a compound symmetry structure, which is one of the ”strict”
assumptions of repeated measures ANOVA. Thus the analysis by a random intercepts mixed re-
gression model and the repeated measures ANOVA assuming compound symmetry gives similar
results.

The compound symmetry can be expressed by the following covariance matrix, here with
three measure occasions, t=0, 1, 2:

σ2 + σ2
v0

σ2
v0 σ2 + σ2

v0
σ2
v0 σ2

v0 σ2 + σ2
v0

 . (3.9)

(3.10)

An alternative way to represent the model in Equation (3.8) is by a hierarchical, or multilevel
structure. The equation is partitioned into a within-subjects model

yhij = b0i + b1itij + εhij (3.11)

and a between-subjects model

b0i = β0 + β2xh + v0i,

b1i = β1 + β3xh.

The random subjects effects v0i can be interpreted as each subjects deviation from the group
intercept, thus it represents the individual intercepts and are denoted random subjects or random
intercepts effects. A random intercepts MRM assumes the slopes of all subjects to be equal,
so all lines on a profile plot are parallel for all group means. A profile plot displays the group
means of the dependent variable over time, with lines connecting the time points.

3.4.3 Random slopes mixed regression model

Now we have explored the random intercepts mixed regression model, where random subjects
effects are included in the linear regression model. In many situations this model may be too
simplistic. By using this model we assume that all women have the same progress for the
response variable over time, and all men the same. The strict variance assumption of compound
symmetry is often violated in longitudinal data. The next step in developing a MRM is to
examine the extent of heterogeneity of subjects within groups with respect to their slopes. In
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other words, we are examining whether a random slopes effect is statistically significant. A
random slopes MRM, also denoted random-coefficient MRM, is expressed as

yhij = β0 + β1tij + β2xh + β3xhtij + v0i + v1itij + εhij . (3.12)

We now want to express Equation (3.12) as a two-level model similar to the two-level model
in Section 3.4.2. The within-subjects model in Equation (3.11) is unchanged, but the between-
subjects model is augmented as

b0i = β0 + β2xh + v0i,

b1i = β1 + β3xh + v1i.

As before, b0i is the intercept parameter for each subject i and b1i is the subject-specific slope
parameter indicating the development in response variable over time for subject i. The new term
v1i is the individual slope deviation from the population slope for subject i.

We now have a model with subject-specific intercepts and time trends (v0i and v1i), in addi-
tion to the population intercept and change in time (β0 and β1). The fixed effects of the random
intercepts MRM are unaltered, but the variance-components of the random slopes MRM must be
investigated further. The error εhij is independendent conditional on v0i and v0i, and normally
distributed with mean zero and variance σ2. The random subjects and slopes effects are assumed
to be bivariate normal with mean vector zero and covariance matrix given as

Σv =
[
σ2
v0 σv0v1

σv0v1 σ2
v1

]
.

The interpretation of σ2
v0 and σ2

v1 is the heterogeneity of subject intercepts and slopes, re-
spectively. The notation σv0v1 denotes the covariance of v0 and v1, which may be interpreted as
the relation between a subjects intercept and the subjects individual slope parameter. So, if σv0v1
is positive we would interpret this as follows: A subject with an intercept above the population
mean (higher initial values) have steeper slopes than subjects with smaller initial values.

One of the important advantages of the random slopes mixed regression model compared
with the random intercepts model is the more slack variance assumptions, compound symmetry
is no longer required. A total of four variance components are estimated in the analysis, and
model a more flexible variance-covariance relation of the data, see covariance matrix in Equa-
tion (3.13). This correlation structure is well explained in Rabe-Hesketh and Skrondal [2008].
In longitudinal data it is natural to expect observations that are measured subsequently to be
more correlated than observations more distant in time. This model include this in the model as-
sumptions, and is therefore more flexible and in many settings more realistic than the compound
symmetry.

Random coefficient structure are displayed in Equation (3.13) for data with three measure
occasions, t=0,1,2:

 σ2
v0 + σ2

σ2
v0 + σv0v1 σ2

v0 + 2σv0v1 + σ2
v1 + σ2

σ2
v0 + 2σv0v1 σ2

v0 + 3σv0v1 + 2σ2
v1 σ2

v0 + 4σv0v1 + 4σ2
v1 + σ2

 . (3.13)
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Decomposing the time effect

Till now we have assumed the time trend to be linear, but this may be a strict assumption that
models the data poorly. Particularly this gets critical for studies with many measurement oc-
casions. The next step in modeling longitudinal data can therefore be examination of quadratic
(and maybe cubic) time trends. One alternative to introduce a quadratic trend is to simply include
a quadratic time term in the regression model as

yhij = β0 + β1tij + β2xh + β3xhtij + β4t
2
ij + β5xht

2
ij + v0i + v1i + εhij . (3.14)

An interaction group by time squared may also be included.
An alternative approach to introduce polynomial time trends is to create a dichotomous

variable for each measuring occasion. This requires equal fixed time points for all subjects,
and makes comparison of progress in time between gender less informative. Several parameters
must be estimated, thus we loose degrees of freedom. The overall progress of the dependent
variable over time is not described.

For data with measures at time t = 0, 1, 2 the quadratic time term is t2 = 0, 1, 4, which
is nearly collinear to t. To avoid this we can express time in centered form, for example t′j =
(tij − t̄). The interpretation of the main intercept must be adjusted for the shift in the time
variable, and must be interpreted as the mean of all observations at the midpoint of time t′ij .

The centered time tij denotes the original time notation, while t′ij corresponds to the centered
time. β0 is the original intercept coefficient and β′0 is the centered time intercept coefficient
displayed as

β0 + β1tij = β0′ + β1tij′ = β0′ + β1(tij − t̄). (3.15)

The group by time interaction is also affected by the centering of time. Results for fixed effects
are not altered by the centering of time, neither are the other effects in a random intercepts
regression model (group effect, random subject effects and residual variance). Note: Models
with polynomial time trends are still denoted linear regression models since they are linear in
terms of regression covariates other than time [Hedeker and Gibbons, 2006].

When the number of measuring occasions increases, the method of centering time points
gets rather complicated. A more general method to examine polynomial time effects is by using
orthogonal polynomials. Comparisons of time-related effects such as change relative to baseline,
consecutive time comparisons or contrasting each time point to the mean of subsequent time
points are also possible to examine through orthogonal polynomials.

3.4.4 Random slopes mixed regression model, quadratic time trend

We can introduce a squared time variable to model the response variable as a quadratic curve
along the time axis. By including t2ij we obtain the model expressed as

yhij = β0 + β1tij + β2xh + β3xhtij + β4t
2
ij + β5xht

2
ij + v0i + v1itij + εhij .
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Again this model can be represented as a two-level model. The within-subjects model is given
as

yhij = b0i + b1itij + b2it
2
ij + εhij (3.16)

and the between-subjects model is presented as

b0i = β0 + β2xh + v0i,

b1i = β1 + β3xh + v1i,

b2i = β4 + β5xh.

The squared time parameter β4 represents the curvation of the group mean, while β5 refers
to the deviation in curvation for the group h when xh 6= 0. The interpretation of the remaining
parameters in this model are not modified compared to the simpler random slopes model. The
mixed model can be extended even further by including higher-degree time variables or more
random effects, but the principle of analyzing these models are basically the same as for the
models described above.

3.4.5 Curvilinear mixed regression models

The random slopes MRM with quadratic time trend induces a possible extension of the ran-
dom effects model, that is a random squared time effect. This effect can be described as the
subject-specific deviation in curvation from the population mean. This mixed regression model
is denoted curvilinear MRM, and is displayed as

yhij = β0 + β1tij + β2xh + β3xhtij + β4t
2
ij + β5xht

2
ij + v0i + v1itj + v2it

2
j + εhij . (3.17)

The random curvilinear effect v2i is multiplied by the squared time variable. In the same way as
for the previous MRMs, the curvilinear model can be given as a two-level model, with within-
subjects model equal to the random slopes MRM with quadratic time term in (3.16) and between-
subjects model given as

b0i = β0 + β2xh + v0i,

b1i = β1 + β3xh + v1i,

b2i = β4 + β5xh + v2i.

The fixed effects of the random slopes and curvilinear MRM are equal, and the random
effects are further partioned into subject-specific intercept, slope and curvilinear variance and
measurements error (unexplained variance). The subject-specific variances are correlated within
subjects in a similar matter as in matrix (3.4.3), which leads to a total of six estimated variance
and covariance parameters. The error variances are independent normally distributed with mean
zero and variance σ2, and conditionally independent on the other variance terms as before.

The curvilinear MRM allows each subject to have an individual intercept, slope and curve
parameter, and is the most general model accessible for longitudinal data restricted to three fixed
measurement occasions.
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3.4.6 Comparison of models

The fixed effects in a mixed regression model can be tested by the Wald’s test, which compare
the test statistics to a standard normal frequency table. The null hypothesis is that the parameters
are zero. For the variance and covariance parameters this test is not suitable since the variance
parameters are bounded to positive values [Hedeker and Gibbons, 2006]. This is the reason why
no p-values are calculated for the random terms in mixed models. Likelihood ratio tests are
used to compare nested models, thus we can use this technique to examine if a random effect is
necessary to model the data.

Simple linear regression models and random intercepts and slopes models are hierarchically
nested in each other, and we apply the likelihood ratio test to compare these models. This test
uses the difference in deviance values for the models and compares them with a chi-square
distribution given as

−2ln
(
L0

L1

)
∼ χ2

ν . (3.18)

The degree of freedom ν is determined by the difference in number of estimated parameters
in the two models. L0 is the maximum value of the likelihood for the data from the more
specified model (for example the random intercepts model), while L1 is the maximum value
of the likelihood for the data from the general model (for example the random slopes model).
For these two models there are estimated two extra parameters in the random slopes model,
that is the slope variance and intercept-slope covariance. Thus the degrees of freedom ν for the
likelihood ratio test equals two. Because the variance terms are restricted to be positive, the
likelihood ratio test for random effects are too conservative. Hedeker and Gibbons [2006] refers
to Berkhof and Snijders [2001] to state that more correct p-values are obtained by dividing the
test values by two. This is also described in Rabe-Hesketh and Skrondal [2008].

Regression parameters are calculated by maximum likelihood (ML) estimates or restricted
maximum likelihood (REML) estimates. REML estimates are often preferred over ML estimates
because REML adjusts the likelihood for the number of covariates in a model. This is also why
these estimates cannot be applied when models are compared with a likelihood ratio test. The
parameters of all models must be estimated by maximum likelihood according to the above
mentioned [Rabe-Hesketh and Skrondal, 2008].

The null hypothesis of likelihood ratio tests is formulated in the following matter; the more
restricted model is sufficient to model the data with less parameters compared to the more gen-
eral model. If the likelihood ratio test is statistically significant, the null hypothesis is rejected
and the general model with more parameters is preferred.

3.5 Covariance pattern models

In Section 3.4 we found that mixed regression models can be thought of as an extension of
the univariate repeated measures ANOVA models, and similarly we can imagine the covariance
pattern models (CPM) as an extension of the multivariate ANOVA models for repeated mea-
sures. CPM are formulated as regression models in the same way as MANOVA, but assumes
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the variance-covariance matrix to be of a certain form. No random effects are included in the
regression model, so these models do not distinguish the variance term in within-subjects and
between-subjects variance. CPM treat time as a categorical variable, so the time is considered
fixed for all subjects. Unlike MANOVA the CPM allow unbalanced design. The regression
model for CPM on matrix form can be written as

yi = Xiβ + ei. (3.19)

The ni×1 vector yi contain the responses for subject i with j = 1, 2, · · · , ni observations,
i = 1, 2, · · · , N . Xi is the covariance matrix for subject i, β corresponds to the fixed effects
parameter vector and ei is the ni×1 error vector.

ei is the model specification that separates CPM from MANOVA models, where the error
vector is assumed normally distributed with mean zero and variance σ2Ini×ni . We assume that
the error vector satisfies the assumptions

ei ∼ N(0,Σi). (3.20)

The variance-covariance matrix Σi is estimated for the ni time points in which subject i is mea-
sured. Note that CPM estimates the regression parameters jointly, that is based on all covariates
and observed values of the dependent variable simultaneously. Thus these models handle miss-
ing data structures of both MCAR and MAR mechanisms. Equation (3.20) leads to the model
assumptions yi ∼ N(Xiβ,Σi) and Var(yi|Xi) = Σi.

3.5.1 Covariance patterns

Different covariance patterns are feasible for CPM, and some of these are explained below.

Independent covariance structure

The independent covariance structure implies independent measurements and equal variance
σ2 at each time point, that is σ2Ini×ni . This structure can be found in studies where different
subjects are measured at the different time points, as a simple example, but this occurs rarely
with longitudinal data.

Exchangeable covariance structure

The exchangeable covariance structure is previously referred to as compound symmetry, and
is induced by the random intercepts MRM and repeated measures ANOVA models assuming
homoskedasticity and sphericity. It is defined by two parameters, σ2 and σ2

1 , where the first is the
residual variance and the latter being the estimated random intercepts variance. The covariance
pattern is displayed for a repeated measures ANOVA in Equation (3.6), and expressed by the
newly introduced parameters as
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σ2

1 + σ2

σ2
1 σ2

1 + σ2

σ2
1 σ2

1 σ2
1 + σ2

...
. . . . . .

σ2
1 · · · σ2

1 σ2
1 + σ2

 . (3.21)

First-order autoregressive structure, AR(1)

This covariance pattern is often used with time series and requires estimation of the measure-
ment error σ2 and the autoregressive coefficient ρ. The covariance is assumed to diminish by
lags, so consecutive measurements in time are more correlated than measurements more distant
in time. Lags describe the distance in time between two fixed (equally distanced) measuring oc-
casions, where lag-1 corresponds to two consecutive occasions, lag-2 corresponds to two fixed
time intervals between measurement occasions, and so on. Estimated covariance between time
points j and j′ are calculated as σjj′ = σ2ρ|j−j

′|.

This covariance structure assumes at least two consecutive observations to be observed for
each subject to be able to estimate the autoregressive parameter. It also assumes all intervals
between measuring occasions to be equal, thus no gaps between measures are tolerated. These
assumptions force constraints on the missing data structure, and subjects that do not fulfill the
requirements are either omitted or should be imputed prior to analyses.

The first-order autoregressive structure can be written as

σ2


1
ρ 1

ρ2 ρ
. . .

...
. . .

ρn−1 ρn−2 · · · ρ 1

 . (3.22)

Toeplitz structure

The toeplitz structure, also referred to as the banded structure, holds a covariance parameter for
each lag. This leads to a total of n estimated parameters, that is one for each time point. The
assumptions implied by this covariance structure are equal variance at all time points and equal
covariance for all measurements with equal lags. θ1 corresponds to the variance of measure-
ments, θ2 is the lag1 covariance and so on. The measuring occasions are restricted to be fixed
and with equal distances between all consecutive measurements. The first-order autoregressive
structure is a special case of the toeplitz structure, the latter given as
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θ1

θ2 θ1

θ3 θ2 θ1
...

. . . . . .
θn · · · θ2 θ1

 . (3.23)

Unstructured form

The above covariance structures AR(1) and toeplitz hold restrictions for the time point intervals
to be equally distanced and equal within lags. A more general structure, denoted the unstruc-
tured form, allows all variances and covariances to be different. This covariance structure allows
all types of missing data structure among subjects, and is therefore often the preferred for lon-
gitudinal datasets with few measuring occasions. The total number of parameters that must be
estimated is n(n+ 1)/2, where n is the number of time points. For studies with many observa-
tional time points this structure demands estimation of a high number of parameters which may
lead to imprecise estimates of variances and covariances. The unstructured correlation form is
displayed as 

θ11

θ21 θ22

θ31 θ32 θ33
...

. . . . . .
θn1 · · · θn(n−1) θnn

 (3.24)

Covariance pattern models are dependent of a correct fixed regression model and a suitable
covariance pattern to obtain unbiased results. When selecting the model, the set of fixed co-
variates must include all possible variables that may affect the response variable, and this set of
covariates must stay unchanged through the selection process of the covariance pattern. Once
the covariance structure is determined, the fixed regression model selection can be performed
as in a standard regression analysis. To select the most appropriate covariance structure Σ a
likelihood ratio test is employed as explained in Section 3.4.6.

3.6 Analyses of discrete outcome variables

We have now described methods of linear models to analyze continuous responses in longitu-
dinal datasets. Both mixed regression models and covariance pattern models handle ignorable
missing, and have possibilities to adjust the covariance matrix to the data. When the response
variable is discrete (for example binary, ordinal or a count), these linear models do not model
the changes in the mean response due to covariates in an adequate way. This section will give
an introduction to modeling of ordinal variables in a longitudinal dataset, when the data contain
unobserved values.

Generalized linear models (GLM) is applied for analyzing univariate discrete outcome vari-
ables, via known variances and link functions. For longitudinal data the GLM is not sufficient
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to model discrete responses because of the dependency between observations within subjects.
There are two ways to extend GLMs to longitudinal data, either by generalized linear mixed re-
gression models (GLMM) as described in Section 3.6.1, or by generalized estimating equations
(GEE) described in Section 3.6.2, according to Hedeker and Gibbons [2006]. These sections
focus on analysis with an ordinal outcome variable, but other discrete outcome variables can be
analyzed in a similar way.

An ordinal variable is a categorical variable where the categories are ordered. Examples
of ordinal variables are agreement ratings with categories ’disagree’, ’undecided’ and ’agree’,
rating of movies with categories one to six, and items of the SF-36 questionnaire with categories
one to five where higher scores refers to higher quality of health for the given item.

3.6.1 Generalized linear mixed regression models

Proportional odds models (POM) are a common choice for analysis of ordinal data, thus many
of the mixed models for ordinal data are generalizations of this model. POM is based on logistic
regression formulation and characterizes the ordinal responses in C categories in terms of C −
1 cumulative category comparisons. The notation Phijc = P (Yhij ≤ c) =

∑c
k=1 phijk is

introduced, where phijk is the probability of response in category k for subject i in group h at
time j. POM can be extended to a random intercepts mixed effects proportional odds model as
follows

log
(

Phijc
1− Phijc

)
= γc − (β1tij + β2xh + β3xhtij + v0i + εhij), (3.25)

where c = 1, 2, · · · , C−1. γc are category-specific parameters denoted model thresholds and are
assumed to be strictly increasing in c. The interpretation of the random intercepts MRM param-
eters is equivalent to the model described in Section 3.3.1. The mixed effects POM is essentially
a proportional odds model with random effects in the linear regression equation [Rabe-Hesketh
and Skrondal, 2008].

The model in Equation (3.25) is a cumulative model for ordinal responses in terms of the
linear regression model linked to a cumulative probability, not the mean of response as in a
GLM. POM is a multiplicative model. To illustrate this, let us look at a continuous covariate that
increase by 5 units from xi to x′i. The odds ratio is exp(β)5 if β is the parameter of variable xi.

An alternative modelrepresentation of Equation (3.25) is expressed by the latent-response
formulation, also called the threshold model, in Rabe-Hesketh and Skrondal [2008] as

y∗i = β1tij + β2xh + β3xhtij + v0i + εhij .

The terms εhij |tij , xh, v0i have logistic distributions and are assumed to be independent across
subjects and measurement occasions. The continuous latent variable y∗i are related to the ordinal
variable via the threshold model yi = s if γs−1 < y∗i ≤ γs. Further, more complex mixed effects
POM can be fitted in a similar way.

An alternative approach to model ordinal variables is by probit regression formulation.
Hedeker and Gibbons [2006] describes both approaches in detail, and Rabe-Hesketh and Skro-
ndal [2008] explain the modeling of such methods in Stata.
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3.6.2 Generalized estimating equations

As a generalization of GLM, the generalized estimating equations (GEE) support many differ-
ent types of dependent variables. The method was developed for non-continuous variables as
dichotomous responses and counts, and is rarely used for continuous data [Rabe-Hesketh and
Skrondal, 2008]. Marginal distribution of Yij at each time point need to be specified (denoted
quasi-likelihood models), in contrast to full likelihood-models where the joint distribution of a
subject’s response vector yi must be specified. The variance-covariance structure is treated as a
nuisance, and this is an important feature of GEE. Since the unobserved variables are dependent
only on the covariates, the missing data structure implied is the covariate-dependent MCAR.
Thus the method of GEE does not handle ignorable missing data assuming MAR, which is a
major disadvantage when working with missing values. GEE assumes all subjects to be mea-
sured at the same fixed occasions, but it assumes no restrictions on the missing data pattern
(dependent on the chosen correlation structure).

Fitzmaurice et al. [2009] introduced the term marginal models which refers to models for
longitudinal data without random effects. This includes among others the covariance pattern
models described in Section 3.5 and GEE. Both models assume the number of measurement
occasions to be fixed, but missing values among the time points are allowed. The correlation
structures induced by the CPM and GEE are similar, but there are some basic differences that
separate the properties of the methods. CPM specify the joint distribution and likelihood of the
dependent variable vector Yi and apply only for continuous normal distributed outcome. GEE,
on the other hand, specifies the marginal distribution and likelihood of Yi for each time j, but
can be applied for many types of outcome variables.

Specification of a GEE is similar to a GLM, with a linear predictor, a link function and
variance described as a function of the mean. An additional feature of GEE is the ”working”
correlation structure R, a n × n correlation matrix common for all subjects. If subject i are
observed at ni occasions he or she achieve a ni × ni correlation matrix with the appropriate
rows and columns for the observed time points from R. The choice of ”working” correlation
matrix should be consistent with the observed correlation matrix, and is often selected from the
structures displayed in Section 3.5.1. A common set of association parameters a are estimated,
where the size of the vector a dependent on the ”working” correlation structure chosen.

