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Abstract

We discuss nonholonomic systems in general and numerical methods for solving them.
Two different approaches for obtaining numerical methods are considered; discretization
of the Lagrange-d’Alembert equations on the one hand, and using the discrete Lagrange-
d’Alembert principle to obtain nonholonomic integrators on the other. Among methods
using the first approach, we focus on the super partitioned additive Runge-Kutta (SPARK)
methods [14, 16, 17]. Among nonholonomic integrators, we focus on a reversible second
order method by McLachlan and Perlmutter [22].

Through several numerical experiments the methods we present are compared by con-
sidering error-growth, conservation of energy, geometric properties of the solution and
how well the constraints are satisfied. Of special interest is the comparison of the 2-
stage SPARK Lobatto IIIA-B method and the nonholonomic integrator by McLachlan
and Perlmutter, which both are reversible and of second order.

We observe a clear connection between energy-conservation and the geometric prop-
erties of the numerical solution. To preserve energy in long-time integrations is seen to
be important in order to get solutions with the correct qualitative properties. Our results
indicate that the nonholonomic integrator by McLachlan and Perlmutter sometimes con-
serves energy better than the 2-stage SPARK Lobatto IIIA-B method. In a recent work by
Jay [19], however, the same two methods are compared and are found to conserve energy
equally well in long-time integrations.
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Introduction

A nonholonomic system is a mechanical system subject to nonholonomic constraints. Such
constraints typically arise whenever there is sliding contact or rolling contact involved, e.g.
if the system contains skates or wheels. One example of a nonholonomic system that we
will study later, is a disk rolling on a horizontal plane without slipping (think of a coin
rolling on a table).

In the literature nonholonomic mechanics is often studied from a geometric viewpoint,
requiring the reader to be familiar with differential geometry. We aim to introduce non-
holonomic mechanics at a more basic level. This thesis requires a general knowledge
about linear algebra, partial differential equations and numerics in general, but it should
be readable without any familiarity to manifolds.

The main objective of this thesis is to study numerical methods for solving nonholo-
nomic systems. Different methods are presented and investigated through numerical ex-
periments. Nonholonomic systems possess certain important properties. How well the
numerical solutions preserve these properties plays a key role in determining the success
of the methods.

Both unconstrained and constrained mechanical systems are discussed in Chapter 1.
In particular, we study nonholonomic systems. The Lagrange-d’Alembert equations are
derived. These equations are the governing equations for a nonholonomic system.

Chapter 2 formulates the Lagrange-d’Alembert equations as a differential-algebraic
equation (DAE) and methods using this formulation are considered. A class of methods
called super partitioned additive Runge-Kutta (SPARK) methods is the highlight of this
chapter.

Another approach for integrating nonholonomic systems is considered in Chapter 3.
Instead of discretizing the equations themselves, the derivation of the equations is dis-
cretized and the result is the discrete Lagrange-d’Alembert equations. Methods based on
these equations are referred to as nonholonomic integrators and two such methods are
presented.

Different numerical experiments are carried out in Chapter 4. The methods considered
in the preceding chapters are put to the test and the properties of the different methods
are analyzed and compared.

In Chapter 5 we summarize our work and draw some conclusions based on our results.
Possibilities for further work are also discussed.
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Chapter 1

Nonholonomic Mechanics

In this chapter, we first look at unconstrained mechanical systems. The movement of such
systems is governed by Hamilton’s equations. These equations are derived from Hamilton’s
principle. Next, we consider systems subject to constraints, and we in particular clearify
what a nonholonomic system is. From the Lagrange-d’Alembert principle, the Lagrange-
d’Alembert equations are derived. These equations govern the evolution of nonholonomic
systems and solving them is the subject of the coming chapters.

1.1 Mechanical Systems

In this section, mechanical systems in general and how such systems are represented math-
ematically are discussed. An example is also introduced that will be used throughout this
thesis to illustrate theory presented.

1.1.1 Generalized Coordinates

The configuration of a mechanical system is determined by the position and orientation in
3-space of all the physical parts of the system. At any given point in time, a mechanism
has a particular configuration. The set of all physically possible configurations make
up the configuration space. The configuration space is a manifold1 and therefore also
referred to as the configuration manifold. To describe a mechanical system more formally,
a set of generalized coordinates are used, which is interpreted as the coordinates for the
configuration space. These coordinates are minimal in the sense that no set of fewer
coordinates are able to fully describe the system. The number of coordinate variables is
called the number of degrees of freedom of the system and it is also the dimension of the
configuration space. A set of generalized coordinates need not be Cartesian, but can be
any set of coordinates describing the configuration of the system in a unique way.

Notation. The configuration space is denoted by Q and one particular configuration in
this space by q ∈ Q. An element q is represented as a column vector of length n, where n is
the dimension of Q. Components are denoted by superscript, so that the i’th component
of q is denoted qi. A mechanical system will change with time in a continuous way. At
each time t, the current configuration of a system is denoted by q(t) ∈ Q. This way, q can

1If the reader is unfamiliar with manifolds and differential geometry, an introduction can be found in
e.g. [24]. See also Appendix A.2. However, differential geometry is not of great importance in this thesis
and it can easily be read without any knowledge about the subject.

3



4 Chapter 1. Nonholonomic Mechanics

be seen as a function q : R→ Q that will trace out a continuous curve in the configuration
space Q.

1.1.2 Example: The Vertical Rolling Disk

To see a concrete example of a mechanical system, its configuration space and how a
particular set of coordinates can be put on this space, the vertical rolling disk [1] is
considered. This example consists of a disk rolling on a horizontal plane without slipping
and without falling over. This is of course not a physically realistic situation as any real
world disk would (eventually) fall over, but it is an illustrative example. The extension to
the rolling disk that is allowed to fall over is not very difficult (see [1]).

If S1 denotes the unit circle, the configuration space of this system is given by Q =
R2 × S1 × S1. One possible choice of coordinates is given by q = (x, y, ϕ, θ), where (x, y)
is the point of contact, ϕ is the orientation of the disk and θ is the rotation angle of the
disk, as shown in Figure 1.1. This given choice of coordinates is not the only possibility.

Figure 1.1: The vertical rolling disk with chosen coordinates.

Another choice could be to use polar coordinates to describe the point of contact instead
of using Cartesian coordinates, or the orientation of the disk could have been given relative
to the y-axis instead of the x-axis. The possibilities are many, but any choice would always
consist of precisely four coordinates.

1.2 Hamilton’s Principle

How an unconstrained mechanical system evolves in time is determined by Hamilton’s
principle. In this section, Hamilton’s principle is first stated and then the Euler-Lagrange
equations are derived from this principle.

Consider a mechanical system described by generalized coordinates q. Fix the time-
interval [0, T ] and fix the initial and final states q0 = q(0) and qT = q(T ). Consider
continuous curves q(t) in Q which connect these two points. Figure 1.2 shows one such
continuous curve. Denote the time-derivative of q by q̇ and let the kinetic energy of the
system be given by K = K(q, q̇) and the potential energy by V = V (q). In a manifold
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Figure 1.2: A curve q(t) in Q with fixed endpoints q0 and qT .

setting, q̇ is a tangent vector at the point q, i.e. q̇ ∈ TqQ. Like q, also q̇ is represented by
a column vector of length n. The kinetic energy is often of the form

K(q, q̇) =
1
2
q̇TM(q)q̇, (1.1)

where M(q) is an n × n symmetric positive definite matrix called the mass-matrix [10].
Associated with such a system is a real-valued function L : TQ→ R, called a Lagrangian,
which is defined2 by

L(q, q̇) = K(q, q̇)− V (q).

Given a Lagrangian L(q, q̇), the action functional S is defined as

S(q(t)) =
∫ T

0
L(q(t), q̇(t)) dt. (1.2)

This is also referred to as the action integral.

Definition 1.1 (Hamilton’s Principle). The true evolution q(t) of a system described by
the general coordinates q, with fixed endpoints q0 = q(0) and qT = q(T ), is the curve q(t)
that extremizes the action functional S(q(t)) given by (1.2).

Said in a different way, among all possible continuous curves in Q connecting the two
endpoints, the curve that represents the physically correct evolution of the system, is the
curve that extremizes the action functional. To make Hamilton’s principle a bit more
precise, the approach taken in [1] is used. Let the variation of a curve q(·) with fixed
endpoints be a smooth mapping

(t, ε) 7→ q(t, ε), 0 ≤ t ≤ T, ε ∈ (−δ, δ) ⊂ R

such that q(t, 0) = q(t) for t ∈ [0, T ]. This concept of variations of the curve q(t) is illus-
trated in Figure 1.3 on the following page. Let the virtual displacement δq(t) corresponding
to the variation of q be defined as

δq(t) .=
∂

∂ε
q(t, ε)

∣∣∣∣
ε=0

.

Since the endpoints of the curve q are fixed, it follows that δq(0) = δq(T ) = 0. Hamilton’s
principle can then be restated in a precise way as follows. The true evolution q(t) of a
mechanical system satisfies

0 = δS
.=
d

dε

∫ T

0
L(q(t, ε), q̇(t, ε))dt

∣∣∣∣
ε=0

, (1.3)

2It is noted in [1] that L(q, q̇) = K(q, q̇)−V (q) is the appropriate definition of the Lagrangian for most
systems, but that for some systems, such as a particle in a magnetic field, a Lagrangian which is not of
this form has to be chosen.
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Figure 1.3: Variations of the curve q(t).

for all variations of q.

Proposition 1.2. Hamilton’s principle for a curve q(t), given in Definition 1.1, is equiv-
alent to the condition that q(t) satisfies the Euler-Lagrange equations

d

dt

∂L

∂q̇
− ∂L

∂q
= 0. (1.4)

These equations are also referred to simply as the Lagrange equations.

Proof. Hamilton’s principle is equivalent to (1.3). Using the chain rule yields

0 = δS =
∫ T

0

(
∂L

∂q
· ∂q
∂ε

∣∣∣∣
ε=0

+
∂L

∂q̇
· ∂q̇
∂ε

∣∣∣∣
ε=0

)
dt,

and integrating by parts the integral involved in the second sum gives

0 = δS =
∫ T

0

∂L

∂q
· δq dt+

[
∂L

∂q̇
· δq
]T

0︸ ︷︷ ︸
=0

−
∫ T

0

(
d

dt

∂L

∂q̇

)
· δq dt =

∫ T

0

(
∂L

∂q
− d

dt

∂L

∂q̇

)
· δq dt

for all virtual displacements δq. The second term vanishes because δq(0) = δq(T ) = 0.
The dot · denotes the inner product. Since δq is arbitrary, the Euler-Lagrange equations
(1.4) follow from the so-called fundamental lemma of the calculus of variations. �

1.2.1 Legendre Transformation and Hamilton’s Equations

By a change of variables, it is possible to rewrite the Euler-Lagrange equations into a very
symmetric form [10]. The result of this change of variables is Hamilton’s equations.

If the Hessian matrix
∂2L

∂q̇2
=
(

∂2L

∂q̇i∂q̇j

)
i,j=1,...,n

is invertible, the Lagrangian L is called a regular Lagrangian [1]. For example, a La-
grangian of the form L(q, q̇) = 1

2 q̇
TM(q)q̇ − V (q), where M(q) is positive definite, is a

regular Lagrangian [25]. Assume now that L is regular. With this assumption, a change
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of variables from (q, q̇) to the variables (q, p) can be made, where p is the momentum
variables defined by

p =
∂L

∂q̇
. (1.5)

This change of variables is called the Legendre transformation [1, 10]. The Hamiltonian
is a real-values function defined by

H(q, p) = pT q̇ − L(q, q̇), (1.6)

where q̇ = q̇(q, p) is expressed as a function of q and p using the Legendre transform (1.5).

Proposition 1.3. The Euler-Lagrange equations (1.4) are equivalent to Hamilton’s Equa-
tions

q̇ =
∂H

∂p
(q, p), ṗ = −∂H

∂q
(q, p). (1.7)

Proof. This proof is found in [10]. Using the definition of the Hamiltonian (1.6), the
Legendre transform (1.5) and the Euler-Lagrange equations (1.4),

∂H

∂p
= q̇ +

(
∂q̇

∂p

)T
p−

(
∂q̇

∂p

)T ∂L
∂q̇

(1.5)
= q̇,

∂H

∂q
=
(
∂q̇

∂q

)T
p− ∂L

∂q
−
(
∂q̇

∂q

)T ∂L
∂q̇

(1.5)
= −∂L

∂q

(1.4)
= − d

dt

∂L

∂q̇

(1.5)
= −ṗ.

So the Euler-Lagrange equations and Hamilton’s equations are equivalent. �

In the particular case where the Lagrangian is of the form L(q, q̇) = 1
2 q̇
TM(q)q̇ − V (q),

where M(q) is positive definite, the Legendre transform is given by

p =
∂L

∂q̇
= M(q)q̇

and thus
q̇ = M(q)−1p.

Replacing q̇ by M(q)−1p in the definition of the Hamiltonian (1.6) yields

H(q, p) = pTM(q)−1p− L(q,M(q)−1p) = pTM(q)−1p− 1
2
pTM(q)−1p+ V (q)

=
1
2
pTM(q)−1p+ V (q) = K(q,M(q)−1p) + V (q) = K

(
q, q̇(q, p)

)
+ V (q).

Thus, the Hamiltonian is equal to the kinetic energy plus the potential energy, which is
the total energy of the system.

1.2.2 Properties of Unconstrained Systems

The solution of Hamilton’s equations (1.7) has some important properties. Some of the
most important properties are described below.
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Energy Conservation. Thinking of the Hamiltonian as a function of (q, q̇) instead of
(q, p), it can be written as E(q, q̇) and referred to as energy [1]. Said in another way, the
energy is defined as

E(q, q̇) = q̇T
∂L

∂q̇
(q, q̇)− L(q, q̇).

As seen above, in the particular case where L = K − V = 1
2 q̇
TMq̇ − V , this becomes

E = K + V , which makes this definition of energy seem like a natural choice. The energy
is a conserved quantity since

d

dt
E(q, q̇) =

(
∂L

∂q̇

)T dq̇
dt

+ q̇T
(
d

dt

∂L

∂q̇

)
− q̇T ∂L

∂q
−
(
∂L

∂q̇

)T dq̇
dt

= q̇T
(
d

dt

∂L

∂q̇
− ∂L

∂q

)
(1.4)
= 0.

That is, for an unconstrained system, the total energy is constant in time.

Reversibility. The flow of a dynamical system is the mapping which associates an initial
condition y(0) = y0 to the solution y(t) of the system at a later time t [10]. That is, the
flow of a system is denoted by ϕt, it satisfies ϕt(y0) = y(t).

The flow ϕt of a dynamical system is reversible if

ϕt ◦ ρ ◦ ϕt = ρ

where ρ(q, v) = (q,−v). This definition is illustrated in Figure 1.4. A reversible flow is
also referred to as time-reversible or symmetric. The flow of Hamilton’s equations (1.7) is
reversible [10, V.1].

Figure 1.4: Illustration of a reversible (symmetric) flow ϕt.

Symplecticity. Let J ∈ R2n be defined by

J =
[

0 I
−I 0

]
and let U ⊂ R2n. A differentiable map g : U → R2n is symplectic if the Jacobian matrix
g′(q, p) satisfies

g′(q, p)TJg′(q, p) = J.

The flow of Hamilton’s equations (1.7) is symplectic (see [10, VI.2] for a proof).
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1.3 The Lagrange-d’Alembert Principle

First in this section, the definition of a holonomic and a nonholonomic system is given. As
we are in particular interested in nonholonomic systems, this is what we focus on. Using
the Lagrange-d’Alembert principle, the Lagrange-d’Alembert equations are derived, which
can be seen as a generalization of the Euler-Lagrange equations to the nonholonomic case.
At the end of this section, holonomic systems are also briefly discussed.

1.3.1 Holonomic and Nonholonomic Constraints

Mechanical systems subject to one or more constraints are now considered. A constraint
is a condition imposed on the system, which limits its evolution or possible configurations.
A constraint is either classified as holonomic or nonholonomic.

