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Abstract— Model predictive control is a popular control
approach for multivariable systems with important process
constraints. The presence of significant stochastic uncertainties
can however lead to closed-loop performance and infeasibility
issues. A remedy is given by stochastic model predictive
control, which exploits the probability distributions of the un-
certainties to formulate probabilistic constraints and objectives.
For nonlinear systems the difficulty of propagating stochastic
uncertainties is a major obstacle for online implementations.
In this paper we propose to use Gaussian processes to obtain
a tractable framework for handling nonlinear optimal control
problems with Gaussian parametric uncertainties. It is shown
how this technique can be used to formulate nonlinear chance
constraints. The method is verified by showing the ability of
the Gaussian process to accurately approximate the probability
density function of the underlying system and by the closed-
loop behaviour of the algorithm via Monte Carlo simulations
on an economic batch reactor case study.

I. INTRODUCTION

The only advanced control method that has been employed
to a significant extent in industry is model predictive control
(MPC). MPC refers to a control approach that explicitly uses
a dynamic model to evaluate a sequence of control actions at
each sampling time by solving an optimal control problem
(OCP). The success of MPC can be largely attributed to
its ability to deal with multivariable plants and process
constraint [1].

Many problems however are affected by uncertainties,
including inaccuracies from the parameters in the dynamic
model and external disturbances. Robust MPC (RMPC)
methods have been proposed to handle uncertain systems for
which the uncertainties are assumed to be in a bounded set
[2]. For robust nonlinear MPC (RNMPC), min-max NMPC
[3] and tube-based NMPC [4] have been introduced among
others. These approaches enable analysis of the stability and
performance of the system in the worst-case, which may
however have a very small chance of occurrence and hence
lead to a too conservative solution [5].

An alternative to robust MPC is given by stochastic MPC
(SMPC), which assumes the uncertainties to be described
by known probability density functions (pdf). Constraints in
this context are given by chance or expectation constraints.
SMPC alleviates the previously described problem by allow-
ing for a level of constraint violation in probability, which
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leads to a trade-off between risk of constraint violation and
closed-loop control performance [6].

Most work in SMPC has been on linear systems, e.g.
stochastic tube based MPC [7], [8], scenario-based MPC [9],
[10] and affine-parametrization approaches [11], [12], while
stochastic NMPC (SNMPC) has received relatively little
attention [6]. This can be in part explained by the difficulty of
propagating stochastic uncertainties through a nonlinear sys-
tem model without being prohibitively expensive. An excep-
tion are Markovian systems with finite possible realizations
of the stochastic uncertainties, for which efficient algorithms
are available [13]. Several methods have been proposed to
propagate uncertainties through nonlinear systems, such as
Monte Carlo sampling (MC), generalized polynomial chaos
expansions (gPCe), Gaussian closure, equivalent lineariza-
tion and stochastic averaging [14].

A simple procedure to solve the SNMPC problem for
moderately nonlinear systems is given by successive lin-
earization and application of linear SMPC algorithms, such
as stochastic tube based MPC [15]. In [16], [17] stochastic
averaging is applied using the unscented transformation,
which is computationally efficient, but similar to the lin-
earization approach only applicable to moderately nonlinear
systems. [18] used a sampling average approach to obtain a
tractable OCP formulation. The required number of samples
was reduced by employing variance reduction techniques.
In [19] Markov Chain MC was used to solve the nonlinear
MPC problem, which however quickly becomes prohibitive
in complexity. In particular, the Markov Chain MC approach
suggested tries to find the global optimum, which is only
applicable to low dimensional problems. For continuous time
the Fokker-Planck equations can be used to predict the pdf
of the states over time, which has been used in [20]. A
Lyapunov function is included in the SNMPC formulation
to guarantee probabilistic stability, however feasibility is not
ensured and the method is expensive due to the requirement
of solving a partial differential equation system online.