Selection of the correlation structure for the repeated measurements is not as critical for GEE
as for mixed regression models or covariance pattern models. This is because GEE provides
estimated parameters and standard errors that are robust to misclassification of the variance-
covariance structure, as long as the univariate analysis models at each time point are specified
correctly. The statistical power decreases with misclassification of the correlation structure, but
the loss of power is small when the number of subjects increases. GEE should be applied when
the research interest is focused on estimates and inference of the regression parameters, but is
not suitable when modeling variance-covariance structures of longitudinal data.

Solving the GEE involves iterating between the quasi-likelihood solutions for estimating β’s
and a robust method for estimating a set of correlation parameters a as a function of β. Hedeker
and Gibbons [2006] describes the iterating process as follows
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1. Given estimates ofRi(a), calculate estimates of β using iteratively reweighted least squares.

2. Given estimates of β, calculate Pearson residuals and use these residuals to consistently
estimate a.

Iteration over the two steps continues until convergence, that is when the updated estimates
approximates the rejected estimates. Hedeker and Gibbons [2006] describes in more detail the
process of GEE, and examples where the method is applied.

There are two general approaches for handling data assuming the MAR mechanism within
the framework of GEE. The first approach is to analyze multiple imputed data by generalized
estimating equations. The technique of GEE described above can be performed without further
adjustment. The properties of multiple imputation leads to unbiased analysis results if the GEE
is correctly specified.

The second approach is the weighted estimating equations. The idea of weighted estimating
equations is to account for subjects with missing responses by giving extra weight to the subjects
with observed measurements and similar observed covariates and the same history of responses.
The weights are calculated as the inverse probability of being observed. This approach is suitable
when the missing data pattern is monotone, typically as a result of dropout, and is discussed in
particular by Fitzmaurice et al. [2009]. In many longitudinal studies the subjects are missing at
an arbitrary missing data pattern, as explained in Section 2.1.5. For such settings approximative
methods have been proposed for handling missing data that are assumed to be MAR. Further, if
data are assumed MNAR, more complex methods must be applied.
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4
The data of patients undergoing cardiac surgery

Missing values or non-response occur frequently in datasets with measurements of persons in-
volved, especially when the observations are self-reported and repeated at several timepoints. A
dataset of this type is analyzed in the article ’The role of sex in health-related quality of life after
cardiac surgery: a prospective study’, written by Gjeilo et al. [2008]. Of all patients undergoing
cardiac surgery at the Cardiothoracic Surgery at St Olavs Hospital, Norway, in the period from
September 2004 to September 2005, a total of 534 patients were included in the study. Of these
were 413 men and 121 women. Data were prospectively collected using the Norwegian verson
of the Short-Form Health Survey (SF-36) version 1.2 [Loge and Kaasa, 1998], among others.
The variables with main focus in the article by Gjeilo et al. [2008] are age, gender, marital status
and health-related quality of life variables (denoted HRQOL and measured by SF-36 and health
transition).

We have selected four of the HRQOL-variables, that is general health, bodily pain, social
functioning and role emotional based on fraction of missing data and results from the complete-
case analyses. Men and women were found to improve different for the variables role emotional
and bodily pain, while the differences between genders presurgery and follow-up occasions
differed between general health and social functioning. This selection is performed to decrease
the amount of results and the size of tables in the report, and thus help the reader to focus on the
important results. These four variables are ment to represent the features that exist in the data.

Age and gender are variables that are measured presurgery, and do not change during the
study (age increases by one year during the study, this increase is equal for all patients). Marital
status is measured at all three time points, and have nine options of status; married, couple living
together, widow/widower, single, separated/divorced and combinations of these. The research
questions involve the status of living together or alone, thus the variable is implemented as a
dichotomous variable where zero refers to living alone and one is living together. This variable
may change during the study.
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4.1 SF-36 questionnaire

The SF-36 [Loge and Kaasa, 1998] is a short-form health survey with 36 questions/items de-
veloped to access HRQOL. The 36 items yield eight scales of functional, physical and mental
health, that is general health (GH), physical function (PF), bodily pain (BP), mental health (MH),
role limitations owing to physical problems (role physical, RP), role limitations owing to emo-
tional problems (role emotional, RE), vitality (VT) and social functioning (SF). These scales are
made up from different number of items, as seen in Table 4.1.

The SF-36 has been extensively applied in several countries, including Norway, and found
satisfactory for evaluating HRQOL in cardiac surgery. In addition to the eight scales from SF-36
the item health transition (HT) is recorded. All nine variables are transformed into intervals from
zero to 100, where higher scores reflect better health.

Table 4.1: SF-36 scales and health transition (HT). Each scale is made up from several items,
which leads to different number of possible responses for each scale.

Scales Items Levels
PF 10 21
RP 4 5
BP 2 11
GH 5 21
VT 4 21
SF 2 9
RE 3 4
MH 5 26
HT - 5

The compound scales presented in Table 4.1 are computed as the mean of the items that form
the scale. Such scales are sensitive to missing data, if one item is missing then the whole scale
will be missing. Questionnaires often have guidelines to handle missing values to ensure that
most of the composite scores are obtained. For SF-36 the mean of the available items replaces
the missing items if at least half of the items of a score are observed [Ware et al., 2000].

4.2 Missing-data structure

A total of 311 patients (or 58%) of the 534 patients included in the study responded to all of
the variables at the three time points. 470 of the 534 patients, that is 88%, have fully observed
variables before surgery. The middle columns in Table 4.2 displays the missing data structure of
the dataset for four of the HRQOL-variables general health, bodily pain, social functioning and
role emotional, in addition to the variables age, gender and marital status. A similar table for all
HRQOL-variables are found in Appendix, Table A.1. Each subject are given an identification
number (denoted patkey), displayed in the first row of the table. Patkey, age, gender and the
presurgery measurement of marital status have no missing values. All the four HRQOL-variables
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have less missing data presurgery compared to the follow-up time points. Role emotional has
most missing values, with more than 20% non-response at both follow-up occasions.

In studies where the same subjects are observed repeatedly, the phenomena of missing forms
may appear. When a subject included in the study have missing values for all variables at one
time-point, we call this a missing form. In this study none of the subjects have missing forms
presurgery, but at six months a total of 72 subjects have completely missing responses. At six
months there are 69 missing forms, and 43 of these are found at both follow-up time points. The
reason for missing forms can be many, for example because of forgetfulness, the patient is very
ill, or so healthy that he or she sees no point in responding, patient moved or did not recieve the
questionnaire due to other reasons, or death.

When examining the missing-data structure after omitting subjects with missing forms, the
pattern of missing data are more similar at all three timepoints, see the two right columns in
Table 4.2. None of the variables at any of the timepoints have more than 9% missing values.
The missing data due to missing items only seems to be similar for the subjects without missing
forms. The variable with most missing values is role emotional.

521 patients were alive after 12 months from operation time, and approximately 90% of them
responded at least one of the two observational timepoints after surgery. The patients that did not
survive until 12 months after surgery are a special case of missing data in the dataset, the reason
for missing is obvious but it may be difficult to interpret in the analyses. One solution to this
is to exclude all patients that die during the first 12 months after surgery, and base the analyses
on the patients that survive their first year postoperation. In this way the research question is
altered, we only want to look at the surviving patients after heart surgery. Another approach is
to evaluate the reason of death, and separate the patients on base of this. If the reason for death
is a consequence of the heart surgery or in any other way connected to the operation or their
heart condition, the missing values should be handled by care. In this situation the missing data
may be cathegorized as either MAR or MNAR. In comparison, if the reason for death has no
connection to the surgery, the missing values are arbitrary and thus may be treated as MCAR.
This is discussed further in Section 8.

4.3 Observed covariance and correlation matrices

Further we want to look at the relation between measurements within subjects to examine the
correlation induced by repeated measures on the same subjects. The covariance matrix of the
observed data for role emotional is displayed to the left in Table 4.3. The diagonal elements
equals the variances at each time point, covariances below the diagonal are based upon listwise
deletion and covariances above the diagonal are computed from pairwise observed data. The
right matrix in Table 4.3 displays the correlation matrix of the same variable.

As we can see the variances are not equal at the three measurement occasions, most variabil-
ity is found presurgery while the variability is more similar and lower after the surgery. Covari-
ances between the presurgery measurements and the follow-up measurements are approximately
equal, but less than the covariance between six and twelve months follow-up after surgery. This
covariance matrix indicates that the assumptions of homoskedasticity and sphericity may be
violated. The correlation matrix for role emotional can be interpretted the same way. Only mi-
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Table 4.2: Missing-data structure for the variables patkey, age, gender, marital status, general
health (GH), bodily pain (BP), social functioning (SF) and role emotional (RE). The second and
third columns are calculated based on the original dataset, while the two last columns describe
the missing data structure in the data after exclusion of missing forms. The percentages are
calculated based on all SF-36 items and HT at the three time points.

Variable No. of missing % missing No. of missing % missing
Patkey (id) 0 0.0 0 0.0
Gender 0 0.0 0 0.0
Age 0 0.0 0 0.0
Marital status
Before surgery 0 0.0 1 0.2
6 months follow-up 72 13.5 0 0.0
12 months follow-up 70 13.1 1 0.2
General Health
Before surgery 40 7.5 33 7.6
6 months follow-up 94 17.6 17 3.9
12 months follow-up 98 18.4 26 6.0
Bodily Pain
Before surgery 13 2.4 11 2.5
6 months follow-up 86 16.1 13 3.0
12 months follow-up 84 15.7 14 3.2
Social Functioning
Before surgery 14 2.6 12 2.8
6 months follow-up 77 14.4 4 0.9
12 months follow-up 80 15.0 10 2.3
Role Emotional
Before surgery 41 7.7 35 8.0
6 months follow-up 115 21.5 38 8.7
12 months follow-up 108 20.2 37 8.5

nor differences are found when comparing the complete-case and available-case samples with
respect to correlations.

38



4.3. OBSERVED COVARIANCE AND CORRELATION MATRICES

Table 4.3: Variance-covariance matrix (left) and correlation matrix (right) for the variable role
emotional (RE) at the three measurement occasions presurgery (RE1), six months follow-up
(RE2) and 12 months follow-up (RE3). Variable quantities below diagonal are based on listwise
deletion, and quantities above on pairwise deletion.

RE1 RE2 RE3 RE1 RE2 RE3
RE1
RE2
RE3

1887.91 595.492 547.338
550.642 1513.9 875.153
535.713 890.004 1504.48

 RE1
RE2
RE3

1.000 0.357 0.324
0.335 1.000 0.608
0.332 0.594 1.000
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5
Complete-case analyses

In the article of Gjeilo et al. [2008] the hypotheses of possible differences between genders at
each measuring occasion and the impact of gender on the improvement of HRQOL-variables
over time are explored. The first research question is examined by a Student’s t-test assuming
unequal variances and the latter by repeated measures ANOVA. Both of these analyses require
completely observed data for all subjects, and complete-case analyses are performed to handle
the missing values in the dataset, that is available-case analyses for the t-test and listwise deletion
for the repeated measures ANOVA. The following sections describe the methods and results
published by Gjeilo et al. [2008] by a redo of the analyses.

5.1 Student’s t-test

The first main goal of the study is to examine possible differences between men and women
prior to surgery and during the restitution time when evaluating Quality-of-Life variables. The
statistical analysis to examine this question is a two-sample Student’s t-test, which test if the
mean of men are significantly different from the mean of women.

Normality is assumed by Gjeilo et al. [2008], and can be examined graphically by normal
Q-Q plots, or by normality tests like the Kolmogorov-Smirnov test and the Shapiro-Wilks test.
For interval-restricted variables we might expect some floor and ceiling effects, but according to
Sullivan and Dagostino [1992] such violations of the normality assumption do not necessarily
lead to biased results of the t-test. At each of the measuring points baseline, six and twelve
months after surgery the subjects are assumed independent. A test of homogeneous variance
(F-test) in the two groups male and female indicates that the variance are unequal for some of
the variables at some occasions. Thus the two-sample Student’s t-test for continuous variables
assuming unequal variances (also known as Welch-Satterthwaite t-test) is suitable to examine
differences in means for men and women at each time point.
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5.1. STUDENT’S T-TEST

5.1.1 Implementation in SPSS and Stata

The statistical calculations that are published in the article of Gjeilo et al. [2008] are per-
formed using SPSS for Windows version 13.0 (SPSS Inc., Chicago, Illinois, USA). The redo
of the complete-case analyses are performed using SPSS version 16.0 for Windows [2007] and
Stata/SE version 10.1 for Windows [2007]. In SPSS the results are obtained by the command
Compare Means -> Independent-Sample T Test, and p-values are found in the
row GH-scale, Equal variances not assumed of the output. In Stata the script in Listing 5.1
provides results for the three measuring occasions for the variable general health.

Listing 5.1: Student’s t-test in Stata for general health (GH)� �
1 t t e s t gh1 , by ( k jønn ) u n e q u a l
2 t t e s t gh2 , by ( k jønn ) u n e q u a l
3 t t e s t gh3 , by ( k jønn ) u n e q u a l� �

gh1 corresponds to the presurgery measurements, gh2 is the six months follow-up measurements
and gh3 is the observations at twelve months follow-up. The by() option specifies the grouping
on gender, and unequal implies that the variances are assumed unequal in the groups. Note: The
data are assumed to be stored in wide format. This will be explained in Section 5.2.2.

5.1.2 Results, Student’s t-test

The results for variables general health, bodily pain, social functioning and role emotional are
displayed in Table 5.1. A table including all the variables analyzed in Gjeilo et al. [2008] can be
found in Appendix Table A.2.

All estimates for both men and women increase during the study, thus the HRQOL-variables
seems to be positively affected by the heart surgery. The first impression of the differences
between men and women is the high proportion of significant p-values that means there are
differences in means for the genders. Men have higher estimated means for all variables at all
time points.

From Table 5.1 we see that general health is considered equal between men and women at
baseline, but after surgery this variable turns out to be different among the genders. Men score
significantly higher than women at six and twelve months after surgery. This may suggest that
men have more effect of the operation and that they are in better shape after the surgery than
women. The same pattern is found for the variables role emotional and bodily pain. For social
functioning the pattern is different, the genders score different at baseline and six months after
surgery, but at twelve months after surgery the difference is insignificant. It must be noticed
that the p-values for role emotional at baseline of 0.054 and for social functioning at twelve
months follow-up of 0.067 are slightly larger than the significance level of α = 0.05, and should
be handled by care. Such p-values indicate a weak difference between genders at the given
occasions.
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Table 5.1: Results from a two-sample Student’s t-test assuming unequal variances for the vari-
ables general health (GH), bodily pain (BP), social functioning (SF) and role emotional (RE),
grouping on gender. Significant p-values are marked as boldface.

Baseline Six months Twelve months
SF-36 Mean SD P-value Mean SD P-value Mean SD P-value

GH
Male 64.9 19.7 0.490 72.0 22.1 0.011 71.9 21.6 0.004
Female 63.3 20.7 65.2 21.9 64.7 20.9
BP
Male 56.5 27.2 0.137 75.7 25.7 0.004 78.7 25.2 0.002
Female 52.3 26.4 66.4 27.1 68.9 26.9
SF
Male 73.2 24.8 0.042 84.7 22.6 0.013 86.3 20.5 0.067
Female 67.7 25.4 77.3 25.8 81.4 24.1
RE
Male 58.7 42.6 0.054 74.6 37.0 0.006 75.6 36.7 0.001
Female 49.1 45.9 59.8 44.1 58.0 43.1

5.2 Repeated measures ANOVA

The second research question in the article of Gjeilo et al. [2008] is to examine a possible differ-
ent improvement of mental and physical health during and after a heart surgery. The analyses of
differences between genders at each measuring timepoint are already examined above, and the
same grouping in gender is examined with respect to improvement of the HRQOL-variables over
time. This improvement are analyzed by repeated measures ANOVA as explained in Section 3.3.

The first step when performing a repeated measures ANOVA is to set up the analysis model.
This must include main effects gender and time, and the gender by time interaction, in addition
to the subject identification to ensure the correlation structure is maintained in the analysis. The
analysis model is given as

yhij = β0 + β1tj + β2xh + β3xhtj + v0i(h) + εhij , (5.1)

where the parameters are interpreted as described in Section 3.3.1. Specially the parameter β3

that explains the interaction effect is of interest in these analyses.

Additional variables may be added as explanatory variables. In the article of Gjeilo et al.
[2008] the variables age and marital status are explored as potential covariates, but are not
considered significant and thus omitted in the final model.
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5.2. REPEATED MEASURES ANOVA

5.2.1 Data layout

The model above leads to a structure of the data as displayed in Table 5.2. The subjects are nested
within groups and crossed with the time factor. Each subject belong to one of the genders, and
is observed once at each time point.

Table 5.2: Design of data for the repeated measurements ANOVA, subjects grouped by gender
and crossed with time points.

Time point

Gender Subject Presurgery Six months follow-up Twelve months follow-up
1 1 y111 y112 y113

1 2 y121 y122 y123
...

...
...

...
...

1 N1 y1N11 y1N12 y1N13

2 1 y211 y212 y213

2 2 y221 y222 y223
...

...
...

...
...

2 N2 y2N21 y2N22 y2N23

We are now familiar with the analysis model. Listwise deletion are performed to obtain a
balanced design, that is all subjects have observations at the same measurement occasions. This
leads to the same time intervals between measurements for all subjects. The assumption of multi-
variate normally distributed variables can be tested in Stata by the command omninorm [Baum
and Cox, 2007]. Repeated measures ANOVA is robust to violations of the assumption of mul-
tivariate normally distributed variables [The University of Texas at Austin Statistical Services,
1997]. The assumption of compound symmetry can be examined by a F-test. As described in
Section 3.3.1 the repeated measures ANOVA is robust to violations of homoskedasticity, thus we
can carry out the analyses although the F-test reveals heteroskedasticity of the data. Sphericity
can be examined by Mauchly’s test [Mauchly, 1940] implemented in SPSS, but not in Stata.

The method of repeated measures ANOVA requires listwise deletion prior to the analysis.
This excludes a higher fraction of the subjects than the t-test, since it disregards all information
from patients who have one or two observed values, while the t-test applies available-case analy-
ses that includes observations at the relevant measurement occasion independent of the response
at the other time points.

5.2.2 Implementation in SPSS and Stata

The repeated measures ANOVA requires data to be stored in long format, that means each vari-
able is represented in one column each, and a variable time keeps track of the measurement
occasions. This results in n rows for each subject in the data matrix, and each row for a sub-
ject corresponds to a measurement occasion. The corresponding wide format has one row for
each subject, and the variables are kept in n columns, one for each time point. The dataset
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in Gjeilo et al. [2008] is structured in wide format, thus we have to transform it to long for-
mat prior to the repeated measures ANOVA. This is done in SPSS by the command Data ->
Restructure. In Stata this is performed by the command reshape presented in Listing 5.2
below. The variable time starts counting at one, thus the time will be coded as t = 1, 2, 3. If we
want the baseline time point to be zero to ease interpretation this can be done as displayed by
the replace command on line two.

Listing 5.2: Reshape of the data from wide to long format� �
1 r e s h a p e wide mh v t bp gh s f p f rp r e ht , i ( p a t k e y ) j ( t ime )
2 r e p l a c e t ime = t ime−1� �

The command General Linear Models -> Repeated measures is used to per-
form the complete-case repeated measures ANOVA in SPSS. The variable patkey holds the iden-
tification of each subject and ensures the correlation structure of the data to be maintained. The
output of this command gives many interesting results about the current variable, for example
Levene’s test of equality of error variances, Mauchly’s test of sphericity and Box’s test of equal-
ity of covariance matrices, in addition to the test results for between- and within-subjects effects.
These results indicate that sphericity cannot be assumed, thus we have to use methods available
to adjust the degrees of freedom for the tests of within-subjects effects. In SPSS the Greenhouse-
Geisser and Huynh-Feldt adjustments are given. In Gjeilo et al. [2008] the Greenhouse-Geisser
correction is preferred when testing the within-subject effects.

The same analyses are performed in Stata. Two commands are available for repeated mea-
sures ANOVA, that is anova and wsanova. This two gives the same results, but are different
in structure and the generality of the commands. anova is the applied command here because
it is most general. The script to obtain results from the repeated measures ANOVA in Stata is
given in Listing 5.3 for the variable general health. First line performs listwise deletion and
second line transforms the data from wide to long format. The command anova is given on the
last line.

Listing 5.3: Repeated measures ANOVA for general health (GH)� �
1 drop i f r e 1 ==. | r e 2 ==. | r e 3 ==.
2 r e s h a p e wide mh v t bp gh s f p f rp r e ht , i ( p a t k e y ) j ( t ime )
3 anova gh t ime k jønn p a t k e y t ime∗kjønn , r e p e a t e d ( t ime ) bse ( p a t k e y )� �

The option repeated() tells the program that we have correlated data and takes as input the
within-subjects variable, here represented by the variable time. bse() takes the between-subjects
effects as input, here as the identification number patkey. It automatically omits subjects with-
out any measurements for the relevant HRQOL-variable when adjusting for lack of sphericity
(Greenhouse-Geisser and Huynh-Feldt). The anova-command returns both original and ad-
justed p-values as default. Note: To perform valid analyses with the anova-command in terms
of the assumptions given in Section 3.3.1, listwise deletion must be performed prior to analyses.
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5.2.3 Results, repeated measures ANOVA

The anova command presented above gives exactly the same results with respect to p-values for
the gender by time interaction as found in SPSS and the published article. Table 5.2.3 presents
the results of the repeated measures ANOVA for the variables general health, bodily pain, social
functioning and role emotional. The results for all SF-36 variables and health transition are
given in Appendix Table A.

