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Comparison of delayless digital filtering algorithms
and their application to multi-sensor signal
processing

Anna Swider*, Eilif Pedersen

Abstract

In the phase of industry digitalisation, data are colledtech many sensors and signal processing techniques playcactrole.
Data preprocessing is a fundamental step in the analysiseaburements, and a first step before applying machine hegrmo
reduce the influence of distortions from signals, seleddigital filtering is applied to minimise or remove unwantezirponents.
Standard software and hardware digital filtering algorghintroduce a delay, which has to be compensated for in ocdavdid
destroying signal associations. The delay from filteringdmees more crucial while analysis measurement from malsghsors,
therefore in this paper we provide an overview and comparigoexisting digital filtering methods with application legson
real-life marine examples. Additionally, design of spégiarpose filters is a complex process and for preprocessatg fiiom
many sources, application of digital filtering in the timentin can have a high numerical cost. For this reason we tescri
Discrete Fourier Transformation digital filtering as a téml efficient sensor data preprocessing, which does natdoge a time
delay and has low numerical cost. The Discrete Fourier Toamstion digital filtering has a simpler implementationdatioes
not require expert-level filter design knowledge, what indfieial for practitioners from various disciplines. Filyalve exemplify
and show the application of the methods on real signals frarina systems.

Index Terms
digital filtering, DFT, preprocessing, delay, delaylesspuocessing, synchronisation, big data, 10T, sensors.

I. INTRODUCTION

ATA analysis has a vital role in many different industriegy.emedicine (gens analysis), economics (stock exchange)

and in marine engineering (the ship industry enters the (fingp4.0 phase Rgdseth et al. (2016)). There is a need for
collecting and processing huge quantities of measurenasrisme series data (signals) which comes from many sousttes,
referred to as big data DNVGL (2017).

The marine industry is now entering the challenging phasanddrter shipping, including on-board monitoring systeams)
advisory tools. Modern vessels will be equipped with vagian-line data collection and advanced monitoring systérhs.
on-board measurements from sensors of many installatiaysgpcrucial role, and their availability expands the fumacality
of marine products. The aim of data analysis in the marindiagjon is developing on-shore and on-board advisorygool
using prediction of propulsion power or ship performancenitwoing, as well as enhancing knowledge about specificesyst
and components, and the relationship between systems iS&iBedersen (2017).

Machine learning algorithms and statistical modelling dae widely used tools in equipment monitoring and advisory
systems. However they are sensitive to data quality, andriticplar to relationships between subsystems retainedraslations
in the data. A fundamental step in the analysis of measuresnand before applying machine learning is data preprowess
Garcia et al. (2016), Taleb et al. (2015). Unfortunateiythie literature from different industries e.g. Kuhn & Jobmg2013),
the importance of the quality of the time series is limitedcBuse measurements play an important role in marine afiphs,
proper data preprocessing and improvement of their quiityritical to ensure correct interpretation on board theseé or
during off-line analysis. A major source of the disturbaemd distortions in measurements is the Data AcquisiticsteBy
(DAS). The role of the DAS is the collection of measuremerftshe desired variables, transmission and conversion of the
recorded signals to digitized form Bendat & Piersol (20 0hong the most common disturbances and distortions aregiiase
(2009), Bendat & Piersol (2010): white noise, poor calilatand digitization effects (ADC quantization or aliasjrigandall
(2011). Data cleaning is a necessary stage, where distertiad disturbances are eliminated as far as possible.yi$ pla
important role during data analysis Frnay & Verleysen (0% typical data analysis scheme is depicted in Figure 1. It
contains some major steps like data collection, data abggand feature extraction before the machine learning disstal
modelling can be applied. In this paper we focus on the da&anihg stage.

Processing of data from several marine systems creates chatlgnges. One of them is lack of data synchronisationgkvhi
can be introduced by specific systems setups, differentititeevals or preprocessing. In the literature from datddita, data
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Fig. 1. Data analysis block diagram

cleaning is mainly based on PCA (Principal Component Ang)ysutlier detection and NaN removal Perera (2017), Qial.et
(2016), Slavakis et al. (2014), Kuhn & Johnson (2013), Dudale(2000), Trevor Hastie (2009). In DSP, the most common
technique to clean time series is linear digital filteringvéty important aspect of digital filtering is the delay irduzed to the
signal. Ignoring this delay can lead to incorrect conclasibeing drown in case of, for example, on board monitorirsgesys.
A delay can also affect the reliability of on-board monitayisystems. The consequences of the delay which comes from
DAS or from digital filtering on the conclusions and predietimodels were described and presented in Swider & Pedersen
(2017). Nowadays this topic is even more important while B¥d and multi-sensor signal analysis. In that case timeydela
from network, processors, calculations or preprocessamgl@ave serious consequences on the signals relations mious
subsystems. It is very important to secure the synchraaisatf the subsystems and provide delayless preprocesdinchw
will not obscure the associations between signals. Addlitly, signals can have different noise levels, which natgwuse of
different filters. Knowing that, it is necessary to look fdtdiing methods, which do not introduce a delay, or comptenfa
it.

In this paper we present a comparison and application ofiegisligital filtering methods which have practical apptioas.
We describe Discrete Fourier Transformation (DFT) filtgrims a tool for efficient big data preprocessing, which dods no
introduce a time delay, and which has low numerical cost. Wawsthat the use of DFT filtering does not require specialist
knowledge of filter design, what is beneficial for practigos from various disciplines. We emphasise limitationslagsical
digital filtering methods and show that the delay introdubgdlassical digital filtering has consequences for big dataysis
- this is added value for industrial data scientists. Additilly, we compare the performance of the DFT approach wi¢h t
standard time domain filtering to motivate the usage of thd Diethod. We document and exemplify our results based on
real signals from marine on-board systems from the offskessel.

