
June 2009
Helge Holden, MATH

Master of Science in Physics and Mathematics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Mathematical Sciences

Permeability Upscaling Using the
DUNE-Framework
Building Open-Source Software for the Oil Industry

Arne Rekdal

Problem Description
This master thesis will consist of developing a C++ code for upscaling of permeability.
Permeability upscaling is a recurring exercise in the oil industry, and should be regarded as an
infrastructure tool in reservoir property modelling. However the availability of such tools is
unsatisfactory in that open-source alternatives are scarce. This thesis will contribute such a tool
to everyone by building on the GPL numerics framework DUNE and by releasing the produced
code from this thesis under the GPL license.

The code should be able to handle regular grids, with anisotropic permeability as input at each
grid-cell. The upscaling is based on Darcy's law, and will produce a permeability tensor
representing the upscaled permeability property.

Assignment given: 15. January 2009
Supervisor: Helge Holden, MATH

Preface

This master thesis is written during the spring 2009 as part of the Master of Science study
program in Applied Mathematics at NTNU. My supervisor at Department of Mathemat-
ical Sciences at NTNU has been Professor Helge Holden.

I would like to thank my supervisor and Department of Mathematical Sciences at NTNU
for making it possible to participate on the DUNE workshop in Heidelberg March 23-27,
2009. This workshop was very useful, and I got the possibility to discuss some of the
details in my implementation with the developers of DUNE. I would especially like to
thank Peter Bastian, Christian Engwer and Markus Blatt for answering my questions put
on DUNE’s mailinglist.

At last I would like to thank my supervisor Ph.D. H̊avard Berland at StatoilHydro for
great help and feedback. I would also like to thank Ph.D. Alf Birger Rustad and Ph.D.
Vegard Kippe at StatoilHydro for interesting discussions.

Trondheim, June 12, 2009

Arne Rekdal

ii

iii

Abstract

In this thesis an open-source software for permeability upscaling is developed. The software
is based on DUNE, an open-source C++ framework for finding numerical solutions of
partial differential equations (PDEs). It provides functionality used in finite elements,
finite volumes and finite differences methods.

Permeability is a measure of the ability of a material to transmit fluids, and determines
the flow characteristics in reservoir models. Permeability upscaling is a technique to
include fine-scale variations of the permeability field in a coarse-scale reservoir model.
The upscaling technique used in this thesis involves solving an elliptic partial differential
equation. This is solved with mixed and hybrid finite element methods. The mixed
method transforms the original second order PDE into a system of two linear equations.
The great advantage with these methods compared with standard finite element methods
is continuity of the variable of interest in the upscaling problem. The hybrid method was
introduced for being able to solve larger problems. The resulting system of equations from
the hybrid method can be transformed into a symmetric positive definite system, which
again can be solved with efficient iterative methods.

Efficiency of the implementation is important, and as for most implementations of PDE
solvers, the computational time is dominated by solving a system of linear equations. In
this implementation it is used an algebraic multigrid (AMG) preconditioner provided with
DUNE. This is known to be efficient on system arising from elliptic PDEs. The efficiency
of the AMG preconditioner is compared with other alternatives, and is superior to the
others. On the largest problem investigated, the AMG based solver is almost three times
faster than the next best alternative.

The performance of the implementation based on DUNE is also compared with an
existing implementation by Sintef. Sintef’s implementation is based on a mimetic finite
difference method, but on the grid type investigated in this thesis, the methods are equiva-
lent. Sintef’s implementation uses the proprietary SAMG solver developed by Fraunhofer
SCAI to solve the linear system of equations. SAMG is 58% faster than DUNE’s solver
on a test case consisting of 322 200 unknowns. The scalability of SAMG seem to be bet-
ter than DUNE’s AMG as the problem size increases. However, a great advantage with
DUNE’s solver is 50% lower memory usage measured on a problem consisting of approx.
3 · 106 unknowns. Another advantage is the licensing of the software. Both DUNE and
the upscaling software developed in this thesis is GPL licensed which means that anyone
is free to improve or adjust the software.

iv

Contents

1 Introduction 1

2 What is DUNE? 3
2.1 License . 4
2.2 Modules . 4

3 Permeability Upscaling 7
3.1 Calculating Upscaled Permeability . 8
3.2 Boundary Conditions . 8

4 Mixed Finite Element Method 11
4.1 Strong Form . 11
4.2 Weak Form . 12
4.3 Discretization . 12
4.4 Comments . 16

5 Mixed Hybrid Finite Element Method 17
5.1 Weak Form . 17
5.2 Discretization . 19
5.3 Implementation Details . 21
5.4 Comments . 24

6 Mixed Hybrid FEM with Cuboid Shaped Elements 25
6.1 Discretization . 25
6.2 Implementation Details . 26
6.3 Installation and Usage . 29

7 Algebraic Multigrid (AMG) 31
7.1 What is AMG? . 31
7.2 Two-Level Grid Cycle . 32

8 Numerical Results 35
8.1 Verification of the Implementations . 35
8.2 Upscaled Permeability of a Core Sample . 42
8.3 Efficiency . 43
8.4 Comments . 46

9 Conclusion 49
9.1 Suggestions for Further Work . 50

v

vi CONTENTS

Bibliography 51

A Appendix 53
A.1 Two Layered Eclipse Model . 53
A.2 Code Listing . 54

Chapter 1

Introduction

The motivation for this thesis is to develop an open-source program for permeability
upscaling in the oil industry. Permeability upscaling is a technique used in the process
of creating reservoir models. The resulting program will be licensed under the GNU
General Public License (GPL) [1]. The intention with the GPL License is to guarantee
your freedom to share and change free software, and make sure the software is free for all
its users. With free it is meant freedom and not price.

The use of GPL license can be a nice way to open for closer contact between academia
and industry. To be open and share knowledge is important in the academia, while in
the industry, secrecy is often used in order to have a lead to the competitors. With GPL
licensed software it is easier for the academia to involve in projects with the industry since
the software will be available for everyone.

The method used for permeability upscaling involves solving a partial differential equa-
tion (PDE). It is chosen to use a finite element method (FEM) for solving the PDE
numerically. StatoilHydro already have a software for calculating upscaled permeability
developed by Sintef. Sintef’s implementation is used as a measure when the efficiency of
the implementation is discussed.

The time spent solving a PDE numerically is often dominated by solving a system
of linear equations. The implementation developed by Sintef uses the proprietary linear
solver, SAMG, developed by Fraunhofer SCAI. The code developed in this thesis is based
on DUNE, a GPL-licensed C++ framework for solving partial differential equations. The
DUNE framework also includes linear algebra solvers, and the efficiency of these will be
an important topic in this thesis.

The possibility to create a competitive open-source alternative for permeability up-
scaling based on DUNE will also be discussed in this thesis.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

What is DUNE?

DUNE is a C++ framework for finding numerical solutions of partial differential equations
with grid based methods. DUNE provides basis functionality as traversing the grid and
implementations of data structures for sparse matrices and vectors. The DUNE framework
is module based, and each module can have dependencies to other modules. The newest
module available is the dune-pdelab module. This is a module for discretizing PDEs,
and is designed to simplify implementations of PDE solvers. It is only required to describe
the PDE and the choice of discrete approximation space. Most technical details are hidden
for the user. The module was presented for the first time at the DUNE Workshop in
Heidelberg in March 2009.

DUNE is based on the following main principles [2]:

• Separation of data structures and algorithms.

• Implementations use generic programming techniques.

The first principle makes sure it is not necessary for the algorithm to know how the
data is represented as long as the data structure implements the required interface for the
algorithm. For instance, the interface for a conjugate gradient solver needs to know how
to perform a matrix-vector product. How the data is represented is not of importance for
the solver. This results in less code since the algorithms are implemented for a generic
data structure, and not one implementation for each data representation. The choice of
data structure is often problem dependent, and is an important factor when it comes to
efficiency of the implementation.

The second principle is solved by having the data structure as a parameter for the
algorithms. At compilation the compiler performs optimization for the chosen data struc-
ture, and the resulting code will be nearly as efficient as it would be with a specialized
code. This is called template programming, a technique used in large parts of the standard
C++ library.

One should avoid optimizing the code for a specific platform. This approach makes the
code difficult to maintain since it is a rapid development of hardware and software. Instead
it is better to leave the optimizations to the compiler. It is more rational to use resources
on optimizing the compilers, instead of optimizing a program for several platforms. In this
thesis it is observed that the optimization of template functions are much better in the
later versions of the GPL licensed g++ compiler than the prior. Ideally it should only be
required to recompile the program without changing the source code to achieve a program
with high performance on a new platform. The GNU C++ compiler has potential to be
efficient on most platform, since it is possible for everybody to contribute to the project.

