
Received February 10, 2018, accepted March 25, 2018, date of publication April 23, 2018, date of current version May 24, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2823381

Blind Source Separation Using Temporal
Correlation, Non-Gaussianity and
Conditional Heteroscedasticity
SEYYED HAMED FOULADI 1, ILANGKO BALASINGHAM1,2, (Senior Member, IEEE),
KIMMO KANSANEN1, AND TOR AUDUN RAMSTAD1
1Department of Electronics and Telecommunications, Norwegian University of Science and Technology, 7491 Trondheim, Norway
2Intervention Center, Oslo University Hospital, N-0027 Oslo, Norway

Corresponding author: Seyyed Hamed Fouladi (hamed.fouladi@ntnu.no)

This work was supported by the Research Council of Norway project the Medical Sensing, Localization, and Communication using Ultra
Wideband Technology (Phase II) under Grant 225885.

ABSTRACT Independent component analysis separates latent sources from a linear mixture by assuming
sources are statistically independent. In real world applications, hidden sources are usually non-Gaussian
and have dependence among samples. In such case, both attributes should be considered jointly to obtain a
successful separation. To capture sample dependence, a latent source is sometimes modeled by autoregres-
sive or moving average models with an independent and identically distributed error or residual. However,
these models are limited by assuming only linear dependence among a source’s samples. This paper
proposes a new blind source separation algorithm based on an autoregressive-autoregressive conditional
heteroscedasticity (AR-ARCH) model, which captures linear correlations, non-Gaussianity, and squared
residuals’ dependence. The AR part of the AR-ARCH model captures the correlation among samples. The
ARCHpart of themodel captures the non-Gaussianity and nonlinear dependence among samples. TheARCH
model also assumes the time-varying conditional variances for sources. We derive the Cramér Rao lower
bound (CRLB) for the mixing matrix based on the AR-ARCH model. We perform simulations on both
synthetic and real data. The results show that the proposed method outperforms the baseline algorithms
especially for a small number of samples and approaches the CRLB.

INDEX TERMS Blind source separation, independent component analysis, autoregressive conditional
heteroscedasticity, maximum likelihood, Fisher’s information matrix.

I. INTRODUCTION
Blind source separation (BSS) is a method applicable in
various areas such as biomedical signal processing, image
processing, speech, radar, and sonar signal processing [1]. In
many situations of practical interest, observations are instan-
taneous linear mixtures of hidden source signals that the
observations are written as

x(n) = As(n), 1 ≤ n ≤ N (1)

where A is a full rank unknown L × L mixing matrix, x(n) =
[x1(n) x2(n) ... xL(n)]T is the L-dimensional observation vec-
tor at time n, and s(n) = [s1(n) s2(n) ... sL(n)]T is the source
vector at time n. BSS models aim at estimating the mixing
matrix A and the source vector s(n) using the observation
vector x(n).

Independent component analysis (ICA) is a statistical
approach to extract source vectors as independently as

possible from an observed multidimensional random vec-
tor. Many ICA algorithms use sample dependency and
the property that samples are not Gaussian distributed
(non-Gaussianity) to separate the sources [1]. FastICA [2],
JADE [3] and ICA based on entropy bound minimization
(EBM) [4] exploit the non-Gaussian property without con-
sidering sample dependence within each source.

Some algorithms use sample dependence to separate
sources. Examples are Autoregressive (AR) models [5]–[7]
and moving-average (MA) models [8]. In [9]–[11], a Markov
model takes into account linear sample dependence.
However, sources with equal spectra shape cannot be sep-
arated based on algorithms exploiting linear source sample
dependence only. In [12]–[14], mutual information rate is
exploited for minimizing entropy rate (ERBM) in order
to build a framework for derivation of algorithms that
consider sample dependence and non-Gaussianity jointly.
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Considering both temporal structure and non-Gaussianity
improves source separation performance [12].

Another statistical property that can be used for source sep-
aration is nonstationarity of the variance [5], [7], [15], [16].
In these methods, the local variance of each independent
source is assumed to change smoothly as a function of time.
In [7] and [16], the local variance is obtained by the aver-
age of squared samples of the whitened signal over a time
interval. This model in [7] is called the Unifying model.
If we assume a specific filter for all signals as the Unify-
ing model irrespective of different properties, the mismatch
between the model and the signal gives poor estimation of
local variance, which results in degradation in separation
performance. Moreover, there are processes called autore-
gressive conditional heteroscedasticity (ARCH) whose con-
ditional variances are time-varying while their unconditional
variances are constant in time. In this situation, if the length
of the filter estimating the local variance is large, the varia-
tion of conditional variance over time may not be captured.
To overcome these deficiencies, we suggest a more general
model, AR-ARCH, which captures time-varying conditional
variances of sources and autocorrelations of squared residuals
along with non-Gaussianity and linear correlation in sources’
samples.

The conditional variance of a signal can be estimated using
ARCHmodels, proposed by Engle in [17]. The ARCHmodel
estimates conditional variance from past immediate informa-
tion. This model was introduced for modeling heavy tailed
financial time series. In addition to financial applications,
considering conditional variance as a non-constant process
has been found realistic in signal processing applications
such as speech processing [18]–[21], radar [22]–[24], image
processing [25]–[28], and denoising [29].

Parameter estimation is one of the steps in model based
methods. The most popular approach for estimating the
parameters of the ARCHmodel is quasi maximum likelihood
estimation (QMLE) which needs numerical maximization
because it does not admit a closed form expression [30].
Bose and Mukherjee proposed in [31] a two stage least
squares (TSLS) method for estimating the parameters of the
ARCH model by solving linear equations. This method has
a better or at least the same performance as QMLE [31].
Furthermore, this method has very low computational cost
compared to QMLE. Also, it has been demonstrated that
the estimator performs better than QMLE for small sam-
ple sizes in [31]. We use the TSLS method to esti-
mate the ARCH model parameters due to its benefit over
QMLE.

In this paper, we propose a BSS method which exploits
sample dependence and non-Gaussianity jointly. The pro-
posed algorithm is based on anAR-ARCHmodel. Thismeans
the linear temporal correlations of sources are modeled by
an AR model, and the conditional variance and autocor-
relation of the squared residuals are estimated by ARCH
process. The demixing matrix is estimated bymaximizing the
likelihood function corresponding to the AR-ARCH model.

We analytically demonstrate why the conditional het-
eroscedasticity assumption for sources is realistic, and show
that using the same predefined filter for estimating the condi-
tional variance of all signals is not an accurate assumption.
We show analytically that the estimated parameters of the
ARCH model give us the capability of capturing the autocor-
relation of squared residuals. In addition, we derive a CRLB
for the AR-ARCH model.

The paper is organized as follows. In Section II, the
AR-ARCH model is presented. Also, reasons for using this
model, the conditional heteroscedasticity assumption, and
considerations for applying different filters for estimating
conditional variances are presented. The proposed separa-
tion algorithm based on the AR-ARCH model is explained
in Section III. We discuss the separability condition in
Section IV. The Cramér Rao lower bound (CRLB) for the
demixing matrix is derived in Section V. Finally, simulations
are performed on both synthetic and real data. The perfor-
mance of the proposed algorithm is compared with existing
algorithms along with CRLB in Section VI in order to eval-
uate the effectiveness of the proposed approach. Conclusions
are given in Section VII.

II. THE AR-ARCH MODEL AND ITS BENEFITS
OVER CONVENTIONAL MODELS
In this section, the benefits of the AR-ARCH model over
conventional models are presented. The AR part of the
AR-ARCH model captures the signal spectrum. The residual
of AR-ARCH process, i.e. the ARCH part, is a white process
but the squared ARCH process is a colored process. Since
the squared residual of AR-ARCH is not white, we derive the
autocorrelation of the squared residual of the ARCH process
to show the capability of the model to capture the spectrum
of the sources’ squared residuals.