Lastly, much of the research in SNMPC has been con-
cerned with the application of gPCe, which describes a
procedure of propagating uncertainties through a nonlinear
model as an efficient alternative to MC sampling by utilising
orthogonal polynomials [21]. For SNMPC these methods rely
on running several realizations of the uncertain parameters,
while solving a least-squares problem to calculate the coef-
ficients of the orthogonal polynomials for every iteration of
the control inputs [22], [5], which is known as non-intrusive
gPCe. Alternatively, Galerkin projection may be used to de-
termine the coefficients of the orthogonal polynomial, which



however is only applicable to polynomial-type systems [23].
The chance constraints are either reformulated as second-
order cone constraints or using direct MC sampling on the
polynomial chaos expansion itself [23]. [24] shows how
gPCe can in addition be used for additive disturbances of
nonlinear systems, while [25] utilises gPCe to solve a MPC
problem for model maintenance by designing experiments
online. While gPCe constitute a promising approach for
SNMPC, there are several disadvantages. The complexity
of gPCe grows exponentially with the number of uncertain
parameters, orthogonal polynomials of high orders are prone
to unstable swings, time-varying disturbances are difficult to
handle and lastly the expansion is only exact as the number
of terms tends to infinity [26], [6].

In the statistics community the use of gPCe is rare and
instead Gaussian processes (GP) are used for uncertainty
quantification in ”Bayesian calibration” by running differ-
ent realizations of the uncertain parameters [27], [28]. An
excellent comparison of gPCe to GPs is given in [26].

Gaussian process models are probabilistic, non-parametric
models that not only provide predictions, but also prediction
uncertainties. GPs have been shown to be a powerful tool in
single- [29] and multi-objective optimization [30] by exploit-
ing the uncertainty measure to sample functions efficiently.
GPs have found various applications in MPC. GPs have been
shown to be an efficient alternative to neural network models
to identify nonlinear models from data for NMPC [31] with
successful application to a gas-liquid separation plant [32]. In
addition, GPs have been used to identify disturbance models
online. For example, in [33] the GP is used to overcome
unmodelled periodic error and in [34] to update a model
after a fault has occurred. In [35] it is shown how the GP can
be used to model residual model uncertainty and formulate
chance constraints based on the Gaussian distribution of the
states.

In this paper we propose the use of GPs as an alternative
to non-intrusive gPCe for SNMPC. The main advantage
of using GPs over gPCe in SNMPC is the fact that the
uncertainty involved from the approximation of the true
model by a finite number of samples is taken into account,
which is otherwise ignored by the gPCe. In addition, GPs are
not prone to unstable swings and are interpolating, i.e. pass
exactly through all sample points provided, but otherwise
suffer from the same drawbacks as gPCe. The novelty in
this paper is the application of GPs to learn the mapping
between uncertain parameters and model outputs for SNMPC
applications.

The remainder of the paper is structured as follows. In
Sec. II a stochastic nonlinear OCP is formulated. Sec. III
introduces Gaussian Process regression with equations to
estimate the exact mean and variance from uncertain inputs.
In Sec. IV it is shown how the stochastic nonlinear OCP can
be approximately solved by employing GPs and how this can
be applied in a receding horizon fashion for SNMPC. Lastly,
Sec. V tests the approach on a batch reactor case study by
comparing open-loop predictions of the pdf and closed-loop
performance via Monte Carlo simulations.

II. STOCHASTIC NONLINEAR OPTIMAL CONTROL
PROBLEM FORMULATION

In this work we consider a general discrete time stochastic
nonlinear system with parametric uncertainties:

x(k+1) = f(x(k),u(k),θθθ) (1)

where k represents the discrete time, x(k) ∈ Rnx are the
states, u(k)∈Rnu are the control inputs, θθθ ∈Rnθ denotes the
uncertain model parameters and f : Rnx ×Rnu ×Rnθ → Rnx

represents the nonlinear system dynamics. The parametric
uncertainties are assumed to be jointly Gaussian distributed
with known mean mθθθ ∈ Rnθ and known covariance ΣΣΣθθθ ∈
Rnθ×nθ , which fully specifies the pdf of θθθ .

Based on (1), we formulate an OCP. Assuming that the
system states are measured at all times, a general OCP can
be given as follows:

Finite-horizon nonlinear OCP with chance constraints
minimize

uN
E(J(N,xt ,uN ,θθθ))+ωVar(J(N,xt ,uN ,θθθ))

subject to
x(k+1) = f(x(k),u(k),θθθ) ∀k ∈ {0, ...,N−1}

P(g(k)j (x(k),u(k),θθθ)≤ 0)≥ 1− p(k)j

∀(k, j) ∈ {1, . . . ,N}×{1, . . . ,n(k)g }
u(k) ∈ Uk ∀k ∈ {0, ...,N−1}
x(0) = xt

(2)
where the length of the time horizon is given by N, the
objective consists of the expectation and variance of a
nonlinear function J(N,xt ,uN ,θθθ) weighted by ω , g(k)j :Rnx×
Rnu×Rnθ →R are individual nonlinear chance constraints of
which there are n(k)g for each discrete time k, p(k)j ∈ [0,1]⊂R
is the desired probability of constraint violation with respect
to g(k)j , the input constraints are represented by Uk, uN :=
{u(0), . . . ,u(N−1)} is a collection of inputs and lastly xt is
the initial state, which is assumed to be known.

