
June 2009
Espen Robstad Jakobsen, MATH

Master of Science in Physics and Mathematics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Mathematical Sciences

Numerical solution of non-local PDEs
arising in Finance.

Håkon Berg Johnsen

Problem Description
The project aims at finding efficient implementations of a new type of numerical method for non-
local PDEs arising in finance. Evaluation of non-local terms using a fast Fourier transform, Crank-
Nicholson time discretization and 2nd order space discretization are pursued. Numerical tests will
be performed along with theoretical stability and convergence analysis.

Assignment given: 18. January 2009
Supervisor: Espen Robstad Jakobsen, MATH

Abstract

It is a well known fact that the value of an option on an asset following a Levy jump-
process, can be found by solving a Partial Integro-Differential Equation (PIDE). In this
project, two new schemes are presented to solve these kinds of PIDEs when the underlying
Levy process is of infinite activity. The infinite activity jump-process leads to a singular
Levy measure, which has important numerical ramifications and needs to be handled with
care. The schemes presented calculate the non-local integral operator via a fast Fourier
transform (FFT), and an explicit/implicit operator splitting scheme of the local/global
operators is performed. Both schemes will be of 2nd order on a regular Levy measure, but
the singularity degrades convergence to lie in between 1st and 2nd order depending on the
singularity strength. On the logarithmically transformed PIDE, the schemes are proven
to be consistent, monotone and stable in L∞, hence convergent by Barles-Perthame
Souganidis.

i

ii Abstract

Acknowledgments

This work has been a great learning experience for me, and I would like to thank my
supervisor Espen R. Jakobsen for taking the time to aid me. His feedback and support
has been greatly appreciated. I would also thank my fellow student Kjetil A. Johannessen
and my brother Magnus Berg Johnsen for reading the thesis and giving viable input and
TEXsupport. Last, I would like to thank my girlfriend Ingunn Jystad Postmyr for her
continued support through the last 4 years of my masters degree.

iii

iv Acknowledgments

Contents

1 Introduction 1

2 The PIDE introduced 5
2.1 Levy Processes and the PIDE . 5
2.2 Options Defined . 7
2.3 Boundary/Initial values . 8

3 Discretizing the PIDE 11
3.1 α ∈ (0, 1) . 11

3.1.1 Transforming the integral . 11
3.1.2 Discretizing the integral . 13
3.1.3 Speeding up the computation by FFT 20
3.1.4 A general 2nd order discretization 21

3.2 α ∈ [1, 2) . 26
3.2.1 Transforming the integral . 26
3.2.2 Discretizing the integral . 28
3.2.3 Computing the Levy measure . 29

3.3 Speeding up the algorithm . 30
3.4 Discretizing the local operators . 32
3.5 Discretization in time . 34
3.6 Solving the system of equations . 34
3.7 Truncation error . 35
3.8 Discretizing the 2D Option Pricing Problem 36

4 Analysis 41
4.1 A monotone approximation of the integral operator, α ∈ (0, 1) 41
4.2 A monotone approximation of the integral operator, α ∈ [1, 2) 43
4.3 An equivalent, but easier, PIDE . 45
4.4 Proving convergence of the fixed point iteration 45
4.5 CFL condition . 47
4.6 Stability in L∞ . 48

v

vi CONTENTS

5 Results 51
5.1 The integral term, α ∈ (0, 1) . 52
5.2 The integral term, α ∈ [1, 2) . 55
5.3 The full PIDE . 56

6 Conclusion and Future Work 63

Chapter 1

Introduction

Options are, contrary to common perceptions, not just part of employee benefit programs.
They are financial instruments traded in vast numbers every day, and in a number of
different forms. Options would never have been so popular unless one were able to set
the ’correct’ price of such contracts. Fischer Black and Myron Scholes revolutionized this
branch of finance with [3] and founded the large field of financial mathematics.

As is well known, the ordinary Black Scholes model has its flaws, one of which became
all too apparent when exchanges all over the world plunged down last autumn. According
to the Black Scholes model, such drastic changes in value have close to zero probability
over such a short timespan. In addition a key assumption by Black Scholes is that while
the stock is crashing you should continuously be able to hedge yourself in/out of your
position [3], which simply is not the case.

This article will focus on an improved framework of models, where jumps are naturally
incorporated, namely the rich class of Levy jump-processes. Throughout this paper only
the CGMY process [4], which is a subclass of Levy jump-processes, is assumed to govern
the underlying stock. The CGMY process is an infinite activity jump-process, which leads
to a singular Levy measure. This singularity has important numerical ramifications, and
will for instance affect the convergence of the schemes. [4] showed that the CGMY process
is able to yield impressive fits to real market data, and is hence a good foundation for
further algorithm development.

The algorithms developed in this article builds upon the schemes presented by Jakob-
sen et al. [8]. These schemes are proven to have rigorous convergence properties in L∞,
which comes from the use of a monotone discretization. With a consistent, monotone
and L∞-stable scheme, convergence is assured by Barles et.al. [2]. This convergence
theory is very robust, and extends even to non-linear problems.

The schemes from [8] are also very generally applied to a wide range of problems.
This generality and convergence does however come at a cost, which is a rather high
computational complexity. A full integral operator is calculated at each time step at the
cost of O(N2) with N nodes in the computational grid, and the convergence rate of the
schemes are only of 1st order.

The aim of this thesis is to find a new and more efficient discretization, which lowers

1

2 CHAPTER 1. INTRODUCTION

the computational complexity and increases the convergence to 2nd order, while main-
taining the generality and monotonicity of the schemes. One obvious way of obtaining
the first goal is to rewrite the integral term to a form which allows the computation via
a fast Fourier transform (FFT), thus decreasing the O(N2) computation pr. timestep
to O(N logN). This will be done following the idea from D’halluin et al. [6] via the
introduction of an auxiliary logarithmic grid. For each timestep, the solution will be
interpolated onto the auxiliary grid, where the integral is calculated via FFT. The com-
puted integral is then interpolated back to the ’solution grid’ where the local operators
are approximated and a step in time is performed. The approach in [6] is however not
directly applicable in the case considered in this thesis, as they only consider a non-
singular Levy measure. Hence some adaptations is made, as will be explained in detail
in (Chapter 3).

The particular discretization in time also follows the lines of [6], where an operator
splitting approach is pursued. The local operators form a tridiagonal matrix and is hence
very easy to handle implicitly, whereas the global integral operator forms a full matrix
and is hence more efficient to handle explicitly. The resulting equation system is solved
by a fixed point iteration proven to be convergent under a CFL condition.

Two 2nd order schemes are presented, applicable for different strengths of the singu-
larity of the Levy measure. One of which is obtained by an approach that is new in this
article, where the combination of a crude 1st order discretization of the derivative with
a crude 1st order riemann discretization of the integral yields a remarkable 2nd order
combined convergence. The other scheme obtains 2nd order via individual 2nd order
discretization of the operators. Both schemes are however affected by the singularity
of the Levy measure, which degrades convergence to lie in between 1st and 2nd order,
depending on the parameter values. This will be thoroughly discussed in the theory, and
will further be shown during the numerical tests.

The introduction of the auxilliary grid, is however not entirely straightforward, as even
though the integral approximation is monotone on the logarithmic grid, interpolating the
calculated integral back to the computational grid does in fact not yield monotonicity.
There is a rather simple way out of this problem, by simply transforming the entire
equation to logarithmic variables, as will be shown in the analysis chapter, although this
approach leads to a loss of generality. Hence by introducing these higher order schemes
with lowered computational complexity, one can make a choice. Either losing generality,
by transforming everything to logarithmic variables, and thus not be able to easily adapt
the scheme to a similar equation. Or one could use the auxiliary logarithmic grid, and lose
the monotonicity. The second approach is what will be done throughout the numerical
testing, but emphasis will still be on monotone approximations in either of the grids.
In the analysis chapter, the modifications necessary to obtain monotonicity is shown.
That is done by transforming the equation to logarithmic variables, and monotonicity
and L∞ stability on the easier PIDE will be proved. Consistency of the schemes is of
course proved in both cases, hence convergence is assured by [2] in the logarithmically
transformed, easier problem.

A 2 dimensional problem is also considered and solved numerically on a simplified

3

model, that is no correlation in either of the two spatial directions. The point being to
show whether a 2D problem is feasible to solve or not, and to outline how it could be
done.

4 CHAPTER 1. INTRODUCTION

Chapter 2

The PIDE introduced

2.1 Levy Processes and the PIDE

The class of Levy jump processes is extremely rich, and presenting the theoretical frame-
work in all of its rigour is beyond the scope of this work. For a thorough treatment see
[5].

There exists both infinite and finite activity Levy jump processes, although this work
is based upon an infinite activity case. An infinite activity jump model is, as the name
implies, simply a model where an infinite number of jumps occur in every interval. The
infinite number of jumps is of course somewhat less analytically tractable than the regular
brownian motion assumed by Black-Scholes [3]. Hence closed formed solutions to the
PIDE arising from the European option pricing problem, only exists on simple model
problems.

One very interesting fact is that when considering infinite activity Levy process, as the
CGMY process considered here, one does not need to introduce a brownian component,
since the dynamics of the jumps allready is rich enough to generate nontrivial small
time behaviour [4]. With the brownian term removed, the second derivative in the local
operators disappears, and one could relax the CFL condition deduced in the analysis
hence lowering the computational complexity. This will not be pursued in this thesis,
but is noted as an alternative approach.

Following the derivation in [5], let a stock St follow an exponential-Levy model:

St = ert+Xt , (2.1.1)

where X is a Levy process with characteristic triplet (σ2, ν, γ) under some risk-neutral
measure Q such that Ŝt = e−rtSt = eXt is a martingale. The risk neutral dynamics of St
is then given by

St = S0 +
∫ t

0
rSu−du+

∫ t

0
Su−σdWu +

∫ t

0

∫ ∞
−∞

(ex − 1)Su−J̃X(du, dx), (2.1.2)

where J̃X denotes the compensated jump measure of the Levy process X (Proposition
8.20 in [5]) and Ŝt is a square-integrable martingale:

5

6 CHAPTER 2. THE PIDE INTRODUCED

dŜt

Ŝt−
= σdWt +

∫ ∞
−∞

(ex − 1)J̃X(dtdx), sup
t∈[0,T]

E[Ŝ2
t] <∞. (2.1.3)

The value of a European option u(s, t), is given as a discounted conditional expecta-
tion of its terminal payoff H(ST) under the equivalent martingale measure Q: ut =
E[e−r(T−t)H(ST)|Ft]. From the Markov property:

u(S, t) = E[e−r(T−t)H(ST)|St = S]. (2.1.4)

Now applying Ito’s formula plus the risk neutral dynamics of St (2.1.2), the price of
u(s, t) is the solution of the following PIDE [5]:

ut = −rSuS −
σ2S2

2
uSS + ru−

∫
ν(dy)[u(Sey, t)− u(S, t)− S(ey − 1)uS], (2.1.5)

with appropriate boundary conditions (BC), and final conditions, given by the option
payoff, which will be introduced later. Final conditions are turned into initial conditions
by simply solving the equation backward in time, ie. set τ = T − t, and hence get:

uτ = rSuS +
σ2S2

2
uSS − ru+

∫
ν(y)[u(Sey, τ)− u(S, τ)− S(ey − 1)uS]dy. (2.1.6)

One rather interesting observation is that if the integral terms from (2.1.6) gets removed,
that is ν(y) = 0, the Black Scholes PDE appears [3].

In this work we use the CGMY model, where ν(y) has the form:

ν(y) =

{
C e−M|y|

|y|1+α if y > 0

C e−G|y|

|y|1+α if y < 0,
(2.1.7)

with G,M > 1, C > 0 and 0 < α < 2. This particular choice of measure is singular at
y = 0, with the heuristic interpretation that there is an infinite number of jumps with
size zero.

As mentioned in the introduction, a 2 dimensional model is also solved numerically.
Assume a put option whose payoff is governed by (2.3.1) and two underlying stocks xt
and yt, whose price processes are both individually governed by (2.1.1). By assuming
that the x and y Brownian motions are correlated with ρ while the jump measure is
uncorrelated, the following equation results by multidimensional Ito calculus [5]:

2.2. OPTIONS DEFINED 7

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

S

u(
S

,T
)

Figure 2.1: The Payoff of the Put on S at t = T (2.2.1). K = 100.

uτ = rxux +
σ2
xx

2

2
uxx + ryuy +

σ2
yy

2

2
uyy − ru+ ρσxσyxyuxy (2.1.8)

+
∫
ν(dz)[u(xez, y, τ)− u(x, y, τ)− x(ez − 1)ux] (2.1.9)

+
∫
ν(dz)[u(x, yez, τ)− u(x, y, τ)− y(ez − 1)uy] (2.1.10)

(2.1.11)

2.2 Options Defined

There are actually a vast number of different options. In this thesis however, the type
will be constrained to European puts. Buying a European put on a stock at t = 0, gives
the right to sell the stock for a given price, K, at a given date t = T . Performing this
transaction is called exercising the option.

The name ’European’ is in no way related to the continent Europe, which might
seem a bit confusing, it is simply related to the fact that a European option can only be
exercised at t = T . The ’opposite’ being an American option which can be exercised at
all times 0 < t ≤ T . Other types of options are Asian, Bermudian etc [12].

Exercising the option of course only makes sense if K is greater than the price of the
stock at t = T , ST . Thus giving the following income at t = T :

H(ST) = max(K − ST , 0), (2.2.1)

also plotted in (Figure 2.1).
If ST ≥ K, exercising the option means one sells the stock for less than it is worth,

which is rather pointless. Because, as the name implies, an option means there is a
choice, and as mentioned, it gives the right but not the obligation, to sell the stock for

8 CHAPTER 2. THE PIDE INTRODUCED

K at t = T . Hence the put ends up being worthless when ST ≥ K. So buying a put
might seem like a risky deal, although in combination with other assets it might actually
reduce the overall risk. For instance holding one stock plus a put on the stock acts like
an insurance on the stock. No matter what happens, your portfolio (1 stock and 1 put)
ends up being worth at least K at expiry. If ST < K you simply exercise the option,
giving you the right to sell the stock for K. If ST ≥ K, the put expires worthless, but as
the value of the stock is higher than K the combined value is still higher than K.

