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Problem Description
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equations using finite element method with splines basis functions in an isogeometric
environment. A fully automatic a posteriori error estimation will be utilized to identify large-error
elements, followed by T-spline refinement of the mesh. The report shall include one or more
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Abstract

In this thesis we will explore the possibilities of making a finite element solver for par-
tial differential equations using the isogeometric framework established by Hughes et al.
Whereas general B-splines and NURBS only allow for tensor product refinement, a new
technology called T-splines will open for true local refinement. We will give an introduc-
tion into T-splines along with B-splines and NURBS on which they are built, presenting
as well a refinement algorithm which will preserve the exact geometry of the T-spline and
allow for more control points in the mesh. For the solver we will apply a residual-based
a posteriori error estimator to identify elements which contribute the most to the error,
which in turn allows for a fully automatic adaptive refinement scheme. The performance
of the T-splines is shown to be superior on problems which contains singularities when
compared with more traditional splines. Moreover the T-splines along with a posteriori
error estimators are shown to have a very positive effect on badly parametrized models,
as it seem to make the solution grid independent of the original parametrization.
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Chapter 1

Introduction

1.1 Computer-aided engineering

Computer-aided engineering (CAE) is being applied everywhere. From the dawn of
computers, it has been used for mathematical computations and solving engineering
problems. Over the years, not only has the hardware seen drastic improvements by the
well-known Moore’s Law, but the techniques and algorithms have seen vast improvements
as well. One of these algorithms which was developed in the 1950’s was the finite element
method (FEM). It has been studied and refined ever since, resulting in countless books
and articles on the method. Today, it is such a well-established method that it is found
everywhere. FEM is taught at the university and applied in every aspect of the industry.
Ranging from fluid flow calculations on nuclear submarines to medical simulations of the
human circulatory system [22], the finite element method is applied to supply engineers,
scientists and doctors with the most accurate descriptions of the forces and fluids in
effect.

With the advancements in technology comes the desire to create more and more
complex constructions. The vehicles and machines that is being created today are of
such vast complexity that it is almost hopeless to keep track of everything, let alone
do any numerical computations. For a comparison, a regular personal automobile has
around 3 000 parts, while a Boeing 777 has around 100 000 parts [8]. If we look at nuclear
submarines, they consists of over a million parts. Clearly these huge constructions require
efficient handling at all stages of the design, analysis and construction. This is currently
not the case as a severe bottleneck has appeared in later years which is requiring attention.

1.2 Computer-aided design

Computer-aided design (CAD) has its origins at a slightly later point in history than the
CAE and FEM has. It is generally agreed [8] that it was first started by the two French
automotive engineers Pierre Bézier of Renault and Paul de Faget de Casteljau of Citröen
in 1966. The modern B-splines were first established in the PhD dissertation of Reisenfeld
in 1972 [18] and it’s rational counterpart the NURBS was not established before 1975
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by Versprille [21]. One of the reasons for the CAE developing so much sooner than the
CAD is that the concept of efficient design using a computer is heavily dependent on the
existence of a graphical user interface (GUI). While pure number-crunching was present
from the very cradle of the computer age, the graphical user interfaces was not to see
widespread use before the 1970’s. Once it arrived however, it quickly evolved and was
accepted, or in many ways required, on any personal or industrial computer. By the time
that the CAD community had started evolving, the analysis community had decades of
experience and had no intention of changing their core systems and algorithms.

From then on the community for analysis and design evolved quite independent.
This is largely due to the different requirements they each face. While the designers kept
focus on systems which would be easy to manipulate, visualize and construct, the analyst
kept focus on systems which were accurate, computationally fast and easy to interpret.
The development has continued in both fields resulting in different systems relying on
different geometric constructs. After quite some time with research in both these fields,
the differences only seem to increase. This was fine since there have traditionally been
very simple geometries which was feasible to do analysis on and thus the generation of the
geometry itself could be done by hand. With increased computational power, came the
desire to model more and more complex models which led to an unexpected halt. What
was discovered was that it was no longer the running time of the analysis algorithms
which posed the limit on what problems was possible to solve on a computer. It was the
generation of the geometry mesh.

To perform any analysis, the model which is given from the designer would have to
be converted to a suitable model ready for analysis. This process of conversion is far
from trivial. The first step of conversion would be to create a model in which analysis
is possible, while the second step would involve creating a model which is good. It is
estimated [14] that as much as 20 percent of the total analysis time is spent on the
first step, and as much as 60 percent of the time on the second step in the automotive,
aerospace and ship building industries. This totals a 80/20 factor of conversion versus
actual analysis. Needless to say, this imposes a severe bottleneck on the process and it
is a strong wish from the community to decrease this factor.

1.3 State-of-the-art

There have been put a lot of research into the topic of automating the process of conver-
sion from one system to the other. Both when it comes to creating a possible model by
representing the geometry different, and creating a good model with appropriate refine-
ments around singularities. Several algorithms and techniques have been developed, but
none of these seem to have any widespread industrial success. This is largely due to the
fact that the analysts have little confidence in these automatic mesh generators and still
prefer to make grids by hand. That is not to say that automatic mesh generators are va-
cant in the industry. They are being implemented and used, but seldom alone. The mesh
generators are often used as a preprocessing step before the analysts modify the mesh by
hand to make it analysis suitable. When it comes to the second step of creating a good
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model, the problem gets harder. This is due to the fact that existing analysis models
are only approximating the design model and refinement creates the need for communi-
cation with the design model. This direct communication is often impossible since the
information regarding the exact geometry is lost in the original conversion. Hence this
topic is even less subject to automated procedures than the original conversion.

1.4 Fundamental changes

With so much research going into the subject, and so few results, there were several
people who started to suspect that the problem were lying somewhere else. While re-
search previously had been dealing with solving the problem of automatic conversion
and refining, the real cause of this question being so hard, lies somewhere else. Thomas
Hughes at the University of Texas at Austin, had after discussing with a designer come
up with the possibility that the real issue which should be approached was the system
itself. While it was so hard to convert from one system to another, one should instead
replace one system with the other so that conversion becomes superfluous. He argued
that the whole basis for the analysis framework should be exchanged with the basis of
the design community. A paper was released on the subject by Hughes et al. [14] and
many others were soon to follow (Bazilevs et al. 2006 [3] among others, Cottrell et al.
2007 [9]).

We need to stress the fact that this is not exclusively an analysis endeavor. Even if
the design community represents a much larger market power, which will make it harder
to enforce any major changes in that industry. Recent estimates is considering CAD to
be a $5-$10 billion industry, while the CAE industry is only estimated to $1-$2 billions
[14]. Changes however needs be done on both sides of these communities. While the
analysis would need to work with different geometric constructs and basis functions, the
design community would need to create models better suited for analysis. In short, the
interaction between analysis and design should flow more naturally.

1.5 T-splines

In later years there has been research on a particular new technique which is called
T-splines [20],[19]. It seems that they contain multiple properties which would make
them excellent in the union of the CAD and CAE communities. There are several severe
problems in the conversion from a CAD-file surface to a model suitable for analysis.
One of these is that when designing surfaces in any CAD program, it is not necessary
to clean up all gaps. It is accepted to have small gaps as long as they are visually
insignificant. This is resulting in a model with topological holes in it. Even if there
are small holes, a FEM analysis would require a gap-free, or so-called watertight model.
T-splines give a solution to this problem. Another problem is that designers frequently
use trimmed surfaces. Trimmed surfaces allow for much more powerful manipulation of
the geometry, but they pose a serious problem when converting to an analysis suitable
model. This problem also has its solution in T-splines. At last there is a huge problem
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that CAD designers are creating surfaces, while analysts usually want solids. It has yet
to be developed a good surface to solid algorithm, but there are reason to believe that
T-splines might provide a solution to this as well. There is ongoing research by among
others T.J.R Hughes and Mike Scott on this topic, but no results have been published
yet.

Not only are T-splines superior for making the transition from CAD to CAE seemingly
more painless, but it also has superior properties from an exclusive design perspective
or analysis perspective. It allows designers to manipulate complex models with far less
control points than required by traditional non-uniform rational B-splines (NURBS).
Sederberg [20] reports that you could model a spline human head object with only 1109
control points over the 4712 which was required with the traditional NURBS approach.
From an analyst’s point of view, you could allow for true local refinement since you are
no longer required to work on tensor product structures.

T-splines seem to be a very appealing way of unifying the CAD and CAE commu-
nities, not only for its ease of integrating into existing CAD-programs, but also for its
powerful properties within both fields. Moreover, T-splines are completely backward
compatible. Both in an analysis and design setting. They are a superset of NURBS,
which is by far the dominant technology in CAD-systems today, and NURBS are again
a superset of other classical FEM basis functions.

1.6 This thesis

In this thesis we will assume that the reader is already familiar with the finite element
method and other classical numerical techniques and results. We will give a detailed
introduction of splines, which is the new concept entering the numerical analysis. It is
also the choice of spline basis functions, which are defining the isogeometric paradigm.

We will first give a detailed introduction to B-splines and their rational counterpart
NURBS, before introducing T-splines, which will in many ways constitute the core of
this thesis. In Chapter 4 we will highlight a few of the major differences one encounters
when creating a FEM solver based on splines as opposed to more traditional choices
of basis functions. After this, we will present two popular test problems in Chapter 5
along with the FEM framework which we will be using. The algorithms presented have
been implemented and the numerical results are presented in chapter 6. Chapter 7 will
sum up and present our conclusions and suggest possibilities for future work. Finally, in
the appendix we will give a slightly more technical introduction into the most frequent
practical problems encountered when programming splines.



Chapter 2

B-Splines

We will begin by introducing B-splines. As will later be apparent, both NURBS, PB-
splines and T-splines are built up from B-splines, so understanding these will be paramount
to further explaination.

B-Splines are piecewise polynomial functions like most splines. They are defined
over a series of connected intervals in which they are regular polynomials with all the
important properties polynomials possess. They are differentiable, continuous and fairly
easy to evaluate. At the interval boundaries however, they have limited continuity and
thus also differentiability. All of these properties are equal to those of other splines, like
the natural cubic splines etc. However there is one very apperent difference, which is
that B-splines are not interpolating. This means that the values of the control points,
which will be explained below, have little direct interpetation, but must be postprocessed
to aquire useful information. This is one of the notable properties of B-splines, and
something we will have to deal with.

The reason for using B-spline basis functions is, as already mentioned, because these
are the basis used in most CAD systems. In these systems they are used for representing
the geometry of either curves or surfaces. While it is possible to create spline solids
as well, this is rarely or never done in CAD systems. The extension of the theory from
surface to solids however is a straightforward process, and we will here only present spline
curves and spline surfaces. We will later use these same basis functions to describe the
solution of our differential equation, but for the present time, we will think of this only
in terms of geometry.

2.1 Knot vectors

Let the B-spline consist of n piecewise polynomial basis functions, and let p define the
degree of these polynomials. The B-spline will then be defined by a set of basis functions
who in turn are defined by a set of knots ξi which will correspond to the boundaries in
between the different polynomials.

Definition 2.1.1 The knots is a set of nondecreasing real values ξ1, ξ2, ξ3, ...ξn+p+1.

5
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Together these form the knot vector Ξ.

Note that it is only the relative difference between the knots which will play any
importance when it comes to defining the B-spline. This means that we can add any
constant to all the knot values, and it will generate the same spline in the end. Likewise
we can multiply all the knots by a constant factor, and the spline will remain unchanged.
The number of knots in the knot vector will be equal to n+p+ 1, where n is the number
of basis functions we want to create and p is their polynomial degree. There seems to be
some disagreement in the community whether to speak of order or degree of polynomials.
We will in this thesis not distinguish between the two and in all cases, both of these will
refer to the highest exponent of the polynomial, i.e. f(x) = ax2 + bx+ c will be a second
order polynomial, as well as a second degree polynomial. Even if it has three degrees of
freedom a, b and c.

Note that the knots need only be nondecreasing. This means that one can have
multiple knots of the same value, we can then talk of the multiplicity of the knot. By
increasing the multiplicity we are also decreasing the continuity of a B-spline. In general,
a B-spline will have C∞-continuity at all points, since it consists of regular polynomials,
except at the knots, where it has limited continuity. At the knots, the spline will have
Cp−m-continuity, where p is the polynomial degree of the spline, andm is the multiplicity
of the knot. Note that in the case m = p the spline will only be C0 which means that the
spline will not even have a continuous first derivative, and it is thus possible to create
sharp corners in the spline curve. In the case m = p + 1 the continuity will be C−1

and the spline will be discontinuous. Since it is included in the spline definition that it
should be continuous, it will only be possible to have knots of multiplicity p + 1 at two
points, namely the start- and end-point of the spline. It is customary to use this as the
definition of the start and end of the spline, and create the necessary amount of knots to
satisfy this.

2.2 B(asis) splines

Armed with the knot vector we will proceed with the creation of the basis functions
themselves.