The goal of the stochastic nonlinear OCP is to calculate
an optimal control sequence over a finite time horizon that
adjusts the pdfs of the states to obtain the optimal value
of the probabilistic objective function, while allowing for a
predefined violation of the stochastic nonlinear constraints.

III. GAUSSIAN PROCESS REGRESSION

In this section we give a short introduction to GP re-
gression specific for our purposes. For a more general
review, please refer to [36], [37]. GP regression describes
the inference of an unknown function ξ : Rnθ → R from
data. The purpose of GPs in our case is to determine an
unknown transformation ξ (θθθ) with respect to the uncertain
parameters, hence the input dimension nθ .

GPs describe a distribution over functions and can be seen
as a generalisation of multivariate Gaussian distributions. A
GP, ξ ∼ GP(m(·),k(·, ·)), is specified by a mean function
m(·) and a covariance function k(·, ·), defined as follows:

m(θθθ) := Eξ (ξ (θθθ)) (3)

k(θθθ ,θθθ ′) := Eξ

(
(ξ (θθθ)−m(θθθ))(ξ (θθθ ′)−m(θθθ ′))

)
(4)



where θθθ , θθθ
′ ∈Rnθ are arbitrary input vectors and Eξ (·) is the

expectation over the function space. The mean function can
be interpreted as the ’average’ shape of the function, while
the covariance function specifies the covariance between any
two function values computed at the corresponding inputs.

GPs in regression are used to place a prior on admissible
functions in a Bayesian framework. The prior is given by
the choice of the mean function and the covariance function.
In this study we apply a constant mean function and the
squared-exponential (SE) covariance function [36]:

m(θθθ) := c (5)

k(θθθ ,θθθ ′) = α
2 exp

(
−1

2
(θθθ −θθθ

′)T
ΛΛΛ(θθθ −θθθ

′)

)
(6)

where c is a constant, ΛΛΛ= 1
`2 I, ` is a width scaling parameter

and α2 is the signal variance. By selecting the SE covariance
function we assume that the underlying transformation to be
inferred is smooth and stationary.

Next we require data of the function, i.e. evaluations
of the function at specific input values. We assume we
are given ns such function values at ns different inputs.
Let ΘΘΘ =

[
θ̃θθ 0, θ̃θθ 1, . . . , θ̃θθ ns−1

]
∈ Rnθ×ns denote a data matrix

with a collection of training inputs with a correspond-
ing output vector of function evaluations defined by y =
[ξ (θ̃θθ 0), . . . ,ξ (θ̃θθ ns−1)]

T ∈ Rns .
The hyperparameters that define the prior of the GP in

(5) and (6) are jointly given by the vector ΨΨΨ = [c, `,α]T .
The hyperparameters are generally unknown a priori, such
that they need to be inferred from data. Maximum likelihood
estimation (MLE) is commonly carried out to determine ΨΨΨ.
The log-likelihood of the observed data, ignoring constant
terms, is given by:

L (ΨΨΨ) =−ns

2
log(α2)− 1

2
log(|K|)− (y−1c)T K−1(y−1c)

2α2
(7)

where Ki j = exp
(
− 1

2 (θ̃θθ i− θ̃θθ j)
T ΛΛΛ(θ̃θθ i− θ̃θθ j)

)
for all i, j =

[0, . . . ,ns−1]
By setting the derivatives with respect to α2 and c to

zero, it is possible to obtain closed-form expressions for the
optimal MLE values of α2 and c as functions of K [38]:

ĉ =
ay
b

(8)

α̂
2 =

νννT K−1ννν

ns
(9)

where a = 1T K−1, b = 1T K−11, ννν = (y−1ĉ) , ĉ and α̂2 are
the optimal MLE values of c and α2 respectively.