The morale being the ’riskyness’ of the put depends on the investors preferences, and
having the opportunity to buy options adds flexibility.

2.3 Boundary/Initial values

Final conditions for t = T are found from the option payoff, e.g. for a put they are shown
in (2.2.1).

In addition, for reasons which will be clear during the discussion of the discretization,
values to the left and right of the computational grid is needed during the solution process.
In the case of a put, these values can be approximated arbitrarily well, depending on
where the computational grid is truncated at S = Smax.

In fact with the type of option discussed in this thesis, i.e. puts on stocks, the value at
S = 0 is known for all t. In that case, the company is bankrupt, and a put will certainly
end up being worth K. Discounted back to present time, T − t, with a continously
compunding rate of return, r, the value at S = 0 is simply Ke−r(T−t).

The value at S = Smax can heuristically be determined if Smax → ∞. In that case
you are almost certain the put ends up out of the money (ie. S > K when the option
expires). In that case the value will simply be 0. How large Smax in reality will be, when
it comes to the numerical implementation, is explained in the Implementation chapter.

The type of option in the two dimensional case is a basket put on the combined value
of two stocks x and y. Several types of payoffs on these kinds of options exists, like e.g.

H(xT , yT) = max(K −min(xT , yT), 0),

H(xT , yT) = max(K −max(xT , yT), 0)

and perhaps the most natural payff:

H(xT , yT) = max(K − xT − yT , 0), (2.3.1)

which is used in this thesis. Where xT and yT are the stock prices of the two underlying
stocks at t = T . (2.3.1) is displayed in (Figure 2.2).

Now when it comes to boundary conditions on the two dimensional problem it is
slightly more complicated than in 1D. First consider the computational grid the equation
will be solved on:

As can be seen from (Figure 2.3) BC is needed along the blue lines: x = 0, x = xmax,
y = 0 and y = ymax. By the same argumentation as in the 1D-case, the value of the
option at x = xmax and y = ymax can be set to 0. Along the lines x = 0 and y = 0 it gets

2.3. BOUNDARY/INITIAL VALUES 9

0

2

4

6

8

10
0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

y
x

H
(x

T
,y

T
)

Figure 2.2: The Payoff of the Put on x and y from 2.3.1. K = 3.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

x

y

Figure 2.3: The computational grid when solving the 2D equation with 32 nodes in each
spatial direction distributed equidistantly. BC is needed along the blue lines.

10 CHAPTER 2. THE PIDE INTRODUCED

more difficult. If either of the underlying stocks x or y is equal to 0 then that company
has gone bankrupt, and to obtain the value of the basket put one has to solve the 1D
PIDE to find the value of the option on the other stock alone. This fact can also be seen
from just setting x or y equal to 0 in (2.1.8) and (2.3.1).

Hence for each step in time of the 2-dimensional PIDE, two 1-dimensional problems
has to be solved (one for x = 0 and one for y = 0). This might seem rather harsh, but
there is a rather efficient way of solving the problem. As equidistant timesteps are used,
the values of t where the BC are needed, are known before the solution loop is started.
So when solving for the BC when y = 0, the solution is simply to solve the 1D problem
with the same grid as that in the x-direction, and with the same stepsize in t. Then
simply store all of the values. Similarily on the line where x = 0. The cost of doing that
is the cost of solving the 1D problem twice ie. O(MN logN), which will be completely
negligable compared to the cost of solving the full 2D problem.

Chapter 3

Discretizing the PIDE

A key aspect in the implementation will be an operator splitting approach. This will allow
the partial derivatives appearing in the IPDE, i.e. the local operators, to be treated in
an implicit fashion whereas the integral term, ie. the nonlocal operator, will be handled
explicitly. This to avoid forming and inverting a dense matrix operator at each timestep.
The motivation of the implicit approach is to obtain a more relaxed CFL condition. By
doing a little more work for each iteration, but performing fewer iterations, CPU-time
could be saved. The alternative is of course a fully explicit method.

In addition, as mentioned in the introduction, there will be formed two computational
grids, one on which the correlation product is computed in logarithmic variables, and
one on which the local operators are discretized. The non-logarithmic grid in the ’main’
grid, the logarithmic grid is only an auxiliary grid to be able to utilize FFT. It is very
easy to transform everything to the logarithmic grid and solve everything there, but to
keep things more general, that approach will only be pursued in the analysis chapter,
where it will be showed that this transformation will in fact yield a monotone algorithm.

Due to the operator splitting approach, the integral term is only handled explicitly,
hence the discrete values which are involved in the correlation product are interpolated
onto the logarithmic grid where the computed is performed, before it gets interpolated
back.

The next sections are dedicated to the particular discretization of the integral term.

3.1 α ∈ (0, 1)

3.1.1 Transforming the integral

As mentioned, a key ingredient in my contribution is to compute∫
R\{0}

[u(Sey)− u(S)− S(ey − 1)
∂u

∂S
]ν(dy), (3.1.1)

via a Fast Fourier Transform (FFT), to reduce the computational complexity of evaluat-
ing N of such integrals every timestep from O(N2) to O(NlogN), while still maintining

11

12 CHAPTER 3. DISCRETIZING THE PIDE

the monotonicity from [8]. To enable the use of FFT, the integral (3.1.1) is rewritten as
a correlation integral via a change of variables and an integration by parts. But first the
integral needs to be simplified somewhat. Consider the last term of the integral (3.1.1):∫

R\{0}
−S(ey − 1)

∂u

∂S
ν(dy) = −S ∂u

∂S

∫ ∞
−∞

(ey − 1)ν(dy), (3.1.2)

by techniques as in [1]:

ω1 =
∫

R\{0}
(ey − 1)ν(dy) = CΓ(−α)[(M − 1)α −Mα + (G+ 1)α −Gα]. (3.1.3)

With the parameters C, G, M α from the CGMY measure (2.1.7) and Γ(−α) being the
gamma function. This is possible because α ∈ (0, 1), and hence the singularity of the
integrand at y = 0 is ’weak enough’ such that this term can be integrated out. When
considering α ∈ [1, 2), which is done in a later section, this is not the case. The term
−SuSω1 enters in (2.1.6) turning that equation into (3.4.1) which will be introduced
later. It is easily seen from (3.1.3) that in order for the integral to converge M,G > 1.

Now look at the remaining parts of (3.1.1), first on the positive real axis. With an
integration by parts plus the chain rule, one ends up with:

∫ ∞
0

[u(Sey)− u(S)]ν(dy) = [[u(Sey)− u(S)](−ν(y))]∞0 −
∫ ∞

0
∂y[u(Sey)](−ν(y))dy,

(3.1.4)
where:

ν(y) =

{∫∞
y ν(z)dz y > 0∫ y
−∞ ν(z)dz y < 0

(3.1.5)

with ν(y) as defined in (2.1.7).
The term:

[[u(Sey)− u(S)](−ν(y))]∞0 , (3.1.6)

can be shown to be equal to zero by a taylor expansion around y = 0 with u ∈ C2, and
remembering that M,G > 1.

(3.1.5) will be rather cumbersome to compute at all the points needed to evaluate
(3.1.4), even though it only needs to be computed once (as it stays fixed for all t), but
with the same techniques which led to (3.1.3) it can be shown [1] that it is equal to:

ν(z) =

{
CMαΓ(−α,Mz) y > 0,
CGαΓ(−α,G|z|) y < 0,

(3.1.7)

3.1. α ∈ (0, 1) 13

with Γ(a, b) being the incomplete gamma function, defined in [1]. Although one still needs
a fast and efficient way to compute the incomplete gamma function, which is where [13]
comes in. Their proposed algorithm is implemented and used throughout the paper.

Via a similar derivation of the integral on the negative half axis, the integral operator
turns out to be:

∫
R\{0}

[u(Sey)− u(S)]ν(dy) = −
∫ ∞

0
∂y[u(Sey)](−ν(y))dy −

∫ 0

−∞
∂y[u(Sey)](ν(y))dy

=
∫ ∞

0
∂y[u(Sey)](ν(y))dy −

∫ 0

−∞
∂y[u(Sey)](ν(y))dy.

(3.1.8)

In order to be able to exploit FFT in the computation of (3.1.8), a change of variable
needs to be introduced, going from S to logS. In the new logS variable, the integral
operator takes the form of a correlation integral, which via a proper discretization is
turned into a discrete correlation product, which can be utilized by FFT.

Now let x = log(S). Then S = ex and with the modified function:

u(x) = u(ex), (3.1.9)

the integral turns out to be:∫ ∞
0

∂yu(x+ y)ν(y)dy −
∫ 0

−∞
∂yu(x+ y)ν(y)dy, (3.1.10)

which is the point of departure for the discretization.

3.1.2 Discretizing the integral

Now as the logarithmic variable is introduced, and the integral is on the form of a
correlation integral (3.1.10), all that remains is to discretize (3.1.10) to a correlation
product, before the fast fourier transform can be applied. First the discrete equidistant
logarithmic grid is introduced:

Let x denote the variables in the logarithmic grid, such that x = log(S), and let Nlog

be the number of gridpoints in the logarithmic grid. Then the discretized logS-grid is a
one-to-one mapping from the S-grid:

x1 = logS1,

xNlog = logSN ,

further the (logarithmic) distance between two adjacent gridpoints in the log(S)-grid:

hlog =
log(SN)− log(S1)

Nlog − 1
,

14 CHAPTER 3. DISCRETIZING THE PIDE

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

Grid placement in the log(S)−grid
Grid placement in the S−grid

Figure 3.1: The two equidistant grids plotted in S-coordinates. N = Nlog = 64

such that:

xi = x1 + (i− 1)hlog 1 ≤ i ≤ Nlog. (3.1.11)
(3.1.12)

Now when interpolating from the S-grid to the logS-grid it is important that the
distance in S-coordinates (the ’physical’ distance) between two gridpoints in the logS-
grid:

exi+1 − exi = ex1+ihlog − ex1+(i−1)hlog = exi(ehlog − 1), (3.1.13)

gets refined proportionally to hlog. As it is this distance squared which will be the
truncation error in interpolating from the logS-grid to the S-grid. Via a taylor expansion
of ey for y � 1:

ey = 1 + y +O(y2),

it is easily seen that:

exi(ehlog − 1) = exihlog +O(h2
log). (3.1.14)

Ie. the ’physical’ distance between gridpoints in the logarithmic grid scales like hlog, for
hlog � 1.

3.1. α ∈ (0, 1) 15

With an appropriate grid, discretizing and computing (3.1.10) is within reach. But
first the way to compute ∂yu(xi + yj) needs to be addressed. Due to the monotonicity
requirement, forward differentiation is the method of choice:

δy+u(xi + yj) =
u(xi + yj + hlog)− u(xi + yj)

hlog

= ∂yu(xi + yj)−
1
2
uxxhlog +

Errinterp
hlog

+O(h2
log).

(3.1.15)

The second last term of the truncation error might seem unfamiliar. But remember the
values at xi + yj + hlog and xi + yj are both found by interpolation from the S-grid.
This particular error gets divided by hlog in (3.1.15). At first glance it might seem like
linear interpolation, with truncation error O(h2), should be sufficient. But, as shall soon
be revealed, combining this crude first order discretization with a particular quadrature
also of first order, actually turns into a 2nd order combined discretization. Hence 3rd,
or higher, order interpolation needs to be employed. The particular interpolation will be
introduced in the next section, taken from [9].

Now from (3.1.15), at all the discretized gridpoints xi+yj , the values of u(xi+yj+hlog)
is needed. An important point is however that the distance between two adjacent y-
values, is set equal to the distance between two adjacent values of x, i.e.:

yj+1 − yj = xj+1 − xj = hlog ∀j.
(3.1.16)

This particular choice of stepsize in y is important to ensure overlapping grids in x and
y, which is needed to be able to utilize the fast fourier transform. In addition, for reasons
which will soon be clear: y0 = 0, such that:

u(xi + yj) = u(xi+j)

and
u(xi + yj + hlog) = u(xi+j+1),

hence (3.1.15) can be written as:

δy+u(xi + yj) = δy+u(xi+j)

=
u(xi+j+1)− u(xi+j)

hlog

= ∂yu(xi+j)−
1
2
hlog∂yyu(xi+j) +O(h2

log),

(3.1.17)

16 CHAPTER 3. DISCRETIZING THE PIDE

assuming a 3rd, or higher, order interpolation is used. In order for the algorithm to
be monotone in the end, an additional approximation of the first derivative needs to be
introduced, that is backward differentiation:

δy−u(xi + yj) =
u(xi+j)− u(xi+j−1)

hlog

= ∂yu(xi + yj) + Errapprox

= ∂yu(xi + yj) +
1
2
uxxhlog +O(h2),

(3.1.18)

with truncation error still assuming 3rd, or higher, order interpolation is used. (3.1.18)
is needed in the approximation of the integral on the negative real axis.

One obvious alternative to (3.1.17) would be to use forward/backward differences in
the S-grid plus the chain rule, and interpolate the calculated derivatives on the logS-grid,
rather than interpolating and then calculating the derivates. Such an approach would
however not yield a 2nd order combined convergence, neither a monotone approximation
in the logS-grid, which is important to obtain a monotone algorithm by the full logS
transformation. Hence (3.1.17) and (3.1.18) are the methods of choice.

Now before the discretized integral is introduced, there is of course a need of trun-
cating (3.1.10) before ±∞. With exponentially decaying Levy measure, the error could
be chosen to be arbitrarily small, say ymax = yNext = Nexthlog, and ymin = y−Next =
−Nexthlog, then as

ν(y) < e−min(M,G)|y|, |y| > 1,

and M , G > 1, it is not hard to achieve an insignificant error. A typical value of Next is
Nlog

2 , which is more than sufficient in the numerical experiments below.
When choosing the method to compute the integral, there are a number of issues to

consider. First in order the have a monotone method, the modified quadrature weights
(that is the weights multiplied with the Levy measure) have to be strictly decreasing if
y > 0 and strictly increasing for y < 0.

Second, as I have mentioned, no matter how high the order of the quadrature is, the
first order error of the upwinding will be the dominating factor. Unless, and this is an
important point, the upwinding and quadrature schemes are combined in an intelligent
manner, using the truncation error of the quadrature to cancel the first order truncation
error of the upwinding scheme.