Definition 2.2.1 The B-spline basis functions are defined recursively by

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ), (2.1)

and,

Ni,0(ξ) =
{

1 if ξ ∈ [ξi, ξi+1)
0 else (2.2)

where Ni,p are the i’th basis function of order p, i ∈ [1, n].

We also define the fraction in front of the basis functions to be zero in the case of the
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denominator being zero. That is

ξ − ξi
ξi+p − ξi

≡ 0 if ξi+p − ξi = 0

ξi+p+1 − ξ
ξi+p+1 − ξi+1

≡ 0 if ξi+p+1 − ξi+1 = 0.

We see that there are exactly n basis functions. This is a direct consequence of the
knot vector consisting of n + p + 1 knots. If we increase the number of elements in the
knot vector, we will also increase the number of basis functions.

2.3 An illustrative example

To get a better grasp of the basis functions we will give an illustrated example on how
to create the second order functions corresponding to the knot vector

Ξ = [0, 0, 0, 1, 2, 3, 3, 4, 4, 4]. (2.3)

We start off by creating the zero-order functions. As is seen by (2.2), this will only
be a partition of the parameter space into piecewise constant functions.

N1,0 = 0
N2,0 = 0

N3,0 =
{

1 if ξ ∈ [0, 1)
0 otherwise

N4,0 =
{

1 if ξ ∈ [1, 2)
0 otherwise

(2.4)

N5,0 =
{

1 if ξ ∈ [2, 3)
0 otherwise

N6,0 = 0

N7,0 =
{

1 if ξ ∈ [3, 4)
0 otherwise

N8,0 = 0
N9,0 = 0

The first order functions are then created from each pair of consecutive zero-order
basis function by blending these with linear functions, i.e. the creation of N3,1 would be
given from (2.1) as

N3,1(ξ) =
ξ − 0
1− 0

N3,0(ξ) +
2− ξ
2− 1

N4,0(ξ). (2.5)

We see that the function ξ → ξ−0
1−0 is a linear function equal to zero at the beginning of

the nonzero domain of N3,0 and ending equal to one at the end of the nonzero domain
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(a) The basis function N3,0 (b) The basis function N5,0

Figure 2.1: The constant basis functions

of N3,0. Likewise, ξ → 2−ξ
2−1 is a linear function decreasing from 1 at the start of N4,0’s

domain and zero at the end. Since the zero-order functions are all defined piecewise, the
first-order function will also be defined piecewise. When inserting (2.4) into (2.5) we get
N3,1 as written in (2.7). The computation of N4,1 is completely analogous, however in
the case of N2,1 we see that the denominator is zero in the first term

N2,1(ξ) =
ξ − 0
0− 0

N2,0(ξ) +
1− ξ
1− 0

N3,0(ξ). (2.6)

By (2.3) this term vanishes, and we are left with the linear decreasing function in
ξ ∈ [0, 1).

To sum up, all the first order functions will be given as in (2.7)
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(a) The basis function N3,1 (b) N5,1 - this is discontinuous at the multiple
knot ξ = 3

Figure 2.2: First order basis functions

N1,1 = 0

N2,1 =
{

1− ξ if ξ ∈ [0, 1)
0 otherwise

N3,1 =


ξ if ξ ∈ [0, 1)
2− ξ if ξ ∈ [1, 2)
0 otherwise

N4,1 =


ξ − 1 if ξ ∈ [1, 2)
3− ξ if ξ ∈ [2, 3)
0 otherwise

(2.7)

N5,1 =
{
ξ − 2 if ξ ∈ [2, 3)
0 otherwise

N6,1 =
{

4− ξ if ξ ∈ [3, 4)
0 otherwise

N7,1 =
{
ξ − 3 if ξ ∈ [3, 4)
0 otherwise

N8,1 = 0

Now, note that the basis functions are discontinuous at ξ = 3. This is due to the
fact that in our knot vector (2.3), there is a knot of multiplicity two at that point, which
means that the first order functions will be of continuity p−m = −1. If we were to create
only the first order functions, then this would mean that the knot vector would end at
this point and no more basis functions would be created. However, since we are only
using this as an intermediate step in creating the second-order functions, which at this
point will be C0, we continue. For anyone experienced with the finite element method,
these functions will probably look familiar. It is true that they look familiar, and the
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zero- and first order functions are identical to those used in "classical" linear FEM. When
we extend the basis to second order, this will however change and the functions will not
be the same anymore.

When we in our next step create the second order functions, these are created in the
exact same manner as before. The basis functions are created by blending two consecutive
first-order functions with two linear functions, and then added. Thus, for creating N3,2

we have

N3,2(ξ) =
ξ − 0
2− 0

N3,1(ξ) +
3− ξ
3− 1

N4,1(ξ), (2.8)

Which inserted from (2.7) gives

N3,2(ξ) =


1
2ξ

2 if ξ ∈ [0, 1)
ξ
2(3− 2ξ) if ξ ∈ [1, 2)
1
2(3− ξ)(2− ξ) if ξ ∈ [2, 3)
0 otherwise

(2.9)

When calculating the rest of the basis functions they will be given as

N1,2 =
{

(1− ξ)2 if ξ ∈ [0, 1)
0 otherwise

N2,2 =
1
2


2ξ(3− 2ξ) if ξ ∈ [0, 1)
(2− ξ)2 if ξ ∈ [1, 2)
0 otherwise

N3,2 =
1
2


ξ2 if ξ ∈ [0, 1)
ξ(3− 2ξ) if ξ ∈ [1, 2)
(3− ξ)(2− ξ) if ξ ∈ [2, 3)
0 otherwise

N4,2 =
1
2


(ξ − 1)2 if ξ ∈ [1, 2)
2(3− ξ)(2ξ − 3) if ξ ∈ [2, 3)
0 otherwise

(2.10)

N5,2 =


(ξ − 2)2 if ξ ∈ [2, 3)
(4− ξ)2 if ξ ∈ [3, 4)
0 otherwise

N6,2 =
{

2(4− ξ)(ξ − 3) if ξ ∈ [3, 4)
0 otherwise

N7,2 =
{

(ξ − 3)2 if ξ ∈ [3, 4)
0 otherwise

N8,2 = 0

As is seen from (2.9) we have that the second order basis functions have nonzero values
of up to three knot intervals. We will refer to the values in which the basis function is
nonzero as the support of the function.
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(a) The basis function N3,2 (b) N5,2 - this is C0 at the multiple knot ξ = 3

Figure 2.3: Second order basis functions

Now as seen from the example it is apparent that it is quite possible to create the exact
polynomials which make up the basis functions, but, from a computational point of view
this is highly inefficient and we will instead be working from the recursive definition given
by (2.1). Even if one takes into account the fact that the creation of the functions would
only be calculated once, the evaluation of the basis functions would still not compare to a
dynamic programming approach. For full details on a computational efficient algorithm
for the evaluation of the basis functions see appendix A.

2.4 General properties

As seen in the example above, the supports of the basis functions are growing with
increasing polynomial degree. In fact, the support will cross exactly p + 2 knots. Note
however that some of these knots may be equal and thus have knot multiplicity greater
than one. In these cases, the support will not go over p + 1 knot spans, which is the
maximum support it can have.

In addition, as the name suggest, the basis functions will indeed form a basis. That
is, they are all linearly independent.

The basis forms a partition of unity meaning that the sum of them will always equal
one for any given p, i.e.

n−1∑
i=0

Ni,p(ξ) = 1, ∀p ∈ Z+, ξ ∈ R (2.11)

2.5 From basis to curve

Now that we are armed with the basis functions, it is time to move them into the actual
space which we will be looking at. This might be one of several spaces, but in light of
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Figure 2.4: All second-order basis functions corresponding to Ξ = [0, 0, 0, 1, 2, 3, 3, 4, 4, 4]

curve and surface representations, it is most common to use R2 or R3. The mapping
from the parameter space to the physical space is then given by

C =
n∑
i=1

Ni,p(ξ)Bi, (2.12)

where the Bi’s are the control points of the spline. They may be points in R,R2 or
R3. It is here important to stress the fact that the control points are in general not
interpolating. The curve will not go through the control points, neither will the knots
themselves correspond to any particular control point. It is hard to put any direct
geometric link between the control points and the basis functions. While it is obvious
from an algebraic point of view that control point i is the weighting of basis function i
from (2.12), this is much harder to pin-point from a geometric perspective. To illustrate
this, we have created a second-order curve from the above example with the knot vector
given in (2.3). In this example we are using control points in R2. The control points
themselves are points in the physical space and can be directly plotted in the figure. To
get the knots, we have to evaluate these ξ-values using (2.12). The control points are
plotted as squares, and the knots as circles in figure 2.5

While it is hard to pin-point a geometric link between the control points and the
knots or basis functions, there is however some properties of the B-splines that allows an
intuitive interpretation. If we draw a control polygon given by the ordered set of control
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Figure 2.5: An example B-Spline curve with knots plotted as circles and control points
as squares

points Bi, then the curve C will lie entirely within this polygon. Other than this, the
local support of the basis functions ensures that only a small part of the curve change if
one were to change the location of one of the control points. Moreover, the part of the
curve which will change is the part closest to the control point. This makes the control
points very intuitively to work with from a design perspective. By dragging the control
points themselves, you are effectively locally manipulating the curve. This is also one
of the reasons that they have had such huge success within the CAD community. From
an analysis perspective however, the non-existent link between the parameter space of
the basis functions and the knot vector, and the actual world geometry makes it them
slightly tiresome to work with.

2.6 A 2D tensor product

The extension from curve to surface is straightforward. Where we before had one knot
vector Ξ = [ξ1, ..., ξn1+p1+1] we will now have an additional H = [η1, ..., ηn2+p2+1]. This
will then define another set of linearly independent basis functions Nj,p2(η) according to
(2.1). The two dimensional basis functions will then be given as the tensor product of
any pair (i, j) of these functions, i.e.
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(a) The index space (b) The parametric space (c) The physical space

Figure 2.6: A B-spline and how it appears in different spaces. The support of the basis
function N2,2(ξ)N2,1(η) is shaded

Ni,j,p1,p2(ξ, η) = Ni,p1(ξ)Nj,p2(η) ,
i ∈ {1, ..., n1}
j ∈ {1, ..., n2}

. (2.13)

p1 and p2 need not be equal and are defining the polynomial degrees in the parameter
direction ξ and η respectively. Once again, we will require the first and last of the
control points in Ξ to have multiplicity p1 + 1 and the first and last of H to have
multiplicity p2 +1. The parameter domain defining the surface will then be the rectangle
(ξ, η) ∈ [ξ1, ξn1+p1+1]× [η1, ηn2+p2+1].

We will also now need a net of control points Bi,j (which may be in R2 or R3). Which
in turn produces the surface by

C(ξ, η) =
∑
i,j

Ni,p1(ξ)Nj,p2(η)Bi,j (2.14)

Now to get a better understanding of what is going on we are going to have a closer
look on the interaction between the knots, basis functions and the spline surface when
dealing with the two-dimensional case. We will also introduce the index space which
will act as a second layer of abstraction in addition to the parameter space. The index-
space is simply the area defined by integers 1 to n1 + p1 + 1 in the i direction and 1 to
n2 + p2 + 1 in the j direction. This will consist of a net of index knot points for all pairs
of (i, j). The index space is illustrative for analyzing the support of the basis functions,
which can easily be read in this space, but are less apparent in the parameter space.
It is also paramount to the understanding of T-splines which will be introduced later.
The concept is best illustrated in figure 2.6 where we see the index space, parameter
space and the physical space of a B-spline surface corresponding to the knot vectors
Ξ = [0, 0, 0, 1, 2, 2, 3, 3, 4, 4, 4], H = [0, 0, 1, 2, 3, 3] and the degrees p1 = 2, p2 = 1.

Since we know that the support of any basis function cross exactly 4 indices in the i
direction, and 3 indices in the j direction we can immediately mark the support of any
basis function in the index domain. Due to some knots having higher multiplicity this
is not readily apparent in the parameter domain. The support of basis function (2, 2) is
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marked in figure 2.6 and as can be seen, the support is not over a 3 by 2 knot span which
is the maximum support of any (p1, p2) = (2, 1) B-spline basis function.

Again we want to stress the absence of interaction between control points and knots.
Neither the "nodes" in the index space nor the parameter space are corresponding to any
particular control point, and referring to these points in such a manner could cause con-
fusion. The concept of node will be reserved for classical FEM, and we will instead name
the intersections in the index-space index knot, and the intersections in the parameter
space for knot.

