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Abstract In integral geometry, intrinsic volumes are a set of geometrical variables to characterize spatial
structures, for example, distribution of fluids in two-fluid flow in porous media. McClure et al. (2018, https://
doi.org/10.1103/PhysRevFluids.3.084306) utilized this principle and proposed a geometric state function
based on the intrinsic volumes. In a similar approach, we find a geometrical description for free energy of a
porous systemwith two fluids. This is also an extension of thework byMecke (2000, https://doi.org/10.1007/3-540-
45043-2_6) for energy of a single fluid. Several geometrical sets of spatial objects were defined, including bulk
of the two fluids, interfaces, and three-phase contact lines. We have simplified the description of free energy
by showing how the intrinsic volumes of these sets are geometrically related. We obtain a description for energy
as a function of seven microscopic geometrically independent variables. In addition, using a thermodynamic
approach, we find an approximation for the free energy as a function ofmacroscopic parameters of saturation and
pressure under quasi-static conditions. The combination of the two energy descriptions, by integral geometry
and thermodynamics, completes the relation between the associated variables and enables us to find the
unknown coefficients of the intrinsic volumes and to calculate the amount of dissipated energy in drainage and
imbibition processes. We show that the theory is consistent with a set of experiments performed by Schlüter et al.
(2016a, https://doi.org/10.1002/2015WR018254, 2017a, https://doi.org/10.1002/2016WR019815). However, in
order to be more conclusive, it needs to be tested with larger data sets.

1. Introduction

Two-phase flow in porous media is typically described by the two macroscopic variables of pressure and
saturation. In 1936, Wyckoff and Botset (1936) introduced the concept of relative permeability by generaliza-
tion of Darcy’s law (Darcy, 1856). The velocity (vα) and pressure gradient (∇pα) of fluid α are related by its rela-
tive permeability (krα), as given in equation (1):

vα ¼ � krα Sαð Þk
μα

∇pα; (1)

where k, μα, and Sα are absolute permeability, viscosity, and saturation of fluid α, respectively. In this descrip-
tion, the relative permeability is assumed to be a function of saturation only. The same equation can be writ-
ten for fluid β, and the pressures of two fluids (Pα and Pβ) are connected by definition of a macroscopic
capillary pressure (Pc), which is also assumed to be a function of saturation (Leverett, 1941):

Pc Sαð Þ ¼ Pα � Pβ: (2)

The experimentally measured capillary pressure and relative permeabilities as functions of saturation often
exhibit hysteresis; that is, the values of these parameters are different for drainage and imbibition (Jerauld
& Salter, 1990; Joekar-Niasar et al., 2013; Killough, 1976; Smith et al., 1931). This means that the stated
multiphase flow description above is physically incomplete (Hilfer, 1998). Niessner et al. (2011) stated that
the extended Darcy’s law for two-phase flow is compatible with a macroscale thermodynamically consistent
approach under certain assumptions (Hassanizadeh & Gray, 1990).

In addition to hysteresis, relative permeabilities at similar saturations also depend on flow rate or capillary
number (Tsakiroglou et al., 2015). Avraam and Payatakes (1995) observed that relative permeabilities
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depended on microscopic flow regimes when the flow regime changed from ganglion dynamics to con-
nected pathway. In addition to the saturation and flow regime, the relative permeability is affected by the
geometrical distribution of the two fluid phases (Liu et al., 2017). These observations suggest that the micro-
scopic phenomena, which affect the macroscopic outcome of the flow, have yet to be included in a general
law for two-phase flow.

Due to the shortcomings of the traditional empirical description, researchers have proposed several alterna-
tive theories. Hassanizadeh and Gray (1993a) introduced capillary pressure dynamics by incorporating the
rate of saturation changes into the capillary pressure function. The same authors believed that the main dif-
ference between single- and two-phase flow is the presence of fluid interfaces in two-phase flow (Gray &
Hassanizadeh, 1991Hassanizadeh & Gray, 1993b). Therefore, they introduced interfacial area as an additional
state variable (Hassanizadeh & Gray, 1993b). Further, Hilfer (1998) modified the generalized Darcy equations
for two-phase flow by splitting the fluid saturations into percolating and nonpercolating and by incorporat-
ing the interfacial areas. His work resulted in macroscopic flow equations dependent on the microscopic flow
regimes. Hilfer (2006a, 2006b) has also proposed a macroscopic phenomenological theory, again using per-
colating and nonpercolating fluid saturations as explicit state variables, but excluding the interfacial area in
expense of a number of assumptions.

In recent years, microscopic characteristics of two-phase flow have been investigated in a number of experi-
ments with increasingly improved spatial and temporal details, particularly using synchrotron X-ray com-
puted microtomography (Armstrong et al., 2014; Bartels et al., 2017; Berg et al., 2013, 2015; Singh, Menke,
et al., 2017; Singh, Scholl, et al., 2017). Herring et al. (2013) studied the influence of fluid topology on trapped
nonwetting phase saturation by calculating the Euler characteristic (χ) of the nonwetting phase from X-ray
microtomography images. In a number of recent works, Euler characteristic and in general fluid topology
were utilized to characterize the pore scale phenomena (Armstrong et al., 2017; Herring et al., 2015;
Khanamiri et al., 2017; Khanamiri & Torsæter, 2018; Liu et al., 2017; Rücker et al., 2015; Schlüter et al.,
2016a, 2017a). These works suggest that Euler characteristic could be a missing state variable.