Say the allready truncated integral at y = Nexthlog, on the positive half axis, is split

3.1. α ∈ (0, 1) 17

into Next parts, each going from yj to yj+1:

∫ y=Nexthlog

0
∂yu(xi + y)ν(y)dy =

j=Next∑
j=0

∫ yj+1

yj

∂yu(xi + y)ν(y)dy

=
j=Next∑
j=0

∫ ξ=hlog

ξ=0
∂yu(xi+j + ξ)ν(yj + ξ)dξ,

with ξ ∈ [0, hlog]. Then consider each part of the sum from the equation over:∫ hlog

0
∂yu(xi+j + ξ)ν(yj + ξ)dξ. (3.1.19)

Do a taylor expansion of ∂yu(xi+j + ξ) around ξ = 0:

∂yu(xi+j + ξ) = ∂yu(xi+j) + ξ∂yyu(xi+j) +O(ξ2). (3.1.20)

Insert the approximation δy+u(xi+j) instead of ∂yu(xi+j) plus the truncation term of
that particular approximation (3.1.17):

∂yu(xi + y) = ∂yu(xi+j) + ξ∂yyu(xi+j) +O(ξ2)

= δy+u(xi+j)−
1
2
hlog∂yyu(xi+j) + ξ∂yyu(xi+j) +O(ξ2)

= δy+u(xi+j) + (ξ − 1
2
hlog)∂yyu(xi+j) +O(ξ2).

(3.1.21)

Now insert the resulting first order error term (ξ − 1
2hlog)∂yyu(xi+j) into the integral:∫ hlog

0
(ξ − 1

2
hlog)∂yyu(xi+j)ν(yj + ξ)dξ. (3.1.22)

By taylorexpanding ν(yj+ξ) around (yj+ hlog
2) it can be shown that the first order terms

vanishes, and the second order term gets integrated up to 3rd order. When taking the
sum of Next (which is in magnitude with Nlog) such parts of the integral, the 3rd order
local truncation turns into 2nd order globally. Yielding an in fact 2nd order discretization,
which is quite remarkable considering each part of the discretization (a modified riemann
sum) and upwinding is both individually 1st order.

ν does however have a singularity at y = 0, so the first order error term does in fact
not vanish on the inner part of the sum where yj = 0. As ν scales like

ν̃(y) ≈ 1
yα
, |y| � 1, (3.1.23)

18 CHAPTER 3. DISCRETIZING THE PIDE

the truncation error around y = 0 gets integrated up to O(h2−α
log). Yielding global trun-

cation error of O(h2−α
log). This α-dependent convergence is verified in the numerical tests

run under the analysis chapter.
On the negative half axis a completely similar procedure is done, although with back-

ward differences instead of forward differences. This choice is necessary to keep a positive
discretization, and to obtain the 2nd (or 2−α due to the singular measure) order conver-
gence. If forward differences are used on the negative half axis, or backward differences
are used on the positive half axis, the result is a loss of a positive discretization, and a
degraded convergence into 1st order. Another curiosity is that if the exact derivatives
∂yu(xi+j) is used instead of δy+ or δy−, the order also gets degraded to first order.

So in the end the discretization turns out to be:

I(u(xi)) = Ii =
Next∑
j=0

δy+u(xi+j)
∫ (j+1)hlog

jhlog

ν(y)dy

−
0∑

j=−Next

δy−u(xi+j)
∫ jhlog

(j−1)hlog

ν(y)dy

=
Next∑
j=0

δy+u(xi+j)k
+
j −

0∑
j=−Next

δy−u(xi+j)k
−
j .

(3.1.24)

where

k
+
j =

∫ (j+1)hlog

jhlog

ν(y)dy 0 ≤ j ≤ Next

k
−
j =

∫ jhlog

(j−1)hlog

ν(y)dy 0 ≥ j ≥ −Next

(3.1.25)

That is a modified riemann sum combined with forward/backward differences. This
way of employing a rieman sum might seem strange, but in addition to the obvious
convergence properties of the discretization (order 2-α), there is a very good reason for
not just picking a value of ν at each interval, and rather integrating up ν at each part of
the sum. Close to zero, where ν has a singularity, getting the contribution numerically is
a challenge. Just picking a value between y = 0 and y = hlog, will certainly yield a high
error (Consider ν(y) plotted at two different resolutions (Figure 3.2). Calculating 2Next

such integrals with quadrature when solving the PIDE might seem like a bottleneck, but
keep in mind that k+

j and k
−
j are independent of t. Hence these 2Next integrals, each

over a distance hlog, can be precalculated and stored before the solution loop starts. This
cost will be completely negligable to solving the full algorithm, which is shown in the
result chapter, where exact solution times are presented for different accuracies.

3.1. α ∈ (0, 1) 19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

Figure 3.2: ν(y) for y > 0, M = 3,α = 0.5. Both plots are on an equidistant grid,
although the scale differs. Left:ymin = hlogy = 10−6. Right: ymin = hlogy = 10−3

The observant reader might notice that when computing I1 (3.1.24), the values uj
where −Next ≤ j ≤ 0 are needed in the sum. I2 requires −Next + 1 ≤ j ≤ 0 etc. None
of which is defined. The solution is to interpolate the values between S0, where dirichlet
B.C. are set, and S1 which is calculated for each timestep, into an expanded grid:

xi = x1 + ihlog −Next ≤ i ≤ 0
(3.1.26)

and just use these interpolated values in (3.1.24). Such that the first terms when com-
puting I1 on the negative half axis are:

I1 =
u(x1)− u(x0)

hlog
k
−
0 +

u(x0)− u(x−1)
hlog

k
−
−1,

where u(x0) etc. is found by the interpolation prosedure. Infinitely many points in the
logarithmic grid can be found between S0 and S1 as:

S0 = 0 < ex1−khlog ≤ ex1 = S1 ∀k ≤ −1 (3.1.27)

Similarily INlog requires ui where Nlog < i ≤ Nlog + Next which also is outside the
computational domain. The solution is the use the asymptotic B.C deduced in (Chapter
2) on these Next nodal values, the same procedure is applied on INlog−1 etc. So in total
there are Nlog nodes in the logarithmic grid constructed by the procedure described
earlier (ie. logarithmically equidistantly placed between logS1 and logSN), and 2Next

nodes outside of the computational domain with the same distance hlog. The number
of nodes to the right and left of the grid can of course differ, but to ease the notation
they are set equal to each other, such that both the integral on the positive and negative

20 CHAPTER 3. DISCRETIZING THE PIDE

half axis is truncated at y±j = ±Nexthlog. Yielding a total of 2Next +Nlog nodes in the
logarithmic grid.

The need of involving values of the solution u outside the computational domain is
also intuitively clear, as the jumpterm allows the underlying to jump outside the specified
grid.

Finally the integral term is on the form of a discrete correlation product(3.1.24), such
that FFT can be exploited.

3.1.3 Speeding up the computation by FFT

The Fast Fourier Transform assumes periodic functions, which in this case is a wrong
assumption, neither k+, k− nor the derivative of u are periodic. This will however be ok if
certain measures are taken. First the two zero-indexed discrete vectors k+ ∈ RNlog+2Next

and k− ∈ RNlog+2Next is initialized. With zero-indexing the elements are:

k[i]+ = k
+
j 0 ≤ i ≤ Next

k[i]− = k
−
j i = 0

k[Nlog + 2Next + i+ 1]− = k
−
j −Next ≤ i ≤ −1.

(3.1.28)

As can be seen it is simply a remapping of indices, such that element j = −1 of k−, gets
placed in the last element of k−, j = −2 gets placed in the second last etc.

The values at indices which are not defined above is set to zero, such that there is 1
non-zero entry at the ’0th’ index in both vectors, and Next non-zero values at the top of
k+ and Next nonzero entries at the bottom of k−. The rest are simply zero in order to
avoid wrap around [11].

The discrete vector δy+u ∈ R2Next+Nlog on the other hand has Next interpolated
derivatives in the top and bottom computed by (3.1.17), and Nlog values in the middle
also computed by (3.1.17). δy−u is constructed in a similar way with backward differences
(3.1.18) rather than forward differentiation. Now FFT can be applied. As is well known
[6]:

FFT (I)k = FFT (δy+u)kFFT (k+)∗k − FFT (δy−u)kFFT (k−)∗k, (3.1.29)

with * denoting the complex conjugate. By computing the correlation product by FFT,
periodicity is assumed, this is however avoided by the zero-padding of k+ and k− and
the expanded interpolation of δy+u and δy−u. Thus you only get wrap around to the
expanded values [11] (ie. the top and bottom Next values). This is however ok, as
the solutions at these points gets peeled off anyway, and only the correlation at the
Nlog middle indices is needed from this computation. It is important to note that the
use of FFT constraints Nlog + 2Next to be a power of 2 (well actually it does not, but
the algorithm is a lot faster when the number of nodes is a power of a small prime,

3.1. α ∈ (0, 1) 21

even though it scales like O(N logN) anyway [7]). The citation is the particular FFT
implemenation used.

The above discussion regarding δy+u is completely similar in the construction of
δy−u, with the only difference being backward differentiation is used.

In addition it is important to calculate all that remains constant in time before the
solution process, in order to avoid calculating these every time they are needed (ie. each
timestep). Such as the FFT of k+ and k− (3.1.28) and the matrices for interpolating
back and forth the logarithmic and non-logarithmic grids.

The short-version of calculating (3.1.24) by FFT follows in (Algorithm 1):

Algorithm 1 Calculating (3.1.24) by FFT

1: Before the solution loop starts for all timesteps, compute k+ and k− by (3.1.25).
2: Remap the indices by (3.1.28) into k+ and k− and store the FFT of these two vectors.
3: Interpolate 2Next+Nlog values of u onto the logarithmic grid. Nlog values lies within
S1 ≤ exi ≤ SN , Next values lies within S0 < exi < S1 and the rest of the values lies
for SN < exi .

4: Compute two different approximations of the derivative by forward(3.1.17) and back-
ward discretization (3.1.18), on the Nlog + 2Next allready interpolated values. Insert
the values in δy+u and δy−u.

5: Compute the FFT of δy+u and δy−u.
6: Compute the two products in Fourier space (3.1.29)
7: Take the inverse FFT of the sum from the previous step
8: Discard the the top and bottom Next values, as explained previously.
9: Interpolate back to the S-grid

3.1.4 A general 2nd order discretization

As the truncation error on a general problem with riemann discretization and upwinding
is limited to O(hlog), a different discretization, which is order 2 − α in general is also
introduced. This particular discretization will have truncation error of order 2 on each of
the individual discretizations (both the quadrature, and the derivative approximation),
hence there will be no combined ’superconvergence’ as in the previous case. This 2− α
discretization is only presented and will not be analysed further. The reason being that
the riemann discretization (3.1.24) is in fact better on this problem, as it is monotone
for all α and gridresolutions in the logS-grid. This particular discretization will only
be monotone for α > 1 − log 2

log 3 ≈ 0.37, whereas the riemann sum is easily seen to be
monotone ∀α in the results chapter. Hence this discretization is only suggested as an
alternative and will not be further analyzed.

First the quadrature is introduced. Instead of the riemann discretization, a midpoint
method is employed:

22 CHAPTER 3. DISCRETIZING THE PIDE

I(u(xi)) = Ii =
Next∑
j=1

δ2y+u(xi+j)
∫ jhlog+

hlog
2

jhlog−
hlog

2

ν(y)dy + δ2y+u(xi)
∫ hlog

2

0
ν(y)dy

−
−1∑

j=−Next

δ2y−u(xi+j)
∫ jhlog+

hlog
2

jhlog−
hlog

2

ν(y)dy − δ2y−u(xi)
∫ 0

−
hlog

2

ν(y)dy

=
Next∑
j=0

δ2y+u(xi+j)k
2+
j −

0∑
j=−Next

δ2y−u(xi+j)k
2−
j ,

(3.1.30)

where δ2y+ and δ2y−, are second order positive discretizations of ∂y which will be intro-
duced later, and k2−

j and k2+
j are defined as:

k
2+
j =

∫ hlog
2

0
ν(y)dy j = 0

k
2+
j =

∫ jhlog+
hlog

2

jhlog−
hlog

2

ν(y)dy 1 ≤ j ≤ Next

k
2−
j =

∫ 0

−
hlog

2

ν(y)dy j = 0

k
2−
j =

∫ jhlog+
hlog

2

jhlog−
hlog

2

ν(y)dy −1 ≥ j ≥ −Next.

(3.1.31)

The integrals around y = 0 does in fact not employ the midpoint value, but on a regular
integrand, the truncation error at those two points would be O(h2

log). The truncation
error of the sum of the other 2Next parts of the sum, where the midpoint value is in
fact used, should be O(h2

log) (sum of 2Next terms, which is in magnitude with Nlog, each
with local truncation error O(h3

log) yielding global O(h2
log). Hence 2nd order convergence

should arise. The truncation error of the inner terms is however again degraded by
the singularity and the total scheme is only O(h2−α

log). This is easily seen by a similar
taylorexpansion as in the riemanndiscretization, with 2nd order accurate approximation
of the derivative.

Discretizing the first derivative by 2nd order, while still maintaining monotonicity
is a problem. Central differences are for example not monotone. So how to achieve
such a thing? The answer is actually a neat trick: Use upwinding, but instead of using
steplength hlog, use h2

log [9]. The discrete forward difference operator δ2y+ with steplength

3.1. α ∈ (0, 1) 23

h2
log is hence introduced:

∂yu(xi) = δ2y+u(xi) +O(h2
log) +

Errinterp
h2
log

=
u(xi + h2

log)− u(xi)
hlog

+O(h2
log) +

Errinterp
h2
log

,

and backward in a similar manner of course:

∂yu(xi) = δ2y−u(xi) +O(h2
log) +

Errinterp
h2
log

=
−u(xi − h2

log) + u(xi)
hlog

+O(h2
log) +

Errinterp
h2
log

.