Table 5.3: Repeated measures ANOVA with Greenhouse-Geisser adjustment for non-sphericity
for the SF-36-variables general health (GH), bodily pain (BP), social functioning (SF) and role
emotional (RE). Analyses are based on complete-case subjects and grouped on gender. Signifi-
cant p-values are marked as boldface.

Number of fully Repeated measures
SF-36 observed patients ANOVA

P-value

GH
gender by time 374 0.179
BP
gender by time 401 0.046
SF
gender by time 414 0.224
RE
gender by time 348 0.025

The gender by time interaction for bodily pain and role emotional are found statistically sig-
nificant, which means that the improvement of these scores are indicated to be different for men
and women. The intercepts for the two remaining variables general health and social functioning
are insignificant, thus there are no proven difference in improvement between genders for these
variables.

5.3 Graphical presentation of subject samples

The complete-case subjects and available-case subjects at each time point form different samples
of subjects from the original data. These samples are displayed as profile plots and tables of
means, standard deviations and sample sizes for men and women separately. Profile plots display
the means for men and women at each time point, with drawn lines between the occasions. These
plots are informative when examining improvement pattern for the genders, and to visualize the
differences in genders at each time point.

Student’s t-tests base the analyses on available-case samples which correspond to all ob-
served values in the profile plots below. The repeated measures ANOVA base upon complete-
case samples displayed in the left profile plots. The omitted subjects are also displayed in pro-
file plots for the four variables. This is to give information about the excluded information in
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complete-case analyses. Note: The profile plots for all observations and omitted subjects do not
base the estimation of means at each time point upon the same set of subjects, since some of the
subjects included only have one or two observations.
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Table 5.4: Mean of variable general health (GH) for men and women at the three measurement
occasions presurgery, six and twelve months follow-up. ’CC’ refers to the completely observed
subjects, ’All’ is all subjects included in the study and ’Omit’ denotes the subjects omitted by
the complete-case method.

GH Time Mean Standard deviation Number of subjects
point CC All Omit CC All Omit CC All Omit
Pre 66.076 64.882 60.479 19.223 19.746 21.106 306 389 83

Men 6 mths 72.260 72.024 70.553 22.175 22.115 21.904 306 355 49
12 mths 71.867 71.89 72.068 21.71 21.638 21.34 306 345 39
Pre 65.238 63.322 59.802 20.633 20.679 20.576 68 105 37

Women 6 mths 66.684 65.182 59.176 21.851 21.916 21.781 68 85 17
12 mths 67.765 64.697 55.627 19.519 20.874 22.52 68 91 23

Figure 5.1: Plot of mean for GH for men and women at the three time points before, 6months and
12 months after surgery. The left plot is based on complete-case subjects, the plot in the middle
is based on all observations of all subjects and the right plot is based on excluded subjects from
complete-case methods.
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Table 5.5: Mean of variable bodily pain (BP) for men and women at the three measurement
occasions presurgery, six and twelve months follow-up. ’CC’ refers to the completely observed
subjects, ’All’ is all subjects included in the study and ’Omit’ denotes the subjects omitted by
the complete-case method.

BP Time Mean Standard deviation Number of subjects
point CC All Omit CC All Omit CC All Omit
Pre 55.938 56.473 58.617 26.595 27.196 29.565 325 406 81

Men 6 mths 75.985 75.659 72.455 25.235 25.668 29.846 325 358 33
12 mths 78.717 78.732 78.897 24.94 25.21 28.541 325 354 29
Pre 52.632 52.278 51.59 28.079 26.389 23.072 76 115 39

Women 6 mths 66.368 66.444 66.857 25.906 27.059 33.773 76 90 14
12 mths 67.105 68.896 75.7 27.839 26.936 22.513 76 96 20

Figure 5.2: Plot of mean for BP for men and women at the three time points before, 6months and
12 months after surgery. The left plot is based on complete-case subjects, the plot in the middle
is based on all observations of all subjects and the right plot is based on excluded subjects from
complete-case methods.
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Table 5.6: Mean of variable social functioning (SF) for men and women at the three measure-
ment occasions presurgery, six and twelve months follow-up. ’CC’ refers to the completely
observed subjects, ’All’ is all subjects included in the study and ’Omit’ denotes the subjects
omitted by the complete-case method.

SF Time Mean Standard deviation Number of subjects
point CC All Omit CC All Omit CC All Omit
Pre 73.69 73.179 70.775 24.539 24.832 26.215 334 405 71

Men 6 mths 85.442 84.692 76.613 22.217 22.559 24.946 334 365 31
12 mths 86.789 86.348 80.208 20.434 20.498 20.824 334 358 24
Pre 69.375 67.717 63.929 25.924 25.38 24.02 80 115 35

Women 6 mths 75.781 77.31 87.5 26.336 25.806 19.943 80 92 12
12 mths 81.094 81.38 82.813 25.47 24.129 16.378 80 96 16

Figure 5.3: Plot of mean for SF for men and women at the three time points before, 6months and
12 months after surgery. The left plot is based on complete-case subjects, the plot in the middle
is based on all observations of all subjects and the right plot is based on excluded subjects from
complete-case methods.
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Table 5.7: Mean of variable role emotional (RE) for men and women at the three measurement
occasions presurgery, six and twelve months follow-up. ’CC’ refers to the completely observed
subjects, ’All’ is all subjects included in the study and ’Omit’ denotes the subjects omitted by
the complete-case method.

RE Time Mean Standard deviation Number of subjects
point CC All Omit CC All Omit CC All Omit
Pre 60.781 58.679 52.667 41.738 42.558 44.49 286 386 100

Men 6 mths 75.408 74.603 70.0 36.586 37.009 39.412 286 336 50
12 mths 76.224 75.645 72.333 36.112 36.736 40.351 286 336 50
Pre 58.065 49.065 36.667 46.237 45.949 43.023 62 107 45

Women 6 mths 58.602 59.839 63.492 45.04 44.099 42.038 62 83 21
12 mths 58.602 57.963 56.548 42.864 43.074 44.291 62 90 28

Figure 5.4: Plot of mean for RE for men and women at the three time points before, 6months and
12 months after surgery. The left plot is based on complete-case subjects, the plot in the middle
is based on all observations of all subjects and the right plot is based on excluded subjects from
complete-case methods.
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5.4 Interpretation of profile plots

For variable general health the mean for both men and women presurgery are considerably af-
fected by the listwise deletion of subjects, the proportion of omitted subjects is large for both
groups and the mean of omitted subjects are smaller than for complete-case subjects. Thus we
induce a higher intercept mean for both genders by applying listwise deletion. The mean for the
three subject samples for men at 6 months and 12 months follow-up are approximately equal
for the samples, but for women these means still remain much smaller for omitted females than
for complete-case females. The number of women with non-responses is not of the same size as
for baseline, thus the influence of the means calculated on base of all subjects are not of equal
magnitude as for the presurgery occasion. The standard deviations for both genders at all three
time points are similar in magnitude among the three samples of subjects.

We have seen that the means for general health are altered when grouping the subjects in
samples of complete-case and omitted subjects. The plots for the different samples are not as
different for the variable bodily pain. The mean for men is slightly higher for omitted subjects
compared to complete-case subjects presurgery, while the mean for women at 12 months follow-
up is higher for the omitted subjects than for the complete-case subjects. The standard deviations
are in general higher for omitted male subjects compared with complete-case subjects. For
women this is not always the case, prior to surgery and at 12 months follow-up the omitted
subjects give less variance than the complete-case subjects.

The profile plots of social functioning in Figure 5.3 reveal that the omitted female subjects
with observations at 6 months follow-up have an extremely high mean value compared with the
complete-case subjects. The standard deviation for these subjects are also smaller than for the
complete-case female subjects, but it is important to notice the size of this group, only 12 of the
omitted subjects have observed values at this time point. The means for male subjects that are
omitted are much smaller than the complete-case subjects at 6 and 12 months follow-up. The
number of subjects observed at these occasions are very small, thus the means for all subjects
are only slightly altered compared with the means for complete-case subjects.

The last variable role emotional is the variable with most significant gender by time interac-
tion from the complete-case repeated measures ANOVA, but with insignificant intercept effect
from the imputation analyses and the analysis by curvilinear MRM. This variable is therefore
of special interest when looking at observations of the omitted subjects and their affection on
the analysis results based on all data. The plots in Figure 5.4 draws the attention to the female
subjects, where the presurgery mean of omitted subjects are much smaller than for complete-
case subjects. Among the 59 omitted subjects as many as 45 subjects have observed responses
at baseline. Compared to the sample of complete-case women that consists of 62 subjects we
observe that a considerable portion of the information of female patients are excluded in the
complete-case analysis. The mean for all observed women presurgery is remarkably altered by
the inclusion of omitted subjects, from 58.1 to 49.1. This is also commented in the article by
Gjeilo et al. [2008]. The means at six and twelve months follow-up are more similar for the
samples for both men and women.
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6
Imputation analyses

We have now presented the published results obtained by complete-case analyses. As proposed
in Section 2.3 the methods of expectation maximization (EM) and multiple imputation (MI) are
able to handle data with non-response if the missing data can be assumed ignorable. The method
of EM is performed in SPSS [2007] and R [2008], while MI is performed mainly in Stata [2007].

6.1 Expectation Maximization

Expectation maximization (EM) is an general algorithm that is used for multiple purposes and
is relatively easy to implement, and is therefore incorporated in most statistical software (for
example SPSS, R, NORM and SAS). To demonstrate the use of this approach we explain how
the analyses performed in Gjeilo et al. [2008] are obtained by EM in both SPSS and R. First, we
must settle a joint multivariate model including all variables in the analyses. This model consists
of an identification key for each subject, gender and the nine HRQOL-variables.

The missing values analysis (MVA) routine in SPSS is found in the Analyze menu, and we
choose EM as estimation method. The number of maximum iterations must be increased from
the default number of 25 iterations, since the number of variables with missing values is large.
von Hippel [2004] was critical to the MVA module in SPSS on the basis of an incorrect imple-
mentation of the residual variation for each imputed value. This random disturbance term should
be included in imputation to reflect uncertainty associated with the imputation. The absence of
the random error term results in a deterministic imputation process, so imputed datasets based
on the same imputation model for the dataset are identical. This violates the assumptions of
imputation by the EM algorithm.

The methods of conditional single imputation are described as deficient in Schafer and Gra-
ham [2002], and is partitioned in conditional mean imputation and conditional distributional
imputation. The difference of these two methods is the inclusion of residual variation in the
latter. It must be emphasized that single imputation using these two methods can give biased
standard errors of estimates under the MAR assumption, while the EM algorithm provides the-
oretically unbiased estimates if implemented properly.
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Another software package that supports single imputation by the EM algorithm is R. The
norm package [Novo and Schafer, 2006] is developed for this purpose, and yield many helpful
tools when working with the EM algorithm. Prior to the analyses we must examine the data with
respect to the assumption of normal distributed variables. This may be done in Stata without too
much effort (explained in Section 6.2.2), before exporting the datafile to R. As we will see in
Section 6.2.3 the arc sine transformation [Box et al., 2005] is suitable to achieve a more normally
distribution of variables, additional to the feature of restricting imputed values to the relevant
intervals. This transformation of all HRQOL-variables are performed before the imputation
process, and both original and imputed values are back-transformed after the imputation (the
latter performed in R).

6.1.1 Implementation of EM in R

An extract of the script to perform EM imputation in R is displayed in Listing 6.1.

Listing 6.1: R script to perform imputation by the EM algorithm� �
1 l i b r a r y ( norm )
2 mat <− r e a d . t a b l e ( ’ o r i g i n a l f i l e . t x t ’ , h e a d e r =TRUE, sep = " , " , na . s t r i n g s = " . " )
3 s <− p r e l i m . norm ( mat )
4 t h e t a h a t <− em . norm ( s )
5 ge tpa ram . norm ( t h e t a h a t s , t h e t a h a t , c o r r =TRUE)
6 r n g s e e d (7654321)
7 ximp <− imp . norm ( s , t h e t a h a t , mat )� �

The first line specifies that the norm package must be read (only the basic packages of R are
stored in memory when starting the software, and additional packages must be specified by the
function library()). Further the datafile exported from Stata is read by read.table(),
where observations are separated by a comma, and missing values are given as periods. The
prelim.norm() function performs preliminary manipulations of the data matrix and is the
input object of the functions on the consecutive lines. The EM algorithm itself is executed by
calling em.norm(), and provides a vector of maximum likelihood-estimates of the normal pa-
rameters on a transformed scale and in packed storage. To achieve these estimates the function
getparam.norm() is helpful. Before imputation we must initialize a random number gener-
ator seed (function rngseed()), and imputation is performed by the imp.norm() function
on the last line of the script. For further explanation of the functions in the norm package we
recommend the help file of R [Novo and Schafer, 2006].

After imputation we have obtained a balanced dataset including all the 534 patients with val-
ues of all variables at all occasions. The HRQOL-variables must be transformed to the original 0
to 100 interval to ease the interpretation of the results and to make comparisons with other anal-
ysis methods possible. The analyses described in Chapter 5 can now be repeated, but without
listwise deletion

6.1.2 Results, EM analyses

The results of Student’s t-test assuming unequal variances and the repeated measures ANOVA
for the dataset containing observed and imputed values after EM are computed using the func-
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tions t.test() and aov(), and the script for these analyses are found in Appendix Section
B. The results are displayed in Table 6.1.

Table 6.1: Estimates of means and p-values for the two-sample Student’s t-test assuming unequal
variances and p-values for the gender by time interaction for the repeated measures ANOVA after
imputing missing values by the EM algorithm. Results displayed for the variables general health
(GH), bodily pain (BP), social functioning (SF) and role emotional (RE), grouping on gender.
Significant p-values are marked as boldface.

Baseline Six months Twelve months ANOVA
SF-36 Mean P-value Mean P-value Mean P-value P-value

GH
Male 65.12 0.171 71.06 0.002 70.50 0.005 0.071
Female 62.20 63.76 64.26
BP
Male 56.38 0.114 75.20 0.005 78.12 <0.001 0.096
Female 52.02 67.34 67.79
SF
Male 73.00 0.055 84.01 0.004 85.70 0.049 0.432
Female 67.96 76.52 81.15
RE
Male 58.61 0.029 71.31 <0.001 73.04 <0.001 0.503
Female 48.47 57.27 57.91

The function t.test() in R gives no estimated standard deviations for the means, thus
we must base out results on the estimated mean values and the corresponding p-values for these
analyses.

The first impression is that most the estimates are approximately equal to the original complete-
case estimates. The changes of largest magnitude are found in estimates for men and women
at six months after surgery for role emotional, and for men at twelve months follow-up for the
same variable. The means decrease when analyzing the data after EM imputation. The corre-
sponding p-values for the differences between men and women at these two occasions are highly
significant. The p-values for the baseline differences of social functioning and role emotional
are altered from the complete-case p-values, but these changes are relatively unessential when
interpreting the results. The same yields for the difference at twelve months follow-up for social
functioning. Changes in p-values can be due to different estimates for the genders, and the fact
that the sample sizes are increased by including all subjects. By imputing missing values we en-
sure that the analyses are based on more of the information from the dataset, thus the statistical
power increases and p-values decreases.

We now want to focus on the analysis of improvement for men and women represented by
the gender by time interactions in repeated measures ANOVA. EM imputation leads to insignif-
icant p-values for the interactions regarding all the variables. Especially the estimate for role
emotional is altered from quite significant in the complete-case analysis (p-value of 0.025) to
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clearly insignificant in the EM analysis (p-value of 0.503). The variable general health on the
other hand obtains a decreased p-value compared to the complete-case analysis. Also the p-value
for the interaction for bodily pain is in the grey area what significance concerns, modified from
significant in the complete-case analysis. A p-value less than 0.10 should be handled by care, it
is not necessarily one single way to interpret such p-values.

Profile plots of the variables general health and role emotional are found in Figures 6.1 and
6.2 respectively. We see that the improvement patterns of role emotional for men and women are
more similar in the right plot after EM imputation than for the complete-case subjects in the left
plot. These profile plots are in accordance with the results found in Table 6.1. The profile plots
for general health seems to be approximately equal, but the change in p-value for the interaction
may be due to increased statistical power induced by the EM imputation.
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Figure 6.1: Profile plots for the variable general health (GH) based on the complete-case subjects
(denoted CC) and expectation maximization imputed datasets (denoted EM).

6.2 Multiple imputation

The theory of multiple imputation (MI) is presented in Chapter 2.3.2, and will be described in a
more practical setting in this section. MI is performed on the dataset of Gjeilo et al. [2008]. MI
makes use of all information available in the observed data, and meets the criteria for methods
to analyze data with missing values assumed MCAR or MAR described in Section 2.1.6.

A multiple imputation analysis is performed in two steps,

1. Imputation of the missing values in the original dataset that leads to a total of m imputed
datasets. Each dataset is a plausible version of the original dataset if all values were
observed.

2. Analyze of each of the datasets and combination by Rubin’s rules to obtain analysis re-
sults.
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Figure 6.2: Profile plots for the variable role emotional (RE) based on the complete-case subjects
(denoted CC) and expectation maximization imputed datasets (denoted EM).

The first step of multiple imputation of the dataset is described in the Sections 6.2.1 to 6.2.8.
The analysis step is presented in Sections 6.2.5 to 6.2.10.

6.2.1 Imputation by MICE

Multiple imputation is performed in Stata [2007] by the command ice. This command creates
a user-specified number of datasets where the missing values are replaced with imputed values
[Royston, 2005]. It performs multiple imputation by the MICE procedure, where MICE stands
for Multiple Imputation by Chained Equations. The missing values are imputed by the method
of switching regression, an iterative multivariate regression technique introduced by Buuren and
Oudshoorn [2000] for S-plus, and ice implements MICE for Stata.

In the Theory Section 2.3.2 of MI we find that imputations are obtained as draws from a joint
multivariate distribution including all the variables in the imputation model and the parameters
of the imputation model. It is seldom possible to obtain this joint distribution in closed form, and
in these situations iterative algorithms like MICE are useful. The switching regression makes
use of Gibbs sampler iteration algorithm to perform the imputation.

MICE assumes existence of a joint multivariate distribution, from which conditional distri-
butions for each variable with missing values can be derived. Thus the complex multivariate
problem can be parted into easier univariate problems. LetX1, X2, ..., Xk be the set of variables
in the imputation model where some of the X’s have missing values. The ’chained equations’
method for imputing data described in Carpenter and Kenward [2007] are similar to the the tech-
nique of MICE. First, initialize missing values, for example by the mean of the observed values
or randomly drawn values of the observations. Then draw imputations
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Repeat the above as a loop until convergence, that is typically ten to twenty times. Then repeat
the loop a further m times to obtain the imputed datasets.

Modern Markov Chain simulation methods often need up to thousands of iterations to obtain
a sample of m= 20 imputed datasets, while the ’switching regressions’ need less. The reason is
that ’switching regressions’ draws independent samples for each variable, while Markov Chain
methods generates dependent samples and therefore need to iterate and reject many samples to
achieve approximately statistical independent imputation draws. The number of iterations for
’switching regressions’ increases with the amount of unobserved data.

van Buuren et al. [2006] write the following about their implementation of MICE
"The theoretical weakness of this approach is that the specified conditional densities can be

incompatible, and therefore the stationary distribution may not exist. It appears that, despite the
theoretical weakness, the actual performance of conditional model specification of multivariate

imputation can be quite good, and therefore deserves further study."
Further the authors advise to perform MI with an extra caution to the imputations obtained. The
method does not guarantee that all imputations are drawn from the joint multivariate normal
distribution, rather from other distributions that the method may converge to in case the joint
distribution don’t exists. A technique to examine the outlier datasets are explained in Section
6.2.10. Note: Carpenter and Kenward [2007] did not recommend the method presented above,
based on the uncertainty in the convergence to the joint multivariate normal distribution.

6.2.2 The imputation model

To perform multiple imputation we need to make a selection of variables as a base for the im-
putation model. This model includes variables with missing values, variables that can predict
the missing values and variables that can explain the reason for non-response, in addition to the
variables in the analysis models. First we look at these variables contained in the analysis mod-
els. All variables except the subject identification number patkey, gender and age have missing
values, distributed at all three measurements occasions.

MI assumes all variables in the imputation model to be multivariate normally distributed,
and we want to examine whether the variables in the dataset meet this assumption. Graphical
presentation of the variables can be useful to examine the behavior of the variables. Histograms
of general health, bodily pain, social functioning and role emotional are displayed in Figures 6.3
to 6.6.

General health has 21 levels of theoretical possible values, uniformly distributed on the
interval 0 to 100. Histogram of the variable are displayed in Figure 6.3 for the three occasions.
At baseline a Gaussian shape can be seen, and also at six and twelve months after surgery this
bell shape is present, though more right-skewed than for the first measuring point.
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Figure 6.3: Histograms of the observed values of the variable general health (GH) before surgery
and at six and twelve months follow-up.

Figure 6.4: Histograms of the observed values of the variable bodily pain (BP) before surgery
and at six and twelve months follow-up.

Histograms for the variable bodily pain is displayed in Figure 6.4. This variable has eleven
levels of theoretical possible values on the interval 0 to 100. Before surgery the data looks nor-
mally distributed with a peak at the middle of the interval and a considerable ceiling-effect. At
six and twelve months after surgery this ceiling-effect is still present and dominate the histogram,
while the bell shape of an Gaussian variable is suppressed.

Figure 6.5: Histograms of the observed values of the variable social functioning (SF) before
surgery and at six and twelve months follow-up.