Il. DELAYS INTRODUCED BY DIGITAL FILTERING

In this subsection we present properties of digital filtaie describe the properties of the filter amplitude and phase
responses, which are very often neglected by non-expeplyiag digital filtering. The phase response has propestibih
determine the proper filter choice and should not be ignoféd. phase response of digital filters is significant esplgciat
multi-sensor signal processing because it is a cause ofquregsing delay. For further discussion we assume anaiyig)
data in a from of digital signals, which are sampled versibaralogue signals i.e.:

z[n] = 2(t)|i=pn/p, n=0,1,... 1)

wheren is the number of sampleg;; is the sampling rate which fulfils the Nyquist theorem Mit2910).

As described in the previous section most disturbancedaenesl in the literature, are additive like Additive White@sian
Noise (AWGN) and can be efficiently removed by linear filtéFhis is why we focus in this paper on this type of filter. The
frequency response of a digital filter is very often exprddsg the formula:

H(f) = |H(f)]e’*V) )

where|H(f)| is the amplitude response afd(lf) is the phase response. The amplitude response of filtersyismed! known
and it is used for classification of filters in frequency domaid.g. low-pass, high-pass filter.
Unfortunately, the phase response and its effects are @ftemwed. Phase response can be interpreted as follows:
1) If 6(f) = 0, then the digital filter does not delay the input signak & 0)
2) If 9(f) is a linear function off, then the digital filter delays the input signal, but withaligturbances, and the delay is
constant, ¢, =const)
3) If 4(f) is a nonlinear function, the digital filter introduce phagstattion - it distorts the time relation between single
frequency components from the input signaly & no(f)) Oppenheim & Schafer (1975).
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One straightforward way to analyse the properties of therfjihase respong¥ f), is the phase delay, defined as:

i) = 5 @
and group delay a9()
() = =30 @

The phase delay can be interpreted as the time delay of eaghe stomplex sinusoidal component of the input signal
z[n]. The group delay highlights the deviations from lineantjrich comes from the basic property of the differentiatiohe
physical interpretation of the group delay is difficult, hexer it can be interpreted as the time delay of the signallepedor
the signal with amplitude modulation Mitra (2010), Oppeinh& Schafer (1975). The interpretation of the phase and grou
delay is presented in Figure 2.
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Fig. 2: Interpretation of the group delay Mitra (2010), whehe x[n] - the input signal ands[n] - the output signal, red -
signal envelope, blue - waveform of the signa),- phase delayr, - group delay.

Based on the signal with amplitude modulation (variationhe&f amplitude), as can be seen from Figure 2, the carriee)blu
at the outputy[n] is delayed compared to the inpufn] by the phase delay. The envelope (red) of the output sigraglsyed
compared to the envelope of the input signal by the groupyd@laese properties of the filter phase response are crurcial i
data analysis algorithms, where the time relation betwégmats is an important aspect.

Unfortunately, very often the problem of synchronisatiowl @rocessing delay is omitted in the literature from datalyesis
e.g. Trevor Hastie (2009), Kuhn & Johnson (2013). Unsyneisex data can result in incorrect conclusions being drown a
the end of the analysis and distorted correlations betwiggrals. The delay effect can have a negative influence on imach
learning algorithms or statistical modelling Swider & Pestn (2017).

In this subsection we have shown that classical digitakiilteintroduces a delay to the output signal. Very often iaqtical
solutions the phase response of the filters, which is caukimglelay, is neglected. However, in big data preprocessivl
have a crucial impact on the time relation between signdie. description and importance of the delay from digital riiftg
on the data-driven models will be presented in the next secti

I11. I NFLUENCE OF THE DELAY FROM DIGITAL FILTERING ON THE QUALITY OF DATA-DRIVEN MODELS

In this section we present the influence of the delay fromtalidiltering on the quality of data-driven models by anahggsi
a simple example. The example of linear prediction is saidieshow the negative influence of the delay from filtering. To
analyse our model we assume the data collection systemrgatlaifferent signalsX;, X, ..., X,, see Figure 3. In Machine
Learning these are called predictors (independent vasabdatures or variables) and the sigriak the output of the prediction
model (the response or dependent variable).

Xi regresson
Xo
X
Ye®

Fig. 3: Data analysis block diagram

The aim of the prediction (regression) model is to estimagedutput signal” based on the formula Kay (2005):

P
i=1
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whereY is the estimate of respondg a;, are linear predictor coefficients which are to be determifiéx optimal coefficients
are chosen to minimise the mean square error (MSE), given by:

MSE := E[(Y — Y)?] (6)
It can be shown that the solution of this equation is given lay K2005), Theodoridis & Koutroumbas (2008):

EX:X1] ... EX:1X,]] [; E[X,Y]

E[XIQXl] E[X?Xp] G,.Q _ E[XI’QY] @
EX,x1] ... EXX,)| e |EX,Y]

and the MSE error is as follows:

E[X Y]

MSE=E[YY]—[a1 a2 ... ap EXzY] €)
E[X,Y]

The matrix given by (7) (the correlation matrix) containfoimation about the relation between measured signaledeas
the matrix we can conclude how the delay of single signal émfae the prediction model. For example, if the first signal
X, is delayed then the delay will influence the first row and caluoh the correlation matrix - the relation betwed&n and
Xs,...,Xp andY will be distorted. In case of the delay introduced by digfitkéring in many signals, the final output of
the prediction model will not be consistent. The statistioderences based on such a model will be biased by high error
Trevor Hastie (2009).

To visualise the achieved results we analyse the model wighvariableX;. An example from Swider & Pedersen (2017),
shows the signal of voltage = sin(27fn) and currentX; = sin(27 fn) registered on the resistor with the resistafice: 112,
see Figure 4.