By using linear interpolation in this case, consistency of the scheme will not even be
obtained with hlog = h, as the truncation error will be O(1). Clearly the order of the
interpolation algorithm has to be of 4th order. Otherwise, convergence gets ruined. Still
the requirement is monotonicity, thus the algorithm proposed by [9] is implemented and
used. Which is of 4th order on monotone data. Consider the function f(x) of one
variable and the cubic Hermite interpolant on each subinterval [xi, xi+1], in the following
just assume constant steplength h is used to ease the notation:

(Ihf)(x) = c0 + c1(x− xi) + c2(x− xi)2 + c3(x− xi)3, (3.1.32)

with parameters ci fulfilling:

(Ihf)(xi) = fi (Ihf ′)(xi) = f ′i
(Ihf)(xi+1) = fi+1 (Ihf ′)(xi+1) = fi+1,

(3.1.33)

where fi = f(xi) and f ′i is some estimate of the first order derivative. Now this implies:

c0 = fi c1 = f ′i

c2 =
3∆i − f ′i+1 − 2f ′i

h
c3 = −2∆i−f ′i+1−f ′i

h2 ,

(3.1.34)

where ∆i = fi+1−fi
h is just the regular upwinding procedure of finding the derivative,

whereas f ′ gets replaced by a higher order derivative approximation. In this particular
algorithm [9], a 4th order accurate approximation of the first order derivative is used:

f ′i =
fi−2 − 8fi−1 + 8fi+1 − fi+2

12h
. (3.1.35)

24 CHAPTER 3. DISCRETIZING THE PIDE

The resulting interpolation will in fact not be monotone, the parameters still need to be
tweaked somewhat. Let:

α =
f ′i
∆i
, β =

f ′i+1

∆i
, (3.1.36)

(3.1.37)

now the interpolant is monotonic if and only if α and β lies within the domain M =
Mc
⋃
Mb:

Mc = {(α, β) : (α− 1)2 + (α− 1)(β − 1) + (β − 1)2 − 3(α+ β − 2) ≤ 0} (3.1.38)
Mb = {(α, β) : 0 ≤ α ≤ 3, 0 ≤ β ≤ 3}. (3.1.39)

(3.1.40)

if (α, β) does not fullfill (3.1.38) the following must be done to tweak the paramters in
order to achieve monotonicity (Algorithm 2).

The rest of the computation is similar to the previous riemann discretization. Ie. just
follow (Algorithm 1) with k2+ and k2+ instead of k+ and k− and of course the 2nd order
upwinding.

As mentioned, this particular discretization will only be a positive approximation if:

k
2+
j−1 > k

2+
j ∀j > 0

k
2−
j > k

2−
j−1 ∀j < 0,

Which will be seen under the Analysis chapter. This criterion is easily seen to be true
for j > 1, but for j = 1 this is not necessarily the case:

Remember the scaling of ν(y) for |y| � 1 (3.1.23) and consider k2+
0 − k

2+
1 :

k
2+
0 − k

2+
1 =

∫ hlog
2

0
ν(y)dy −

∫ hlog+
hlog

2

hlog
2

ν(y)dy

≈
∫ hlog

2

0

1
yα

(y)dy −
∫ hlog+

hlog
2

hlog
2

1
yα

(y)dy

≈ 2(
hlog

2
)1−α −

3hlog
2

)1−α

⇓

α > 1− log 2
log 3

≈ 0.37.

Where the last condition on α is to ensure k2+
0 − k2+

1 > 0. Hence this particular dis-
cretization will asymptotically only be positive for α > 0.37.

3.1. α ∈ (0, 1) 25

Algorithm 2 Modifying αi and βi to ensure monotonicity
1: Compute f ′i and f

′
i+1 by (3.1.35).

2: Compute ∆i

3: if ∆i 6= 0 then
4: Compute αi and βi by (3.1.36)
5: else
6: Set αi = 1, βi = 1.
7: end if
8: if ∆i 6= 0 then
9: Compute αi and βi by (3.1.36)

10: else
11: Set αi = 1, βi = 1.
12: end if
13: if αi < 0 then
14: αi = 0
15: end if
16: if βi < 0 then
17: βi = 0
18: end if
19: if (α, β) /∈M then
20: if αi ≥ 3&&βi ≥ 3 then
21: set αi = βi = 3
22: else if βi > 3 AND αi + βi ≥ 4 then
23: decrease βi such that (αi, βi) ∈ ∂M.
24: else if βi > 3 AND αi + βi ≤ 4 then
25: increase αi such that (αi, βi) ∈ ∂M.
26: else if αi > 3 AND αi + βi ≥ 4 then
27: decrease αi such that (αi, βi) ∈ ∂M.
28: else if αi > 3 AND αi + βi ≤ 4 then
29: increase βi such that (αi, βi) ∈ ∂M.
30: end if
31: end if
32: f ′i = αi∆i

33: f ′i+1 = βi∆i.

26 CHAPTER 3. DISCRETIZING THE PIDE

3.2 α ∈ [1, 2)

3.2.1 Transforming the integral

Now the singularity is stronger than the previous case, and the derivative appearing in
(3.1.1) can no longer be integrated out in order for the integral to converge. Now two
integrations by part needs to be performed on the integral term from (2.1.6):∫

ν(y)[u(Sey, τ)− u(S, τ)− S(ey − 1)uS]dy,

first one obtains:

[
[u(Sey)− u(S)− S(ey − 1)uS(S)](−

∫ ∞
y

ν(z)dz)
]y=∞

y=0

−
∫ ∞

0
∂y[u(Sey)− u(S)− S(ey − 1)uS](−

∫ ∞
y

ν(z)dz)dy,

= 0 +
∫ ∞

0
∂y[u(Sey)− SeyuS]

∫ ∞
y

ν(z)dzdy,

(3.2.1)

the first term is still equal to zero by a taylor expansion and u ∈ C1 with M,G > 1.
Now on the second term an additional integration by parts is performed to obtain:

[
∂y[u(Sey)− SeyuS](−

∫ ∞
y

∫ ∞
z

ν(w)dwdz)
]y=∞

y=0

−
∫ ∞

0
∂yy[u(Sey)− SeyuS](−

∫ ∞
y

∫ ∞
z

ν(w)dwdz)dy.

(3.2.2)

where the first part still is zero by a taylor expansion with M,G > 1, while the second
part is the point of departure for introducing (3.1.9) and applying FFT. But first the
procedure is also applied on the negative half axis, via the exact same integration by
parts obtaining:

+
∫ 0

−∞
∂yy[u(Sey)− SeyuS]

∫ y

−∞

∫ z

−∞
ν(w)dwdzdy (3.2.3)

First to ease the notation, define the function:

ν̂(y) =

{∫∞
y

∫∞
z ν(w)dwdz y > 0∫ y

−∞
∫ z
−∞ ν(w)dwdz y < 0,

(3.2.4)

3.2. α ∈ [1, 2) 27

then consider the last term of the integral:

−SuS [
∫

R\{0}
eyν̂dy] = −SVS [ω2]. (3.2.5)

As the quantity within the clamps can be precomputed, and stored in ω2, this quantity
enters in the local operators, as in the previous case when α ∈ (0, 1).

The only term which could potentially yield problems in computing this correlation
integral is hence the first term in (3.2.2) and (3.2.3):∫

R\{0}
∂yy[u(Sey)]ν̂(y)dy. (3.2.6)

Also in this case the function (3.1.9) is introduced and the change of variable S = ex,
still with the motivation to exploit FFT in the evaluation. With the result:∫

R\{0}
∂yyu(x+ y)ν̂(y)dy (3.2.7)

Now a way of computing ∂yyu(x+y) needs to be addressed. By the same argumentation
as to why computing ∂yu(x + y) in the logS-grid was a good idea, the same discussion
applies to ∂yyu(x + y). That quantity is computed in the logS-grid via the central
difference scheme:

δyyu(xi) =
u(xi+1) + u(xi−1)− 2u(xi)

h2
log

= ∂yyu(xi) + Errdisc

= ∂yyu(xi)−
1
12
h2
log∂yyyyu+

Errinterp
h2
log

.

With the 4th order monotone interpolation introduced earlier, this approximation is of
2nd order, although note the fact that unless monotone data are being employed, the 4th
order interpolation gets degraded to 2nd order yielding error of O(1), in that case. There
is however a rather simple way out, just set hlog =

√
h, obtaining a 1st order scheme

when non-monotone initial data are employed. That particluar case will not be pursued
further, it is only presented as an option.

In this case, there is no need for having different approximations for the positive/neg-
ative half axis, as in the calculation of the first derivative, when forward/backward differ-
ences were being employed, which will be seen during the analysis. In addition, there is
an important point to make regarding the computation of ν̂(y). As ν(y) now is ’1 degree
more singular’ than when α ∈ (0, 1) the computation of ν̂(y) is actually problematic. The
particular implementation of the incomplete gamma function is not accurate enough in
this case, with the result that a full double integral needs to be calculated for each y,
which could have an impact on the overall runtime, especially when convergence tests
are run. This will be addressed in (Section 3.2.3).

28 CHAPTER 3. DISCRETIZING THE PIDE

3.2.2 Discretizing the integral

In this case, as a 2nd order discretization of the derivative is readily available with the
4th order interpolation, the midpoint method will be used in the quadrature:

I(u(xi)) = Ii =
Next∑

j=−Next,j 6=0

δyyu(xi+j)
∫ jhlog+

hlog
2

jhlog−
hlog

2

ν̂(y)dy

+ δyyu(xi)
∫ hlog

2

0
ν̂(y)dy + δyyu(xi)

∫ 0

−
hlog

2

ν̂(y)dy

=
Next∑

j=−Next

δyyu(xi+j)kj

(3.2.8)

where:

kj =
∫ jhlog+

hlog
2

jhlog−
hlog

2

ν̂(y)dy j 6= 0

kj =
∫ hlog

2
0 ν̂(y)dy +

∫ 0

−
hlog

2

ν̂(y)dy j = 0

(3.2.9)

with the integral truncated at y = ±hlogNext, as in the previous case when α ∈ (0, 1).
With exponentially decaying ν̂ the error is quite easily controlled to be negligable.

The truncation error of the sum of all terms where j 6= 0 is quite easily seen to be
of order 2 by a taylor expansion. Now when j = 0, the truncation error is in general
O(3−α) on an asymmetric CGMY measure, as the twice integrated measure ν̂(y) scales
like

ν̂(y) ≈ 1
yα−1

, |y| � 1, (3.2.10)

hence yielding an O(h3−α
log) algorithm. However, with a symmetric measure, that is M =

G, consider the first order truncation term (which are easily found by a taylorexpansion
of ∂yyu(xi+j + ξ) around ξ = 0:

∂yyyu(xi)(
∫ hlog

2

0
ξν̂(y)dy +

∫ 0

−
hlog

2

ξν̂(y)dy) = 0.

As when M = G, ν(y) = ν(−y), and the first order term simply vanish, yielding an in
fact 2nd order algorithm. When G is different from M convergence gets degraded to
O(h3−α

log).
The actual computation with FFT in this case is based upon the same as that when

α ∈ (0, 1), with the exception that k gets modified, and the use of central differences

3.2. α ∈ [1, 2) 29

(3.2.8) rather than upwinding, in particular:

k[j] = kj 0 ≤ j ≤ Next

k[Nlog + 2Next + j + 1] = kj −Next ≤ j ≤ −1,
(3.2.11)

and construct a vector δyyu ∈ RNlog+2Next by the similar interpolation as (Algorithm 1),
but use central difference on the interpolated values rather than the upwinding. Then
simply compute the correlation product (3.2.8) by:

FFT (I)k = FFT (δyyu)kFFT (k)∗k, (3.2.12)

compute the inverse FFT and interpolate back to the S-grid.

3.2.3 Computing the Levy measure

When it comes to computing the integrals (3.2.11) close to y = 0 problems arises, as the
singularity is stronger than when α ∈ (0, 1). Actually the algorithm used in that case, ie.
a fast evaluation of the incomplete gamma function (3.1.7) is no longer accurate enough
when α ≥ 1. Hence an other way of computing:

∫ hlog
2

0
ν̂(y)dy +

∫ 0

−
hlog

2

ν̂(y)dy, (3.2.13)

needs to be adressed. (3.2.13) is actually a bit of a problem to compute numerically
with quadrature. Just refining the grid to an extreme extent and thus ’brute-forcing’
the answer does not help, as numerical oscillations due to the fixed machine precision
appears.

Truncating the integral at a small y does not work either as a lot of ’weight’ of this
measure is located at |y| � 1 due to the singularity. As the taylor expansion of ez for
|z| � 1 is:

ez = 1 + z +O(z2), (3.2.14)

an asymptotic approximation of (3.2.13) for |y| � 1 yields:

∫ δ

0
ν̂(y)dy +

∫ 0

−δ
ν̂(y)dy =

∫ δ

0

∫ ∞
y

∫ ∞
z

C

|w|1+α
dwdzdy

+
∫ 0

−δ

∫ ∞
y

∫ ∞
z

C

|w|1+α
dwdzdy +O(δ3−α)

=
2Cδ2−α

α(α− 1)(2− α)
+O(δ3−α),

(3.2.15)

with the modified truncation term O(δ3−α) coming from the fact that:

30 CHAPTER 3. DISCRETIZING THE PIDE

∫ ∞
y

∫ ∞
z

ν(w)dwdz

behaves like 1
yα−1 for y � 1, and simply integrating up the error term (for generalM and

G). A typical value for δ is in the magnitude 10−10. Hence the error of approximating
this term for y � 1 is negligable in the error analysis. So in the end, the integral
(3.2.13) is approximated by (3.2.15) for 0 < |y| ≤ δ and by a quadrature procedure
δ < |y| < hlog

2 . The particular choice of quadrature is the simpsons method. However,
certain measures needs to be taken to increase the speed of the computation. Because
even though (3.2.11) only needs to be computed once, calculating a triple integral with
such an irregular function as the CGMY measure with α ∈ [1, 2) is expensive. One option
is of course to precalculate two of the integrals at a preset list of points, and store both
the calculated values and the list of points in two vectors on the Hard Drive.

When the last integral is calculated, which needs to be done for each time the solution
algorithm is run, as typically hlog and Next differs (otherwise the full triple integral could
of course be precomputed and saved). These two vectors are loaded, and an interpolating
polynomial is created (PP) by linear interpolation, yielding the integrand:

kj = 2Cδ2−α

α(α−1)(2−α) +
∫ hlog

2
δ PP (y)dy +

∫ −δ
−
hlog

2

PP (y)dy j = 0

kj =
∫ hlogi+hlog

2

hlogj−
hlog

2

PP (y)dy j 6= 0

Thus reducing the runtime significantly, as opposed to calculating Nlog triple integrals.
Calculating this interpolating polynomial is typically done in 40 seconds, as will be shown
in the results chapter, regardless of the gridresolution.