Social functioning has nine ordered levels of values. By looking at the histograms in Figure
6.5 we see that the variable possibly violates the assumption of multivariate normally distributed
data by the clear ceiling effect at all time points.

Role emotional is distributed on four values, and does not seem convincingly bell shaped
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Figure 6.6: Histograms of the observed values of the variable role emotional (RE) before surgery
and at six and twelve months follow-up.

from the histograms in Figure 6.6. For the histogram of the presurgery values and at twelve
months follow-up a total of five levels of the variable can be found. This is due to the mean
value imputation described in Section 4.1, and this feature is also found for the other variables.

6.2.3 Constraints of imputed values

As we can see from the histograms above the variables are not convincingly normally distributed,
thus the assumption of multivariate normally distributed variables is possibly violated. There
are several ways to handle this in such a way that we still can apply the method of multiple
imputation.

Another aspect of the imputation process that must be considered is the possible imputation
values for each variable. All SF-36 variables and health transition are restrained to intervals and
we expect the unobserved data to take values on the same intervals. Dragset et al. [2008] ex-
amine three possible alternatives to restrain the imputed values to their intervals, and if possible
influence the variables to behave more normally distributed. These methods can be summarized
as follows

• Truncation, the method of restraining imputations after the imputation process,

• Ordinal logistic regression, which leads to restraints during the imputation process, and

• Transformation, the method of modifying data before the imputation process.

Truncation is a method of replacing the imputed values that exceeds the interval of each
variable. This means that the imputed values are manually altered after imputation which may
induce biased analysis results. It may also lead to artificial enhanced floor and ceiling effects
which is not desirable. Dragset et al. [2008] concluded that this method is not preferable. Vari-
ables with a handful possible levels may be treated as ordinal (or nominal) variables and with
that avoid the assumption of normality. The last approach to restrict the imputed values is trans-
formation prior to the imputation process. With a suitable transformation we may obtain data
that behave more normally distributed, and at the same time ensures the imputed values to take
values on the intervals.
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Ordinal logistic regression

The variable social functioning takes nine levels of possible values. The histograms in Figure
6.5 does not reveal a convincing bell shaped distribution for the variable. This may violate the
assumption of multivariate normality of MI, thus imputation of this variable must be handled
with caution. Variables that take only a few levels of values can be treated as nominal or ordinal
variables without loosing too much statistical power. This affects the imputations to take values
found among the observed values, which means that all imputed values are restricted to the
respective intervals.

This also applies for other variables with few levels of observations, that is role emotional,
role physical and health transition. The implementation of ordinal logistic regression for the
specified variables are explained in Section 6.2.4.

Transformation of variables

Transformation of variables prior to multiple imputation is a technique to reduce violations of
the normality assumption of the data. We can transform the data to obtain a distribution of the
variables that are more Gaussian shaped, impute the missing values and then back-transform the
variables after the imputation process. The back-transform is necessary to obtain comparable
estimates for the analyses.

The desired transformation formula should influence the data to behave approximately nor-
mal distributed. Arcsine transformation [Box et al., 2005] is a variance stabilizing transformation
for binomial proportions of the form y/n, where y is the original variable and n is the upper limit
of the interval of y. The transformation formula is given as

x = arcsin
(√

y

n

)
, (6.1)

where x is the transformed of the original variable y and that holds the characteristic of a more
bell shaped distribution than y.

The arcsine transformation is preferable when the variables take values close to the limits of
the intervals. Applying the arc sine of the variables leads to stretching the tails of the distribution,
thus we can transform the variables by the arcsine transformation to imply a more Gaussian
shape of the distributions than for the original variables.

An additional advantage of the arcsine transformation when applied to data that are limited
to intervals is that it constrains imputed values to these interval. Thus we avoid the problem of
imputing values outside the original intervals. Consider for example the variable general health
that holds original values on the interval 0 to 100. Higher scores indicate better general health,
and a score of zero is interpreted as death. If we get an imputed value below 0 it is not obvious
how to interpret this value.

Implementation of the transformation in ice can be summarized as follows

• generate transformed values of the variables prior to imputation,

• include only the transformed version of the variables in the imputation process, and
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• back-transform the imputed variables to obtain imputed values for the original format
variables.

This approach is presented in Section 6.2.4 below. An alternative way to implement transforma-
tion with ice is to back-transform the variables directly in the imputation process:

• generate transformed values of the variables prior to imputation,

• include both original and transformed variables in the imputation process, and

• specify imputation equations for all variables that are to be imputed. Note: The original
continuous variables (not transformed) should not be imputed by the imputation process,
nor included in any of the imputation equations.

• Back-transform the imputed variables before finishing the imputation process.

These two approaches to impute transformed variables by multiple imputation generates the
same imputation process, but differs in the implementation in Stata. The effort and time spent
may vary for different analyses, and the easiest of the approaches are recommended.

Histograms of the transformed variables general health and bodily pain are displayed in
Figures 6.7 and 6.8 respectively. We observe that the distributions of general health look more
Gaussian shaped, and the skewed trend of the follow-up occasions are not as evident as for the
original variable.

Figure 6.7: Histograms of the transformed values of the variable General Health (GH) before
surgery and at six and twelve months follow-up.

The histograms for bodily pain are also ameliorated with respect to the bell shape, but the
ceiling effect is still overwhelming for the follow-up measurement occasions.

6.2.4 Implementation of ice in Stata

Multiple imputation is performed in Stata by the command ice, as stated above. This command
imputes m datasets that are stored in a new file Impfile together with the original dataset. A
variable _mi keeps track of the subjects in each dataset, and another variable _mj holds the
information to separate the datasets. The script displayed in Listing 6.2 below is based on the
imputation model including each patients identification number, gender and age at the time of
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Figure 6.8: Histograms of the transformed values of the variable Bodily Pain (BP) before surgery
and at six and twelve months follow-up.

Listing 6.2: Multiple imputation of dataset from Gjeilo et al. [2008]� �
1 ge gh1 t = a s i n ( s q r t ( gh1 / 1 0 0 ) )
2 ge gh2 t = a s i n ( s q r t ( gh2 / 1 0 0 ) )
3 ge gh3 t = a s i n ( s q r t ( gh3 / 1 0 0 ) )
4
5 i c e p a t k e y gh1 t gh2 t gh3 t p f 1 t p f 2 t p f 3 t s f 1 s f 2 s f 3 rp1 rp2 rp3 r e 1 r e 2 r e 3 mh1t

mh2t mh3t v t 1 t v t 2 t v t 3 t bp1 t bp2 t bp3 t h t 1 h t 2 h t 3 ALDER kjønn s i v i l s t a n d 1
s i v i l s t a n d 2 s i v i l s t a n d 3 u s i n g I m p f i l e , m( 2 0 ) genmiss ( mis ) cmd ( s f 1 s f 2 s f 3 rp1
rp2 rp3 r e 1 r e 2 r e 3 h t 1 h t 2 h t 3 : o l o g i t )

6
7 r e p l a c e gh1 =100∗( s i n ( gh1 t ) ) ^2 i f misgh1== 1
8 r e p l a c e gh2 =100∗( s i n ( gh2 t ) ) ^2 i f misgh2== 1
9 r e p l a c e gh3 =100∗( s i n ( gh3 t ) ) ^2 i f misgh3== 1� �

surgery, and all HRQOL-variables, health transition and marital status at the three measurement
occasions.

Data must be arranged in wide format prior to imputation. The variables social function,
role physical, role emotional and health transition are imputed by ordinal logistic regression
specified by the option cmd(). Marital status is a dichotomous variable and thus handled by
logistic regression as default. The remaining of the HRQOL-variables are transformed by the
arcsine transformation formula prior to the imputation as shown for general health on line one
to three. These transformed variables are included in the variable list instead of the original
variables as explained in Section 6.2.3, together with the subject identification number patkey,
gender, marital status and the four ordinal variables in original format.

There are several more options specified in the script above. genmiss() creates an indica-
tor variable for each variable with non-response in the imputation model, where one refers to
an imputed value and zero is an observed value. m() declares the desired number of imputed
datasets and dryrun displays the imputation equations without performing imputation (left out
in this script).

After the imputation process is finished, the back-transformation of the continuous variables
are performed in the newly created Impfile, the datafile in which the original and imputed datasets
are stored. This file are now ready for analyses and combination by Rubin’s rules as described
in Section 2.3.5.

An alternative procedure to obtain imputed datasets for the transformed variables is by in-
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cluding both original and transformed HRQOL-variables in the variable list, and back-transforming
the imputed values directly in ice. This is done by specifying two extra options passive() and
eq(). passive() allows a variable to be computed from both complete and partially imputed
variables, and ensures that this variable is not imputed. One must now specify the imputation
equations so that the imputation process is based on the transformed HRQOL-variables and not
the original (or both). This is done by the option eq(). This option can be comprehensive if many
variables are included in the imputation model. The two alternatives to perform multiple impu-
tation yield the same imputation process, thus we are free to choose the method that is easiest to
implement.

6.2.5 T-test after multiple imputation

We have seen how multiple imputation is performed for the dataset of Gjeilo et al. [2008]. The
next step is to analyze these imputed datasets with respect to the differences in mean for men
and women at each measuring occasion. The Stata command mim is designed to combine such
datasets by Rubin’s rules for several analysis methods, but does not support Student’s t-test
assuming unequal variances. If the variances were assumed equal a simple linear regression
analysis could have been applied.

Student’s t-test assuming equal variance

The two-sample Student’s t-test with equal variance gives the same results as a linear regression
with the HRQOL-variable as dependent variable yi and gender as covariate xi, given as

yi = β0 + β1xi.

Linear regression is one of the supported analyses in mim, thus it is easy and time-saving to
implement compared to implementing the analysis by Rubin’s rules ourselves. These analyses
serve for several purposes. First, we can examine the number of imputations to decide if m is
large enough to achieve accurate estimates. Second, we can get an impression of the fraction of
missing information due to the unobserved values in the dataset. Third, the approximate analysis
can give an impression of the results prior to the correct and more time-demanding implemen-
tation of the t-test assuming unequal variances. The first two features are further described in
Section 6.2.10.

The two groups men and women have different variances at the different measuring occa-
sions, and this violates the assumption of linear regression about equal variances in the groups.
To compute the t-test for unequal variances we have to combine estimates of the test statistic
in each dataset and combine these by Rubin’s rules ”manually”. This is achieved by export-
ing the imputed datasets file Impfile.dta to a .txt-file and compute the desirable estimates in the
statistical software R.

Student’s t-test assuming unequal variances

To perform a Student’s t-test assuming unequal variances by Rubin’s rules, some notation must
be introduced. First, we assume the outcome variables to be normally distributed, displayed as
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XM ∼ N(µM , σ2
M ),

XW ∼ N(µW , σ2
W ),

where XM and XW are the relevant HRQOL-variable for men and women, respectively. Esti-
mators for µM and σM are given as

µ̂M = X̄M =
1
nM

nM∑
i=1

XMi,

σ̂XM
= S2

XM
=

1
nM

nM∑
i=1

(XMi − X̄M )2.

The estimators for women are identical to the above, but based on the values for women. nM
is the number of men included in the study, and nW is the number of included women. Note:
These sizes are not necessarily equal for MI and complete-case analyses, since subjects with
missing values are omitted in the latter.

Further, we want to test the null hypothesis H0: X̄M − X̄W = 0, that is the hypothesis
of no difference between the genders. These differences in means for men and women are the
estimates that we must combine with Rubin’s rules. We write the difference in each imputed
dataset as

Q̂i = X̄Mi − X̄Wi,

where the estimator Q̂i for imputed datasets i = 1, 2, · · · ,m is the parameter quantity that we
want to examine. We apply Rubin’s rule for the parameter quantity in Equation (2.5)) to obtain

Q̄ =
1
m

m∑
i=1

Q̂i.

To estimate the variance of Q̄ we must find the within-imputation variance and between-
imputation variance and combine these as given in Equation (6.2). In the calculations below we
assume independent observations for men and women. This is an approximation for the imputed
values, since all values for all subjects (both men and women) are used as predictors for the
imputed values in the imputation process. Thus some dependency between imputed values for
women and values for men might have been induced, and vice versa. The imputation process is
complicated and the covariance structure is difficult to model (if possible). As an approximation
we assume values at each time point to be independent.

The variance of Q̂i in each imputed dataset is calculated as

Ui =
1
m

m∑
i=1

(σ2
X̄M

+ σ2
X̄W

) =
1
m

m∑
i=1

(
σ2
XM

nM
+
σ2
XW

nW
).

Within-imputation variance is given as
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Ū =
1
m

m∑
i=1

Ui,

and between-imputation variance is given as

B =
1

m− 1

m∑
i=1

(Q̂i − Q̄)2.

The total variance for Q̄ is expressed as

T = Ū +
(

1 +
1
m

)
B. (6.2)

From Equation (6.2) we see that the total variance for Q̄ is computed as a sum of the within-
imputation and between-imputation variance, where the latter is weighted by the number of
imputed datasets m. For the dataset of Gjeilo et al. [2008] we find the within-imputation variance
Ū to be large compared to the between-imputation varianceB, thus the variance of our parameter
quantity Q̄ is highly determined by the within-imputation variance. This indicates that most of
the variance in the multiple imputed datasets are due to variance in the data, not because of
uncertainty in the imputed values. Thus the uncertainty about the imputed values is relatively
low.

The degrees of freedom ν is calculated as expressed as

ν = (m− 1)

(
1 +

Ū(
1 + 1

m

)
B

)2

.

We observe that the calculation of the degrees of freedom ν includes the term Ū/B . Since the
within-imputation variance is huge compared to the between-imputation variance, the expression
above leads to a degree of freedom of large magnitude for all variables at all occasions. When
the degrees of freedom increases towards∞ (typically more than 100), a good approximation of
the t-distribution is the standard normal distribution [Kvaløy and Tjelmeland, 2000]. Note: The
degrees of freedom for complete-case analyses are also generally large, but not as huge as for
multiple imputation analyses.

The test statistic for the standard normal distribution is

Z =
Q̄√
T
,

and the computed test statistics are compared with the standard normal distribution N(0, 1) to
yield estimated p-values.

R is a free software environment for statistical computing and graphics [R Development
Core Team, 2008]. The estimates of the difference of means for men and women and the corre-
sponding total variances are calculated in R as displayed in Appendix Section B. The command
dnorm() computes p-values for the z-test.
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6.2.6 Results, two-sample t-test assuming unequal variances

Results for the two-sample Student’s t-test after multiple imputation (MI) and combination by
Rubin’s rules in R are found in Table 6.2.

Table 6.2: Estimates for the two-sample Student’s t-test after multiple imputation (MI) and
combination by Rubin’s rules. Results are displayed for general health (GH), bodily pain (BP),
social functioning (SF) and role emotional (RE), grouping on gender. Significant p-values are
marked as boldface. θ̃ is the estimated difference in mean for men and women combined for the
20 datasets, and

√
T̃ is the estimated standard deviation for θ̃.

Baseline Six months Twelve months
SF-36 Mean θ̃ (

√
T̃ ) P-value Mean θ̃ (

√
T̃ ) P-value Mean θ̃ (

√
T̃ ) P-value

GH
Male 65.1 2.4 (5.0) 0.222 71.3 6.4 (6.8) 0.020 70.8 5.6 (5.4) 0.022
Female 62.7 64.9 65.2
BP
Male 56.6 4.4 (8.0) 0.115 75.4 7.8 (9.1) 0.013 78.1 8.6 (8.8) 0.006
Female 52.2 67.6 69.5
SF
Male 73.2 5.4 (7.0) 0.051 84.4 6.5 (7.5) 0.023 85.6 3.6 (6.0) 0.132
Female 67.8 77.9 82.0
RE
Male 58.6 10.5 (23.2) 0.036 72.4 12.4 (24.4) 0.017 74.4 16.6 (21.6) <0.001
Female 48.1 60.0 57.8

The estimates in Table 6.2 are similar to those found for complete-case analyses in Gjeilo
et al. [2008], displayed in Table 5.1. The estimates of means for men and women are of the same
magnitude in both complete-case and multiple imputation analyses. Standard deviations for the
observations are not accessible due to the design of the multiple imputation analyses, and the
variance estimates T are not comparable to the estimated standard deviations for complete-case
analyses.

P-values follows the same trend in both analyses, but are slightly altered in the multiple
imputation analyses compared to complete-case analyses. For social functioning at baseline,
the multiple imputation method changes the p-value from 0.042 to 0.051, and is therefore not
marked as boldface in Table 6.2. It must be emphasized that this change in the p-value is not
of importance, the estimated means for men and women are not particularly affected, and the p-
values are both low. For role emotional on the other hand, the p-value at baseline is altered from
insignificant to significant when applying multiple imputation analysis. The p-value decreases
from 0.054 to 0.036, but the estimates are also here approximately unaltered. The interpretation
of these results are analogous to the complete-case results.
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6.2.7 Repeated measurements ANOVA after MI

Repeated measurements ANOVA is performed in Gjeilo et al. [2008] to explored a possible
difference in improvement between the genders in time. This analysis requires complete-case
data which leads to a comprehensive loss of patients since all patients with missing value of a
variable at one, two or all of the measurement occasions are omitted. In the following Section
we want to analyze the imputed datasets with respect to the gender by time interaction without
listwise deletion of subjects with missing values.

The command mim is one of the Stata commands that carries out the requested analysis with
multiple imputed datasets [Royston, 2004, 2005]. It implements the methods by Rubin [1987]
of combining estimates from the imputed datasets. mim is a prefix that supports several analysis
commands, for a complete list we refer to the help-file of Stata [2007]. To apply mim for the
dataset, it has to be stacked with indexes _mj (dataset numbering) and _mi (subject number in
each dataset). This is done automatically for multiple imputed datasets in ice. The output of
the command includes estimates, standard deviations, Student’s t-quintiles, p-values, confidence
intervals and FMI for the parameters of the selected analysis.

FMI is the estimated fraction of missing information, or relative increase in variance due to
missing values [Royston et al., Submitted for publication, 2008], given as

FMI =
1

(r + 1)

(
r +

2
d.f. + 3

)
. (6.3)

r is the relative increase in variance due to non-response. This increase is estimated by

r ≈
(

1 +
1
m

)
B
Ū
,

where Ū and B are the within- and between-imputation variance. The degrees of freedom,
denoted d.f. in Equation (6.3), is determined to be positive, thus FMI is a quantity between zero
and one. A large FMI (close to one) refers to a great estimated loss of information due to missing
data, and hence loss of prediction. Carpenter and Kenward [2007] indicates a direct connection
between the FMI and the number of patients with complete observed records as a measure of
how precise the imputations of MI are.

We now want to perform repeated measurements ANOVA on the imputed datasets. It is
no supported command for this analysis in mim, thus we have two alternatives to produce this
analysis. Either we may implement the analysis ourselves as done for Student’s t-test assuming
unequal variances, or we can apply an analysis that approximates the repeated measures ANOVA
with respect to the gender by time interaction.

We observe that the repeated measurements ANOVA assuming compound symmetry is sim-
ilar to the analysis by a random intercepts mixed regression model as described in Section 3.4.2.
A random intercepts MRM is analyzed in Stata by the command xtmixed, which is a sup-
ported command in mim. Thus we can analyze the imputed datasets by the above mentioned
mixed regression model and obtain approximate results for repeated measurements ANOVA
after multiple imputation. This approximation corresponds to assuming homoskedasticity and
sphericity for the data when performing repeated measurements ANOVA. We can compare the
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results from the combined mixed regression model after MI with the results from a complete-
case repeated measurements ANOVA without correction of the degrees of freedom (such as
Greenhouse-Geisser or Huynh-Feldt).

6.2.8 Implementation of mim in Stata

The analysis of the random intercepts MRM must be carried out in the file created by ice, here
denoted Impfile. In this file the original dataset and the m imputed datasets are stored. Prior to
the analysis we must ensure that the data are arranged in long format, and generate the necessary
time and interaction variables.

The script to analyze the variable general health in Stata is given in Listing 6.3 below.

Listing 6.3: Approximation to repeated measurements ANOVA after multiple imputation for
general health (GH)� �

1 r e s h a p e long mh v t bp gh s f p f rp r e ht , i ( p a t k e y _mj ) j ( t ime )
2 egen timemean = mean ( t ime )
3 ge t i m e s h i f t = t ime − t imemean
4 ge t i m e s h i f t _ k j ø n n = t i m e s h i f t ∗ k jønn
5 ge t i m e s h i f t 2 = t i m e s h i f t ^2
6
7 mim , n o i s i l y : x tmixed gh k jønn t i m e s h i f t t i m e s h i f t _ k j ø n n t i m e s h i f t 2 | | p a t k e y : , mle
8 mim , m c e r r o r� �

The first line transform the data to long format. Further the time is centered by generating the
variable timeshift on the second and third line, and the gender by time interaction and quadratic
time variable is generated on the two consecutive lines. The time variable is centered to ensure
comparable results with subsequent analyses, and is explained in Section 7.1.3.

The actual multiple imputation analysis is performed by the command on line eight, where
the prefix mim specifies analysis and combination of multiple imputed datasets, the option nois-
ily ensures that the analysis output from each dataset are displayed, and the command xtmixed
performs the random intercepts MRM on each dataset. The xtmixed command is explained in
more detail in Chapter 7.

The last command given in Listing 6.3 is the replay option mcerror, that leads to an output
of the last analysis results including the estimated Monte Carlo errors. This feature is also
explained in the consecutive Chapter 7.

6.2.9 Results, random intercepts MRM after MI

The results of the random intercepts mixed regression model with quadratic time trend for gen-
eral health, bodily pain, social functioning and role emotional are represented in Table 6.2.9.