The Euler characteristic is a topological measure for studying the connectivity of spatial objects, for example,
fluid clusters in porous media. It is also the integral of Gaussian curvature over the bounded surfaces (see
Figure S2 in the supporting information). In integral geometry, the spatial objects in three dimensions can
be geometrically characterized by four parameters of volume, surface area, integral of mean curvature, and
integral of Gaussian curvature. These parameters are known as Minkowski functionals or intrinsic volumes
(Klain, 1995). The characterization theorem in integral geometry states that certain physical properties of
the spatial objects can be written as a linear combination of the intrinsic volumes (Hadwiger, 1957). Energy
of a single fluid confined in porous media is an example of such physical properties (Mecke, 2000 and
Mecke & Arns, 2005).

McClure et al. (2018) investigated which intrinsic volumes were required to describe the state of quasi-static
two-phase flow in porous media. Further, they investigated constitutive relations among these parameters.
Based on experimental and simulated microscopic fluid configurations, they proposed a state function
between four intrinsic volumes of the nonwetting fluid. As the saturation and interfacial area represent
two of the intrinsic volumes, their work is an extension of the previous research on the state variables
(references above).

In this article, we expand on earlier work employing intrinsic volumes to describe two-phase flow. We
attempt to find a geometrical description for free energy of a porous system with two fluids based on the
microscopic intrinsic volumes under both extreme wetting and partial wetting conditions. Using a thermody-
namic approach, we estimate the free energy based on the macroscopically measurable parameters under
quasi-static conditions. Combining the energy estimated from the macroscopic parameters with the mea-
sured intrinsic volumes, we find a description for free energy by a linear combination of the intrinsic volumes.
We will demonstrate this methodology on a set of experiments performed by Schlüter et al. (2016a, 2017a).

2. Theory

In this work, we assume that porous medium consists of a rigid solid and the pore space filled with two
immiscible flowing fluids. We assume that the flow is quasi-static, that is, slow flow where the system is at
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hydraulic equilibrium. A relevant criterion for such a situation is low capil-
lary number. The macroscopic capillary number (Nc) expresses the ratio of
viscous to capillary forces. In this article, the macroscopic capillary number
is defined as

Nc ¼ μv
σ
; (3)

where v is the total Darcy velocity (macroscopic volumetric flux), μ is the
invading fluid viscosity, and σ is the interfacial tension.

For flow in aquifers and oil reservoirs, the typical range of capillary num-
bers is 10�10–10�6 (Dullien, 1992). The capillary number for transition from
the quasi-static or capillary-dominated to viscous-dominated flow
depends on the type of porous material. For instance, for a sandstone rock
the transition occurs in the interval of 10�7–10�6, while it can be orders of
magnitude higher for bead packs (Dullien, 1992). The thermodynamic esti-
mation of energy, proposed in this work, is valid only for a quasi-static flow,
while the geometrical description of energy is valid at both high and low
capillary numbers.

2.1. Intrinsic Volumes

A short introduction on the necessary definitions in integral geometry is found in the supporting information.
For a three-dimensional (3-D) set of objects K, for example, an assembly of fluid clusters with irregular shapes,
let V0(K)� V3(K) denote the intrinsic volumes. This intrinsic volumes are equal to the volume (V), surface area
(A), integral of mean curvature (H), and the integral of Gaussian curvature (χ) multiplied by constant coeffi-
cients, as shown in equations (4)–(7). The parameters κ1 and κ2 are the curvature terms, which are the inverse
of the principal radii of curvature R1 and R2 for a surface element (dA).

V0 Kð Þ ¼ V Kð Þ; (4)

V1 Kð Þ ¼ A Kð Þ ¼ ∫δKdA; (5)

V2 Kð Þ ¼ H Kð Þ ¼ 1
2
∫δK κ1 þ κ2ð ÞdA; (6)

V3 Kð Þ ¼ χ Kð Þ ¼ 1
4π

∫δKκ1κ2dA: (7)

Mecke (2000) and Mecke and Arns (2005) employed integral geometry to describe the energy of a single fluid
confined by a complex boundary. Considering the energy as a function of the geometry of the fluid, they
argued that this energy function is continuous, additive, and invariant under rigid motion (see the supporting
information). The energy function thereby fulfills the necessary conditions in Hadwiger’s characterization the-
orem (Hadwiger, 1957); thus, the energy can be parameterized by a linear combination of the intrinsic
volumes (Mecke & Arns, 2005):

F Kð Þ ¼ ∑ni¼0ciVi Kð Þ; (8)

where F is the energy of the set of objects K, the coefficients ci are real numbers, and Vi are the intrinsic
volumes, also known as Minkowski functionals.

In this article, we will extend the single-fluid description above to two immiscible fluids. Let the set of objects
Kα be fluid α. We define sets Kβ and Ks for the fluid phase β and the solid s in the same manner. The three sets
Kαβ, Kαs, and Kβs represent the interfaces, where, for example, the set Kαβ contains the interfaces of fluids α and
β. Further, Kαβs represents the three phase contact lines. As the characterization theorem only holds for com-
pact objects, we require that all objects contain their boundaries. Without the boundaries, the objects are not
closed and therefore not compact. Thus, our set of objects Kα contains the interfaces Kαβ of fluid αwith fluid β;
it also contains the interfaces Kαs of fluid αwith the solid, s (see Figure 1). Compactness of Kαβ requires that the
three phase contact lines Kαβs are contained in this set. Similarly, the three phase contact lines Kαβs are also

Figure 1. Conceptual illustration of the defined geometrical sets. Kα, Kβ, and
Ks represent fluids α and β and the solid, respectively; Kαβ, Kαs, and Kβs are the
corresponding interfaces; and Kαβs are the three-phase contact lines.
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contained in Kαs and Kβs, and consequently in Kα, Kβ and Ks, as visualized in Figure 1. All the defined sets are
then bounded and closed, thereby they are all compact, as required by the characterization theorem.
Experimental examples of these geometrical sets are shown in Figure 2.