2.7 Analysis on splines

Up until this point we have seen the splines from the perspective of their most frequent
use: geometric object description. However, when using them for analysis purposes we
will not only need the basis functions themselves, but also their derivative. It should not
be surprising in light of the recursive definition that the derivatives can be described by
a recursive relationship as well. They are given by

d

dξ
Ni,p(ξ) =

p

ξi+p − ξi
Ni,p−1(ξ)− p

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (2.15)

This can readily by generalized to higher order derivatives by implicit derivation, that is
differentiate each side by ξ and rearrange the terms

dk

dξk
Ni,p(ξ) =

p!
(p− k)!

k∑
j=0

αk,jNi+j,p−k(ξ), (2.16)

with

α0,0 = 1

αk,0 =
αk−1,0

ξi+p−k+1 − ξi
,

αk,j =
αk−1,j − αk−1,j−1

ξi+p+j−k+1 − ξi+j
j = 1, ..., k − 1,

αk,k =
−αk−1,k−1

ξi+p+1 − ξi+k
.

As it stands it is quite possible to refine the solution space of any particular B-spline.
Simply by inserting a single knot at an arbitrary ξ, we have inserted a new basis function.
However if we wish to preserve the physical geometric object which is described by the
spline we will have to do this in a more sophisticated way. The process of knot insertion
is luckily an exact science and it is possible to insert knots at arbitrary positions while
still maintaining the geometric object untouched. This is done by a splitting algorithm
which basically splits one basis function (with corresponding control point) into two
and afterwards slightly alters the position of up to p control points. For full details on
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the derivation of the knot insertion algorithm see [8]. We will stick with the notation
established in Hughes et. al [14] and refer to this refining process as h-refinement.

It is also possible to elevate the polynomial degree of the curve. Note however that
the degree of a B-spline curve is a global property and unlike knot insertion which might
be used to locally increase the number of basis functions, the elevation of the polynomial
order will affect the entire curve. Like the knot insertion, it is possible to increase the
polynomial degree without altering the shape of the geometric object in the physical
space. The exact algorithm for raising the order of a B-spline can be found in [13]. We
will refer to this type of refinement as p-refinement.

The refining algorithms are not commutative. That is doing h-refinement first and
then p-refinement will yield different results than doing p-refinement first followed by
h-refinement. Hughes [15] is introducing a special way of ordering the refinement process
of p- and h-refinement which has superior properties when it comes to among other
things continuity and number of degrees of freedom. He dubs this refinement process
k-refinement, but we will not be discussing this technique in this thesis.

2.8 NURBS

While the B-spline has seen many uses, it has severe flaws. Among these is the fact that
it is incapable of representing conic sections, i.e. circle, parabola and hyperbola, exactly.
This is due to the fact that none of these can be described as piecewise polynomials.
While it is possible to approximate a circle, one would obviously expect the possibility
of creating such an elementary primitive from an advanced technique like splines. The
result of this pursuit was the non-uniform rational B-splines (NURBS). While we have
already discussed non-uniform B-splines (referring to the knot vector being non-uniform),
the new aspect which comes into the picture is that the splines will no longer be piecewise
polynomials, but rather piecewise rational polynomials.

2.8.1 Geometric perspective

NURBS will be built upon the already existing knowledge-base of the B-splines. In fact,
a NURBS curve will be the shadow of a plain B-spline curve projected onto a constant
plane. Let us consider a B-spline curve in R(d+1), which is simply defined by letting
the control points Bi having d + 1 components. This curve will then be (perspective)
projected onto the plane z = 1 by straight lines going through the origin. This is a
straightforward equation to solve by using the fact that the triangles will be similar
(figure 2.7). The result is that the projected control points Bi are related to the B-spline
control points Bw

i by

(Bi)j =
(Bw

i )j
wi

, j = 1, ..., d

wi = (Bw
i )d+1 (2.17)
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Figure 2.7: NURBS are created by projecting a B-spline into the plane w = 1

where (B)j is the j’th component of the vectorBi and wi is referred to as the i’th weight.
Realizing that NURBS are in fact only regular B-splines projected to a space of one

dimension less, is very instructive since it will ease many of the preceding results. Many
of the results obtained from the investigation of B-splines follow directly when looking at
NURBS. The knot insertion algorithm consists of three steps, project the curve out into
d+1 dimensions, use regular B-spline knot insertion and project it back into d dimensions
afterwards. This algorithm will come very natural and it is because of this that we point
it out. While it is illustrative and useful to realize this fact, it becomes quite tedious if we
are to create the d+ 1-dimensional B-spline which gives the desired NURBS-curve under
projection. This is why we seldom use this in practice when creating or manipulating
NURBS. Instead we will use templates or other tools for generating the geometry.

2.8.2 Algebraic perspective

The NURBS are, as already mentioned, piecewise rational polynomial functions, and
their basis functions are given as

Ri,p(ξ) =
Ni,p(ξ)wi
W (ξ)

=
Ni,p(ξ)wi∑n1

î=1
Nî,p(ξ)wî

(2.18)

and for the NURBS surface

Ri,j,p1,p2(ξ, η) =
Ni,p1(ξ)Nj,p2(η)wi,j∑n1

î=1

∑n2

ĵ=1
Nî,p1

(ξ)Nĵ,p2
(η)wî,ĵ

. (2.19)

While the basis functions have changed significantly, the mapping from the parameter
space to the physical space takes the same form, i.e.
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C(ξ) =
n∑
i=1

Ri,p(ξ)Bi (2.20)

C(ξ, η) =
n1∑
i=1

n2∑
j=1

Ri,j,p1,p2(ξ, η)Bi,j (2.21)

We will not go more into detail on the NURBS. For our purposes it is sufficient to
know that we can create a rational B-spline by adding a weight to each control point, and
altering the way that we are evaluating the basis functions. This will extend to T-splines
as well. We will discuss the T-splines as if they were an extension of the B-splines, but
conversion to rational T-splines is a straightforward process.



Chapter 3

T-Splines

The problem with B-splines and NURBS is that they are formulated as tensor products.
This means that refinement will cause an entire new row or column of knots to be formed.
While you get refinement around a local point, it will also cause a lot of refinement to take
place in other areas of the mesh. This is illustrated in figure 3.1 where we have recursively
refined the lower right corner. Ideally we do not want any more knots to appear in the
upper right and lower left, but with B-splines and NURBS, this is unavoidable. To achive
true local refinement we will have to introduce some new structure to the mesh which
is not formed by global tensor products. This is where T-splines will enter the picture.
T-splines was first introduced by Sederberg et al. (2003) [20] and has, like B-splines and
NURBS, primarily been used for visualization purposes. In later years it have however
seen its introduction into FEM analysis as well [10], [4]. We will in this section give
an introduction to T-splines and most importantly the refining algorithm. We will also
discuss the impact T-splines may have in a finite element setting.

3.1 PB-splines

We will start the introduction of T-splines by describing a more general type of splines,
the point B-spline (PB-spline). This is a B-spline, but one that is formed by choosing
a set of independent points and knot vectors. As we remember from chapter 2, the B-
splines basis functions were only defined by the knot vectors. Given a single knot vector
we could calculate the entire set of corresponding basis functions in the parameter space.
If one were to look closer at this statement, we see that the basis functions will not be
dependent on the whole knot vector, they will only be dependent on a subset of the
knot-vector. For any basis function of order p, we will have exactly p + 1 knots which
will influence that particular basis function. These knots will be a connected subset of
the entire knot vector. This all follows from the definition of the basis functions in (2.1).
As an example, let us look at a particular knot vector, Ξ = [0, 0, 0, 1, 2, 3, 3, 4, 4, 4] for
a second order B-spline. Corresponding to this vector we will have the basis functions
N1,2, N2,2, ..., N7,2. The function N1,2 is only dependent on the first four elements of
the knot vector, i.e. Ξ1 = [0, 0, 0, 1]. The function N2,2 will only be dependent on

19



20 CHAPTER 3. T-SPLINES

(a) Mesh without refinement (b) Tensor product refinement

Figure 3.1: Tensor product problems

Ξ2 = [0, 0, 1, 2]. The function N3,2 will only depend on Ξ3 = [0, 1, 2, 3], etc.
Now, if one were to break this dependence free from the knot vector itself, then it is

clear that we can create any single B-spline basis function from a knot-vector of size p+2.
If these knot vectors were allowed to be picked independently, instead of as a continuous
subset of a global knot vector, then we will get something that we call PB-splines.

Definition 3.1.1 A PB-spline is a collection of blending functions where each blending
function Ni is a B-spline basis function generated from a set of local nondecreasing knot
vectors Ξi and Hi whose elements are independent of any other local knot vectors Ξj or
Hj , i 6= j.

Note that we say "blending" function and not "basis" function, and this is because
the set of functions that form the PB-spline, will in general not be linearly independent.
While this was the case for B-splines, this property is lost while dealing with such general
structures. This is obvious since there is no restrictions in the definition from creating
two blending functions with identical knot vectors. The functions would then be identical
as well, and obviously dependent. This particular example is not possible when dealing
with B-splines since the global knot vector Ξ is non-decreasing we would have to have
two equal local knot-vectors Ξi and Ξj where every element of Ξi was equal. This would
then cause the multiplicity of that knot to be p + 2, but no knot in Ξ except the end
points have multiplicity greater than p + 1 since this is the definition of the start and
end of the knot-vector.

We have now introduced the concept of local knot vectors and this will play a very
important role in the following discussion on T-splines.

3.2 T-splines

While PB-splines are a set of blending functions with arbitrary knot vectors associated
with each blending function, T-splines seem to add more structure to this definition.
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This is done by providing an algorithm for generating the knot vectors for any particular
function in the domain. While B-splines had a well-defined way of extracting the local
knot vectors from the global, and the PB-spline required that every local knot vector was
defined by the user, the T-spline will offer a third option when it comes to generating
the local knot vector.

Obviously talking about T-splines in one dimension, i.e. T-spline curves is meaning-
less since you could not have any T-joints in one dimension. We will therefore restrict
ourselves to only talking about T-spline surfaces, in which we have two axes in the index
domain i and j, and two axes in the parametric domain ξ and η. That is not to say that
T-splines are restricted to this. Bazilevs et al. [4] have done some work on describing
T-spline solids.

But before we describe the algorithm for local knot vector extraction, we will need
to establish some more notation.

Definition 3.2.1 A T-mesh is a collection of points P, ξ-edges Eξ and η-edges Eη in the
index-domain, where each edge is required to be horizontal (ξ-line) or vertical (η-line).

Note that this definition allows for a very general T-mesh. There is no restriction on
the faces being rectangles, or the connection of the edges. Points can exist in T-joints
(figure 3.2), L-joints or I-joints (figure 3.3). It is even allowed for "loose" points with
no connecting lines. In this thesis however, we will not consider such general constructs,
and the only joints which will appear as a result of the T-spline refining algorithm is
L-joints and T-joints.

Definition 3.2.2 A T-spline is a T-mesh associated with two global knot vectors Ξ and
H with a number of elements equal to the maximum index in respectively the i and j
direction of the T-mesh and a corresponding control point Bk for each point Pk ∈ P.

The number of knots in the knot vector is no longer p + n + 1 since we will not
have n basis functions in each parametric direction. Instead, we will have a collection of
basis functions which will be dictated by the T-mesh. Note in figure 3.2-3.3 that there are
legends on the axes. These indicate positions in the global knot vectors for one particular
point in the index domain.

Definition 3.2.3 The local index knot vectors Ik = [i1, i2, ..., ip1+2] and Jk = [j1, ..., jp2+2]
will generate the local knot vectors Ξk and Hk by

Ξk(I,Ξ) = [ξi1 , ..., ξip1+2 ] (3.1)
Hk(J,H) = [ηj1 , ..., ηjp2+2 ] (3.2)

The index knot vectors are strictly not necessary, and most authors on T-splines are
describing T-splines without these, but they will make both discussion and implemen-
tation easier. It is also instructive to realize the fact that the local index knot vectors
"live" in the index domain, while the local knot vectors "live" in the parametric domain.
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Figure 3.2: A valid T-mesh with only T-joints

3.3 The knot-vector extraction

The algorithm for extracting the local knot vector from the T-mesh is given in algo-
rithm 1. This will create one basis function for each Pk ∈ P of the T-mesh. We will
first of all require that the polynomial degrees p1 and p2 are odd. This is not in itself
a restriction since one can always define the appropriate behavior for even degrees, but
this will be unsymmetrical and we will avoid these cases for the time being. What the
algorithm in essence is doing is drawing four "rays" out in each direction north, south,
east and west to find an appropriate number of intersections. The first index which is
to be included is always the point P = (i, j) itself. This is inserted in the middle of the
local index knot vectors I and J in line 2-3. In the next section, line 4-8, we are filling
the rest of the I vector with the first intersections in the east direction. Line 5 is finding
the first point or η-edge which is intersecting the eastward search-ray and stores the i
value of this in the I-vector. Then the next intersection will be found and stored until
the vector is filled up. The process is repeated for the other three directions: west, south
and north.