A first glance at the results in Table 6.2.9 above reveals that the gender by time interactions
are insignificant for all the four variables. For general health the p-values are approximately
equal for the complete-case and multiple imputation analyses. The interaction estimates for
bodily pain and role emotional are significant in the repeated measures ANOVA. After imputing
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Table 6.3: Estimates, standard deviations and p-values of the gender by time interaction from the
random intercepts mixed regression model with quadratic time trend after multiple imputation.
Results displayed for general health (GH), bodily pain (BP), social functioning (SF) and role
emotional (RE), grouping on gender. The results from the repeated measures ANOVA assuming
compound symmetry for the gender by time interaction are also displayed. Significant p-values
are marked as boldface.

Random intercepts quadr. MRM Rep Meas ANOVA
SF-36 Estimate SD P-value FMI P-value

GH
Gender by time -1.68 1.25 0.180 0.318 0.175
mcerror 0.15 0.05 0.045 0.060

BP
Gender by time -2.50 1.52 0.101 0.136 0.038
mcerror 0.12 0.03 0.017 0.035

SF
Gender by time 0.73 1.37 0.595 0.185 0.160
mcerror 0.13 0.03 0.069 0.044

RE
Gender by time -3.82 2.52 0.130 0.155 0.021
mcerror 0.22 0.06 0.021 0.039

the missing values by multiple imputation these interactions are no longer significant, the p-
values are far from an α-level of 0.05. General health and social functioning have insignificant
interaction estimates for both analysis.

Profile plots for both complete-case sample and multiple imputed sample of the variable
bodily pain are presented in Figure 6.9. Left plot in Figure 6.9 indicates a different profile for
men and women after listwise deletion, which is the sample that the complete-case repeated
measures ANOVA is based upon. After imputing missing values by multiple imputation these
improvement profiles are more parallel for the genders, as found in the right plot in Figure 6.9).
This confirms the increased p-value of 0.081 for the gender by time intercept found in Table
6.2.9. The documented difference in progress between genders in Gjeilo et al. [2008] are found
to be weaker when imputing the missing values prior to the analysis.

Similar profile plots for role emotional are displayed in Figure 6.10. The p-value for gender
by time intercept is 0.021 in the repeated measures ANOVA assuming equal variances, based
on fully observed subjects only. The left plot in Figure 6.10 reflects this result. Men seems to
improve considerably after heart surgery, while no progress is observed within the female group.
The right plot in Figure 6.10 displays the profile plot for men and women of the role emotional
scale for the data after multiple imputation. By imputing the missing values we see that the
genders are more equal in improvement, and this confirms the increased p-value for gender by
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Figure 6.9: Profile plots for the variable bodily pain (BP) based on the complete-case subjects
(denoted CC) and multiple imputed datasets (denoted MI).

time interaction found in Table 6.2.9 (p-value of 0.143).
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Figure 6.10: Profile plots for the variable role emotional (RE) based on the complete-case sub-
jects (denoted CC) and multiple imputed datasets (denoted MI).

6.2.10 Features of mim

The estimates from analysis by multiple imputation depend on the number of imputed datasets
m. If we have obtained∞ imputed datasets from multiple imputation the estimates are assumed
accurate, when also assuming the imputation model is correct and sufficiently comprehensive.
Instead we have a finite number of imputations, here m = 20, and some uncertainty about the
estimates are induced. The option mcerror in mim returns the Monte Carlo standard errors for
each estimated value. This is an estimate of the error in combined estimates and standard errors
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caused by analyzing a finite number of imputed datasets. These estimates give indication of
the uncertainty of the parameters estimated by MI, and thus how reliable the results should be
considered.

The standard errors of the estimates β̂ are computed using the jackknife approach [Royston
et al., Submitted for publication, 2008], and these errors behave similar to the Monte Carlo
errors. So when m increases the standard error of the estimates will decrease, and the Monte
Carlo errors follow the same trend. mcerror varies with a factor

√
m so by increasing the number

of datasets from 20 to 100 the estimated uncertainty in the results decreases by a factor
√

5. This
estimate can be used to examine the necessary number of imputed datasets to obtain precise
results.

Estimated FMI are given in Table 6.2.9 for the four variables presented. General health have
a FMI of 0.318, which is rather high. This indicates that the subjects with missing values may
keep a special feature of the population, and this part is missing. For the remaining variables
bodily pain, social functioning and role emotional the FMI lies below 0.2. This indicates that
most of the information is found in the data that are observed.

Atypical datasets are imputed datasets where imputations are drawn from conditional pos-
terior distributions not derived from the joint multivariate normal distribution. This may occur
when the joint multivariate normal distribution does not exist. It is important to detect such
datasets to prevent biased estimates and abnormal high variance estimates due to the values
from atypical datasets. The option mcerror can be used to detect such atypical datasets by
analyzing subsets of the imputed datasets separately and compare the estimates. Another op-
tion that can be more useful is noicily, that displays the analysis output for each dataset during
computation of the combined results. To detect an atypical dataset we can graph dot-plots of
the estimates obtained in all datasets to search for outliers. If the estimates seems to behave
randomly and without outliers, the datasets have probably converged. Examples of dot plots
for estimated parameters and standard deviations of the gender by time interaction for general
health are displayed in Figure 6.11.

All the twenty imputed datasets for general health seems to behave random and no outliers
are detected. This is the case for all variables and we conclude that the process have converged
to the joint multivariate normal distribution for the 20 imputations. Thus we can rely on the
estimates to be unbiased and that the estimated variances are not affected by outliers in some of
the datasets.

Note: The random intercepts quadratic MRM is used with mim to approximate a repeated
measurements ANOVA assuming compound symmetry after multiple imputation. A random
slopes quadratic MRM is not a reasonable alternative to further develop the modeling of the
data here since the aim of these analyses is to compare the complete-case method to multiple
imputation.
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Figure 6.11: Estimated parameters and standard deviations for gender by time interaction from
each of the 20 imputed datasets, for the variable general health (GH).
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7
Analyses by regression models

The imputation methods of expectation maximization and multiple imputation are two ways to
apply a full likelihood distribution to handle missing values in datasets. Analyses by regression
models are alternative ways to examine the improvement patterns in HRQOL-variables in data
with non-response. The mixed models described in Section 3.4 and the covariance pattern mod-
els in Section 3.5 employ a full likelihood function to estimate coefficients and the correspond-
ing standard deviations, and thus have possibilities to yield unbiased results. The generalized
estimating equations described in Section 3.6.2 are exceptions of the regression models in the
Theory Chapter, in the sense that these models assume data to be covariate-dependent MCAR
while the remaining regression models handle ignorable missing data assuming MAR. The use
of the latter regression models can be combined with multiple imputation, and this is explained
in Section 7.3.

7.1 Mixed regression models in Stata

We are now about to employ mixed regression models to analyze the dataset of Gjeilo et al.
[2008] to look for gender by time interactions of importance for the HRQOL-variables. The
regression approach allows subjects with unbalanced data to take part in the analyses, thus no
listwise deletion are necessary. This is one of the major advantages of mixed regression mod-
els over repeated measures ANOVA. All analyses are performed in Stata/SE 10.0 for Windows
[2007] with the command xtmixed. Data must be arranged in long format prior to all consec-
utive analyses.

7.1.1 Random intercepts MRM

We will first examine a random intercepts mixed regression model (RI MRM) with fixed effects
gender, time and gender by time interaction as displayed in Equation (3.8) in Section 3.4.2. The
script to analyze the variable general health is displayed in Listing 7.1.

This command is similar to the command applied with mim in Listing 6.3. First the dataset
is transformed to long format and the centered time and interaction variables are generated. This
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Listing 7.1: Random intercepts linear MRM for general health (GH)� �
1 r e s h a p e long mh v t bp gh s f p f rp r e ht , i ( p a t k e y ) j ( t ime )
2 egen timemean = mean ( t ime )
3 ge t i m e s h i f t = t ime − t imemean
4 ge t i m e s h i f t _ k j ø n n = t i m e s h i f t ∗ k jønn
5 ge t i m e s h i f t 2 = t i m e s h i f t ^2
6
7 x tmixed gh k jønn t i m e s h i f t t i m e s h i f t _ k j ø n n | | p a t k e y : , mle
8 e s t i m a t e s s t o r e r i t� �

is done to ensure comparable results with mixed regression models including a quadratic time
trend in consecutive analyses. The mixed model analysis are specified on the seventh line, where
the command xtmixed are followed by the dependent variable and the fixed effects equation.
The random effects are given after the two vertical lines, and the random intercepts effect are
especially marked with the punctuation mark ’:’. We want to compare hierarchical models by
likelihood ratio tests, thus the parameters must be estimated by maximum likelihood estimators.
This is achieved by specifying the option mle. The estimates of the analysis is stored in memory
as rit by the last line.

From the output of the xtmixed command we obtain estimated parameters, standard er-
rors, p-values and confidence intervals for the fixed effects derived from Maximum likelihood
estimation and Wald’s test. Further we achieve estimated standard deviations and their standard
errors and confidence intervals for the random factors including the error term εhij . We also get
the log likelihood value for the model, and test result for the likelihood ratio test of the MRM
model versus linear regression. Descriptive information about the data included in the analysis,
for example the number of subjects and observations, and the average number of observations
per subject are given at the upper right hand side of the output.

To detect whether the fitted random intercepts MRM from Listing 7.1 describes the data bet-
ter than a more strict hierarchical model (here: a simple linear regression model), we look at the
output of the likelihood ratio test. The test gives a significant p-value even when dividing by two,
thus we conclude that the random intercepts term is necessary to analyze the data appropriately.
The p-values from the likelihood ratio test must be halved as described in Rabe-Hesketh and
Skrondal [2008]. We continue to model the data with the random intercepts MRM as the strict
hierarchical model for comparison with more general models. It is important that the models
compared by the likelihood ratio test are nested (hierarchical) in each other and that parameters
are estimated by maximum likelihood estimators.

7.1.2 Random slopes MRM

To examine whether a random slopes effect is necessary to model the data we employ a random
slopes mixed regression model with the same centered time variable and fixed effects as above.
A random time term is introduced to the regression model as expressed in Equation (3.12). This
random factor is included in xtmixed in the random factors equation after the two vertical
lines as displayed in Listing 7.2.
The error term εhij is independent of the other variance parameters, but the random intercepts
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Listing 7.2: Random intercepts linear MRM for general health (GH)� �
1 xtmixed gh k jønn t i m e s h i f t t i m e s h i f t _ k j ø n n | | p a t k e y : t i m e s h i f t , mle cov ( u n s t r u c t u r e d )
2 e s t i m a t e s s t o r e r s t
3
4 l r t e s t r i t r s t� �

and random slopes effects are not necessarily independent. The option cov(unstructured) allows
the variance estimates of the two random factors to be different and correlated as expressed in
Equation (3.5.1). The output of the analysis is stored as rst.

We find the likelihood ratio test result for the random slopes MRM compared with the simple
linear regression model from the output of xtmixed. This test is no longer of interest since we
detected the random subjects effect to be significant, and therefore want to compare the random
intercepts and random slopes MRM instead. The command lrtest performs the likelihood
ratio test for the specified models as displayed on the fourth line in Listing 7.2. The random
slopes mixed regression model is found to model the data better than the random intercepts
MRM, thus we continue the modeling based on the more general model.

7.1.3 Quadratic time trend MRM’s

We have now examined mixed regression models assuming a linear time trend. Profile plots
in Section 5.3 indicate a non-linear improvement of the HRQOL-variables over time, thus we
want to explore the MRM including the fixed quadratic time trend. One way to achieve this is
by including a squared-time term in the regression model as expressed in Equation (3.4.4). As
explained in Section 3.4.3 we transform the time variable to centered form to ensure the linear
and quadratic time variables are not collinear. After centering the time the linear time term takes
the values -1, 0 and 1, while the quadratic time effect takes the values 1, 0 and 1. A gender by
the squared time interaction is included in the regression models, but found highly insignificant
for all variables and therefore omitted in the following analyses.

The centering of time is performed as explained in Listing 7.1. Random intercepts and
random slopes MRM with quadratic time trend are obtained by the script in Listing 7.3.

Listing 7.3: Random intercepts and random slopes quadratic MRM for general health (GH)� �
1 xtmixed gh k jønn t i m e s h i f t t i m e s h i f t _ k j ø n n t i m e s h i f t 2 | | p a t k e y : , mle
2 e s t i m a t e s s t o r e r i t 2
3
4 x tmixed gh k jønn t i m e s h i f t t i m e s h i f t _ k j ø n n t i m e s h i f t 2 | | p a t k e y : t i m e s h i f t , mle cov (

u n s t r u c t u r e d )
5 e s t i m a t e s s t o r e r s t 2
6
7 l r t e s t r i t 2 r s t 2� �

The quadratic time trend is found highly significant for all the four variables general health,
bodily pain, social functioning and role emotional. Further the random intercepts random effect
is found necessary to model the data in the output from the first command above. From the
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likelihood ratio test on the last line we conclude that the random slopes effect leads to a better fit
of the data, thus the random slopes mixed regression model with a quadratic time trend models
the data most satisfactory of the above examined MRM’s.

7.1.4 Curvilinear trend MRM’s

When introducing the quadratic time trend in Section 7.1.3 we achieve a third possible ran-
dom effect in addition to the random intercepts and slopes effects. This is denoted the random
quadratic time trend and is explained in Section 3.4.5. The model specification of the curvilinear
MRM is found in Equation (3.17) the same section. The implementation of this model is given
in Listing 7.4.

Listing 7.4: Curvilinear trend MRM for general health (GH)� �
1 xtmixed gh k jønn t i m e s h i f t t i m e s h i f t _ k j ø n n t i m e s h i f t 2 | | p a t k e y : t i m e s h i f t t i m e s h i f t 2 ,

mle cov ( u n s t r u c t u r e d )
2 e s t i m a t e s s t o r e r s 2 t 2
3
4 l r t e s t r s t 2 r s 2 t 2� �

The included random term v2i in the random factors equation represents the individual de-
viation from the quadratic trend components for subject i. The random slopes quadratic MRM
is nested in the curvilinear MRM, thus we apply the likelihood ratio test on script line four to
determine if the random quadratic time trends are of importance when analyzing the data. This
test is highly significant and we conclude that the curvilinear mixed regression model yields the
best fit of the data in Gjeilo et al. [2008].

7.2 Results of analyses by MRM

We have achieved results for all of the mixed regression models described in Section 7.1 above.
These results include parameter estimates, standard deviations and p-values for each fixed effect,
in addition to estimated variances and covariances for the random effects. All estimates, standard
deviations and p-values for the fixed effects are presented in Appendix Tables A.4, A.5, A.6
and A.7 for general health, bodily pain, social functioning and role emotional respectively. As
mentioned in Section 3.4.6 no p-values are obtained for the random effects. The results from
likelihood ratio tests of the hierarchical models are found in Appendix Table A.8.

The likelihood ratio tests reveal that the most general mixed regression model is necessary to
model the data satisfactory, as found in Section 7.1.4. This curvilinear MRM, also denoted the
mixed model from now on are examined for the four selected HRQOL-variables, and estimates
for the gender by time interaction are given in Table 7.1. We also present results from the
complete-case repeated measures ANOVA to ease the comparison of the results.
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Table 7.1: Estimates of parameters, standard deviations and p-values for the gender by time in-
teraction from the repeated measures ANOVA and from the curvilinear mixed regression model
(MRM) with a quadratic time trend based on the original and the complete-case dataset. Results
displayed for the variables general health (GH), bodily pain (BP), social functioning (SF) and
role emotional (RE). Significant p-values are marked as boldface.

Repeated measures
SF-36 ANOVA Curvilinear MRM
Gender by time Complete-case All subjects Complete-case

GH
Estimate -1.33 -1.00
SD 1.18 1.36
P-values 0.179 0.260 0.460
BP
Estimate -2.82 -3.64
SD 1.61 1.82
P-values 0.046 0.081 0.046
SF
Estimate 0.77 0.19
SD 1.36 1.50
P-values 0.164 0.571 0.898
RE
Estimate -3.86 -5.96
SD 2.63 3.06
P-values 0.025 0.143 0.052
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The p-values of the interactions for all the four selected variables alter when applying the
curvilinear model to all data compared to the complete-case repeated measurements ANOVA.
More of the information contained in the data are included in the analyses and the sample sizes
of men and women increases. This should give more significant p-values if the data are missing
completely at random, as assumed by the complete-case analyses. Instead we observe that the
p-values increases and this indicates that some information is lost due to complete-case analy-
ses, and the repeated measures ANOVA yields biased estimates. In addition does the observed
correlation structure of the data violate the assumption of sphericity from repeated measures
ANOVA. Approximations to make the repeated measures ANOVA achievable are performed by
Greenhouse-Geisser corrections, and this leads to approximations of the assumed correlation
matrix of the data. The curvilinear MRM have possibilities to model the correlation structure
more generally, and are therefore assumed to give a better fit of the data than the approximative
method of Greenhouse-Geisser and repeated measures ANOVA.

For the variable role emotional the analysis by mixed model alters the interpretation of the
fixed gender by time interaction. With complete-case ANOVA this variable is significant with
a p-value of 0.025. This p-value is increased by a factor of six when analyzing the data with
the mixed model based on all subjects (p-value of 0.143). For the variable bodily pain the inter-
action p-value is also altered from significant (0.046) to insignificant (0.081) when comparing
complete-case repeated measurements ANOVA with the mixed model. It must be emphasized
that this change in p-values does not necessarily alter the interpretation of the effect. The gender
by time interaction is insignificant for both analyses for the remaining variables general health
and social functioning.

Further it is desirable to compare the results from the curvilinear mixed regression model
performed on both the complete-case selection of patients and the dataset containing all subjects.
These analyses make us able to compare the impact of complete-case analyses directly, since the
assumptions are equal for the analyses of both subject samples. Results of the analyses of the
curvilinear MRM performed on the complete-case data are displayed in the right column of
Table 7.1.

For the variable role emotional we discover that the parameter estimate for the gender by
time interaction is altered from -3.85 for all subjects to -5.19 for complete-case subjects, that
is a decrease of approximately size 1.3. The standard deviance is only slightly increased by a
number 0.3, from 2.63 to 2.92. The p-value for the interaction when analyzing the complete-case
subjects is almost half of the p-value for the same analysis performed on all subjects. For bodily
pain the estimate of the interaction is decreased from -2.82 to -3.64 when analyzing the subjects
remaining after listwise deletion by the mixed model, and the p-value is decreased below the
α-level 0.05. For the remaining variables general health and social functioning the estimated
interactions are close to zero and small compared with the estimated standard deviations, thus
the p-values yield insignificant results.

The difference between men and women at each measurement occasions seems to be of
greater magnitude when describing all subjects than found for the complete-case subjects, but
the improvement profile for men and women seems to be more similar. This is reflected in the
results from the curvilinear MRM where the gender by time interaction is increased (see Table
A.4).
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The plot of all subjects in Figure 5.2 displays that by including the omitted subjects the im-
provement profile of bodily pain become more similar for men and women than for complete-
case subjects. This is analogous with the results found in Table 7.1. Gender by time interaction
for social functioning is far from significant for any of the analyses, and by including all sub-
jects with observed measurements the improvement profiles become even more parallel than for
complete-case analyses.

The overall change in results for role emotional when including omitted subjects is that the
mean for women at baseline becomes smaller, thus the profile for women is altered and the
improvement profiles for men and women are more similar. The gender by time interaction is
found insignificant when analyzing all subjects by the curvilinear MRM, and this is reflected in
the middle profile plot in Figure 5.4.

7.3 Analyses by generalized estimating equations

Generalized estimating equations (GEE) are described in Section 3.6.2 as a general analysis tool
that handles several types of dependent variables. But, since it assumes covariate-dependent
MCAR, it is not the first choice of analysis methods to handle data with missing values. We
have conducted an analysis by GEE with both the original data including subjects with missing
values and with the multiple imputed datasets to present an application of this method. As
described in the previous section the unstructured form seems to be the most suitable correlation
structure for the data in Gjeilo et al. [2008]. There are no restrictions of the missing data pattern
when applying this working correlation matrix, thus no subjects are omitted.

The Stata script to perform the GEE method is found in Listing 7.5. The data are reshaped
to long format and the centered time and intercept variables are generated as displayed in List-
ing 6.3. The xtgee command on first line performs the regression analysis, with the correct
between-subjects and time variables specified by the options i() and j(). The unstructured cor-
relation form is given by corr() and the standard deviations are estimated by a robust method
as given in the last option vce(). Finally, if we want to look at the estimated working variance-
covariance matrix produced by the analysis this is achieved by the second line.

Listing 7.5: Generalized estimating equations for the variable role emotional (RE) with unstruc-
tured correlation� �

1 x t g e e r e t k jønn t i m e s h i f t t i m e s h i f t _ k j ø n n t i m e s h i f t 2 , i ( p a t k e y ) t ( t i m e s h i f t ) c o r r ( uns
) vce ( r o b u s t )

2 m a t r i x l i s t e (R)� �
The results of the analysis of role emotional by GEE are found in Table 7.3. The command

xtgee is one of the supported commands of mim, thus it is easy to apply GEE to the multiple
imputed datasets to compare the results obtained from original data. These results are also listed
in Table 7.3, including the fraction of missing information (FMI) and mcerrors.

The gender by time interaction is the focus of these analyses, analogous to the repeated
measures ANOVA and the remaining regression models explained previously. We observe that
all four variables obtain insignificant p-values for the interaction effect with both original data
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and the combined results for the multiple imputed datasets. Bodily pain are close to the α-level
of 0.05 for original data analysis, which indicates a possible difference in improvement for men
and women. The multiple imputed datasets gives a p-value that is far from significant, and
because of the features of MI we have reasons to believe in this value rather than the p-value
from the original data analysis.