The value of the scaling parameter `, was fixed in this
work due to the excessive cost of evaluating it online. This
will however lead to a worse fit for the GP and a correspond-
ingly larger uncertainty of the model. An alternative could
be to find a value for ` using (7) for different nonlinear
function values y that gives on average the best likelihood
value. Possible function values y can be found by open-loop
simulation with different control inputs. Fixing ` allows for
the pre-computation of various quantities. The heuristics that

was used in this work for fixing ` can be found in [39] and
is given as the median of all pairwise euclidean distances
between the uncertain parameter values in the data matrix
ΘΘΘ:

`= median(||θ̃θθ i− θ̃θθ j||2) (10)

Finally, we require the mean and variance of ξ (θθθ)|ΘΘΘ,y
at an arbitrary input θθθ , where the input follows a Gaus-
sian distribution with mean mθθθ and covariance matrix ΣΣΣθθθ .
ξ (θθθ)|ΘΘΘ,y in this case refers to the posterior function of ξ (·),
which corresponds to the prior that was updated using the
data in ΘΘΘ and y. GPs are commonly used for deterministic
inputs. The case of Gaussian distributed uncertain inputs has,
however, received extensive attention for the propagation of
uncertainties in the case of multi-step ahead predictions [40].
It has been shown that for our choice of mean and covariance
functions given in (5) and (6) respectively, it is possible to
calculate the exact mean and variance. The expressions for
the expectation and variance of ξ (θθθ)|ΘΘΘ,y are [41]:

E(ξ (θθθ)|ΘΘΘ,y) = ĉ+ α̂
2dννν (11)

Var(ξ (θθθ)|ΘΘΘ,y) = α̂
2 +ννν

T Cννν− α̂
2e−

(
α̂

2dννν
)2

(12)

where d = qT K−1, C = K−1QK−1, e = tr(K−1Q), q j =

|ΣΣΣθθθ ΛΛΛ + I|−1/2exp(− 1
2 (mθθθ − θ̃θθ j)

T (ΣΣΣθθθ + ΛΛΛ
−1)−1(mθθθ − θ̃θθ j)

and

Qi j = exp
(
−1

2
(θ̃θθ i−mθθθ )

T
ΛΛΛ(θ̃θθ i−mθθθ )

)
× exp

(
−1

2
(θ̃θθ j−mθθθ )

T
ΛΛΛ(θ̃θθ j−mθθθ )

)
|R|−1/2

× exp
(
(xb−mθθθ )

T R−1
ΣΣΣθθθ ΛΛΛ(xb−mθθθ )

)
where R = 2ΣΣΣθθθ ΛΛΛ + I and xb = ΛΛΛ

−1(θ̃θθ i−mθθθ )+ΛΛΛ
−1(θ̃θθ j−

mθθθ ).
It should be noted that while we assume Gaussian dis-

tributed uncertainties in this paper, it is possible to determine
(11) and (12) for other types of uncertainties, such as
uniformly distributed uncertainties. Therefore, the method
can be easily extended to other types of uncertainties.

In the GP-SNMPC algorithm the input training design ΘΘΘ

is created offline and remains the same online. In addition,
the hyperparameter ` is fixed once ΘΘΘ is fixed based on the
heuristic in (10). The terms a, b, K−1, d, C and e in (8-12) are
only functions of ΘΘΘ and `, and hence can be pre-computed
offline. This makes the use of GPs viable for SNMPC, since
otherwise expensive calculations would have to be carried
out for each iteration of the optimization algorithm, such as
the inversion of the matrix K or the calculation of C.

IV. GAUSSIAN PROCESS STOCHASTIC NONLINEAR
MODEL PREDICTIVE CONTROL

In this section we show how GPs can be exploited for
reformulating the OCP given in (2). Firstly, we outline how
the chance constraints in (2) can be reformulated robustly in
terms of the mean and variance of the random variable in
question. Subsequently, the principle of the GP-SNMPC is
highlighted. Lastly, the space-filling parameter design used



is outlined and the reformulated OCP problem is given in
terms of the resulting samples from the parameter design.