The extraction algorithm for the local knot vectors Ξk and Hk is best illustrated by
an example. Let the T-mesh be as indicated in figure 3.4 and let p1 = 3 and p2 = 1 so we
have a spline which is cubic in ξ and linear in η. We then know that for each knot-point
Pk = (i, j) there will be a corresponding basis function given by the local knot vectors
Ξk and Hk. These knot vectors will respectively be of size 5 and 3. We then proceed
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Algorithm 1 Local knot vector extraction
Require: p1 and p2 odd
1: P ← (i, j)
2: I[p1+1

2 ]← i

3: J [p2+1
2 ]← j

4: for k = p1+1
2 + 1 to p1 do

5: P ← minî{((̂i, j) ∈ P or (̂i, j) ∈ Eη) and î > Pi}
6: I[k]← Pi
7: end for
8: P ← (i, j)
9: for k = p1+1

2 − 1 to 1 do
10: P ← minî{((̂i, j) ∈ P or (̂i, j) ∈ Eη) and î < Pi}
11: I[k]← Pi
12: end for
13: P ← (i, j)
14: for k = p2+1

2 + 1 to p2 do
15: P ← minĵ{((i, ĵ) ∈ P or (̂i, j) ∈ Eξ) and ĵ > Pj}
16: J [k]← Pj
17: end for
18: P ← (i, j)
19: for k = p2+1

2 − 1 to 1 do
20: P ← minĵ{((i, ĵ) ∈ P or (̂i, j) ∈ Eξ) and ĵ < Pj}
21: J [k]← Pj
22: end for
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(a) A valid T-mesh even if it is creating I-joints (b) A valid T-mesh with P1 being an L-joint

Figure 3.3: Exotic T-mesh construction

to find these vectors. Let P1 = (10, 2) be the index coordinates of one such point. For
notational ease, we will describe the way of extracting I and J which in turn will yield
the local knot vectors. The middle point of I and J will always be the point itself. That
is I3 = 10 and J2 = 2.

IP1 = [·, ·, 10, ·, ·]
ΞP1 = [·, ·, ξ10, ·, ·]
JP1 = [·, 2, ·]
HP1 = [·, η2, ·].

The next step is to extract the rest of the knot vector. This is done by following a
straight line in positive i-direction. For each η-line or point intersected we note the i
value at that particular point. From figure 3.4 we see that a line from P1 will intersect a
point in (11,2) and a η-line at (13,2). Thus the last two values of I will be respectively
11 and 13, i.e. IP1 = [·, ·, 10, 11, 13]. To extract the first two indices, we draw a line
in negative i-direction noting each intersection, which is at the η-lines going through
(5,2) and (3,2). Hence the final index knot vector will be IP1 = [3, 5, 10, 11, 13] with
corresponding local knot vector ΞP1 = [ξ3, ξ5, ξ10, ξ11, ξ13]. To extract J we will need to
form a ray in the positive and negative j-direction, which will intersect an index knot
point at respectively (10,3) and (10,1), thus producing J = [1, 2, 3].

IP1 = [3, 5, 10, 11, 13]
ΞP1 = [ξ3, ξ5, ξ10, ξ11, ξ13]
JP1 = [1, 2, 3]
HP1 = [η1, η2, η3]

For the point P2 = (9, 7) which is also noted in figure 3.4 this will generate the local
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Figure 3.4: An example t-mesh

index- and knot vectors

IP2 = [2, 3, 9, 10, 11]
ΞP2 = [ξ2, ξ3, ξ9, ξ10, ξ11]
JP2 = [6, 7, 9]
HP2 = [η6, η7, η9]

Note that in the case of any of the rays leaving the mesh, it is customary to repeat
the last i or j value obtained before leaving the domain.

3.4 Refinement

Inserting new blending functions into a T-spline is trivial. This can be accomplished
by just inserting new points into the T-mesh and this will then generate more blending
functions. However, this will in general alter the physical shape of the mapped surface.
This is fine in many design applications since it is to be understood that the new control
points are going to be subject to further alterations anyway. In an analysis setting
however, this is unacceptable. Inserting blending functions such that the surface remains
unchanged is a slightly more sophisticated technique. It was first introduced by Sederberg
(2003) et al. [20], and later improved by Sederberg (2004) et al. [19]. The basic idea
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behind this insertion algorithm is the continued use of B-spline splitting, but keeping this
to a bare minimum. While it is possible in degenerate cases to only insert a single blending
function, it seems like it is impossible to do this in a general setting. When inserting one
function, that function is usually dependent on the existence of more blending functions
which will trigger multiple points being inserted. The number of new points needed was
however drastically reduced by the improved algorithm and it is now a very effective and
highly local procedure. For full details on the T-spline refinement algorithm see appendix
B.

From a T-spline user’s point of view it might not be necessary to grasp every detail of
the refinement algorithm, it is however important to stress the fact that the refinement
scheme is producing more points than requested. You will usually get more points than
you bargained for, but it is non the less a local refinement. The new points tend to spread
out to the elements in immediate proximity of the ones requested, but with little precise
control over exactly where. This should be taken into account when requesting element
refinements in an adaptive algorithm scheme. While in classical FEM it is customary to
refine the α percent elements with the highest error, this value could be much smaller
in a T-spline solver since you would have additional refinements generated automatically
from the T-spline refining algorithm. Moreover, these would in general be placed at good
positions since they would be close to the original requested refinement, which apparently
is a hot spot for errors.

3.5 Element extraction

When working in a finite element setting we will need elements to do Gaussian quadrature
over. When using T-splines, these can not be chosen as the T-mesh faces. Indeed from
definition 3.2.1, there does not exist anything such as a T-mesh face. This is due to the
fact that the T-spline technology allows for I-joints, L-joints and even zero-joints. While
we have not explored I-joints and zero-joints in this thesis it is noteworthy that they
might provide interesting refinement properties. L-joints, however will be existing in our
T-spline solvers. It is obvious that from an implementation point of view, it would be
horrible to do Gaussian quadrature over such faces (as the shaded face in figure 3.3b), but
it would also have very bad approximation properties due to the fact that the blending
functions are not guaranteed to be C∞ over these. What we will instead do, is define
the elements as follows

Definition 3.5.1 A T-spline element is a rectangular face over which every blending
function is C∞

To see this problem in detail, we take a close look at the support of the basis function
centered at P1 in figure 3.4. We have already seen that the index knot vectors are
I = [3, 5, 10, 11, 13] and J = [1, 2, 3]. Since it is a B-spline at all these points, the T-
spline will have reduced continuity over these values. We see from figure 3.5a the support
of the basis function R1 as the shaded area. What is the key here, is to observe that the
continuity reduction lines splits the face [11, 13] × [1, 6] in three. Across every line of
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(a) The support of the function R1 centered at
P1

(b) All continuity reduction lines corresponding
to P1

Figure 3.5: Continuity reduction

figure 3.5b we have reduced continuity and they will potentially split faces in two. For
the particular case of R2, there is only two lines, namely the line j = 2 and j = 3 that are
splitting anything. All the other lines are lining up with existing lines of the T-mesh. In
the case of B-splines, every single continuity reduction line will be aligning with existing
B-mesh lines, and thus it is not necessary to do the same steps for such bases.

For any T-spline we will however need to do the element extraction before any analysis
can be performed. This is done by drawing the continuity reduction lines corresponding
to each and every blending function. After this has been done, we are to extract the
elements from the net of lines. Visually, this is very easy, it’s just drawing each line
and the elements appear as the obvious rectangles. It is slightly tedious to do this by
computational power, and details are omitted here. To continue with the same example,
the elements corresponding to the mesh drawn in figure 3.4 is shown in figure 3.6. We
here see that the elements almost span out every full row and column. This is very
special for this particular T-mesh since the refinements are so much spread out over the
entire domain. If we were to create a more natural T-mesh, this would be subject to local
refinement and you would have a very course mesh in some areas, and a very fine mesh
in other ares. The fine mesh would generate reduced continuity lines for a very limited
range, and these would not span far into the course mesh (see chapter 6 for examples).
In this particular mesh, we have scattered areas of fine mesh which is a bad thing to have
when it comes to the number of elements generated.

There are issues one should pay extra attention to when it comes to handling these
elements. Remember the T-mesh is generating the blending functions and is in many
ways defining our T-spline. The refining process which is taking place in the index
domain is using the T-mesh as it is defined there. However the elements seem to be a bit
detached from this. Consider for example the element (i, j) ∈ [6, 7]× [6, 7] in figure 3.6.
This element is completely contained within the T-mesh "face" (i, j) ∈ [3, 9] × [5, 9].
Consider if we had an iterative scheme which continuously refined the elements, and had
marked the element [5, 6]× [5, 6] for refinement. Since it is impossible to insert blending
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Figure 3.6: The elements corresponding to the example T-mesh. Continuity reduction
lines are drawn in gray, and the points which generate these lines are marked by circles

functions alone by the refining algorithm, we would have to search for the nearest edge in
the T-mesh which we could split, which in turn would split the element in two. There is a
non-trivial interaction between the elements and the T-mesh which is taking place in the
refining process. For the usual FEM assembly algorithm (described later in algorithm 2)
it is however enough to extract the elements from the T-mesh and work on with these
to assemble the stiffness matrix.



Chapter 4

NURBS as a FEM basis

This chapter introduces splines as a basis for Finite Element methods (FEM). We will
assume that the reader is already familiar with classical FEM using more established
basis functions such as linear, bilinear, Gauss-Legendre polynomials etc. We will briefly
introduce the notation for the FEM problems at hand and point out the differences which
do arise when using splines as basis functions as opposed to classical choices. While this
chapter will at all points talk about NURBS, it is not hard to generalize this to other
splines such as the T-splines.

4.1 Isogeometric

There are many existing ways of dealing with complex geometry in classical FEM. Among
these are the Gordon-Hall algorithm [12] in which the FEM-solver is using a small number
of high-order elements, or triangulation which is often used with linear elements. These
two approaches are very descriptive of how the choice of geometric representation is
picked. With the linear basis functions, we often choose a linear geometry, which is
made up of triangles. With the Gordon-Hall algorithm we are typically using high-order
basis functions, and the same basis functions for describing the geometry. In many
ways it is the choice of mathematical basis functions which are dictating how we are to
represent the geometry. The problem is imposing the restrictions on the geometry. In
an isogeometric context this relationship is turned the other way around. In this case it
is the geometry which will impose the restrictions on the FEM basis-functions. We will
choose a superior way of representing the geometry, and armed with this model, we will
use the same basis functions to create a Galerkin projection of the solution.

In the introduction we mentioned that the choice of splines as basis functions would
ease the transition from any CAD-model to a suitable FEM-model. While this is the
case it is also believed that the spline basis functions are numerically superior when it
comes to solving the problem on challenging geometrical constructs. This is much due to
the fact that the error in the description of the geometry will be much more precise. In
fact, it is often considered that the spline model coming from a CAD program is defined
to be the exact geometry and in those cases you will have zero error contribution from
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geometrical factors.

4.2 Nodal values

In classical FEM it is very popular to use nodal basis functions. This means that the
domain is divided into nodal points and elements which connect them. For each node pi
there exists a basis function vi which is nonzero (usually one) at the node itself, and zero
at every other node. This gives a very intuitive interpretation of the solution since it is
easy to visualize this as the surface going through each point with the given nodal solution
value. In between the nodes however, there are different interpretations. Here, you
would typically need to explicitly sample the function, which would require more or less
computation depending on your choice of basis functions. For all nodal basis functions
however it is fairly straightforward to interpret or visualize the solution. This is however
no longer the case when dealing with spline basis functions. The solution vector u will
contain the contribution of the different basis functions, but it is not readily apparent
what the values of the solution is at any given points. To prevent any misunderstandings
or false analogs to other classical FEM cases, we will restrain ourself from using the
word "node", and will instead always talk about "index point", "knot point" or "control
point" depending on whether the point in question is in the index-, parametric- or physical
domain.

4.3 Elements

The choice of elements is not always as apparent as one might hope. When it comes
to B-splines and NURBS, we will define each tensor product knot span as an element.
This has some consequences such as the basis functions having support over multiple
elements. There is a common misunderstanding that this will cause the stiffness matrix
to no longer being sparse. This is however not the case as the basis functions still have
local support. It is just the term local which will need to be redefined. From chapter 2 it
was shown that the support of any B-spline basis function was exactly over p+2 knots in
the knot vector. This gives a maximum (depending on the existence of multiple knots)
of p+ 1 knot spans or elements in each parametric direction. It is to be understood that
p is typically much smaller than n, so the support is truly local.

With T-splines the choice of elements is even less obvious. They will however be
defined as in the previous chapter, as the rectangles in which all blending functions are
C∞. This information will have to be extracted prior to doing any numerical integration
during the stiffness matrix assembly.

It is also noteworthy to realize that when using spline basis functions, the continuity
will be very different from classical FEM methods. With splines, we will have a much
greater control of the continuity across element edges. Using classical finite elements, this
would usually be C0 over each edge. While it was possible to add additional requirements
on the edges by hand to overcome this, you will typically get this "for free" when using
splines. The exact continuity is dependent on the spline in question, but with simple
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Figure 4.1: The unit square Ω̃, parametric space Ω̂ and physical space Ω

knots, you will have Cp−1 continuity across element boundaries. This has impacts on
things such as the a posteriori error estimates. If quadratic splines with no duplicate
knots are used, you are guaranteed to get a continuous flux of the solution. This will
again mean that you can skip some of the error contributions arising from discontinuities.
See the next chapter on a posteriori error estimation for details.