In principle, a volume-free object does not have free energy. Whenwe associate energy to a surface (or a line),
it is the excess energy close to the surface relative to the energy in the bulk phases. For example, the energy
associated with a fluid-fluid interface is the excess energy due to the arrangement and bonds between the
molecules close to the interface relative to the arrangement and bonds between the molecules in the bulk
phases. This excess energy is reflected in molar density gradients near the interface in an interval of typically
few Angstroms to nanometers and can be described for instance by the density gradient theory (Adamson &
Gast, 1997).

While it would be possible to treat the interfaces as 2-D surfaces and the contact lines as 1-D lines with an
associated excess energy, we will follow another path in this article. As the interfaces are diffuse transitions
from one phase to another, we will consider them as 3-D volumes of thickness ε, as illustrated in Figure 3.
As the diffuse layer between two phases is in the molecular size range, the size of ε is in the order of nan-
ometers. Similarly, the contact lines will be considered to have a circular cross section with a diameter of ε.
The defined sets are therefore 3-D volumes (Kα, Kβ, and Ks), 3-D surfaces (Kαβ, Kαs, and Kβs), and 3-D lines (Kαβs).

As the 3-D interface sets (Kαβ, Kαs, and Kβs) have a volume proportional to ε (the thickness of an interface; see
Figure 3), these volumes can be ignored, because ε is approximately 3 orders of magnitude smaller than the
other length scales in porous media, for example, length scale associated with curvature of fluid-fluid inter-
faces. Further, the surface of the 3-D interface sets is composed of two sides and the additional bounding
three-phase contact line. In the limit ε → 0, the two sides converge to the same surface area. These sides

a b c

d e f

Figure 2. Experimental 3-D example of the defined geometrical sets and the constituent parts. The size of the cropped
volume is 2,270 × 2,540 × 2,940 (μm)3. In all figures, the solid and one of the fluids were removed to accentuate the
examined fluid. (a) Kα contains the fluid α (blue), the interfaces of fluids α and β (green), and the three-phase contact lines
(red); (b) Kαβ contains interfaces of fluids α and β, and the three-phase contact lines; (c) Kαβs represents the three phase
contact lines; (d–f) the corresponding constituents of Kα, Kαβ, and Kαβs.
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have the same absolute values, but opposite signs, for the curvatures (see
Figure 3). The integral of mean curvature and Gaussian curvature for a 3-D
interface set is therefore split into left, right, and the bounding line of the
interface and simplified using the relation of curvatures in different
domains. Interestingly, the integration shows that the integral of mean
curvature for the interfaces is proportional to the length of the three-
phase contact lines (Lαβs), as seen in equation (9) below.

V0αβ ¼ O εð Þ; V0αβ→0 when ε→0

V1αβ ¼ Aαβ

V2αβ ¼ V2αβ;left þ V2αβ; right þ V2αβ; line

¼ �V2αβ; right þ V2αβ; right þ 1
2
∫δKαβs

1
R1

þ 1
R2→∞

� �
dA

¼ 1
2
∫δKαβs

dA
R1

¼ 1
2
∫Lαβs

π
ε
2
dL

ε
2

¼ π
2
Lαβs

V3αβ ¼ V3αβ;left þ V3αβ; right þ V3αβ; line ¼ 2V3αβ; right þ V3αβ; line

¼ 2
1
4π

∫δKαβ
1

R1R2
dAþ 1

4π
∫δKαβs

1
R1ð Þ R2→∞ð ÞdL ¼

1
2π

∫δKαβ
1

R1R2
dA:

(9)

For the second last equality in the derivation of V2αβ we go from integrat-
ing over the surface to an integral along the three-phase contact line. The
surface δKαβs here is considered to have a half-circle cross section with a

radius ε/2 along the contact line.

Similar to the 3-D interface sets, the intrinsic volumes for the 3-D three-phase contact lines are simplified
below. In line with the derivation above, the contact lines are assumed to have a circular cross section with
a radius of ε/2.

V0αβs ¼ O ε2
� �

; V0αβs→0 when ε→0

V1αβs ¼ O εð Þ; V1αβs→0 when ε→0

V2αβs ¼ 1
2
∫δKαβs

1
R1

þ 1
R2→∞

� �
dA ¼ 1

2
∫δKαβs

dA
R1

¼ 1
2
∫Lαβs

2π
ε
2
dL

ε
2

¼ πLαβs

V3αβs ¼ ∫δKαβs
1

R1ð Þ R2→∞ð ÞdA ¼ 0:

(10)

Note that we assume the volume and surface area of the three-phase contact lines can be ignored for small ε.
Further, the Euler characteristic approaches 0 as one of the curvature terms approaches 0. This is in agree-
ment with the fact that a contact line fully inside the observed medium is topologically equivalent to a torus,
which has an Euler characteristic of 0.