3

4 CHAPTER 2. WHAT IS DUNE?

2.1 License

The DUNE library and headers are licensed under version 2 of the GNU General Public
License (GPL), with a special exception for linking and compiling against DUNE, the
so-called “runtime exception”:

As a special exception, you may use the DUNE library without restriction.
Specifically, if other files instantiate templates or use macros or inline functions
from one or more of the DUNE source files, or you compile one or more of the
DUNE source files and link them with other files to produce an executable,
this does not by itself cause the resulting executable to be covered by the GNU
General Public License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU General Public
License.

This license is identical to the license of libstdc++ which is the C++ standard li-
brary. This makes the DUNE framework attractive to use since the executable does not
necessarily inherit the GPL license, and the commitments it involves. According to the
GPL license, a public program utilizing parts of GPL licensed software are obligated to
distribute the source code with the program, a feature essential to GPL’s success in for ex-
ample the Linux kernel. This condition makes use of GPL licensed software in proprietary
software difficult.

There is also another license from GNU called LGPL (Lesser GPL), which is intended
to use for software libraries. Programs linked to libraries licensed with LGPL are not
imposed any obligations. DUNE consists mostly of template and inline functions, and
these are expanded in the code using these functions. The source code from the library
is inserted into the source code of the program at compilation. Inclusion into proprietary
code would thus not be possible with a LGPL license, even though the intensions are
similar. This is why the GNU GPL with runtime exception license is chosen for DUNE.

The choice of license for DUNE is important in order to reach a great market. The
choice of license makes it possible for proprietary software companies to use DUNE as
a platform, or as a component in a numerical PDE solver. Commercial users can be
an important factor for further development of DUNE. Since DUNE is GPL licensed, any
improvements or modifications of DUNE source code need to be GPL licensed. The easiest
way to improve the DUNE code without any obligations from the GPL license is thus by
contributing to the DUNE project.

2.2 Modules

DUNE is module based and contains three core modules:

• dune-common contains basic functionality which is used by the other DUNE-
modules. This module contains functionality as fixed size vectors, timer and ex-
ceptions. A typical user of DUNE will probably not use many of the functions from
this module directly, but the other modules are built on functionality of this module.

• dune-grid is a large module which includes some easy grid implementations. A
DUNE grid can be multi-element-type, multi-level and parallel. The module has
methods for graphical output of the grid and data associated with the grid. It

2.2. MODULES 5

supports file output to IBM data explorer and the VTK file format (parallel XML
format for unstructured grid) [3].

• dune-istl - Iterative Solver Template Library. Sparse matrix and vector classes
and solvers. Krylov based solvers are also included.

The dune-grid and dune-istl modules are only dependent of dune-common. In
addition there are external modules available:

• dune-disc contains shape functions, discretization schemes and other functionality
used in finite element methods.

• dune-fem is an alternative implementation of finite element methods.

• dune-pdelab provides discretization schemes for finite element methods.

• DuMux is (going to be) a multi-scale multi-physics toolbox for the simulation of flow
and transport processes in porous media.

In this thesis the three core modules are used. The grids used are unstructured grids
of tetrahedra and structured grids of cuboids implemented in the dune-grid module.
dune-istl is used for data representation and for solving the resulting system of equa-
tions.

6 CHAPTER 2. WHAT IS DUNE?

Chapter 3

Permeability Upscaling

Permeability is a measure of the ability of a material to transmit fluids [4]. In reser-
voir models this parameter is of importance, since the permeability determines the flow
characteristics of the fluid. The permeability can be measured directly through Darcy’s
law,

Q = −KA
µ

Pb − Pa

L
, (3.1)

where Q = vA is the discharge, µ is the dynamic viscosity of the fluid. Pa and Pb are
the pressures at position a and b respectively, K is the permeability. The negative sign
is required since the flow is pressure driven, and the flow goes from high pressure to low
pressure. See Figure 3.1. The permeability can be measured in laboratories using various
techniques.

Figure 3.1: Diagram for the variables used in Darcy’s law1.

In a reservoir, the permeability field, K(x), has heterogeneous variations at many
length scales that must be represented somehow in a computer model of the reservoir.
The challenge is to include information about the fine-scale variations in a coarse model
since it is not possible with today’s computer resources to work with a fine-scale model.
This is the motivation for the upscaling technique.

In the process of creating a reservoir simulation model, upscaling is done in several
steps. The first step can be from pore scale (∼ 10−3 m) to core scale (∼ 10−2 m). The
geological models are often of high resolution, and it may be required to create coarser
simulation models with upscaled parameters.

1Figure by Peter Kapitola published under the Creative Commons Share Alike license [5].

7

8 CHAPTER 3. PERMEABILITY UPSCALING

The model consists of grid cells where the petrophysical properties within each cell is
constant. Typical size of a grid cell used in simulation a model is 10–50 m in the horizontal
directions and 0.1–10 m in the vertical direction. The geological models are often of much
higher resolution. Because of limitation in computational resources, it is impossible to use
the geological models as simulation models.

3.1 Calculating Upscaled Permeability

An upscaled permeability tensor can be found by solving the following partial differential
equation with different boundary conditions,

∇ · (−K(x)∇p) = 0 in Ω ⊆ R3.
∂p

∂n
= fN on ΓN

p = gD on ΓD.

(3.2)

K(x) denotes the permeability field, p the pressure and v = −K∇p the velocity. The
equation above is Darcy’s law combined with the incompressible fluid condition (∇·v = 0).

To calculate an upscaled permeability tensor, three sets of boundary conditions are
imposed, one for each coordinate direction. The boundary condition for direction η are
defined such that the net pressure drop in the η direction is 1. If the numerical velocity
solutions, vη, of (3.2) is found, it is possible to calculate the upscaled permeability tensor,

K̃ =

 kxx kxy kxz

kyx kyy kyz

kzx kzy kzz

 , where kξη = Qη
ξ∆η, ξ, η = x, y, z. (3.3)

Qη
ξ is the net flow velocity in the ξ-direction when a pressure drop is imposed in the

η-direction. ∆η is the average distance between opposite faces in the η-direction. For
example, Qx

z is found by

Qx
z =

1
2|∂Ωtop|

∫
∂Ωtop

vx · n dS − 1
2|∂Ωbottom|

∫
∂Ωbottom

vx · n dS (3.4)

n is the outward pointing unit normal on ∂Ω, and ∂Ωtop and ∂Ωbottom are the top and
bottom faces of Ω.

3.2 Boundary Conditions

In the upscaling problem the following boundary conditions are often used:

Fixed: The pressure is 1 at one side, and 0 on the opposite side. On all other sides,
the no-flow condition applies (v · n = 0). This gives a diagonal permeability
tensor.

Linear: The pressure is 1 at one side and decays linearly to the opposite side on all
boundaries. This gives a full, and in general a non-symmetric permeability
tensor.

3.2. BOUNDARY CONDITIONS 9

Periodic: Periodic boundary conditions connects boundaries at opposite sides, but it is
required to impose a unit pressure drop in the η direction to generate flow.
These boundary conditions try to model flow in an infinite domain. The
resulting upscaled permeability tensor is full and symmetric.

(vη · n)|∂Ωξ,1 = −(vη · n)|∂Ωξ,2

pη|∂Ωξ,1 = pη|∂Ωξ,2 + δξ,η

1

2

1

2

1

2

(a) Fixed (b) Linear (c) Periodic

Figure 3.2: Overview of the three boundary conditions. The arrows indicate the velocities
at two chosen points for each boundary condition. Grey areas represent sections with low
permeability compared with the white area. Pressure drop is from bottom to top.

In Figure 3.2 the three different boundary conditions are shown. The fixed condition
makes it impossible to flow through the left and right boundaries. With the linear con-
dition, it is possible to flow through the left and right boundaries. In point 1, this is
acceptable, since the barrier is not completely tight. In point 2 the flow also goes through
the right boundary. This is not realistic, since the barrier is almost tight. This would lead
to an unrealistic high upscaled permeability.

The periodic boundary condition is a way to model an infinite large model. In point
1, the flow goes through the right boundary and reappears on the left boundary through
the opening in the barrier.