Consider a mechanical system described by generalized coordinates qj , j = 1, . . . , n,
subject to m < n constraints. Assume that the constraint equations are given by

n∑
j=1

aij q̇
j = 0, i = 1, . . . ,m, (1.8)

where the coefficients aij depend on q. That is, the constraint equations are assumed
to be linear in the velocity variables q̇j . These constraints are called holonomic if it is
possible to find m constraints on the position alone, which means it is possible to find m
constraints

bi(q) = 0, i = 1, . . . ,m,

such that the time-derivative of these constraints equal (1.8), i.e.

n∑
j=1

∂bi
∂qj

q̇j = 0, i = 1, . . . ,m.

If this is not possible, then the constraints (1.8) are nonholonomic. For example, the con-
straint that the distance between any two particles in a rigid body is fixed is a holonomic
constraint, whereas the constraint of rolling without slipping (like in the vertical disk
example) is a nonholonomic constraint. A mechanical system subject to holonomic con-
straints is referred to simply as a holonomic system and a system subject to nonholonomic
constraints is referred to as a nonholonomic system.

By defining b as the column vector of length m, such that its i’th element of b is given
by bi, the holonomic constraints can be written simply as

b(q) = 0. (1.9)

In a similar way, define A to be the m× n matrix such that its (i, j)-entry is given by aij .
Then the nonholonomic constraints can be written as

A(q)q̇ = 0. (1.10)

This concise notation is used hereafter.
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1.3.2 The Lagrange-d’Alembert Principle

For unconstrained mechanical systems, Hamilton’s principle determines how to find the
physically correct evolution of the system. In a similar way for nonholonomic systems, the
Lagrange-d’Alembert principle determines the true evolution.

Definition 1.4 (The Lagrange-d’Alembert Principle). A curve q(t) is an admissible evo-
lution of the system if

δ

∫ T

0
L(q(t), q̇(t))dt = 0 (1.11)

for all virtual displacements δq(t), where δq(0) = δq(T ) = 0, that satisfy the constraints
for all times, i.e. A(q(t))δq(t) = 0 for all t ∈ [0, T ].

In a similar way that Hamilton’s principle is shown to be equivalent to the Euler-
Lagrange equations, the Lagrange-d’Alembert principle is shown to be equivalent to the
Lagrange-d’Alembert equations, which can be seen as a generalization of the Euler-Lagrange
equations to the nonholonomic case. Assuming that the constraint matrix A(q) has full
rang, the following proposition states the eqivalence.

Proposition 1.5. The Lagrange-d’Alembert principle given in Definition 1.4, together
with the constraints (1.10), is equivalent to the Lagrange-d’Alembert equations of motion

d

dt

∂L

∂q̇
− ∂L

∂q
= A(q)Tλ, (1.12a)

A(q)q̇ = 0. (1.12b)

Proof. The constraints (1.12b) are simply the same as (1.10), so what needs to be
shown is that the Lagrange-d’Alembert principle is equivalent to (1.12a). From the proof
of Proposition 1.3,

0 = δS =
∫ T

0

(
∂L

∂q
− d

dt

∂L

∂q̇

)
· δq dt,

where now the virtual displacements δqi are not independent, as they are in the uncon-
strained case. The above equation implies

n∑
i=1

(
d

dt

∂L

∂q̇i
− ∂L

∂qi

)
δqi = 0, (1.13)

for all virtual displacements δq(t) such that A(q)δq = 0 for each time t ∈ [0, T ]. Now, for
notational simplicity, let w be the column vector

w
.=
d

dt

∂L

∂q̇
− ∂L

∂q
.

Equation (1.13) can then be written as wT δq = 0 for all δq s.t. A(q)δq = 0. From the
definition of kernel, we have that A(q)δq = 0 is equivalent to δq ∈ ker(A(q)), and so

(1.13)⇐⇒ w ⊥ ker
(
A(q)

)
⇐⇒ w ∈

(
ker
(
A(q)

))⊥
= im

(
A(q)T

)
.

The last equality follows from the fundamental theorem of linear algebra. Then, since w
is in the image of A(q)T , there exists a λ ∈ Rm such that w = A(q)Tλ, which is exactly
(1.12a). �
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Remark. It is worth mentioning that the Lagrange-d’Alembert principle is not truly
variational [1, 5]. The Lagrange-d’Alembert principle says to impose the constraints on the
virtual displacements δq. The corresponding variational approach is to instead impose the
constraints on the velocity vectors q̇. This gives rise to the so-called vakonomic mechanics
and the variational nonholonomic equations. These equations are in general not equivalent
to the Lagrange-d’Alembert equations. Vakonomic mechanics is used as the setting for
some optimization problems, whereas the Lagrange-d’Alembert principle should be used
to obtain the correct dynamics for nonholonomic systems [1]. See [1, Chapter 1.3] and [5,
Chapter 3.3] for more on the distinction between these two approaches.

1.3.3 Hamiltonian Formulation

As for unconstrained systems, if it again is assumed that the Hessian matrix ∂2L/∂q̇2

is invertible, the Lagrange-d’Alembert equations can be rewritten using the Hamiltonian
H = pT q̇−L(q, q̇) and the Legendre transformation p = ∂L/∂q̇. Using the same approach
as in the proof of Proposition 1.3, but now using the Lagrange-d’Alembert equations (1.12)
instead of the Euler-Lagrange equations, it is found that

∂H

∂p
= q̇,

∂H

∂q
= −∂L

∂q

(1.12)
= − d

dt

∂L

∂q̇
+ATλ = −ṗ+ATλ,

so the Lagrange-d’Alembert equations are equivalent to

q̇ =
∂H

∂p
(q, p), ṗ = −∂H

∂q
(q, p) +A(q)Tλ.

The nonholonomic constraints can be written in terms of q and p as

A(q)
∂H

∂p
(q, p) = 0.

In the particular case where the Lagrangian is of the form L(q, q̇) = 1
2 q̇
TM(q)q̇ − V (q),

where M(q) is positive definite, these equations become

q̇ = M(q)−1p, ṗ = −∂H
∂q

(q, p) +A(q)Tλ =
∂L

∂q
(q,M(q)−1p) +A(q)Tλ,

with constraints
A(q)M(q)−1p = 0.

These equations are returned to in Section 2.2.2.

1.3.4 Properties of a Nonholonomic System

Three important properties of an unconstrained system are discussed in Section 1.2.2 — the
energy of the system is conserved and the flow is reversible and symplectic. Nonholonomic
systems also conserve energy and the flow is reversible. However, the flow is not symplectic
[5].

When solving nonholonomic systems numerically, it is natural to search for methods
that produce numerical solutions with these properties. In later chapters, when considering
different numerical methods, how well these methods preserve energy and whether they
are reversible or not play a key role in determining their success.
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Energy conservation. As for unconstrained systems, the energy is defined as

E(q, q̇) = q̇T
∂L

∂q̇
(q, q̇)− L(q, q̇).

For a nonholonomic system with constraints that are linear in the velocity coordinates,
i.e. the constraints can be written A(q)q̇ = 0, the energy of the system is conserved. This
is seen by

d

dt
E(q, q̇) = q̇T

(
d

dt

∂L

∂q̇
− ∂L

∂q

)
(1.12a)

= q̇TA(q)Tλ =
(
A(q)q̇

)T
λ

(1.12b)
= 0.

As before, if the Lagrangian is given by L = 1
2 q̇
TMq̇− V , the energy E equals the sum of

the kintic energy and the potential energy.

Reversibility. Recall from Section 1.2.2 that the flow ϕt of a dynamical system is re-
versible [10] if

ρ ◦ ϕt = ϕ−t ◦ ρ,

where ρ(q, v) = (q,−v). If the Lagrangian is of the form L = K−V , where K is the kinetic
energy and V is the potential energy, the flow of the Lagrange-d’Alembert equations is
reversible [22].

1.3.5 Example: The Vertical Rolling Disk Revisited

The vertical rolling disk presented in Section 1.1.2 is now revisited to see an example of
nonholonomic constraints and a Lagrangian and also to see what the Lagrange-d’Alembert
equations look like in this case. Recall that this example consits of a vertical disk rolling
on a horizontal plane without slipping and without falling over. The coordinates for this
system are given by q =

[
x y ϕ θ

]T . The system is depicted in Figure 1.1 on page 4.
The restriction that the disk cannot slip actually translates into two nonholonomic

constraints. If the radius of the disk is R, then these constraints are

0 = ẋ−R(cosϕ)θ̇,

0 = ẏ −R(sinϕ)θ̇.

Defining

A(q) =
[
1 0 0 −R cosϕ
0 1 0 −R sinϕ

]
,

these constraints can be written in matrix notation as A(q)q̇ = 0. As the disk cannot
fall over, there is no gravity working and hence no potential energy. The Lagrangian is
therefore given by the kinetic energy only and it reads

L(q, q̇) =
1
2
q̇TM(q)q̇ =

1
2
m
(
ẋ2 + ẏ2

)
+

1
2
Jϕ̇2 +

1
2
Iθ̇2, (1.14)

where m is the mass of the disk, J is the moment of inertia about an axis in the plane of
the disk and I is the moment of inertia of the disk about the axis perpendicular to the



1.3 Lagrange-d’Alembert Principle 13

plane of the disk. Both axes go through the center of the disk. From (1.14), it is found
that the mass matrix M(q) is given by the diagonal matrix (zero elements are left out)

M(q) =


m

m
J

I

 . (1.15)

This matrix is symmetric and positive definite as long as m,J, I > 0. If the Lagrangian
multipliers are written as λ =

[
λ1 λ2

]T , the Lagrange-d’Alembert equations (1.12) be-
come

mẍ = λ1,

mÿ = λ2,

Jϕ̈ = 0,

Iθ̈ = −R(cosϕ)λ1 −R(sinϕ)λ2,

0 = ẋ−R(cosϕ)θ̇,

0 = ẏ −R(sinϕ)θ̇.

(1.16)

These are the equations of motion, which describe the evolution of the system given
consistent initial values. Consistent initial values means that the initial conditions have
to satisfy the nonholonomic constraints and also the time-derivative of the constraint
equations. This is discussed more in Section 2.1.

1.3.6 Holonomic systems

As we in this thesis only is concerned with solving nonholonomic systems, we will now give
a brief overview of some ways to solve holonomic systems numerically. See the references
given below for more on this subject.

Holonomic systems are mechanical systems subject to constraints on the position alone.
Say we have as before m < n constraints, where n is the number of coordinates. Mathe-
matically, it is then possible to use these constraints to eliminate m of the coordinates of
the system as we can use the constraints to solve for one coordinate at a time. Doing this
leaves us with an unconstrained system of n−m variables, which can be solved using the
Euler-Lagrange equations.

However, even though a holonomic system is mathematically equivalent to an uncon-
strained system, there are many numerical methods that do not use this approach. Some
of these methods are mentioned below.

SHAKE and RATTLE. The SHAKE method is proposed to solve the equations of
motion for a holonomic system written in an Hamiltonian form. It is assumed that the
Hamiltonian can be written as

H(q, p) =
1
2
pTM−1p+ V (q).

The SHAKE algorithm is a two-step method and an extension of the Störmer/Verlet
scheme (also known as the leap-frog method).
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A modification of the SHAKE algorithm, called RATTLE, has been proposed. This is
a one-step method, which results in less round-off errors and the solution also lies on the
correct manifold. The RATTLE algorithm can be extended to general Hamiltonians.

Both these methods are of second order and symmetric. They are very popular and
widely used. See e.g. [10] for more on SHAKE and RATTLE.

SPARK Methods. In Section 2.5, a class of methods proposed in [14] called SPARK
methods is discussed. There, these methods are only discussed in the context of nonholo-
nomic systems, but the methods can handle holonomic systems just as well. They can
also handle mixed holonomic and nonholonomic constraints.

Variational Integrators. In Section 3.2, a discretization of the Lagrange-d’Alembert
principle is discussed and a discrete version of the Lagrange-d’Alembert equations is de-
rived. These discrete equations are referred to as a variational integrator (or a nonholo-
nomic integrator in the nonholonomic case). There is a choice on how to disctretize the
Lagrangian and the constraints, and depending on this choice, different variational integra-
tors with different properties are obtained. Variational integrators for holonomic systems
are discussed in e.g. [21, 27].



Chapter 2

Numerical Integration of Index 2
DAEs

A differential-algebraic equation (DAE) is a class of differential equations. First, a more
formal definition of differential-algebraic equations is given in Section 2.1, and then in Sec-
tion 2.2, it is shown how the Lagrange-d’Alembert equations can be written as a DAE, both
using a Lagrangian and a Hamiltonian formulation. In the rest of this chapter, numerical
methods that solve the Lagrange-d’Alembert equations using these DAE formulations are
considered.

2.1 Differential-Algebraic Equations (DAEs)

A description of differential-algebraic equations (or DAEs for short) is now given. In
particular, what is called index 2 DAEs is considered. This is of special interest to us
since the Lagrange-d’Alembert equations (1.12) are an example of an index 2 DAE (this
is shown below). In the following, the discussion of DAEs in [9] is mainly used. See also
[11] for more on DAEs.

A differential-algebraic equations (DAE ) is in a general form an implicit differential
equation

F (Ẏ , Y ) = 0, (2.1)

where F and Y are of the same dimensions. F is assumed to have sufficiently many
bounded derivatives and Y = Y (x), where x is the independent variable. The dot no-
tation in (2.1) means differentiation with respect to x. Variables (i.e. elements of Y )
for which derivatives are present in the equations are called differential variables and
those for which no derivatives are present are called algebraic variables. This explains the
name differential-algebraic equations. The non-autonomous system F (Ẏ , Y, x) = 0 can be
written in the form (2.1) by adding the equation ẋ = 1.

It is common to classify different types of DAEs by the concept of index. The index of
a DAE is a nonnegative integer which says something about the system of equations. In
general, the higher the index is, the more difficulties in solving the DAE numerically one
can expect [4]. There are actually several definitions of index. For simple problems, these
definitions are identical, but for complicated systems, they can be different [4]. Index 0
DAEs are in all cases defined to be a system of ODEs.

One definition of index is the differential index, which is defined as (loosely speaking)
the minimum number of times one has to differentiate equations in the DAE in order to

15
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obtain a system of ODEs. This is an intuitively easy way of thinking of index. We will on
the other hand use the perturbation index as our definition1. Actually, the definition of
perturbation index is not given here (it can be found in [9]), but rather just the following
result.

A system of the form

ẏ = f(y, z), (2.2a)
0 = g(y), (2.2b)

where
gy(y)fz(y, z) is invertible (2.3)

in a neighborhood of the solution is an index 2 DAE. The DAE form (2.2) is called
Hessenberg index-2 form [4]. Here, y ∈ Rn are the differential variables and z ∈ Rm are
the algebraic variables. The independent variable is t ∈ R, such that ẏ = dy/dt. Also, gy
denotes the m× n Jacobian matrix, such that the (i, j)-entry of gy is ∂gi/∂yj . Similarly,
fz denotes the n ×m Jacobian matrix of f with respect to z (see also Appendix A.1 for
a definition of a Jabobian).

Differentiating (2.2b) once with respect to the independent variable t and substituting
ẏ yields

0 = gy(y)f(y, z). (2.4)

The equation (2.2a) together with these differentiated constraints (2.4) are, if (2.3) is
satisfied, an index 1 DAE [9]. Differentiating (2.4) once more with respect to y yields

0 = gyy(y)(ẏ, ẏ) + gy(y)fy(y, z)ẏ + gy(y)fz(y, z)ż, (2.5)

where we by gyy(y)(ẏ, ẏ) mean the vector

gyy(y)(ẏ, ẏ) =



n∑
i,j=1

∂2g1

∂yi∂yj
ẏiẏj

...
n∑

i,j=1

∂2gm

∂yi∂yj
ẏiẏj


∈ Rm.

Because of the assumption (2.3), it is possible to solve for the derivate ż in (2.5) to get a
system of ordinary differential equations for y and z.

The initial values y0, z0 have to satisfy the relation (2.2b) and (2.4). If they do, they
are referred to as consistent initial values. Given that consistent inital values are chosen,
a solution of (2.2) exists and it is locally unique [10]. This follows mainly from known
results about existence and uniqueness of ordinary differential equations (see [10, VII.1]
for more details).