A. Robust chance constraints

The probabilistic control problem in (2) can be solved
efficiently by robust reformulation of the chance constraints
using the Chebyshev inequality, which results in the follow-
ing theorem [5]:

Theorem 1: Consider a generic probability constraint of
the form:

P(ξ ≤ 0)≥ 1− ε, ε ∈ (0,1)⊂ R (13)

where ξ ∈ R is some random variable with known mean
E(ξ ) = ξ̂ and variance Var(ξ ) = σ2

ξ
. Let Ω be the set of

random variables with mean ξ̂ and variance σ2
ξ

, then for any
ε ∈ (0,1), the distributionally robust probability constraint

inf
ξ∈Ω

P(ξ ≤ 0)≥ 1− ε (14)

can be shown to be equivalent to:

κε σξ + ξ̂ ≤ 0, κε =
√
(1− ε)/ε (15)

where σξ is the standard deviation of ξ . �
The probability constraints in the stochastic OCP in (2)

are given in the form of:

P(g(k)j (x(k),u(k),θθθ)≤ 0)≥ 1− p(k)j (16)

Using Thm. 1 we arrive at the following deterministic
constraints for the probability constraint in (16):

κ jk

√
Var
(

g(k)j (x(k),u(k),θθθ)
)
+E

(
g(k)j (x(k),u(k),θθθ)

)
≤ 0

(17)
where κ jk =

√
(1− p(k)j )/p(k)j

It should be noted that Chebyshev inequality leads to
conservative constraints, in particular for pdf’s that are close
to Gaussian. An alternative to this has been used in gPCe
based SNMPC by sampling the random variable instead to
approximate the probability constraint [23].

B. GP-SNMPC Principle

Before outlining the exact equations necessary to simplify
(2), we will first highlight the principle behind the approach.
The main difficulty of the OCP in (2) is the determination of
the statistics of the objective function J(N,xt ,uN ,θθθ) and the
nonlinear functions constituting the probabilistic constraints
g(k)j (x(k),u(k),θθθ). Given that θθθ is assumed to be time
invariant, once all control inputs uN are fixed, the values of
the states x(k) and consequently the values of the objective
J(N,xt ,uN ,θθθ) and the constraints g(k)j (x(k),u(k),θθθ) depend
solely on the value of θθθ . The functions can consequently be
expressed in the following form:

y = ξ (θθθ) (18)

where ξ (θθθ) denotes an arbitrary transformation of θθθ .
The problem may now be expressed as the requirement

to estimate the pdf of the random variable y given the

distribution of θθθ . In many cases it is sufficient to determine
the expectation (first moment) and variance (second moment)
of y. SNMPC using GPs is a scenario based approach similar
to the non-intrusive polynomial chaos method proposed in
[5], [22]. This involves creating several realizations of the
uncertain variable θθθ . Each of these realizations corresponds
to a separate nonlinear dynamic equation system given by
(1) with θθθ replaced by the respective realization.

The principle on which the procedure works is illustrated
in Fig. 1. Each sample of θθθ creates a separate trajectory
from the initial state x(0), as shown by the lines on the left-
hand side graph. These trajectories each have distinct values
of x at each discrete time, highlighted by the markers on
the same graph. If we are now interested in the statistics
of a nonlinear transformation g(x), these values need to be
transformed as shown by the arrows. This gives us several
values for each uncertain parameter realization, which we
can represent as an unknown transformation of θθθ , ξ (θθθ),
as is illustrated on the right-hand side graph. GP regression
is then used to estimate the unknown transformation ξ (θθθ).
The resulting GP surrogate of ξ (θθθ) is then used to estimate
the mean and variance from the closed-form expressions in
(11) and (12). The GP needs to be rebuilt each time uN
changes using the data from the different scenarios, i.e. for
each iteration step of the optimization algorithm.

Fig. 1. Illustration of GP-SNMPC algorithm: On the left-hand side graph
the trajectories are shown for each realization of θθθ with markers highlighting
the different values of the state x. For the final discrete time the values of the
states are transformed through g(x), which gives us several values, which
are plotted on the right-hand side graph against the realization values of θθθ .
It is then shown on the right-hand side graph that the unknown relationship
of the transformation with θθθ can be approximated by GP regression

C. Gaussian process optimal control formulation

The GP-SNMPC algorithm is a sampling-based algorithm,
i.e. we create a set of different values of θθθ , which was
represented by ΘΘΘ :=

[
θ̃θθ 0, θ̃θθ 1, . . . , θ̃θθ ns−1

]
in the previous

section, where each θ̃θθ implies a separate nonlinear dynamic
system given by (1). From these separate simulations we then
obtain the output values y, which are used to estimate the
necessary statistics in (19). The parameter design needs to
ensure a good spread of θ̃θθ values in the region of significant
probability densities. In this work we used min-max Latin
hypercube sampling from the Gaussian distribution of θθθ to
generate the necessary parameter set by using the procedure



described in [42]. Based on this parameter design ΘΘΘ, the
GP-SNMPC OCP problem may be given as follows:

Finite horizon GP-SNMPC problem with chance con-
straints
minimize

uN
E(ξJ |ΘΘΘ,yJ)+ωVar(ξJ |ΘΘΘ,yJ)

subject to

xi(k+1) = f(xi(k),u(k), θ̃θθ i)

∀(k, i) ∈ {1, . . . ,N−1}×{0, . . . ,ns−1}

κ jk

√
Var
(

ξg jk |ΘΘΘ,yg jk

)
+E

(
ξg jk |ΘΘΘ,yg jk

)
≤ 0

κ jk =

√
(1− p(k)j )/p(k)j ∀(k, j) ∈ {1, . . . ,N}×{1, . . . ,n(k)g }

ĉJ =
ayJ

b
, α̂

2
J =

νννT
J K−1νννJ

ns

ĉg jk =
ayg jk

b
, α̂

2
g jk

=
νννT

g jk
K−1νννg jk

ns

E(ξJ |ΘΘΘ,yJ) = ĉJ + α̂
2
J dνννJ

Var(ξJ |ΘΘΘ,yJ) = α̂
2
J +ννν

T
J CνννJ− α̂

2
J e−

(
α̂

2
J dνννJ

)2

E
(

ξg jk |ΘΘΘ,yg jk

)
= ĉg jk + α̂

2
g jk

dνννg jk

Var
(

ξg jk |ΘΘΘ,yg jk

)
= α̂

2
g jk

+ννν
T
g jk

Cνννg jk − α̂
2
g jk

e−
(

α̂
2
g jk

dνννg jk

)2

u(k) ∈ Uk ∀k ∈ {0, ...,N−1}
xi(0) = xt ∀i ∈ {0, . . . ,ns−1}

(19)
where xi corresponds to the state vector of scenario i with
uncertain parameter θ̃θθ i, as mentioned in Sec. III the terms
a, b, K−1, d, C and e can be pre-computed offline from
ΘΘΘ, yJ = [J(N,xt ,uN , θ̃θθ i), . . . ,J(N,xt ,uN , θ̃θθ i)]

T is a vector of
values of the objective function for each scenario, yg jk =

[g j(x0(k),u(k), θ̃θθ 0), . . . ,g j(xns−1(k),u(k), θ̃θθ ns−1)]
T is a vec-

tor of values for each nonlinear chance constraint for each
scenario, νννg jk = yg jk −1ĉg jk and νννJ = yJ−1ĉJ

Algorithm 1: GP-SNMPC

Initialize:
• Supply uncertain parameter description: mmmθ and ΣΣΣθ

• Create uncertain parameter design Z
• Calculate a, b, K−1, d, C and e from (8-12)
• Define OCP in (19)

At each sampling time t = 0,1,2, . . .
• Take measurement xt
• Solve (19) to obtain uN
• Apply the first control input from uN , u(0) to the

real system

A few remarks regarding the computational complexity
of the algorithm. Firstly, the expressions involving the ex-
pectation and variance are either linear or quadratic with
respect to the scenario output, which yields an overall well-
posed optimization problem that is smooth everywhere and
makes implementation relatively easy. The algorithm is the

most effective when there are a small number of constraints
compared to the number of states, since then only a small
number of GPs are required, the computational cost of which
are likely negligible.

V. STOCHASTIC NONLINEAR MODEL PREDICTIVE
CONTROL OF A BATCH REACTOR

A. Dynamic model equations and OCP formulation

In this section the algorithm is verified on a semi batch re-
actor with a cooling jacket. The reaction is the saponification
of ethyl acetate, which is a good example of an exothermic
reaction for which safety concerns are paramount to prevent
a thermal runaway. The dynamic model was taken from [43]:

ĊA =−k(CACB−CCCD/KC)−FCA/V, (20a)

ĊB =−k(CACB−CCCD/KC)+F(exp(θ2)−CB)/V, (20b)

ĊC = k(CACB−CCCD/KC)−FCC/V, (20c)
ṄW = FCW0, (20d)

Ṫ =
Q̇gs− Q̇rs

NCp
, (20e)

V̇ = F (20f)

where k = 0.0039175exp(5472.7(1/273−1/T )),
KC = 10exp(θ3)/T , CD = CC, Cw = NW/V ,
Q̇gs = V k(CACB − CCCD/KC)∆HRX , Q̇rs =
F exp(θ1)(exp(θ2) +CW0)(T − T0) +UA(T − Tj), NCP =
V (CPACA + exp(θ1)(CB +CC +CD +CW )),CA,CB,CC,CD are
the concentration of species A, B, C and D respectively
in kmol.m−3, T is the reactor temperature in K, NW the
amount of water in the reactor in kmol and V the reactor
volume in m3.