The upscaling problem is equivalent to calculating the effective resistance with Ohm’s
law. In Figure 3.3 a model with two homogeneous horizontal layers is shown, where the
permeability in the top layer is 4 mD and in the bottom layer is 0.01 mD. The upscaled
permeability in the horizontal directions equals the volume weighted arithmetic average
of the permeability, while the upscaled permeability in the vertical direction equals the
volume weighted harmonic average. This is analogue to the effective resistance when
several resistors are connected in serial and parallel respectively.

K̃(1, 1) = K̃(2, 2) =
1
V

2∑
i=1

ViKi =
1
2
(0.01 + 4) = 2.005.

K̃(3, 3) =
V∑2

i=1
Vi
Ki

=
2

1
0.01 + 1

4

= 0.01995.

10 CHAPTER 3. PERMEABILITY UPSCALING

In the horizontal direction the flow will mainly go through the top layer. The layers
will not interfere with each other, and the effective horizontal permeability is an average
of the two layer’s permeability. In the vertical direction, it is a barrier as in Figure 3.2a.
The flow will be very slow through the bottom layer. This is why the effective vertical
permeability is much closer to the permeability in the bottom layer than the top layer.

The model shown in Figure 3.3 is used in all implementations to verify the correctness,
since the analytical solution of the upscaled permeability tensor is known.

Figure 3.3: Model with two homogeneous layers.

Chapter 4

Mixed Finite Element Method

The mathematical problem discussed in this thesis comes from Darcy’s law and local mass
conservation, and describes a stationary, single phase flow in a porous media. The problem
is stated in (3.2). A mixed finite element method is used for solving the equation as this
results in a continuos velocity field, while with ordinary finite element methods this is not
necessarily true.

In the mixed finite element method, the equation described in the previous chapter is
split into a system of two linear PDEs. The approximation space for the velocity can be
chosen to be continuous on the triangulation. The method is described in detail in [6].

4.1 Strong Form

The single phase flow in a porous media can be formulated as [7],

∇ · (−K(x)∇p) = 0 in Ω ⊆ R3

∂p

∂n
= fN on ΓN

p = gD on ΓD.

(4.1)

This is a generalized Poisson equation with Dirichlet and Neumann boundary condi-
tions. For the permeablity upscaling problem, the variable of interest is not the pressure,
p, but the velocity field, v. From Darcy’s law, v = −K∇p, (4.1) can be written as a
system of two linear PDEs.

v = −K(x)∇p in Ω ⊆ R3

∇ · v = 0 in Ω
v · n = gN on ΓN

p = gD on ΓD.

(4.2)

This is the basis for the mixed method, and reflects the two unknown functions p and v.
The solution spaces for p and v are obviously different since p is a scalar function, and v
is a vector function.

11

12 CHAPTER 4. MIXED FINITE ELEMENT METHOD

4.2 Weak Form

The following function spaces need to be defined in order to derive the weak formulation
of (4.2):

L2(Ω) =
{
u
∣∣∣ ∫

Ω
|u|2 dΩ <∞

}
,

Hdiv(Ω) =
{
u ∈

(
L2(Ω)

)3 ∣∣∣∇ · u ∈ L2(Ω)
}
,

Hdiv
N (Ω) =

{
u ∈ Hdiv(Ω)

∣∣∣ u · n = gN on ΓN

}
,

Hdiv
0 (Ω) =

{
u ∈ Hdiv(Ω)

∣∣∣ u · n = 0 on ΓN

}
.

(4.3)

The space Hdiv(Ω) is larger than H1(Ω)3, because the vector functions do not re-
quire three continuous components to be in Hdiv(Ω), but only continuity of the normal
component.

The derivation of the weak formulation of (4.2) is like the derivation of the weak
formulation of (4.1), i.e. multiply the equations by a test function, u ∈ Hdiv

0 (Ω), and
integrate over the domain Ω. The first equation in (4.2) becomes∫

Ω
uK−1v dΩ =−

∫
Ω
u∇p dΩ

=
∫

Ω
p∇ · u dΩ−

∫
∂Ω
pu · n dS, ∀u ∈ Hdiv

0 (Ω).
(4.4)

In the same way, the second equation in (4.2) becomes∫
Ω
q∇ · v dΩ = 0, ∀q ∈ L2(Ω). (4.5)

By defining

b(u, v) =
∫

Ω
uK−1v dΩ,

c(v, p) =
∫

Ω
p∇ · v dΩ,

d(v, π) =−
∫

∂Ω
πv · n dS,

(4.6)

the weak form of (4.2) can be formulated as:

Find p ∈ L2(Ω) and v ∈ Hdiv
N (Ω) that satisfies

b(u, v)− c(u, p) = d(u, gD), ∀u ∈ Hdiv
0 (Ω)

c(v, q) = 0, ∀q ∈ L2(Ω).
(4.7)

4.3 Discretization

The domain Ω is covered by a regular triangulation consisting of N non-overlapping tetra-
hedra,

T =
N⋃

i=1

Ti.

4.3. DISCRETIZATION 13

Figure 4.1: A tetrahedron, the 3D simplex2.

The set of faces in Ω is called FΩ, and the set of interior faces in Ω is called F int
Ω . The

velocity, v, is discretized by using the lowest-order Raviart-Thomas space [8],

RT0(T) =
{
q ∈ (L2(T))3

∣∣∣ ∀T ∈ T ∃ a ∈ R3,∃ b ∈ R, ∀x ∈ T, q(x) = a+ bx

and ∀F ∈ F int
Ω , [q]F · nF = 0

}
,

(4.8)

where [q]F =
(
q|T+ − q|T−

)
|F denotes the jump of q across the face F shared by the

elements T+ and T−. In words, RT0(T) is a set of 3 dimensional vector functions with
continuos normal component on all interior faces. The components of a vector function is
elementwise linear functions.

Continuity of the normal components on the interior faces reflects the conformity,
RT0(T) ⊂ Hdiv(Ω). To make sure that this continuity is fulfilled, it is built into the shape
functions, ψF for F ∈ FΩ.

The pressure is discretized by letting the pressure be constant within each element,
i.e. p|T ∈ P0(T) for all elements T ∈ T .

The discrete subspaces read,

V N =
{
u ∈ RT0(T)

∣∣∣ u · n = gN on ΓN

}
,

V 0 =
{
u ∈ RT0(T)

∣∣∣ u · n = 0 on ΓN

}
,

P =
{
q ∈ L2(Ω)

∣∣∣ q|T ∈ P0(T), ∀T ∈ T
}
.

2Acknowledgement to Robert Webb’s Great Stella software as the creator of this figure, http://www.
software3d.com/Stella.html

http://www.software3d.com/Stella.html
http://www.software3d.com/Stella.html

14 CHAPTER 4. MIXED FINITE ELEMENT METHOD

The discrete problem becomes:

Find p ∈ P and v ∈ V N satisfying

b(u, v)− c(u, p) = d(u, gD), ∀u ∈ V 0

c(v, q) = 0, ∀q ∈ P.
(4.9)

4.3.1 Construction of Face-Basis Functions

It is necessary to create basis-functions for RT0(T) such that the set of basis functions
span the whole vector function space. Each basis function has support in at most two
elements, since a face only can be shared by two elements in a conforming grid. From the
definition of RT0(T) it is required that the normal component of u ∈ RT0(T) is continuous
on each interelement face. The local definition of the basis function in an element must
be such that the resulting global basis function has a continuous normal component on
the face.

Let F1, F2, F3 and F4 be the faces of the tetrahedron T opposite to its vertices x1, x2,
x3 and x4 respectively. Let nFα denote the unit normal vector of Fα chosen with a global
fixed orientation while nα denotes the outer unit normal vector of T along Fα. The basis
function for Fα can be defined as

ψFα(x) =

{
σα|Fα|
3|T | (x− xα) for x ∈ T,

0 elsewhere.
(4.10)

where σα = nα · nFα . σα is +1 if nFα points outward of the element T , and −1 otherwise.
|T | denotes the volume of T , and |Fα| denotes the area of Fα.

Let the face F be shared by the elements T+ and T−, such that σF = +1 in T+ and -1
in T−. If x± denotes the vertex opposite to face F in T± , it can be shown that the global
basis function associated with face F becomes [9].

ψF (x) =

{
±|F |
3|T±| (x− x±) for x ∈ T±,
0 elsewhere.

(4.11)

In [9] it is also shown that the following holds:

1. ψF · nF =
{

0 along (∪FΩ) \ F,
1 along F.