A. BACKGROUND ON AR-ARCH
The AR-ARCH process is introduced to capture linear depen-
dence among the sources’ samples and time varying condi-
tional variance by AR and ARCH models respectively [17].
The AR model is defined as [32]

si(n) =
P∑
k=1

ai,ksi(n− k)+ εi(n),

εi(n) = σi(n)ζi(n), ζi(n) ∼ fi(ζi). (2)

Here the signal component i at time n, si(n), is recur-
sively generated from its past P samples weighted by the
coefficients ai,k , k = 1, 2, . . . ,P plus an additive and inde-
pendent process, εi(n). The AR coefficients ai,k are con-
stant in time. εi(n) is a product of σi(n), the conditional
standard deviation, and ζi(n), an independent and identi-
cally distributed (i.i.d) unit variance, zero-mean process with
probability density function (PDF) fi(ζi). As indicated,
the conditional variance σ 2

i (n) can also be time dependent and
modeled by the ARCH model. A Q’th order ARCH process
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is written

σ 2
i (n) = βi,0 +

Q∑
k=1

βi,kε
2
i (n− k),

β i =
[
βi,0, βi,1, . . . , βi,Q

]T
. (3)

The coefficient vector β i consists of positive components
only. If Q > 0 and β i 6= 0, the process si(n) and εi(n) are
called AR-ARCH process and ARCH process respectively.
As it can be seen in (2), si(n) is the filtered version of εi(n).
If Q is equal to zero, then, εi(n) is an i.i.d process, i.e.,

E{εi(n)εi(m)} = 0, n 6= m,

and si(n) in (2) is an ordinary AR process.
Let us denote past immediate information as 9 i(n) =
{si(0), . . . , si(n), εi(0), . . . , εi(n)}. Using (2), the conditional
mean of si(n) is written as

µi(n) = E{si(n)|9 i(n− 1)} =
∑P

k=1 ai,ksi(n− k).

Since σ 2
i (n) in (3) andµi(n) at time n depend on the past infor-

mation9 i(n− 1), they are deterministic if9 i(n− 1) is avail-
able. The process ζi(n) in (2) is equal to (si(n)− µi(n)) /σi(n)
when σi(n) is nonzero. Therefore, the conditional PDF
of si(n) is

p(si(n)|9i(n � 1)) =
1

σi(n)
fi

(
si(n)−

∑P
k=1 ai,ksi(n− k)
σi(n)

)
.

(4)

The joint PDF of si(n) for 1 ≤ n ≤ N is

p(si(N ), si(N − 1), · · · , si(0)) =
N∏
n=1

p(si(n)|9i(n � 1)).

(5)

In Section III, we will use the conditional probability
density function in (4) to form the likelihood function for
estimating the demixing matrix. In the Section II-B, we show
why the conditional variance in (3) is not well estimated by
the Unifying model.

B. AUTOCORRELATION OF SQUARED ARCH PROCESS
(ARCH AS A NONLINEAR MODEL)
In this section, we explain why εi(n) in (2) should be modeled
by the ARCH model. We demonstrate analytically that the
autocorrelation of the squared residual can be captured by the
ARCH model.

An ARCH process is uncorrelated. However, the ARCH
process εi(n) is not i.i.d and the essential characteristic of the
ARCH model is that the covariance between ε2(n) and ε2(m)
is not zero when n 6= m, i.e., Cov(ε2(n), ε2(m)) 6= 0.
In Appendix A, we derive the autocorrelation of the resid-

ual ε2i (n) in (2). If we assume that ε2i (n) is a wide sense sta-
tionary (WSS) process, the autocorrelation can be written as

rε2i (m) = βi,0E{ε
2
i (n)} +

Q∑
k=1

βi,krε2i (m− k) for m ≥ 0,

(6)

where

E{ε2i (n)} =
βi,0

1− βi,1 − · · · − βi,Q
,

and rε2i (m) is the autocorrelation function of ε
2
i (m). Let a filter

hi(k) be denoted by hi(k) = δ(k)− βi,1δ(k − 1)− βi,2δ(k −
2)− · · ·−βi,Qδ(k −Q) and Hi(z) is the Z transform of hi(n).
Since rε2i (m) is two-sided, its Z -transform is

Rε2i (z) = βi,0E{ε
2
i (n)}

(
1

Hi(z−1)
+

1
Hi(z)

− 1
)
. (7)

The filter Hi(z) in (7) has Q zeros which result in 2Q poles
of Rε2i (z). Therefore, it gives the capability to model the
spectrum of the squared residual.

FIGURE 1. Spectrum of the squared residual of a speech signal with the
duration 0.3 second and the sampling rate fs D 8 kHz.

An example is provided to clarify why conventional AR
model and local variance estimation may not be able to model
natural signals. In order to demonstrate that the residual is
not independent in time, a speech signal with the duration
0.3 second and sampling rate fs = 8 kHz is modeled by an
AR(10) process. Fig. 1 shows the spectrum of the squared
residual of the speech signal, the fitted ARCH process, and
the Unifying model in [7] which estimates local variance.
As it can be seen from Fig. 1, the spectrum of the squared
residual is not constant over frequencies, which illustrates
that conventional AR model is not suitable for capturing the
spectral density of the speech signal, and also, the spectral
densities related to local variance estimation is not able to
model the autocorrelation of the squared residual. The ARCH
process with parameters estimated from the data is a closer fit
to the data than the Unifying model.

III. BLIND SOURCE SEPARATION METHOD
BASED ON THE AR-ARCH MODEL
A BSS approach based on the AR-ARCH model is pre-
sented in this section. The proposed iterative algorithm esti-
mates sources’ parameters and unmixing matrix. First, source
parameter estimation is presented. Second, the maximum
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likelihood (ML) estimate of the unmixingmatrix based on the
AR-ARCH model is obtained. The parameters and unmixing
matrix are estimated iteratively.

A. SOURCE PARAMETERS
1) AR COEFFICIENTS
In each iteration, the AR coefficients of sources are estimated
using the estimated ŝi(n)

ŝi(n) = ŵTi x(n), (8)

where ŵi is the ith column of the estimated unmixing matrix
Ŵ and ŝi(n) is the ith estimated source. The estimated
sources are used to find the AR coefficients âi(k) by solving
Yule-Walker equations [33].

2) ARCH PARAMETERS
The ARCH parameters can be obtained by ML estimator.
However, it was shown that TSLS algorithm outperformsML
estimator [31]. We thus exploit the TSLS ARCH parameter
estimation in [31] for the proposed algorithm.

Each source residual is estimated in all iterations. The
estimated residual, ε̂i(n), is obtained using ŝi(n), âi(k) and (2),

εi(n) = si(n)−
P∑
k=1

ai,ksi(n− k)

= wTi x(n)−
P∑
k=1

ai,kwTi x(n− k). (9)

Now let random processes zi, Zi, and νi(n) be defined as
zi(n) = ε2i (n) and

Zi(n) = [1, ε2i (n− 1), . . . , ε2i (n− q)]
T

= [1, zi(n− 1), . . . , zi(n− q)]T ,

νi(n) = ζ 2i (n)− 1. (10)

Since ζi(n) is a zero-mean and i.i.d process with unit variance,
the auxiliary process νi(n) is zero-mean and uncorrelated.
Then, one can write using (2), (3) and (10),

σ 2
i (n) = ZTi (n)β i
zi(n) = ZTi (n)β i + σ

2
i (n)νi(n). (11)

If the dependence between σ 2
i (n) andZ

T
i (n) is ignored, (11)

will be a linear regressionmodel with zero-mean error. There-
fore, one can solve the equation by ignoring the randomness
of σ 2

i (n). A preliminary ordinary least-square estimator of
regression parameters in (11) can be written

β̂
pr
i =

(
ZTi Zi

)−1
ZTi Y i, (12)

where Zi is N × (1 + q) matrix with the nth row equal to
ZTi (n) and N is the number of samples (1 < n < N ). Y i is the
vector with nth entry zi(n). The conditional variance obtained
by β̂

pr
i is

σ̃ 2
i (n) = ZTi (n)β

pr
i . (13)

A linear equation is approximated by dividing (11) with
σ̃ 2
i (n),

zi(n)

σ̃ 2
i (n)
≈
ZTi (n)

σ̃ 2
i (n)

β i + νi(n). (14)

The final estimate by the least squares method is

β̂ i =

[
N∑
n=1

(
Zi(n)ZTi (n)

σ̃ 4
i (n)β̂

pr
i

)]−1 [ N∑
n=1

(
Zi(n)ε2i (n)

σ̃ 4
i (n)β̂

pr
i

)]
. (15)

Here, β̂ i is the ARCH parameter vector for the i’th source.