Three parameters were overall assumed to be uncertain
indicated by components of θθθ , which are assumed to be
Gaussian distributed with mean and covariance given by:

mθθθ =

4.40
0.59
8.26

 , ΣΣΣθθθ =

 2 ·10−3 5 ·10−6 −2 ·10−4

5 ·10−6 2.5 ·10−3 −2 ·10−4

−2 ·10−4 −2 ·10−4 1 ·10−2


(21)

For the missing parameters refer to [43], example 13-3.
The control input is the feedrate to the semi-batch re-

actor given by F . In compact form we can write x =
[CA,CB,CC,NW ,T,V ]T and u = F . Using discretization the
equations can be given as a discrete time equation system
with the discredization time set to 15s. Direct orthogonal
collocation was used for the discretization of the dynamic
equation system in (20) with 4th order polynomials placed
according to the Radau quadrature rule.

x(k+1) = f(x(k),u(k),θθθ) (22)

Based on this equation system we formulate an OCP as



follows:

minimize
uN

−E(CC(N)V (N))+1.5Var(CC(N)V (N))

subject to
x(k+1) = f(x(k),u(k),θθθ) ∀k ∈ {0, ...,N−1}
P(Tadiabatic(k)−320≤ 0)≥ 0.95 ∀k ∈ {1, . . . ,N}
u(k) ∈ [0,8×10−3] ∀k ∈ {0, ...,N−1}
x(0) = xt

(23)
where Tadiabatic(k) refers to the adiabatic temperature
change at discrete time k defined as Tadiabatic(k) = T (k)−
∆HRXCB(k)V (k)/NCP(k), assuming that CA is in excess.
The adiabatic temperature change refers to the maximum
attainable temperature in the reactor under a cooling failure.

The OCP in (23) aims to maximize the mean production
of C with trade-off towards the variation of the production of
C, while keeping the adiabatic temperature below 320K in
probability to prevent a thermal runaway. The stochastic OCP
in (23) is converted using GPs. Algorithm 1 shows how this
OCP can then be used for a receding-horizon implementation
to obtain a stochastic MPC. The time horizon was set to
N = 15 with a final batch time of 240s. The OCP was solved
utilising Casadi [44]. The resulting nonlinear programming
problem was solved by employing Ipopt [45]. Lastly, IDAS
[46] was applied to simulate the ”real” nonlinear equation
system. At time t = 0, the the initial state to solve the OCP
was set to x0 = [25,1,0,6.6,0.2,310].

B. Open-loop predictions of statistics

We first evaluate the ability of the GPs to estimate the
statistics of the relevant random variables. The procedure
was taken from [47]. In particular, the random variables
”adiabatic temperature” at discrete times k = 5 and k = 15
and ”amount of species C” at the end of the batch were
chosen for the analysis, since these represent the nonlin-
ear probabilistic constraint and the objective respectively.
To carry out the comparison the feed rate was fixed at
F = 8× 10−3m3/s and the uncertain parameter distribution
was sampled 1000 times to obtain the ”true” pdf. This is
contrasted to the approximations of the pdfs obtained from
the GP-approximations built from 5-points, 10-points and 20-
points, which is shown in the graphs in Fig. 2 on the left-hand
side. The pdfs were obtained from kernel density estimation.
In addition, it is possible for GPs to calculate a confidence
region for the pdfs, since a GP corresponds to not just one
function value, but a distribution of possible function values.
We can see that for all 3 pdfs the approximations get closer to
the ”true” pdf as the number of points increases. In addition,
it can be seen that the confidence region is largest for the
GP with 5 points and smallest for the GP with 20 points,
which reflects the observations made. For 20 points the GP
more or less matches the pdf in all 3 cases.