1It is stated in [9] that differential index ≤ perturbation index ≤ differential index + 1.
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2.2 The Lagrange-d’Alembert Equations as Index 2 DAE

As we are interested in solving the Lagrange-d’Alembert equations (1.12), we now show
that these equations can be written in the form (2.2) and that they in this case also satisfy
(2.3). Both the Lagrangian and the Hamiltonian formulation are considered. It is assumed
that the Lagrangian L : Rn × Rn → R is of the form

L(q, q̇) = K(q, q̇)− V (q) =
1
2
q̇TM(q)q̇ − V (q),

where M(q) ∈ Rn×n is a symmetric positive definite (SPD) matrix. It is also assumed that
the constraint matrix A(q) ∈ Rm×n has full rank, i.e. all the m constraints are linearly
independent.

2.2.1 Lagrangian Formulation

With the above assumptions, the Lagrange-d’Alembert equations (1.12) become the con-
straint equations A(q)q̇ = 0 and

d

dt

(
M(q)q̇

)
− ∂L

∂q
(q, q̇) = A(q)Tλ,

which can be written

M(q)q̈ =
∂L

∂q
(q, q̇)− dM(q)

dt
q̇ +A(q)Tλ.

Let v .= q̇, define the variable y by yT =
[
qT vT

]
and let z be the Lagrangian multipliers

λ. This implies that y ∈ R2n, z ∈ Rm, and the maps f : R2n×Rm → R2n and g : R2n → Rm

are given by

f(y, z) =
d

dt
y =

[
q̇

v̇

]
=

 v

M−1(q)
(
∂L

∂q
(q, v)− dM(q)

dt
v +A(q)T z

)
 , (2.6)

and
g(y) = A(q)v. (2.7)

With this, the Lagrange-d’Alembert equations are written on the Hessenberg index-2 form
(2.2). As stated in Section 2.1, with consistent initial values, these equations have a locally
unique solution if (2.3) is satisfied, i.e. if gy(y)fz(y, z) is invertible. Proposition 2.1 shows
that this is the case, given the standing assumptions on the Lagrangian.

Proposition 2.1. If M(q) is positive definite and A(q) has full rank, the m-by-m matrix
gy(y)fz(y, z) with f(y, z) given by (2.6) and g(y) given by (2.7) is invertible.

Proof. First, gy ∈ Rm×2n and fz ∈ R2n×m are given by

gy =
[
∂

∂q

(
A(q)v

)
A(q)

]
and fz =

[
0

M(q)−1AT (q)

]
.
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So, leaving out the dependence of variables, this gives gyfz = AM−1AT . As M is SPD,
a Cholesky decomposition can be done. We write M = LLT , where L is invertible (and
lower triangular). For notational simplicity, let C = (L−1)T . Then

gyfz = AM−1AT = A(LLT )−1AT = A(L−1)TL−1AT = (AC)(AC)T

As C is invertible and A is assumed to have full rank, rank(AC) = rank(A) = m.
Using that for any matrix X, rank(XXT ) = rank(X), this implies that rank(gyfz) =
rank((AC)(AC)T ) = rank(AC) = m, and so gyfz has full rank and is thus invertible. �

2.2.2 Hamiltonian Formulation

Now, the momentum coordinates p = ∂L
∂q̇ = M(q)q̇ are used in place of the velocity

coordinates v. The Hamiltonian is given by

H(q, p) =
1
2
pTM(q)−1p+ V (q),

and the Lagrange-d’Alembert equations become (see Section 1.3.3 for details)

q̇ = Hp(q, p),

ṗ = −Hq(q, p) +A(q)Tλ,
0 = A(q)Hp(q, p).

Let y be defined by yT =
[
qT pT

]
and let as above z be the Lagrangian multipliers λ.

This implies that

f(y, z) =
d

dt
y =

[
q̇

ṗ

]
=

 M(q)−1p

−Hq(q, p) +A(q)T z

 =

 M(q)−1p

Lq(q,M(q)−1p) +A(q)T z

 (2.9)

and
g(y) = A(q)M(q)−1p. (2.10)

The following proposition shows that (2.3) is satisfied, which implies existence and unique-
ness as before.

Proposition 2.2. If M(q) is positive definite and A(q) has full rank, the m-by-m matrix
gy(y)fz(y, z) with f(y, z) given by (2.9) and g(y) given by (2.10) is invertible.

Proof. In a similar way as in the case of the Lagrangian formulation, it is found that we
also now gyfz = AM−1AT . The rest of the proof is the same as the proof for Proposition
2.1. �

It is seen above that the equations of motion for a mechanical system with only nonholo-
nomic constraints are an index 2 DAE. If both holonomic and nonholonomic constraints
are present, the system can still be written as an index 2 DAE by introducing some extra
Lagrangian multipliers. But, if only holonomic constraints are present, the system is an
index 3 DAE [9].
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2.3 Index Reduction

When solving differential algebraic equations numerically, a possible technique is to use
index reduction [10, 11]. Instead of solving the DAE directly, some or all of the equations
are differentiated to obtain a DAE of lower index and then this system is solved instead.
We are interested in solving the Lagrange-d’Alembert equations, which can be written as
a Hessenberg index-2 DAE (see Section 2.2).

It is seen in Section 2.1 that by differentiating the nonholonomic constraints once, the
resulting equations are an index-1 DAE. For example, MATLAB’s solvers ode15s and
ode23t can solve DAEs of index 1 (in addition to ODEs), so one possible way of solving
the Lagrange-d’Alembert equations is to differentiate the constraints once and then use
one of these integrators.

By differentiating the constraints once more, a system of ODEs is obtained. This
system can be solved using any regular ODE solver. In MATLAB, there are many functions
for doing this, including the popular ode45.

This approach of differentiating the constraints and solving the DAE of a lower index
has a drawback. The differentiated constraints are imposed on the system, but the original
constraints are not imposed. The solution will therefore in general not satisfy the original
constraints. That is, the solution will not be on the configuration manifold Q. This is not
desirable as the solution will not be correct and it may even not be a physically possible
solution.

2.3.1 Example: Index Reduction of the Vertical Rolling Disk

To illustrate the use of index reduction, we again return to the vertical rolling disk. This
example has earlier been discussed in Section 1.1.2 and 1.3.5. Now, the nonholonomic con-
straints are differentiated to obtain both the underlying index-1 DAE and the underlying
system of ODEs.

Recall once again that this example consits of a vertical disk rolling on a horizontal
plane without slipping and without falling over. The coordinates for this system are
q =

[
x y ϕ θ

]T . The equations of motion for this problem are given by equation
(1.16) on page 13.

Define the variable ξ as the column vector

ξ
.=
[
x y ϕ θ vx vy vϕ vθ λ1 λ2

]T
.

Differentiating the two constraint equations (1.16) yields the index-1 DAE

1
1

1
1

m
m

J
I

0
0


︸ ︷︷ ︸

M1(ξ)



ẋ
ẏ
ϕ̇

θ̇
v̇x
v̇y
v̇ϕ
v̇θ
λ̇1

λ̇2


︸ ︷︷ ︸
dξ/dt

=



vx
vy
vϕ
vθ
λ1

λ2

0
0

λ1/m+Rvϕvθ sinϕ
λ2/m−Rvϕvθ cosϕ


︸ ︷︷ ︸

f1(ξ)

, (2.11)
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where M1(ξ) is referred to as the mass-matrix. Note that M1(ξ) is a singular matrix.
Differentiating the two constraint equations once more results in the following system of
ODEs

dξ

dt
=



ẋ
ẏ
ϕ̇

θ̇
v̇x
v̇y
v̇ϕ
v̇θ
λ̇1

λ̇2


=



vx
vy
vϕ
vθ

λ1/m
λ2/m

0
0

−mRv2
ϕ vθ cosϕ

−mRv2
ϕ vθ sinϕ


︸ ︷︷ ︸

f2(ξ)

. (2.12)

An initial condition has to be consistent. That is, it has to satisfy both the original
constraints and the differentiated constraints. Let the initial condition be given by

ξ(0) = ξ0
.=
[
x0 y0 ϕ0 θ0 vx,0 vy,0 vϕ,0 vθ,0 λ1,0 λ2,0

]T
.

Denote the initial orientation vϕ,0 by ω and the initial rotation speed vθ,0 by Ω. The initial
values are then consistent if

vx,0 = RΩ cosϕ0, λ1,0 = −mωvy,0,
vy,0 = RΩ sinϕ0, λ2,0 = mωvx,0.

We choose to set x0 = y0 = ϕ0 = θ0 = 0, ω = 2 and Ω = 1. The last initial values vx,0,
vy,0, λ1,0 and λ2,0 are then determined by consistency. The different constants are chosen
to be m = J = I = 1 and R = 1/4. Note that this implies M(q) = I4, the 4× 4 identity
matrix.

The index-1 DAE (2.11) is solved using ode15s and the system of ODEs (2.12) using
ode45. We want to see how well the original constraints of the system are satisfied. Recall
that the vertical rolling disk is subject to two nonholonomic constraints. If the radius of
the disk is R, then these constraints are

0 = ẋ−R(cosϕ)θ̇,

0 = ẏ −R(sinϕ)θ̇.
(2.13)

For both integrators ode15s and ode45, the tolerance values are set to RelTol = 10−6 and
AbsTol = 10−9. Integrating from t0 = 0 to tend = 100, the value of the constraints, i.e.
the values on the right hand side of (2.13), are plotted in Figure 2.1 on the next page. For
both solutions, a clear drift in the value of the constraints is observed. The same behavior
is seen for any tolerance. This illustrates one negative side of solving the systems with
differentiated constraints instead of the original problem. Long time integration using this
technique is not possible as the solution will drift off the correct manifold. The rest of this
chapter is devoted to other approaches for solving the Lagrange-d’Alembert equations.
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Figure 2.1: The error in the two constraint equations (2.13). (Top) Solving the index-1
DAE (2.11) using ode15s. (Bottom) Solving the system of ODEs (2.12) using ode45. The
bold line in each plot is the exact value of zero. A clear drift in the constraints is observed
for both solutions.

2.4 Runge-Kutta Methods Applied to Index 2 DAEs

Consider an s-stage Runge-Kutta method, defined by the Butcher-tableau

c1 a11 · · · a1s
...

...
...

cs as1 · · · ass
b1 · · · bs

Define as is customary the column vector of weights b .= (bi)i=1,...,s, the column vector of
the nodes c .= (ci)i=1,...,s and the RK matrix of coefficients A .= (aij)i,j=1,...,s.

Assuming that the initial values y0 and z0 are consistent with (2.2), i.e. they satisfy

g(t0, y0) = 0 and gy(t0, y0)f(t0, y0, z0) = 0, (2.14)
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the standard definition of an RK-method applied to (2.2) is as follows [9]. Starting from
y0 at t0, the numerical solution y1 at t1 = t0 + h is given by

y1 = y0 + h
s∑
i=1

bif(Ti, Yi, Zi), (2.15a)

where Ti
.= t0 + cih and the s internal stages Yi, Zi, i = 1, . . . , s, are the solution of the

system of nonlinear equations

Yi = y0 + h
s∑
j=1

aijf(Ti, Yi, Zi), i = 1, ..., s, (2.15b)

0 = g(Ti, Yi), i = 1, ..., s. (2.15c)

The assumption that the initial conditions satisfy (2.14) ensures that the system (2.15)
has a solution and that it is locally unique [9].

An important part of implementing these methods is the solution of the non-linear
system of equations (2.15) arising at each time step. How this is done using the simplified
Newton method is discussed in [9, Chapter 7]. We use the simplified Newton method
when solving a very similar non-linear system of equations that arise in SPARK methods
in Section 2.5.1.

Runge-Kutta methods that satisfy bi = asi for i = 1, . . . , s, are called stiffly accurate
RK methods. Methods that do not satisfy this property are referred to as nonstiffly
accurate. For stiffly accurate RK methods, Ys = y1, and so g(t1, y1) = 0 is automatically
satisfied [9, 18]. This is a desirable property as this means the constraints are satisfied at
the solution y1 and not only at the internal stages.

Convergence rates for some classical RK-methods based on Gauss, Radau and Lobatto
quadrature given2 in [9, 12] are listed in Table 2.1. The stiffly accurate methods Radau
IIA, Lobatto IIIA and Lobatto IIIC preserve their high order of convergence, whereas
the nonstiffly accurate methods Gauss and Radau IA do not [18]. In the next section,
one way to reestablish this so called superconvergence for nonstiffly accurate methods is
considered.

Table 2.1: Order of convergence for the method (2.15) based on different RK-methods.

Method Stages Convergence

Gauss s

{
odd
even

{
s+ 1
s

Radau IA s s
Radau IIA s 2s− 1
Lobatto IIIA s 2s− 2
Lobatto IIIC s 2s− 2

2The convergence rates were proven in [9] with the exception of the result for Lobatto IIIA methods,
which were only proven for s = 2, 3 and conjectured for larger s. This conjecture was then later proven in
[12].
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2.5 SPARK Methods for Index 2 DAEs

As noted in the last section, when using nonstiffly accurate RK methods (i.e. methods that
do not satisfy bi = asi for all i) to solve index 2 DAEs, the methods do in general not have
a high order of convergence. The reason for this loss of superconvergence is thought to
be the fact that nonstiffly accurate RK methods do not automatically satisfy 0 = g(t1, y1)
[18]. One would ideally like both 0 = g(Ti, Yi) for i = 1, . . . , s, and 0 = g(t1, y1) to be
satisfied also for nonstiffly accurate methods. This is however not possible as there are
only sm algebraic variables Zi for (s+ 1)m constraints.

Some methods had been proposed to deal with the problem discussed above before
the method considered next in this section was proposed (see [10, 11, 18] and references
therein). One is projection methods, where the solution y1 is projected onto the con-
straints in an additional step. Another is called partitioned RK methods, which require
introduction of additional internal stages. In this section, another method is considered,
first introduced in [14], which does not require any projection or the introduction of ad-
ditional internal stages. This method is called super partitioned additive Runge-Kutta
(SPARK) methods [14, 16, 17].

SPARK methods can be applied to a broad class of DAEs, but only its application to
Hessenberg index 2 DAEs is discussed here, i.e. its application to the system

ẏ = f(t, y, z), (2.16a)
0 = g(t, y). (2.16b)

Consider a decomposition of the right hand side f(t, y, z) of (2.16a) which reads

f(t, y, z) =
M∑
m=1

fm(t, y, z). (2.17)

The reason for this decomposition is that f(t, y, z) may represent different forces in a
mechanical system. The functions fm are supposed to have distinct properties which may
be beneficial to treat in different ways numerically. The number of different classes of right
hand side terms is usually small, e.g. M = 5. It is assumed that f1 is independent of z,
i.e.

f1(t, y, z) = f1(t, y).

The main idea of the SPARK methods is then as follows. To ensure that the constraints
are satisfied at the solution y1, the equation 0 = g(t1, y1) is added. Then, in order to not
have an overdetermined system, the equations 0 = g(Ti, Yi) for i = 1, . . . , s, are not used,
but instead s − 1 well-chosen linear combinations of g(Ti, Yi) are enforced to be equal to
zero. The difficulty then lies in finding the coefficients of these linear combinations such
that the method has highest possible order.

Some definitions and assumptions need to be made before giving the actual definition
of SPARK methods. In the following, the i’th column of the s × s identity matrix is
denoted by ei and the zero column vector of length s is denoted by 0s. It is assumed that
s ≥ 2. As before, the RK weight vector is denoted by b and the RK node vector by c. The
SPARK methods use the RK coefficient matrices of M distinct RK methods. These are
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denoted by Am for m = 1, . . . ,M . The following assumptions are made.

eT1A1 = 0Ts , (2.18a)

eTs A1 = bT , (2.18b)

A1Am =
[
0Ts
N

]
for m = 2, . . . ,M, (2.18c)[

N
bT

]
is invertible, (2.18d)

eTs A3 = bT . (2.18e)

These assumptions are for example satisfied by the s-stage Lobatto SPARK families with
M = 5 and A1 through A5 being the RK matrices of the Lobatto IIIA-B-C-C*-D meth-
ods, respectively [17]. Note that these methods are not the only choice for the SPARK
coefficients. We will on the other hand only consider the coefficients of the Lobatto III
family.

Now, let Ã1 be the (s− 1)× s sub-matrix of A1 given by the relation

A1 =

[
0Ts
Ã1

]
,

and let the s× (s+ 1) matrix Q be defined by

Q
.= L

[
Ã1 0s−1

0Ts 1

]
, (2.19)

where the s× s matrix L is any invertible matrix. One choice for L is given by

L =

[
Ã1

eTs

]−1

.