B. UNMIXING MATRIX
In this subsection, we develop the algorithm to estimate the
unmixing matrix W based on AR-ARCH model to consider
the time-varying conditional variance in (3). The source vec-
tor is given by

s(n) = Wx(n). (16)

Each source si(n) is modeled by an AR-ARCH model.
As a result, the vector x(n) is described as a multivariate
AR-ARCH model. We assume thatW is orthogonal in order
to avoid that W becomes zero or infinity, and the observed
data is whitened. It should be noted that the prewhitening step
degrades the performance of the BSS, if the linear mixtures
of the sources are contaminated with noise [34]. From (4),
the log likelihood ofW is

L(W ) =
N∑
n=1

L∑
i=1

log (p (si(n)|9i(n− 1)))

=

N∑
n=1

L∑
i=1

Fi

(
wTi x(n)−

∑P
k=1 ai,kw

T
i x(n− k)

σi(n)

)
− log(σi(n)), (17)

where the function Fi is the logarithm of the probability
density function of ζi. The gradient of (17) is given by

∇wiL(W )

=

N∑
n=1

(
x(n)−

∑P
k=1 ai,kx(n− k)
σi(n)

)

×F ′i

(
wTi x(n)−

∑P
k=1 ai,kw

T
i x(n− k)

σi(n)

)

−
∇wiσi(n)
σi(n)

(
1+

(
wTi x(n)−

∑P
k=1 ai,kw

T
i x(n− k)

σi(n)

)

×F ′i

(
wTi x(n)−

∑P
k=1 ai,kw

T
i x(n− k)

σi(n)

))
, (18)

where F ′i is the derivative of Fi. When the unmixing matrix
W is updated, the estimated source parameters ai,k and βi are
fixed in each step of the iteration. Using (11), the conditional
standard deviation σi(n) is given by

σi(n) =
√
ZTi (n)β i. (19)
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In [7], it was shown that the second term in (18) is negligible
in terms of the first term. Therefore, (18) can be approxi-
mated by

∇wiL(W ) ≈
N∑
n=1

(
x(n)−

∑P
k=1 ai,kx(n− k)
σi(n)

)

×F ′i

(
wTi x(n)−

∑P
k=1 ai,kw

T
i x(n− k)

σi(n)

)
. (20)

The function F ′i can be derived from the distribution of ζi(n).
However, when ζi(n) is super-Gaussian, implying a sharper
peak and heavier tail than the corresponding Gaussian proba-
bility density function, it is suitable to choose the Generalized
Gaussian distribution (GGD)

fi(ζi(n); γi, λi) =
γi

2λi0( 1γi )
exp

(
−|ζi(n)|γi

)
, (21)

where γi > 0 and λi are shape and scale parameters, and 0(.)
defines the gamma function. The function, F ′(ζi), would be

F ′i (ζi(n); γi) = −(γi)sgn(ζi(n))|ζi(n)|
(γi−1). (22)

We estimate the shape parameter γi using the method
in [35]. The logarithm likelihood function can be solving by
updating rule

γi← γi −
G(γi)
G′(γi)

, (23)

where,

G(γi) = 1+
ψ( 1

γi
)

γi
−

∑N
n=1 |ζi(n)|

γi log |ζi(n)|∑N
n=1 |ζi(n)|γi

+
log( γiN

∑N
n=1 |ζi(n)|

γi )

γi
, (24)

and,

G′(γi)

= −

ψ( 1
γi
)

γ 2
i

−

ψ ′( 1
γi
)

γ 3
i

+
1

γ 2
i

−

∑N
n=1 |ζi(n)|

γi (log |ζi(n)|)2∑N
n=1 |ζi(n)|γi

+

(∑N
n=1 |ζi(n)|

γi log |ζi(n)|
)2

(∑N
n=1 |ζi(n)|γi

)2 +

∑N
n=1 |ζi(n)|

γi log |ζi(n)|

γi
∑N

n=1 |ζi(n)|γi

−

log
(
γi
N

∑N
i=1 |ζi(n)|

γi
)

γ 2
i

, (25)

where ψ(.) and ψ ′(.) denote the digamma and the trigamma
functions respectively.

Here, we simply define a stopping criterion

‖∇W‖2 < δ, (26)

where δ is a positive threshold.
Algorithm 1 lists the steps of the proposed algorithm.
The computation of steps 3b and 3c dominates the com-

plexity of the algorithm. O(L2N ) and O
(
((Q+ 1)2 + L2)N

)

Algorithm 1 The Steps of the Proposed Algorithm.
Require: x(n), δ, itmax , µ
Initialization: Ŵ ← normal distribution, γi = 1, it = 0
Whitening data: x(n)← whitened x(n)

while ‖∇W‖2 < δ or it < itmax do
it ← it + 1
ŝi(n)← ŵTi x(n)

AR coef�cient estimation:
ri(j) ←

1
N

∑N
n=1 ŝi(n)ŝi(n− j), 1 ≤ j ≤ P

Ri(j,k) ←
1
N

∑N
n=1 ŝi(n)ŝi(n− |j− k|), 1 ≤ j, k ≤ P

âi← R−1i ri
Residual estimation:

ε̂i(n)← ŝi(n)−
∑P

k=1 âi(k) ŝi(n− k)
ARCH coef�cient estimation :

Y i← [ε̂2i (1), ε̂
2
i (2), · · · , ε̂

2
i (N )]T

Zi(n)← [1, ε̂2i (n− 1), . . . , ε̂2i (n− q)]
T

The nth row of Zi← ZTi (n)
β̂
pr
i ←

(
ZTi Zi

)−1
ZTi Y i

σ̃ 2
i (n)← ZTi (n)β

pr
i

β̂ i←

[∑N
n=1

(
Zi(n)ZTi (n)

σ̃ 4i (n)β̂
pr
i

)]−1 [∑N
n=1

(
Zi(n)ε2i (n)

σ̃ 4i (n)β̂
pr
i

)]
σ̂ 2
i (n)← ZTi (n)β̂ i
ζ̂i(n)←

ε̂i(n)
σ̂i(n)

γi← γi −
g(γi)
g′(γi)

Demixing matrix estimation:

∇Ŵ ←
∑N

n=1

(
x(n)−

∑P
k=1 âi(k)x(n−k)
σi(n)

)
× F ′i

(
ζ̂i(n)

)
Ŵ ← Ŵ + µ∇Ŵ

Orthogonalization:

Ŵ ←
(
ŴŴ

T)− 1
2
Ŵ

end while

multiplications are required for 3b and 3c, respectively.
Therefore, the complexity of the algorithm for one iteration
is O(

(
((Q+ 1)2 + L2)N

)
if L,Q� N .

IV. SEPARABILITY OF ARCH PROCESSES
In this section, we discuss the condition under which the
model of (1) is separable when sources are ARCH processes.
Each of the properties, sample dependence, non-Gaussianity,
and time-varying conditional variance, can be used to sepa-
rate sources if the respective assumption is met. If sources
i and j have similar spectral shapes, then this implies non-
identifiability of the sources [1, Ch. 7.3]. Therefore, if two
processes have the same ai,k , i = 1, · · · ,P, then the lin-
ear combination will have the same regression coefficients.
Therefore, the sources will not be separable using the regres-
sion coefficients as a result.