Role emotional is the other variable with significant interaction by complete-case repeated
measures ANOVA. It is not found significant in either of the GEE analyses displayed in Table
7.3 above. We obtain the same interpretation of results from the GEE analyses after MI as for
the curvilinear mixed regression models and the imputation methods of EM and MI.
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Table 7.2: Generalized estimating equations conducted on the original dataset and the multiple
imputed datasets (MI datasets) for the variables general health (GH), bodily pain (BP), social
functioning (SF) and role emotional (RE), grouping on gender. Significant p-values are marked
as boldface.

SF-36 Original dataset MI datasets
Gender by time interaction P-value P-value FMI

GH
Estimate -1.00 -0.57 0.267
mcerror 0.14 0.066

SD 1.18 1.29
mcerror 0.06

P-value 0.399 0.656
mcerror 0.081

BP
Estimate -2.93 -2.12 1.169

mcerror 0.14 0.043

SD 1.51 1.60
mcerror 0.04

P-value 0.052 0.185
mcerror 0.033

SF
Estimate 0.42 0.93 0.155
mcerror 0.13 0.040

SD 1.43 1.47
mcerror 0.04

P-value 0.770 0.529
mcerror 0.061

RE
Estimate -4.28 -3.79 0.170
mcerror 0.24 0.043

SD 2.63 2.70
mcerror 0.07

P-value 0.103 0.162
mcerror 0.025
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8
Discussion

Missing data arise within numerous of research fields and is clearly an issue that we must handle
by care. As mentioned in Section 4.2 there are different reasons for missing values. A special
type of missing data occur when the reason for non-response is that patients die during a longitu-
dinal study. The question is whether or not these unobserved values should be treated as missing
data, or rather as censored values. If the reason for death can be related to the research question
under evaluation, the missing values should be regarded as missing at random (MAR), or even
missing not at random (MNAR). On the other hand, if missing values due to mortality not related
to the hypothesis of the study, the missing values can be regarded as completely random, and
some of the deficient methods described in Schafer and Graham [2002] can be applied without
too much loss of efficiency and give unbiased estimates.

Normality of data are assumed in Gjeilo et al. [2008], which is approximately correct for
many of the variables that are analyzed, but not for all. Role emotional is a variable that takes
only five levels of values, and with a clear roof and ceiling effect that violates the normality
assumption. This can affect the results and lead to biased estimates and/or decreased statistical
power. This concerns for example the Student’s t-test. Some methods claim to be robust to
violations of normality, for example the repeated measures ANOVA. In Section 6.2.3 we state
that the arc sine transformation formula modifies variables to be more Gaussian shaped, so we
have performed all analyses with transformed variables as the dependent variable. This is done
to examine the sensitivity of methods to the normality assumption of variables. The results of
the improvement hypothesis gives slightly decreased p-values for the gender by time interaction
for bodily pain, but leads to equal interpretation. The remaining variables obtain similar results
of p-values for the interaction for both original and transformed variables. The analyses on the
original variables gives interpretable parameter estimates, and are the only results reported in
this paper.

Chapter 4 describes the dataset and the missing data structure under study in this paper. We
find that the proportion of missing values are considerably higher for female patients than for
male. This indicates that the probability of missing values are related to the gender of patients,
that is data are covariate-dependent missing completely at random (MCAR). Complete-case
analysis leads to a selection of patients that have all values observed, thus a higher fraction of
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the women are excluded from the analyses. This again leads to possible selection bias. Based
on these observations we advise more sophisticated analysis methods are used for this dataset.

The effect of missing data on the samples of subjects from complete-case analyses are ex-
amined descriptively in Section 5.3. We remember that the Student’s t-tests are performed on
the available subjects at each time point, and are displayed in the middle plots denoted ’All
observations’ in Figures 5.1 to 5.4. The samples of which the analyses are performed are not
necessarily equal for the different time points. As long as no direct comparisons of these re-
sults are performed, this available-case method is preferred over complete-case analyses since a
higher proportion of subjects are included in analyses. Note that this analysis method may still
give biased results.

The graphical display of the complete-case and available-case samples for role emotional
in Figure 5.4 reveal that many of the omitted women hold exceptionally low observations at
baseline. It is natural to assume subjects with low intercept value to improve during the study,
but remain lower than the subjects with higher baseline score. Since these observations are
missing we expect the estimated means to be too optimistic for the available-case analyses of
the t-tests. Thus we image the real differences between men and women to be larger than the
published results for these two time points. The analysis results of the same t-test after multiple
imputation (in Table 6.2) and expectation maximization (in Table 6.1) are highly significant,
which confirms this assumption. There seems to be a relation of the missing values at six and
twelve months follow-up and the observed baseline values for the omitted women. Thus we have
reason to expect the missing data mechanism in this data are not MCAR (we can not determine
whether the mechanism is MAR or MNAR).

The extent of exclusion of subjects are more serious for the repeated measures ANOVA,
which base the analyses on the complete-case samples of subjects. The latter are displayed in
the left plots in the same figures as described above (Figures 5.1 to 5.4). If we compare the
profile plots of role emotional in Figure 5.4 we see that the omitted women (right plot) that are
observed at baseline have a mean score of 36.7, more than twenty points less than the complete-
case women. These women are not observed at one or both of the consecutive measurement
occasions. It is rather easy to spot that the complete-case method leads to selection bias, and we
examine the extent of the bias for these analysis results in subsequent paragraphs.

The correlation matrix of the observed dataset is given in Matrix 4.3, and indicates that the
assumption of compound symmetry structure is violated. Repeated measures ANOVA assumes
normality, homoskedasticity and sphericity, but claims to be robust to violations of the first
two assumptions. The latter is violated in the data of Gjeilo et al. [2008], thus we employ
Greenhouse-Geisser adjustment of degrees of freedom as an approximation to be able to perform
the analysis nevertheless. This means that the repeated measures ANOVA is not very suitable for
the specified dataset, and we should apply more appropriate methods to the data with less strict
assumptions about the correlation structure of the method. The more general mixed regression
models, and the covariance pattern models are examples of such alternative methods that are
more suitable to fit the correlation structure of the patients undergoing cardiac surgery. This
concerns both complete and incomplete longitudinal data.

Gjeilo et al. [2008] analyzed a longitudinal dataset, where each subject was intended to
be measured at three occasions. This longitudinal structure gives potentially more information
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about the missing values and the reasons for missing, which strengthens the imputation model
when performing expectation maximization algorithm or multiple imputation. A missing value
at one time point may have been observed at some of the other measurement occasions for the
subject, which is a strong predictor for the values to be imputed.

Expectation maximization (EM) is a full likelihood-based method that gives unbiased esti-
mates assuming ignorable missing data in longitudinal datasets. It gives one plausible version
of how the dataset could have been if there were no unobserved values. This is a weak point of
EM compared to multiple imputation (MI), that gives multiple plausible versions of the original
dataset. This makes MI able to reflect about the accuracy and reliability of results. In addition,
the parameters of MI are regarded as stochastic variables, drawn from a posterior distribution
for each imputed dataset. This gives different parameters for the imputation model for all the
imputed datasets. An extra layer of uncertainty about the imputed values are induced in addition
to the residual error of the drawn imputations them self. EM computes a fixed set of parameters
for the imputation model, and induces uncertainty only in the imputed values.

The methods of EM and MI predict imputations for the missing values based on the values
of all subjects. The gender variable is included in the imputation model to ensure that women
are more equal each other, and equally for the male patients. The imputation process is complex
and the correlation structure is difficult (if possible) to examine. There may be induced some
correlation between imputed values and observed data for both men and women after imputation.
The implementation of Rubin’s rules for multiple imputed datasets explained in Section 6.2.5
does not calculate any correlation since the two-sample Student’s t-test assumes independent
samples, and the same goes for EM. The results of the t-test after EM and MI should be regarded
as approximations, based on the above.

We have explained the imputation model for multiple imputation where the variables with
few levels of values are assumed to be ordinal variables. The imputation by EM applies arc sine
transformation to all variables prior to imputation, and assumes all variables to be continuous
and normally distributed. We have performed an imputation by MI where all variables are
transformed as an inspection of the results from the two imputation models used. The parameter
estimates are similar for the two analyses with MI and random intercepts MRM, and give the
same interpretation of results. The results from MI with transformed variables are not reported
here.

The method of random intercepts mixed regression models (MRM) are stated as an approx-
imative method to the repeated measures ANOVA when sphericity is assumed. The analysis
of random intercepts MRM must be regarded as an approximation to the repeated measures
ANOVA without adjustment methods to compare the estimates of gender by time interactions
for MI versus complete-case.

The mixed regression models with more than one random factor employ the unstructured
correlation form. This means that the variances and correlations of these effects are allowed
to be different. Unstructured form is chosen based on the structure of the observed variance-
covariance matrix, which is unlike the more strict covariance patterns. Since we have three fixed
measurement occasions this leads to a total of six random variance and covariance parameters to
be estimated. We have a large sample of both men and women, thus the accuracy of the estimates
of model parameters will not be seriously affected.
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The gender by time interaction is found insignificant for all four variables under study. If we
remove the interaction from the regression equations we can examine the main effect of gender
and linear and quadratic time trends. All three parameters are significant for the variables,
therefore we conclude that gender is an important factor for HRQOL scores at baseline, the
improvement is considerable at the first months after surgery for both genders, and seems to
stabilize after the first half year of recovery. The results of these analyses are not given in this
report, since the research question is directed to the gender by time interaction.

The theory of covariance pattern models (CPM) is described in Section 3.5. The use of CPM
to analyze longitudinal data is just barely explained in Rabe-Hesketh and Skrondal [2008] by
the command xtgls, which is a panel data command to perform the method of generalized
least squares. This command is able to model the independent and first-order auto-regressive
(AR(1)) covariance patterns explained in Section 3.5.1, and allows heteroskedasticity in the
data. Heteroskedasticity is the opposite of homoskedasticity, that is variance parameters are
allowed to be different for the random effects. Obviously, the independent covariance matrix
is not suitable for longitudinal data with correlations within subjects, but the AR(1) structure
could be an appropriate alternative for many situations. AR(1) requires subjects to have at least
two consecutive observations to be able to estimate the auto-regressive coefficient ρ, and no
intermittent missing values are allowed. The option force specifies that the analysis should be
carried through including subjects with intermittent non-response, but the subjects with less than
two observations are still omitted.

The deletion of subjects with less than two observations may lead to selection bias, as ex-
plained for the complete-case method. For the data in Gjeilo et al. [2008] a total of 62 patients
are omitted when analyzing the variable role emotional, that is 12% of all subjects included in
the study. This fraction is small compared with complete-case method where 35% of the patients
are excluded. When analyzing role emotional by the command xtgls and the option force we
obtain an estimated auto-regressive coefficient of 0.285. This correspond to the lag1 correlation.
The lag2 correlation is further computed as ρ2 = 0.081, which is far from the observed lag2
correlation of 0.332. Although the AR(1) structure seems unappropriate for the data of Gjeilo
et al. [2008] it can be suitable for studies with many measurement occasions where most of the
subjects are observed at several occasions. The unstructured correlation form is sensible for
studies with limited number of fixed occasions.

The observed correlation structure displayed in Table 4.3 indicates a more complex covari-
ance structure than the exchangeable or banded structures, and with only three fixed measure-
ment occasions the unstructured correlation form seems to be most suitable. Unfortunately
this structure is not available with the xtgls command. The generalized estimating equa-
tions (GEE) command xtgee handles most of the correlation structures except AR(1), and
Rabe-Hesketh and Skrondal [2008] suggest to use this command to fit the unstructured form. A
drawback for this method is the requirement of the missing data distribution to rely only on co-
variates, not on values observed at other occasions, also known as covariate-dependent MCAR.
The use of GEE with the original data is performed under the assumption that the missing data
distribution is covariate-dependent MCAR although we have observed indication of MAR from
the descriptive analysis of role emotional in Section 5.3. This is done as an sensitivity analy-
sis to examine the features of the method for the data in Gjeilo et al. [2008]. In addition we
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have applied the method with the imputed datasets from MI, which make us able to inspect the
estimates based on original data.

Role emotional takes five levels of values and can be regarded as an ordinal variable as de-
scribed in Section 6.2.3. The methods of mixed regression models and covariance pattern models
assume the dependent variable to be normally distributed and continuous, and role emotional vi-
olates possibly both assumptions. This may lead to biased estimates and/or decreased statistical
power. Section 3.6 describes some methods to handle discrete outcome variables with missing
values. Generalized mixed regression models can be performed in Stata [2007] by the command
gllamm and corresponding options link(ologit) or link(oprobit), according to Rabe-Hesketh
and Skrondal [2008]. Unfortunately, there was not enough time for this during this thesis. The
GEE command xtgee does not have an option to handle ordinal variables according to Rabe-
Hesketh and Skrondal [2008], and is rather not performed for the dataset. Weighted estimating
equations, or any other weighting methods for handling missing values have not been exam-
ined in this paper, but can be appropriate for both continuous and discrete outcome variables in
longitudinal datasets with missing data.

Full likelihood-based methods make assumptions about the joint distribution which rely on
unobserved information. These methods provide approximative results for the datasets with
missing values. When analyzing data with some missing information such methods give better
results than the simpler methods of complete-case or single imputation. More complex methods
for missing data analyses are developed that make assumptions about the missing data distri-
bution and are able to model data that are missing not at random. The selection models and
pattern-mixture models described in Schafer and Graham [2002] can give unbiased estimates
for data with missing values when the assumed missing data mechanism is MNAR. Comprehen-
sive research are performed on these methods, and will be continued in the future.

The methods for data missing not at random (MNAR) make assumptions about the missing
data distribution, that is the probability that a value is observed. These assumptions are difficult
to examine since they are based on the unobserved data. If the assumptions of the missing data
distribution is faulty, the methods provide biased results. As discussed in Schafer and Graham
[2002], one or two models assuming to handle MNAR data can be performed as a sensitivity
analysis for the full likelihood-based methods treated in this report.

86



9
Conclusion

The overall results of the gender differences in HRQOL scores at each time point in Gjeilo et al.
[2008] remains when the data are analyzed by propere imputation methods. For the four HRQOL
variables general health, bodily pain, social functioning and role emotional there are a proven
difference in favor of men at six and twelve months after surgery. Some results are even more
significant when employing imputation techniques because the methods use all the accessible
information in the data and thus yield higher statistical power. The differences between the
genders are not as convincingly presurgery, only role emotional gives a significant difference in
score for men and women.

The improvement in time after a cardiac surgery is found equal for men and women for six of
the eight scales of SF-36 when employing complete-case analysis. For the remaining variables
bodily pain and role emotional the analysis indicate that female patients improve less than the
male patients during the recovery period. When we analyze the evolution in time by proper
imputation methods or the curvilinear mixed regression model this difference disappear for role
emotional, and diminish considerable for bodily pain. We conclude that there is no statistical
proven gender differences in improvement of HRQOL scores after cardiac surgery.

The method of expectation maximization and multiple imputation makes us able to employ
the standard statistical analysis methods used in Gjeilo et al. [2008]. The mixed regression mod-
els and covariance pattern models represent alternative analysis methods to examine the gender
difference in improvement patterns. The imputation methods and mixed regression models are
assumed to handle missing data in an adequate way, and gives similar analysis results for all
methods. These results differ from the complete-case method results for two of the HRQOL-
variables when examining the gender differences in improvement of HRQOL after surgery. The
method of generalized estimating equations are able to give unbiased estimates only if the miss-
ing data mechanism are assumed covariate-dependent MCAR.

From the curvilinear MRM without interaction we find that gender is an important factor for
HRQOL scores at baseline, the improvement is considerable and equal for both genders at the
first months after surgery, and the evolution seems to stabilize after the first half year of recovery.
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A
Additional tables

Table A.1: Missing data structure for identification number patkey, gender, age, the SF-36
scores, health transition (HT) and marital status, from the data of Gjeilo et al. [2008]. The
second and third columns describes the original dataset, while the two last columns describes
missing data structure in data after missing forms have been excluded. Missing form is a totally
unobserved occasion for a subject.

Variable No. of missing % missing No. of missing % missing
Patkey (id) 0 0.0 0 0.0
Gender 0 0.0 0 0.0
Age 0 0.0 0 0.0
General health (GH)
Before surgery 40 7.5 33 7.6
6 months follow-up 94 17.6 17 3.9
12 months follow-up 98 18.4 26 6.0
Physical functioning (PF)
Before surgery 19 3.6 15 3.4
6 months follow-up 90 16.9 16 3.7
12 months follow-up 83 15.5 11 2.5
Social functioning (SF)
Before surgery 14 2.6 12 2.8
6 months follow-up 77 14.4 4 0.9
12 months follow-up 80 15.0 10 2.3
Role physical (RP)
Before surgery 24 4.5 20 4.6
6 months follow-up 105 19.7 30 6.9
12 months follow-up 101 18.9 30 6.9

Continued on next page
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Variable No. of missing % missing No. of missing % missing
Role emotional(RE)
Before surgery 41 7.7 35 8.0
6 months follow-up 115 21.5 38 8.7
12 months follow-up 108 20.2 37 8.5
Mental health (MH)
Before surgery 32 6.0 27 6.2
6 months follow-up 93 17.4 15 3.4
12 months follow-up 95 17.8 24 5.5
Vitality (VT)
Before surgery 27 5.1 23 5.3
6 months follow-up 91 17.0 15 3.4
12 months follow-up 93 17.4 22 5.0
Bodily pain (BP)
Before surgery 13 2.4 11 2.5
6 months follow-up 86 16.1 13 3.0
12 months follow-up 84 15.7 14 3.2
Health transition (HT)
Before surgery 6 1.1 5 1.1
6 months follow-up 78 14.6 5 1.1
12 months follow-up 76 14.2 6 1.4
Marital status
Before surgery 0 0.0 1 0.2
6 months follow-up 72 13.5 0 0.0
12 months follow-up 70 13.1 1 0.2
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Table A.2: Results from a two-sample Student’s t-test assuming unequal variances for all SF-36-
variables and health transition (HT). Analyses are based on complete-case subjects and grouped
on gender. Significant p-values are marked as boldface.

Baseline Six months Twelve months
SF-36 Mean SD P-value Mean SD P-value Mean SD P-value

GH
Male 64.9 19.7 0.490 72.0 22.1 0.011 71.9 21.6 0.004
Female 63.3 20.7 65.2 21.9 64.7 20.9
PF
Male 60.2 26.0 0.000 80.3 22.2 0.000 80.3 22.2 0.000
Female 43.9 26.3 66.8 26.8 65.1 26.7
SF
Male 73.2 24.8 0.042 84.7 22.6 0.013 86.3 20.5 0.067
Female 67.7 25.4 77.3 25.8 81.4 24.1
RP
Male 23.4 36.7 0.002 58.3 42.8 0.010 58.1 42.8 0.000
Female 13.2 27.6 44.4 44.1 40.0 42.4
RE
Male 58.7 42.6 0.054 74.6 37.0 0.006 75.6 36.7 0.001
Female 49.1 45.9 59.8 44.1 58.0 43.1
MH
Male 77.5 17.0 0.000 82.0 16.5 0.032 82.3 15.4 0.001
Female 68.9 18.6 77.9 15.7 75.6 16.5
VT
Male 50.7 22.9 0.001 62.4 22.1 0.010 61.5 22.2 0.004
Female 42.5 22.0 55.4 22.5 54.1 21.2
BP
Male 56.5 27.2 0.137 75.7 25.7 0.004 78.7 25.2 0.002
Female 52.3 26.4 66.4 27.1 68.9 26.9
HT
Male 32.0 24.4 0.195 82.0 24.6 0.791 86.8 20.6 0.566
Female 28.7 24.5 82.8 26.0 85.3 22.6
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Table A.3: Repeated measures ANOVA with Greenhouse-Geisser adjustment for non-sphericity
for all SF-36-variables and health transition (HT). Analyses are based on complete-case subjects
and grouped on gender. Significant p-values are marked as boldface.

SF-36 Number of fully Repeated measures
Gender by time observed patients ANOVA

interaction P-value

GH
374 0.179

PF
402 0.812

SF
414 0.224

RP
373 0.083

RE
348 0.025

MH
382 0.275

VT
386 0.797

BP
401 0.046

HT
420 0.493
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Table A.8: Likelihood ratio test results from the mixed models for variables general health (GH),
bodily pain (BP), social functioning (SF) and role emotional (RE).