With this, the definition of SPARK methods are given as stated in [17].

Definition 2.3 (SPARK method applied to index 2 DAEs). One step of an s-stage super
partitioned additive Runge-Kutta (SPARK) method applied with stepsize h to the system
of index 2 DAEs (2.16) with decomposition (2.17) and initial values y0, z0 and t0 reads

0 = Yi − y0 − h
s∑
j=1

M∑
m=1

aij,mfm(Tj , Yj , Zj), for i = 1, . . . , s, (2.20a)

0 =
s∑
j=1

qijg(Tj , Yj) + qi,s+1g(t1, y1), for i = 1, . . . , s, (2.20b)

0 = y1 − y0 − h
s∑
j=1

bjf(Tj , Yj , Zj), (2.20c)

where the coefficients qij are those of the matrix Q satisfying (2.19). This implies the
equation 0 = g(t1, y1) is satisfied.
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Existence and uniqueness for the SPARK methods are proven in [17]. We only state
the result.

Theorem 2.4 (Existence and uniqueness). Assume that the initial conditions are con-
sistent, i.e. (y0, z0) satisfy (2.14) and that gy(y)fz(y, z) exists and is invertible. Assume
also that the SPARK coefficients satisfy (2.18) and that

∑s
j=1 aij,m = ci for i = 1, . . . , s

hold for m = 1 and m = 3. Then there exists for h ≤ h0 a locally unique solution for the
system (2.20).

With some additional assumptions on the SPARK coefficients, the order of the local
and global error are shown in [17]. What is of main interest to us, is what this implies for
the Lobatto III SPARK methods. The following result is also proven in [17].

Theorem 2.5 (Global error and symmetry). The global error of the s-stage Lobatto IIIA-
B-C-C*-D SPARK method satisfies

yk − y(tk) = O(h2s−2).

Also, if f3 ≡ 0 and f4 ≡ 0, then these methods are symmetric (reversible).

The Butcher tableaux for the 2-stage and 3-stage Lobatto IIIA-B-C-C*-D methods are
listed in Appendix B.

2.5.1 Nonlinear Equations and the Simplified Newton Method

A major difficulty in using SPARK methods lies in solving the system of non-linear equa-
tions (2.20). A classical algorithm for solving a set of nonlinear equations F (X) = 0 is
the simplified Newton method [9, 15]. In the Newton method, the exact Jacobian F ′(Xk)
is computed at each iteration. In the simplified Newton method on the other hand, the
Jacobian F ′(X0) computed at the initial value is reused. This method may require more
iterations than the Newton method to converge, but the evaluation of the Jacobian only
has to be done once, resulting in a lower computational cost. Given an initial guess X0,
sufficiently close to the locally unique zero X∗, the simplified Newton method is given by
Algorithm 2.1 below.

Algorithm 2.1 Simplified Newton. Solves F (X) = 0.
Input: Jacobian F ′(X0), initial guess X0

Output: X, an approximation to X∗ where F (X∗) = 0
1: Set k = 0
2: while not convergent do
3: Solve F ′(X0)∆Xk = −F (Xk) for ∆Xk

4: Set Xk+1 = Xk + ∆Xk

5: Set k = k + 1
6: end while
7: X = Xk

A stopping criterion for the simplified Newton method often used in practice is given
in [15]. Let

θk
.=
||∆Xk||
||∆Xk−1||
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for k ≥ 1 and let θ̂1
.= θ1 and θ̂k

.=
√
θ̂k−1θk for k ≥ 2. Then this stopping criterion is

given by

ηk||∆Xk|| ≤ κ1TOL, where ηk
.=

θ̂k

1− θ̂k
.

Here, TOL is an error tolerance and κ1 is a security factor such as κ1 = 0.03.
How to apply the simplified Newton method to the set of non-linear SPARK equations

(2.20) is now considered. Define the column vector X of length d = s(n+m) + n as

X =
[
Y T

1 · · · Y T
s ZT1 · · · ZTs yT1

]T
. (2.21)

Let F : Rd → Rd be a map such that F (X) is the right hand side of (2.20). Also, let
Q̂ ∈ Rs×s and qs+1 ∈ Rs be such that

Q =
[
Q̂ qs+1

]
.

For the Jacobian needed in the simplified Newton method, the Jacobian F ′(X) evaluated
at Yi = y0, Zi = z0 for i = 1, . . . , s, and y1 = y0 is used. Denote this Jacobian by J . It is
given by

J =


Isn − h

∑M
m=1Am ⊗ fmy −h

∑M
m=1Am ⊗ fmz 0

Q̂⊗ gy 0 qs+1 ⊗ gy

−hbT ⊗ fy −hbT ⊗ fz In

 ,

where the notation fmy = ∂
∂yfm and similarly fmz = ∂

∂zfm is used. In denotes the n × n
identity matrix. All derivatives appearing in J are evaluated at (t0, y0, z0). The sign ⊗
denotes the Kronecker product.

The following initial guess is used for the simplified Newton iterations

Yi = y0 + cihf(y0, z0), for i = 1, . . . , s,
Zi = z0, for i = 1, . . . , s,
y1 = y0 + hf(y0, z0).

(2.22)

This is the initial guess given in [9] for Runge-Kutta methods applied to DAEs. It is also
stated in [9] that if one uses the natural initial guess Yi = y0, Zi = z0 for i = 1, . . . , s, and
y1 = y0, then the simplified Newton iterations may diverge. We have experienced that this
may happen for the SPARK equations (2.20) as well, so using the starting values (2.22)
is found to be crucial.

The derivatives fmy for m = 1, . . . ,M and gy in J must either be computed exactly
beforehand, or they need to be estimated. One can estimate derivatives using a finite
difference approximation (see e.g. [23, Chapter 8.2.2] and [8]). In MATLAB, the function
numjac uses finite differences to compute approximate Jacobians.

Further details about how to solve the nonlinear SPARK equations can be found in
[15, 16], where the use of a preconditioner is also discussed. We have chosen not to look
into the use of a preconditioner as our focus first of all is on the qualitative properties of
the integrators. For a more efficient implementation, the use of a precoditioner should be
considered.
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2.5.2 Numerical Confirmation of the Order of Convergence

To confirm the convergence rates given by Theorem 2.5 numerically, a test problem given
in [17] is solved using our implementation of the s-stage Lobatto IIIA-B-C-C*-D SPARK
methods. The test problem is given by

d

dt
y =

d

dt

[
y1

y2

]
= f1(y1, y2) +

5∑
m=2

fm(y1, y2, z1), 0 = g(y1, y2), (2.23)

where

f1(y1, y2) =
[
y2 − 2y2

1y2

−y2
1

]
, f2(y1, y2, z1) =

[
y1y

2
2z

2
1

e−tz1 − y1

]
,

f3(y1, y2, z1) =
[
−y2

2z1
−3y2

2z1

]
, f4(y1, y2, z1) =

[
2y1y

2
2 − 2e−2ty1y2

z1

]
,

f5(y1, y2, z1) =
[
2y2

2z
2
1

y2
1y

2
2

]
, g(y1, y2) = y2

1y2 − 1.

The initial conditions are given by t0 = 0, y1(0) = 1 and y2(0) = 1. With these initial
conditions, the exact solution of the system is given by y1(t) = et, y2(t) = e−2t and
z1(t) = e2t. Let E1(h) be the global error at t = 1 using stepsize h, i.e.

E1(h) .= ‖yK − y(1)‖2,

where we by yK mean the numerical solution after K = 1/h steps. If the error E1(h) is of
order p, then E1(h) = Chp +O(hp+1). For h� 1, we can therefore assume E1(h) = Chp.
Taking the logarithm on both sides yields log(E1) = p log(h) + logC, so plotting log(E1)
against log(h) should give a straight line with slope p. This is done in Figure 2.2 on the
next page for different values of the stepsize h and for both s = 2 and s = 3. Theorem 2.5
predicts that the 2-stage method should have a convergence rate of 2 and the 3-stage a
convergence rate of 4. Using least squares to fit a straight line to the data, we find that
p = 1.97 for s = 2 and p = 4.12 for s = 3. This confirms the predicted values of Theorem
2.5.

2.5.3 SPARK Methods Used on the Lagrange-d’Alembert Equations

The SPARK Lobatto IIIA-B-C-C*-D methods for general Hessenberg index-2 DAEs are
presented and discussed in Section 2.5. For these methods, a decomposition of the right
hand side

f(t, y, z) =
5∑

m=1

fm(t, y, z)

is assumed, but it is not yet discussed how such a decomposition should be made when
solving the Lagrange-d’Alembert equations.

We will use a decomposition suggested for holonomic systems in [13]. There, a sym-
plectic partitioned Runge-Kutta method is given that uses a Lobatto IIIA-B pair to solve
the equations of motion written in Hamiltonian form. The Lobatto IIIA coefficients are
used on the equations for q and the Lobatto IIIB coefficients on the equations for p. We
hope that since this decomposition has good properties in the holonomic case, it will do
well also for nonholonomic systems.
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Figure 2.2: Global error of the s-stage Lobatto IIIA-B-C-C*-D SPARK methods (s = 2, 3)
applied to the test problem (2.23).

Assume the Lagrangian is of the form L(q, q̇) = 1
2 q̇
TM(q)q̇−V (q), where M(q) is posi-

tive definite. Recall from Section 1.3.3 that the Hamiltonian formulation of the Lagrange-
d’Alembert equations in the nonholonomic case then is given by

q̇ =
∂H

∂p
= M−1p, (2.24a)

ṗ = −∂H
∂q

+ATλ =
∂L

∂q
+ATλ. (2.24b)

Motivated by the use of a Lobatto IIIA-B pair for holonomic systems in [13], we will use
Lobatto IIIA coefficients on (2.24a) and Lobatto IIIB coefficients on (2.24b). This means
that the decomposition of f(t, y, z) we will use for the SPARK Lobatto IIIA-B-C-C*-D
methods is given by

f1(t, y) =

[
M−1p

0

]
, f2(t, y, z) =

[
0

Lq +AT z

]
, f3 ≡ f4 ≡ f5 ≡ 0. (2.25)

Note that f1 is independent of z, which is assumed to be the case for SPARK methods.
Also note that since f3 ≡ f4 ≡ 0, Theorem 2.5 states that these methods are symmetric.

When we later use the s-stage SPARK Lobatto IIIA-B-C-C*-D method with decom-
position (2.25) to solve the Lagrange-d’Alembert equations, it will simply be referred to
as the s-stage SPARK Lobatto IIIA-B method.

2.6 Specialized Runge-Kutta Methods for Index 2 DAEs

A method very similar to the SPARK methods is proposed in [18]. These methods are
called specialized Runge-Kutta methods for index 2 differential-algebraic equations or SRK-
DAE2 for short. The main idea of these methods is the same as for the SPARK methods.
The difference lies for the most part in that the SRK-DAE2 methods do not consider
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a decomposition of the right hand side f(y, z). For certain cases though, the SPARK
methods and SRK-DAE2 methods can be shown to be equivalent [18].

The definition of SRK-DAE2 methods as stated in [18] is now given. For these methods,
the RK coefficient matrix A is in assumed to be invertible.

Definition 2.6 (SRK-DAE2 methods applied to index 2 DAEs). Assuming the initial
values y0 and z0 satisfy (2.14), one step of an s-stage specialized Runge-Kutta method
applied to (2.2) (also known as an SRK-DAE2 method) with stepsize h is given by y1

where y1 and the s internal stages Yi, Zi for i = 1, ..., s are the solution of the system of
nonlinear equations

0 = Yi − y0 − h
s∑
j=1

aijf(Yj , Zj), i = 1, ..., s, (2.26a)

0 =
s∑
j=1

ωijg(Yj) + ωi,s+1g(y1), i = 1, ..., s, (2.26b)

0 = y1 − y0 − h
s∑
j=1

bjf(Yj , Zj). (2.26c)

Let the matrix Ω ∈ Rs×(s+1) be such that (i, j)-entry of Ω is the coefficient ωij in
(2.26b). Let 0Ts =

[
0 · · · 0

]
∈ Rs be the zero vector of length s and C = diag(c1, . . . , cs) ∈

Rs×s be a diagonal matrix with the nodes of the RK method on its diagonal. One choice
of the matrix of weight Ω is

Ω̃0
.=


0Ts 1
bT 0
bTC 0

...
...

bTCs−2 0

 . (2.27)

Existence, uniqueness and convergence rates for SRK-DAE2 methods are proven in [18],
given certain conditions on the chosen RK method. These results are not given in general
here, only what they imply for the Gauss and Radau IA methods. This is summarized in
the following theorem.

Theorem 2.7. Assume that the initial conditions are consistent, i.e. they satisfy (2.14),
and that gy(y)fz(y, z) exists and is invertible. Then, for a Gauss or Radau IA SRK-DAE2
method there exists for h ≤ h0 a locally unique solution to the equations (2.26). The global
error of the s-stage Gauss SRK-DAE2 method with matrix Ω as in (2.27) satisfies

yn − y(tn) = O(h2s).

and the global error of the s-stage Radau IA SRK-DAE2 method with matrix Ω as in (2.27)
satisfies

yn − y(tn) = O(h2s−1).

Also, the Gauss SRK-DAE2 methods are symmetric.

From this theorem, it is seen that using the SRK-DAE2 method, the nonstiffly Gauss
and Radau IA methods regain their natural high order of convergence. Recall from Section
2.4 that these methods do not preserve their natural high order of convergence when used
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in the method (2.15). Also, note that the convergence rate of Radau IA SRK-DAE2
methods is one order higher than for projected Radau IA methods [18].

When it comes to solving the set of nonlinear equations (2.26), we use the simplified
Newton method in the same way as for the SPARK methods (see Section 2.5.1). We solve
F (X) = 0, where X is as before given by (2.21) and the function F now is given by the
right hand side of (2.26). Let Ω̂ ∈ Rs×s and qs+1 ∈ Rs be such that

Ω =
[
Ω̂ ωs+1

]
.

The Jacobian needed in the simplified Newton method is then given by

J =


Isn − hA⊗ fy −hA⊗ fz 0

Ω̂⊗ gy 0 ωs+1 ⊗ gy

−hbT ⊗ fy −hbT ⊗ fz In

 .

The Butcher tableaux for the 2-stage and 3-stage Gauss and Radau IA methods are
listed in Appendix B.

2.6.1 Numerical Confirmation of the Order of Convergence

As for the Lobatto IIIA-B-C-C*-D SPARK methods, we now want to check numerically
the convergence rates given in Theorem 2.7 for both Gauss and Radau IA SRK-DAE2
methods. Consider the following test problem given in [18]

d

dt
y =

d

dt

[
y1

y2

]
=
[

y1y
2
2z

2
1

y2
1y

2
2 − 3y2

2z1

]
, 0 = y2

1y2 − 1, (2.28)

with initial conditions y1(0) = 1 and y2(0) = 1 at t0 = 0. The exact solution of this
problem is given by y1(t) = et, y1(t) = e−2t and z1(t) = e2t.

For the 2-stage and 3-stage Gauss methods, the global error at t = 1 is plotted on a
logarithmic scale in Figure 2.3 on the facing page for different values of the stepsize h.
Using least squares to fit a straight line to these points, it is found that the 2-stage method
has a slope of 4.06 and the 3-stage method a slope of 6.07. This confirms the convergence
rates predicted by Theorem 2.7, which were 4 and 6, respectively.

The global error at t = 1 for the 2-stage and 3-stage Radau IA methods is plotted on
a logarithmic scale in Figure 2.4 on the next page. The convergence rates predicted by
Theorem 2.7 were 3 and 5 for the 2-stage and 3-stage method, respectively. Using least
squares, we find that the 2-stage method has a slope of 2.97 and the 3-stage method a
slope of 5.09. Thus, also in this case the predicted values are confirmed by the numerical
example.
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Figure 2.3: Global error of the 2-stage and the 3-stage Gauss SRK-DAE2 methods applied
to the test problem (2.28).
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applied to the test problem (2.28).
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Chapter 3

Nonholonomic Integrators

In the previous chapter, it is seen how the Lagrange-d’Alembert equations can be dis-
cretized and solved using the DAE formulation of the equations. In this chapter, a different
approach is considered. Instead of discretizing the equations of motion, a discrete version
of the Lagrange-d’Alembert principle is used. This discrete principle leads to the discrete
Lagrange-d’Alembert equations using a derivation analagous to the derivation used in the
continuous case. Before considering nonholonomic systems however, the unconstrained
case is considered and the discrete Euler-Lagrange equations are derived.