2. ψF ∈ Hdiv(Ω)

3.
{
ψF

∣∣F ∈ FΩ

}
is a basis of RT0(T)

4. div ψF =

{
± |F |
|T±| for x ∈ T±,

0 elsewhere.

Since property 3 holds, it is possible to write any u ∈ RT0(T) as

u(x) =
|FΩ|∑
j=1

ujψj(x).

4.3. DISCRETIZATION 15

Property 1 above makes it easy to have an interpretation of the coefficient uF related with
the basis function ψF . uF is the flux density through face F .

4.3.2 System of Discrete Equations

Since any member of P is elementwise piecewise constant, p ∈ P can be written as

p(x) =
N∑

i=1

piχi(x), where χi(x) =
{

1 for x ∈ Ti,
0 elsewhere.

(4.12)

Without loss of generality, let the Neumann condition be v · n = 0 on ΓN as for the fixed
boundary conditions in the permeability upscaling problem. The set,

Φ = FΩ \
{
F ∈ FΩ

∣∣ F ⊂ ΓN

}
,

is the set of faces not part of the Neumann boundary. The approximate solution for the
velocity, v ∈ V N , can be written as

v(x) =
|Φ|∑
j=1

vjψj(x).

By inserting these two expressions into the discrete formulation and choosing u and q
systematically the result is the following linear system of equations,

|Φ|∑
j=1

∫
Ω
ψiK

−1ψj dΩ︸ ︷︷ ︸
Bij

vj −
|T |∑
k=1

∫
Tk

∇ · ψi dΩ︸ ︷︷ ︸
Cki

pk = −
∫

∂Ω
gDψi · n dS︸ ︷︷ ︸
(bd)i

, for i = 1, 2, ..., |Φ|

|Φ|∑
j=1

∫
Tk

∇ · ψj dΩ︸ ︷︷ ︸
Ckj

vj = 0, for k = 1, 2, ..., |T |,

or in matrix-form notation,

Bv − CT p = bd

Cv = 0.

The total system of equations to be solved for is[
B −CT

C 0

] [
v
p

]
=
[
bd
0

]
. (4.13)

This system is not positive definite, and thus excludes the possibility to use many of
the iterative methods available for solving system of equations.

16 CHAPTER 4. MIXED FINITE ELEMENT METHOD

4.3.3 Local Matrix Blocks

In standard finite element methods it is common to assemble the global matrix system,
or the matrix blocks B and C, by iterating over the elements and adding up the element’s
contribution to the global blocks. This approach is also used here.

The local matrix blocks for an element T are defined as,

(BT)jk =
∫

T
ψj K

−1ψk dΩ, for j, k = 1, 2, 3, 4. (4.14)

CT =
[∫

T
∇ · ψ1 dΩ,

∫
T
∇ · ψ2 dΩ,

∫
T
∇ · ψ3 dΩ,

∫
T
∇ · ψ4 dΩ

]
. (4.15)

From the choice of basis functions and property 4 in section 4.3.1, it is easy to calculate
CT . BT can be calculated by transforming the integral into the barycentric coordinate
system.

Let λ1, λ2, λ3 and λ4 denote the barycentric coordinates in the tetrahedron T . ψj

becomes

ψj(x) =
σj |Fj |
3|T |

(λ1(x)(x1 − xj) + λ2(x)(x2 − xj) + λ3(x)(x3 − xj) + λ4(x)(x4 − xj)) .

After this transformation it is easier to calculate BT

(BT)jk =
∫

T
ψj K

−1ψk dΩ = σjσk
|Fj ||Fk|
9|T |2

4∑
l=1

4∑
m=1

∫
T
λl · (xl − xj)K−1λm · (xm − xk) dΩ

=
σj |Fj |σk|Fk|

9|T |2
4∑

l=1

4∑
m=1

(xl − xj) · (xm − xk)
∫

T
λlK

−1λm dΩ

By utilizing the transformation, dΩ = |T |dλ, and assuming K−1 is constant within each
element, K−1(T), ∫

T
λlK

−1λm dΩ = K−1(T)
|T |
20

(1 + δlm) .

The expression for BT becomes

(BT)jk = K−1(T)
σj |Fj |σk|Fk|

180|T |

((
4∑

l=1

(xl − xj)

)
·

(
4∑

m=1

(xm − xk)

)
+

4∑
l=1

(xl − xj) · (xl − xk)

)
.

4.4 Comments

In the implementation of this method, (4.13) is solved with the direct solver, SuperLU.
The high complexity of the solver, O(N3), for N unknowns implies that the implementa-
tion scales poorly with the problem size. This method is only suitable for relative small
problem sizes. One advantage with this method is that it is relative easy to implement.

In order to solve the system of equations with iterative methods, Lagrange multipliers
are introduced. This modification will be treated in the next chapter.

Chapter 5

Mixed Hybrid Finite Element
Method

The problem stated in the previous chapter was solved with a direct LU-solver. This
approach is known to be inefficient as the problem size increases. For sparse systems
arising from PDE, iterative methods like the conjugate gradient method are attractive.
Some iterative methods, including CG, often require the system matrix to be positive
definite. The system matrix in (4.13) is not positive definite [10] and restricts the number
of linear algebra solvers which can be used.

The requirement of a continuos normal component of the velocity on the interelement
faces, is relaxed in this method. Instead, the continuity is weakly imposed by introducing
Lagrange multipliers. The continuity across the faces is imposed as a set of constraints.
This is advantageous for the resulting system of equations. The motivation for introducing
the Lagrange multiplier technique or the hybrid method is to generate a positive definite
system of equations which can be solved with the conjugate gradient method.

5.1 Weak Form

The word mixed in the name of the method reflects the two unknowns in the problem,
which are v and p. Hybrid corresponds to the constraints associated with continuity at
the faces between neighbouring finite elements.

The basis for the derivation of the mixed hybrid FEM is the weak form of the mixed
problem derived in section 4.2. The domain Ω is still covered by the triangulation, T ,
consisting of N non-overlapping tetrahedra. Recall that the members of the previous de-
clared vector function space, V 0, has normal component which are continuous across the
interelement boundaries, and u · n vanishes on ΓN . P is the set of elementwise constant
functions. Recall the weak form of the mixed problem:

Find (v, p) ∈ V N × P such that

b(u, v)− c(u, p) = −
∫

∂Ω
gDu · n dS, ∀u ∈ V 0

c(v, q) = 0, ∀q ∈ P.
(5.1)

17

18 CHAPTER 5. MIXED HYBRID FINITE ELEMENT METHOD

To derive the hybrid formulation it is necessary to define

Π =
{
µ ∈ L2(∂T)

∣∣∣ µ ∈ P0(F), ∀F ∈ FΩ

}
,

ΠD =
{
µ ∈ Π

∣∣∣ µ = gD on ΓD

}
,

Π0 =
{
µ ∈ Π

∣∣∣ µ = 0 on ΓD

}
,

(5.2)

i.e. the set of piecewise constant functions on all faces of the triangulation, and such
functions fulfilling the inhomogeneous and homogeneous Dirichlet boundary conditions
respectively.

It is also necessary to define

RT0(T) =
{
u ∈ (P1(T))3

∣∣∣ u(x) = a+ bx, for x ∈ T, and a ∈ R3, b ∈ R
}
,

V ∗ =
{
u ∈ (L2(Ω))3

∣∣∣ u|T ∈ RT0(T), ∀T ∈ T
}
,

V 0 = V ∗ ∩Hdiv
0 (Ω).

(5.3)

The difference between members of V ∗ and V 0 is that V ∗ is larger since it also include
functions with discontinuous normal components across interior faces.

It is convenient to redefine for u ∈ V ∗ and µ ∈ Π,

d(u, µ) =
∑
T∈T

∫
∂T
µu · n dS. (5.4)

In [10] it is shown that if u ∈ V ∗, then

(d(u, µ) = 0, ∀µ ∈ Π0) ⇔ u ∈ V 0. (5.5)

Based on the result above, it is also shown that,

b(u, v)− c(u, p) +
∫

∂Ω
gDu · n dS︸ ︷︷ ︸
d(u,gD)

= −d(u, π0), ∀u ∈ V ∗, (5.6)

where π0 ∈ Π0 and is unique. Notice the change of which test-functions the equation
above is valid for. Let πD be defined as

πD ∈ ΠD, where πD ≡ π0 on FΩ \ ΓD. (5.7)

(5.5) and (5.6) yields:

Find (v, p, π) ∈ V ∗ × P ×Π0 such that

b(u, v)− c(u, p) + d(u, π) = − d(u, gD) ∀u ∈ V ∗,

c(v, q) = 0 ∀q ∈ P,
d(v, µ) = 0 ∀µ ∈ Π0,

(5.8)

The unknown Lagrange multiplier vector, π, corresponds to the pressure at the element’s
faces. The last equation above comes from (5.5), and states the continuity constraint on
the interelement faces. It is important to notice that the solution, (v, p), of this problem
is identical to the solution of (4.7). For more details regarding the derivation of the hybrid
formulation, see [10].