If there is at most one εi(n), Gaussian for i ∈ {1, · · · ,L},
sources will be separable [36]. The following theorem
describes the condition which should be satisfied for ARCH
processes to be separable where ζi(n)s in (3) are Gaussian
processes.
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Theorem 1: If sources are ARCH processes with Gaussian
distributed innovation processes ζi(n) in (2) and the fourth
order moment of εi(n) exists, the model of (1) is separable if
the mixing matrix A is full rank and at most one source has
parameters vector β i = [β0i 01×Q]T .

Proof: See Appecdix VII. �
Theorem 1 shows that sources are separable if the parameters
βi,k for 1 ≤ k ≤ Q are nonzero even if the innovation
process ζi(n) in (2) is a Gaussian process. We assumed that
the fourth order moment exists for the ARCH process εi(n),
i.e., the condition 3×

∑Q
k=1 (βi,k )

2 < 1 needs to be satisfied
(See Appendix B).

The condition on the fourth order moment is restrictive.
The following theorem is a result on the summation of the
two ARCH processes with the same parameter vectors with
no assumption on existence of the fourth moment for εi(n).
Theorem 2: A linear mixture of two ARCH processes

εi(n), i = 1, 2, with the same parameter vectors β i =[
βi,0, βi,1, . . . , βi,Q

]T , will not result in the same ARCH
parameters, βi,1:Q, except for the case that εi(n), i = 1, 2, are
not conditionally heteroscedastic, where ζi(n) is a Gaussian
process and β i = [βi,0 01×Q]T is the vector with the constant
parameter βi,0.

Proof: See Appecdix VII. �
In order to findW , one maymaximize the likelihood function
L,

L(W ) = −
L∑
i=1

log
(
p
(
wTi x(N ), · · · ,wTi x(1)

))
s.t. x(n) = As(n) (27)

The Log-likelihood function in (27) is minimized if the esti-
mated sources ŝi = ŵix are samples of the joint PDFs of
the primary sources si for all i ∈ {1, · · · ,L}. Theorem 2
shows that the mixture of two ARCH processes with the same
parameter vector is not a process with the same parameter
vectors or the same joint PDF as the primary sources. There-
fore, ŝi is equal to si if the condition in Theorem 2 is satisfied
and the minimum of the Log-likelihood function is achieved.

V. PERFORMANCE ANALYSIS
The CRLB forW can be obtained by the Fisher information
matrix (FIM) and can be derived as in [1, Ch. 7.3]. The
covariance error of the parameter estimator θ̂ is bounded by

E
{(
θ̂ − θ

) (
θ̂ − θ

)T}
≥ J−1. (28)

where the parameter θ corresponds to

θ = [H1,2, H2,1, · · · , HL−1,L , HL,L−1,

a1,1, · · · , ai,P, · · · , aL,1, · · · , aL,P,

β1,0, · · · , β1,Q, βL,0, · · · , βL,Q]T . (29)

where H = WA and H i,j is the element in the i’th row and
the j’th column of the matrix H . We obtain the lower band
when A = I . This lower bound can be used other invertible

matrices due to equivariance property [37]. Then, the lower
bound obtained for H can be exploited for W . The diagonal
elements of matrixH is assumed to be 1. N (N − 1) elements
of H would be considered in the vector parameters θ . The
FIM, J , is given by

J = E

{(
∂(log(f (x|θ )))

∂θ

)(
∂(log(f (x|θ )))

∂θ

)T}
. (30)

The FIM J can be formed

J =



J1 0 0 0 0 0 0 0 0

0
. . . 0 0 0 0 0 0 0

0 0 J L(L−1)
2

0 0 0 0 0 0

0 0 0 Ja1 0 0 0 0 0

0 0 0 0
. . . 0 0 0 0

0 0 0 0 0 JaN 0 0 0
0 0 0 0 0 0 Jβ1 0 0

0 0 0 0 0 0 0
. . . 0

0 0 0 0 0 0 0 0 JβN



, (31)

where J i for i ∈ {1, 2, · · · ,L(L − 1)/2} is a 2 by 2 matrix.
The matrices Jai and Jβi, are P by P and (Q+ 1) by (Q+ 1)
matrices respectively. In Appendix D, the elements of FIM
are obtained.

The lower bound for the mixing matrix elements is given
by (See Appendix D).

E{H2
i,j} ≥ κi,j(β i,β j)

κi,j(β i,β j) =
1
N

λjσ
2
εi
E
{

1
σ 2j (n)

}
λjσ 2

εi
E
{

1
σ 2j (n)

}
λiσ 2

εj
E
{

1
σ 2i (n)

}
− 1

. (32)

where σ 2
εi
=

βi,0
1−βi,1−···−βi,Q

and λi is E
{(
F ′i (ζi(n))

)2}
.

Proposition 1: If no conditional heteroscedasticity exists,
i.e., β i = β j = [1 01×q]T , the term on right hand side in

(32) equals to 1
N

λj
σ2εi
σ2εj

λjλi−1
which leads to the same result in [38]

when εi(n) is assumed an i.i.d process.
Proof: Since β i = [1 01×q]T , then, σ 2

i (n) = 1.
Therefore,

σ 2
εi
E

{
1

σ 2
i (n)

}
= σ 2

ζi
= 1 (33)

where σ 2
ζi
is the variance of ζi(n). By substituting (33) in (32),

the term κi,j(β i,β j) would be equal to 1
N

λj
σ2εi
σ2εj

λjλi−1
. �

Proposition 2: The following inequality holds for
κi,j(β i,β j) in (32)

κi,j(β i,β j) ≤
1
N

λj
σ 2εi
σ 2εj

λjλi − 1
. (34)

Proof: See Appendix E. �
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The maximum of κi,j(β i,β j) is 1
N

λj
σ2εi
σ2εj

λjλi−1
that is equal to

the case with conditionally homoscedastic sources as in
Proposition 1. The result of Proposition 2 in (34) shows that
if the conditional heteroscedasticity exists in sources, a better
performance can be achieved compared to the case that εi(n)
is an i.i.d process.
Proposition 3: If the distribution of ζi(n) is Gaussian and

β i→ [βi,0 01×q]T , β j→ [βj,0 01×q]T , then, κi,j→∞.
Proof: When the distribution of ζi(n) is Gaussian for

all i, λi = 1 and λj = 1. In this case, the numerator
in (32) is nonzero. Therefore, it is sufficient to show that the
denominator goes to zero. We can write

lim
β i,j→

[
β0i,j
i 6=j

] σ 2
εi
E

{
1

σ 2
i (n)

}
= σ 2

ζi
. (35)

If we use the limit obtained in (35) for the denominator
in (32), it goes to zero and then κi,j→∞. �
In order to show the behavior of κi,j, we generate 107 samples
of two ARCH processes in (2) where ζi(n) and ζj(n) are
Gaussian processes with zero mean and unit variance. The
sources’ parameter vectors are β i = [1 βi,1]T and β j =
[1 βj,1]T where βi,1 and βj,1 are equal to β and increase from

0 to 0.9. In order to obtain κi,j in (32), the values forE
{

1
σ 2i (n)

}
and E

{
1

σ 2j (n)

}
are calculated numerically. In Fig. 2, the value

of κi,j is plotted. As it can be seen in Fig. 2 and Proposition 3,
as β i and β j go to β i = [1 0]T and β i = [1 0]T , the value
of κi,j goes to infinity, which means that the sources are not
separable.

FIGURE 2. κi,j behavior in terms of β.

VI. EXPERIMENTAL RESULTS
We study the performance of different algorithms including
AR-ARCH, the Unifying model [7], ERBM, SOBI [6], FAS-
TICA and JADE. FASTICA and JADE separate the sources
to be as non-Gaussian as possible while SOBI considers

sample dependence. The ERBM approach takes into account
both non-Gaussianity and sample dependence, and the Unify-
ing model also assumes local variances of sources smoothly
change over time. For the Unifying model it is assumed that
the distribution of ζi(n) is Laplacian as in [7]. We consider
AR(3)-ARCH(8) model for our approach in experimental
results. The normalized interference to source ratio (ISR)
is used to compare the approaches. Simulated and natural
data are used to study the performance. For simulated data,
the performance is compared with the CRLB to demonstrate
that the assumed model is efficient when the data follows the
model which captures linear and non-linear dependence of
samples and non-Gaussianity. We note that the CRLB values
plotted are actually the induced Cramér-Rao lower bound
(iCRLB) [39] because it is a bound on H rather than W .
In the experiments,

ISR =
1

L(L − 1)

L∑
i,j=1
i 6=j

E{H2
i,j}. (36)

The term E{H2
i,j} is calculated using averaging over all trials

for each algorithms.
The experiments have been carried out using theMATLAB

software on an Intel Core i7 CPU 2.7 GHz processor and
16 GB RAM.