Digital Filter]

X1

Y = a1X1

regression
model

Fig. 4: Conceptual example of voltage (Y) and current (XDistation.

From Ohm’s law, the relation between current and voltagevisrgas:
Y = RX1|R=1 == Xl (9)

If we assume that the current signal only is filtered by a didilter with a phase delay of, it can be expressed by the
formula:
X1 =sin(2n f(n — no)). (10)

If we would like to calculate the regression coefficient ahd MSE values we apply Equations (7) and (8) to achieve:

ay = cos(2m fngp)
Y = a1 X1 = cos(2mfng) sin(2m f(n — no)) (11)
MSE = 0.5(1 — cos? (27 fng))

In Figure 5a, we show the regression coefficient and the MS& fasction ofng, which is the introduced delay. We can see
that if the delay isng = 0, CASE 1, theru; = 1,Y = X; and the result is according to the physical law, see uppés io
Figure 5b. For CASE 2 when the delay is present in the sigpak 1/(4f), the regression model shows nonlinear relation
between the voltage and current, = 0,Y = 0, which is contradictory to Ohm’s law, see the lower plots igufe 5b.

This simple example shows the importance of the delay inited by filters and how the delay can completely change
the result. The delay influences the quality of the predicémd statistical inference so the delay from filtering stoog
compensated. Unfortunately in the literature from big datd Machine Learning this aspect is not well described, Kugn
& Johnson (2013), Bishop (2011).

In order to illustrate the influence of the delay from filteyion the relationship between signals in data analysis from
many sensors, we show the scatter plots of two signals fromnman-board monitoring systems, see Figure 6. One signal
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Fig. 5: a) Waveforms of a coefficiemt, given by @1 = cos(27 fng)) and MSE given by (11) as a function of the time delay
ng. Black points depict CASE 1 and CASE 2. The frequency of tigaai f = 0.01Hz. b) Waveforms and scatter plots of
currentX (dotted line) and voltag&  (dashed line) for two cases: upper subplots CASkgl= 0, lower subplots CASE 2:

(y-axis) is the main propulsion power in MW measured on thetshizé second signalfaxis) is the main propulsion power
in MW (Megawatts), calculated in the drive. We would like terify the linear relationship between the power calculated
and measured, which is useful for confirmation of the cattahamethodology in the drive system. In Figure 6.a we see
the raw measurements, with high variance. The noise présdhe measurements obscures the linear relationship batwe
power calculated and measured. In this case, and also bas@tdime series and the spectrum analysis, digital filterin
is recommended to remove the noise and emphasize the ratibmebetween signals. More details is given in section VI.
Figure 6.b shows the filtered measurements with distortaed tielation (the delay between signals is equal to 150s)pies
the filtering, the linear relation is distorted, which is thesult of the delay introduced by different length of theefiltThe
different filter length was applied to depict the influenceddparate filters in case of signals form various sourcagirgi6.c
shows the filtered signals with compensated delay, whickesirable to confirm the linear relationship. Based on thangxe

—_

0.5§

Power measured [MW]

Power calculated [MW]

Fig. 6: Example of the relation between two signals: the povedculated in the drive and the power measured on the shaft.
a - the raw measurements, b - filtered measurements withralitfelelays, c - filtered measurements without delay

we can see that only delayless filtering (or delay compemsatian provide the proper results necessary for furthelysisa
Based on Figure 6.b we are not able to determine whether tlasured and calculated signals are consistent or not. This
is proven based on the results presented in the Table |, watiotw the MSE values and the regression equation. The linear
relation between calculated and measured power can onlpiiEmed with the smallest MSE value, which corresponds to
filtering without destroying the time relation between gsed signals.

In this section we have presented two simple examples (stintand real) where we tried to find the relation for a single
input-output model. We have to remember that during big detalysis, when we have multiple input models, the delay
introduced by digital filtering will destroy the time relati between many signals, and can be difficult to detect. Aaditly,
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TABLE I: The MSE and regression equation for analysed casésamd c

Method MSE Regression
Raw measurements 3294 | y=0.97x — 1.59
Filtered measurements 5505 | y =0.97z — 2.01
Filtered measurements without delay 400 | y = 0.97z — 6.38

the delay has the impact on the quality of the prediction rhadd statistical inferences. This conclusion holds fordata-
driven models.

By presenting the importance of the delay introduced byriiltewe would like to focus in this paper on the review of
filtering methods and show a method which is straightforwarichplement, is delayless and additionally has low comtnal
cost (which makes it a good choice for preprocessing timeserbig data e.g. from marine systems).

In the next section we will describe more advanced methodigital filtering which do not introduce a delay and can be
applied for preprocessing of archival sequence data.

IV. DIGITAL FILTERING WITHOUT DELAY

In the previous section, it was shown that classical filggrimhich can implemented on-line and off-line, always idtroes
a delay. If the filtering of sequence data is required in if&lanalysis (e.g. noise filtering) then filtering algorithmhich do
not introduce the delay should be used and more sophislicagthods are needed for filtering of archival sequence data.
Generally, digital filtering can be applied in the time domar in the frequency domain (spectrum domain, DFT domain, -
Discrete Fourier Transform domain). In the following sen8 we show the basics of digital filtering in the time domayomhs
(2010) and then we focus on the DFT domain Rao & Yip (2000)akRi0& Nikias (1992) because more delayless methods
are available in this domain.