Now the particular distribution of points at which the interpolating polynomial, PP ,
is precalculated has to be adressed. Due to the strong singularity, simply dishing the
points out equidistantly between δ and ∞ is of course not the solution.

By looking at the CGMY measure (2.1.7) displayed in (Figure 3.3) it is clear that a
logarithmically equidistant placement of points captures the singularity in a better way
than just dishing the points out equidistantly between ymin and ymax. It places more
points where the variations of ν(y) are largest, which is for small y. By computing two of
the integrals at this set of points for a prescribed set of CGMY parameters the running
time can be reduced significantly.

3.3 Speeding up the algorithm

The computational complexity, ie. O(N logN) pr. timestep is the fastest possible, and
computing the integral term faster than with FFT is simply not obtainable. There are
however a few tricks available to get a rather good speedup compared to a naive MATLAB

3.3. SPEEDING UP THE ALGORITHM 31

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7

8

9

10
x 10

19

y

ν(
y)

1 2 3 4 5 6 7 8 9 10

x 10
−10

0

1

2

3

4

5

6

7

8

9

10
x 10

19

y

ν(
y)

Figure 3.3: ν(y) for y > 0, M = 2, α = 1.5. To the left 100000 gridpoints are placed
equidistantly between ymin = 10−10 and ymax = 10. The first 5000 nodes are displayed
with a cross. To the right 100000 gridpoints are also placed between ymin = 10−10

and ymax = 10 such that the points are placed logarithmically equidistant. In a similar
manner as the figure to the left, only the first 5000 nodes are displayed. Clearly such a
placement captures the singularity in a better manner than the approach to the left.

implementation. First of all by lowering the actual amount of floating point operations
calculated, but also by lowering the time spent pr. FLOP. Perhaps the most obvious way
is to precompute everything that stays constant in time throughout the solution loop. As
θ = 0.5 due to the Crank Nicholson discretization in time, the following is precomputed
and stored in the new variables I1M̂ , I2M̂ , with M̂ being the operator related to the
local operators which will be introduced in the next subsection,

� I1M̂ = I + 0.5M̂
� I2M̂ = I − 0.5M̂ . The FFT of k (3.1.28) or (3.2.11) is also created and stored

before solving in time, plus different sets of index mapping needed in the interpolation.
The increased work pr. calculation of the integral term is limited to the above in-

terpolation procedure, which is not that bad at all, considering the dominating term is
the FFT and the inverse FFT, of order O(N logN). But the local check at each calcu-
lation point requires the use of a for-loop, which is not at all optimal when coding in
MATLAB. Hence the MEX-file system in MATLAB is employed [10]. Writing a MEX
wrap around function around your C++ code allows for function calls of C++ written
code from within MATLAB. The easy and intuitive memory handling within MATLAB,
combined with the raw speed of C++ when actually doing the calculations is a very
powerful feature. Which both is fast in terms of flops, but also fast to implement.

Not all of the calculations are written in C++, as MATLAB has a huge library of
compiled functions, which in most cases is hard to beat in terms of speed. However as
those functions are very general and allows a wide diversity of inputs, highly customized
code could reduce the runtime somewhat.

32 CHAPTER 3. DISCRETIZING THE PIDE

Although the C++/MEX framework really shines, compared to MATLAB, when it
comes to for-loops. Hence especially the 4th order interpolation is a good candidate for
a C++ implementation, as 1 such interpolation is performed each time the correlation
product is calculated, the speedup obtained on that spesific part of the code were found
to be around a factor 10.

3.4 Discretizing the local operators

First it is important to introduce the new PIDE:

uτ = (r − ω)SuS +
σ2S2

2
uSS − ru+ Ω(u). (3.4.1)

with Ω(u) defined as:

Ω(y) =

{∫∞
0 ∂y[u(Sey)](ν(y))dy −

∫ 0
−∞ ∂y[u(Sey)](ν(y))dy α ∈ (0, 1)∫

R\{0} ∂yyu(Sey)ν̂(y)dy α ∈ [1, 2)
(3.4.2)

and

ω =

{
ω1 α ∈ (0, 1)
ω2 α ∈ [1, 2)

(3.4.3)

with ω1 from (3.1.3) and ω2 from (3.2.5).
When it comes to discretizing the local operators, finite differences are being used. It

is important to assure global convergence which is achieved by Barles Souganidis if the
scheme used is consistent, L∞-stable and monotone. Consistency follows trivially from
the truncation error, which will be deduced later on, whereas stability in L∞ follows
by the use of a positive approximation of both the partial derivatives, interpolation and
integral plus a CFL which will be deduced later on.

As mentioned above, the use of a monotone approximation of the partial derivatives
is important to ensure convergence, hence the second derivative is approximated by a
central difference while the first derivative is chosen to be either forward/backward/-
central difference depending on whether it locally is a monotone approximation or not.
The local truncation error, at gridpoint i, of the central difference operator on the first
derivative can be shown via taylor expansion to be, assuming constant steplength h:

uS(Si) =
u(Si + h)− u(Si − h)

2h
− uSSS

h2

6
, (3.4.4)

whereas central difference applied to the second derivative yields the truncation error:

uSS(Si) =
u(Si + h) + u(Si − h)− 2u(Si)

h2
− h2

12
uSSSS . (3.4.5)

Forward/backward differences of the first derivative yields truncation errors:

uS(Si) =
u(Si + h)− u(Si)

h
− h

2
uSS (3.4.6)

3.4. DISCRETIZING THE LOCAL OPERATORS 33

uS(Si) =
−u(Si − h) + u(Si)

h
+
h

2
uSS (3.4.7)

ie only first order. However, as soon shall be revealed, the limited need for this discretiza-
tion does not lower the total convergence of the algorithm below second order, typically
only a few nodes in the grid employ this approximation. In particular the use of first
order discretization will only happen if:

σ2Si ≤ h|r − ω|, (3.4.8)

as Si = ih:
σ2i ≤ |r − ω|, (3.4.9)

which only might happen at a few nodes close to S = 0, as r and ω are small in magnitude.
For small S the solution is in fact very well approximated by a linear function and
convergence tests show the limited use of first order upwinding does in fact not degrade
convergence.

The mentioned discretizations of the first and second derivatives plus a discretization
in time by crank nicholson yields the following local equation system (3.4.10) (that is
without the integral operator which will be added later on):

(I − ∆t
2
M̂)un+1 = (I +

∆t
2
M̂)un (3.4.10)

I is the identity-matrix, ∆t the timestep and M̂ is given by:

[M̂un]i = −uni (αi + βi + r) + βiu
n
i+1 + αiu

n
i−1. (3.4.11)

αi is chosen locally to be one of αi,central, αi,forward and αi,backward by the positive
approximation criterion, similarily with βi. Where the α’s and β’s are defined by:

αi,central =
σ2
i S

2
i

h2
− (r − ω)Si

2h

βi,central =
σ2
i S

2
i

h2
+

(r − ω)Si
2h

αi,forward =
σ2
i S

2
i

h2

βi,forward =
σ2
i S

2
i

h2
+

(r − ω)Si
2h

αi,backward =
σ2
i S

2
i

h2
− (r − ω)Si

2h

βi,backward =
σ2
i S

2
i

h2
.

(3.4.12)

34 CHAPTER 3. DISCRETIZING THE PIDE

In all of these approximations central differences are used in the approximation of
the second derivative. Whereas the name (central, forward and backward) relates to the
type of discretisation of the first derivative. The choice on which approximation that are
used on the node i are according to (Algorithm 3).

Algorithm 3 Modifying the approximation of local derivatives to ensure monotonicity
1: if αi ≥ 0 AND βi ≥ 0 then
2: αi = αi,central
3: βi = βi,central
4: else if βi,forward ≥ 0 then
5: αi = αi,forward
6: βi = βi,forward
7: else
8: αi = αi,backward
9: βi = βi,backward

10: end if

This choice ensures a monotone approximation as of the former discussion.

3.5 Discretization in time

As mentioned Crank Nicolson is used in the integration in time, so for each timestep an
implicit equation-system needs to be solved, with the discretized derivatives presented
in the previous subsection,:

un+1 = un +
∆t
2

(M̂un + M̂un+1 + Ω(un) + Ω(un+1)

⇓

un+1 = [I − ∆t
2
M̂]−1([I +

∆t
2
M̂]un +

∆t
2

Ω(un+1) +
∆t
2

Ω(un))

(3.5.1)

with ∆t being the timestep. The equation system might seem odd, as un+1 is on the
right hand side. The correlation product is however only computed explicitly, which will
be shown in the next subsection how to solve (3.5.1) for each timestep.

3.6 Solving the system of equations

As mentioned, Crank Nicolson will be used, but still I have mentioned that the correlation
product only is computed explicitly to avoid solving a full system each timestep. So how
will this be done? The answer is to solve the system by a fixed point iteration, as in
[6], where Ω(un) is the calculated correlation product. Note that during this fixed point
iteration, the correlation is only calculated for known values uk.

3.7. TRUNCATION ERROR 35

Algorithm 4 The fixed point iteration
1: Let (un+1)0 = un, and ûk = (un+1)k

2: for k = 0, 1, 2, ... until conv criterion reached do
3: uk+1 = [I − ∆t

2 M̂]−1([I + ∆t
2 M̂]un + ∆t

2 Ω(ûk) + ∆t
2 Ω(un))

4: if ||ûk+1 − ûk||∞ < TOL then
5: break.
6: end if
7: end for

Convergence is however conditional, although by the CFL condition, which will be
deduced in the analysis chapter, convergence is assured in a low number of iterations,
essentially scaling like O(1) if the CFL condition is employed. Thus giving a total work
pr. iteration O(N logN) (inverting the tridiagonal matrix is done in O(N) thus the
calculation of the correlation product dominates).

The convergence results is however slightly worse than in [6], where unconditional
convergence is achieved, as of course can be expected due to the singular CGMY measure
used here, rather than the regular probability distribution assumed by [6].

3.7 Truncation error

As is explained in the previous section, the truncation error consists of:
1. Approximating the first/second derivatives. Discussion of this truncation error

is given in the subsection regarding discretization of the local operator, however under
some assumptions, the result is:

EdiscLocal = uSSK1h
2 + uSSSSK2h

2 (3.7.1)

2. Interpolating to the logarithmic grid and back again. The 4th order interpolation
introduced in a previous subsection is used so the error is on the form:

Einterp = O(h4) +O(h2
log) (3.7.2)

3. Approximating the integral (3.1.24) has error:

Eintegral = K3uxxxh
2−α
log α ∈ (0, 1)

(3.7.3)

Approximating the integral when α ∈ [1, 2) on the other hand, with 2nd order differ-
ences and 2nd order quadrature is used:

Eintegral = K4uxxxxh
3−α
log α ∈ [1, 2)

(3.7.4)

36 CHAPTER 3. DISCRETIZING THE PIDE

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

x

y

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

x

y

Figure 3.4: The computational Grid in the 2-Dimensional case. Blue line is where BC
are set, black crosses are the unknowns. Left: 16 nodes in each spatial direction yielding
a total of 256 unknowns. Right: 32 nodes in each spatial direction yielding a total of
1024 unknowns.

Although on a symmetrical measure convergence is improved to order 2.
4. The error of truncating the integral at y = −hlogNext and y = hlogNext can be

made arbitrarily small, by simply increasing the number of expanded values, as the levy
measure used decays exponentially, and as ν(|y|) < e−min(M,G)|y|, |y| > 1:

5. The error of using Crank-Nicholson:

Ecrank = K5uttt(∆t)2 (3.7.5)

with ∆t introduced earlier as the size of the timestep. Such that with bounded derivatives
up until uSSSS in S and to utt in t yields truncation errors of O(h2 + (∆t)2 + h3−α

log) for
α ∈ [1, 2), and O(h2 + (∆t)2 + h2−α

log) for α ∈ (0, 1)

3.8 Discretizing the 2D Option Pricing Problem

To test the efficiency of the algorithm we consider the 2D problem introduced in (Chapter
2). Throughout the article a completely equidistant grid is used on the 2D Option pricing
problem (2.1.8), having different steplengths in the x and y direction really is not a
problem, but to keep the notation to basics that will not be done. xmax is set equal to
ymax, such that the grid is turned into a perfect square (Figure 3.4).

In addition ρ will be set equal to zero. Such that the 2D problem will really be like
solving the 1D problem in each direction.

First the global numbering is introduced, where the numbering is such that increasing
x means increasing global number, l. So if the point xj = jh, yi = ih is numbered l, then
the point xj+1, yi is numbered l+1, and xj , yi+1 is numbered l+N . Now when assembling

3.8. DISCRETIZING THE 2D OPTION PRICING PROBLEM 37

the matrix operator for the local derivatives, it is important to keep in mind that these
derivatives, which involve closest neighbours in the x- and y-direction, are affected by
the dirichlet boundary conditions for the nodes where xi = h, yi = h, xi = Nh and
yi = Nh. The two latter are where the BC are set to zero and can thus be disregarded in
the further discussion, however on the two first lines, the dirichlet boundary conditions
needs to be incorporated in the equation system. In particular that is for the global
indices:

l = i 1 ≤ i ≤ N yi = h

l = 1 + iN 0 ≤ i ≤ N − 1 xi = h

(3.8.1)

So going from the local node numbering, where point (i,j) corresponds to x = ih and
y = jh, is illustrated when considering the global vector, where local indices are for
clarity:

u =

u1,1

u2,1

.

.
uN,1
u1,2

u2,2

.

.
uN,N−1

uN,N

(3.8.2)

The particular assembly of the matrix assiciated with the local operators is based on
the kronecker tensor product, ⊗, where the result is a large matrix formed by taking all
possible products between the two different matrices. If for example B is a two by two
matrix, and C is a matrix of arbitrary size:

B ⊗ C =
[
B(1, 1)C B(1, 2)C
B(2, 1)C B(2, 2)C

]
(3.8.3)

So by taking the kronecker tensor product between two N by N matrices, the result is a
N2 by N2 matrix.

Based upon section (3.4), the following matrices are assembled in the two spatial
coordinate directions x and y, but remember the α′s and β′s might be slightly different
for Ax and Ay, as σx, σy and the parameters in the two CGMY distributions might differ.
Hence αix, αiy, βix and βiy should really be used while describing the framework. When
describing Ax it is however clear that αi and βi implicitly means αix and βix. Likewise
for Ay.