A. EXPERIMENT 1 (SOURCES GENERATED
BY THE ASSUMED MODEL)
We study the performance of different algorithms as a func-
tion of of number of samples compared with the correspond-
ing CRLB. In order to show that the proposed algorithm is
efficient when the data follows the assumed model, three
sources are generated based on AR(1)-ARCH(5) with Lapla-
cian distributed ζi(n) by using (2) and (3). The AR coeffi-
cients of the sources are selected as a1,1 = 0.9, a2,1 = 0.5
and a3,1 = 0. By the chosen AR coefficients, different linear
correlations in time are obtained for sources. The ARCH
parameters are chosen as β1 = [1 0 0 0 0.4 0.5], β2 =
[1 0.5 0.4 0 0 0 0] and β3 = [1 0 0 0.5 0.4 0 0] to describe
the conditional variances of the sources with different lags
of squared residual. For each source, the summation of the
ARCH parameters is 0.9 whichmakes the sources heterosces-
dastic and the summation is less than 1 which generates wide
sense stationary sources. By the chosen ARCH parameters,
the conditional variances of sources depend on different time
lags of the squared residual. The number of samples is in the
range from 100 to 10000. The unconditional variances of the
sources are set to be 1. The sources are mixed by a randomly
generated mixing matrix with entries drawn i.i.d from the
normal distribution. ISR is calculated for each source and is
averaged over 100 runs.

Fig. 3 shows the performance of the algorithms along with
iCRLB. We observe that AR-ARCH converges close to the
iCRLB as the number of samples increases. ERBM is flexible
on modeling non-Gaussianity in sources, therefore, a better
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FIGURE 3. ISR as function of samples size in the separation of three
heteroscedastic sources with Laplacian distributed ζi (n).

modeling is obtained by increasing the number of samples.
The Unifying model also provides a desirable result when
the number of samples becomes larger. However, since this
model cannot capture the autocorrelation of squared resid-
ual of the source well, its performance is 19% worse than
AR-ARCH model at 104 samples. The performance of
FASTICA and JADE is poor due the fact that temporal cor-
relation deteriorates the performance of ICA algorithms. The
main superiority of AR-ARCHmethod over other approaches
is its performance when a low number of samples is available.
This advantage is due to the accuracy of TSLS approach in
estimation of ARCH parameters for each source using a small
number of samples.

FIGURE 4. CPU time (in seconds) in the separation of three
heteroscedastic sources with Laplacian distributed ζi (n) in terms of
number of samples.

Fig. 4 shows the processing time of all of the algorithms.
As it can be seen from the figure, the AR-ARCH approach
has the second highest time consumption after ERBM for low
number of samples. By increasing the number of samples,
the time consumption for the AR-ARCH algorithm increases

and have the highest time consumption for the sample sizes
larger than 500. At sample size 1000 or higher, theAR-ARCH
approach has the highest processing time. Thus, the drawback
of the proposed approach is that it is not efficient for large
sample size.

B. EXPERIMENT 2 (MODEL MISMATCH)
We evaluate the algorithm under the condition when there is
a mismatch between the generated sources and the model.
We generate the sources using AR(1)-ARCH(6) where the
AR and ARCH parameters are the same as Experiment 1
except ζi(n) which is Gaussian distributed in this experi-
ment. For the proposed algorithm and the Unifying model,
we assume a Laplacian distribution for ζi(n) for all i which
provides the model mismatch. The number of samples is in
the range from 100 to 10000.

FIGURE 5. ISR as function of samples size in the separation of three
heteroscedastic sources with Gaussian distributed ζi (n).

Fig. 5 shows the ISR values as function of number of sam-
ples. As observed in Fig. 5, in general, AR-ARCH approach
has the best overall performance among all these algorithms
especially for the small sample size case. ERBM does not
perform well for a small number of samples because it cannot
capture sample dependence and non-Gaussianity with low
sample size.

C. EXPERIMENT 3 (NATURAL DATA)
WeperformBSS experiments with natural data containing six
speech sources.1 The mixing matrix is generated randomly
by normal distribution in each trial. The ISR is calculated for
each algorithm and is averaged over 100 runs. The sample
size is between 100 to 10000.

As observed in Fig. 6, ERBM,Unifyingmodel, AR-ARCH
model successfully separate sources. Since FASTICA did not
converge in many of the trials, its result has been excluded
from the figure. In general, AR-ARCH and ERBM have the

1[Online]. Available: http://ecs.utdallas.edu/loizou/speech/noizeus/
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FIGURE 6. ISR as function of samples size in the separation of artificial
mixtures of six speech sources.

best overall performance among all these algorithms. For
small sample sizes, AR-ARCHoutperforms ERBM. For large
sample size, ERBM performs better than AR-ARCH model.
Since, a long interval of speech is non-stationary in nature,
the ARCH parameters are not well estimated. Therefore,
the AR-ARCH performance is worse than ERBM for large
sample size.

VII. CONCLUSION
A blind source separation method was proposed based on
AR-ARCH modeling. The algorithm used time-varying con-
ditional variance, autocorrelation, and non-Gaussianity of
residuals for extracting sources. The conditional variance of
each source was considered as an AR process, and the ARCH
parameters were estimated to find the conditional variance.
The key part was modeling the autocorrelation of the squared
residual of the sources using ARCH, which showed how
to model the joint PDF of the sources. We used the TSLS
approach to estimate the ARCH parameters which performed
well where few samples were available. It was shown that
if the conditional heteroscedasticity existed in the sources,
they would be separable even if ζi(n)s were Gaussian. Finally,
experimental results were presented and showed that the
proposed method outperformed the conventional algorithms
especially for a low number of samples and converged to
the iCRLB as the number of samples increases. However,
the proposed algorithm was slower than other approaches.
In each iteration, the estimation of ARCH parameters was
time consuming and grew by increasing the number of sam-
ples. The proposed algorithm improved the source separation
performance at the cost of processing time.

APPENDIX A
AUTOCORRELATION OF SQUARED RESIDUAL
OF AN ARCH PROCESS
We derive the autocorrelation of residual ε2i (n). If we assume
that ε2i (n) is WSS, then, the autocorrelation of ε2i (n) can be

written using (2) and (3) as

rε2i (k) = E{ε2i (n)ε
2
i (n− k)} = E{σ 2

i (n)ζ
2
i (n)ε

2
i (n− k)}.

(37)

Due to independence of ζi(n) from the other terms in (37),

rε2i (m) = E{ζ 2i (n)}E{σ
2
i (n)ε

2
i (n− m)}

= E{σ 2
i (n)ε

2
i (n− m)}

= βi,0E{ε2i (n− k)}

+

Q∑
k=1

βi,kE{ε2i (n− k)ε
2
i (n− m)}

= βi,0E{ε2i (n)} +
Q∑
k=1

βi,krε2i (m− k)

for m ≥ 0. (38)

If we define hi(k) = δ(k)− βi,1δ(k − 1)− βi,2δ(k − 2)−
· · · − βi,Qδ(k −Q), then, the Z -transform of (38) is obtained
by (7).