4.4 Numerical integration

During the assembly of the stiffness matrix, we will typically need to do numerical in-
tegration. We will in this thesis use Gaussian quadrature as our choice of numerical
integration. To do this, we will however need to map our functions over to a unit square
(ξ̃, η̃) ∈ [−1, 1]× [−1, 1]. While this is common for most finite element methods as well,
we have the additional mapping from the parametric space to the physical space. That
is we are dealing with two mappings. One which is an affine mapping C̃ from the unit
square Ω̃K to the parametric element Ω̂K , and one which is the (rational) polynomial
mapping C from the parametric element to the physical element ΩK . See figure 4.1.
This relationship is quite important to realize as we will be working in all spaces at the
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same time. The numerical integration has to take place in the unit square, while all
basis functions are defined over the parametric domain and the differential equation is
formulated in the physical space.

The fact that the functions themselves are defined in the parametric space while
the differentials are defined in the physical space makes it necessary to reformulate the
equations. Let the Jacobian J and its inverse be defined as

J =
[
xξ xη
yξ yη

]
, J−1 =

[
ξx ξy
ηx ηy

]
(4.1)

Note that we do not have any of the derivatives in J−1 available from a computational

point of view. The mapping C(ξ, η) =
[
x(ξ, η)
y(ξ, η)

]
is in general a non-degenerate polyno-

mial, which can been shown by any elementary algebra book [11] to not have an available
inverse function for any polynomial of degree greater than four by. Since C is not (ex-
actly) invertible it is therefore necessary to derive some identities at this point. From
the fact that we can also calculate the inverse of the Jacobian by basic linear algebra we
arrive at the following equations for the derivatives

J−1 =
1

xξyη − xηyξ

[
yη −xη
−yξ xξ

]
=
[
ξx ξy
ηx ηy

]
(4.2)

Let us also define the gradient in the different spaces as

∇ =
[ ∂

∂x
∂
∂y

]
, ∇̂ =

[
∂
∂ξ
∂
∂η

]
. (4.3)

It can then be shown by the chain rule that the relationship between these are

∇ =
[
ξx ηx
ξy ηy

]
∇̂ = G∇∇̂ (4.4)

The values of G∇ can now evaluated using the identities (4.2). We will typically need
to evaluate the gradient of basis functions during the creation of the stiffness matrix in
i.e. the Laplace equation (see next chapter). However we will also sometimes require the
evaluation of ∇2 of the basis functions. In this case, we will use (4.4) twice

∇2 =∇T (G∇∇̂) = (G∇∇̂)TG∇∇̂ (4.5)

Since ∇̂ is only derivatives with respect to ξ and η and all functions in G∇ are available,
this can be expanded by continued use of the chain rule. The result is far from pretty
and details are omitted for the sake of brevity. The evaluation of ∇2 is used in the a
posteriori error estimates (see the next chapter).



Chapter 5

Example problems

To illustrate the numerical properties of the isogeometric finite element method, we will
implement this to solve it on two popular [17] benchmark examples. The first of these
is the stationary heat equation, or Laplace equation over an L-shaped domain. One of
the properties of this particular problem is that it has a singularity at the origin, which
will destroy the convergence of uniform refinement. It is therefore needed to provide
some form of local refinement, and T-splines will in this case prove superior. The second
problem is one from linear elasticity. It descirbes an infinite plate with a circular hole
in it, and a constant applied stress at the each end. Both problems have exact solutions
available, and due to their widespread use, should provide the reader with some familiar
ground when it comes to comparing the performance of the techniques applied here.

5.1 Laplace equation

The problem consist of solving the stationary heat equation ∇2u = 0 on a L-shaped
domain Ω = [−1, 1]2 \ [0, 1]2 with appropriate boundary conditions.

∇2u = 0 in Ω
u = 0 on ΓD
∂u
∂n = g on ΓN

, (5.1)

with g(x, y) given by the exact solution at the Neumann edge and n being an outward
unit normal. It can be shown that

f(r, θ) = r2/3 sin
(

2θ + π

3

)
(5.2)

is a solution to the Laplace equation ∇2u = 0, and this is what we will be using as
our exact comparison solution. The generation of g is straightforward from f but is
not given as a simple expression and the details are omitted here. The homogeneous
Dirichlet boundary is given as y = 0, x ∈ [0, 1] and x = 0, y ∈ [0, 1], while all other edges
are given with Neumann conditions (see figure 5.1). Note that the exact solution, which

33



34 CHAPTER 5. EXAMPLE PROBLEMS

Figure 5.1: The domain Ω along with the boundary conditions

is pictured in figure 5.2 shows the singularity at the origin. The function has a sharp
edge at that point, and the derivative is not defined here.

5.2 Variational formulation

We are going to solve (5.1) using a finite element method framework. To do this we will
need to find the weak form of the problem stated above. This is done by integrating each
side of the equation by a spline test function R. The equation then becomes∫

Ω
∇2u ·R dA = 0, (5.3)

which after integration by parts and rearranging the terms becomes∫
Ω
∇u ·∇R dA =

∫
Γ

∂u

∂n
R dS (5.4)

a(u,R) = l(R) (5.5)

Where a and l is the usual bilinear and linear functions introduced in any elementary
book on FEM, i.e. [5]. It should come as no surprise that we are going to use splines as
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Figure 5.2: The exact solution of (5.1)

our test functions, hence the name R as the test function, opposed to the more generally
used v as seen in classical finite element literature. We are going to form a Galerkin
projection of the exact solution into a subspace of S. This subspace will be built up of
all spline functions of a specific type, i.e. NURBS, B-splines or T-splines which will map
the surface to the physical domain Ω. We will then find a subspace Sn which only span
a finite number of spline basis functions. That is

Sn = span

{
Ri ∈ S

∣∣∣∣∣C(ξ, η) =
n∑
i=1

RiBi = Ω

}
. (5.6)

Thanks to the precise formulation of knot insertion, it is possible to iteratively increase
the size of S while still preserving the mapping C unchanged.

While searching for a solution in the Galerkin subspace, it is understood that the
solution can be written as

uh =
n∑
i=1

uihRi. (5.7)

(5.7) inserted in (5.5), along with exploiting the bilinearity of a gives

n∑
i=1

a(Ri, Rj)uih = l(Rj), ∀Rj ∈ Sn (5.8)
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5.3 Assembly

(5.8) is a linear system of n equations which we will solve by creating the matrix A =
[a(Ri, Rj)] and the vector b = [l(Rj)] such that

Au = b (5.9)

The construction of the stiffness matrix A is often referred to as "assembling" due to
its method of construction. While the formulation is defined as an integral over pairs of
basis functions, it is more convenient to loop over each element instead of looping over
all basis functions at the outer loop. The algorithm of constructing A is described in
algorithm 2.

Algorithm 2 Assembly of A
1: for all elements e do
2: for all nonzero basis functions Ri do
3: for all other nonzero basis functions Rj do
4: I∗ ← 0
5: for all Gaussian points g do
6: I∗ ← I∗ + ag(Ri, Rj)
7: end for
8: Aij = Aij + I∗

9: end for
10: end for
11: end for

Line 5-7 is the Gaussian approximation I∗ =
∑

g ag(Ri, Rj) of the exact integral I =
a(Ri, Rj). It is a well known fact that Gaussian quadrature has superior qualities when
approximating polynomials [6]. B-splines are regular polynomials over each element, but
even in the case of rational polynomials such as NURBS, experiments have shown that
Gaussian quadrature gives a very good approximation [8]. There have been some recent
research in the choice of quadrature when using NURBS-based isogeometric analysis.
Hughes et al. (2008) [16] devised a technique which utilized roughly half the number of
quadrature points as you had degrees of freedom. While we take note that there exists
alternative choices of quadrature, we have chosen to go with the regular tensor product
Gaussian quadrature, mainly because of it’s popularity and familiarity.

There are several issues which we should take note of when implementing this algo-
rithm. First of all, the extraction of the elements themselves are not trivial when it comes
to T-splines. In line 2-3 of algorithm 2 we are looping over each nonzero basis function.
Usually this is implemented as a list, i.e. to each element e, there is a list Le over every
nonzero basis function at that element. This is also necessary for T-splines, but with
B-splines and NURBS it is not. Thanks to the well defined support of the splines over
the index domain we can easily extract the nonzero basis functions by arithmetic means,
and will not need lookup tables. Also note that the Gaussian integral itself is subject to
two mappings which will influence its computation.
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With a from (5.5) we have that the exact integral is

a(Ri, Rj) =
∫

Ω
(∇Ri)T (∇Rj) dxdy (5.10)

with ∇ being taken with respect to x and y. Ri on the other hand, is expressed in ξ and
η. Using (4.4) we have that

a(Ri, Rj) =
∫

Ω
(G∇∇̂Ri)T (G∇∇̂Rj) dxdy. (5.11)

=
∫

Ω̂
(∇̂Ri)TGT

∇G∇(∇̂Rj) det(J) dξdη (5.12)

=
∫

Ω̃
(∇̂Ri)TGT

∇G∇(∇̂Rj) det(J) det(J̃) dξ̃dη̃ (5.13)

≈
∑
α,β

(∇̂Ri(ξα, ηβ))T (∇̂Ri)TGT
∇G∇(∇̂Rj(ξα, ηβ)) det(J) det(J̃)ραρβ

where we in (5.12) have mapped the area of integration to the parametric space (ξ, η),
and in (5.13) have mapped it yet another time, to the unit square. In the last line,
we have used Gaussian quadrature to evaluate the integral with ρ being the Gaussian
weights associated to the evaluation points (ξα, ηβ). Moreover, the mapping C̃ from
the Gaussian domain to one element in the parametric domain is an affine mapping thus
reduces the determinant of the Jacobian J̃ , corresponding to this mapping, to a constant.
This constant will be equal to the relative difference between the area of the parametric
element and the area of the unit square.

The construction of the load vector b follows the exact same progress with looping
over each element and successively adding up each contribution to the load vector from
each nonzero basis function by evaluation of a Gaussian quadrature.

5.4 Linear elasticity

This problem features an infinite plate with a circular hole in it. A uniform stress is
applied in x-direction away from the hole. This problem has an exact solution which can
be found in Zienkiewicz [23]. Due to the symmetry, it is sufficient to consider only the
first quadrant of the plate. The governing equations are

∇·σ(u) = 0 in Ω
u = gD on ∂ΓD (5.14)

σ · n = gN on ∂ΓN ,

with the problem geometry pictured in figure 5.3. There is homogeneous Neumann
conditions on the inner circle, symmetry boundary conditions on the south and west
edge, and finally exact Neumann boundary conditions given by the exact stress on the
east and north side of the domain.
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Figure 5.3: The linear elasticity setup

While the problem description of (5.14) takes on a seemingly different form than that
of the Laplace equation (5.1) the assembly of the stiffness matrix is almost identical. It
uses the same loop as the one described in algorithm 2. The main difference is that the
unknown displacement field u is now a vector which will slightly alter the process. This
is handled by introducing a basis function for each dimension for each knot point. That
is

uh =
n∑
i=1

2∑
d=1

ui,dh Ri(ξ, η)ed, (5.15)

where e1 =
[

1
0

]
and e2 =

[
0
1

]
. We are then looping over twice as many basis

functions, since each basis function will consist of the regular spline basis function R,
along with the spacial direction which it is active in, i.e. ed. Other than this, the
assembly of A, the solution of the linear system of equations and the grid refinements
will all be completely analogue to what we saw when we solved the Laplace equation.
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(a) The coarsest element mesh used for solving
the Laplace equation. The lines illustrating the
knot spans

(b) The control mesh corresponding to the
parametrization. The squares are the control
points

Figure 5.4: L-shape parametrization

5.5 Geometry construction

The geometry of the L-shaped problem is not particularly suited just for splines, since
it is easily described by other, simpler, geometric constructs. Nevertheless, it is such a
popular benchmark example that it was decided to be included. Also it will allow for the
local refinement by T-splines to shine and come to their best use due to the singularity
at the origin. The geometry was constructed in the following way. It was designed as
a cubic NURBS with Ξ = [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] and H = [0, 0, 0, 0, 1, 1, 1, 1], that is
only the endpoints are included in the η-direction, while the ξ-parametrization has an
interpolating point halfway through the parameter space. This allows us to create the
sharp edge at the origin. It will split the domain into two elements by the diagonal axis
as indicated in figure 5.4a. The control points were uniformly positioned within the
domain as indicated by figure 5.4b.