38 CHAPTER 3. DISCRETIZING THE PIDE

Ax =

α1 β1 0
α2 α2 β2

α3 α3 β3

α4 α4 β4

. . .
αN−2 αN−2 βN−2

αN−1 αN−1 βN−1

0 αN αN ,

(3.8.4)

Ay = Ax − rIN , (3.8.5)

with IN being the identity matrix with size N by N , in the last equation the rIN term
has to be subtracted to avoid adding the ru term (2.1.8) twice.

Now with the kronecker tensor product introduced, the full operator for approximat-
ing the local terms are simply:

A2D = Ay ⊗ IN + IN ⊗Ax, (3.8.6)

yielding a block tridiagonal matrix, where αi,j = Ax(i, i) +Ay(j, j):

A2D =

α11 β1x β1y

α2x α21 β2x β1y

.
α2y 0 α12 β1x β2y

α2y α2x α22 β2x β2y

.
αN−1y αNx αNN−1 0 βN−1y

αNy 0 α1N β1x

.
αNy αNx αNN

. (3.8.7)

Presenting the non-zero entries in the above matrix while still maintaining clarity is a bit
of a problem. Although the two bands next to the diagonal corresponds to the derivatives
in the x direction. The zeros at the entries α1x (left to the diagonal) and βNx (right to
the diagonal) which appear with period N , are due to application of dirichlet boundary
conditions at x = Nh and x = h.

The other two off-diagonal bands appear with distance N from the diagonal and
correspond to the derivatives in the y-direction. As can be seen, the dirichlet boundary
conditions are naturally applied at α1y and βNy corresponding to y = h and y = Nh.

The boundary vector b resulting from applying BC is more tricky in this case than
in the 1 dimensional case. Where that vector simply had 1 non zero entry and due to
its simplicity only were implicitly incorporated within M̂ , 2N − 2 non-zero entries is the

3.8. DISCRETIZING THE 2D OPTION PRICING PROBLEM 39

result here, and due to the introduction of global indices needs to be explicitly addressed.
First remember that along the boundary lines x = h and y = h, the 1D problem needs to
be solved and used as BC. Say ux1D is the solution of the 1D problem in the x-direction
and uy1D the solution in the y-direction. These could potentially be different, as the
parameters in the CGMY distribution might differ as well as the volatilities (σx and σy).
Then the b turns out to be:

u =

α1xuy1D(1) + α1yux1D(1)
α1yux1D(2)
α1yux1D(3)

...
α1yux1D(N)
α1xuy1D(2)

0
...
0
...

α1xuy1D(3)
0
...

αNxuy1D(N)

(3.8.8)

With uncorrelated jumpterms the correlation integrals simply reduces to 1-Dimensional
integrals, which have allready been shown how to discretize and solve. The only problem
(again) is to keep track of the indices.

The particular integration in time is also in the 2D case handled implicitly, but at
a cost. Solving the band-triagonal system (N by N matrix with band-length N) has
complexity O(N3) with lu-factorization. Computing 2N2 correlation products (two cor-
relation products for each unknown, one in the x-direction and one in the y-direction)
has complexity O(N2 logN), hence the total complexity of the algorithm is O(MN3), as-
suming the fixed point iteration converges in O(1), which is the case if the CFL condition
is honored. The CFL condition for the total algorithm is that ∆t should be refined pro-
portionally to h2 to obtain monotonicity, hence the total complexity for the algorithm
is O(N5). If an explicit method is employed, the CFL condition will still asymptoti-
cally stay the same, and there will be no need to solve the equation system for each
timestep. The complexity will in that case be lowered to O(N2 logN) pr. timestep, and
O(N4 logN) in total. Such that there seems to be much to gain by dropping the operator
splitting approach and go all out explicit. The operator splitting approach is however
the choice in this case, to keep the 1D and 2D case similar, but note the fact that an
explicit scheme will be more efficient.

40 CHAPTER 3. DISCRETIZING THE PIDE

Chapter 4

Analysis

As hinted in the previous section, a key issue is the use of a monotone discretization
which is important in the subsequent analysis. In particular, let Lhu(x) be a discretized
operator, a monotone approximation of that operator is:

Lhu(x) =
∑
n

cn(u(x+ nh)− u(x)) cn ≥ 0 (4.0.1)

A monotone approximation of an integral simply requires the weights to be greater
than or equal to zero. Monotone approximation of the local operators follow by construc-
tion. Monotone interpolation requires that if the function is positive, the interpolated
function also is positive, which in any case is ok for linear interpolation. In addition the
4th order monotone interpolation used to obtain 2nd order convergence, is also monotone
by [9] on monotone data.

4.1 A monotone approximation of the integral operator, α ∈
(0, 1)

First consider the first order discretization of the integral when α ∈ (0, 1) (3.1.24) on the
logS-grid.

Ii =

j=Next∑
j=0

δy+ui+jk
+
j −

j=0∑
j=−Next

δy−ui+jk
−
j

 (4.1.1)

41

42 CHAPTER 4. ANALYSIS

Consider the first term of the sum first:

j=Next∑
j=0

δy+ui+jk
+
j =

j=Next∑
j=0

ui+j+1 − ui+j
hlog

k
+
j

=
j=Next∑
j=1

ui+j
hlog

(k+
j−1 − k

+
j)− ui

hlog
k

+
0 + ui+Next+1

kNext
hlog

=
j=Next∑
j=1

(ui+j − ui)(k̃+
j−1 − k̃

+
j) + (ui+Next+1 − ui)k̃Next

with k̃+
j = kj

hlog
. Now in the following the last term will be omitted in the subsequent

analysis, as k̃Next → 0 to keep the notation more compact. Via a similar prosedure on
the negative half axis, where backward differences are being employed:

−
j=0∑

j=−Next

δy−ui+jk
−
j = −

j=0∑
j=−Next

ui+j − ui+j−1

hlog
k
−
j

=
j=0∑

j=−Next

ui+j−1 − ui+j
hlog

k
−
j

=
j=−1∑

j=−Next

ui+j
hlog

(k−j+1 − k
−
j)− ui

hlog
k
−
0 +

ui−Next−1

hlog
k
−
−Next

=
j=−1∑

j=−Next

(ui+j − ui)(k̃−j+1 − k̃
−
j) + (ui−Next−1 − ui)k̃−−Next ,

with k̃−j = k
−
j

hlog
. Also in this case the last term will be omitted in the subsequent analysis,

as k−−Next → 0 to keep the notation more compact, it will not affect monotonicity as
k̃−Next > 0 and k̃Next > 0 Now in order for the discretization to be monotone:

k
−
j+1 ≥ k

−
j −Next ≤ j ≤ −1

k
+
j−1 ≥ k

+
j 1 ≤ j ≤ Next,

(4.1.2)

which is ok by the properties of the Levy measure (on the positive half axis ν is a
decreasing function of y, on the negative half axis ν is a decreasing function of −y, and
the length of each integral k+

j and k−j is the same ∀j (hlog), hence (4.1.2) holds.

4.2. A MONOTONE APPROXIMATION OF THE INTEGRAL OPERATOR, α ∈ [1, 2)43

4.2 A monotone approximation of the integral operator, α ∈
[1, 2)

For the 2nd order discretization of the second derivative term (3.2.7), the k-vector is
constructed as in (3.2.11), and the calculation is like:

Ii =
j=Next∑
j=−Next

δyyui+jkj =
j=Next∑
j=−Next

−2ui+j + ui+j−1 + ui+j+1

h2
log

kj

=
j=Next∑

j=−Next,j 6=0,1,−1

−2ui+j + ui+j−1 + ui+j+1

h2
log

kj −
ui
h2
log

(2k0 − k1 − k−1)

+
ui+1

h2
log

(k0 − 2k1) +
ui−1

h2
log

(k0 − 2k−1) +
ui−2

h2
log

k−1 +
ui+2

h2
log

k1

≈
j=Next−1∑

j=−Next+1,j 6=0

ui+j
h2
log

(−2kj + kj−1 + kj+1)− ui
h2
log

(2k0 − k1 − k−1)

≈
j=Next−1∑

j=−Next+1,j 6=0

(ui+j − ui)(k̃j−1 − 2k̃j + k̃j+1)

with k̃j = kj
h2
log

. The ≈ signs come from the fact that the terms involving k̃±Next are
omitted from this analysis for abbreviation as:

kNext → 0
k−Next → 0.

If Next is chosen such that k̃±Next is less than 10−15 (the accuracy of double precision
integers), which easily can be done due to the exponentially decreasing measure, the
above derivation is exact when computing numerically on a computer.

Now the discretization is monotone if

kj−1 − 2kj + kj+1 ≥ 0 ∀j 6= 0 (4.2.1)

which is ok for |j| > 1, as k then is monotone for fixed y. First as ν̂(y) is a convex
function (twicely integrated positive function) consider:∫ (j−1)hlog−

hlog
2

(j−1)hlog−
hlog

2

ν̂(y)dy − 2
∫ jhlog−

hlog
2

jhlog−
hlog

2

ν̂(y)dy +
∫ (j+1)hlog−

hlog
2

(j+1)hlog−
hlog

2

ν̂(y)dy

=
∫ jhlog+

hlog
2

jhlog−
hlog

2

ν̂(y − hlog)− 2ν̂(y) + ν̂(y + hlog)dy

44 CHAPTER 4. ANALYSIS

The integrand is greater than 0 for fixed y as it is convex, hence obtaning (4.2.1).
The calculation is a tad more tricky when j = ±1 for M 6= G, but asymptotically

monotonicity is achieved also in this case for α > 1, as regardless of the exponents M
and G, asymptotically the integrated measure at |y| � 1 will have the same scaling on
either side of y = 0, as α is the same for y > 0 and y < 0.

So the integral operator is a monotone approximation on the logarithmic grid. The
local operators is a monotone approximation on the S-grid, and a monotone interpolation
is used to interpolate back and forth between the grids. The question now being; is the
combined discretization a monotone approximation on the S-grid?

And the answer is, unfortunately, no. Because consider (4.0.1), and the fact that
the discrete gridpoints in the log-S grid and the S-grid does in fact not coincide. By
introducing the index-mapping between the two grids, following the notation by [6]:

SΥ(j) ≤ exj < SΥ(j)+1 (4.2.2)

Where xj were defined at (3.1.11). So the index-function Υ(j) denotes the value in the
S-grid being closest (while still being smaller than or equal) to the value at index j in
the logS-grid. And the mapping the other way around:

exΠ(i) ≤ Si < exΠ(i)+1 (4.2.3)

where exΠ(i) is the value closest (while still being smaller than or equal) to the value
at index i in the S-grid. Hence, interpolating the function u onto u(Si) with linear
interpolation can be expressed as:

u(Si) = θu(xΠ(i)) + (1− θ)u(xΠ(i)+1) (4.2.4)

with θ the interpolation weight, and interpolating the correlation I(u(xj)) onto I(u(Si))
can be expressed as (with only the integral on the positive half axis to avoid too much
notation):

I(u(Si)) = θ

j=Next∑
j=1

(uΠ(i)+j−uΠ(i))(k̃
+
j−1−k̃

+
j)+(1−θ)

j=Next∑
j=1

(uΠ(i)+j+1−uΠ(i)+1)(k̃+
j−1−k̃

+
j)

(4.2.5)
now again to express uΠ(i)+1 in terms of u (with linear interpolation):

uΠ(i)+1 = Φu(SΥ(Π(i)+1)) + (1− Φ)u(SΥ(Π(i)+1)+1) (4.2.6)

with Φ the new interpolation weights. Similarily with uΠ(i). It is quite clear that when
interpolating the sum in the logS-grid onto the S-grid, the correlation product can no
longer be written as (4.0.1), hence the approximation is not monotone in the S-grid.

The solution, if a monotone discretization on this particular problem is wanted, is
to transform the problem as explained in the introduction, transforming everything to
logarithmic variables, even the local operators. Hence getting the entire problem on the
same logS-grid, and not needing the interpolation back and forth.

The resulting PIDE and scheme is presented below:

4.3. AN EQUIVALENT, BUT EASIER, PIDE 45

4.3 An equivalent, but easier, PIDE

To obtain an equivalent, but easier, PIDE, transform the entire PIDE with the transfor-
mation x = log(S), and using the function v(x, t) = v(log(S), t). First observe that:

vS(x, t) =
1
S
vx(x, t)

vSS(x, t) =
1
S2
vxx(x, t)− 1

S2
vx(x, t) (4.3.1)

obtaining ([5] plus a partial integration of the integralterm):

uτ = (r − ω − σ2

2
)vx +

σ2

2
vxx − rv + Ω(v). (4.3.2)

where Ω(v) is defined as:

Ω(y) =

{∫∞
0 ∂y[v(x+ y)](ν(y))dy −

∫ 0
−∞ ∂y[v(x+ y)](ν(y))dy α ∈ (0, 1)∫

R\{0} ∂yyv(x+ y)ν̂(y)dy α ∈ [1, 2),
(4.3.3)

and ω is defined in (3.4.3). In the remaining parts of the Analysis section just let u = v
to ease the notation.

Equation (4.3.2) has everything on the same grid, and interpolation is hence not
necessary. Proving monotonicity and stability on this particular equation is easy. First
of all the local derivatives get slightly modified, but it is trivial to see what the new αi
and βi turns into, just apply the same central difference on the second derivative and the
choice between forward/backward and central on the first derivative as in (Algorithm 3).
In the following assume βi and αi are modified to be consistent approximations to (4.3.2)
so the total scheme on (4.3.2) turns out to be:

uk+1
i [1 +

∆t
2

(αi + βi + r)]− ∆t
2
βiu

k+1
i+1 −

∆t
2
αiu

k+1
i−1

=
∆t
2

Ωh(uk) +
∆t
2

Ωh(uk+1) +
∆t
2
βiu

k
i+1 + uki [1−

∆t
2

(αi + βi + r)] +
∆t
2
αiu

k
i−1

(4.3.4)

With Ωh being the discretized integral operator (3.1.24 if α ∈ (0, 1)) or (3.2.8 if α ∈ [1, 2)).
This scheme will be far easier to analyze than the interpolation back and forth. The
subsequent analysis will be done on the above scheme, with hlog being the stepsize in
both the local and the global operators.