5.2. DISCRETIZATION 19

5.2 Discretization

The domain Ω is divided into a disjoint partition of N non-overlapping tetrahedra as for
the previous method. The members of V ∗ has four degrees of freedom per element.

5.2.1 Constructing the Matrix Blocks

Since the Lagrange multiplicators are introduced, the continuity across the faces is not
necessary to be built into the shapefunctions as for the face-oriented basis in section 4.2.
Each basis function also has local support, i.e. it is non-zero in only one element. The 4
basis functions for a tetrahedron is chosen to be [9]

ψ1(x) = [1, 0, 0]T

ψ2(x) = [0, 1, 0]T

ψ3(x) = [0, 0, 1]T

ψ4(x) = (x− xc),

(5.9)

where xc denotes the centroid in the element.
The element matrices for a tetrahedron T ∈ T , BT and CT are given by

(BT)jk =
∫

T
ψjK

−1ψk dΩ, for j, k = 1, ..., 4

(CT)j =
∫

T
∇ · ψj dΩ, for j = 1, ..., 4.

(5.10)

The choice of basis functions yields

BT = K−1 · diag
(
|T |, |T |, |T |,

∫
T
|x− xc|2 dΩ

)
CT = [0, 0, 0, 3|T |] .

(5.11)

The global matrix B will be of dimension 4N where N is the number of elements in
the domain Ω. C will be of dimension N × 4N . The global matrices are assembled like

B =


B1 0 . . . 0

0 B2
. . .

...
...

. 0
0 . . . 0 BN

 and C =


C1 0 . . . 0

0 C2
. . .

...
...

. 0
0 . . . 0 CN

 . (5.12)

The (ΠT)i vector for the face Fi in the element T is calculated by

(ΠT)ij =
∫

Fi

ψj · ni dS, for i, j = 1, ..., 4. (5.13)

The global Π matrix is assembled with the help of the map

ηT : {1, 2, 3, 4} → IFΩ
,

i.e. the local face index of the tetrahedron T is mapped to a global face index in IFΩ
. This

means that the global matrix Π can be assembled by

Π
(

ηT (i)
4(index(T)− 1) + {1, 2, 3, 4}

)
= (ΠT)i. (5.14)

20 CHAPTER 5. MIXED HYBRID FINITE ELEMENT METHOD

By similar derivation as in section 4.3.2 the system of equations for (5.8) now reads, B −CT ΠT

C 0 0
Π 0 0

 v
p
π

 =

 bD
0
bN

 . (5.15)

This system is still not an improvement of (4.13). The system size is actually larger than
the original. However the choice of V ∗ makes B block diagonal and each block is of size
4. In addition, with this choice of basis functions, B will actually be diagonal. The
importance of this property can be seen in the next section.

5.2.2 Schur-Complement Reduction

The system of equations (5.15) is indefinite as for the previous method. By performing a
Schur-complement reduction with respect to B, the result is the positive-definite system
[7], [

D −F T

F −ΠB−1ΠT

] [
p
π

]
=
[

−CB−1bD
bN −ΠB−1gD

]
, (5.16)

where D = CB−1CT and F = ΠB−1CT . Since B is diagonal, B−1 will also be diagonal
and trivial to compute. The Schur-complement reduction could also be applied the system
in (4.13), but finding the inverse of B would be an expensive operation. D is also a diagonal
matrix since Cij 6= 0 only for j = 4i.

Dij =
4N∑
k=1

Cik(1/Bkk)CT
kj =

4N∑
k=1

CikCjk

Bkk
=
Ci,4iCj,4i

B4i,4i

= δij
(Ci,4i)2

B4i,4i
.

(5.17)

By performing yet another Schur-complement reduction for (5.16) with respect to D, this
results in the following symmetric, positive-definite system for π

Sπ = r, where
S = ΠB−1ΠT − FD−1F T

r = (Π− FD−1C)B−1bD − bN .
(5.18)

The advantage with this system is that it can be solved with many iterative methods as
the conjugate gradient method which is used in the implementation in this thesis. Another
advantage is that it is smaller than the original system since the unknowns are only the
pressure at the faces. Once π is found it is relative cheap to find the other unknowns, p
and v. p is found by performing a back-substitution in (5.16).

p = D−1(F Tπ − CB−1bD).

This is relative cheap since it only requires inverting a diagonal matrix and calculating
three sparse matrix-vector products. When p is found it is possible to find v, which is the
variable of interest in the upscaling problem. This is found by solving for v in (5.15),

v = B−1(bD + CT p−ΠTπ).

Finding the velocity vector has the same complexity as finding p.

5.3. IMPLEMENTATION DETAILS 21

5.3 Implementation Details

This section is an overview over how the code is organized, and shows how some of the
details are solved with use of DUNE. Currently there are no implementation of Raviart-
Thomas basis functions and mixed finite element functionality within DUNE, so the whole
assembly process for the Raviart-Thomas elements had to be implemented. There is
a module under development called dune-pdelab, which makes it possible to create
a solver for a generic problem, just by specifying the partial differential equation with
boundary conditions and the function spaces to use in the discretization. The reason for
why dune-pdelab was not used was that it was not available before the end of March,
and then the implementations was almost finished. In addition, dune-pdelab currently
only deal with Dirichlet boundary condtitions [11].

5.3.1 Code Structure

The existing DUNE implementation for the Laplace equation with piecewise linear ele-
ments is used as a template for how the code for this solver should be organized [12].
The two most important classes are the local assembler class and the assembler class. A
local assembler class for the Raviart-Thomas basis is implemented. An object of this type
calculates BT , CT and ΠT for an element T . The assembly of the global matrix system
is done with the assembler class, which uses the local assembler object to fill the global
system as mentioned in the previous section. The assembler class also takes a Problem
object as a parameter where the problem is specified. The Problem class has methods
for specifying the boundary conditions and the permeability field K. See Figure 5.1.

RT0Local Problem

RT0Assembler

Element

K-field Boundary-
conditions

System of equations

Figure 5.1: The structure of the code. The element is already implemented in DUNE.

22 CHAPTER 5. MIXED HYBRID FINITE ELEMENT METHOD

The assembler class has also three other methods, schurReduction, solvePressure
and solveVelocity. The schurReduction-method performs the transformation of
the system of equations, and generates the system in (5.18). This system can be solved
with any compatible linear solver. Once the Lagrange multiplier vector, π, is found, the
other variables can be found by calling solvePressure and solveVelocity, respec-
tively.

5.3.2 BCRSMatrix

The matrix system arising from solving partial differential equations are often very sparse,
i.e. few elements in the matrix are non-zero. If there are n unknowns in the matrix system,
the memory requirement for storing the system as a standard matrix will be O(n2). By not
explicitly saving all the zero elements, it is possible to achieve a lower memory requirement.
This is known as a sparse matrix format.

In the implementation of the solver, the BCRSMatrix in DUNE is used to represent
sparse matrices. BCRS stands for Block Compressed Row Storage. This is a sparse block
matrix with row storage model, i.e. the blocks in a row are stored sequentially in the
memory. In the solvers used in this thesis, the ”blocks” are scalars implemented as a
FieldMatrix<double,1,1>, i.e. 1 × 1 matrices where the single matrix element is
represented as a double.

The usual way of implementing a compressed row storage matrix is by storing three
arrays, values, col_index and row_ptr. Let say we want to store the matrix A ∈
R6×6 in CRS format, and

A =



10 0 0 0 −2 0
3 9 0 0 0 3
0 7 8 7 0 0
3 0 8 7 5 0
0 8 0 9 9 13
0 4 0 0 2 −1

 .