Furthermore, the 20-point GP approximations were com-
pared on the right-hand side graphs to the pdf estimates
obtained from 20 Monte Carlo samples and the 20 ”max-
imin” Latin Hypercube samples the GP was built from.

We can see that the GP approximation gives the most
accurate representation of all pdfs, while the ”maximin”
Latin Hypercube tends to overestimate the variance and the
Monte Carlo tends to underestimate the variance.
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(a) Adiabatic temperature at k = 5
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Fig. 2. pdf estimation comparison results for the OCP in (23) with fixed
F = 8× 10−3m3/s. Left graph: true pdf compared to GP approximations
with 5 points, 10 points and 20 points. For the GP plots a 99% confidence
region is shown. Right graph: true pdf compared to Monte Carlo, Latin
hypercube and GP-approximation built on a sample size of 20 points.

C. Closed-loop implementation
Next, the OCP in (23) was solved in a shrinking horizon

fashion to gauge the closed-loop performance of the algo-
rithm with the size of the uncertain parameter design set to
20. To verify the robustness of the approach 200 Monte Carlo
simulations were performed by sampling 200 independent
realizations of the uncertain parameter from the Gaussian
multivariate distribution. These uncertain parameters are used
for the simulation of the ”real” system to which the control
inputs of the GP-SNMPC algorithm were applied. The
algorithm is compared to a nominal NMPC, again using a
shrinking horizon implementation. The OCP of the nominal
NMPC implementation is similar to the OCP in (23), except
that the predictions are taken to be deterministic by fixing



the uncertain variables to their nominal values. Therefore,
the objective is given by the predicted amount of C at the
final time. To avoid infeasibilities the adiabatic temperature
constraint was formulated using soft constraints.

In Fig. 3 the trajectories of the adiabatic temperature
constraint are shown. It can be seen that the nominal NMPC
algorithm violates the upper bound significantly for many
of the 200 simulations. Overall, 51% of the simulations for
the NMPC algorithm lead to constraint violations. It can be
seen that the violations mostly occur at the beginning of
the reaction due to the initial concentration of B being high.
Once the concentration of B becomes lower towards the later
parts of the reaction, the probability of constraint violation
is lower, since then the adiabatic temperature change corre-
sponds more or less to the actual temperature of the reactor
with less uncertainty. The GP-SNMPC on the other hand
fulfilled the constraint in all simulations.

(a) Nominal nonlinear model predictive control

(b) Stochastic nonlinear model predictive control

Fig. 3. 200 Monte Carlo trajectories of the adiabatic temperature constraint.
The constraint at 320K is highlighted by a dashed black line.

In Fig. 4 the histograms of the amount of C produced
at the end of the batch are shown based on the 200 Monte
Carlo simulations for both methods. The objective of the GP-
SNMPC was given in terms of both the mean and variance,
while the nominal NMPC was geared towards maximizing
the amount of C only. The GP-SNMPC produced on aver-
age 1.83 kmol of C, while the nominal NMPC algorithm
produced 1.96 kmol on average, which is approximately 7%
more. On the other hand the variance of the GP-SNMPC is
25% less, hence the performance differences may be due to
a different control objective or due to the conservativeness
of the GP-SNMPC algorithm.
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(a) Nominal nonlinear model predictive control
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(b) Stochastic nonlinear model predictive control

Fig. 4. Histograms of the amount of C at the end of the batch based on
the 200 Monte Carlo simulations

VI. CONCLUSIONS

In conclusion, a novel framework for SNMPC has been
proposed by employing GPs to handle Gaussian distributed
parametric uncertainties with known mean and covariance.
The SNMPC problem involved both objective and probability
constraints based on general nonlinear functions. The proba-
bility constraints were reformulated requiring only mean and
variance. GP-SNMPC is a scenario-based MPC algorithm
that uses the data from the various realizations of the uncer-
tain parameter to build a surrogate, from which the variance
and mean of the nonlinear objective and constraint functions
are estimated efficiently. In addition, GP-SNMPC not only
takes into account the variance induced by the uncertain
parameters but also, unlike gPCe, the uncertainty of the
surrogate itself. A semi-batch reactor case study showed that
GP-SNMPC is able to provide predictions on the statistics of
the problem more accurately than either Monte Carlo or Latin
hypercube samples. Lastly, a shrinking horizon application
showed excellent closed-loop performance by ensuring the
fulfilment of a nonlinear chance constraint, while optimizing
a probabilistic objective.
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