4.4 Proving convergence of the fixed point iteration

Following the outlines from [6], the only difference would be the singular Levy measure,
which could and do actually impose restrictions on the ratio between time and space

46 CHAPTER 4. ANALYSIS

stepping to ensure convergence. It is easily seen from algorithm (4) that the error ek =
un+1 − ûk, with θ = 1

2 with the new scheme (4.3.4) satisfies:

ek+1
i [1 +

∆t
2

(αi + βi + r)]− ∆t
2
βie

k+1
i+1 −

∆t
2
αie

k+1
i−1 =

∆t
2

Ωh(ek)

=
∆t
2

j=Next∑
j=1

eki+j − eki
hlog

(k+
j−1 − k

+
j)

+
∆t
2

j=−1∑
j=−Next

eki+j − eki
hlog

(k−j+1 − k
−
j)(4.4.1)

Defining ||e||k+1
∞ = maxi |ei|k+1:

||e||n+1
∞ [1 +

∆t
2

(αi + βi + r)] ≤ ∆t
2
βi|ek+1

i+1 |+
∆t
2
αi|ek+1

i−1 |+ |
∆t
2

Ω(eki)|

≤ ∆t
2
βi||e||n+1

∞ +
∆t
2
αi||e||n+1

∞ + |∆t
2

Ωh(eki)|

⇓

||e||n+1
∞ [1 +

r∆t
2

] ≤ |∆t
2

Ω(eki)|

=
∆t
2

j=
Nlog

2
−1∑

j=1

|eki+j |
hlog

(k+
j−1 − k

+
j) +

|eki |
hlog

k
+
0

+

∆t
2

 j=0∑
j=−Nlog

2

|eki+j |
hlog

(k−j − k
−
j−1) +

|eki |
hlog

≤ ∆t

2

 ||e||k∞
hlog

j=
Nlog

2
−1∑

j=1

(kj−1 − kj) +
||e||k∞
hlog

k
+
0

+

∆t
2

 ||e||k∞
hlog

j=0∑
j=−Nlog

2

(k−j − k
−
j−1) +

||e||k∞
hlog

k
−
0

=

∆t2||e||k∞
hlog

(k−0 + k
+
0)

⇓

||e||k+1
∞ ≤ ∆t||e||k∞

hlog(1 + r∆t
2)

(k+
0 + k

−
0)

Hence as k
+
0

hlog
and k

−
0

hlog
scales like hαlog, convergence is asymptotically assured if ∆t

gets refined proportionally to hαlog.

4.5. CFL CONDITION 47

When α ∈ [1, 2) one achieves through a similar procedure as the above, asymptotic
scaling of ∆t like hαlog to ensure convergence of the fixed point iteration.

These conditions on ∆t with respect to h might seem like a problem, but they are
nevertheless honored due to the CFL condition in order to keep the scheme monotone,
where ∆t has to get refined proportionally to h2

log which is deduced in the following
subsection.

4.5 CFL condition

Now as every discretized operator is proven to be monotone, the full log-scheme (4.3.4)
can be shown to be monotone under a CFL condition. The monotonicity of the scheme is
important to ensure convergence via Barles-Perthame-Souganidis, which heuristically is
the || · ||∞ equivalent of the Lax equivalence theorem in || · ||2. If the scheme is consistent,
monotone (of positive type) and stable in ||·||∞ convergence is acheived by an adaptiation
of the Barles-Perthame-Souganidis procedure [2].

In order for a scheme to be monotone (of positive type) there exists coefficients b ≥ 0
under a CFL such that:

bn+1
i,i un+1

i −
∑
j 6=i

bn+1
i,j un+1

j −
∑
j

bni,ju
n
j = 0 (4.5.1)

By the discretized scheme (4.3.4) we see that:

bn+1
i,i = 1 + ∆t

2 (αi + βi + r + k̃+
0 + k̃−0)

bni,i = 1− ∆t
2 (αi + βi + r + k̃+

0 + k
−
0)

bn+1
i,i+1 = ∆t

2 (αi + k̃+
0 − k̃

−
1)

bn+1
i,i−1 = ∆t

2 (βi + k̃−0 − k̃
−
1)

bn+1
i,i+j = ∆t

2 (k̃−j+1 − k̃
−
j) j ≤ −2

bn+1
i,i+j = ∆t

2 (k̃+
j−1 − k̃

+
j) 2 ≤ j

bni,i−1 = ∆t
2 (βi + k̃+

0 − k̃
−
−1)

bni,i+1 = ∆t
2 (αi + k̃+

0 − k̃
+
1)

bni,i+j = ∆t
2 (k̃−j+1 − k̃

−
j) j ≤ −2

bni,i+j = ∆t
2 (k̃+

j−1 − k̃
+
j) 2 ≤ j

(4.5.2)

Where αi and βi is introduced earlier as discretization of the new local operator in the log-
variable.Now the only term which could possibly be less than zero is bni,i. Monotonicity
is achieved if:

∆t ≤ 2
αi + βi + r + k̃+

0 + k̃−0
(4.5.3)

48 CHAPTER 4. ANALYSIS

With αi +βi scaling like O(h−2
log), r being O(1) and k̃−0 and k̃+

0 scaling like O(hαlog).
Monotonicity is asymptotically achieved if:

∆t ≤ K

h2
log

, (4.5.4)

with K a constant. In a fully similar manner the CFL conditions for α ∈ [1, 2) are also
shown to be:

∆t ≤ 2
αi + βi + r + 2k0 − k1 − k−1

, (4.5.5)

with the same asymptotic scaling as (4.5.4).
A very interesting fact is, as hinted in (Chapter 2), that the brownian term can be

removed from the process since the dynamics of the jumps allready is rich enough to
generate nontrivial small time behaviour. With the brownian term removed, the second
derivative in the local operators will also vanish, and the CFL turns out to be that
when α ∈ (0, 1), ∆t should be refined proportionally to hlog asymptotically. And when
α ∈ [1, 2), ∆t should be refined proportionally to hαlog. This approach is not pursued
here, but will be discussed in the last chapter.

4.6 Stability in L∞

Consider the scheme when α ∈ (0, 1):
First note that:

∑
j 6=i

bn+1
i,j =

∆t
2

αi + βi +
j=Next∑
j=1

(k̃+
j−1 − k̃

+
j) +

j=−1∑
j=−Next

(k̃−j+1 − k̃
−
j))

=

∆t
2

(αi + βi + k̃+
0 + k̃−0) = bn+1

i,i − 1− r∆t
2

(4.6.1)

and

∑
j

bni,j =
∆t
2

(αi + βi +
j=Next∑
j=1

(k̃+
j−1 − k̃

+
j) +

j=−1∑
j=−Next

(k̃−j+1 − k̃
−
j)) + bni,i

=
∆t
2

(αi + βi + k̃+
0 + k̃−0) + 1− ∆t

2
(αi + βi + k̃+

0 + k̃−0 + r)

= 1− r∆t
2

(4.6.2)

then consider from (4.5.1):

4.6. STABILITY IN L∞ 49

bn+1
i,i un+1

i =
∑
j 6=i

bn+1
i,j un+1

j +
∑
j

bni,ju
n
j

⇓
bn+1
i,i |u

n+1
i | ≤

∑
j 6=i

bn+1
i,j |u

n+1
j |+

∑
j

bni,j |unj |

(4.6.3)

Defining ||e||k+1
∞ = maxi |ek+1

i |:

bn+1
i,i ‖u

n+1‖n+1
∞ ≤

∑
j 6=i

bn+1
i,j |u

n+1
j |+

∑
j

bni,j |unj |

≤ ‖u‖n+1
∞

∑
j 6=i

bn+1
i,j + ‖u‖n∞

∑
j

bni,j

= ‖u‖n+1
∞ (−1− r∆t

2
+ bn+1

i,i) + ‖u‖n∞
∑
j

bni,j

= ‖u‖n+1
∞ (−1− r∆t

2
+ bn+1

i,i) + ‖u‖n∞(1− ∆tr
2

)

⇓

‖un+1‖n+1
∞ ≤

1− ∆tr
2

1 + ∆tr
2

‖u‖n∞

≤

(
1− ∆tr

2

1 + ∆tr
2

)2

‖u‖n−1
∞

...

≤

(
1− ∆tr

2

1 + ∆tr
2

)n+1

‖u‖0∞

(4.6.4)

Hence stability in L∞ is obtained, and the modified PIDE is assured to converge by a
Barles-Perthame Souganidis procedure [2].

The case when α ∈ [1, 2) can also be proved by (4.6.4) as (4.6.1) and (4.6.2) also
holds in that case with positive coefficients under a CFL.

50 CHAPTER 4. ANALYSIS

Chapter 5

Results

What is important is to verify each individual part of the code and then the algorithm
as a whole to reduce the probability of having a wrong implementation, and verify the
theory. First convergence tests are run on the two different algorithms for approximating
the global operator, when α ∈ (0, 1) and α ∈ [1, 2). Then convergence tests are run on the
full PIDE, both when α ∈ (0, 1) and α ∈ [1, 2). In the end, solutions for different values
of the parameters are displayed and discussed. Throughout this chapter the parameters
are set to (Table 5.1), otherwise it will explicitly be stated.

C = 0.1
G = 5
M = 5
σ = 0.15
r = 0.05
T = 0.25
K = 3
Smax = 15
S0 = 0,

Table 5.1: Parameters when approximating the equation.

As exact solutions are not available, it is not possible to verify the complete cor-
rectness of the algorithm as a whole. I can only show that the algorithm approaches a
solution with the correct rate, i.e. numerical convergence.

On the algorithms for approximating the integral terms, when α ∈ (0, 1) and α ∈
[1, 2), it is possible to compute the integrals directly with a high level of accuracy with
quadrature, and use these computed integrals as exact solutions. It is the integral terms
that are exciting and new, and hence emphasis in the convergence analysis will be given
on them. The particular function which will be tested when calculating the correlation-
product is a solution ’looking like’ the option price. In order to have enough derivatives
available it will be the solution:

51

52 CHAPTER 5. RESULTS

0 5 10 15
0

0.5

1

1.5

2

2.5

3

S

Figure 5.1: The solution used to calculate the correlationproduct.

u(x, t) = max
(

(K − x)5

K4
, 0
)
, (5.0.1)

plotted in (Figure 5.1).
When considering the convergence results, first consider the fact that it is anticipated

that the numerical error e = uexact − uh, where uexact is the exact solution, and uh the
numerically calculated solution with stepsize h, should behave like:

e = KhR (5.0.2)

with K just a constant and R the convergence rate. Now consider having two different
solutions with different stepsizes:

e1 = KhR1

e2 = KhR2

⇓
log(e1) = log(K) +Rlog(h1)
log(e2) = log(K) +Rlog(h2)

⇓

R =
log(e1)− log(e2)
log(h1)− log(h2)

(5.0.3)

5.1 The integral term, α ∈ (0, 1)

The theoretical result is that the approximation of the integral term when α ∈ (0, 1)
should be of order 2−α. From the convergence tests run, which are plotted in (Figure 5.2)

5.1. THE INTEGRAL TERM, α ∈ (0, 1) 53

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

h
log

||E
rr

or
|| ∞

α =0.9
α =0.5
α =0.1

Figure 5.2: Convergence in L∞ on the correlation product alone, α = 0.9 (blue), α = 0.5
(green), α = 0.1 (red). M = G = 5 in all three plots

and described in (Table 5.2), this α-dependent convergence is verified by the numerical
implementation. There is however a tendency of increasing rate as the grid gets refined,
and it would be interesting to see if the increasing rate continues, reaching order 2
asymptotically, but the runtime of the quadrature reference solution currently limits this
approach.

The calculated correlation (on the function 5.0.1) is also plotted for increasing value
of α and for fixed α with asymmetric M and G (Figure 5.3). It is the entire integral
term: ∫

R\{0}
[u(Sey)− u(S)− S(ey − 1)

∂u

∂S
]ν(y)dy,

that is depicted, and not just the part calculated via FFT. This is done to be able to
compare the correlationproducts when α ∈ (0, 1) and α ∈ [1, 2), and to see what the
total contribution to the Black Scholes PDE in reality turns out to be (remember with
ν(y) = 0, the Black Scholes PDE is obtained). As seems to be the case, there is a strictly
positive contribution, which should lead to increased option values. The integral also
seems to be an increasing function of α, which heuristically amounts to higher risk.

The exponents M and G determines the tail behaviour, such that for small M , the
probability of a large upwards movement is big, and for small G the probability of a large
downward movement is big. Hence increasing M and G decreases risk and vice versa.
This behaviour is confirmed in (Figure 5.4), where increasing M and G decreases the
contribution from the integral term.

54 CHAPTER 5. RESULTS

0 5 10 15
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

S

α=0.2
α=0.5
α=0.8

0 5 10 15
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

S

M=G=5
M=20,G=5
M=5,G=20

Figure 5.3: The correlationproduct calculated for different values of the parameters while
α ∈ (0, 1). Left: α = 0.2 (red), α = 0.5 (blue), α = 0.8 (green) C = 1, G = M = 5 in
all three plots. Right: α = 0.5 and C = 1 in all three plots. M = G = 5 (red), M = 5,
G = 20 (blue) G = 20, M = 5 (green).

0 5 10 15
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S

M=G=2
M=G=5
M=G=10

Figure 5.4: The integral term plotted for increasing exponents, M = G = 2 (red),
M = G = 5 (green), M = G = 10 (blue). α = .5, C = 1 in all three plots

5.2. THE INTEGRAL TERM, α ∈ [1, 2) 55

hlog ‖Eα=0.1‖∞ Rα=0.1 ‖Eα=0.5‖∞ Rα=0.5 ‖Eα=0.9‖∞ Rα=0.9

1.8483e-01 2.6750e-02 N/A 1.2743e-01 N/A 1.7290e+00 N/A
1.1179e-01 1.2153e-02 1.5690 6.5611e-02 1.3203 1.0140e+00 1.0614
6.6014e-02 5.1740e-03 1.6209 3.1988e-02 1.3636 5.7416e-01 1.0796
3.8204e-02 2.0785e-03 1.6675 1.4911e-02 1.3955 3.1675e-01 1.0875
2.1745e-02 7.9475e-04 1.7060 6.6765e-03 1.4259 1.7023e-01 1.1018
1.2208e-02 2.9176e-04 1.7357 2.8956e-03 1.4469 8.9620e-02 1.1113
6.7756e-03 1.0356e-04 1.7591 1.2231e-03 1.4637 4.6298e-02 1.1218
3.7247e-03 3.5698e-05 1.7801 5.0448e-04 1.4801 2.3439e-02 1.1376
2.0312e-03 1.1961e-05 1.8032 2.0282e-04 1.5026 1.1554e-02 1.1664
1.1000e-03 3.8689e-06 1.8405 7.8574e-05 1.5464 5.4505e-03 1.2252

Table 5.2: Convergence of the integral approximation when α = 0.1,α = 0.5, α = 0.9.
C = 1,M = G = 5 for all values of α.