A. Digital filtering in time domain

One solution, which can be applied in the time domain is z#rase filtering Lyons (2010). This type of filtering in the
time domain can be performed as shown in Figure 7:

«ln] I Oigiar | 2117 s[Time eil=nls[Digrar] 2l me 1401
Filter reversal Filter reversal

Fig. 7: Zero phase filtering Lyons (201Q)[n] - the input signalz;[n] - signal at the output of the filter;; [—n] - flipped
signal, z2[n] - signal at the output of the filteg[n] - final output signal

The same filter is applied twice with a time reversal betwdentwo filters. Time reversal step is a left-right flipping of a
time domain sequence. The output sigpgl] is a filtered and delayless version of the signgl]. Such an approach can be
applied while preprocessing archival sequence data, sire@lgorithm requires flipping the signal in the time domairis
straightforward to show that the relation between the spetbf the input and output signal is given by the relation:

Y(f)=H()IPX(S) (12)

where X (f) is Discrete Time Fourier Transform (DTFT) of input signdh], H(f) is the frequency response of digital filter
andY (f) is DTFT of output signal[n], defined as follows:

n=+oo
Y(f) = Z y[n]e 72, n=+o00,...,—1,0,1,..., 400 (13)
n=—oo
Therefore the algorithm shown in Figure 7 implements a ggvase filter with a frequency respondé(f)|?.
The main disadvantages of such an approach are:

« in the most common implementation it has high numericals;dstwever this can be reduced (for the FIR filters) by fast
convolution Mitra (2010);

« based on relation (12) the algorithm works properly onlyhé tdeal frequency responsefi f) € RandH(f) = H(—f).

This means that the implementation of some filters is imfdess.g differential filter, integral filter etc.

« the complex design of the digital filter, which requires spkst knowledge. Lack of expertise can result in some ingoar
details (e.g convolution properties or ripples in passhdreing omitted. These details can influence the result of the
filtering.

The above disadvantages are not present in filtering in thetspn domain DFT, which will be described in the next settio
The main advantage of the DFT domain is that there are no remmist about the frequency response of the filter, so the
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differential filter, integral filter can be implemented. DisI'very often referred as the FFT, however it is worth to rerfnem
that FFT is a fast algorithm for computing Discrete Fouriearisform (DFT). The idea behind the FFT is to decompose
the N-point DFT computation into computation of smaller size D&d to take advantage of the periodicity and symmetry
properties of DFT. In literature DFT and FFT are used intangeably Mitra (2010).

B. Filtering in the frequency domain (via DFT)

The spectrum of the output signal is equal to the product efctimplex frequency response of the filter and the spectrum
of the input signal. This can be described by the followinigtien:

Y(f)=H(f)X(f) (14)
Then relation (14) can be written in the following way:
Yk] = H[k] X[k] (15)

where H k] is the N-points frequency response of the filtéf]k] is the N-point DFT of the signal on the output of the filter
andY[k] is the N-point DFT of the signal[n], given by formula:

N—-1 -
> ylnle 7 (16)

n=0

Y[k = Y(f)|

=%

wherek for the N-points DFT transformations, are given by:

N N4, 1,01, 8 1 f N;
ke — 1%11 5 + 1. ’O;v:1 5 or evenN; (17)
-5, ., —1,0,1,..., 75+ for odd V.
The main advantage of this approach is that the digital fitatirectly implemented in the frequency domain, i.e.:
HIk = H(P)|,_, (18)
which is a simplification of the filtering algorithm.
The filtering algorithm in the DFT domain can be described hwy following relation:
y[n] = IDFT{DFT{z[n]} H[k]} (19)
where the Inverse Discrete Fourier Transforms (IDFT) iswalted by:
1 ;2mnk
yln] = + %; Y[kl H (20)

which is depicted in Figure 8 and is called basic DFT filtering

z[n] X[kl [k y[n]
—> DFT IDFT —

HIk]
Fig. 8: Basic DFT filtering[n] - the input signal X [k] - the DFT of thex[n], H[k] - the frequency response of the filter,
Y'[k]= the product of theX [k] and H k], y[n]-the output signal

The quality of the filtering based on relation (19) is veryeofpoor. It results from usage of the circular convolutiostéad
of the linear convolution Mitra (2010). In practice we useotapproaches which improve the quality of the filtering, vhic
will be described below.

1) Filtering with zeropaddingin this algorithm, the preprocessing of the sigmét] is done based on extending the signal

with Z values equal t®, i.e.
xz[n] forn=0,..., N —1;
wifn) = {21 @1)
0 forn=N,..., N+ Z.

The typical size of the zeropadding is equalNo This means that the length of the signaln] is equal to2N. The filtering
with zeropadding algorithm is represented by the block iiagin Figure 9.
For such a prepared sequenggn] we apply the relation (19), which ensuregdn] sequence, as follows:

y1[n] = IDFT{DFT{z:[n|} H K]} (22)
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x[n] zero z1[n X[k] Y [K] v

VS
<=
=3

truncator ——>

HIk]
Fig. 9: Filtering with zeropaddingy[r]- the input signalz;[n]- the input signal after zeropadding;[k]- the DFT of the
x1[n], H[k]- the frequency response of the filt&f[k]- the product of theX [k] and H[k], y1[n]- IDFT from the Y'[k], y[n]-
the output signal

The sequencg; [n] has the lengthV + Z, so it is necessary to remove the last valueZof
ylnj=yi[n] 0<n<N-1 (23)

Modification of the sequence, which is given by (21), allovesta reduce the aliasing in the time domain, which is the main
reason for significant distortions in DFT algorithms. Exdem of the input signak[n| by zeropadding reduces the negative
effects of the circular convolution.

2) Filtering with the even symmetric extensidn:this algorithm data flipping is applied Smith & Eddins (1Q8Kiya et al.
(1994), i.e. signals[n] consists of the signat[n] and its mirror reflection, which can be described by the fdemu

s3] = x[n] forn=0,..,N —1; (24)
22N —1—-n] forn=N,..,2N — 1.