3.1 Discrete Euler-Lagrange Equations

In the continuous case, given a Lagrangian L(q, q̇), the action integral is defined as

S(q(t)) =
∫ T

0
L(q(t), q̇(t)) dt.

Hamilton’s principle then states that the curve q(t) that extremizes this action integral
is the curve that describes the correct physical evolution of the system. Then, by solving
δS(q(t)) = 0, the Euler-Lagrange equations can be derived (see Section 1.2). Now, in the
discrete case, a discrete analogue to this derivation is performed, and the discrete Euler-
Lagrange equations are derived. Ideas from [21, 27] are mainly used in the following.

A continuous curve q(t) between two fixed endpoints is replaced by a discrete curve [q],
consisting of points q0, . . . , qK , where the endpoints q0 and qK are fixed. Such a curve is
illustrated in Figure 3.1. Fix a stepsize h and think of two adjacent points qk and qk+1 as
being h apart in time. Each point qk is in this way thought of as the state of the discrete
system at time kh and so qk can be viewed as an approximation to q(kh).

Figure 3.1: Illustration of a discrete curve [q] with fixed endpoints q0 and qK .

Introduce a discrete Lagrangian Ld(qk, qk+1, h), which depend on the stepsize h. This
discrete Lagrangian is thought of as an approximation of the action integral along the

33



34 Chapter 3. Nonholonomic Integrators

curve segment between qk and qk+1. The action integral S(q(t)) of the continuous curve
is then replaced by the action sum Sd([q]) of the discrete curve, defined by

Sd([q]) =
K−1∑
k=0

Ld(qk, qk+1, h).

Analagous to the continuous case, consider the variations of this action sum with the
endpoints fixed. Such discrete variations are illustrated in Figure 3.2.

Figure 3.2: Illustration of variations of a discrete curve.

Among all discrete variations, the curve [q] that extremizes the action sum is of interest.
In the following, the shorter notation Ld(qk, qk+1) is used instead of Ld(qk, qk+1, h), and
it is understood that Ld still depends on h. Take the variation of Sd([q]) and set it equal
to zero. This reads

δSd([q]) = δ
K−1∑
k=0

Ld(qk, qk+1) =
K−1∑
k=0

(
D1Ld(qk, qk+1) · δqk +D2Ld(qk, qk+1) · δqk+1

)
= D1Ld(q0, q1) · δq0 +

K−1∑
k=1

(
D2Ld(qk−1, qk) · δqk +D1Ld(qk, qk+1) · δqk

)
+D2Ld(qK−1, qK) · δqK

=
K−1∑
k=1

(
D2Ld(qk−1, qk) +D1Ld(qk, qk+1)

)
· δqk = 0,

for all variations δqk. It is used that δq0 = δqN = 0, since there is no variation at the
endpoints as they are fixed. D1Ld(qk, qk+1) means differentiation of Ld(qk, qk+1) with
respect to the first argument qk and D2 is similarly differentiation with respect to the
second argument. Since δSd([q]) = 0 holds for all variations δqk, the following set of
equations is obtained.

Definition 3.1 (Discrete Euler-Lagrange equations). The discrete Euler-Lagrange (DEL)
equations are

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = 0, (3.1)

for k = 1, . . . ,K − 1.

These equations define a two-step method, which means that the solution at the two
previous points in time are needed in order to compute the current solution.

In a similar fashion as flow is defined for continuous systems (see Section 1.3.4), the
discrete flow is now defined as follows.
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Definition 3.2 (Discrete flow). The the discrete flow (or the discrete flow map) of a
two-step method with stepsize h is the map F such that F (h) : (qk−1, qk) 7→ (qk, qk+1).

The discrete flow will depend on the choice of Ld and to emphasize this dependence,
the discrete flow is sometimes denoted FLd

(h).
With some restrictions on the discrete Lagrangian Ld, the discrete flow FLd

(h) of
the discrete Euler-Lagrange equations (3.1) is a well defined map (see [5, Chapter 7.2]
for details). Thus, given an initial condition (q0, q1), one can use the DEL equations to
compute the sequence {qk}Kk=0 in a recursive way.

Variational Integrators. The discrete Euler-Lagrange equations are also referred to
as a variational integrator. With different choices of the discrete Lagrangian Ld, different
integrators are obtained. We will not dwell on such methods for unconstrained systems
as we are more interested in (nonholonomically) constrained systems. In the next section,
variational integrators in the constrained case are derived. When dealing with nonholo-
nomic systems, variational integrators are referred to as nonholonomic integrators. For
more on variational integrators in the unconstrained case, see [10, VI.6].

3.2 Discrete Lagrange-d’Alembert Equations

Nonholonomic systems are now discussed. As a discrete analogue to the derivation of the
Lagrange-d’Alembert equations, a discrete version of the Lagrange-d’Alembert principle
is used to derive the discrete Lagrange-d’Alembert equations. This approach is used also
for holonomic systems (see e.g. [21, 27]), but we will focus here on the nonholonomic case
[6, 22].

As in the case of unconstrained systems, consider a discrete curve [q] consisting of points
q0, . . . , qK , where the endpoints are fixed. Given a discrete Lagrangian Ld(qk, qk+1, h), the
action sum is given by

Sd([q]) =
K−1∑
k=0

Ld(qk, qk+1, h).

Of interest is the curve that extremizes this action sum. In the continuous case, the
variations δq have to satisfy the constraints for all times, i.e. A(q(t))δq(t) = 0 for all
t ∈ [0, T ]. In an analogous way, the variations δqk now have to satisfy the constraints for
all discrete times, so that A(qk)δqk = 0 for k = 0, . . . ,K.

Also, the continuous curve q(t) has to satisfy the constraint equations itself, such
that g(q, q̇) .= A(q)q̇ = 0 for all t ∈ [0, T ]. As the curve [q] is now considered, which is
not continuous, it is not possible to differentiate it and hence not directly imposed these
constraints. Instead, some discrete constraints gd are found such that (qk, qk+1) satisfy
these discrete constraints if gd(qk, qk+1) = 0.

The above procedure leads to the discrete Lagrange-d’Alembert equations [6], which
can be seen as a generalization of the discrete Euler-Lagrange equations (3.1) to the
nonholonomic case.

Definition 3.3 (Discrete Lagrange-d’Alembert equations). Given a discrete Lagrangian
Ld(qk, qk+1) and discrete constraints gd(qk, qk+1), the discrete Lagrange-d’Alembert (DLA)
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equations are given by

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = A(qk)Tλ, (3.2a)
gd(qk, qk+1) = 0, (3.2b)

for k = 1, . . . ,K − 1. The discrete Lagrange-d’Alembert equations are also referred to as
a nonholonomic integrator.

Like the discrete Euler-Lagrange equations, these equations define a two-step method,
so a discrete flow FLd

(h) : (qk−1, qk) 7→ (qk, qk+1) can be associated with (3.2). The fol-
lowing result is stated in [6] and gives conditions on Ld and gd for this discrete flow to be
well defined.

Theorem 3.4. The discrete flow FLd
(h) : (qk−1, qk) 7→ (qk, qk+1) defined by the discrete

Lagrange-d’Alembert equations (3.2) is well defined for sufficiently small timesteps h if the
matrix D1D2Ld(qk, qk) A(qk)T

D2gd(qk, qk) 0


is invertible for each qk ∈ Q.

3.3 Nonholonomic Integrators

A nonholonomic integrator is another name for the discrete Lagrange-d’Alembert equa-
tions. Using different discrete Lagrangians Ld and discrete constraints gd, different meth-
ods with different properties are obtained. One important property is the order the
method.

Definition 3.5. A nonholonomic integrator has order r if qk = q(kh) + O(hr+1), where
q(t) is the exact solution of the Lagrange-d’Alembert equations.

Recall that if the Lagrangian is given by L = K − V , where K is the kinetic energy
and V is the potential energy, then the flow of the solution of a continuous nonholonomic
system is reversible (see Section 1.3.4). This is a property which it is preferable that the
discrete solution also possesses. In a similar way reversibility is defined in the continuous
case, discrete reversibility is now defined as follows.

Definition 3.6 (Discrete reversibility). Let Rd be such that Rd(qk, qk+1) = (qk+1, qk) and
let FLd

be the discrete flow determined by the discrete Lagrange-d’Alembert equations.
FLd

is said to be discrete (time) reversible if

FLd
◦Rd ◦ FLd

= Rd.

This is a natural discrete analog of continuous reversibility, where Rd can be seen as a
discrete version of ρ used in the continuous case. This definition is illustrated in Figure 3.3.
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Figure 3.3: Illustration of a discrete reversible flow FLd
.

Two second order nonholonomic integrators are now be presented. The first is given
by Cortés and Mart́ınez [6] and the other by McLachlan and Perlmutter [22].

3.3.1 Integrator by Cortés and Mart́ınez

This is a second order nonholonomic integrator presented in [6]. It is given by (3.2) with
the discrete Lagrangian

Ld(qk, qk+1) = L

(
qk + qk+1

2
,
qk+1 − qk

h

)
,

and the discrete constraints

gd(qk, qk+1) = g

(
qk + qk+1

2
,
qk+1 − qk

h

)
.

In the case where the continuous Lagrangian is given by L(q, q̇) = 1
2 q̇
T q̇ − V (q), this

method can be written as follows. Given values (qk−1, qk), let

vk =
qk − qk−1

h
and qk−1/2 = qk−1 +

1
2
hvk.

This method can then be written as

qk+1/2 = qk +
1
2
hvk+1,

vk+1 = vk + h

(
−1

2

(
Vq(qk−1/2) + Vq(qk+1/2)

)
+A(qk)Tλk

)
,

A(qk+1/2)vk+1/2 = 0,

qk+1 = qk + hvk+1.

(3.3)

Note that the contstraints are satisfied at the intermediate step qk+1/2, but not at the
next solution qk+1, which is a drawback of this method.

3.3.2 Integrator by McLachlan and Perlmutter

This is a second order reversible nonholonomic integrator presented in [22]. It is compo-
sition method, constructed by composing a specific first order method F with its adjoint
F ∗. To explain what this means, the definition of an adjoint method is given first [10, 27].
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Definition 3.7 (Adjoint method). For a method with discrete flow F (h) the adjoint
method is defined by the discrete flow F ∗(−h) where F ∗(h)◦F (−h) = Id. Said in another
way, F ∗(h) ◦ F (−h) : (qk, vk) 7→ (qk, vk).

Begin by considering the first order method defined by the discrete Lagrangian

Ld(qk, qk+1) = L

(
qk,

qk+1 − qk
h

)
,

and the discrete constraints

gd(qk, qk+1) = g

(
qk,

qk+1 − qk
h

)
.

Assuming the Lagrangian is given by L(q, q̇) = 1
2 q̇
T q̇ − V (q), the Lagrange-d’Alembert

equations (3.2) gives the first order nonholonomic integrator

qk+1 = qk + hvk,

vk+1 = vk + h
(
− Vq(qk+1) +A(qk+1)Tλk+1

)
,

A(qk+1)vk+1 = 0.

Denote the discrete flow of this method by FLd
(h). Its adjoint method F ∗Ld

(−h) is given
by

vk+1 = vk + h
(
− Vq(qk) +A(qk)Tλk

)
,

qk+1 = qk + hvk+1,

A(qk+1)vk+1 = 0.

The second order method which is to be derived is then found by the composition F ∗Ld
(−h/2)◦

FLd
(h/2) of these two methods. In this composition, the two velocity updates are merged

to obtain

qk+1/2 = qk +
1
2
hvk,

A(qk+1/2)vk+1/2 = 0,

vk+1 = vk + h

(
− Vq(qk+1/2) +A(qk+1/2)T

(λ1 + λ2

2

))
,

qk+1 = qk+1/2 +
1
2
hvk+1,

A(qk+1)vk+1 = 0.

The intermediate velocity state vk+1/2 is only involved in A(qk+1/2)vk+1/2 = 0, the first
constraint. Therefore, this variable and constraint equations are both dropped, and the
two Lagrangian multipliers λ1 and λ2 are merged. This leads to our second order method

qk+1/2 = qk +
1
2
hvk,

vk+1 = vk + h
(
− Vq(qk+1/2) +A(qk+1/2)Tλk

)
,

qk+1 = qk+1/2 +
1
2
hvk+1,

A(qk+1)vk+1 = 0.

(3.4)
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It is shown in [22] that this second order method also satisfies the discrete Lagrange-
d’Alembert equations (3.2). If we use the discrete Lagrangian

L̂d(qk, qk+1) = L

(
qk,

qk+1 − qk
h

)
, (3.5)

and the discrete constraints

ĝd(qk, qk+1) = g

(
qk + qk+1

2
,
qk+1 − qk

h

)
, (3.6)

we obtain the method (3.4) using the DLA equations and a change of variables q̂k =
(qk + qk−1)/2 and v̂k = (qk − qk−1)/h. This is easily verified.

3.3.3 The Integrator by McLachlan and Perlmutter as a SPARK Method

We have made the observation that mathematically, the second order nonholonomic in-
tegrator (3.4) by McLachlan and Perlmutter can be seen as a special case of a 2-stage
Lobatto III SPARK method discussed in Section 2.5. This is interesting to observe as
these two methods are derived using two very different approaches.

Consider a nonholonomic system with Lagrangian given by L(q, q̇) and constraints
A(q)q̇ = 0. We write the Lagrange-d’Alembert equations (1.12) as a Hessenberg index
2 DAE (2.16), where y =

[
qT q̇T

]T . The right hand side f(y, z) is decomposed as
f(y, z) =

∑5
m=1 fm(y, z) where

f1 =
[

0
−Vq(q) +A(q)T z

]
, f2 =

[
v
0

]
, f3 ≡ f4 ≡ f5 ≡ 0, (3.7)

and the constraint function is g(y) = A(q)v. We then apply the 2-stage Lobatto IIIA-B-
C-C*-D SPARK method (2.20) using this decomposition. The SPARK equations (2.20)
become

Q1 = q0 +
1
2
hV1, (3.8a)

V1 = v0, (3.8b)

Q2 = q0 +
1
2
hV1, (3.8c)

V2 = v0 +
1
2
h
((
− Vq(Q1) +A(Q1)TZ1

)
+
(
− Vq(Q2) +A(Q2)TZ2

))
, (3.8d)

0 =
1
2

(
A(Q1)V1 +A(Q2)V2

)
, (3.8e)

0 = A(q1)v1, (3.8f)

q1 = q0 +
1
2
hV1 +

1
2
hV2, (3.8g)

v1 = v0 +
1
2
h
((
− Vq(Q1) +A(Q1)TZ1

)
+
(
− Vq(Q2) +A(Q2)TZ2

))
. (3.8h)

Equations (3.8a), (3.8b) and (3.8c) give Q1 = Q2 = q0 + (h/2)v0
.= q1/2 and equations

(3.8d) and (3.8h) imply V2 = v1. Let λ = (Z1 + Z2)/2 and v1/2 = (v0 + v1)/2. Then (3.8)
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can be rewritten as

q1/2 = q0 +
1
2
hv0,

0 = A(q1/2)v1/2,

0 = A(q1)v1,

q1 = q1/2 +
1
2
hv1,

v1 = v0 + h
(
− Vq(q1/2) +A(q1/2)Tλ

)
.

Like in the derivation of the method by McLachlan and Perlmutter, the intermediate
velocity state v1/2 is now dropped as it only appears in the first constraint 0 = A(q1/2)v1/2.
The resulting set of equations is then exactly the same as (3.4).

Note. In this case f1(y, z) is dependent of z, which is assumed not to be the case
for the SPARK methods. This means that the results about existence, uniqueness and
convergence rates given for the Lobatto III SPARK methods in Section 2.5 do not apply.
We also observe in practice that our implementation of SPARK methods fails when using
this decomposition of f(y, z).

The SPARK Lobatto III methods are used on the Lagrange-d’Alembert equations in
Section 2.5.3 on page 27. The decomposition used there is the same as (3.7), if only f1(y, z)
and f2(y, z) are swapped.

That the nonholonomic integrator (3.4) by McLachlan and Perlmutter can be seen as
a 2-stage SPARK Lobatto IIIB-A method is also noted in [19].