The terms E{ε2i (n)} and Hi(z) are the unconditional vari-
ance of εi(n) and the Z -transform of hi(k) respectively. The
unconditional variance of εi(n) can be derived based on
(2) and (3)

E{ε2i (n)} = E{σ 2
i (n)ζ

2
i (n)} = E{σ 2

i (n)}

= βi,0 +

Q∑
k=1

βi,kE{ε2i (n− k)}.
(39)

Therefore, the unconditional variance of εi(n) equals to

σ 2
εi
= E{ε2i (n)}

=
βi,0

1− βi,1 − · · · − βi,Q
. (40)

Also, if εi(n) is the error of the AR process si(n) in (2),
the unconditional variance of si(n) is given by

σ 2
si =

P∑
k=1

ai,krsi (k)+ σ
2
εi

=

P∑
k=1

ai,krsi (k)+
βi,0

1− βi,1 − · · · − βi,Q
. (41)

According to (7), the coefficients of Hi(z) give us freedom
to model the autocorrelation of ε2i (n).

APPENDIX B
PROOF OF THEOREM 1

Proof: In this appendix, we find the condition for sepa-
rability if ζi(n)s are Gaussian. Based on [36, Th. 4], if at most
one source is Gaussian, then, the model of (1) is separable.
The kurtosis of the ARCH process εi(n), is given by

Kurt(εi(n)) =
E{ε4i (n)}

σ 4
εi

, (42)
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where the E{ε4i (n)} is given by

E{ε4i (n)} = E{σ 4
i (n)}E{ζ

4
i (n)}

= 3E{σ 4
i (n)}, (43)

and E{σ 4
i (n)} is given by

E
{
σ 4
i (n)

}
= E


βi,0 + Q∑

k=1

βi,kε
2
i (n− k)

2


= E
{
(βi,0)2 +

Q∑
k=1

(βi,k )2ε4i (n− k)

+

Q∑
k1=1

Q∑
k2=1
k1 6=k2

βi,k1βi,k2ε
2
i (n− k1)ε

2
i (n− k2)

+2βi,0

Q∑
k=1

βi,kε
2
i (n− k)

}
= (βi,0)2 +

Q∑
k=1

(βi,k )2E{ε4i (n− k)}

+

Q∑
k1=1

Q∑
k2=1
k1 6=k2

βi,k1βi,k2rε2i (k1 − k2)

+2βi,0

Q∑
k=1

βi,kσ
2
εi
. (44)

Using (43) and (44), E
{
σ 4
i (n)

}
is given by

E
{
σ 4
i (n)

}
=

(βi,0)2 + 2βi,0
∑Q

k=1 βi,kσ
2
εi

1− 3×
∑Q

k=1 (βi,k )
2

+

∑Q
k1,k2=1
k1 6=k2

βi,k1βi,k2rε2i (k1 − k2)

1− 3×
∑Q

k=1 (βi,k )
2

. (45)

The kurtosis of εi(n) using (45) and (42) is given by

Kurt(εi(n)) = 3
(
β2i,0 + 2βi,0

∑Q
k=1 βi,kσ

2
εi

σ 4
εi

(
1− 3×

∑Q
k=1 β

2
i,k

)

+

∑Q
k1,k2=1
k1 6=k2

βi,k1βi,k2rε2i (k1 − k2)

σ 4
εi

(
1− 3×

∑Q
k=1 (βi,k )

2
) )

. (46)

In order to obtain a positive value for the right hand side
of (46), the term, 1 − 3 ×

∑Q
k=1 (βi,k )

2, needs to be pos-
itive. If Kurt(εi(n)) is not equal to 3, the process εi(n) is
non-Gaussian. We prove the term in the parenthesis in the
numerator of (46) is larger than denominator of (46). We use
the fact that the minimum of rε2i (m) happens when ε

2
i (n) and

ε2i (n− m) are independent or m→+∞.

rε2i (m) ≥ lim
m→+∞

rε2i (m) = E{ε2i (n)}E{ε
2
i (n− m)} = σ

4
εi
.

(47)

If the minimum of rε2i (m) obtained in (47) is substituted for
rε2i (m) in (46) and some mathematical calculations are done,
we obtain that Kurt(εi(n)) > 3 if the following condition is
satisfied

Q∑
k=1

βi,k +

Q∑
k=1

β2i,k > 0. (48)

The condition in (48) is always satisfied unless βi,k = 0 for
all k which makes εi(n) a Gaussian process. �

APPENDIX C
PROOF OF THEOREM 2

Proof: We want to show the process resulted by sum-
mation of two independent ARCH processes with same
parameters will not have the same parameters with the two
mixed processes. Therefore, if the summations of the ARCH
processes with same parameters are observed, the sources
are separable. Assume that ε1(n) and ε2(n) are ARCH pro-
cesses as given in (2) and (3) with β = [β0 · · ·βQ]T . Let
ε3(n) = α1ε1(n) + α2ε2(n). The conditional variance of
ε3(n) conditioned on past immediate information9(n−1) =
{ε3(n− 1), ε3(n− 2), · · · , ε3(0)} is

E{ε23(n)|9(n− 1)}
= E{α21ε

2
1(n)+ α

2
2ε

2
2(n)+ 2α1α2ε1(n)ε2(n)|9(n− 1)}

= E{α21σ
2
1 (n)|9(n− 1)}E{ζ 21 (n)|9(n− 1)}

+E{α22σ
2
2 (n)|9(n− 1)}E{ζ 22 (n)|9(n− 1)}

+2α1α2E{σ1(n)σ2(n)|9(n− 1)}
×E{ζ1(n)ζ2(n)|9(n− 1)}

= E{α21σ
2
1 (n)+ α

2
2σ

2
2 (n)|9(n− 1)}, (49)

where σ 2
i (n) can be written as

σ 2
i (n) = β0 + g(n+ 1) ∗ ε2i (n− 1), i = 1, 2, (50)

where filter g(n) is defined as g(n) =
∑Q

k=1 βkδ(n − k) and
the notation ∗ is the convolution operator. Therefore, (49) can
be rewritten as

E{ε23(n)|9(n− 1)}
= (α21 + α

2
2)β0

+E{g(n+ 1) ∗
(
α21ε

2
1(n− 1)+ α22ε

2
2(n− 1)

)
|9(n− 1)}

= (α21 + α
2
2)β0

+E{g(n+ 1) ∗
(
(α1ε1(n− 1)+ α2ε2(n− 1))2

−2α1α2ε1(n− 1)ε2(n− 1)
)
|9(n− 1)}

= (α21 + α
2
2)β0 + g(n+ 1) ∗ E{ε23(n− 1)|9(n− 1)}

−2α1α2g(n+ 1) ∗ E{
(
ε1(n− 1)ε2(n− 1)

)
|9(n− 1)}

= (α21 + α
2
2)β0 + g(n+ 1) ∗ ε23(n− 1)

−2α1α2g(n+ 1) ∗ E{
(
ε1(n− 1)ε2(n− 1)

)
|9(n− 1)}.

(51)

The second term in (51), g(n+ 1) ∗ ε23(n− 1), is the same
as the term in the conditional variances, σ 2

i (n), i = 1, 2.
The term−2α1α2 g(n+1)∗E{

(
ε1(n−1)ε2(n−1)

)
|9(n− 1)}
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makes the conditional variance parameters of ε3(n) different
from the conditional variance parameters of ε1(n) and ε2(n).
When εi(n), i = 1, 2, are not conditionally heteroscedas-

tic, where ζi(n) is a Gaussian process and g(n) = 0, then, (51)
can be written as

E{ε23(n)|9(n− 1)} = (α21 + α
2
2)β0. (52)

Therefore εi(n), i = 1, 2, 3, are Gaussian processes. �

APPENDIX D
Cramér Rao Lower Bound For AR-ARCH model
A. KNOWN PARAMETERS
In this Appendix, we obtain a lower bound based on CRLB
for the parameter vector θ includingmean square errors of the
off-diagonal elements of the contamination matrix H , where
H = WA. We assume that the parameters of the sources are
known in deriving the lower bound. The covariance error of
the parameter estimator θ̂ is bounded by the inverse of FIM
in (30).