Filtering with the symmetric extension is represented tgy ltkock diagram in Figure 10:

x[n] symmetric za[n X[k] Y [K] Ya|
> extension DFT IDFT

VS
=
=

truncator ——>

HIk]
Fig. 10: The filtering with the symmetric extensior]n]- the input signalzz[n]- the input signal after symmetric extension,

Xk]- the DFT of thex[n], H[k]- the frequency response of the filt&f[k]- the product of theX[k] and H[k], y2[n]- IDFT
from the Y'[k], y[n]- the output signal

For a preprocessed signal we apply the algorithm (19), basedhich we achieve the sequenggn] as following:
ya[n] = IDFT{DFT{z2[n]} H[k]} (25)
In the last stage, we choose th&initial values, i.e.
y[n] = ya[n) n=0,.,N—1 (26)

Very often the filtering algorithm with the symmetric extenrsis called the Cheh-Pan modification Pan (2001), Pan (1996
It should be noted that publications on this topic were avdd before the Cheh-Pan articles Smith & Eddins (1987) ttfsmi
& Eddins (1990).

V. SIMULATION EXPERIMENTS

In this section we describe the properties and performahdegial filtering algorithms without the delay based on gyatic
signals. The benefits of such an approach include the ptligsiioi evaluate the output of the algorithms based on a prior
knowledge. Additionally, we can check the performance amal dquality of solutions applying the filtering error, given b
formula (27):

e[n] :=y[n] — yidear [n}; n=0,...,N—-1 (27)

wheree[n] is the filtering errory[n] is the output signaly;...:[n] is the ideal output signal.
The performance of the filtering can be described also by tearivVSquare Error (MSE), given by the relation:

1 N-1 1 N-1
MSE := N ;(y[n] — Yideal [’Il])2 = N 7; eQ[n] (28)

Analysis of filtering based on simulations and syntheticneples allow to measure the quality of the filtering, becaunsthé
analytical way we can calculate the formula for the outpgnal of an ideal filter. Additionally, such experiment allda
simulate the properties of the input signal which are sigaift for quality of the filtering.
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Comparison of delayless filtering algorithms is based onrpass filtering- in this example we assume that the signabaos
two frequency-separated components. The aim of the filter ismove one of the components. This problem often appears i
practice where the useful part of the signal energy specisuorated in low frequencies (we would like to extract thistp.
The high frequency components are noise.

Low-pass filtering appears often in practice. Preprocgssirsequence data for Machine Learning algorithms to rentioge
noise from measurements, improves their performance gubim non-filtered (raw) signal on the input of the machinerlesy
algorithm results in poor quality output. High noise levedsluce the amount of information from measurements Dudé& et a
(2000). In the experiment we assumed that the signal is theadfuwo components, given by the formula:

2
x[n] = sin(270.02n) + 2 + Nn +0.2sin(270.1v/2n); n=0,..,N —1 29)

Desired Signal

where desired signal contains sine waveform, tréad [V) and DC value. Noise component is a sine waveform with fraque
0.1v/2. We add trend to signat[n] because it has a significant meaning for assessment of tHigycpiafiltering. This is
described in detail below.

The aim of the filtering is to remove the component above feegy f = 0.07. We can define low-pas filtering based on
the frequency response of the ideal filter and the followiglgtion:

1 for —f. < f< fe
H = 30
vr(f) {0 otherwise (30)
This filter can be implemented as FIR, with an impulse respa@igen by:
2f.sind2f.(n — M=L)) forn=0,...,M —1;
hipln] = fesina2f.( 7)) _ 31)
0 otherwise

where M is the length of impulse response. In order to design ther filie should find the sufficient valug#/ and the
window function in such a way that the frequency responskfuliil the design requirements. More about digital filterstg
can be find in Lyons (2010), Mitra (2010).

For FIR filter the output signaj[n] is given by formula:

y[n] = hpp[0]z[n] + hrp[llaln — 1]+ ...+ hrp[M — 1]zin — (M —1)] = 2 hrplklz[n — k] (32)
k=0

It means that this is a linear convolution between input &igrin] and impulse response.
Another way to implement the filtering is to take advantagdiltdring in DFT domain. To achieve this we need to design
only the frequency response of the filter, which can be donghbyfollowing formula:

1 for _chS kS ch;

. (33)
0 otherwise

Hyplk] = HLP(f)‘ o= {
=~

From (14) and (33), we see that the implementation of the fiftehe frequency domain DFT is simpler than in the time
domain (classical approach). This property will be usedrlat the paper to motivate usage of this solution.

In Figure 11 we show results from the following experimentbflots in Figure 11 show (a) input signél:] (blue) and the
desired ideal filtered signal (red), (b-f) the output of tHeefing (blue) and the desired signal (red). As we can seeatitput
of the applied filter is delayed to the desired output signakfassical filtering. The reason for the delay is the im@atation
of the step given by the relation (32). The delay is equalib — 1)/2 = 25. Additionally, we can observe high distortion
at the beginning of the signal for almost all algorithms. HEmeallest distortion has the filtering with symmetrical extien,
what we explain below.