2.2. Geometrical Description of Free Energy

In this section, we attempt to express the total free energy of the system, F, in terms of the energy of its con-
stituent geometrical sets Kα, Kβ, Ks, Kαβ, Kαs, Kβs, and Kαβs as defined in the previous section. Let Fi symbolize the
free energy of the set Ki. The entire system is contained in the Kα, Kβ, and Ks; however, these sets contain the
interface sets Kαβ, Kαs, and Kβs twice, as illustrated in Figure 1. Thus, the sum of the energies Fs + Fα + Fβ would
include the free energy of the interface sets Fαβ + Fαs + Fβs twice. These must therefore be subtracted, as
shown in equation (11) below. Further, as the energy of three phase contact lines has been added 3 times
with the phases and subtracted 3 times with the interfaces, it must be added to balance the total free energy
as follows:

A

K

N

N

tangent plane (T)

T
T

interfacial thickness ( )

Figure 3. Plane T is tangent to the interface of fluids α and β (Kαβ) at an arbi-
trary point A. The principal tangent vectors are T1 and T2, and Nleft and Nright
symbolize the unit normal vectors on the left and right sides of the
interface, respectively. Having T

0
1 and T

0
2 as the derivatives of T1 and T2, the

principal curvature κ1, left can be obtained from T
0
1 ¼ κ1;leftNleft, while κ1, right

can be obtained using T
0
1 ¼ κ1;rightNright. The opposite sign of the unit normal

vectors (Nleft = � Nright) results in κ1, left = � κ1, right. Similarly, one can
also show κ2, left = � κ2, right. The same absolute value but opposite sign for
the curvatures on the two sides of interface leads to the simplification of
integral of mean curvature, V2αβ, left = � V2αβ, right, and integral of Gaussian
curvature, V3αβ, left = V3αβ, right, for the interfacial sets in equation (9).
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F ¼ Fs þ Fα þ Fβ � Fαβ � Fαs � Fβs þ Fαβs: (11)

The individual energy terms in the right-hand side of equation (11) can be expanded using equation (8) and
the intrinsic volumes of the defined sets.

F ¼ Fs þ ∑3i¼0ciαViα þ ∑3i¼0ciβViβ � ∑3i¼0ciαβViαβ � ∑3i¼0ciαsViαs � ∑3i¼0ciβsViβs þ ∑3i¼0ci α βsVi α βs: (12)

Here we do not expand the energy for the solid, as this will remain constant for our systems.

The purpose of the remainder of this section is to find the independent intrinsic volumes. The free energy is a
function of temperature for incompressible systems; that is, the ci coefficients in equation (12) are constant
for an isothermal process.

A number of the variables in equation (12) are geometrically dependent. We will show that there are seven
geometrically independent intrinsic volumes: one fluid volume (or saturation), two areas, integral of mean
curvature of one of the fluid phases, two integrals of Gaussian curvature (Euler characteristic), and the length
of three-phase contact lines. This will result in the following equations:

F ¼ F0 þbc0SαV þbc1αV1α þbc2αV2α þbc3αV3α þbc1βV1β þ bc3βV3β þbcαβsV2αβs; (13)

bF ¼ bF0 þ bc0Sα þ bc1αbAα þbc2αbHα þbc3αbχα þbc1βbAβ þ bc3βbχβ þbcαβsbLαβs: (14)

In equation (14), both sides of equation (13) were divided by the total volume of the system (V) to express the
intrinsic volumes and free energy as intensive variables. The symbols of the intrinsic volumes were also con-
verted to the typical ones used in equations (4)–(7) for convenience. The symbol Sα in equation (14) is the
saturation of fluid α.

The first step in the process of eliminating dependent variables is substitution of equations (9) and (10)
into equation (12):

F ¼ Fs þ ∑3i¼0ciαViα þ ∑3i¼0ciβViβ � ∑
i¼1;3

ciαβViαβ � ∑
i¼1;3

ciαsViαs � ∑
i¼1;3

ciβsV iβs þbcαβsLαβs: (15)

For the interfaces the summation Σi = 1, 3 indicates that the sum runs over indices 1 and 3. The index 2 is pro-
portional to the length of the contact line (Lαβs) and has therefore been included in the last term. There were
in total four terms with the length of the three-phase contact lines, and the constant coefficient for this vari-
able is simply changed tobcαβs in equation (15). The resulting equation (15) has 13 intrinsic volumes, which will
be reduced to seven in the following.

The sum of the volumes of the two phases (V0α and V0β) equals a constant pore volume. Therefore, the two
volumes can be expressed by means of saturation Sα of the fluid α:

V0α ¼ SαφV

V0β ¼ 1� Sαð ÞφV; (16)

where φ and V are the constant porosity and total volume of the system, respectively. The new term Sα, which
replaces the V0α and V0β terms in equation (15), takes a coefficient bc0:

bc0 ¼ φ c0α � c0β
� �

: (17)

The interfacial areas V1αs, V1βs, and V1αβ can be expressed from the areas V1α, V1β, and V1s as follows:

V1α � V1β þ V1s ¼ V1αs

V1β � V1α þ V1s ¼ V1βs

V1α þ V1β � V1s ¼ V1αβ:

(18)

Here we use the symmetry rule of V1ij = V1ji. Thus, V1αs, V1βs, and V1αβ can be eliminated by inserting equa-
tion (18) into equation (15) and updating the coefficients of V1α and V1β as follows.
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bc1α ¼ c1α þ c1αs � c1βs þ c1αβbc1β ¼ c1β � c1αs þ c1βs þ c1αβ:
(19)

The multiplication of coefficients in V1s is constant, and they can be accumulated in a single coefficient, add-
ing up to Fs in equation (13).