The sparse matrix is created by storing the elements in the array values, and the corre-
sponding column index col_index.

values 10 −2 3 9 3 7 8 7 3 ... 13 4 2 −1
col_index 1 5 1 2 6 2 3 4 1 ... 6 2 5 6

The row_ptr array tells where the different rows start. The last element in row_ptr is
often reserved for storing the number of non-zero elements, z.

row_ptr 1 3 6 9 13 17 19

Let m denote the number of columns, and z denote the number of non-zeros of the
matrix, A. The memory requirement for storing A in CRS format is O(2z+(m+1)). For
very sparse matrices, this format can reduce the memory requirement considerably.

To create a BCRSMatrix in DUNE, it is needed to set up the sparsity pattern before
it can be used. The BCRSMatrix in DUNE offers two ways of doing this:

1. Row-wise: The rows are built up in sequential order. Size of the row and the column
indices are defined. The matrix can be used when all the rows have been initialized.
This approach is used when the structure of the matrix is known in advance, e.g.
finite difference methods.

5.3. IMPLEMENTATION DETAILS 23

2. Random: The sparsity pattern is not known in advance, and each row can not be
determined in a sequential order. The sparsity pattern require two steps to create
the matrix. In the first step all the row sizes are determined, and in the second step
the non-zero indices are added.

Both modes offer a special implementation when the number of non-zero elements in the
matrix is known in advance.

5.3.3 Sparsity Patterns for the Matrix Blocks

The sparsity patterns for the matrix blocks B, C and Π have to be set up before the blocks
can be filled, as discussed in section 5.3.2. The matrix block B is simple, since the choice
of basis functions makes B diagonal. The C block is also simple. This is block diagonal
with non-zero entries only at indices (i, 4i) for i = 1, ..., N . The sparsity patterns for the
B and C blocks are set up in row-wise mode.

The sparsity pattern for the Π block is non-trivial. Assume that the internal face Fi

is shared by the elements Tk and Tl. Recall that Πij is given by

Πij =
∫

Fi

ψj · nT dΩ,

where nT is the outward pointing normal of Fi in the element T and ψj has only support
in T . This implies that row i in Π has non-zeros when j = 4(k − 1) + {1, 2, 3, 4} and
j = 4(l − 1) + {1, 2, 3, 4}. The sparsity pattern for the Π block is easiest to set up in a
non-sequential order, hence the random mode is used.

Knowing the explicit expressions for the sparsity patterns is important to achieve high
efficency when the Schur-complement reductions are performed. In the first version of the
implementation, the S matrix in (5.18) was calculated by using matrix-matrix multipli-
cation (MxM) routines for sparse matrices. This approach turned out to be extremely
ineffective. The main reason for this is that the general matrix-matrix multiplication im-
plementation can not exploit the fact that it is the matrix is multiplied with the transpose
of itself. In addition the matrix-matrix multiplication code can not assume anything about
the matrix sparsity patterns in advance.

By using the MxM approach the transformation of the original system of equations
used several minutes while the rest of the code used few seconds including solving the
resulting system. It was obvious that this way of transforming the equations was not fast
enough.

The S matrix consists of two terms, ΠB−1ΠT and FD−1F T . As mentioned above,
both B and D is diagonal, so when the sparsity pattern is calculated it is enough to look
at Π ΠT and FF T . F = ΠB−1CT has non-zeros where ΠCT has non-zeros. This implies
that FF T has non-zeros where Π(CTC)ΠT has. Recall thatD = CB−1CT and is diagonal.
This implies that the two terms has identical sparsity patterns.

Let’s look at (Π ΠT)ij .

(Π ΠT)ij =
4N∑
k=1

ΠikΠT
kj =

4N∑
k=1

ΠikΠjk.

Assume that Fi is shared by Tm and Tn and Fj is shared by Tp and Tq. If m or n is equal
to p or q, it is possible that Sij is non-zero. This can also be stated in another fashion.

24 CHAPTER 5. MIXED HYBRID FINITE ELEMENT METHOD

Row i in Π ΠT has entries in the columns corresponding to the global face number of the
faces in Tm and Tn. This was implemented using two different maps, face2elements
and elementfaces. face2elements maps a global facenumber to two element in-
dices for internal faces, and to one element index for faces located at the boundary. The
elementfaces map local facenumbers of an element to global facenumbers.

The S matrix, implemented as a Dune::BCRSMatrix, was initialized with the fol-
lowing code.

1 //Type alias for the iterator used to create the matrix S
2 typedef typename BCRSMatrix : : CreateIterator Iter ;
3

4 for (Iter row=S . createbegin () ; row!=S . createend () ; ++row) {
5 //Extracts the element indices for the face ’row’
6 const int elementP=face2elements [row .index ()] [0] ;
7 const int elementM=face2elements [row .index ()] [1] ;
8

9 //Loops over the 4 faces in the two elements that share
10 //the face ’row’
11 for (int alpha=0; alpha<4; alpha++){
12 //Checks if this face is a non-dirichlet face
13 if(elementfaces [elementP] [alpha]>=0)
14 row . insert (elementfaces [elementP] [alpha]) ;
15

16 //Checks if face, ’row’, is located on the boundary,
17 //i.e. it is only shared by one element, ’elementP’.
18 if (elementM >=0)
19 if(elementfaces [elementM] [alpha]>=0)
20 row . insert (elementfaces [elementM] [alpha]) ;
21 }
22 }

By using this approach the generation of the S block takes only a split of a second on the
same problem size. This shows how important it is to exploit the structure of the problem.
If the transformation would be so costly as the first approach, the transformation would
never been used since the cost of transformation was higher than solving the original
problem.

5.4 Comments

This chapter introduces Lagrange multipliers, and the size of the resulting system in-
creases. It is also introduced an extra cost by transforming the system into a symmetric
positive definite system by performing two Schur-complement reductions, but the trans-
formed system, (5.18), is smaller than the original system, (4.13). For large problems,
the extra cost of transforming the system of equations is small compared to the gain in
reduced cost by solving the system of equation with an iterative method.

The efficiency of the implementation will be discussed later in the thesis.

Chapter 6

Mixed Hybrid FEM with Cuboid
Shaped Elements

In the two previous chapters, tetrahedron shaped elements are used. Arbitrary shaped
domains can easily be discretized into a set of tetrahedra with fair coverage of the domains.
The upscaling problem makes easily sense on shoe-box shaped domains, and such domains
are very common in this context.

The motivation for my thesis is to create upscaling software for the oil industry. The
input data is often Eclipse3 grid files where the permeability data is given in cells. In this
thesis the gridfiles are assumed to consist of rectangular cuboids, i.e. stretched cubes with
right angles. A cell in the Eclipse grid format can be much more general than this.

The approach used in the previous chapter divided each cell in the cuboid grid into six
tetrahedra and the cell’s permeability was used in all six tetrahedra. This generates extra
degrees of freedom, and makes it unfair to compare the performance with the existing
upscaling code.

The cuboid implementation has some limitations compared to the tetrahedron imple-
mentation from the previous chapter. The elements are required to be aligned with the
coordinate axis, and the shape of the cuboids makes it difficult to describe other domains
than cuboid shaped domains with high accuracy.

6.1 Discretization

The domain is now discretized in N cuboid shaped elements. The weak formulation for
the mixed hybrid fine element method is unchanged from (5.8). Recall from the previous
chapter that it is only necessary to define the velocity function space on each element:

RT0(T) =
{
v ∈ (L2(T))3

∣∣ v(x) = a+ bx, where a, x ∈ R3, and b ∈ R
}
.

The shapefunctions defined on the reference element associated with the faces F1, ..., F6,
are chosen to be

ψ̂1(x, y, z) = (1− x) e1, ψ̂2(x, y, z) = x e1,

ψ̂3(x, y, z) = (1− y) e2, ψ̂4(x, y, z) = y e2,

ψ̂5(x, y, z) = (1− z) e3, ψ̂6(x, y, z) = z e3.

(6.1)

3Eclipse is an oil and gas reservoir simulator developed by Schlumberger Information Solutions.

25

26 CHAPTER 6. MIXED HYBRID FEM WITH CUBOID SHAPED ELEMENTS

From this point it is assumed that all elements in the grid is aligned with the coordinate
axes, and all angles in an element are 90 degrees.

Define L as the coordinates of the lower left corner and H as the upper right corner of
an element T . The vector h = H − L denotes the grid spacing in each spatial direction.
From the assumptions above, the global definition of the shape functions above becomes,

ψ1(x, y, z) =
(
1− x−Lx

hx

)
e1, ψ2(x, y, z) = x−Lx

hx
e1,

ψ3(x, y, z) =
(
1− y−Ly

hy

)
e2, ψ4(x, y, z) = y−Ly

hy
e2,

ψ5(x, y, z) =
(
1− z−Lz

hz

)
e3, ψ6(x, y, z) = z−Lz

hz
e3.