Transients which appear at the beginning and at the end diltdred signals by DFT algorithm in Figure 11 are highlighte
in Figure 12 and are primarily influenced by properties of Bf€T. The main assumption in DFT is signal periodicity, i.e.:

z[n] = z[n + N] (34)

whereN is the primary period. If in the signal[n] appear a significant difference between the last value ofitsteperiod of
signal,z[ N — 1], and the first value of the next periog[ V] = z[0] (according the formula (34)), then transients will appear
at the beginning and at the end of the filtered sigyjal as a result of filtering Pan (2001). The common solution tmielate
transients is removal of linear trend from the filtered slgrja].i.e.:

2'[n) x[n]fwn; n=20,...,N—1 (35)
~—— —

z¢[n]
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Fig. 11: Experiment with synthetic signals: a) input sig@aue) (29) and desired signal (red), b) classical filteringtput
signal (blue), desired signal (red) ¢) zero-phase filtermgput signal (blue), desired signal (red) d) basic DFEfiltg: output
signal (blue), desired signal (red) e) the filtering withg@adding: output signal (blue), desired signal (red) f) fittering
with symmetrical extension: output signal (blue), desisaghal (red).

wherez’[n] is a signal without trend ang,[n] is the linear trend. As a result of detrending we achieve:
2'[0] = 2/[N — 1] (36)

This operation taper the samples towards same values antheaints, and so there is no discontinuity with a hypotladtic
next period. It is worth to notice that filtering with symmietd extension causes exactly thaf[0] = z2[2N — 1], i.e. the
first and the last sample of the signal[n] are the same, Pan (2001) and results in damped transierttee Bmalysed above
example, we aimed to show the influence of the trend in theasign the quality of filtering.

Transients which appear from classical and zero-phasgrfitevere discussed in Gustafsson (1996). The cause ofi¢raas
are non-zero level of first samples of the signal and DC valugallovsky (2000). The solution of this problem is calcolati
of initial buffer values in applied filters, which are depend from filtered signak[n] and filter impulse respongen]|, more
can be find in Gustafsson (1996), P. Sadovsky (2000). BasdHigisolution the commercial solutions (e.g. in MATLAB) of
the zero-phase filtering is improved.

For the performance evaluation of the applied algorithrhe (tlassical filtering is omitted, due to its poor propejtiese
use the formula (27) and results are shown in Figure 12.

0.5

MSE
o

0.5 \ \ \ \ \ \ \
0 20 40 60 80 100 120 140

n [Sa]

Fig. 12: Errors’ waveforms of filtering with zero-phase (yeHasic DFT (green), zero-padding (blue), symmetric esitan
(black)
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TABLE II: The MSE from the first experiment for different typef filtering

Method MSE
Zero-phase 0.0494
Basic DFT 0.0190

Zero-padding 0.0452
Symmetric extension 0.00072

The highest error is at the beginning and end of the signadlfcalgorithms as the result of transients. The algorithrthwi
the smallest error is filtering with the symmetric extensibiltering with symmetric extension has the best propsréad
zero-phase filtering the worst. Conclusions are confirmethbyMSE values presented in the Table Il, where the highe& MS
is for the zero-phase filtering and the lowest for the symimetxtension. To improve the quality of the filtering in the DF
domain detrending (35) can be applied. This approach wifirowe the quality of the DFT spectrum, more details can be
found in Oppenheim & Schafer (1975).

VI. EXPERIMENT BASED ON REAL MEASUREMENTS FROM MARINE SYSTEMS

In this section we present real examples where digitalifilteis needed to remove noise from two low frequency sigis.
consider real signals: the vessel roll and the main propulgbwer signal, both sampled with sampling frequehgy= 1H z.
There are many examples like this with low frequency measargs and much more with high frequency measurements
(Fs >> 1Hz), where selective filtering is a common way to extract spedrg@quency components. The first example depicts
the digital filtering of the vessel roll signal. The vessdl signal is registered by the MRU (Motion Reference Unit) lmrard
the vessel. The vessel roll describes the motions of theel@ssund the longitudinal axis. This signal contains infation
about the permanent vessel heel (slow variable componeBtCocomponent), however the signal also contains movement
of the vessel on the sea waves (fast variable component, Atpaoent). The vessel heel is needed to describe the loading
conditions and safe ship operations. To be able to extragteleheel from the roll signal we have to remove the higher
frequencies which come from the waves, this can be achieyddviopass digital filtering. Figure 13 shows the vessel roll
signal which has the length 180[Sd]9a = 1s). To extract the slow variable component we applied lowspigering with
the cut-off frequencyf. = 0.05 [1/Sa](l/Sa = 1Hz). The previously described algorithms were applied to ghisblem.
The length of the classical FIR filter is 101[Sa]. As shown igufe 13 we clearly see the delay from classical filteringe Th
algorithms which perform without delay are the filtering etDFT domain and the zero-phase filtering. Beside the baiexla
all delayless algorithms perform similarly, which was exgel based on the results from the experiment with syntisajitals.

The behaviour of the algorithms at the edges show smallealisercies, and in this case they can be neglected. The small er
from the DFT filtering is due to the first and last values in tlgnal which are similar£[0] ~ =[N — 1] = 0), which we can
interpret as a single period of the periodic signal. Besid#, tthere is no trend present in this signal.

Roll [deg]

0 20 40 60 80 100 120 140 160
n [Sal

Fig. 13: Waveforms of the raw vessel roll signal (blue) antefdd signal: by the classical filtering (red), by the zehage
(green), DFT (black), zeropadding (black dashed), synmmektension (red star)

For comparison of quality of filtering we use SNR, which is dedl in following way:

power of S|gna> (37)

NR =101 -
SNE = 101og; ( power of noise
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TABLE Ill: Comparison of different filtering methods based 8NR

| Method | SNR of Roll [ SNR of Power Calculated SNR of Power Measured
Before filtering -16.8 3.6 11.2
DFT 14.3 11.9 12.7
Zero-padding 16.9 11.9 12.6
Symmetric extension 19.5 12 12.7
Classical filtering 155 13 13.2
Zero-phase 20 13.5 13.6

For calculation of the power of the signal and power of thesaoie use properties of power spectral density (PSD). PSD
guantifies the distribution of power with frequency and idifined in the following way Kay (2013):

n=M 2

> yfulesert

n=—M

Py(f) (38)

= I E
I\/Il~r>noo 2M +1

where F is the mean value)! is the number of sampleg, denotes discrete-time frequency, which is assumed to bleein t
range—0.5 < f < 0.5.