The integrated Gaussian curvature (V3) have the same symmetry and summation rule as for the areas and
would therefore yield similar expressions as in equation (18). Similar to the coefficients for the areas in equa-
tion (19), we can eliminate V3αs, V3βs, and V3αβ in equation (15) by updating the coefficients for V3α and V3β as

bc3α ¼ c3α þ c3αs � c3βs þ c3αβbc3β ¼ c3β � c3αs þ c3βs þ c3αβ:
(20)

As illustrated in Figure 3, the integrated mean curvature (V2) have the following symmetry:

V2αβ ¼ �V2βα: (21)

As a result,

V2α þ V2β ¼ V2αs þ V2αβ þ V2βs þ V2βα ¼ V2αs þ V2βs ¼ �V2s: (22)

The term V2s is constant. Therefore, V2α and V2β are dependent. Using equation (22), we can replace V2β in
equation (15) by updating the coefficient of V2α with the following new coefficient:

bc2α ¼ c2α � c2β: (23)

Finally, inserting equations (16)–(20), (22), and (23) into equation (15) results in equation (13) as a description
for free energy as a function of seven geometrically independent variables.

In the reduction of variables above, we chose some of the intrinsic volumes over the others. The choices
could be different because of the symmetry. The choice of variables is to a large degree arbitrary. The impor-
tant point is that the geometrically independent variables are a group of one volume (or saturation), two
areas, the integral of mean curvature of one of the fluid phases, two integrals of Gaussian curvature (Euler
characteristic), and the length of three-phase contact lines.

2.3. Geometrical Description of Free Energy in Extreme Wetting Conditions

In extreme wetting conditions, it is assumed that the solid surfaces are almost always coated by a film of the
wetting fluid (Abdallah et al., 2007), and the nonwetting fluid does not have any contact with the solid sur-
faces. In the equations in previous section, we assume that α and β are the nonwetting and wetting fluids,
respectively, and we replace the subscripts α with n (nonwetting) and β with w (wetting). In extreme wetting
conditions, we will have Vins = 0 for all i. Implementing the same simplifications as in the previous section
results in equation (24) for surface area and integral of Gaussian curvature:

V1w ¼ V1n þ V1s

V3w ¼ V3n þ V3s:
(24)

According to equation (24), areas and integrals of Gaussian curvature for the wetting and nonwetting fluids
are dependent. These dependencies result in one independent surface area and one independent integral of
Gaussian curvature. Keeping these two intrinsic variables for the nonwetting phase with the following coeffi-
cients enables us to remove the corresponding variables for the wetting phase in equation (14).

c1n ¼ bc1n þ bc1w
c3n ¼ bc3n þ bc3w : (25)

In addition, the three-phase contact lines disappear when the nonwetting phase does not have any contact
with the solid surfaces. Therefore, equation (14) can be reduced to only four independent variables:
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bF ¼ F0 þ bc0Sn þ c1nbAn þbc2nbHn þ c3nbχn: (26)

Again, it should be noted that the choice of intrinsic volumes in equa-
tion (26) is arbitrary as long as there is exactly one volume (saturation),
one area, integral of mean curvature of one of the fluid phases, and one
Euler characteristic in the geometrical description of free energy.

2.4. Thermodynamic Description of Energy

In the previous sections, the energy of the porous system was formulated
based on geometrical parameters in equations (14) and (26). In this sec-
tion, we will apply a simple thermodynamic approach following Leverett
(1941) and Morrow (1970).

When the two phases, wetting (w) and nonwetting (n), enter and leave the
porous medium at different pressures, Pw and Pn(see Figure 4), the surrounding apply the following external
work (Wexternal) on the system:

dWexternal ¼ PwdVw þ PndVn ¼ Pw � Pnð ÞdVw ¼ �PcdVw ¼ �ϕVPcdSw ; (27)

where we have assumed incompressible fluids and we have used the symbol Pc for the pressure difference.
The pressure difference Pc is conventionally identified with the macroscopic capillary pressure; the present
analysis does however not rely on this identification.

We have disregarded gravity, which is fair for small core samples; however, gravity could be included without
loss of generality.

For an isothermal reversible process the applied work is equal to the change in the Helmholtz free energy F,
and in an irreversible process some energy will also be dissipated

dWexternal ¼ dF þ dEdissipated: (28)

Under the assumption of slow displacement, the viscous dissipation due to the macroscopic flow is negligi-
ble. However, as a result of the saturation changes during displacement, metastable fluid configurations are
created. The relaxation of these states induces microscopic viscous fluid flow, called Haines jumps (Haines,
1930). These Haines jumps are fast irreversible local processes causing energy dissipation. As a consequence,
the integral of the capillary pressure yields an upper bound for the (positive) free energy change in the sys-
tem for drainage and a lower bound for the (negative) free energy change during imbibition. We define the
displacement efficiency for drainage as the fraction of the applied work that is stored as free energy:

ED ¼ dF
dW

¼ � 1
ϕVPc

dF
dSw

: (29)

Similarly, we define the efficiency for imbibition as the fraction of released free energy that is delivered
as work:

EI ¼ � dW
dF

¼ ϕVPc
dSw
dF

: (30)

The efficiencies are not expected to be constant throughout the process.