(6.2)

The shapefunctions has the following property

ψi · nFi =
{

0 along ∂T \ Fi

1 along Fi.

This means that the coefficient corresponding to Fi in the solution vector, is the velocity
across Fi. The faces of the cube shaped element is numbered according to the DUNE
reference element numbering, except C++ is 0-indexed. See Figure 6.1.

Figure 6.1: The reference cube with the faces and vertices numbered. The figure is from [12].

6.2 Implementation Details

6.2.1 Code Structure

The code for this implementation is listed in section A.2. The code is organized as the
implementation for the hybrid method for tetrahedron shaped elements. See section 5.3.1.
This implementation is not so general as the previous method. It assumes that the cube
shaped elements’s faces to be either perpendicular or parallel to the coordinate axes. This
is due to the simple mapping used for the global definition of the shape functions. This can
be fixed by utilizing a more advanced transformation, but this was not prioritized since
the grids used as input are assumed to consist of rectangular cuboids with right angles.

6.2. IMPLEMENTATION DETAILS 27

6.2.2 Sparsity Patterns

The local BT , CT and ΠT -blocks defined for the cuboid shaped element T are different
than for the tetrahedron shaped element discussed in the previous chapter. The dimension
of BT is now 6 × 6, and the structure is shown in Figure 6.2. The non-zero elements in
BT are located at Bi,i and Bi,i+2(i mod 2)−1 for i = 1, ..., 6. The way the shapefunctions
are defined, BT becomes block diagonal with 3 blocks of dimension 2 × 2. This results
in a global block diagonal matrix. As in the previous chapter it is required to invert the
global 6N × 6N matrix B. The computational cost of inverting B is O(N), since this is
the same as inverting 3N blocks of size 2.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

nz = 12

Figure 6.2: The 12 non-zero elements in BT for a cuboid shaped element.

The local CT vector is of length 6, and is easy to calculate,

CT =
(∫

T
div(ψi) dΩ

)6

i=1

= |T |
[
− 1
hx
,

1
hx
, − 1

hy
,

1
hy
, − 1

hz
,

1
hz

]
.

The sparsity patterns for the the global B and C matrix blocks are still easy to set up.
The sparsity pattern for the Π-block from section 5.3.3 is also easily extendable to cuboid
shaped elements.

Since each row in B−1 contains two elements, a matrix-matrix product with B−1

potentially connects with two elements. D = CB−1CT is still diagonal, and each element
is given by,

Dii =
6∑

α=1

Ci,6i+α

(
B−1

6i+α,6i+αCi,6i+α +B−1
6i+α,6i+α+2(α mod 2)−1Ci,6i+α+2(α mod 2)−1

)
︸ ︷︷ ︸

[B−1CT]6i+α,i

.

The derivations of explicit expressions for the matrix elements are tedious, but the
result is much more efficient code compared to using general matrix-matrix multiplication
routines for sparse matrices.

28 CHAPTER 6. MIXED HYBRID FEM WITH CUBOID SHAPED ELEMENTS

6.2.3 Utility Function for Visualizing the Solution

The velocity field is exported for visualization by the VTKWriter provided with DUNE.
The Visualization Toolkit (VTK) is an open source graphics toolkit. The exported solution
can be opened in ParaView, an open-source, multi-platform visualization application built
on top of the VTK libraries.

The VTKWriter takes an object implementing the VTKFunction interface specified
in DUNE as an input parameter. This is nothing else than a utility function for how
the velocity function, v(x), on the grid is defined. The most important function in this
interface is the evaluate function. For an element it takes as input a local coordinate, x̂,
and returns the corresponding velocity vector. The velocity is calculated by summing the
product of the local shapefunctions evaluated in x̂ and the associated solution coeffecients.

The implementation of the visualization function associated with the choice of basis
functions is shown below.

1 /**
2 * Grid function for the velocity field
3 **/
4 template<class Grid ,class Vector>
5 class RT0CubeVelocityFunction :
6 public Dune : : VTKWriter<typename Grid : : LeafGridView> : :VTKFunction {
7 public :
8 typedef typename Grid : : ctype ctype ;
9 typedef typename Grid : : template Codim<0>::Entity Entity ;

10 enum{dim=Grid : : dimension } ;
11

12 //Constructor taking the grid, and the velocity solution as input
13 RT0CubeVelocityFunction (const Grid& g , const Vector& v) : grid (g) , vel (v)

{}
14

15 //Number of components in each point
16 virtual int ncomps () const { return 3 ; }
17

18 //Evaluate component ’comp’ on the element ’e’ of the velocityfield in
19 //point ’xi’ (given in local coordinates)
20 virtual double evaluate (int comp , const Entity& e ,
21 const Dune : : FieldVector<ctype ,dim>& xi) const {
22 double value=0;
23 const int elementIndex=grid . leafIndexSet () . index (e) ;
24

25 //Contribution from the two shape functions which are non-zero
26 value+=vel [6∗elementIndex+2∗comp]∗(1−xi [comp]) ;
27 value+=vel [6∗elementIndex+2∗comp+1]∗xi [comp] ;
28

29 return value ;
30 }
31

32 virtual std : : string name () const {
33 return "velocity" ;
34 }
35

36 virtual ˜RT0CubeVelocityFunction () {}
37

38 private :
39 const Grid& grid ;
40 const Vector& vel ;
41 } ;

6.3. INSTALLATION AND USAGE 29

6.2.4 Solving the System of Equations

In the implementation it is chosen to use the conjugate gradient method for solving (5.18).
This is implemented in the dune-istl module. To achieve more rapid convergence, it
is used an algebraic multi grid (AMG) preconditioner on the system of equations. The
AMG preconditioner is also part of the dune-istl-module.

In solving PDEs numerically, the computational time is often dominated by the time
used to solve a linear system of equations. The choice of the best solver is problem
dependent, but algebraic multigrid methods are known to be efficient on systems arising
from elliptic PDEs [13]. Later in the thesis, the efficiency of this approach will be compared
with other solvers available.

Even with an efficient linear algebra solver as the combination CG and AMG, the total
computational time is dominated by the time used solving the system of equations.

6.3 Installation and Usage

The implementation is available at http://folk.ntnu.no/arne/upscaling.tar.
gz, licensed under the GPL license version 2 or later. The implementation is created
as a DUNE module and have dependencies to the DUNE core modules dune-common,
dune-grid and dune-istl. DUNE provides it’s own build-system, and the easiest
way to integrate with this is to create a DUNE module. The buildsystem is based on
autotools from GNU.

To configure and build the upscaling module, it is necessary to download and ex-
tract the upscaling module and the DUNE core modules4 of version 1.2 in the same
base directory. The result is the following directory structure:

base/

• dune-common-1.2

• dune-grid-1.2

• dune-istl-1.2

• upscaling

For high performance, it is recommended to have SuperLU5 installed. It is also strongly
recommended to have a newer compiler with template function optimizations, e.g. gcc-4.3
or newer. The configuration file, config.opts, for utilizing SuperLU and turning on
highest level of optimizations, looks like this

CONFIGURE FLAGS="CXXFLAGS=’-O3’ --with-superlu=/path/to/SuperLU
--with-superlu-lib=superlu.a"

For Mac OS X based system, the compiler flag ’-O3’ can be replaced by ’-fast’
for better performance.

4These can be downloaded from DUNE’s webpage: http://wwww.dune-project.org
5Implementation of LU-factorization for sparse systems. Used in AMG to solve the coarsest level’s

system of equations. http://crd.lbl.gov/˜xiaoye/SuperLU/

http://folk.ntnu.no/arne/upscaling.tar.gz
http://folk.ntnu.no/arne/upscaling.tar.gz
http://wwww.dune-project.org
http://crd.lbl.gov/~xiaoye/SuperLU/

30 CHAPTER 6. MIXED HYBRID FEM WITH CUBOID SHAPED ELEMENTS

All modules are configured and built by invoking the command from base
./dune-common-1.2/bin/dunecontrol --opts=config.opts all

The upscaling-executable file is now found in base/upscaling/src and has the
following syntax:
./upscaling eclipsefile [writeVTK=0]

The eclipsefile variable is the Eclipse file and the only keywords necessary are
SPECGRID, COORD and ZCORN specifying the grid, and PERMX specifying the permeability
field. The optional writeVTK variable is a boolean implemented as 0 and 1 whether to
export the solution for visualization in VTK-format or not. The output is written to the
file upscaling.vtk, which can be visualized with use of Paraview.