5.2 The integral term, α ∈ [1, 2)

Now in this case the 2nd order convergence which were anticipated on a symmetric
measure is clearly verified by the numerical experiments (Figure 5.5) and (Table 5.3),
although the constant in front of the error seems to be increasing for increasing α.

The convergence gets degraded when M 6= G, but the experiments indicate conver-
gence does not get fully degraded to O(h3−α

log) (Table 5.4) and (Figure 5.6), and also in
this case the rate seems to be increasing as the grid gets refined.

The correlation is plotted for different values of α,M and G (Figure 5.7), where again
the entire integral is calculated, not just the part calculated via FFT. In addition a plot
where α = 0.999 is plotted vs α = 1.001, indicating the transition from α ∈ (0, 1) to
α ∈ [1, 2) is in fact smooth (Figure 5.8).

hlog ‖Eα=1.1‖∞ Rα=1.1 ‖Eα=1.5‖∞ Rα=1.5 ‖Eα=1.9‖∞ Rα=1.9

6.6014e-02 3.0643e-03 N/A 1.0651e-02 N/A 9.5271e-02 N/A
3.8204e-02 8.2566e-04 2.3978 2.7267e-03 2.4915 2.2668e-02 2.6252
2.1745e-02 2.5559e-04 2.0807 7.9840e-04 2.1795 6.1547e-03 2.3134
1.2208e-02 1.2070e-04 1.2995 4.1653e-04 1.1270 3.5354e-03 0.9602
6.7756e-03 3.6883e-05 2.0137 1.2772e-04 2.0077 1.0869e-03 2.0032
3.7247e-03 1.1368e-05 1.9670 3.9694e-05 1.9532 3.3585e-04 1.9629
2.0312e-03 3.3871e-06 1.9968 1.1877e-05 1.9897 1.0045e-04 1.9905
1.1000e-03 9.8858e-07 2.0081 3.4820e-06 2.0009 2.9533e-05 1.9962

Table 5.3: Convergence of the integral approximation, α = 1.1,α = 1.5, α = 1.9. C = 1,
M = G = 5 for all values of α.

56 CHAPTER 5. RESULTS

hlog ‖Eα=1.1‖∞ Rα=1.1 ‖Eα=1.5‖∞ Rα=1.5 ‖Eα=1.9‖∞ Rα=1.9

6.6014e-02 2.1727e-03 N/A 6.9380e-03 N/A 6.0945e-02 N/A
3.8204e-02 8.6229e-04 1.6898 3.0304e-03 1.5145 2.0667e-02 1.9773
2.1745e-02 3.2604e-04 1.7257 1.3227e-03 1.4710 8.2072e-03 1.6388
1.2208e-02 1.2151e-04 1.7095 5.6321e-04 1.4789 3.7193e-03 1.3709
6.7756e-03 4.1424e-05 1.8279 2.2274e-04 1.5755 1.6454e-03 1.3851
3.7247e-03 1.3468e-05 1.8777 8.2009e-05 1.6699 6.9420e-04 1.4423
2.0312e-03 4.2918e-06 1.8860 2.8193e-05 1.7608 2.7296e-04 1.5393
1.1000e-03 1.2926e-06 1.9569 9.1360e-06 1.8376 1.0009e-04 1.6359

Table 5.4: Convergence of the integral approximation, α = 1.1,α = 1.5, α = 1.9. C = 1,
M = 5, G = 20 for all values of α

5.3 The full PIDE

On the full PIDE, the CFL condition deduced to obtain monotonicity on the simpler
problem (4.3.2) will be used on the ’harder’ problem implemented, even though it will
not be monotone anyway, it will give a nice picture of the computational complexity.
With the CFL that the timestep should scale like the stepping in space squared the
computational complexity turns out to be O(N3 logN), hence by increasing the number
of nodes in the grid by a factor two, the runtime would increase by a factor slightly over 8.
The particular runtime is displayed in (5.5) for α ∈ (0, 1) and (5.6) for α ∈ [1, 2) with Tpre
denoting the time to preprocess, ie. constructing all the vectors that remains constant
in time, and the particular index mapping. The time to preprocess is clearly higher in
the case when α ∈ [1, 2) due to the fact that the interpolating polynomial is created for
each time the algorithm is run. This is of course not necessary in the convergence test,
as the parameters stay fixed, but is nevertheless performed to highlight this fact, which
in general will be the cost of running this algorithm.

Truntime denotes the time taken to run the full solution loop. As can be seen, the
scaling slowly approaches the factor 8 in both cases, as can be expected when doubling
the number of nodes in the grid for each iteration.

The full solution of the option pricing problem is also plotted vs the reference Black
Scholes solution (Figure 5.10) and (Figure 5.11). As can be expected, as the correlation
integral seems to be increasing with α, the option price also seems to be an increasing
function of α, which heuristically is to be expected, as high values of α amounts to higher
values of risk.

In the end the solution of the 2 dimensional problem is also solved and plotted in
(Figure 5.12), where half of the grid is removed before the plotting, as the function will
only be zero at these points anyway. The solution of the 2 dimensional problem, with
computational complexity of O(N5) with lu-factorization and a CFL condition as in the
1D case, hits unfeasible problem sizes very fast. Alternative aproaches, that could lower
the complexity and make 2 dimensional problems more feasible, are discussed in the last
chapter.

5.3. THE FULL PIDE 57

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

h
log

||E
rr

or
|| ∞

α =1.9

α =1.5

α =1.1

Figure 5.5: Convergence in L∞ on the correlation product alone, α = 1.9 (blue), α = 1.5
(green), α = 1.1 (red). M = G = 5 in all three plots

hlog ‖Error‖∞ R Tprepross (s) Truntime (s)
1.5651e-01 8.6996e-03 N/A 0.8 0.9
8.8018e-02 5.0329e-03 0.9507 0.8 1.0
4.9120e-02 2.6598e-03 1.0933 0.9 1.6
2.7182e-02 1.2022e-03 1.3419 1.0 4.4
1.4920e-02 5.4286e-04 1.3256 1.3 15.3
8.1307e-03 2.2255e-04 1.4687 1.9 84.5
4.4020e-03 8.2319e-05 1.6208 3.2 560.9

Table 5.5: Convergence of the full algorithm, α = 0.5

hlog ‖Error‖∞ R Tprepross (s) Truntime (s)
1.565171e-01 1.724151e-02 N/A 41.1 0.07
8.801869e-02 7.936607e-03 1.347832 41.2 0.3
4.912067e-02 2.641209e-03 1.886348 41.3 1.3
2.718224e-02 8.276612e-04 1.961056 41.4 7.5
1.492098e-02 2.447882e-04 2.031042 41.6 49.1
8.130759e-03 7.160766e-05 2.024647 42.3 332.1
4.402009e-03 1.996176e-05 2.081809 43.0 1954.4

Table 5.6: Convergence of the full algorithm, α = 1.5

58 CHAPTER 5. RESULTS

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

h
log

||E
rr

or
|| ∞

α =1.9

α =1.5

α =1.1

Figure 5.6: Error in ‖ · ‖∞ α ∈ [1, 2) M = 20, G = 5

0 5 10 15
0

1

2

3

4

5

6

7

S

α=1.2
α=1.5
α=1.8

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

S

M=G=5
M=20,G=5
M=5,G=20

Figure 5.7: The correlationproduct calculated for different values of the parameters while
α ∈ [1, 2). Left: α = 1.2 (green), α = 1.5 (blue), α = 1.8 (red) C = 1, G = M = 5 in
all three plots. Right: α = 1.5 and C = 1 in all three plots. M = G = 5 (red), M = 20,
G = 5 (blue) G = 5, M = 20 (green).

5.3. THE FULL PIDE 59

0 5 10 15
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

S

α=0.999
α=1.001

Figure 5.8: Correlation plotted for α = 0.999 and α = 1.001 indicating the transition
from α ∈ (0, 1) to α ∈ [1, 2)

Figure 5.9: The error (uexact−uh) on the full PIDE, with hlog = 4.4e−03. Left: α = 0.5.
Right: α = 1.5.

60 CHAPTER 5. RESULTS

0 5 10 15
0

0.5

1

1.5

2

2.5

3

α=0.9
Black Scholes solution
α = 0.5
α = 0.2

0 5 10 15
0

0.5

1

1.5

2

2.5

3

S

u(
S

,t=
0.

25
)

Black Scholes solution
α =1.2
α =1.5
α =1.8

Figure 5.10: The solutions plotted with increasing α against the reference Black Scholes
solution (blue). Left: α = 0.1 (magenta), α = 0.5 (red) and α = 0.9 (green). Right:
α = 1.2 (magenta), α = 1.5 (green) and α = 1.8 (red). On the plot to the left C = 1 to
emphasis the difference, otherwise all parameters are set equal to (Table 5.1).

0 5 10 15
0

0.5

1

1.5

2

2.5

3

S

u(
S

,t=
0.

25
)

α=1.8
α=1.3
α=0.8
α=0.3

Figure 5.11: The full solution plotted with increasing α. α = 0.2(magenta), α =
0.8(green), α = 1.3 (blue), α = 1.8 (red).

5.3. THE FULL PIDE 61

0

5

10
0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

3

y
x

Figure 5.12: The solution of the 2-dimensional problem

62 CHAPTER 5. RESULTS

Chapter 6

Conclusion and Future Work

To conclude, the two new schemes presented with the auxiliary logarithmic grid will not
be monotone. But by a simple logarithmic transformation, obtaining an easier problem,
both schemes are proven to be monotone, consistent and stable in L∞, hence convergent
by Barles-Perthame Souganidis and the discussion in the Analysis. This approach does
however come at a cost, as some generality is lost in the transformation. The lesson
being, as also is the case in financial markets; there is no free lunch. By obtaining a
lower computational complexity, some of the properties of the algorithms in [8] is lost by
this approach, either the generality or the monotonicity.

The numerical results verifies the α-dependent convergence, expected by the imple-
mentation chapter, with convergence lying in between 1st and 2nd order. The solution
of the full algorithms behave according to what is to be expected, with slightly increased
option prices compared to the Black-Scholes model, as the risk has been increased via
the introduction of an infinite activity jump process.

Although the integration in time was handled by an operator splitting approach,
there was not much to gain by this approach. Implicit methods are mainly employed
to relax harsh CFL conditions that could arise from explicit schemes. By doing more
work in each iteration, but performing fewer steps in time, overall CPU-time could be
saved. This is not the case here. The asymptotic CFL condition is easily seen to be
the same in the implicit as the explicit case, that is ∆t should be refined proportionally
to h2. The positive side being the increased work pr. iteration is low in the 1D case,
implying that this approach yields roughly the same total work as an explicit method.
In the 2 dimensional case however, solving the N by N matrix system which arises
from the discretization of the local operators, has an impact in this implicit approach,
yielding computational complexity of O(N5). A fully explicit method would lower the
computational complexity to O(N4 logN) as discussed during the introduction of the
discretized scheme.

As mentioned (in Chapter 2 and 5), if the brownian term is removed, the CFL con-
dition gets relaxed. Hence when α ∈ (0, 1), ∆t should be refined proportionally to h. In
that case, very fast algorithms can be constructed which will still maintain monotonicity.
For instance the full running time of the 1D algorithm when α ∈ (0, 1) gets lowered from

63

64 CHAPTER 6. CONCLUSION AND FUTURE WORK

O(N3 logN) to O(N2 logN), which seems very appealing. When α ∈ [1, 2) the CFL
condition gets relaxed to hα, yielding the somewhat lower complexity from O(N3 logN)
to O(Nα+1 logN). This is an approach that shows promise, and could result in very fast
and efficient algorithms, while still having rigorous convergence properties.

Bibliography

[1] Ariel Almendral and Cornelis W. Osterlee. Accurate evaluation of european and
american options under the cgmy process. SIAM J. Sci. Comput., 29(1), 2007.

[2] Guy Barles and Panagiotis E Souganidis. Convergence of approximation schemes
for fully nonlinear second order equations. Asymptotic Anal, (3):271–283, 1991.

[3] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities.
The Journal of Political Economy, 81(3):637–654, 1973.

[4] P.P. Carr, H Geman, D.B Madan, and M Yor. The fine structure of asset returns:
An empirical investigation. J. Of Business, 75:305–332, 2002.

[5] Rama Cont and Peter Tankov. Financial Modelling with Jump Processes. Chapman
and Hall, 2004.

[6] Y. D’Halluin and P. A. Forsyth. Robust numerical methods for contingent claims
under jump diffusion processes. IMA Journal of Numerical analysis, 25(1):87–112,
2005.

[7] Matteo Frigo and Steven G. Johnson. www.fftw.org. The particular fast fourier
algorithm used.

[8] Espen R. Jakobsen, Imran H. Biswas, and Kenneth H. Karlsen. Difference quadra-
ture schemes for nonlinear degenerate parabolic integro-pde. working paper, 2008.

[9] Espen R. Jakobsen and Kristian Debrabant. Consistent and easy to implement
monotone schemes for the bellman equation of optimal control. working paper,
2008.

[10] Mathworks. http://www.mathworks.com/support/tech-
notes/1600/1605.html?bb=1. MATLAB MEX documentation.

[11] William H Press, Saul A. Teukolski, William T. Vetterling, and Flannery Brian P.
Numerical Recipes in C: The Art of scientific computing. Cambridge University
Press, 1992.

[12] Mark Yoshi. Concept and practice of mathematical finance. Cambridge, 2003.

[13] S Zhang and J Jin. Computation of special functions. Wiley, 1996.

65

	Title Page
	Problem Description
	masteroppgave.pdf