Parameter Nested model Generalized model Test statistic P-value

GH Linear regression RI linear MRM 403.76 <0.001
RI linear MRM RS linear MRM 22.47 <0.001
”Quadratic” linear regression RI quadratic MRM 410.68 <0.001
RI quadratic MRM RS quadratic MRM 24.94 <0.001
RS quadratic MRM Curvilinear MRM 49.53 <0.001

BF Linear regression RI linear MRM 249.19 <0.001
RI linear MRM RS linear MRM 15.44 <0.001
”Quadratic” linear regression RI quadratic MRM 271.04 <0.001
RI quadratic MRM RS quadratic MRM 29.92 <0.001
RS quadratic MRM Curvilinear MRM 46.28 <0.001

SF Linear regression RI linear MRM 285.81 <0.001
RI linear MRM RS linear MRM 11.20 0.004
”Quadratic” linear regression RI quadratic MRM 294.93 <0.001
RI quadratic MRM RS quadratic MRM 14.14 <0.001
RS quadratic MRM Curvilinear MRM 40.85 <0.001

RE Linear regression RI linear MRM 177.16 <0.001
RI linear MRM RS linear MRM 15.17 <0.001
”Quadratic” linear regression RI quadratic MRM 178.65 <0.001
RI quadratic MRM RS quadratic MRM 17.02 <0.001
RS quadratic MRM Curvilinear MRM 42.72 <0.001
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B
Stata and R scripts

Stata-script

/ ∗ Data i n wide format ∗ /

/ ∗ MISSING DATA STRUCTURE ∗ /
/ ∗ keep t h e v a r i a b l e s t h a t a r e i n c l u d e d i n any of t h e a n a l y s e s , ∗ /
/ ∗ t o examine t h e miss ing v a l u e s i n t h e data s t r u c t u r e ∗ /

p r e s e r v e
keep p a t k e y s i v i l s t a n d 1 s i v i l s t a n d 2 s i v i l s t a n d 3 ALDER kjønn mh1 mh2 mh3 v t 1 v t 2 v t 3 gh1

gh2 gh3 bp1 bp2 bp3 s f 1 s f 2 s f 3 pf1 pf2 pf3 rp1 rp2 rp3 r e 1 r e 2 r e 3 h t 1 h t 2 h t 3
misschk
r e s t o r e

/ ∗ Examine d a t a s e t when complete forms a r e miss ing ∗ /
p r e s e r v e
drop i f s i v i l s t a n d 2 ==. & s i v i l s t a n d 3 ==. & mh2==. & mh3==. & v t 2 ==. & v t 3 ==. & bp2 ==. &

bp3 ==. & gh2 ==. & gh3 ==. & s f 2 ==. & s f 3 ==. & pf2 ==. & pf3 ==. & rp2 ==. & rp3 ==. &
r e 2 ==. & r e 3 ==. & h t 2 ==. & h t 3 ==. & s i v i l s t a n d 2 ==. & s i v i l s t a n d 3 ==.

drop i f s i v i l s t a n d 2 ==. & mh2==. & v t 2 ==. & bp2 ==. & gh2 ==. & s f 2 ==. & pf2 ==. & rp2 ==. &
r e 2 ==. & h t 2 ==. & s i v i l s t a n d 2 ==.

drop i f s i v i l s t a n d 3 ==. & mh3==. & v t 3 ==. & bp3 ==. & gh3 ==. & s f 3 ==. & pf3 ==. & rp3 ==. &
r e 3 ==. & h t 3 ==. & s i v i l s t a n d 3 ==.

keep p a t k e y s i v i l s t a n d 1 s i v i l s t a n d 2 s i v i l s t a n d 3 ALDER kjønn mh1 mh2 mh3 v t 1 v t 2 v t 3 gh1
gh2 gh3 bp1 bp2 bp3 s f 1 s f 2 s f 3 pf1 pf2 pf3 rp1 rp2 rp3 r e 1 r e 2 r e 3 h t 1 h t 2 h t 3

misschk

r e s t o r e

/ ∗ Examina t i on o f v a r i a b l e s , h i s t o g r a m s ∗ /
/ ∗ D i s p l a y e d f o r g e n e r a l h e a l t h , s i m i l a r f o r a l l v a r i a b l e s ∗ /

/ ∗ GH ∗ /
t a gh1
h i s t gh1 , norm s t a r t (−2) wid th ( 4 ) f r e q x t i t l e ( " G e n e r a l H e a l t h " ) t i t l e ( " His togram of GH

, " " b e f o r e s u r g e r y " )
g raph save GHhis t1a . gph , r e p l a c e
graph e x p o r t GHhis t1a . eps , r e p l a c e
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h i s t gh2 , norm s t a r t (−2) wid th ( 4 ) f r e q x t i t l e ( " G e n e r a l H e a l t h " ) t i t l e ( " His togram of GH
, " " a f t e r 6 months " )

g raph save GHhis t2a . gph , r e p l a c e
graph e x p o r t GHhis t2a . eps , r e p l a c e
h i s t gh3 , norm s t a r t (−2) wid th ( 4 ) f r e q x t i t l e ( " G e n e r a l H e a l t h " ) t i t l e ( " His togram of GH

, " " a f t e r 12 months " )
g raph save GHhis t3a . gph , r e p l a c e
graph e x p o r t GHhis t3a . eps , r e p l a c e

graph combine GHhis t1a . gph GHhis t2a . gph GHhis t3a . gph , rows ( 1 ) a l t s h r i n k i m a r g i n ( l a r g e )
ycommon xcommon s a v i n g ( GHhis ta . gph )

g raph combine GHhis t1a . gph GHhis t2a . gph GHhis t3a . gph , rows ( 1 ) a l t s h r i n k i m a r g i n ( l a r g e )
ycommon xcommon s a v i n g ( GHhis ta . eps )

/ ∗ G e n e r a t e a r c s i n e t r a n s f o r m e d v a r i a b l e s ∗ /
/ ∗ GH ∗ /
ge gh1 t = a s i n ( s q r t ( gh1 / 100) )
ge gh2 t = a s i n ( s q r t ( gh2 / 100) )
ge gh3 t = a s i n ( s q r t ( gh3 / 100) )
h i s t gh1 t , norm b i n ( 2 1 ) f r e q x t i t l e ( " G e n e r a l H e a l t h ( t r a n s f o r m e d ) " ) t i t l e ( " His togram

of GH t r a n s f o r m e d , " " b e f o r e s u r g e r y " )
g raph save G H t h i s t 1 a . gph , r e p l a c e
graph e x p o r t G H t h i s t 1 a . eps , r e p l a c e
h i s t gh2 t , norm b i n ( 2 1 ) f r e q x t i t l e ( " G e n e r a l H e a l t h ( t r a n s f o r m e d ) " ) t i t l e ( " His togram

of GH t r a n s f o r m e d , " " a f t e r 6 months " )
g raph save G H t h i s t 2 a . gph , r e p l a c e
graph e x p o r t G H t h i s t 2 a . eps , r e p l a c e
h i s t gh3 t , norm b i n ( 2 1 ) f r e q x t i t l e ( " G e n e r a l H e a l t h ( t r a n s f o r m e d ) " ) t i t l e ( " His togram

of GH t r a n s f o r m e d , " " a f t e r 12 months " )
g raph save G H t h i s t 3 a . gph , r e p l a c e
graph e x p o r t G H t h i s t 3 a . eps , r e p l a c e

graph combine G H t h i s t 1 a . gph G H t h i s t 2 a . gph G H t h i s t 3 a . gph , rows ( 1 ) a l t s h r i n k i m a r g i n (
l a r g e ) ycommon xcommon s a v i n g ( G H t h i s t a . gph )

g raph combine G H t h i s t 1 a . gph G H t h i s t 2 a . gph G H t h i s t 3 a . gph , rows ( 1 ) a l t s h r i n k i m a r g i n (
l a r g e ) ycommon xcommon s a v i n g ( G H t h i s t a . eps )

/ ∗ P r o f i l e p l o t based on c o m p l e t e c a s e , a l l o b s e r v a t i o n s and o m i t t e d s u b j e c t s ∗ /
/ ∗ GH ∗ /

l a b e l d e f i n e ggg 0 "Men" 1 "Women"
l a b e l v a l u e s k jønn ggg

/ ∗ Complete−case s u b j e c t s ∗ /
/ ∗ i n a d a t a s e t ∗ /
drop i f gh1 ==. | gh2 ==. | gh3 ==.
b y s o r t k jønn : su gh1 gh2 gh3
b y s o r t k jønn : s u t e x gh1 gh2 gh3
p r o f i l e p l o t gh1 gh2 gh3 , by ( k jønn ) x l a b e l (1 " B e f o r e " 2 " 6 months " 3 " 12 months " ) t i t l e ( "

Complete−c a s e " ) s a v i n g ( GHprofi leCC . gph )

/ ∗ A l l s u b j e c t s ∗ /
/ ∗ In a n o t h e r d a t a s e t ∗ /
b y s o r t k jønn : su gh1 gh2 gh3
b y s o r t k jønn : s u t e x gh1 gh2 gh3
p r o f i l e p l o t gh1 gh2 gh3 , by ( k jønn ) x l a b e l (1 " B e f o r e " 2 " 6 months " 3 " 12 months " ) t i t l e ( "

A l l o b s e r v a t i o n s " ) s a v i n g ( GHprofileALL . gph )

/ ∗ Omit ted s u b j e c t s ∗ /
/ ∗ i n a t h i r d d a t a s e t ∗ /
drop i f gh1 ! = . & gh2 ! = . & gh3 ! = .
b y s o r t k jønn : su gh1 gh2 gh3
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b y s o r t k jønn : s u t e x gh1 gh2 gh3
p r o f i l e p l o t gh1 gh2 gh3 , by ( k jønn ) x l a b e l (1 " B e f o r e " 2 " 6 months " 3 " 12 months " ) t i t l e ( "

Omi t ted o b s e r v a t i o n s " ) s a v i n g ( G H p r o f i l e O r i g . gph )

/ ∗Then combine t h e t h r e e p l o t s ∗ /
graph combine GHprofi leCC . gph GHprofileALL . gph G H p r o f i l e O r i g . gph , rows ( 1 ) a l t s h r i n k

i m a r g i n ( l a r g e ) ycommon xcommon s a v i n g ( G H p r o f i l e 3 . gph )
g raph combine GHprofi leCC . gph GHprofileALL . gph G H p r o f i l e O r i g . gph , rows ( 1 ) a l t s h r i n k

i m a r g i n ( l a r g e ) ycommon xcommon t i t l e ( " P r o f i l e p l o t s f o r g e n e r a l h e a l t h (GH) " )

/ ∗ Examining t h e r e s i d u a l s of t h e s i m p l e model , y ~ bx + e ∗ /
/ ∗ RE ∗ /

keep p a t k e y r e 1 r e 2 r e 3 k jønn

r e s h a p e long re , i ( p a t k e y )
rename _ j t ime

q u i e t l y r e g r e s s r e p a t k e y k jønn t ime
p r e d i c t r e s , r e s i d u a l s

/ ∗ P l o t o f t h e r e s i d u a l s ∗ /
q u a n t i l e r e s
pnorm r e s

/ ∗ Observed v a r i a n c e−c o v a r i a n c e matrix ∗ /
/ ∗ and c o r r e l a t i o n matrix ∗ /

keep p a t k e y r e t ime k jønn r e s
r e s h a p e wide r e r e s , i ( p a t k e y ) j ( t ime )

t a b s t a t r e 1 r e 2 re3 , s t a t i s t i c s ( v a r i a n c e ) format (%4.3 f )
c o r r e l a t e r e 1 r e 2 re3 , wrap
c o r r e l a t e r e 1 r e 2 re3 , c o v a r i a n c e

/ ∗ t− t e s t ∗ /
/ ∗ T e s t i n g homogene i ty o f v a r i a n c e between g e n d e r s ∗ /

s d t e s t re1 , by ( k jønn )
s d t e s t re2 , by ( k jønn )
s d t e s t re3 , by ( k jønn )

s d t e s t bp1 , by ( k jønn )
s d t e s t bp2 , by ( k jønn )
s d t e s t bp3 , by ( k jønn )

s d t e s t gh1 , by ( k jønn )
s d t e s t gh2 , by ( k jønn )
s d t e s t gh3 , by ( k jønn )

s d t e s t s f1 , by ( k jønn )
s d t e s t s f2 , by ( k jønn )
s d t e s t s f3 , by ( k jønn )

/ ∗ RE2 , RE3 and SF3 a r e s i g n i f i c a n t l y d i f f e r e n t i n v a r i a n c e s . ∗ /

/ ∗ Two−sample s t u d e n t ’ s t− t e s t assuming u n e q u a l v a r i a n c e s ∗ /

t t e s t gh1 , by ( k jønn ) u n e q u a l
t t e s t gh2 , by ( k jønn ) u n e q u a l
t t e s t gh3 , by ( k jønn ) u n e q u a l
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t t e s t bp1 , by ( k jønn ) u n e q u a l
t t e s t bp2 , by ( k jønn ) u n e q u a l
t t e s t bp3 , by ( k jønn ) u n e q u a l

t t e s t s f 1 , by ( k jønn ) u n e q u a l
t t e s t s f 2 , by ( k jønn ) u n e q u a l
t t e s t s f 3 , by ( k jønn ) u n e q u a l

t t e s t r e 1 , by ( k jønn ) u n e q u a l
t t e s t r e 2 , by ( k jønn ) u n e q u a l
t t e s t r e 3 , by ( k jønn ) u n e q u a l

/ ∗ T e s t o f m u l t i v a r i a t e n o r m a l i t y ∗ /
/ ∗ Data i n long f o r m a t ∗ /
r e s h a p e long mh v t bp gh s f p f rp r e ht , i ( p a t k e y ) j ( t ime )
r e p l a c e t ime = t ime−1

qnorm gh
pnorm gh
omninorm gh , by ( k jønn )

/ ∗ Repeated−measures ANOVA ∗ /
/ ∗ s t a r t w i th t h e f i l e i n wide f o r m a t ∗ /
/ ∗ d e l e t e p a t i e n t s w i th m i s s i n g v a l u e s ∗ /
/ ∗ r e s h a p e i n t o long f o r m a t ∗ /
/ ∗ same v a l u e s wi th wsanova and anova , r e p e a t e d ( ) ∗ /

s e t m a t s i z e 2000
p r e s e r v e

/ ∗−−−−−−−−GH−−−−−−−−−−−∗ /
drop i f gh1 ==. | gh2 ==. | gh3 ==.
r e s h a p e long mh v t bp gh s f p f rp r e ht , i ( p a t k e y ) j ( t ime )
wsanova gh t ime , i d ( p a t k e y ) between ( k jønn ) e p s i l o n
anova gh t ime k jønn p a t k e y t ime∗kjønn , r e p e a t e d ( t ime ) bse ( p a t k e y )
/ ∗−−−−−−−−BP−−−−−−−−−−−−∗ /
drop i f bp1 ==. | bp2 ==. | bp3 ==.
r e s h a p e long mh v t bp gh s f p f rp r e ht , i ( p a t k e y ) j ( t ime )
wsanova bp t ime , i d ( p a t k e y ) between ( k jønn ) e p s i l o n
anova bp t ime k jønn p a t k e y t ime∗kjønn , r e p e a t e d ( t ime ) bse ( p a t k e y )
/ ∗−−−−−−−−SF−−−−−−−−−−−∗ /
drop i f s f 1 ==. | s f 2 ==. | s f 3 ==.
r e s h a p e long mh v t bp gh s f p f rp r e ht , i ( p a t k e y ) j ( t ime )
wsanova s f t ime , i d ( p a t k e y ) between ( k jønn ) e p s i l o n
anova s f t ime k jønn p a t k e y t ime∗kjønn , r e p e a t e d ( t ime ) bse ( p a t k e y )
/ ∗−−−−−−−−−RE −−−−−−−−−∗ /
drop i f r e 1 ==. | r e 2 ==. | r e 3 ==.
r e s h a p e long mh v t bp gh s f p f rp r e ht , i ( p a t k e y ) j ( t ime )
wsanova r e t ime , i d ( p a t k e y ) between ( k jønn ) e p s i l o n
anova r e t ime k jønn p a t k e y t ime∗kjønn , r e p e a t e d ( t ime ) bse ( p a t k e y )

/ ∗ MI wi th i c e , based on a l l 8 s f−36 s c a l e s , ∗ /
/ ∗ ht , age , m a r i t a l s t a t u s , pa tkey , g en d e r . ∗ /
/ ∗ Re , s f , rp and h t a s o r d i n a l v a r i a b l e s ∗ /
/ ∗ no back−t r a n s f o r m a t i o n ∗ /

i c e p a t k e y gh1 t gh2 t gh3 t p f 1 t p f 2 t p f 3 t s f 1 s f 2 s f 3 rp1 rp2 rp3 r e 1 r e 2 r e 3 mh1t mh2t
mh3t v t 1 t v t 2 t v t 3 t bp1 t bp2 t bp3 t h t 1 h t 2 h t 3 ALDER kjønn s i v i l s t a n d 1 s i v i l s t a n d 2

s i v i l s t a n d 3 u s i n g ImpFul l1a , m( 2 0 ) genmiss ( mis ) cmd ( s f 1 s f 2 s f 3 rp1 rp2 rp3 r e 1
r e 2 r e 3 h t 1 h t 2 h t 3 : o l o g i t )
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/ ∗ MI wi th i c e , a l l v a r i a b l e s a r c s i n e−t r a n s f o r m e d ∗ /

i c e p a t k e y gh1 t gh2 t gh3 t p f 1 t p f 2 t p f 3 t s f 1 t s f 2 t s f 3 t r p 1 t r p 2 t r p 3 t r e 1 t r e 2 t r e 3 t
mh1t mh2t mh3t v t 1 t v t 2 t v t 3 t bp1 t bp2 t bp3 t h t 1 t h t 2 t h t 3 t ALDER kjønn
s i v i l s t a n d 1 s i v i l s t a n d 2 s i v i l s t a n d 3 u s i n g I m p F u l l 1 t r a n s , m( 2 0 ) genmiss ( mis ) cmd (
r e 1 t r e 2 t r e 3 t h t 1 t h t 2 t h t 3 t : r e g r e s s )

/ ∗ Back−t r a n s f o r m a t i o n ∗ /
/ ∗ Per fo rm i n I m p f i l e . d t a ∗ /
/ ∗ d i s p l a y e d f o r g e n e r a l h e a l t h ∗ /
/ ∗ e q u a l f o r pf , mh , v t and bp ∗ /

r e p l a c e gh1 =100∗ ( s i n ( gh1 t ) ) ^2 i f misgh1== 1
r e p l a c e gh2 =100∗ ( s i n ( gh2 t ) ) ^2 i f misgh2== 1
r e p l a c e gh3 =100∗ ( s i n ( gh3 t ) ) ^2 i f misgh3== 1

/ ∗−−−−−−−−MIXED MODEL−−−−−−−−−−−−−−−−∗ /
/ ∗ GH v a r i a b l e , e q u a l f o r BP , SF and RE ∗ /

/ ∗ d a t a t o long f o r m a t ∗ /
r e s h a p e long mh v t bp gh s f p f rp r e ht , i ( p a t k e y ) j ( t ime )

/ ∗ G e n e r a t e t h e v a r i a b l e s f o r t ime ^2 and f o r t i m e s h i f t . ∗ /
ge t ime _ k jønn = t ime∗ k jønn
egen timemean = mean ( t ime )
ge t i m e s h i f t = t ime − t imemean
ge t i m e s h i f t _ k jønn = t i m e s h i f t ∗ k jønn
ge t i m e s h i f t 2 = t i m e s h i f t ^2
ge t i m e s h i f t 2 _ k jønn = t i m e s h i f t 2 ∗ k jønn

/ ∗−−−−−−Random i n t e r c e p t s models−−−−−−∗ /
/ ∗ Random i n t e r c e p t , t i m e s h i f t ∗ /
/ ∗ gh = b0 + b1∗ t + b2∗x + b3∗ t ∗x + z e t a 0 + e p s i l o n ∗ /

xtmixed gh k jønn t i m e s h i f t t i m e s h i f t _ k jønn | | p a t k e y : , mle
e s t i m a t e s s t o r e r i t

/ ∗ Random i n t e r c e p t w i th s q u a r e d t ime , t i m e s h i f t ∗ /
/ ∗ gh = b0 + b1∗ t + b2∗x + b3∗ t ∗x + b4∗ t ^2 + z e t a 0 + e p s i l o n ∗ /

xtmixed gh k jønn t i m e s h i f t t i m e s h i f t _ k jønn t i m e s h i f t 2 | | p a t k e y : , mle
e s t i m a t e s s t o r e r i t 2

/ ∗ Random i n t e r c e p t w i th s q u a r e d t ime and i n t e r a c t i o n s q u a r e d t ime , t i m e s h i f t ∗ /
/ ∗ gh = b0 + b1∗ t + b2∗x + b3∗ t ∗x + b4∗ t ^2 + b5∗ t ^2∗x + z e t a 0 + e p s i l o n ∗ /

xtmixed gh k jønn t i m e s h i f t t i m e s h i f t _ k jønn t i m e s h i f t 2 t i m e s h i f t 2 _ k jønn | | p a t k e y : , mle
e s t i m a t e s s t o r e r i t 2 g
/ ∗ Thi s te rm i s NOT s i g n i f i c a n t ! ∗ /

/ ∗−−−−−−Random s l o p e s models−−−−−−−∗ /
/ ∗ Random s l o p e s , t i m e s h i f t ∗ /
/ ∗ gh = b0 + b1∗ t + b2∗x + b3∗ t ∗x + z e t a 0 + z e t a 1 ∗ t + e p s i l o n ∗ /

xtmixed gh k jønn t i m e s h i f t t i m e s h i f t _ k jønn | | p a t k e y : t i m e s h i f t , mle cov ( u n s t r u c t u r e d )
e s t i m a t e s s t o r e r s t

/ ∗ To examine t h e c o v a r i a n c e m a t r i x o f random e f f e c t s ∗ /
e s t a t r e c o v a r i a n c e