Morrow (1970) conducted experiments to investigate the efficiency of different displacement processes and
defined the displacement efficiency for drainage as the fraction of the total applied work that is stored as
free energy:

ED ¼ ΔF
W

¼ ΔF
�ϕV∫PcdSw

: (31)

If ED is constant we have ED ¼ ED, so that ED can be interpreted as an average efficiency. Morrow defined the
total efficiency of imbibition as

Figure 4. External work is associated with the volume changes in the fluid
reservoirs to the left and right of the porous medium: dVw = � dVn. Since
the total volume of each phase is preserved, the same volume changes apply
with opposite sign to the volumes in the porous medium: dSw = � dVw/(ϕV).
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EI ¼ Wþ ΔF0
ΔFD

; (32)

whereW is the delivered work, ΔF0 is the remaining stored free energy at the end of imbibition, andΔFD is the
stored energy at the end of drainage. Morrow’s definition of total efficiency of imbibition has no direct con-
nection to our definition. In his experiments, he estimated the free energy changes based on measuring sur-
face areas and known interfacial tension σnw and contact angle θ:

F ¼ σnw Anw þ Ans cosθð Þ: (33)

The experiments were conducted on bead packs filled with a blue dyed epoxy, and then displaced by air
under gravity. After hardening, the sample was filled with an orange epoxy to strengthen the sample. In order
to calculate the total surface areas, and the corresponding applied work as an integral over capillary pressure,
thin sections were made from different heights corresponding to different saturations and
capillary pressures.

According to Morrow (1970), the imbibition process had an efficiency of 92.5%, compared to an efficiency of
79% for primary drainage (PD) and 77.5% for secondary drainage.

In Figure 5, we have visualized examples of changes in fluid geometry during main imbibition (MI) and PD.
These examples suggest that the majority of the displacement events in the MI is in the form of change in

a b

c d

Figure 5. Experimental examples of (a) main imbibition and (b) primary drainage. The volume is 6,308 × 6,308 × 4,838
(μm)3 in both (a) and (b); the red color represents the parts of pore space where the wetting fluid has replaced the non-
wetting in two consecutive time steps, whereas the green color represents the opposite for the same time steps. All the
unchanged voxels are masked. The figures (c) and (d) are smaller volumes, 2,587 × 1,982 × 4,838 (μm)3, cropped from (a)
and (b), respectively.
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the wetting films (thinning/thickening), while the majority of events in the PD are centralized in the pore
bodies. For the PD, the nonwetting fluid has to overcome the required capillary pressure at the pore entries,
resulting in Hains jumps and consequently dissipation of energy. For the MI, swelling or thinning of wetting
films is assumed closer to a reversible process and therefore will dissipate less energy. Consequently, the MI is
expected to have higher efficiency than the PD, in line with the experimental results from Morrow (1970).

3. Experimental Examples

In this section, the developed theory is tested for a number of experiments performed by Schlüter et al.
(2016a, 2017a) using synchrotron-based X-ray microtomography of two-fluid displacement at quasi-static
conditions. We use the available data of a number of experiments performed on a porous cylindrical sample
(diameter of 5.8 mm and height of 7 mm) made of sintered soda lime glass beads (35% 0.6 mm, 35% 0.8 mm,
and 30% 1.0–1.4 mm diameter). Configuration of fluids was captured using synchrotron X-ray computed
microtomography during the experiment.

A full cycle of PD, MI, and main drainage (MD) experiments were performed using brine (1:6 mass ratio
between CsCl and water) as the wetting fluid and n-dodecane as the nonwetting fluid. The bottom of the
sample was connected to a syringe pump with a brine reservoir, and the top was connected to a dodecane
reservoir at atmospheric pressure. The experiments were performed at very slow flow rates with a capillary
number of 10�8, keeping the fluids at quasi-static equilibrium. Details of the experiments and the URL
address to access the data are listed in the references (Schlüter et al., 2016a, 2016b).

In addition, four spontaneous imbibition experiments (A, B, C1, and C2) were performed after fast drainage,
where C2 is a repetition of experiment C1. The macroscopic capillary number for the fast drainage experi-
ments where A: 3 × 10�7, B: 3 × 10�6, and C1 and C2: 3 × 10�5. Spontaneous imbibition experiments were
performed after the fast injection stopped, and the interfaces had been allowed to relax toward a new equili-
brium state. The macroscopic capillary number for the imbibition experiments was in the order of 10�10.
Given the low capillary number, these cases resemble quasi-static conditions. Details of the experiment are
available at Schlüter et al. (2017a), and the URL address to access the data is listed in the references
(Schlüter et al., 2017b).

Schlüter et al. (2017a) estimated contact angle of 42°, which falls approximately in the range of the water wet
systems rather than the strongly water wet ones. We will therefore use equation (14) in the following as the
geometric description of the free energy. However, the experiments were performed at a wettability close to
strongly water wet. Given the smaller number of free parameters needed for describing an extreme wetting
case (equation (26)), this could imply that some of the geometric parameters in equation (14) would
be intercorrelated.

The intrinsic volumes were calculated using QuantIm (Vogel et al., 2010) and ImageJ (Rasband, 1997–2016)
on the segmented images published by Schlüter et al. (2016b, 2017b). The two independent calculations
resulted in the same values for volumes, surface areas, and Euler characteristics with a six-neighborhood
arrangement for every pixel. Euler characteristics with a 26-neighborhood arrangement were slightly differ-
ent in the two calculations, probably because they handle the boundaries differently. We therefore selected
the Euler characteristics with the 6-neighborhood arrangement for further analysis. We calculated the inte-
gral of mean curvature for the nonwetting phase by QuantIm only. The length of three-phase contact lines
was calculated using ImageJ by extraction and skeletonization of the edges of solid, wetting, and
nonwetting fluids.