3.3.4 Numerical Confirmation of the Order of Convergence

The two numerical integrators (3.3) and (3.4) are both of order two. We would like to
confirm this numerically. As a test problem, the equations of motion for the vertical rolling
disk example studied in earlier chapters are used.

Recall from Section 1.3.5 that the coordinates for this problem is q =
[
x y ϕ θ

]T
and the Lagrangian is given by L(q, q̇) = q̇TM(q)q̇, where and M(q) = diag(m,m, J, I).
The two nonholonomic integrators (3.3) and (3.4) assume a Lagrangian of the form
L(q, q̇) = q̇T q̇, so we therefore choose m = J = I = 1. The constraint matrix for the
vertical rolling disk is given by

A(q) =
[
1 0 0 −R cosϕ
0 1 0 −R sinϕ

]
,

and Vq = ∂V/∂q used in both the nonholonomic integrators is simply the zero vector, as
there is no potential energy.

We choose the same initial conditions as we did in Section 2.3.1. That is,

q0 =
[
x0 y0 ϕ0 θ0

]T =
[
0 0 0 0

]T
,

v0 =
[
vx,0 vy,0 ω Ω

]T =
[
1/4 0 2 1

]T
,

λ0 =
[
λ1,0 λ2,0

]T =
[
0 1/2

]T
.

These are consistent initial values. The nonlinear equations in each of the two methods
are solved using the built in function fsolve in MATLAB.
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The equations of motion for the vertical rolling disk (1.16) actually has an analytic
solution. Assuming consistent initial values, it is shown in [1] that the analytic solution
of the equations of motion is

q(t) =


x(t)
y(t)
ϕ(t)
θ(t)

 =


(ΩR/ω)

(
sin(ωt+ ϕ0)− sin(ϕ0)

)
+ x0

− (ΩR/ω)
(

cos(ωt+ ϕ0)− cos(ϕ0)
)

+ y0

ωt+ ϕ0

Ωt+ θ0

 .

Let E1(h) be the global error at t = 1 using stepsize h, i.e.

E1(h) .= ‖qK − q(1)‖2,

where we by qK mean the numerical solution after K = 1/h steps. In Figure 3.4, the
global error E1(h) is plotted for different values of the stepsize h on a logarithmic scale
for both methods (3.3) and (3.4). Using least squares to fit straight lines to the data, we
find that the slope for (3.3) is 1.99 and the slope for (3.4) is 2.00. As explained in Section
2.5.2, this confirmes the predicted order of two for both methods.
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Figure 3.4: The global error at t = 1 for the vertical rolling disk using integrator (3.3)
by Cortés and Mart́ınez and integrator (3.4) by McLachlan and Perlmutter. For both
methods, this plot confirmes a convergence rate of 2.
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Chapter 4

Numerical Experiments

Note. Close to deadline for this thesis, we became aware of a recent work by Jay [19],
where the 2-stage SPARK Lobatto IIIA-B method is compared to the nonholonomic inte-
grator (3.4) by McLachlan and Perlmutter. The energy conservation for these two methods
are seen to be equally good in a long-time integration done in [19]. In this chapter, we
sometimes observe that the 2-stage SPARK Lobatto IIIA-B method has a drift in the
energy. One explenation for the difference between our results and those in [19] might
be that we do not solve the nonlinear SPARK equations accurately enough. As we did
not become aware of this until at the very end, our results stand as they were. However,
to argue that our implementation is correct, we compare our own plots to plots obtained
from Laurent O. Jay through private communications. This is done in Section 4.5. We
also discuss this matter further in the conclusion in Chapter 5.

4.1 The Vertical Rolling Disk

The vertical rolling disk example has followed us through this thesis. It is discussed in
Section 1.1.2, 1.3.5, 2.3.1 and 3.3.4. Now, we wish to compare the error of the solution
for the nonholonomic integrator (3.4) by McLachlan and Perlmutter with the error for the
2-stage SPARK Lobatto IIIA-B method. These methods are both reversible and of order
2. We reuse the vertical rolling disk example one last time because this problem has an
analytical solution.

Recall that we are considering a vertical disk rolling on a plane without slipping and
without falling over. The coordinates for the system are given by q =

[
x y ϕ θ

]T .
The Lagrangian and the constraints can be found in Section 1.3.5 on page 12. The same
values for the constants and the same initial condition as in Section 3.3.4 are chosen. This
implies that the Lagrangian is given simply by L(q, q̇) = 1

2 q̇
T q̇.

Integrating over just a short period of time reveals a big difference in the two solutions.
The error in all four components integrating from t0 = 0 to tend = 50 using a constant
stepsize of h = 0.1 are shown for the nonholonomic integrator (3.4) in Figure 4.1 and for
the SPARK Lobatto IIIA-B method in Figure 4.2. We observe that the SPARK Lobatto
IIIA-B solution has a linear growth in the error of the θ-component. Even though a
beginning linear growth is observed for the nonholonomic integrator as well, the slope is
much less steep than for the SPARK Lobatto IIIA-B solution. This same behavior is seen
using different stepsizes and also integrating much longer in time.

To investigate this linear growth further, we run a longer simulation from t0 = 0 to

43
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tend = 1000 using both methods. The error of q in 2-norm for this simulation is shown
in Figure 4.3 on the next page. The same plot using a logarithmic scale on the vertical
axis is shown in Figure 4.4. The linear growth for the SPARK Lobatto IIIA-B method is
clearly seen both using stepsize h = 0.1 and h = 0.05. There is no sign of any growth in
the solution by the nonholonomic integrator. The error in energy for the same simulation
is shown in Figure 4.5. The SPARK Lobatto IIIA-B solutions have a clear drift in the
energy-error.
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Figure 4.1: Error in each of the four components for the vertical rolling disk using the
nonholonomic integrator (3.4) by McLachlan and Perlmutter with a constant stepsize
h = 0.1.
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Figure 4.2: Error in each of the four components for the vertical rolling disk using the
2-stage SPARK Lobatto IIIA-B method with a constant stepsize h = 0.1. Note the linear
growth in the θ-component. The error in ϕ is exactly zero.
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Figure 4.3: The error of q in 2-norm for the vertical rolling disk using the 2-stage SPARK
Lobatto IIIA-B method and the nonholonomic integrator (3.4) by McLachlan and Perl-
mutter. A linear growth in the error for the SPARK Lobatto IIIA-B solutions is observed.
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Figure 4.4: The same plot as in Figure 4.3 using a logarithmic scale on the vertical axis.
The error for the nonholonomic integrator stays bounded below about 10−3.
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Figure 4.5: The error in energy for the same simulation as shown in Figure 4.3 and in
Figure 4.4. The SPARK Lobatto IIIA-B solutions have a clear drift in the energy-error.



46 Chapter 4. Numerical Experiments

4.2 The Chaplygin Sleigh

In this experiment, we consider the SPARK and SRK methods, as well as MATLABs
ode15s. We also generalize the nonholonomic integrator (3.4) by McLachlan and Perl-
mutter so it can be used in this case where the mass matrix is not equal to the identity
matrix. The methods are compared, and we focus on how well these methods conserve
energy, and also how well the nonholonomic constraint of this example is satisfied.

The Chaplygin sleigh is a nonholonomic system discussed, among other places, in
[1, 7]. The sleigh is a rigid body supported by a knife edge and two other points as shown
in Figure 4.6. The knife edge cannot move in the direction perpendicular to its edge,
whereas the other two points of contact are free to move in any direction without friction.
We consider the case where the sleigh is on an inclined plane. This is the same situation
as described in [7].

Figure 4.6: The Chaplygin sleigh with chosen coordinates.

The coordinates of the knife edge are used. The point (x, y) is the point of contact for
the blade and θ is the angle of the blade relative to the x-axis. Let m be the mass, I the
moment of inertia about the center of mass and let a be the distance from the blade’s point
of contact to the center of mass (see Figure 4.6). Let q =

[
x y θ

]T . The Lagrangian for
this system is given by

L(q, q̇) = K(q, q̇)− V (q),

where the kinetic energy K and the potential energy V are given by

K(q, q̇) =
1
2

(
m
(
ẋ2 + ẏ2

)
+
(
I +ma2

)
θ̇2 + 2maθ̇ (ẏ cos θ − ẋ sin θ)

)
and

V (q) = mg (y + a sin θ) .

The potential energy is due to the inclination of the plane. From the restriction on the
movement of the blade, we get the nonholonomic constraint

ẏ cos θ − ẋ sin θ = 0, (4.1)

so the constraint matrix is A(q) =
[
− sin θ cos θ 0

]
. The Lagrangian can be written in

the form
L(q, q̇) =

1
2
q̇TM(q)q̇ − V (q)



4.2 Chaplygin Sleigh 47

where the mass matrix M(q) is given by

M(q) =

 m 0 −ma sin θ
0 m ma cos θ

−ma sin θ ma cos θ I +ma2

 . (4.2)

This mass matrix is symmetric and it has determinant Im2 6= 0, so it is invertible. In
earlier discussions, the assumption that the mass matrix is positive definite is made several
times. We show that this also is the case here, so that earlier results apply. A symmetric
matrix is positive definite if all eigenvalues are positive [3]. As M(q) is symmetric, it has
only real eigenvalues. Using Descartes’ Sign Rule [26], we find that all real eigenvalues
must be positive. This implies that M(q) is a symmetric positive definite (SPD) matrix.
The inverse of M(q) is given by

M(q)−1 =
1
I

I/m+ a2 sin2 θ −a2 sin θ cos θ a sin θ
−a2 sin θ cos θ I/m+ a2 cos2 θ −a cos θ

a sin θ −a cos θ 1

 .
4.2.1 The LDA Equations as an Index-1 DAE

To solve this problem using ode15s, the underlying index-1 DAE needs to be obtained.
Let ξ be defined as

ξ =
[
x y θ vx vy vθ λ

]T
.

Differentiating the constraint (4.1) once then yields the index-1 DAE

1
1

1
m −ma sin θ

m ma cos θ
−ma sin θ ma cos θ I +ma2

− sin θ cos θ


︸ ︷︷ ︸

M1(ξ)



ẋ
ẏ

θ̇
v̇x
v̇y
v̇θ
λ̇


︸ ︷︷ ︸
dξ/dt

=



vx
vy
vθ

mav2
θ cos θ − λ sin θ

−mg +mav2
θ sin θ + λ cos θ

−mga cos θ
vxvθ cos θ + vyvθ sin θ


︸ ︷︷ ︸

f1(ξ)

.

Only non-zero elements of M1(ξ) are shown. Note that the last column of M1(ξ) is only
zeros.

4.2.2 Using the Nonholonomic Integrator by McLachlan and Perlmutter

The nonholonomic integrator (3.4) by McLachlan and Perlmutter is only presented in [22]
for systems where L = 1

2 q̇
T q̇ − V (q), i.e. systems where the mass matrix M(q) equals the

identity matrix. For the Chaplygin Sleigh, the mass matrix is given by (4.2) and is not
equal to the identity matrix except for the special case where a = 0 and m = I = 1. We
want to generalize this integrator so it can be used in this experiment anyway.

It is noted at the end of Section 3.3.2 that the integrator (3.4) is given by the discrete
Lagrange-d’Alembert equations (3.2) using the discrete Lagrangian (3.5) and discrete con-
straints (3.6) and also a change of variables q̂k = (qk + qk−1)/2 and v̂k = (qk − qk−1)/h.

Our approach is then simply to do the exact same thing only using instead the contin-
uous Lagrangian L = 1

2 q̇
TM(q)q̇−V (q) where M(q) is not necessarily equal to the identity
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matrix. The resulting method cannot be written in a simple way in general. We therefore
only derive this method for the Chaplygin Sleigh example, where the mass matrix is given
by (4.2). The resulting method is as follows.

Let qk =
[
xk yk θk

]T and vk =
[
vxk vyk vθk

]T for k = 0, · · · ,K. Then, given q0 and
v0, let q−1/2 = q0 − 1

2hv0. Then, q1 and v1 are found by solving the non-linear equations

q1/2 = q0 +
1
2
hv0, (4.3a) mvx1 −mavθ1 sin θ1/2

mvy1 +mavθ1 cos θ1/2
(I +ma2)vθ1 −ma sin θ1/2

(
vx1 − hv

y
1v
θ
1

)
−ma cos θ1/2

(
− vy1 − hvx1vθ1

)


=

 mvx0 −mavθ0 sin θ−1/2

mvy0 +mavθ0 cos θ−1/2

(I +ma2)vθ0 −mavx0 sin θ−1/2 +mavy0 cos θ−1/2


+ h
(
− Vq(q1/2) +A(q1/2)Tλ

)
,

(4.3b)

q1 = q1/2 +
1
2
hv1, (4.3c)

A(q1)v1 = 0. (4.3d)

Note that when a = 0 and m = I = 1, the mass matrix M(q) reduces to I3 and (4.3)
reduces like it should to the integrator (3.4).

4.2.3 Numerical Experiment

Let the energy for the numerical solution at time-step k be given by

Ek
.=

1
2
vTkM(qk)vk + V (qk).

The energy of the continuous system is conserved (see Section 1.3.4 on page 11) and we
wish to see how well the different numerical methods preserve the energy in their solution.
We will do this by considering the absolute error in energy at each time step. That is, we
consider |E0 − Ek| for k = 1, . . . ,K.

We choose the constants to be given by g = 9.8, m = 0.001, a = 0.04 and I = 0.01.
The small values for m, a and I are chosen because we have experienced that bigger
values cause the Jacobian matrix J used in the simplified Newton iterations to be very
ill-conditioned after some time, resulting in great round-off errors.

An initial condition has to satisfy the constraints (4.1) and also the differentiated
constraints, which can be written as(

a2

I
+

1
m

)
λ = g cos θ + vxvθ cos θ + vyvθ sin θ. (4.4)

As the initial value, we choose x0 = 1, y0 = 0, θ0 = 0.2, vx,0 = 0 and vθ,0 = 0. To get
consistency, the value of vy,0 is then given by (4.1) and λ0 is given by (4.4). We integrate
from t0 = 0 to tend = 30.

The index-1 DAE M1(ξ)ξ̇ = f1(ξ) is solved using MATLABs ode15s. Four different
tolerance levels are used. The results are summarized in Table 4.2.3. The absolute error
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in energy for each tolerance level is plotted in Figure 4.7 on the next page. The absolute
error in the constraint |A(qk)vk| for the same simulations is plotted in Figure 4.8. Both
plots use a logarithmic scale on the vertical axis.

The original index-2 DAE is solved using the nonholonomic integrator (3.4) by McLach-
lan and Perlmutter as well as the 2- and 3-stage SPARK Lobatto IIIA-B methods and the
2- and 3-stage SRK method with both Radau IA and Gauss coefficients. The absolute
error in energy for all these seven methods using a constant stepsize of h = 0.1 is shown
in Figure 4.9 on page 51 using logarithmic values on the vertical axis. The same plot only
using stepsize h = 0.01 is shown in Figure 4.10. We observe that the energy-error for
the nonholonomic integrator and the 2-stage SPARK Lobatto IIIA-B method is about the
same for both stepsizes.

As seen in the vertical rolling disk example, the constraint is not exactly satisfied for
the ode15s solution. This is seen in Figure 4.8 to be the case also here. For all the SPARK
and SRK methods however, the constraint is satisfied close to machine precision, so it is
not plotted.

We compare the energy-error of the ode15s solution when the average stepsize is 0.1304
with the other solutions when the stepsize is h = 0.1. The error for ode15s is between the
error for the nonholonomic integrator, the 2-stage SPARK Lobatto IIIA-B method and
the 2-stage SRK Radau IA method. When the average stepsize for ode15s is 0.0163, the
error is about the same as for the 2-stage SRK Radau IA method with stepsize h = 0.01.
The 2-stage SRK Gauss method and all the 3-stage methods conserve energy better than
ode15s for similar step-sizes.

The lowest error in energy we obtain using ode15s is of order 10−10. Trying to reduce
the tolerance level further, results in an error message. Both the SPARK and SRK methods
are close to machine precision in Figure 4.10. Especially for the two SRK methods, the
solution seems to be dominated by round-off errors.

Table 4.1: Average stepsize, absolute energy-error and absolute constraint error using
ode15s on the Chaplygin Sleigh problem. Four different tolerance levels are used.