The equivariance of the lower bound is used in this proof
where the mixing matrix A equals to unit matrix I . The
lower bound is found at the point A = I can be used to
derive a lower bound for other invertible matrices due to
equivariance property [37]. The diagonal elements of matrix
H is assumed to be 1.N (N−1) elements would be considered
as parameters. Therefore, the likelihood L can be written as

L =
N∑
n=1

L∑
i=1

Fi

(
eTnH(x(n)−

∑P
k=1 ai(k)x(n− k))
σi(n)

)
+N log (|H|) , (53)

where ei is ith column of a L×L unit matrix. The derivative of
the likelihood function obtained from (18) can be written as

∂L
∂H i,j

≈

N∑
n=1

L∑
i=1

∂

∂H i,j
Fi

(
eTnH(x(n)−

∑P
k=1 ai,kx(n− k))
σi(n)

)

+N
∂

∂H i,j
log (|H|) . (54)

Equation (54) is simplified by substituting the matrix H = I
and considering ∂H

∂H i,j
= eneTm and ∂|H|

∂H i,j
= MH

i,j, whereM
H
i,j is

minor determinant matrix of H .

∂L
∂H i,j

∣∣∣
H=I
=

N∑
n=1

F ′i

(
eTi (s(n)−

∑P
k=1 ai,ks(n− k))
σi(n)

)

×eTj

(
s(n)−

∑
k aj,ks(n− k)
σi(n)

)
+ Nδi,j

=

N∑
n=1

F ′i
(
eTi ζ (n)

)
eTj
ε(n)
σi(n)

=

N∑
n=1

F ′i (ζi(n))
εj(n)
σi(n)

, (55)

where δi,j is delta function which is 0 when i 6= j. The expec-
tation of the second-order mixed derivatives of Lwith respect
to off-diagonal elements of the matrix H , E

{
∂2L

∂H i,j∂Hu,v

}
,

at the point θ0 is non-zero when i = v, j = u and i = u,
j = v.

E
{

∂2L
∂H i,j∂Hu,v

}
=

N∑
n1=1

N∑
n2=1

E
{
F ′i (ζi(n1))

εj(n1)
σi(n1)

F ′u(ζu(n2))
εv(n2)
σu(n2)

}
.

(56)

If i = u and j = v, then

E
{

∂2L
∂H i,j∂H i,j

}
=

N∑
n1=1

N∑
n2=1

E
{
F ′i (ζi(n1))

εj(n1)
σi(n1)

F ′i (ζi(n2))
εj(n2)
σi(n2)

}

=

N∑
n=1

E

{(
F ′i (ζi(n))

)2 ε2j (n)
σ 2
i (n)

}

=

N∑
n=1

E
{(
F ′i (ζi(n))

)2}E {ε2j (n)}E
{

1

σ 2
i (n)

}
, (57)

if λi = E
{(
F ′i (ζi(n))

)2}, then,
E
{

∂2L
∂H i,j∂H i,j

}
= Nλi

{
1

σ 2
i (n)

}
. (58)

If i = v and j = u, then

E
{

∂2L
∂H i,j∂H j,i

}
=

N∑
n1=1

N∑
n2=1

E
{
F ′i (ζi(n1))

εj(n1)
σi(n1)

F ′j (ζj(n2))
εi(n2)
σj(n2)

}

=

N∑
n=1

E
{
F ′i (ζi(n))ζi(n)

}
E
{
F ′j (ζj(n))ζj(n)

}
= N . (59)

Using (58) and (59), E{H2
i,j} is larger than

E{H2
i,j} ≥

1
N

λjσ
2
εi
E
{

1
σ 2j (n)

}
λjσ 2

εi
E
{

1
σ 2j (n)

}
λiσ 2

εj
E
{

1
σ 2i (n)

}
− 1

,

where σ 2
εi
can be substituted by (40).

Using the lower bound forH i,j, a lower bound forMSE can

be derived. The relation between MSE and E
{
H2
i,j

}
is given

by

MSE = E{‖ŝ(n)− s(n)‖2}

= E
{
Tr
(
(ŝ(n)− s(n))(ŝ(n)− s(n))T

)}
= E{Tr((WA− I)s(n)sT (n)(WA− I)T )}
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= E{Tr((H − I)s(n)sT (n)(H − I)T )}

= E{Tr((H − I)62(H − I)T )}

=

L∑
i,j=1
i 6=j

σ 2
i E

{
H2
i,j

}
. (60)

B. FISHER INFORMATION MATRIX FOR MIXING MATRIX
AND AR-ARCH MODEL PARAMETERS
We obtain Fisher’s Information matrix for the case which the
vector θ includes the off diagonal elements of H , the AR
parameters ai = [ai,1, · · · , ai,P] and ARCH parameters β i =
[βi,0, · · ·βi,Q]T . The aim is to find the Fisher information
matrix J at the point θ0

H = I,
ai = a′i
β i = β

′
i. (61)

The derivatives of the likelihood function in (53) with respect
to ai,k is given by

∂L
∂ai,k

=

N∑
n=1

F ′i

(
wTi x(n)−

∑P
k=1 ai,kw

T
i x(n− k)

σi(n)

)

×−
wTi x(n− k)
σi(n)

. (62)

The value of (62) at point θ0 is

∂L
∂ai,k

∣∣∣
θ=θ0
=

N∑
n=1

F ′i (ζi(n))
−si(n− k)
σi(n)

. (63)

The derivative of likelihood respect to βi,0 is

∂L
∂βi,0

=

N∑
n=1

F ′i

(
wTi x(n)−

∑P
k=1 ai,kw

T
i x(n− k)

σi(n)

)

×
−wTi x(n− k)

2σ 3
i (n)

−
1

2σ 2
i (n)

. (64)

The value of (64) at point θ0 is

∂L
∂βi,0

∣∣∣
θ=θ0
=

N∑
n=1

F ′i (ζi(n))
−εi(n)

2σ 3
i (n)
−

1

2σ 2
i (n)

. (65)

The derivative of likelihood respect to βqi is

∂L
∂β

q
i
=

N∑
n=1

F ′i

(
wTi x(n)−

∑P
k=1 ai,kw

T
i x(n− k)

σi(n)

)

×−
wTi x(n− k)
σi(n)

×
(wTi x(n− q))

2

2σ 2
i (n)

−
(wTi x(n− q))

2

2σ 2
i (n)

.

(66)

The value of (66) at point θ0 is

∂L
∂βi,q

∣∣∣
θ=θ0
=

N∑
n=1

F ′i (ζi(n))
−εi(n)

σ 2
i (n)
×
ε2i (n− q)

2σi(n)
−
ε2i (n− q)

2σ 2
i (n)

.

(67)

In order to find the matrix J , the expectation of the
terms ∂L

∂H i,j∂au,k
, ∂L

∂H i,j∂βu,0
, ∂L

∂H i,j∂βu,q
, ∂L

∂ai,k∂βj,0
, ∂L

∂ai,k∂βj,q
,

∂L
∂βi,0∂βj,q

, ∂L
∂H i,j∂Hu,v

, ∂L
∂ai,k1∂aj,k2

, ∂L
∂βi,0∂βj,0

, ∂L
∂βi,q1∂βj,q2

should

be calculated.
The expectation of (55), (63), (64) and (67) at the point θ0

is calculated

E{
∂L
∂H i,j

} =

N∑
n=1

E{F ′i (ζi(n))}E{ζj(n)} = 0, (68)

E{
∂L
∂ai,k
} =

N∑
n=1

E{F ′i (ζi(n))}E{
−εi(n− k)
σi(n)

} = 0, (69)

E{
∂L
∂βi,0
} =

N∑
n=1

E{F ′i (ζi(n))ζi(n)}E{
−1

2σ 2
i (n)
}

−E{
1

2σ 2
i (n)
} = 0, (70)

E{
∂L
∂βi,q
} =

N∑
n=1

E{F ′i (ζi(n))ζi(n)}E

{
−
ε2i (n− q)

2σ 2
i (n)

}

−E

{
ε2i (n− q)

2σ 2
i (n)

}
= 0. (71)

Due to (68), (69), (70) and (71), the second-order mixed
derivatives of L with respect to the parameters of different
sources are zero. The second-order mixed derivatives of L
with respect to the parameters of the sources and off-diagonal
elements of the matrixH are derived at the point θ0 as follow