Based on visual observation of the changes in fluid configuration in Figure 5, and the results from Morrow
(1970), we assume that the spontaneous imbibition process is close to reversible with an efficiency of 0.925:

dbF≃� 0:925∫ϕPcdSw ¼ 0:925∫ϕPcdSn: (34)

It should be noted that changing the efficiency to 1 has a small impact on the following results. We used the
four spontaneous imbibition experiments and the spontaneous part of theMI to fit the adjustable parameters
in equation (26).
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As we do not have the energy for the starting point of the five imbibition processes, these are treated as
unknowns. Together with the seven parameters in equation (14), this yields a total of 12 adjustable para-
meters. We then have the following equations for the five processes:

ΔbF Snð Þ ¼ 0:925∫SnSi ϕPcdSn; (35)

ΔbF Snð Þ ¼ bc0Sn þbc1nbAn þ bc2nbHn þbc3nbχn þbc1wbAw þ bc3wbχw þbcwnsbLwns � bFi: (36)

Here Si is the initial nonwetting saturation andbFi is the initial energy at the beginning of each of the five imbi-
bition processes.

In the following we show how focusing on the physical meaning of the coefficients can lead to a more
robust regression for the adjustable parameters. Let the interfacial tension between the fluids α and β
be defined as the derivative of the free energy with respect to the interface area (Aαβ). We assume that
the interfacial tension between the two fluids (σαβ) is measured. We further assume that the solid consists
of a single mineral, and the fluids have few components that can alter the wettability of the surface and
that the contact angle (θ) for the fluids α and β and the solid phase is measured out of porous material.
Under these assumptions, the coefficients bc1n and bc1w in equation (36), and in general the coefficients bc1α
and bc1β in equation (14), are

bc1α ¼ 1
2
1� cos θð Þσαβ

bc1β ¼ 1
2
1þ cos θð Þσαβ:

(37)

Consequently, if both σαβ and θ are measured independent from the flooding experiments, then the number
of regression parameters can be reduced by two. If only σαβ is measured, the number of regression para-
meters can still be reduced by one, using the following relationship:

bc1α ¼ σαβ � bc1β: (38)

We will now derive the above expressions. The free energy for a macroscopic droplet on a flat solid surface is
conventionally expressed using interfacial tensions as

bFA ¼ σαβ
bAαβ
2

þ σαs
bAαs
2

þ σβs
bAβs
2

: (39)

The volumes of the fluids α and β are constant; we therefore ignore them in equation (39) without loss of
generality. The fraction (12) appears in equation (39) because of double-counting of the areas in the defini-

tion of the Minkowski functionals for the interfacial objects (Kαβ, Kαs, Kβs). The total solid area is
constant, and we have

As ¼ Aαs
2

þ Aβs
2

: (40)

Using equation (40), we may eliminate Aβs from equation (39).

bFA ¼ σαβ
bAαβ
2

þ σαs � σβs
� � bAαs

2
þ σβsbAs: (41)

In our theory (equation (14) or equation (36)), the free energy contains additional terms related to surface

curvature and contact line length (bHn;bχn;bχw ;bLwns ), but for a macroscopic droplet these contributions can
be ignored so that the free energy is

bFA ¼ bc1αbAα þ bc1βbAβ: (42)

Similar to equation (40), we have
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Aα ¼ Aαs
2

þ Aαβ
2

Aβ ¼ Aβs
2

þ Aαβ
2

¼ As � Aαs
2

þ Aαβ
2
:

(43)

Inserting equation (43) into equation (42) results in the following descrip-
tion for the free energy:

FA ¼ 1
2

bc1α þ bc1β� �bAαβ þ 1
2

bc1α �bc1β� �bAαs þ bc1βbAs: (44)

Comparing equations (41) and (44) gives

bc1α þbc1β ¼ σαβbc1α � bc1β ¼ σαs � σβs ¼ σαβcos θ:
(45)

In principle, the coefficients bc1α and bc1β remain the same when we switch
from a flat solid surface accommodating fluids α and β on itself (equa-
tion (44)) to a porous solid containing the same fluids (equation (36)),
given that the chemical compositions of fluids and solid have not altered.
Therefore, the coefficientsbc1α andbc1β for the porous solid can be obtained
from the simplified separate measurements, that is, typical contact angle
and interfacial tension measurements.

There is no independent contact angle measurement for the experimental data, but the measured interfacial
tension is 36 × 10�3 J/m2. Therefore, we use equation (38) to reduce the number of regression parameters by
1. The 11 adjustable parameters in equation (36) were estimated using the python package statsmodels for
ordinary least squares linear regression (Seabold & Perktold, 2010). The regression resulted in a good fit
between the prediction and the measurement (see Figure 6). The resulted regression parameters, employing
equation (45), give a contact angle of 43°. This is comparable with the values 30°–60° reported by Schlüter
et al. (2017a) for the same data sets.

The adjustable parameters are highly correlated; thus, the resulting parameters are not considered robust.
The number of data points is limited for fitting the large number of adjustable parameters. This can be seen
in Figure 7, where the intrinsic volumes are plotted versus saturation. Note that the data for the MI do not
cover the nontrivial curvature for the PD and MD curves at low saturations. A data set with less correlation
between the intrinsic volumes is expected to yield more robust results.