In our case, power of the signal is the power of the signal enftequency bandb, f.] (desired DC component is in this
interval), however power of the noise is the power of the aign frequency bandf., 0.5]. We apply following properties of
the PSD, what allow to estimate power of signal in selectettipae.:

Average power ifif1, fa] = 2/f2 P,(f)df (39)
Power of the signal and noise can be calculated in followiag:w 1
power of signak= /Ofc P,(f)df power of noise= fo,s P,(f)df (40)
When we substitute formula (40) to (37), we achieve: C
SNR = 10log;, (M) (42)
o7 Py(f)df

In practice the PSD have to be estimated and we decided tohas@/élch estimator as it is recommended for this purpose
Kay (1999) and Hayes (1996).

In Table Il we show the SNR calculated by (41) for the rollrsdjand power measured and calculated described further
in the paper.

In Table 11l we show the SNR for the roll signal before filtegifS N R = —16.8dB) and after filtering to evaluate different
filtering method’s performance. A negative value of the SNRignalz[n] can be explained by slow variable component (DC)
which have a small amplitude comparing with the AC componsee Figure 13. As a result of LP filtering the AC component
is filtered and according to Table Ill, the highest SNR we rexéor zero-phase and symmetric extension filtering.

We can conclude that the DFT and zero-phase filtering arerbaljorithms than the classical filtering. To see better the
differences between all delayless methods we present tonde=xample.

The second example uses two signals: power calculated aadumegl. The objective is to verify the consistency of the
calculated and measured power, see Figure 6. The measured {gothe product of the torque and rpm measured by sensor
installed on the shaft between the electric motor and the mapulsion thruster. The calculated power is the powerutated
in the drive based on the internal motor model. The model heentotor nameplate values and internal measured current,
modulated voltage and frequency to estimate the shaft polilere are many uncertainties in this calculation based on
tolerances and other changing parameters. However, basedperience from tests, where the actual power was detiveme
shaft and compared to drive calculation, we can rely on tigigat with accuracy of few percentage of the maximal power.
As we saw from the Figure 6.a, for small values of the powecutated and measured (in range 1-1000kW), there is a high
variance. Therefore, in Figure 14 we have shown two cases:wdren the power measured and calculated have low values
(left subplot) and second when power signals have high sa(tight subplot). To investigate fluctuations and high aace of
power signals we depicted their spectrum. In Figure 14.aFagdre 14.c we can see that for the power calculated in thedri
(red) there are a lot of fluctuations form waves, what confithespeak in the spectrum at the 0.18Hz. The peak from wave
is not present for the measured power on the shaft (Figure -1dlue). We see also that the time series of power measured
has lower variance than power calculated, so it is hard topesenboth signals. Additionally, there are less variancehigh
power values (Figure 14.b). The difference between powleulzied and measured is in range of #-6f the maximal power
and can be the result of accuracy of calculations or the immat characteristic of the torque sensor. We can see that fo
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high power values the noise looks like AWGN (Figure 14.d r&@Bsed on this we concluded that to enable comparison of
signals digital filtering is required to remove the noise #mgl wave component from measurements. To be more specific, to
confirm the linear relation between the measured signal la@dalculation procedure which is not obvious from the ratada

as depicted in Figure 6.a.
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Fig. 14: Analysis of properties of the power signals in tinoargin (a,b) and in frequency domain (c,d) for two differeotver
range. Power calculated in drive - red, power measured - blue

In Figure 15, we show the results from filtering the measuratitae calculated power by the methods described above. To
extract the slow variable component we applied low-pasarifily with the cut-off frequency,. = 0.01 [1/Sa]. The length of
the classical filter is 101[Sa] and the delay from this typeeffihg is obvious. The delay is not present during the DFT and
zero-phase filtering, however there are distortions atitireasboundaries. The worst results were obtained for the-padding
and zero-phase filtering, which results from the constantpmnent present in the signal (mea00). Despite the long length
of the signal (600[Sa} 10min) the transition in the zero-padding and zero-phateifig at the boundaries is significant. The
length of transitions states is equal appid¥ of the signal length and they should be omitted in furtherysis, which is a
limitation of those methods. In case of processing datakisl@é short time intervals transition states are significaihie best
results we received for the DFT and DFT with symmetric extaméiltering, which comes from the properties of the DFT.

1000 1000
800+ 1 800 |
E E 600} H ““ ]
REE (M TR0 H.l a
‘; 2001 h "“ M '"’W‘jrl i”"l'”' ’W"Wﬂ \ W]i
% 100 200 300 400 500 600 0o 100 200 300 400 500 600
n [Sa] n [Sa|
@ (b)

Fig. 15: Waveforms of the raw: a)power measured (blue) andower calculated(blue) and filtered signal: by the classica
filtering (red), by the zero-phase(green), by the DFT (blabk the zero-padding (black dashed), by the symmetricnsita
(red star).