The circle with a hole was constructed in a slightly different manner. A second order
circle was created at the origin from an available template. Of this, only the first quadrant
was kept, after which order elevation was performed, along with a knot insertion at the
middle of the domain. The third order half-circle was linearly extruded out to a radius
of 4. Finally the three top right control points were placed on top of each other to make
the sharp edge. Multiple control points are causing the derivatives to vanish, much in
the same manner as duplicate knots are doing. This allowed us to create an interpolating
sharp edge at the top right corner. The elements and control mesh corresponding to the
final knot vectors Ξ = [0, 0, 0, 0, 1, 2, 2, 2, 2] and H = [0, 0, 0, 0, 1, 1, 1, 1] is displayed in
figure 5.5 Note that this parametrization has some very attractive properties. If we take
a look at the knot vectors, we see that there is not a single multiple knot, save the start-
and endpoint. This means that all basis functions have high continuity at the interior of
the domain. In fact, since we have a cubic spline with a single knot, the most reduced
continuity is at the line ξ = 1 which will have p − 1 = 2 continuous derivatives. At the
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(a) The coarsest element mesh used for solving
the Linear elasticity equation

(b) The control mesh corresponding to the
parametrization

Figure 5.5: Circle with a hole parametrization

multiple control point at (x, y) = (4, 4), the continuity is further reduced, but this is only
at this single point. We will never place any Gaussian quadrature points here, and will
thus never evaluate the functions at all at this point so it is fine. The beauty of having
high continuity across the element boundaries is that we can now have a continuously
defined stress. This will in turn mean that we don’t have to pay any special attention
to the jump error which you traditionally get from using C0 element boundaries in a
classical finite element solver. That is not to say that this particular parametrization
comes without its drawbacks. With so many control points in the top right corner, the
element refinement lines tend to be drawn towards this point. The "uniform" refinement
scheme is thus no longer so uniform when viewed from the physical domain (even if it is
completely uniform in the parametric domain). It is however a choice we make, and we
will prefer increased continuity over an otherwise uniform parametrization. As we shall
see in the next chapter, the T-splines are proving to have an interesting effect on this.

5.6 A posteriori error estimation

In order to achieve local refinement we will need some form of feedback on where the
error is larger. This is the fundamental starting point for local refinement. One way
of doing this is trying to evaluate the error over each element separately in some norm.
Usually this is chosen to be the energy norm. This is the natural choice of norm since the
FEM is minimizing the distance between the true solution u and the discrete solution
uh in this norm. Since we actually have the exact solution available, the exact error
can be evaluated (up to Gaussian quadrature approximation) and this can be used for
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refinement purposes. We can evaluate the exact error by

|||e|||2 ≡ ‖e‖2E = a(e, e) = a(u− uh, u− uh) (5.16)

or by restricting this to each element Ωk by

αk = |||e|||2Ωk
= aΩk

(e, e)2 =
∫

Ωk

(∇(u− uh))T∇(u− uh)dΩ. (5.17)

Note that we have dubbed the element-error αk and not ηk, which is frequently seen in
the literature [2] to distinguish it from the extensive use of η as a parameter-space axis in
this thesis. By doing this evaluation, we will have an exact value αk of the error for each
element, and we can proceed with refining the elements which contribute the most to
the global error |||e|||. While this strategy is perfectly valid if we have the exact solution
available, it is unlikely that this will be the case in a practical engineering problem. If
the exact solution is not available, then we will instead try and approximate this as best
we can. Consider the Laplace equation formulated for the L-shaped domain described
previously. The derivation for the hole-problem is completely analogous. If we have an
approximate solution uh available, then we can modify our original equation by

∇2u = f

∇2u−∇2uh = f −∇2uh

∇2e = f −∇2uh. (5.18)

This is an exact formulation of the error e = u−uh. It is in fact the exact same equation
as our original Laplace equation, with the only exception that we are approximating
the unknown e instead of u, and the right hand side has been changed from the known
function f to the known function f − ∇2uh. It is obvious that we could use the exact
same framework to solve this equation, as we did to solve our original problem. This is
however not a good thing to do due to several factors. First of all it is well known from
finite element analysis that the Galerkin projection is minimizing the error (measured in
the energy norm). This is known as the Galerkin orthogonality property

a(e, v) = 0, ∀v ∈ Sn. (5.19)

If we project the error into the finite space Sn then the error would be identical to zero.
Secondly, there is the fact that the evaluation of the error itself would be just as costly
as the original approximation of the solution. In any practical applications this is not
acceptable. Dörfel et al. [10] suggests projecting this error into another subspace W
which is spanned by the so-called bubble functions over the element interiors. This was
tried implemented, but gave less than satisfactory results. We will instead rely on the
theory of a posteriori error estimation as presented by Ainsworth and Oden [1].

To derive the error approximation we note that

a(e, v) = a(u, v)− a(uh, v) = l(v)− a(uh, v), ∀v ∈ S, (5.20)
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which is basically the same as (5.18) written in weak form. Since we are interested in an
error contribution from each separate element, we will first need to decompose the error
into the contribution from each element. Let P be the partition of the domain Ω into
elements. Then

a(e, v) = l(v)− a(uh, v)

=
∑
K∈P

∫
K
fvdA+

∫
∂K∩ΓN

gvdA−
∫
K
∇u∇vdA (5.21)

where ∂K is the border of element K and ΓN is the outer Neumann boundary. The
above statement is true not only for all test functions in our solution subspace, but for
all v ∈ S. Integration by parts over each element gives

a(e, v) =
∑
K∈P

∫
K
rvdA+

∫
∂K∩ΓN

RvdA−
∫
∂K\ΓN

∂u

∂n
dS (5.22)

where we have defined the interior residual r and boundary residual R by

r = f +∇2u (5.23)

R = g − ∂u

∂n
. (5.24)

The last term in (5.22) is taken over all inter-element borders. Ainsworth [1] is approxi-
mating these values by taking the mean of ∂u

∂n on each side of the element border. This is
done since in regular finite element methods the basis functions will be C0 across element
boundaries which results in a jump discontinuity in the approximation of the flux. This
is not the case with splines as they have increased continuity across element boundaries.
The hole geometry was created with this in mind as well. The final term then vanishes
as each inter-element line integral will cancel each other. We are left with

a(e, v) =
∑
K∈P

∫
K
rvdA+

∫
∂K∩ΓN

RvdA (5.25)

By continued use of the Cauchy-Schwartz inequality and exchanging the general function
v with the error, we arrive at the result

|||e|||2 ≤ C

∑
K∈P

h2
K‖r‖2L2(K) +

∑
γ∈ΓN

hK‖R‖2L2(γ)

 , (5.26)

where hK is the diameter of element K. In the implementation, this was chosen to be the
largest diameter. For details on the complete derivation, see Ainsworth [1]. Note that
the last term in (5.26) will only be nonzero for the elements which border a Neumann
boundary condition edge.

Note that this error estimate is not especially good for evaluating the actual numerical
value of the error in question. The constant C in (5.26) is not known, and the bond of the
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inequalities are not especially tight. However this error estimate will give a very good
indication on what the relative error between the elements will be. This is sufficient
for our purposes as it will enable us to tag the elements which are contributing the
most to the error, and we can thus proceed with refining these elements. In an industrial
implementation this error estimate will allow for solution schemes where you could request
the degrees of freedom you would want, and the algorithm will proceed with finding the
optimal discretization of this. However, it will not allow the user to input a maximal
numerical error value, as we have no information on the constant C.
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Chapter 6

Numerical Results

In this chapter we will present the results on how the algorithms described perform
on the actual problems. It is in general a bad idea to compare different techniques
with respect to computer running time. This is very dependent on the implementation
itself, and also very dependent on the choice of programming language. What we will
instead do is compare the convergence rate as a function of the degrees of freedom.
This comparison has its drawbacks as well since you would probably be able to handle
more degrees of freedom for the same amount of computational power with a simpler
method. Nevertheless, we are going to present the rates in which the methods converge
with emphasis on how the T-splines perform against tensor-product NURBS structures
on the same problem.

6.1 L-shaped Laplace equation

When refining the mesh, several approaches were tried. First and most obvious was the
uniform refinement. This was done by recursively halving the interval between consecu-
tive knots, it is displayed in figure 6.1.

Needless to say, the convergence of the uniform refinement was less than satisfactory.
With the knowledge of there being a singularity at the origin, it is obvious that we should
have some form of local refinement around this point. Another strategy was devised with
the refinement only taking place around this very point. What we did was to start with a
slightly refined uniform mesh (given in figure 6.1) and after this halve all elements closest
to the singularity. The result was the mesh given in figure 6.2. It had severely improved
convergence, but as the degrees of freedom increased, the error in the non-refined pieces
of the mesh was becoming dominant and the convergence declined.

The uniform refinement did, not unexpected, perform poorly due to the presence of
the singularity at the origin. With cubic NURBS we still only achieved a convergence of
order 1/2. The rule of thumb refinement scheme proved vastly superior. It is expected for
polynomial elements to have a convergence rate ofO(hp+1). With two spacial dimensions,
the element size goes as 1/h = O(

√
N) which means that with cubic elements we are

expecting second order convergence as a function of the total number of basis functions
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Figure 6.1: Uniform mesh after two refinements

N . This is clearly seen in figure 6.3. The scheme does however get to a point where the
error in the non-refined parts of the mesh becomes dominant. This scheme does never
refine anything but the innermost element.

The story becomes completely different when introducing the a posteriori error esti-
mate. This does not suffer the same effect of flattening out as the rule-of-thumb refine-
ment strategy does. The scheme was to first find an approximate solution. After this
we evaluated an approximate error at every element. The top 1 percent of the elements
with the largest error was then refined. The reason for choosing such a small number, is
that up until a very late stage of the solution process, the dominant error was only at the
innermost elements and refinements in other places would not yield a significantly better
solution. We see that the local error estimator successfully detects the singularity at the
origin and refines around this. It is also detecting the elements which are secondary most
prone to high error. These are the ones along the diagonal line across the L. However
with the NURBS tensor product structure, there is a lot of unnecessary refining taking
place. The elements at the end are only receiving refinement from the more square center
nodes which are placing a line through the entire domain. This results in the character-
istic long elements at the edge which is seen in figure 6.4b. These elements themselves
are never going to be subject to refinement (which could make them more square) since
they are too far from the singularity to have any significant error, and they do also have
too small areas to compete with any of the other elements.
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Figure 6.2: The rule of thumb refinement, halving the innermost elements at each refining
step

Finally we did the T-spline refinement scheme. This was in many ways identical to
the adaptive NURBS scheme. We solved the system of equations to get an approximate
solution which we then estimated the error on. The only thing which was conceptually
done differently was the refining itself. While there was some obviously different details
which had to be taken care of with respect to the assembly of A and evaluation of the
basis functions, it was in essence carried out by the exact same structure. The refinement
however utilized a T-spline refinement scheme. This detected the elements in which the
largest error was present followed by a refinement call on this element. Since it was
possible that the element was in the middle of a T-mesh face, we had to search for
the nearest T-mesh edge which we could then split in two by the refinement algorithm
described in appendix B. This would effectively create more T-spline functions which
could be used to represent a more locally accurate solution, and also split the element
in two. The results of continued refinement is displayed in figure 6.1-6.1. The plot
is here showing both the T-mesh mapped to the physical domain and the elements over
which numerical integration is performed. As we can see there are more elements than
there are T-mesh faces. This is however to be expected, and we also see that the T-spline
elements are being spanned from a limited range from the finest T-mesh. This allows for
the number of elements to scale as the number of T-mesh faces. We also note that there
exist L-joints in figure 6.6a, but the corresponding element mesh in figure 6.6b is only
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Figure 6.3: The convergence rates as a function of the degrees of freedom

consisting of rectangles.
For comparison we have included the convergence rates of all four refinement schemes

in figure 6.7. Here we clearly see that the T-splines perform superior compared to the
other methods.

6.2 Linear elasticity

We also did the linear elasticity problem with T-splines. With this case we didn’t have any
singularity as we did with the L-shaped problem. This resulted in a more evenly spread
refinement with a small biasing towards the center of the hole. This is due to the fact
that the exact solution has the most changes around this point. We did two refinement
schemes here, uniform and T-spline. What was interesting in the uniform refinement was
that the refinements seemed to be less than uniform in the physical domain. This was
due to the parametrization as already discussed in the previous section. This is pictured
in figure 6.2, where we have drawn the parametric and physical space of the domain,
along with the control mesh. As we can clearly see, the refinement which is uniform
in the parametric space is biasing towards to upper right corner in the physical space.
This phenomena is even more apparent in figure 6.9 where we have more refinements.
While it is possible to override this by manually choosing a different refinement scheme
in the parametric domain (which would cause uniform refinement at the north and east
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(a) Adaptive refinement scheme at an intermedi-
ate step

(b) Adaptive refinement at a late stage in the
solution process

Figure 6.4: Adaptive refinements

(a) The T-spline mesh (b) The T-spline elements

Figure 6.5: T-spline refinements at an intermediate step

edge for the cost of non-uniform refinements at the inner circle), we will not choose this
approach. Instead we will let this refinement scheme stand, and note that this might not
be the best parametrization which we could have chosen.