/ ∗ Random s l o p e s wi th s q u a r e d t ime , t i m e s h i f t ∗ /
/ ∗ gh = b0 + b1∗ t + b2∗x + b3∗ t ∗x + b4∗ t ^2 + z e t a 0 + z e t a 1 ∗ t + e p s i l o n ∗ /
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xtmixed gh k jønn t i m e s h i f t t i m e s h i f t _ k jønn t i m e s h i f t 2 | | p a t k e y : t i m e s h i f t , mle cov (
u n s t r u c t u r e d )

e s t i m a t e s s t o r e r s t 2

/ ∗ Random s l o p e s wi th s q u a r e d t ime and i n t e r a c t i o n s , t i m e s h i f t ∗ /
/ ∗ gh = b0 + b1∗ t + b2∗x + b3∗ t ∗x + b4∗ t ^2 + z e t a 0 + z e t a 1 ∗ t + e p s i l o n ∗ /

xtmixed gh k jønn t i m e s h i f t t i m e s h i f t _ k jønn t i m e s h i f t 2 t i m e s h i f t 2 _ k jønn | | p a t k e y :
t i m e s h i f t , mle cov ( u n s t r u c t u r e d )

e s t i m a t e s s t o r e r s t 2 g
/ ∗ obs i n t e r a c t i o n−t e rm t i m e s h i f t 2 _ k jønn i s n o t s i g n i f i c a n t ∗ /

/ ∗−−−−−−−−−−−−−−Random q u a d r a t i c s models−−−−−−−−−−−∗ /

/ ∗ Random q u a d r a t i c s w i th s q u a r e d t ime , t i m e s h i f t ∗ /
/ ∗ gh = b0 + b1∗ t + b2∗x + b3∗ t ∗x + b4∗ t ^2 + z e t a 0 + z e t a 1 ∗ t + e p s i l o n ∗ /

xtmixed gh k jønn t i m e s h i f t t i m e s h i f t _ k jønn t i m e s h i f t 2 | | p a t k e y : t i m e s h i f t t i m e s h i f t 2 ,
mle cov ( u n s t r u c t u r e d )

e s t i m a t e s s t o r e r s 2 t 2

/ ∗−−−−Random q u a d r a t i c model w i t h o u t i n t e r a c t i o n−−−∗ /
/ ∗ To examine t h e main e f f e c t s gender , t ime and t ime s q u a r e d ∗ /
xtmixed gh k jønn t i m e s h i f t t i m e s h i f t 2 | | p a t k e y : t i m e s h i f t t i m e s h i f t 2 , mle cov (

u n s t r u c t u r e d )

/ ∗−−−−−−−−−−−L i k e l i h o o d r a t i o t e s t s−−−−−−−−−−−−−∗ /
/ ∗ LRTEST1 − Find from o u t p u t f o r random i n t e r c e p t s w / l i n e a r model ∗ /
/ ∗ LRTEST2 − T e s t o f random s l o p e s w / l i n e a r model ∗ /
l r t e s t r i t r s t
/ ∗ LRTEST3 − T e s t o f random s l o p e s w / q u a d r a t i c model ∗ /
l r t e s t r i t 2 r s t 2
/ ∗ LRTEST4 − T e s t o f random q u a d r a t i c s w / q u a d r a t i c model ∗ /
l r t e s t r s t 2 r s 2 t 2

/ ∗−−−−C o v a r i a n c e p a t t e r n models−−−−∗ /
/ ∗ Data i n long f o r m a t ∗ /
/ ∗ Make pane l−d a t a ∗ /
x t s e t p a t k e y t i m e s h i f t

s e t m a t s i z e 2000
x t g l s r e t i m e s h i f t k jønn t i m e s h i f t _ k jønn t i m e s h i f t 2 , c o r r ( a r 1 ) f o r c e

/ ∗−−−−−−−−−−GEE−−−−−−−−−−−−∗ /
/ ∗ x t g e e command ∗ /
/ ∗ Data i n long f o r m a t ∗ /

/ ∗ AR( 1 ) covmat r ∗ /
/ ∗ P a n e l s w i th gaps o r l e s s t h a n 2 o b s e r v a t i o n s a r e o m i t t e d ∗ /
x t g e e r e k jønn t i m e s h i f t t i m e s h i f t _ kjønn , i ( p a t k e y ) t ( t i m e s h i f t ) c o r r ( a r 1 ) vce ( r o b u s t )
m a t r i x l i s t e (R)
/ ∗ covmat r n o t e q u a l t o t h e o b s e r v e d ∗ /

/ ∗ e x c h a n g e a b l e covmat r ( compound symmetry ) ∗ /
/ ∗ a l l p a n e l s a l l o w e d ∗ /
x t g e e r e k jønn t i m e s h i f t t i m e s h i f t _ kjønn , i ( p a t k e y ) t ( t i m e s h i f t ) c o r r ( exc ) vce ( r o b u s t )
m a t r i x l i s t e (R)
/ ∗ covmat r n o t s i m i l a r t o t h e o b s e r v e d ∗ /

/ ∗ u n s t r u c t u r e d covmat r ∗ /
/ ∗ A l l p a n e l s a l l o w e d ∗ /
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x t g e e r e k jønn t i m e s h i f t t i m e s h i f t _ kjønn , i ( p a t k e y ) t ( t i m e s h i f t ) c o r r ( uns ) vce ( r o b u s t )
e s t a t w c o r r e l a t i o n , f o r m a t (%4.3 f )
m a t r i x l i s t e (R)
/ ∗ covmat r q u i t e s i m i l a r t o t h e o b s e r v e d ∗ /

R-script for EM algorithm with consequtive t-test and repeated measures ANOVA

l i b r a r y ( norm )
#Read t h e d a t a s e t w i t h t r a n s f o r m e d v a r i a b l e s
x <− read . t a b l e ( ’ EMtrans . t x t ’ , h e a d e r =TRUE, sep =" , " , na . s t r i n g s =" . " )
n <− NCOL( x )
mat <− cbind ( x [ , 1 : n ] )
mat <− as . matrix ( mat )

#EM i m p u t a t i o n
s <− p r e l i m . norm ( mat )
t h e t a h a t <− em . norm ( s )
# getparam . norm ( s , t h e t a h a t , c o r r=TRUE)
r n g s e e d (7654321)
ximp <− imp . norm ( s , t h e t a h a t , mat )

# F u n c t i o n t o b a c k t r a n s f o r m HRQOL−v a r i a b l e s
b a c k t r a n s <− f u n c t i o n ( ximp ) {
nrimp <− NROW( ximp )
ncimp <− NCOL( ximp )
f o r ( i i n 1 : nr imp ) {

f o r ( j i n 1 : ncimp ) {
ximp [ i , j ] <− 100∗ ( s i n ( ximp [ i , j ] ) ) ^2

}
}
re turn ( ximp )
}

# F u n c t i o n t h a t p e r f o r m s a t− t e s t assuming unequa l v a r i a n c e s
t t e s t 1 <− f u n c t i o n ( vec ) {
m a t r i s e <− matrix ( nrow= l e n g t h ( vec ) , nco l =3)
f o r ( f i n 1 : ( l e n g t h ( vec ) ) ) {

num <− vec [ f ]
men <− c ( )
mi <− 1
women <− c ( )
wi <− 1
f o r ( i i n 1 : 5 3 4 ) {

i f ( x [ i , 2 ] = = 0 ) {
men [ mi ] <− as . numeric ( impmat [ i , num ] )
mi <− mi+1

} e l s e {
women [ wi ] <− as . numeric ( impmat [ i , num ] )
wi <− wi+1

}
}
t <− t . t e s t ( men , women )
m a t r i s e [ f , 1 : 2 ] <− t $ e s t i m a t e
m a t r i s e [ f , 3 ] <− t $p . v a l u e

}
re turn ( m a t r i s e )

}

colnames ( ximp )
impmat <− b a c k t r a n s ( ximp )
v e k t o r <− c ( 1 2 : 1 4 , 9 : 1 1 , 2 1 : 2 3 , 2 7 : 2 9 )
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t t e s t 1 ( v e k t o r )

#−−−−−−−−−−−Repea ted measures ANOVA a f t e r EM−−−−−−−−−−−−−

ximpa <− as . data . frame ( cbind ( x [ , 1 : 2 ] , impmat ) )
a t t a c h ( ximpa )
names ( ximpa )

# Genera l h e a l t h
l o n g d a t a g h <− r e s h a p e ( ximpa , v . names=c ( "GH" ) , v a r y i n g = c ( " gh1 t " , " gh2 t " , " gh3 t " ) ,

t i m e v a r = " t ime " , t i m e s = 1 : 3 , d i r e c t i o n = " long " , i d v a r =" p a t k e y " , i d s =1:NROW(
ximpa ) )

l o n g d a t a g h . aov <− aov (GH ~ f a c t o r ( t ime ) ∗ f a c t o r ( k jønn ) + E r r o r ( f a c t o r ( p a t k e y ) ) , data =
l o n g d a t a g h )

summary ( l o n g d a t a g h . aov )

y2 <− cbind ( ximpa $ gh1t , ximpa $ gh2t , ximpa $ gh3t , ximpa $ k jønn )
ny <− NROW( x )
men <− c ( rep ( 1 , 3 ) )
women <− c ( rep ( 1 , 3 ) )
f o r ( i i n 1 : ny ) {

i f ( y2 [ i , 4 ] = = 0 ) {
men <− rbind ( men , y2 [ i , 1 : 3 ] )

} e l s e {
women <− rbind ( women , y2 [ i , 1 : 3 ] ) }

}
ymeanmatr <− c ( )
f o r ( i i n 1 : 3 ) {

ymeanmatr [ i ] <− mean ( men [ , i ] )
ymeanmatr [ i +3] <− mean ( women [ , i ] )

}

# P r o f i l e p l o t , g e n e r a l h e a l t h (GH)
xva r <− c ( 0 , 1 , 2 )
par ( mfrow=c ( 1 , 1 ) )
p l o t ( xvar , ymeanmatr [ 1 : 3 ] , t y p e =" b " , pch =19 , lwd =2 , y l im =c ( 4 0 , 8 0 ) , c o l =" b l u e " , x l a b =( " Time " ) ,

y l a b =( "Mean of GH" ) , main =( " P r o f i l e p l o t o f g e n e r a l h e a l t h , EM" ) )
par ( new=TRUE)
p l o t ( xvar , ymeanmatr [ 4 : 6 ] , t y p e =" b " , pch =19 , l t y =2 , lwd =2 , y l im =c ( 4 0 , 8 0 ) , c o l =" r e d " , x l a b =( "

Time " ) , y l a b =( "Mean of GH" ) , main =( " P r o f i l e p l o t o f g e n e r a l h e a l t h , EM" ) )

temp= l egend ( " b o t t o m r i g h t " , l egend = c ( " " , " " ) , c o l =c ( " b l u e " , " r e d " ) ,
t e x t . w id th = s t r w i d t h ( " P a r a m e t e r v e i " ) ,
l t y = c ( 1 , 2 ) , lwd =2 , x j u s t = 1 , y j u s t = 1 ,
t i t l e = " Gender " )

t e x t ( temp $ r e c t $ l e f t + temp $ r e c t $w, temp $ t e x t $y ,
c ( "Men" , "Women" ) , pos =2)

R-script for combination by Rubin’s rules after MI with consequtive t-test
#−−−−−−−−−−−−Complete−case−−−−−−−−−−
#Use t h e d a t a s e t comple te−case f o r t h e r e l e v a n t v a r i a b l e
y <− read . t a b l e ( ’ ghcc . t x t ’ , h e a d e r =TRUE, sep =" , " , na . s t r i n g s =" . " )
y2 <− cbind ( y$gh1 , y$gh2 , y$gh3 , y$ k jønn )
y <− read . t a b l e ( ’ bpcc . t x t ’ , h e a d e r =TRUE, sep =" , " , na . s t r i n g s =" . " )
y2 <− cbind ( y$bp1 , y$bp2 , y$bp3 , y$ k jønn )
y <− read . t a b l e ( ’ s f c c . t x t ’ , h e a d e r =TRUE, sep =" , " , na . s t r i n g s =" . " )
y2 <− cbind ( y$ s f1 , y$ s f2 , y$ s f3 , y$ k jønn )
y <− read . t a b l e ( ’ r e c c . t x t ’ , h e a d e r =TRUE, sep =" , " , na . s t r i n g s =" . " )
y2 <− cbind ( y$ re1 , y$ re2 , y$ re3 , y$ k jønn )

ny <− l e n g t h ( y [ , 1 ] )
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men <− c ( rep ( 1 , 3 ) )
women <− c ( rep ( 1 , 3 ) )

f o r ( i i n 1 : ny ) {
i f ( y2 [ i , 4 ] = = 1 ) {

men <− rbind ( men , y2 [ i , 1 : 3 ] )
} e l s e {

women <− rbind ( women , y2 [ i , 1 : 3 ] ) }
}
ymeanmatr <− c ( )
f o r ( i i n 1 : 3 ) {

ymeanmatr [ i ] <− mean ( men [ , i ] )
ymeanmatr [ i +3] <− mean ( women [ , i ] )

}

# P r o f i l e p l o t
xva r <− c ( 0 , 1 , 2 )
par ( mfrow=c ( 1 , 1 ) )
p l o t ( xvar , ymeanmatr [ 1 : 3 ] , t y p e =" b " , pch =19 , lwd =2 , y l im =c ( 6 5 , 9 0 ) , c o l =" b l u e " , x l a b =( " Time " ) ,

y l a b =( "Mean of SF" ) , main =( " P r o f i l e p l o t o f s o c i a l f u n c t i o n i n g , CC" ) )
par ( new=TRUE)
p l o t ( xvar , ymeanmatr [ 4 : 6 ] , t y p e =" b " , pch =19 , l t y =2 , lwd =2 , y l im =c ( 6 5 , 9 0 ) , c o l =" r e d " , x l a b =( "

Time " ) , y l a b =( "Mean of SF" ) , main =( " P r o f i l e p l o t o f s o c i a l f u n c t i o n i n g , CC" ) )

temp= l egend ( " b o t t o m r i g h t " , l egend = c ( " " , " " ) , c o l =c ( " b l u e " , " r e d " ) ,
t e x t . w id th = s t r w i d t h ( " P a r a m e t e r v e i " ) ,
l t y = c ( 1 , 2 ) , lwd =2 , x j u s t = 1 , y j u s t = 1 ,
t i t l e = " Gender " )

t e x t ( temp $ r e c t $ l e f t + temp $ r e c t $w, temp $ t e x t $y ,
c ( "Men" , "Women" ) , pos =2)

#−−−−−P l o t o f t h e e s t i m a t e s from m impu ted d a t a s e t s−−−−−
# Genera l h e a l t h
x <− read . t a b l e ( ’ GHin te rac t ionEs tMIM . t x t ’ , h e a d e r =FALSE)

pdf ( " dotp lo tGH . pdf " )
par ( mfrow=c ( 2 , 1 ) )
s t r i p c h a r t ( x [ , 1 ] , x l a b =" E s t i m a t e d p a r a m e t e r f o r ge n de r by t ime i n t e r a c t i o n " , main="

D o t p l o t f o r g e n e r a l h e a l t h (GH) " )
s t r i p c h a r t ( x [ , 2 ] , x l a b =" E s t i m a t e d s t a n d a r d d e v i a t i o n f o r ge n de r by t ime i n t e r a c t i o n " )
dev . o f f ( )

#−−−−−−−−−−−−−Imputed d a t a s e t s−−−−−−−−−−−
#Read t h e d a t a s e t from S t a t a
x <− read . t a b l e ( ’HRQOL_ imp_ l ong2 . t x t ’ , h e a d e r =TRUE, sep =" , " , na . s t r i n g s =" . " )

# F u n c t i o n t o p a r t i t i o n t h e f i l e i n d a t a s e t s
impnr <− f u n c t i o n ( y ) {

y <− cbind ( y [ , 1 : 1 2 ] , y [ , 3 2 : 3 3 ] , y [ , 5 9 : 6 2 ] )
y <− s p l i t ( y , y$ impnr )
re turn ( y )

}

# F u n c t i o n t o p a r t i t i o n t h e s u b j e c t s w i t h r e s p e c t t o gender
k jonn <− f u n c t i o n ( y , g en de r ) {

yk jonn <− s p l i t ( y , y$KJONN)
i f ( g en de r ==1) {

re turn ( yk jonn $ ’ 1 ’ )
} e l s e {

re turn ( yk jonn $ ’ 2 ’ )
}

}
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# F u n c t i o n t o p a r t i t i o n each d a t a s e t i n o c c a s i o n s
t i d <− f u n c t i o n ( n , t i d , k jonn ) {

i f ( k jonn ==1) {
s t r i n g <− p a s t e ( " mann " , n , sep =" " )

} e l s e {
s t r i n g <− p a s t e ( " kv in ne " , n , sep =" " )

}
y <− g e t ( s t r i n g )
y t i d <− s p l i t ( y , y$ time )
i f ( t i d ==1) {

re turn ( y t i d $ ’ 1 ’ )
} e l s e i f ( t i d ==2) {

re turn ( y t i d $ ’ 2 ’ )
} e l s e {

re turn ( y t i d $ ’ 3 ’ )
}

}

# F u n c t i o n t o g e n e r a t e t h e means f o r men and women
# Here : Role e m o t i o n a l ( RE )
meanmatr ix <− f u n c t i o n ( ) {

mat r <− matrix ( nco l =40 , nrow =6)
f o r ( i i n 1 : 2 0 ) {

f o r ( j i n 1 : 3 ) {
midl1 <− t i d ( i , j , 1 )
mat r [ j , i ] <− mean ( mid l1 $ r e )
mat r [ j +3 , i ] <− var ( mid l1 $ r e )
mid l2 <− t i d ( i , j , 2 )
mat r [ j , i +20] <− mean ( mid l2 $ r e )
mat r [ j +3 , i +20] <− var ( mid l2 $ r e )

}
}
re turn ( mat r )

}

# A p p l y i n g t h e f u n c t i o n s t o t h e d a t a s e t
y <− impnr ( x )

y0 <− y$ ’ 0 ’
y1 <− y$ ’ 1 ’
y2 <− y$ ’ 2 ’
# . . . .
y20 <− y$ ’ 20 ’

mann0 <− k jonn ( y0 , 1 )
mann1 <− k jonn ( y1 , 1 )
mann2 <− k jonn ( y2 , 1 )
# . . .
mann20 <− k jonn ( y20 , 1 )

kv inne0 <− k jonn ( y0 , 2 )
kv inne1 <− k jonn ( y1 , 2 )
kv inne2 <− k jonn ( y2 , 2 )
# . . .
kv inne20 <− k jonn ( y20 , 2 )

mat r <− meanmatr ix ( )
nm <− l e n g t h ( mann0 [ , 1 ] ) / 3
nw <− l e n g t h ( kv inne0 [ , 1 ] ) / 3

# E s t a b l i s h a l l v e c t o r s and m a t r i c e s
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m <− 20
mannmh <− matr [ , 1 :m]
kvinnemh <− matr [ , (m+1) : ( 2 ∗m) ]
d i f f m a t r <− mannmh−kvinnemh
d i f f m e a n <− c ( )
d i f f v a r <− c ( )
d i f f v a r b e t w <− c ( )
meanmatr <− c ( )
meanmatrvar <− c ( )
f o r ( i i n 1 : 3 ) {

meanmatr [ i ] <− mean ( mat r [ i , 1 : 2 0 ] )
meanmatrvar [ i ] <− mean ( mat r [ i + 3 , 1 : 2 0 ] )
meanmatr [ i +3] <− mean ( mat r [ i , 2 1 : 4 0 ] )
meanmatrvar [ i +3] <− mean ( mat r [ i + 3 , 2 1 : 4 0 ] )
d i f f m e a n [ i ] <− mean ( d i f f m a t r [ i , ] )
d i f f v a r [ i ] <− ( mean ( mannmh [ i + 3 , ] ) / nm + mean ( kvinnemh [ i + 3 , ] ) / nw )
d i f f v a r b e t w [ i ] <− var ( d i f f m a t r [ i , ] )

}

# C a l c u l a t i n g T s t a t i s t i c
d i f f s d <− s q r t ( d i f f v a r + (1+1 /m) ∗ d i f f v a r b e t w )
# C a l c u l a t i n g d e g r e e s o f f reedom
dof <− (20−1)∗ ( ( 1 + d i f f v a r / ( ( 1 + 1 / 20)∗ d i f f v a r b e t w ) ) ^2 )

# T h i s may be a p p r o x i m a t e d t o t h e s t a n d a r d normal d i s t r i b u t i o n N( 0 , 1 )
N <− d i f f m e a n / d i f f s d

# R e s u l t s
meanmatr
d i f f m e a n
d i f f s d ^2
dnorm (N)
dt (N, dof )

# P r o f i l e p l o t s
xva r <− c ( 0 , 1 , 2 )
par ( mfrow=c ( 1 , 1 ) )
p l o t ( xvar , meanmatr [ 1 : 3 ] , t y p e =" b " , pch =19 , lwd =2 , y l im =c ( 4 0 , 8 0 ) , c o l =" b l u e " , x l a b =( " Time " ) ,

y l a b =( "Mean of RE" ) , main =( " P r o f i l e p l o t o f r o l e e m o t i o n a l , MI" ) )
par ( new=TRUE)
p l o t ( xvar , meanmatr [ 4 : 6 ] , t y p e =" b " , pch =19 , l t y =2 , lwd =2 , y l im =c ( 4 0 , 8 0 ) , c o l =" r e d " , x l a b =( " Time

" ) , y l a b =( "Mean of RE" ) , main =( " P r o f i l e p l o t o f r o l e e m o t i o n a l , MI" ) )

temp= l egend ( " b o t t o m r i g h t " , l egend = c ( " " , " " ) , c o l =c ( " b l u e " , " r e d " ) ,
t e x t . w id th = s t r w i d t h ( " P a r a m e t e r v e i " ) ,
l t y = c ( 1 , 2 ) , lwd =2 , x j u s t = 1 , y j u s t = 1 ,
t i t l e = " Gender " )

t e x t ( temp $ r e c t $ l e f t + temp $ r e c t $w, temp $ t e x t $y ,
c ( "Men" , "Women" ) , pos =2)
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Figure B.1: Solution of the front side Sudoku
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