RelTol AbsTol Avg. h maxk |E0 − Ek| maxk |A(qk)vk|
10−5 10−8 0.1304 2.516 · 10−5 8.256 · 10−4

10−7 10−10 0.0638 8.325 · 10−7 1.320 · 10−5

10−9 10−12 0.0303 1.398 · 10−8 1.838 · 10−7

10−11 10−14 0.0163 4.267 · 10−10 8.647 · 10−9
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Figure 4.7: Absolute value of the energy error |E0−Ek| for the Chaplygin Sleigh problem
using ode15s. The different tolerance levels used are shown. The average stepsize for each
tolerance level is, from the top and down, 0.1304, 0.0638, 0.0303 and 0.0163.
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Figure 4.8: Absolute error in the constraint |A(qk)vk| for the Chaplygin Sleigh problem
using ode15s. The different tolerence levels used are shown. The average stepsize for each
tolerence level is, from the top and down, 0.1304, 0.0638, 0.0303 and 0.0163.
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2−stage SRK Gauss
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3−stage SRK Gauss

Figure 4.9: Absolute value of the energy error |E0−Ek| for the Chaplygin Sleigh problem
using the nonholonomic integrator (4.3) by McLachlan and Perlmutter and the 2- and
3-stage SPARK Lobatto IIIA-B, SRK Radau IA and SRK Gauss methods. A constant
stepsize of h = 0.1 is used for all methods.

0 5 10 15 20 25 30
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Time t

A
bs

ol
ut

e 
er

ro
r 

in
 e

ne
rg

y,
  |

 E
 0 −

 E
k |

2−stage SRK Radau IA

2−stage SRK Gauss

3−stage SPARK Lobatto IIIA−B

3−stage SRK Radau IA

3−stage SRK Gauss

McLachlan and Perlmutter

2−stage SPARK Lobatto IIIA−B

Figure 4.10: The same plot as in Figure 4.9 only now using a constant stepsize of h = 0.01
with all methods.
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4.3 The Contact Oscillator

In this section, we consider the contact oscillator as presented in [22, Section 5.1]. We
want to reproduce the results obtained by McLachlan and Perlmutter in [22] using their
nonholonomic integrator (3.4). We will also do the same experiments using the 2-stage
SPARK Lobatto IIIA-B method with the intention of comparing their solutions. These
integrators are both of order two and they are both reversible. We investigate how well the
integrators preserve both geometric properties of the solution and the energy. In the next
section, we consider a nonlinear perturbation of the contact oscillator and do a similar
analysis of the same two integrators.

Let the general coordinates for the system be q =
[
x y z

]T . The Lagrangian for the
contact oscillator is

L(q, q̇) =
1
2
q̇TM(q)q̇ − V (q) =

1
2
(
ẋ2 + ẏ2 + ż2

)
− 1

2
(
x2 + y2 + z2

)
,

which implies that the mass matrix is M(q) = I3. The nonholonomic constraint is given by
ẋ+ yż = 0, so the constraint matrix is A(q) =

[
1 0 y

]
. From the Lagrange-d’Alembert

equations (1.12), we find that the equations of motion for this system is given by

ẍ+ x = λ,

ÿ + y = 0,
z̈ + z = λy,

ẋ+ yż = 0.

(4.5)

We will have a closer look at these equations and properties of the solution. Before doing
so, a few consepts need to be explained.

The phase space of a mechanical system is the space consisting of all possible values
of the position q and momentum p. A plot of the solution of the system in the phase
space or in a subspace of the phase space is referred to as a phase portrait. An orbit is
a continuous curve in the phase space, such that a solution with initial condition on the
orbit will stay on the orbit for all times.

4.3.1 Properties of the Exact Solution

Following the calculations done in [22], we will show that all the orbits are quasiperiodic
with at most two frequencies. That is, we will show that for any solution, either all the
variables are periodic with the same frequency, or all the variables are periodic, each with
one of two possible frequencies.

The y-coordinate is unconstrained and hence independent of the other coordinates.
Integrating the separable equation ÿ + y = 0 twice yields y(t) = c1 sin t + c2 cos t. Using
that b cos(t + ϕ) = (b cosϕ) cos t + (−b sinϕ) sin t .= c1 sin t + c2 cos t = y(t), we see that
we can choose the origin of time such that y(t) = b cos t for some b ∈ R.

By differentiating the constraint and using the equations of motion, we can explicitly
solve for the Lagrangian multiplier λ and we find that

λ =
x+ yz − ẏż

1 + y2
=
x+ zb cos t+ żb sin t

1 + b2 cos2 t
. (4.6)
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Introducing the notation vx = ẋ and vz = ż, the equations of motion (4.5) give the four
equations

ẋ = vx, v̇x = λ− x,
ż = vz, v̇z = λb cos t− z,

where now λ is given by (4.6) and linear in the unknowns x, z and ż. Thus these equations
form a system of nonautonomous linear ODEs. From the constraint, we have that ẋ =
−vza sin t, which means we can eliminate vx from the above equations. This leaves us with
a system of three ODEs for x, z and vz. With the new variable ṽz

.= (1 + b2 cos2 t)1/2vz,
these three equations can be written as ẋż

˙̃vz

 =

 0 0 α(t)
0 0 β(t)

−α(t) −β(t) 0

 xz
ṽz

 .= A(t)

 xz
ṽz

 , (4.7)

where
α(t) =

−b cos t√
1 + b2 cos2 t

and β(t) =
1√

1 + b2 cos2 t
.

Let now ξ(t) =
[
x z ṽz

]T and for each b, let Y (t) be such that ξ(t) = Y (t)ξ(0) and
Y (0) = I. Since A(t) is skew-symmetric, it is known that Y (t) ∈ SO(3), where SO(3) is
the special orthogonal group in 3 dimensions. That is, Y (t) is orthogonal with determinant
+1. Since A(t) also is 2π-periodic, we must have that Y (t+ 2π) = Y (t). This means that
there is an orthogonal matrix Ω(b) ∈ SO(3) independent of time such that the time-2π
flow of (4.7) is given by

[
x z ṽz

]T 7→ Ω(b)
[
x z ṽz

]T . As all orthogonal 3×3 matrices
are, this is a rotation about some axis, where now both the angle of rotation and the axis
depend on b.

The orbits of (4.7) are in [22] classified into three cases. We will explain each case a
bit more detailed.

Case (i). If b = 0, then α(t) = 0 and β(t) = 1 for all t. This makes A(t) a constant
matrix, and we can easily solve (4.7) since A is diagonalizable. We find that

Y (t) =

1 0 0
0 cos t sin t
0 − sin t cos t

 ,
which is a 2π-periodic rotation about the x-axis. That b = 0 implies vz(t) = ṽz(t) and
y(t) = ẏ(t) = 0 for all t. From considering Y (t), we see that x(t) = x(0) .= x0 and
vx(t) = 0. The orbits in this case are thus circles in the z-ṽz plane at x = x0, centered at
z = vz = 0 and with period 2π. In addition to x0, the radius of these circles need to be
determined, so we have two degrees of freedom. We use x0 and the initial energy E0 as
parameters. Note that even though the orbit is fully determined by the choice of x0 and
E0, we are still left with the choice of where on the orbit we set the origin of time.

Case (ii). If b 6= 0 and (x, z, vz) happens to lie on the axis of rotation of Ω(b), then
Ω(b) will leave (x, z, vz) unchanged and hence these coordinates are 2π-periodic. This
implies that vx must be 2π-periodic as well, and we also know that both y(t) = b cos t and
ẏ(t) = −b sin t are. The orbits are therefore 2π-periodic. The orbits are determined by
two parameters. The axis of rotation of Ω(b) is determined by the value of b and where
on this axis (x, z, vz) lies can be determined by the initial energy E0.
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Case (iii). If b 6= 0 and (x, z, vz) does not lie on the axis of rotation of Ω(b), we will
have a 2π-periodicity in y and ẏ and the other coordinates will be periodic with period
2π/γ, where γ is the angle of rotation of Ω(b). In addition to the two degrees of freedom
we had in case (ii), we now also have the distance of (x, z, vz) from the axis of rotation of
Ω(b). We choose to use z0 as our third parameter.

We have shown that all the orbits are quasiperiodic with at most two frequencies. Specifi-
cally, we found that the orbits are 2π-periodic in case (i) and (ii) above, and quasiperiodic
with periods 2π and 2π/γ in case (iii).

4.3.2 Properties of the Numerical Solutions

An analysis of how the nonholonomic integrator (3.4) behaves when applied to this problem
is carried out in [22]. We first do this same analysis below and then we make a few
comments about the 2-stage SPARK Lobatto IIIA-B method.

McLachlan and Perlmutter. As the discrete variables (y, vy)k are unconstrained, it
can be seen from (3.4) that (y, vy)k 7→M(h)(y, vy)k, where

M(h) =
[
1− h2/2 h(4− h2)/4
−h 1− h2/2

]
.

If we assume h < 2, M(h) has eigenvalues

λ =
1
2
(
2− h2

)
± i1

2
h
√

4− h2 = |λ| ei arg(λ),

where |λ| = 1 and

arg(λ) = 2 arctan
(

Im(λ)
|λ|+ Re(λ)

)
= ±2 arcsin

(
h

2

)
.= ±θ.

As M(h) is diagonalizable, we have M(h) = SΛS−1, where S depends on h and Λ =
diag(eiθ, e−iθ). So if we choose θ = 2π/N for some integerN , then Λ = diag(ei2π/N , e−i2π/N )
and so MN = SΛNS−1 = SIS−1 = I. This means that if we choose h = 2 sin(π/N) for
some positive integer N , then (y, vy)k+N = MN (y, vy)k = (y, vy)k, so the numerical solu-
tion (y, vy)k is periodic with period N .

SPARK Lobatto IIIA-B. We have not done a similar analytical analysis of the
SPARK Lobatto IIIA-B method, but we have found through experiments that also the
2-stage SPARK Lobatto IIIA-B method is periodic with period N using the same step-
size h as the integrator by McLachlan and Perlmutter (3.4). That is, using stepsize
h = 2 sin(π/N).

4.3.3 Numerical Experiment

To see if the integrators can quantitively preserve the geometry explained in Section 4.3.1
above, we redo the example done in [22]. Different initial values are used that each
defines a solution on an orbit of type (iii), i.e. the solution is quasiperiodic. We are then
interested to see whether the numerical solutions preserve these orbits, and we compare
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the nonholonomic integrator (3.4) with the 2-stage SPARK Lobatto IIIA-B method. For
the SPARK Lobatto IIIA-B method, we use the decomposition described in Section 2.5.3
on page 27.

For case (iii) above, we chose b, E0 and z0 as parameters to determine the orbit. For
an initial condition, we need one parameter more to determine where on the orbit we start
at t = 0, and for this, vz,0 is used. A consistent initial value using these four parameters
is then given by

q0 =


(
2E0 − 2v2

z,0 − z2
0 − 1

)1/2
b
z0

 , v0 =

−bvz,00
vz,0

 , λ0 =
x0 + bz0
1 + b2

. (4.8)

We wish to reproduce the same plot for the contact oscillator as in [22, Figure 1]. The
initial data for this plot were kindly given to us by Robert McLachlan. Ten different initial
values are used. They are given by (4.8), where

b = 1, E0 = 1.5, vz,0 = 0, and

z0 = (−0.9 + 0.2k)
√

2, for k = 0, 1, . . . , 9.
(4.9)

We define a Poincaré section1 by vy = 0, v̇y < 0. As vy is 2π-periodic, the Poincaré
map is the 2π-flow of the system. From our earlier analysis, we know that the 2π-flow
of the solution in (x, z, vz)-space is a rotation about some fixed axis (determined by the
value of b). Therefore, when plotting this Poincaré section, we expect the solution to
contain a set of circles. It is given in [22] that the Poincaré section is in fact a sphere in
(x, z, vz)-space.

In Figure 4.11, we plot the numerical solution on this section2 for x > 0, which then
shows one half of the sphere. 8000 iterations of the Poincaré map with 40 timesteps per
iteration is shown. The solution is plotted for both the nonholonomic integrator (3.4) and
the 2-stage SPARK Lobatto IIIA-B method. In both plots, we clearly recognize the shape
of the circles we expect to find. All orbits look qualitatively correct for the nonholonomic
integrator (3.4). For the 2-stage SPARK Lobatto IIIA-B method, three of the orbits seem
to drift. Numbering the orbits from left to right, these three orbits are numbered 7, 8
and 9. In Figure 4.12, we plot the energy for all ten orbits in the SPARK Lobatto IIIA-B
solution. We see that the same three orbits have a clear drift in energy, whereas for all
the other orbits, the energy stays bounded for the whole simulation. It seems to be a
connection between conservation of energy and the geometric correctness of the solution.
This is investigated further in the next experiment.

1The Poincaré section is in [22] defined by vy = 0, v̇y > 0 (note the difference in the inequality sign).
If we use this definition, our plots in Figure 4.11 on the following page become flipped about z = 0. This
might be a simple sign error in our implementation, but as the geometry seem to be correct, we do not
consider this important.

2Explained in words — every time the numerical solution has vy = 0 and the value of vy is decreasing,
we plot a small dot if x > 0.
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McLachlan and Perlmutter (3.4) 2-stage SPARK Lobatto IIIA-B

Figure 4.11: The Poincaré section of the contact oscillator defined by vy = 0, v̇y < 0 for
x > 0. To the left using the nonholonomic integrator (3.4) and to the right using the
2-stage SPARK Lobatto IIIA-B method. 8000 iterations of the Poincaré map are shown
with 40 timesteps per iteration using the 10 different initial values given by (4.8) and (4.9).

Figure 4.12: The energy of the SPARK Lobatto IIIA-B solution for each of the 10 initial
conditions shown in Figure 4.11. We number the orbits in Figure 4.11 from left to right.
The energy corresponding to orbits 7, 8 and 9 all have a clear drift. The other 7 orbits
are also plotted. They all stay bounded and close to the initial energy level of 1.5.
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4.4 The Perturbed Contact Oscillator

We consider a nonlinear perturbation of the contact oscillator. This example is, like the
contact oscillator was, presented in [22].

Using coordinates q =
[
x y z

]T , this system is defined by the Lagrangian

L(q, q̇) =
1
2
q̇TM(q)q̇ − V (q) =

1
2
q̇T q̇ − 1

2

(
qT q + εx2z2

)
and constraint matrix is still A(q) =

[
1 0 y

]
. Note that this system reduces to the

contact oscillator for ε = 0. As M(q) = I3, the momentum p is simply given by p =
∂L/∂q̇ = q̇.

The Lagrange-d’Alembert equations (1.12) give

ẍ+ x = λ− εxz2,

ÿ + y = 0,

z̈ + z = yλ− εx2z,

ẋ+ yż = 0.

(4.10)

Note that the y-coordinate is still unconstrained as in the unperturbed case. As before,
we choose the origin of time such that y(t) = b cos t.

Differentiating the constraint equation ẋ + yż = 0 with respect to the time t, using
(4.10) and solving for λ yields

λ =
x+ yz − ẏż + ε

(
xz2 + x2yz

)
1 + y2

. (4.11)

Denote the velocity q̇ by v =
[
vx vy vz

]T . We continue to use b, z0, E0 and vz,0 as
parameters for an initial condition. With these parameters, a consistent initial condition
is given by

q0 =

x0

b

z0

 , v0 =

−bvz,00
vz,0

 , (4.12)

where x0 is given by

x0 =

√
2E0 − 2v2

z,0 − z2
0 − 1

1 + εz2
0

. (4.13)

The initial value for λ is found by using (4.11).
Like we did for the unperturbed contact oscillator, we define a Poincaré section by

vy = 0, v̇y < 0 and the Poincaré map is still the 2π-flow of the system since y is 2π-
periodic as before. We will look at the solutions from both the nonholonomic integrator
(3.4) and the 2-stage SPARK Lobatto IIIA-B method.

In Figure 4.13 on the next page, the Poincaré section for x > 0 with ε = 0.3 is
plotted. The solutions using both of the two integrators are shown. The same initial
values are used as for the contact oscillator, which were given by (4.9). 8000 iterations
of the Poincaré map for each of the 10 initial values are shown using 40 timesteps per
iteration. Three of the orbits in the SPARK Lobatto IIIA-B solution seem to break up
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and behave chaotic, whereas the same orbits in the solution by the nonholonomic integrator
(3.4) are quasiperiodic and not chaotic.