When choosing to refine by T-splines something interesting happened. While it did
what it was supposed to do with cluttering enough blending functions around the inner
circle it proved to have some other properties as well. Due to the large areas which was
created at the top left and lower right or the domain (see figure 6.8c), these areas had
large error contributions. The algorithm did then detect this and refine them. What
was not refined as much was the upper right corner since that area received so many
contributions from other places. This meant that the T-splines actually negated the
effect of the bad parametrization. There was an on average uniform refinement taking
place outside a small border from the inner circle. We see from figure 6.2 that the
T-spline is favoring a uniform refinement. There are three major clutterings of points in
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(a) The T-spline mesh (b) The T-spline elements

Figure 6.6: T-spline refinements at a late stage

the parametric space. The first is the bottom border η = 0 which corresponds to the
inner circular arch. The second and third is the upper right and upper left corner. The
reason for such fine refinement here is this area which is mapping to the lower right and
upper left of the physical space. And from the previous discussion we saw that it was
exactly this area which was subject to the bad parametrization problems.

Lastly we take a look at the convergence rates of the uniform refinement strategy vs
the T-spline refinements in figure 6.11. T-splines does yet again out-perform the uniform
refinement, though not as definite as in the case of the L-shaped problem. This is because
a true uniform refinement is not far from optimal in the case of the hole problem. The
major sources of difference are a slight preference of refining around the inner circle, and
the bad parametrization canceled by the T-splines.
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Figure 6.7: The convergence rates of all four refinement schemes

(a) Uniform refinement in the
parametric space

(b) The control mesh used to gen-
erate the mapping

(c) Domain in the physical space.
Refinement is not so uniform
anymore

Figure 6.8: Uniform refinement problems
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Figure 6.9: Uniform refinements at a late stage in the solution process

(a) Parameter space (b) Physical space

Figure 6.10: T-spline mesh after a series of refinements
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Figure 6.11: Convergence rates of the uniform vs T-spline refinement on the hole problem
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Chapter 7

Discussion

7.1 Conclusions

We have shown that T-splines are realistic choices of basis functions in an isogeometric
environment. Their performance is superior in cases where local refinement is needed,
and they are the natural expansion of B-splines and NURBS. Not only do they allow
for true local refinement as opposed to the tensor product nature of the NURBS, but
they possess other remarkable properties as well. While refining a badly parameterized
model, T-splines combined with a posteriori error estimation detected this and responded
by clustering up the refinements in the parametric space where needed. This is a huge
advantage as it enables the designer to focus on the task at hand, which is creating the
model in the first place. Whether or not it is optimized for numerical analysis should
be of less concern as this should be handled automatically by the adaptive algorithm.
Remembering from the introduction that the creation of a model in which numerical
analysis is possible takes up to 20 percent of the total analysis time. Making a model
which is good for analysis takes up to 60 percent of total analysis time. While the isoge-
ometric paradigm itself makes the first step superfluous, T-splines, along with adaptive
mesh refinement schemes is what is making it possible to automate this last step.

T-splines are seeing their way into the industry, with several leading CAD design tools
such as RhinoTM and MayaTM implementing them through a plugin. Being a superset
of NURBS they are quite possible to coexist side by side with existing NURBS methods
and programs. Both of these properties are crucial for industrial success. It also allows
for complete backward compatibility in both an analysis and design setting.

7.2 Future work

We present several algorithms in this thesis that still leave many details to the imagi-
nation of the implementer. These include the T-mesh local knot vector extraction and
T-spline refinement schemes. At several points searches for the closest point or inter-
secting lines are performed. While it is perfectly possible to brute force these things,
which is to perform an all-to-all search, this will not be sufficient in the long run. Algo-
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rithms that scale well are needed. Effective search algorithms or indexing will need to be
established along with corresponding datastructures. The problem of efficient T-spline
implementation has so far been vacant in the literature.

T-splines is a relatively young research topic and there are several unsolved problems
related to this. It is still not known if the T-spline blending functions are linearly in-
dependent. In fact, there is still some gray areas in the T-spline community on exactly
what kind of T-spline topologies are to be allowed. The question of linear independence
might be dependent on the existence of L-joints, I-joints or similar exotic T-mesh config-
urations. Currently, all indications lead us to believe that the T-mesh is indeed linearly
independent, but a formal proof has yet to be published. This question would have a
huge impact on the continued use of T-splines in finite element methods.

Another unsolved problem in the T-spline technology is the conversion from surfaces
to solids. CAD-systems are exclusively representing object surfaces, while any analysis
framework will usually require object solids. This will open the problem of how to
automate the process of creating a solid object representation from its outer surface
representation.

The error estimator used in this thesis is not among the most sophisticated available.
While perfectly suited for its use in this thesis, it has several flaws. The field of a
posteriori error estimation has become a mature field, with very rich literature. Among
these are not only the residual-based estimator as used here, but also recovery-based and
extraction-based estimators [17]. It might prove interesting to see how these different
estimators perform with spline basis functions, especially with the observation that you
can very easily create a continuous flux solution which will remove any error contributions
from the C0 element edges. It would also allow for approximation of the actual numerical
value of the error itself, and not just the relative difference of the error in between the
elements.



Appendix A

Evaluation of the B-Spline basis
function

The B-spline basis functions are not only appearing in B-splines, but also NURBS, T-
splines and PB-splines to name a few. Being the basis function it is obvious that they
will be evaluated quite a few times during any FEM solution algorithm. It is therefore
essential that it is possible to evaluate them in an efficient way. As it turns out, there
exists an efficient algorithm for this problem, and I will give an overview of it here. The
basis functions are defined as,

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ), (A.1)

and,

Ni,0(ξ) =
{

1 if ξ ∈ [ξi, ξi+1)
0 else (A.2)

with the exception of zero denominator where the entire fraction is evaluated to be zero.
This special case is assumed to be handled by the algorithm at the appropriate locations
and to increase readability I will not specify this in the algorithm description.

Now it is quite possible to evaluate (A.1) as it stands, that is by creating an recursive
algorithm which takes the parameters i, p, ξ and Ξ and returns the value simply by
calling itself recursively. This is described in detail in procedure 3. However, this will
not be an efficient implementation. To see this I have drawn the function calls for a
particular evaluation N3,3(ξ) in figure A.1 where I have abbreviated N(i,p) for the
function signature since both the ξ- and Ξ parameter will be constant throughout the
sequence. As is seen, N(3,3) will call N with parameters N(3,2) and N(4,2). N(3,2)
will then be recursively calling the function with respectively (3,1) and (4,1) as the
parameters, etc. until the calling sequence is interrupted when it reaches p = 0 in which
it is then evaluated using (A.2).As is illustrated in figure A.1 there is redundant work
since the function will be called multiple times using the exact same argument. The
yellow nodes all mark places where the function N is evaluated using the arguments (4,0)
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Procedure 3 BSpline_Recursive(i, p, ξ,Ξ)
1: if p = 0 then
2: if ξi < ξ < ξi+1 then
3: return 1
4: else
5: return 0
6: end if
7: else
8: N ← ξ−ξi

ξi+p−ξi · BSpline_Recursive(i, p− 1, ξ,Ξ)

9: N ← N + ξi+p+1−ξ
ξi+p+1−ξi+1

· BSpline_Recursive(i+ 1, p− 1, ξ,Ξ)
10: return N
11: end if

which obviously is a waste of computational power. This is a classical flaw of recursive
algorithms, but one that also has a solution.

The running-time of the recursive algorithm was O(2p) which is exponential in prob-
lem size. We will exchange this to O(p2), which is only polynomial, by using dynamic
programming. A full introduction of dynamic programming is beyond the scope of this
work, but details can be found in any elementary book on algorithm construction, i.e.
Cormen [7]. The basic idea is to solve the system "bottom-up" instead of "top-to-
bottom". While the recursive definition starts by asking the question of what is the
solution to N(3,3) the dynamic programming approach starts by asking what is the an-
swer to N(0,0) and builds it solution space up larger and larger until the answer to the
original problem has been found.

The first observation we do on the way to the final solution algorithm is the already
hinted at in figure A.1 which is the fact that the solution for N(i,p) is only dependent
on the solution of itself for a lower p. The knot vector Ξ and the evaluation point ξ will
need to be passed into the algorithm, and are used to evaluate the function for specific i
and p but are not affected by the recursion and dependencies which makes the dynamic
programming work.

Since it is trivial to solve the problem for any p = 0, this is our starting point. In
figure A.2 this has been marked as the first row. We will solve the problem for all i and
p = 0 using (A.2). We will then extend this solution by calculating the solution for all
i, and p = 1, using the fact that we already know the solution to the p = 0-problem.
This will then spawn the solution of the p = 2-problem etc. By creating a p× n-matrix
we can gradually fill this up with the solutions. For any arbitrary point in the solution
matrix, the evaluation of N(k,q) is only dependent on the two already known solutions
N(k,q-1) and N(k+1,q-1).

While this is fine by itself, it has only dropped the solution time of the algorithm
to O(np) where n is the number of basis functions. Given that we know p � n it is a
significant improvement to realize that our solution-matrix will be sparse. Since we can
already tell from the dependencies, we will not need to calculate all values, but rather
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Figure A.1: Recursive function-calls

only those which are of any relevance to our desired value. As shown in figure A.3 this
will only be a sub matrix of size p× p.
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Figure A.2: Dynamic programming approach

Figure A.3: The dependencies for one particular B-spline function



Appendix B

T-spline refinement

T-spline refinement is the act of increasing the number of blending functions, while still
preserving the mapping of the surface unchanged in any way. To keep the refinement
local this is done by a particular algorithm which we will attempt to describe here.
The algorithm has some drawbacks in that it cannot insert any arbitrary T-mesh point
without meeting some requirements. Usually these are the existence of nearby knot
points. If these are not present, then they must first be created before the new function
can be poperly inserted. So from an outside perspective you would usually request to
have one or two new index knot points inserted, but you will receive a higher number,
say five or six. The precise number of new points you will get is highly dependent on
the T-mesh in question, but it is "usually" a quite small number. With the improved
algorithm by Sederberg et al. (2004) [19] the number of additional index knot points
which was inserted was reduced significantly.

B.1 Local splitting

T-spline refinement relies on the fact that B-splines can exactly be split into multiple
functions. For the sake of simplicity, let us restrict ourselves to cubic splines. With p = 3,
the local knot vectors will consist of five elements. Inserting a new knot ξ∗ into the local
knot vector Ξk = [ξ1, ξ2, ξ3, ξ4, ξ5] will split this into two blending functions. Depending
on where the new point will need to be inserted these functions be one of the following

Nk([ξ1, ξ2, ξ3, ξ4, ξ5]) = cN1
k ([ξ1, ξ

∗, ξ2, ξ3, ξ4]) + dN2
k ([ξ∗, ξ2, ξ3, ξ4, ξ5])

Nk([ξ1, ξ2, ξ3, ξ4, ξ5]) = cN1
k ([ξ1, ξ2, ξ

∗, ξ3, ξ4]) + dN2
k ([ξ2, ξ

∗, ξ3, ξ4, ξ5])
Nk([ξ1, ξ2, ξ3, ξ4, ξ5]) = cN1

k ([ξ1, ξ2, ξ3, ξ
∗, ξ4]) + dN2

k ([ξ2, ξ3, ξ
∗, ξ4, ξ5]) (B.1)

Nk([ξ1, ξ2, ξ3, ξ4, ξ5]) = cN1
k ([ξ1, ξ2, ξ3, ξ4, ξ

∗]) + dN2
k ([ξ2, ξ3, ξ4, ξ

∗, ξ5])
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with

c =

{
1 if ξ∗ < ξ2
ξ5−ξ∗
ξ5−ξ2 otherwise

d =

{
1 if ξ∗ > ξ4
ξ∗−ξ1
ξ4−ξ1 otherwise

For notational ease, we shall define the parent knot vector to be the vector composed
of the nondecreasing set (of size six) Ξ̃k = Ξk ∪ ξ∗. The blending function Ξk will then
be split into two functions, one which is composed of the first five elements Ξ̃1

k, and one
of the five latter Ξ̃2

k.
This is a known equality, and is also the basics for regular B-spline refinement. It is the

only mathematical identity required to perform the following refinements. By continued
use of this at chosen points, we are going to do the entire refining process. When it
comes to blending functions defined over two variables (ξ, η), the function splitting will
split one of the parametric functions, and keep the other unchanged. If we were to insert
a knot ξ∗ into the function R(Ξk,Hk) then this would be

R(Ξk,Hk) = N(Ξk)N(Hk)

=
(
cN1

k (Ξ̃1
k) + dN2

k (Ξ̃2
k)
)
N(Hk)

= cR1
k(Ξ̃1

k,Hk) + dR2
k(Ξ̃2

k,Hk).