In Table Ill we showed the SNR for power measured and caledlaEor power measured, tfeVR = 11.2dB before
filtering and from analysis of the Figure 15a we see that theseaf distortions is low quality of the AC/DC converter and
the AC component from ocean waves Fossen (2002). For povarla®d the dominant distortion are ocean waves, which
have larger amplitude than the power measured, what canses $ N R = 3.6dB than for power measured. We can see that
the LP filtering improved the SNR significantly and the SNR fower calculated increased about 8dB however for the power
measured the difference before and after filtering is natiBaant (the level of distortions is low). Based on the ré&sgshown
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TABLE IV: Comparison of different filtering methods based filtering time

| Method | Filtering time of Roll | Filtering time of Power Calculated Filtering time of Power Measured
DFT 5.10—° 4105 4.107°
Zero-padding 7.10~5 6105 6105
Symmetric extension 6105 5.10-° 5.10-°
Classical filtering 0.001 8.810~4 8.610~4
Zero-phase 0.002 0.002 0.002

in Table 11l we see that the zero-phase filtering gave the dsgISNR what is the result of (12) and Figure 7 where we see
that the filtering is applied twice. In case of power measumed calculated the difference between filtering method®isan
significant as for the roll signal. In this case to evaluate performance of filtering it would be beneficial to study thmaet

of calculation for all these methods, what is done in the sextion.

We can conclude that the DFT methods are delayless, so inagee af processing data from many sources, as in the case
of big data, these methods are desirable for filtering. Aolditlly the DFT with symmetric extension has the best qualit
which was shown both in the theoretical and real exampless. fBsults from the fact that symmetrical extension enfetbe
periodicity without discontinuities. The good propert@she DFT will depend on the signal periodicity, so in sonmeations
the results will be similar to the DFT with symmetric extemsiand in other situations they will be worse. In case of time
series without a trend, all delayless algorithms will periosimilarly. We would like to recommend the DFT as a tool for
digital filtering for big data due to the robustness of thigagithm. Beside that, delayless differentiation, inteigra etc. can
be applied only in the DFT domain (e.g. Hilbert Filter in MAAB), which makes the DFT more appropriate than zero-phase
filtering. Additionally, in the next section we will presettte numerical complexity of the DFT method what makes itelé
for big data preprocessing.

VIlI. NUMERICAL COMPLEXITY

In the previous section we showed that filtering in DFT dondoes not introduce delay, and its quality is therefore bette
compared to classical filtering solutions. An additionadpgerty of the DFT filtering is low computational cost in comipan
to classical filtering. It results, from the numerical costiee V-point DFT being of orderV2. If we apply the Fast Fourier
Transformation, calculations will be the fastest for ldngf the signal equaN = 2™, wherem € N - then the numerical cost
is approximately equal t0.5N log, N Mitra (2010), Oppenheim & Schafer (1975). In Figure 16 wevstibe results from
the experiment to compare the numerical costs for all desdrsolutions. The experiment was carried out for the syiathe
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Fig. 16: Comparison of different filtering methods: the zphase filtering for direct time domain (dashed green) arstl fa
convolution (dashed blue), the classical filtering for diréme domain (continues red) and fast convolution (cargmgreen),
the basic DFT (continuous blue), the symmetric extensi@stidd red), zeropadding (continuous black)

signal of length froml00Sa to 10%Sa, which is relevant for a signal sampled with 1Hz during hathanth. As we see from
the Figure 16, the numerical cost is highest for filtering irect time domain (implemented by (32)) and also increasés w
the length of the signal. We obtained lower computationat<or the other types of the filtering in the DFT domain, vhic
was expected according to the DFT/FFT properties. The uskeofecursive filter in the zero-phase filtering results iwdo
computational cost than non-recursive filters, howeverdésign of the non-recursive filters is more complex and itds n
possible to implement some types of filters.

Additionally, we evaluated the performance of filtering &&®n real examples presented in the previous section. Resel
shown in Table IV. We see that the shortest computation tiraeashieved for the algorithm implemented in the DFT/FFT,
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i.e. for raw DFT and symmetric extension comparing with ttassical filtering and the zero-phase filtering. To concjutle
recommendation is to use the DFT filtering for big data prepssing.

VIIl. CONCLUSIONS

Today, there is a focus on data analysis from many sensdes) mfferred to as big data in 10T era. In the case of sequence
data, preprocessing is essential. One of the main algasitbndata preprocessing is digital filtering. In this paperprvesented
and compared existing algorithms of digital filtering frohetperspective of the delay which is introduced by filteribis
is important during analysis data from many sources. Theomedor the delay from digital filtering is the phase response
of filters, which is often neglected by engineers. To avoitloiducing distortions through digital filtering it is deslle to
ensure a linear phase response, and this is possible onhofoerecursive filters. Based on the prediction model we stdow
that the delay of some of the input signals influences theututpthe prediction model, which was shown also based on the
correlation matrix. This motivates the use of delaylesdtaidjltering. In this paper we presented a comparison armpliegtion
of existing digital filtering methods in the DFT domain basedreal-life marine examples. The performance of the detsy!
algorithms was documented based on synthetic and real ddtaanpared to classical filtering. Using synthetic sigmveds
were able to measure the MSE of algorithms and we showed rihiations of zero-phase filtering. The best performance
was achieved for the DFT filtering with symmetric extensidhe solution gave almost ideal results without distortiohe
beginning or end of the signal based on the simulation anidesesamples. This property is important for practical apgiicns
while processing data split into blocks, when distortioan be significant. The achieved results from real signalgiegrthat
the DFT with symmetric extension is the most robust and gmmte method for digital filtering. Additionally, we made a
comparison of the numerical costs for different types oéffiltg, what is essential while big data preprocessing.d&etiat,
delayless differentiation, integration etc. can be agpbaly in the DFT domain, which makes the DFT more appropriate
than zero phase filtering. The achieved results lead us mmerend the DFT algorithms due to the following benefits: the
algorithms are delayless, have straightforward implemtéort, and are numerically efficient. The design of the filtethe
DFT domain is simpler than the classical approach - it do¢sewuire filter coefficients and expert knowledge of filtesida,
what is beneficial for practitioners from various discigin We can apply sophisticated frequency response of filtetise
DFT domain to solve complex filtering (e.g. extracting a rnipldt single frequency components). All of these aspectsvatets
the use of this method for big data preprocessing.
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