In Figure 8, we have plotted the external work for the bounding flooding sequence, that is, PD, MI, and MD,
versus the free energy calculated by the geometrical parameters in equation (36). Following equation (28), for
a reversible process the amount of dissipated energy reduces to 0; thus, the plotted curve would follow a 1–1
line. We observe that the spontaneous part of the imbibition process is close to 1–1, in agreement with the
regression plotted in Figure 6. We also observe that the starts of the two drainage curves seem to have less
dissipated energy than the latter parts. This could be interpreted as fewer irreversible processes early in the
drainage, likely because the nonwetting phase has not yet developed a large interfacial area where the irre-
versible processes are expected to happen (see Figure 7).

The latter part of each drainage shows a decrease in free energy when external work is applied to the system.
While this is physically possible, we note that this occurs when the curvature versus saturation curves for drai-
nage exhibit a behavior different from that for imbibition (see Figure 7). This behavior is probably not well
described by the current parameter set in equation (36), given the correlation between these
fitted parameters.

4. Discussion

We have attempted to show that the free energy in two phase flowmay be expressed as a linear combination
of seven geometrically independent intrinsic volumes: a saturation, two surface areas, two Euler characteris-
tic, the integrated mean curvature of a fluid phase, and the length of the three-phase contact lines.

Figure 6. The resulted crossplot after adjusting the 11 free parameters in
equation (36) by a least squares linear regression. The external work given
by equation (35) is on the x axis, and the change in free energy calculated by
the geometrical parameters given by equation (36) is on the y axis.
Equation (38) was used to reduce the number of regression parameters by 1.
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We assumed a constant energy efficiency for the imbibition processes when conducting a linear regression
on the intrinsic volumes to match the externally applied work. Small changes to this efficiency had little
impact on our results. The regression indicated strong dependencies between the intrinsic volumes. This

could be the result of dependencies between the intrinsic volumes, or
because the experimental data set does not cover situations where the
intrinsic volumes have nonlinear dependencies. Therefore, we cannot
draw a certain conclusion on the number of parameters needed for a com-
prehensive description of the studied quasi-static multiphase
flow experiments.

Further analysis of the experimental data revealed that the intrinsic vari-
ables other than saturation and areas have a maximum contribution of
approximately 20% in the free energy. Linear regression of the free energy

as a function of saturation and surface areas only (Sn; bAn; bAw) resulted in a
worse fit. It also resulted in an unacceptable value for the contact angle,
with cosθ < � 1, using equation (38). This contrasts with θ of 43° calcu-

lated when all seven variables (Sn; bAn; bAw ; bHn;bχn;bχw ;bLwns ) were included

in the regression. Therefore, we cannot exclude the variables (bHn;bχn;bχw ;bLwns) from the geometric description of free energy.

According to the theoretical part of this work, the number of independent
geometric variables will never exceed seven. We believe that a deeper
approach from thermodynamics is the way forward in identification of
possible nongeometrical dependencies. Analysis of more data with less
limitation on the temporal resolution may also be helpful in recognizing

Figure 7. The specific intrinsic volumes area (bAn andbAw), integral of mean curvature (bHn), Euler characteristic (bχn andbχw), and
contact line length (bLwns) for the different flooding cycles.

Figure 8. The specific free energy bF calculated from the geometrical para-
meters versus the specific external work bW calculated from the saturation
change and external pressure difference. The straight lines indicate the
reversible processes.
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the possible nonlinear dependencies between the intrinsic volumes. It should also be noted that studying the
physical meaning of the coefficients in equation (14) may lead to a more robust regression and thereby a bet-
ter predictive capability. This was exemplified for two of the coefficients in the derivation through equa-
tion (37)–(45). Furthermore, the thermodynamically constrained averaging theory introduced five
geometric variables of nonwetting fluid saturation, nonwetting-wetting and nonwetting-solid interfacial
areas, and mean curvatures (Gray & Miller, 2014). In a recent work by McClure et al. (2018), Euler characteristic
of the nonwetting fluid is added to the variables introduced in the thermodynamically constrained averaging
theory. In this work, the Euler characteristic of both fluids and the length of three-phase contact lines are
identified to be independent geometric variables. In addition, our derivations showed that only one integral
of mean curvature (of one of the fluids) is independent. At last, we point out that the resulted linear relation of
the free energy with the geometric variables is a strong statement supported by the characterization theo-
rem from integral geometry and under the assumptions stated in the theory section (section 2). The descrip-
tion may change to a nonlinear one by discovering possible nongeometric dependencies between
geometrically independent variables.

5. Concluding Remarks

Integral geometry was utilized to give a description for free energy of a system of immiscible two-fluid flow
based on microscopically evolving variables. The free energy was described as a linear combination of intrin-
sic volumes of fluids, fluid-fluid and fluid-solid interfaces, and the three phase contact lines. Intrinsic volumes
are defined as volumes, surface areas, integrals of mean curvature, and integrals of Gaussian curvature (Euler
characteristic) of different domains. We investigated how a number of the intrinsic volumes were related. This
helped simplifying the description for energy as a function of the intrinsic volumes and reducing the number
of geometrically independent variables to seven with no limiting assumption on wettability. The number of
geometrically independent variables for extremewetting conditions where nonwetting phase has no contact
with solid surface was found to be four. The energy of the systemwas also approximated by a simple thermo-
dynamic approach based on macroscopically measurable variables, assuming that the flow happens very
slowly close to hydraulic equilibrium, that is, with low capillary number. By merging these two descriptions
of the free energy we found the constant coefficients of the intrinsic volumes for a set of quasi-static experi-
ments. The presented theory also enabled us to estimate the amount of dissipated energy along the imbibi-
tion and drainage processes.
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