Inserting one control point in a two-dimensional function R(ξ, η) can thus be done by
splitting the one-dimensional problem and keeping the other parametric knot vector
unchanged. We could then proceed by splitting the two new functions R1

k and R2
k by

inserting more knots in either the ξ- or η direction.
As an example of how the splitting equations can be used, we will take a look at

figure B.1 where we will split the blending function located at P1 into four blending
functions centered at P2, P3 and P4. This is done by continued use of the splitting
functions (B.1).
When we say "split" the functions, it is to be understood that the coefficients c and
d in (B.1) are to be multiplied with the corresponding control points to each blending
function. After all, it is the physical surface C, given by the blending functions multiplied
by the control points which we will wish to preserve intact. So to get back to the example
at hand, we will have 4 control points Bi corresponding to the four blending functions.
Since P2, P3 and P4 does not exist prior to the splitting, we will have that the local knot
vector to R1 is Ξ1 = [ξ1, ξ2, ξ3, ξ5, ξ6] and H = [η1, η2, η4, η5, η6]. This can then be split
into R1 and R2 by

R1[ξ1, ξ2, ξ3, ξ5, ξ6][η1, η2, η3, η5, η6] = cR1[ξ1, ξ2, ξ3, ξ4, ξ5][η1, η2, η3, η5, η6]
+dR2[ξ2, ξ3, ξ4, ξ5, ξ6][η1, η2, η3, η5, η6](B.2)
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Figure B.1: An example splitting of P1 into P2, P3 and P4

We now see that we have another local knot vector Ξ1 for the blending function centered
at R1. We will split this new function by

R1[ξ1, ξ2, ξ3, ξ4, ξ5][η1, η2, η3, η5, η6] = cR3[ξ1, ξ2, ξ3, ξ4, ξ5][η1, η2, η3, η4, η5]
+dR1[ξ1, ξ2, ξ3, ξ4, ξ5][η2, η3, η4, η5, η6](B.3)

Lastly we will split the function R2 into the two functions centered at R2 and R4 by

R2[ξ2, ξ3, ξ4, ξ5, ξ6][η1, η2, η3, η5, η6] = cR4[ξ2, ξ3, ξ4, ξ5, ξ6][η1, η2, η3, η4, η5]
+dR2[ξ2, ξ3, ξ4, ξ5, ξ6][η2, η3, η4, η5, η6](B.4)

If we now combine (B.2)-(B.4) we can write this as

R∗1[ξ1, ξ2, ξ3, ξ5, ξ6][η1, η2, η3, η5, η6] = c1P1 + c2P2 + c3P3 + c4P4 (B.5)

where R∗1 is the original blending function, ci can be given explicitly and the blending
functions Ri on the right hand side are all dependent on the correct local knot vectors
at the end of the splitting. If we were to implement this splitting, we would only need
to update the control points associated with each blending function. That is

B1 = c1B
∗
1

B2 = c2B
∗
1

B3 = c3B
∗
1

B4 = c4B
∗
1.
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B.2 The violation

One of the most crucial things to understand about the T-spline refining algorithm is
that it can violate many rules set by T-splines during the refining process. Through
out the algorithm execution the T-spline may violate several things and take on strange
forms. At the entry of the algorithm it should be a valid T-spline, and the goal of the
algorithm is to make it a valid T-spline at the end of it as well. Before any insertions
of any knot index points, we store every local knot vector corresponding to each point.
These local knot vectors will be manipulated throughout the algorithm. The violations
which may take place are the following

Violation 1 A blending function is dependent on a nonexistent knot.

Violation 2 A blending function has dependencies which stretch farther than dictated
by algorithm 1.

Violation 3 There exist multiple knot index points at the same location

As already referred to, the knot vector extraction given in algorithm 1 plays a central
part in the refining algorithm. The algorithm will start by inserting the requested points.
These will interfere with the previous results for the local knot vector extraction, and
several violations will have been introduced. We will resolve these violations, one at a
time until every local knot vector is corresponding to the local knot vector as dictated
by the local knot vector extraction algorithm.

What we will do is classify each violation, and then resolve it by the appropriate steps.
Firstly we will extract the local knot vectors as dictated by the rules of the T-mesh, i.e.
by algorithm 1. These are dubbed Ξ̂

Violation 2 happens when we are inserting a point or a line which is passing through
the middle of another blending functions support. This will have the old index knot point
detecting a local knot vector which is dependent on points closer to the point itself. The
violation is resolved by splitting the violating blending function into two functions with
different support by (B.1).

In the case of violation 1 this cannot be resolved by any splitting of existing functions.
It is typically happening when a function is dragging along its second nonsplitted local
knot vector to the new point. In this case we have no option other than to insert a brand
new index knot point at the appropriate location and create this with dummy values
(0, 0, 0).

The solutions to both of the above violations will create new blending functions.
Violation 1 is creating a zero-initialized function, and violation 2 is creating one new
blending function and altering the old one. In both cases there are the creation of
one new function. This function can be placed anywhere, including on top of existing
functions. Since the local knot vectors can deviate from those enforced by the T-mesh
rules during the refining algorithm we have no guarantee that the blending functions from
points lying on top of each other are the same. At the point where we have eliminated
all of violation 1 and 2 however we know this. At that point we are resolving violation 3
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by merging all points which lie on top of each other into one single blending function.

B.3 Illustrated example

To illustrate some of the violations along with their solution, we will give an illustrated
example of one knot insertion. We will start with a valid T-spline and request the addition
of one more index knot point. As we will see, the algorithm will require that we actually
insert two. It is shown in figure B.3.

In (a) we are requesting the insertion of the index knot point (4,4). This is then
added with a zero control-point initializer.

In (b) we see that there are four control points which are causing violation 2. The
local knot vector of the point at (4,5) is drawn, it is Ξ(4,5) = [ξ1, ξ2, ξ4, ξ5, ξ6] and H(4,5) =
[η2, η3, η5, η6, η7] which was correct before the new knot was inserted. However now it’s
stored knot-span is too large and we will need to split it’s H-vector into two with smaller
support.

In (c) the point at (4,5) is successfully split by (B.1). This is causing the creation
of to functions H(4,5) = [η3, η4, η5, η6, η7] and H(4,4) = [η2, η3, η4, η5, η6]. They will share
the same Ξ vector. After this the exact same thing is done by splitting the point at (4,6)
into two points.

In (d) we see that we have gotten two points at (4,4) already. They are from the
two previous splittings. We now proceed to split the one centered at (4,3). What is
interesting to note is that this splitting will bring along another knot vector Ξ than the
previous too splittings did (see (c) ). The point at (4,2) is also split, totaling four new
points at (4,4).

In (e) we see the first entry of violation 1. Here the points which was split in (d)
had a Ξ-vector which dictated an entry at ξ3. However there was no points or lines to
suggest this in the mesh. It is therefore needed to insert one. We are inserting a new
index knot point at (3,4) and adding a zero control-point initializer. Following this we
see that the two points created at (c) are in violation 2. They are both split resulting in
two new points at (3,4).

In (f) there is two more cases of violation 2. Both the point at (3,2) and (3,3) will
need to be split into points centered at (3,4), totaling four new points at that location.
After this, there are no more violation 1 or 2. However there are violation 3 as there are
multiple points at both (3,4) and (4,4).

In (g) the multiple points are merged, simply by adding their control points together.
After this we are creating all the new horizontal or vertical lines which may be added.
The insertion is complete and we are left with a valid T-spline which has not altered it’s
shape in any way. We have gotten two more points and two more lines, even if we only
requested one point.
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(a) New red point requested (b) 4 points causing violation 2

(c) The two upper points are split
keeping their Ξ-vector

(d) Bottom points are split keeping
their Ξ vector

(e) The new point from is causing vi-
olation 1

(f) More violations 2

(g) Merging points and drawing lines

Figure B.2: A visual T-spline insertion example
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B.4 Numerical example

Fortunately when implementing this, there is a very simple test to see if a particular
blending function is violating violation 1 or 2. Typically you would work with two local
knot vectors. You would store the local knot vector Ξ corresponding to each index knot
point, and whenever we suspect that there might be a violation, we extract the local knot
vector Ξ̂ as dictated by the T-mesh rules. If they are equal, then we have no violation.
If they are not equal, then we proceed with finding which knot is responsible for this. If
the detected knot ξ̂i is further away from the index knot point that what the stored knot
ξi is, then this corresponds to violation 1 and we will have to insert an additional index
knot point at the needed point ξi. This test can be implemented as |ξ̂i − ξ3| > |ξi − ξ3|
assuming that we are dealing with cubic splines and the knot vector size is 5 such that
the middle point is ξ3. Remember that every local knot vector has stored its center of
origin at the middle of its knot vectors. The other case is of course violation 2, which
is that the stored knot vector is too large, and we will need to split it into smaller ones.
This happens if the detected knot vector Ξ̂ contains knots which are closer to the index
knot point than what is stored, i.e. |ξ̂i − ξ3| < |ξi − ξ3|. The appropriate response to
this is splitting around the newly detected ξ̂i. This means inserting ξ̂i = ξ∗ in (B.1).
The argument follows exactly for the H knot vector, and they can be treated completely
decoupled and in any order we wish.

To give an numerical example on how we may get the input consider the case that
we had a knot vector Ξ and the T-mesh rules stated that the knot vector should be Ξ̂ as
given in (B.6).

Ξ̂ = [1, 2, 5, 6, 7]
Ξ = [3, 4, 5, 8, 9] (B.6)

Note that the middle point is equal as it will always be since it is the index knot point
itself. Obviously Ξ̂ 6= Ξ so violations exist. We will proceed with finding them, classifying
them and resolving them. Starting from an arbitrary position, we note that ξ̂2 = 2 is
farther away from the point itself ξ3 = 5 than it’s stored equivalent ξ2 = 4. This is thus
violation 1, and we will need to insert a new point. The new point is the one detected
which is 4. After inserting this, then we are obviously guaranteed to detect this in the
next detection step. The new case will then be

Ξ̂ = [2, 4, 5, 6, 7]
Ξ = [3, 4, 5, 8, 9]

This blending function is still in violation, and we are now resolving the case ξ5 6= ξ̂5.
Since the detected 7 is closer to the point itself than the stored 9, we will need to split
this function. We will split it around the detected 7. According to (B.1) with ξ∗ = 7 this
results in two blending functions: Ξ1 = [3, 4, 5, 7, 8] and Ξ2 = [4, 5, 7, 8, 9]. Of these, only
Ξ1 is centered at the same point as we initially started, so this is the only one which we
will be fixing. The other blending function is probably in violation as well, but will be
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handled at a later point in the algorithm. The new knot vectors are

Ξ̂ = [2, 4, 5, 6, 7]
Ξ = [3, 4, 5, 7, 8]

We will now proceed with fixing the first knot. 2 is further from the center than 3, so this
is violation 1, which is handled by inserting the point 3. This will then be subsequently
be detected in the next sweep.

Ξ̂ = [3, 4, 5, 6, 7]
Ξ = [3, 4, 5, 7, 8]

Where only one knot remains different, which is the knot ξ̂4 = 6. This is closer than 7,
which is a violation 2 and we split the existing knot into two by inserting 6. This results
once again in two knot vectors Ξ1 = [3, 4, 5, 6, 7] and Ξ2 = [4, 5, 6, 7, 8]. The first will we
proceed with, while the second will be handled at a later point. But now we are finished
since the detected knot is equal to the stored knot. We may now proceed with either
fixing the H-vector or some of the new points which was created by splitting existing
points.

B.5 The algorithm

The algorithm is quite simple once you get used to the splitting itself. It is given in
pseudo-code in algorithm 4

Algorithm 4 T-spline knot insertion
1: insert all newly requested knot points
2: repeat
3: while there exist p such that Ξp 6= Ξ̂p do
4: if |ξ̂i − ξ3| > |ξi − ξ3| then
5: create new point at ξi with B = [0, 0, 0] {Violation 1}
6: else if |ξ̂i − ξ3| < |ξi − ξ3| then
7: Split the knot using (B.1) with ξ∗ = ξ̂i {Violation 2}
8: end if
9: end while

10: merge every duplicate index knot point
11: draw every possible horizontal or vertical nonintersecting lines
12: until no changes are made

There is just a few comments which should be said last. The lines seem to be added
at a slightly unnatural point. They do have a function, but this function is primarily
for the user to have a more intuitively understanding of the grid in question. This is of
course very important in a design setting, but it would also be interesting to explore the
possibilities of refining the T-mesh without this step. Of course they have the function
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that they are restricting the support of other blending functions, which is a desired
property it may not be advantageous to skip them altogether. This is some of the reason
for the outer repeat-until loop. The addition of the lines may interfere with some of
the existing blending functions, causing them in a state of violation 2. It is therefore
necessary to repeat this process until we are sure that all points have knot vectors dictated
by the T-mesh rules as well no more lines have been inserted.
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