In Figure 4.14 on the facing page, the same plots are made using ε = 0.8 and z0 values
given by

z0 = −1.2, −1, −0.75, −0.55, −0.4, −0.1, 0.93, 1.07.

The rest of the initial values are the same as before and given by (4.9). These values are
the same as were used in [22, Figure 1]. 8000 iterations of the Poincaré map are shown
using 40 timesteps per iteration. In the solution by nonholonomic integrator (3.4), there
is one quasiperiodic orbit in between the chaotic orbits. In the SPARK Lobatto IIIA-B
solution on the other hand, this orbit is also chaotic.

We do a longer simulation of the first chaotic orbit from the left in Figure 4.14 (corre-
sponding to initial value z0 = −0.55). 50000 iterations of the Poincaré map, still using 40
timesteps per iteration, are shown in Figure 4.15 on the next page for both integrators. For
the nonholonomic integrator (3.4), the Poincaré map seems to visit different parts of the
chaotic orbit evenly throughout the simulation. For the SPARK Lobatto IIIA-B method
however, the Poincaré map visits different parts of the chaotic orbit at first. Then, after
about 2500 iterations, it stays close to the two circles seen as darker areas in Figure 4.15
for the rest of the simulation.

The energy for the same simulation is shown in Figure 4.16 on page 60. The energy
using the integrator (3.4) stays bounded, but the energy for the SPARK Lobatto IIIA-B
solution drifts away from the initial value of 1.5 and setteles at a lower energy level. Note
that the energy starts to level off after about 2500 iterations, which is when the solution in
Figure 4.15 starts to stay close to the two circles. To have a closer look at what happens
with the SPARK Lobatto IIIA-B solution for this simulation, the energy for the first 1000
iterations is shown in Figure 4.17 on page 60. The energy seems to stay bounded for
the first 500 iterations, before it suddenly drifts away. Like we did in the unperturbed
contact oscillator example, we once again see a clear connection between the geometry of
the solution and energy-conservation.

McLachlan and Perlmutter (3.4) 2-stage SPARK Lobatto IIIA-B

Figure 4.13: The Poincaré map defined by vy = 0, v̇y < 0 of the perturbed contact
oscillator with ε = 0.3. To the left using the nonholonomic integrator (3.4) and to the
right using the 2-stage SPARK Lobatto IIIA-B method. 8000 iterations of the Poincaré
map are taken, with 40 timesteps per iteration for each of 10 initial values. Only values
for which x > 0 are shown.
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McLachlan and Perlmutter (3.4) 2-stage SPARK Lobatto IIIA-B

Figure 4.14: The Poincaré map defined by vy = 0, v̇y < 0 of the perturbed contact
oscillator with ε = 0.8. To the left using the nonholonomic integrator (3.4) and to the
right using the 2-stage SPARK Lobatto IIIA-B method. 8000 iterations of the Poincaré
map are taken, with 40 timesteps per iteration for each of 8 initial values. Only values for
which x > 0 are shown.

McLachlan and Perlmutter (3.4) 2-stage SPARK Lobatto IIIA-B

Figure 4.15: 50,000 iterations of the first chaotic orbit from the left in Figure 4.14 (corre-
sponding to initial value z0 = −0.55). To the left using the nonholonomic integrator (3.4)
and to the right using the 2-stage SPARK Lobatto IIIA-B method. The energy for this
simulation is shown in Figure 4.16 on the next page.
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McLachlan and Perlmutter (3.4) 2-stage SPARK Lobatto IIIA-B

Figure 4.16: Energy for the same simulation as in Figure 4.15 on the previous page. To
the left using the nonholonomic integrator (3.4) and to the right using the 2-stage SPARK
Lobatto IIIA-B method. The initial energy is 1.5. The energy for the integrator (3.4)
stays well bounded, whereas the energy for the SPARK Lobatto IIIA-B method drifts
away from the initial value.

Figure 4.17: Close up of the right plot in Figure 4.16. The energy for the first 1000
iterations of the Poincaré map using the SPARK Lobatto IIIA-B method is shown. The
initial energy is 1.5. The energy stays bounded until about 500 iterations before it drifts
away.
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4.5 Comparison with Results by Laurent O. Jay

To argue that our implementation of SPARK methods is correct, we compare plots ob-
tained from Laurent O. Jay through private communications with our own plots. The
experiment we consider is the Chaplygin sleigh, which we also discuss in Section 4.2. As
the details are discussed there, we only give the constants and initials conditions chosen
here.

The constants are chosen as m = 1, a = 1, g = 0.1 and I = 1. The initial condition
is given by q0 = (1, 0, 0)T , v0 = (0, 0, 0)T and λ0 = 1/20. A stepsize of h = 0.12 is used.
The Chaplygin sleigh experiment with these values was originally carried out in [7].

The value for each of the three components using the 4-stage SPARK Lobatto IIIA-B
method is shown in Figure 4.18. The error in the energy for the 2-, 3- and 4-stage SPARK
Lobatto IIIA-B methods is shown in Figure 4.19.

The plot showing the error in the components is indistinguishable from the same plot
created by Jay. Considering the plots showing the energy-error, no difference is seen
in the plots for the 2- and 3-stage SPARK Lobatto IIIA-B methods. For the 4-stage
SPARK Lobatto IIIA-B method, the plots are very similar, but not identical. Only a
slight difference in the irregularities is seen. As these irregularities are caused by round-off
errors, this is not surprising and one cannot expect identical plots.

These results indicate that our implementation is correct. Our other experiments some-
times show a poor energy conservation for the 2-stage SPARK Lobatto IIIA-B method.
The results in [19] on the other hand show very good energy conservation for this method.
Because of this, we do not exclude that there might be room for improvement in our imple-
mentation. One explanation might be that we do not solve the nonlinear SPARK equations
accurately enough. We discuss this matter further in the conclusion in Chapter 5.
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Figure 4.18: The value of each of the three components using the 4-stage SPARK Lobatto
IIIA-B method.
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Figure 4.19: The error in energy for the Chaplygin sleigh example.



Chapter 5

Conclusion

Summary and Conclusion

Two main types of integrators for nonholonomic systems are studied — SPARK and SRK
methods on the one hand and nonholonomic integrators on the other. Through numer-
ical experiments, both types of methods are seen to perform well compared to standard
integrators such as MATLABs ode15s. The nonholonomic constraints are satisfied at the
solution and energy is in general well conserved.

In the vertical rolling disk experiment, we compare the error in the solution for the
2-stage SPARK Lobatto IIIA-B method and the nonholonomic integrator (3.4). We see
that while the error for the nonholonomic integrator behaves well and stays bounded,
a linear growth in the error for the SPARK Lobatto IIIA-B solutions is observed. The
SPARK Lobatto IIIA-B solutions also have a drift in the energy-error, while no drift is
observed for the nonholonomic integrator.

In the Chaplygin Sleigh experiment the SPARK and SRK methods show good conser-
vation of energy in short time simulations. We see that increasing the order of the method
and lowering the size of the timestep both reduce the energy-error as one would expect.
Compared to MATLABs ode15s, the higher order methods perform very well.

In the contact oscillator experiments we compare the 2-stage SPARK Lobatto IIIA-B
method with the nonholonomic integrator (3.4). These two methods are both reversible
and of order 2. We focus in these experiments on observing the geometry of the solution
and also on long-time energy conservation. In some cases, a clear drift in the energy for
the SPARK Lobatto IIIA-B solution is observed and this is believed to cause the geometry
of the solution to sometimes be incorrect. This shows that energy conservation is crucial
and can be a good measure of how well a method performs. The nonholonomic integrator
(3.4) shows very good energy conservation in these experiments.

In a recent work by Jay [19] the 2-stage SPARK Lobatto IIIA-B method is compared
to the nonholonomic integrator (3.4) by McLachlan and Perlmutter. In a numerical ex-
periment in [19] (the McLachlan and Perlmutter’s particles) the energy-conservation for
long-time integration is seen to be equally good for the two methods. Even though we do
not perform the same experiment, our results several times show a better conservation of
energy for the nonholonomic integrator. In the Chaplygin sleigh example the energy error
for the nonholonomic integrator (3.4) and the 2-stage SPARK Lobatto IIIA-B method is
about the same. But, in the contact oscillator example, where we integrate much longer in
time, the energy in some cases drift off in the 2-stage SPARK Lobatto IIIA-B solution, but
not in the nonholonomic integrator solution. Also, in the vertical rolling disk experiment,
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the energy in the 2-stage SPARK Lobatto IIIA-B solution has a drift.
Because of the difference in our results and those in [19], we do not exclude that there

might be room for improvement in our implementation. One explanation for this might
be that we do not solve the nonlinear SPARK equations accurately enough. To argue that
our implementation still is correct, we compare our own results to results by Laurent O.
Jay in Section 4.5. We observe that the energy-conservation is as good as identical for our
results and those done by Jay. How to solve the nonlinear SPARK equations is discussed
in [15, 16] and also recently in [20]. These references should be studied in greater detail.
As we did not become aware of the results in [19] before at the very end, we have not had
time to study this more. We will leave it for further work.

We also note that in resent work done in [19], a new discrete principle is defined based
on the discrete Lagrange-d’Alembert principle for forced Lagrangian systems and it is
shown that a large class of SPARK methods satisfies this principle. This means that the
two very different approaches for obtaining numerical methods we consider in this thesis
may be closer related than what we have thought.

Further Work

There are many possibilities for further work. If we had had more time to work on this
thesis, we would have looked into the following.

• Repeat the numerical experiment in [19] where the 2-stage Lobatto IIIA-B SPARK
method is compared to the nonholonomic integrator (3.4) by McLachlan and Perl-
mutter. See if the same results are obtained. If not, study in greater detail how to
solve the nonlinear SPARK equations. See [15, 16, 20] for more on this. This would
have been the first issue we would have done.

• Consider systems with mixed holonomic and nonholonomic constraints. For example
can SPARK methods be considered for this purpose as these methods can handle
such mixed constraints (see e.g. [14]).

• We have not focused on efficient implementations, but as long-time integrations often
are of interest, efficiency could be looked into more. For the SPARK methods, the
use of a preconditioner, discussed in [15, 16], could be considered. If writing in
MATLAB, implementing parts of the code as Fortran or C sub-routines by the use
of mex-files can create huge cuts in computational time.
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Appendix A

Mathematical Background

This thesis assumes a basic knowledge about linear algebra, partial differential equations
and numerics in general. As vector notation is used throughout, a brief review of vector
differentiation is given in Section A.1. Also, some definitions in differential geometry are
given in Section A.2.

A.1 Vector Differentiation

Let x be a column vector x =
[
x1 . . . xn

]T ∈ Rn. We define the vector differentiation
operator as the column vector1

d

dx
=
[
∂

∂x1
. . .

∂

∂xn

]T
.

Some properties of this operator are given without proof. First,

d

dx

(
xTx

)
= 2x.

If b ∈ Rn is a column vector independent of x, then

d

dx

(
bTx

)
=

d

dx

(
xT b

)
= b.

Let A be an m-by-n matrix and let S be a symmetric n-by-n matrix, both independent
of x. Then

d

dx
(Ax) = A,

and
d

dx

(
xTSx

)
= 2Sx.

Let f = (f1, . . . , fm) : Rn → Rm be a smooth function. The matrix of partial derivatives,
called the Jacobian matrix of f , is defined as

∂f

∂x
=


∂f1

∂x1
. . .

∂f1

∂xn

...
...

∂fm

∂x1
. . .

∂fm

∂xn

 ∈ Rm×n.

1Some authors choose to define the vector differentiation operator as a row vector.
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The notation fx = ∂f/∂x will also be used.

A.2 Differential Geometry

This section does not give a review of differential geometry. A few definitions that are
used in the thesis are simply stated. Some basic consepts of manifolds are used. However,
differential geometry is not of great importance throughout this thesis and it can easily
be read without any knowledge about the subject. Readers not familiar with differential
geometry are referred to [24].

Definition A.1 (Tangent space). Let Q be a manifold. For each point q ∈ Q, the tangent
space TqQ of Q is the vector space of all the tangent vectors at q.

Definition A.2 (Tangent bundle). The tangent bundle TQ of a manifold Q is the disjoint
union of all the tangent spaces of Q, i.e.

TQ =
∐
q∈Q

TqQ =
⋃
q∈Q
{q} × TqQ.

The tangent bundle TQ is a smooth manifold.

Definition A.3 (Cotangent space). The cotangent space of a smooth manifold Q at a
point q ∈ Q is denoted by T ∗qQ and is the dual space of the tangent space TqQ. An element
of T ∗qQ is called a covector at q.

This means that an element p ∈ T ∗qQ is a linear map p : TqQ→ R.

Definition A.4 (Cotangent bundle). The cotangent bundle T ∗Q of a manifold Q is the
disjoint union of the cotangent spaces at all the points of Q,

T ∗Q =
∐
q∈Q

T ∗qQ =
⋃
q∈Q
{q} × T ∗qQ.

The cotangent bundle T ∗Q is a smooth manifold.



Appendix B

Butcher Tableaux for Selected
Runge-Kutta Methods

We give here the Butcher tableaux for selected Runge-Kutta methods [2, 10, 14]. Written
in parentheses are the number of stages s and the order p of the method.

Gauss (s = 2, p = 4)

1
2 −

√
3

6
1
4

1
4 −

√
3

6

1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

Gauss (s = 3, p = 6)

1
2 −

√
15

10
5
36

2
9 −

√
15

15
5
36 −

√
15

30

1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24

1
2 +

√
15

10
5
36 +

√
15

30
2
9 +

√
15

15
5
36

5
18

4
9

5
18

Radau IA (s = 2, p = 3)

0 1
4 −1

4

2
3

1
4

5
12

1
4

3
4

Radau IA (s = 3, p = 5)

0 1
9

−1−
√

6
18

−1+
√

6
18

6−
√

6
10

1
9

88+7
√

6
360

88−43
√

6
360

6+
√

6
10

1
9

88+43
√

6
360

88−7
√

6
360

1
9

16+
√

6
36

16−
√

6
36

Lobatto IIIA (s = 2, p = 2)

0 0 0

1 1
2

1
2

1
2

1
2

Lobatto IIIB (s = 2, p = 2)

0 1
2 0

1 1
2 0
1
2

1
2

Lobatto IIIC (s = 2, p = 2)

0 1
2 −1

2

1 1
2

1
2

1
2

1
2
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Lobatto IIIC* (s = 2, p = 2)

0 0 0

1 1 0
1
2

1
2

Lobatto IIID (s = 2, p = 2)

0 1
4 −1

4

1 3
4

1
4

1
2

1
2

Lobatto IIIA (s = 3, p = 4)

0 0 0 0
1
2

5
24

1
3 − 1

24

1 1
6

2
3

1
6

1
6

2
3

1
6

Lobatto IIIB (s = 3, p = 4)

0 1
6 −1

6 0
1
2

1
6

1
3 0

1 1
6

5
6 0

1
6

2
3

1
6

Lobatto IIIC (s = 3, p = 4)

0 1
6 −1

3
1
6

1
2

1
6

5
12 − 1

12

1 1
6

2
3

1
6

1
6

2
3

1
6

Lobatto IIIC* (s = 3, p = 4)

0 0 0 0
1
2

1
4

1
4 0

1 0 1 0
1
6

2
3

1
6

Lobatto IIID (s = 3, p = 4)

0 1
12 −1

6
1
12

1
2

5
24

1
3 − 1

24

1 1
12

5
6

1
12

1
6

2
3

1
6

Lobatto IIIA (s = 4, p = 6)

0 0 0 0 0

5−
√

5
10

11+
√

5
120

25−
√

5
120

25−13
√

5
120

−1+
√

5
120

5+
√

5
10

11−
√

5
120

25+13
√

5
120

25+
√

5
120

−1−
√

5
120

1 1
12

5
12

5
12

1
12

1
12

5
12

5
12

1
12

Lobatto IIIB (s = 4, p = 6)

0 1
12

−1−
√

5
24

−1+
√

5
24 0

5−
√

5
10

1
12

25+
√

5
120

25−13
√

5
120 0

5+
√

5
10

1
12

25+13
√

5
120

25−
√

5
120 0

1 1
12

11−
√

5
24

11+
√

5
24 0

1
12

5
12

5
12
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12
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