E
{

∂2L
∂H i,j∂Hu,v

}

= E


N∑

n1=1

N∑
n2=1

F ′i (ζi(n1))ζj(n1)F
′
u(ζu(n2))ζv(n2)


=

N∑
n=1

E{F ′i (ζi(n))ζj(n)F
′
u(ζu(n))ζv(n)} (72)

The term in (72) is non-zero when i = v, j = u,

E
{

∂2L
∂H i,j∂Hu,v

}
=

N∑
n=1

E{(F ′i (ζi(n)))
2
}

= NλiE

{
1

σ 2
i (n)

}
(73)

and when and i = u, j = v,

E
{

∂2L
∂H i,j∂Hu,v

}
=

N∑
n=1

E{F ′i (ζi(n))ζi(n)}

×E{F ′j (ζj(n))ζj(n)} = N . (74)
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The term E
{

∂2L
∂H i,j∂au,k

}
is given by

E
{

∂2L
∂H i,j∂au,k

}
=

N∑
n1=1

N∑
n2=1

E{F ′i (ζi(n1))ζj(n1)

× F ′u(ζu(n2))
εu(n2 − k)
σu(n2)

} = 0. (75)

The term E
{

∂2L
∂H i,j∂βu,0

}
is given by

E
{

∂2L
∂H i,j∂βu,0

}
=

N∑
n1=1

N∑
n2=1

E{F ′i (ζi(n1))ζj(n1)

×F ′u(ζu(n))
−εu(n)
2σ 3

u (n)
−

1
2σ 2

u (n)
}

= 0. (76)

The term E
{

∂2L
∂H i,j∂βu,q

}
is given by

E
{

∂2L
∂H i,j∂βu,q

}
=

N∑
n1=1

N∑
n2=1

E{F ′i (ζi(n1))ζj(n1)

×
(
F ′u(ζu(n2))ζu(n2)

ε2u(n2 − q)
σ 2
u (n2)

−
ε2u(n2 − q)
2σ 2

u (n2)

)
} = 0. (77)

The term E
{

∂2L
∂ai,k1∂ai,k2

}
is given by

E
{

∂2L
∂ai,k1∂ai,k2

}
=

L∑
n1=1

L∑
n2=1

E
{
F ′i (ζi(n1))

εi(n1 − k1)
σi(n1)

F ′i (ζi(n2))
εi(n2 − k2)
σi(n2)

}
=

L∑
n=1

λiE
{εi(n− k1)εi(n− k2)

σ 2
i (n)

}
. (78)

The term E{ εi(n−k1)εi(n−k2)
σ 2i (n)

} can be estimated by

1
N

∑N
n=1

εi(n−k1)εi(n−k2)
σ 2i (n)

.

E

{
∂2L

∂ai,k∂β0i

}

=

N∑
n1=1

N∑
n2=1

E
{
F ′i (ζi(n1))

εi(n1 − k)
σi(n1)(

F ′i (ζi(n2))ζi(n2)×
1

σ 2
i (n2)

−
1

2σ 2
i (n2)

)}

=

N∑
n=1

E
{
F ′i (ζi(n))

εi(n− k)
σi(n)(

F ′i (ζi(n))ζi(n)×
1

σ 2
i (n)
−

1

2σ 2
i (n)

)}
= 0. (79)

E
{

∂2L
∂ai,k∂βi,q

}
=

N∑
n1=1

N∑
n2=1

E
{
F ′i (ζi(n1))

εi(n1 − k)
σi(n1)(

F ′i (ζi(n2))ζi(n2)×
ε2i (n2 − q)

σ 2
i (n2)

−
ε2i (n2 − q)

2σ 2
i (n2)

)}
=

N∑
n=1

E
{
F ′i (ζi(n))

εi(n− k)
σi(n)(

F ′i (ζi(n))ζi(n)×
ε2i (n− q)

σ 2
i (n)

−
ε2i (n− q)

2σ 2
i (n)

)}
= 0.

(80)

The term E
{

∂2L
∂βi,0∂βi,0

}
is given by

E
{

∂2L
∂βi,0∂βi,0

}
=

N∑
n1=1

N∑
n2=1

E
{(

F ′i (ζi(n1))ζi(n1)×
1

2σ 2
i (n1)

−
1

2σ 2
i (n1)

)
(
F ′i (ζi(n2))ζi(n2)×

1

2σ 2
i (n2)

−
1

2σ 2
i (n2)

)}
≈

N∑
n=1

E
{(

F ′i (ζi(n))ζi(n)×
1

2σ 2
i (n)
−

1

2σ 2
i (n)

)2 }
=

N∑
n=1

E
{

1

4σ 4
i (n)

}
E
{ (
F ′i (ζi(n))ζi(n)

)2 }
. (81)

The term E{ 1
4σ 4i (n)

} can be obtained by 1
N

∑N
n=1

1
4σ 4i (n)

.

∂2L
∂βi,0∂βi,q

=

N∑
n1=1

N∑
n2=1

E
{(

F ′i (ζi(n1))ζi(n1)×
1

2σ 2
i (n1)

−
1

2σ 2
i (n1)

)
(
F ′i (ζi(n2))ζi(n2)×

ε2i (n2 − q)

2σ 2
i (n2)

−
ε2i (n2 − q)

2σ 2
i (n2)

)}
≈

N∑
n=1

E
{
ε2i (n− q)

4σ 4
i (n)

(
F ′i (ζi(n))ζi(n)− 1

)2 }
. (82)

The term E{
ε2i (n−q)
4σ 4i (n)

} can be estimated consistently by

1
N

∑N
n=1

ε2i (n−q)
4σ 4i (n)

.

∂2L
∂βi,q1∂βi,q2

=

N∑
n1=1

N∑
n2=1

E
{(
F ′i (ζi(n1))ζi(n1)

ε2i (n− q1)

2σ 2
i (n1)

−
ε2i (n− q1)

2σ 2
i (n1)

)
(
F ′i (ζi(n2))ζi(n2)

ε2i (n2 − q2)

2σ 2
i (n2)

−
ε2i (n2 − q2)

2σ 2
i (n2)

)}
≈

N∑
n=1

E
{
ε2i (n− q2)ε

2
i (n− q1)

4σ 4
i (n)

(
F ′i (ζi(n))ζi(n)− 1

)2 }
.

(83)
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The term E
{
ε2i (n−q2)ε

2
i (n−q1)

4σ 4i (n)

}
can be estimated by 1

N

∑N
n=1

ε2i (n−q2)ε
2
i (n−q1)

4σ 4i (n)
.

APPENDIX E
PROOF OF PROPOSITION 2

Proof: The bound κi,j in (32) is amonotonically decreas-

ing rational function in E
{

1
σ 2j (n)

}
if

λjσ
2
εj
E

{
1

σ 2
j (n)

}
≥

1

λiσ 2
εi
E
{

1
σ 2i (n)

} . (84)

Also, if E
{

1
σ 2i (n)

}
increases, κi,j will decrease. Therefore,

lower values for E
{

1
σ 2j (n)

}
and E

{
1

σ 2i (n)

}
result a higher

value for κi,j. We can use Jensen’s inequality to a find

lower bound for E
{

1
σ 2j (n)

}
and E

{
1

σ 2i (n)

}
. Since the function

T (x) = 1/x for x > 0 is a convex function, one can simplify

E
{

1
σ 2i (n)

}
based on Jensen’s inequality

E

{
1

σ 2
i (n)

}
≥

1

E
{
σ 2
i (n)

} . (85)

Since ζi(n) and σ 2
i (n) are independent, one can write

σ 2
εi
= E

{
ε2i (n)

}
= E

{
σ 2
i (n)

}
= σ 2

εi
. (86)

By substituting E 1{
σ 2i (n)

} = 1
σ 2εi

and E 1{
σ 2j (n)

} = 1
σ 2εj

in (32),

the right hand side of the inequality (34) is obtained. �
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