The input Eclipse file for the model shown in Figure 3.3 is listed in section A.1.

Chapter 7

Algebraic Multigrid (AMG)

Algebraic multigrid is used in solving the linear system of equations in this thesis. Alge-
braic multigrid methods are known to be an efficient technique to solve large systems of
linear equations arising from elliptic PDEs [13].

7.1 What is AMG?

The motivation is to solve the symmetric positive definite system,

Ax = b, where A ∈ RN×N and x, b ∈ RN ,

The idea of algebraic multigrid comes from the standard multigrid methods used in solving
PDEs. The development of multigrid methods started with a detailed analysis of classic
iterative methods for solving Ax = b, like the Jacobi and Gauss-Seidel method. These
methods tend to reduce the high frequency error components efficiently, while the low
frequency error components are reduced slowly. Instead of reducing the iteration error,
e(i) = x− x(i), they only smooth the error. They are often referred to as smoothers.

The error function e(i) can be expressed as a superposition of sine waves of different
wavelengths. Multigrid theory states that the smoother reduces well those components of
the error whose wavelength is short with respect to the grid width while it is unable to
reduce long wavelength components of the error. The iterative solver alone is therefore
unable to achieve rapid convergence.

For any multigrid method it is necessary to define a hierarchy of grids as illustrated
in Figure 7.1, transfer operators between the grid levels, a smoothing operator, coarse-
grid version of the fine-grid operator and a solver for the coarsest grid [14]. In standard
or geometric multigrid methods, the unknown variables xi are defined at known spatial
locations or grid points in a fine grid. A subset of the points is selected as the coarse grid,
and a subset of xi is used to represent the solution at the coarse grid.

For algebraic multigrid methods, the physical locations of the nodes in the grid are
unknown. We seek a subset of the variables xi to serve as the coarse-grid unknowns. The
grid points are defined to be the indices {1, 2, ..., N}. Having defined the grid points,
the connections within the grid are determined by the undirected adjacency graph of the
matrix A. A can be represented as a graph with N nodes where an edge between node i
and j represents a non-zero aij or aji. The grid information in algebraic multigrid methods
are entirely determined by the matrix A.

31

32 CHAPTER 7. ALGEBRAIC MULTIGRID (AMG)

ProlongationRestriction

Level 3,
Coarse grid

Level 2

Level 1,
Fine grid

Figure 7.1: The different grid levels and interpretation of the prolongation and restriction
operators on a 2D regular grid.

Multigrid methods only use a number of iterations of the smoother that is sufficient
to reduce the short wavelength components. Since a wavelength that is long with respect
to the fine grid is short with respect to some coarser grid, traversal of the grid hierarchy
and application of the smoother reduces all components of the error function. To achieve
convergence, it is required that an exact solution is computed at the coarsest grid level.
The number of unknowns at the coarsest level is usually a small number, and a direct
solver like complete LU-factorization can be used.

The AMG method was intended to be used as a standalone iterative solver, but AMG
also works as a good preconditioner. The solver used in this thesis is the conjugate gradient
method, with DUNE’s implementation of algebraic multigrid based on aggregation as pre-
conditioner. This approach is compared with the SAMG solver developed by Fraunhofer
SCAI. The largest algorithmic difference is that DUNE is aggregation based while SAMG
is not. Aggregation means that the fine scale variables interpolates from just one coarse
scale variable, even though the fine scale variables are connected with several coarse scale
variables [13]. The advantage is less memory usage at the cost of reduced performance.
This behaviour is actually seen in the results section. The memory usage of the DUNE
solver is about half of the SAMG solver, but the SAMG solver is faster.

7.2 Two-Level Grid Cycle

This section describes a two-level grid cycle in a multigrid method. The algebraic multigrid
differs from geometric multigrid methods in the interpretation of the “grid”, and how the
grid transfer operators are defined. The terminology used describing the methods is the
same.

Assume that we want to solve the Poisson equation −∆u = f discretized on the unit
square with the five point stencil. Then the eigenvalues of the discrete Laplace operator

7.2. TWO-LEVEL GRID CYCLE 33

A are known. The systems of equations given on the fine grid and coarse scale are given
by,

Au = b and Acuc = bc,

respectively. uc may be computed, and prolongated onto the fine grid:

u(1) = Puc,

where P is the prolongation operator. u(1) can now be used as an initial approximation
for the fine scale system, i.e. the problem can be formulated as

A(u(1) + e) = b, or Ae = b−APA−1
c bc = r(1).

This process can be repeated by restricting the residual to the coarse grid,

rc = Rr(1),

where R is the restriction operator. Then finding the correction on the coarse grid,

e(2)c = A−1
c rc,

and prolongate the coarse-grid correction onto the fine grid

e(2) = Pe(2)c

u(2) = u(1) + e(2).
(7.1)

This is called the coarse grid correction step of the multigrid algorithm.
To see if this works, let’s assume that bc = Rb. One has that

u− u(1) = u− PA−1
c Rb

= (I − PA−1
c RA)u

u− u(2) = (I − PA−1
c RA)2u,

(7.2)

and so on. Similary for the residual,

r(1) = b−APA−1
c Rb

= (I −APA−1
c R)r(0).

(7.3)

It is possible to show that

ρ(I −APA−1
c R) = ρ(I − PA−1

c RA) ≥ 1,

i.e. the correction will not converge if applied many times. The solution for this is to
apply a smoother. This will smoothen the oscillatory error u− u(1) and the residual r(1).
A simple iterative method that smooths the high frequency components of the error, can
be formulated as

u(1) = u(0) +M−1r(0).

For example, Gauss-Seidel and Successive Over Relaxation (SOR) work as smoothers. The
error estimates for the iterative methods becomes

u− u(1) = (I −M−1A)(u− u(0))

r(1) = (I −AM−1)r(0).
(7.4)

This is not efficient alone, since ρ(I −M−1A) ≈ 1, so it converges slowly, but the high-
frequency components are reduced efficiently in few iterations. The steps in one two-level
grid cycle are

34 CHAPTER 7. ALGEBRAIC MULTIGRID (AMG)

• Presmooth: Reduce the high frequency error coefficients on the fine scale grid

• Calculate the coarse grid correction, ec.

• Prolongate the coarse grid correction onto the fine grid

• Postsmooth: Reduce the high frequency error coefficients on the fine scale grid

According to [15] it can be shown that ρ
(
(I −M−1A)(I − PA−1

c RA)(I −M−1A)
)
� 1.

This is the spectral radius of the iteration matrix for the multigrid cycle, and the result
tells that the multigrid method reduces all error components efficiently.

The two-level method can easily be extended to several levels, by recursively calling
the two-level method instead of the exact solver at the coarsest level. It is often desirable
to have a sufficiently low number of unknowns on the coarsest level, since this is solved
with use of an exact solver. Solving the coarsest system exact can be expensive if it is too
large.

In [13] it is emphasised that the speed of convergence strongly depends on the interplay
between relaxation (smoothening) and interpolation (prolongation and restriction).

This section says nothing about how the prolongation and restriction operator should
be constructed. This is described in detail in [13].

Chapter 8

Numerical Results

This chapter contains discussion regarding verification and efficiency of the implementa-
tions. The result from a permeability upscaling of a core sample is also discussed.

8.1 Verification of the Implementations

The implementations were tested on the simplest problem possible of this type. This equals
a constant permeability field K equal to 1 in the domain Ω. The problem considered is

v = −∇p in Ω = (0, 1)3,
∇ · v = 0 in Ω,

p = 0 on ΓD0 = {z| z = 0},
p = 1 on ΓD1 = {z| z = 1},

v · n = 0 on ΓN = ∂Ω \ {ΓD0 ∩ ΓD1}.

(8.1)

It is easy to verify that a solution to (8.1) is

p(x, y, z) = z and v(x, y, z) = [0, 0, −1]T .

This test worked as a first hand check whether the system of equations were set up
and solved correctly. A numerical solution is shown in Figure 8.1. The pressure looks to
be independent of the x and y-coordinates as expected. The analytical solution to the test
problem is linear and it is not possible to use this example to analyze the convergence rate
of this mixed finite element method since the numerical solution is expected to be exact
to the magnitude of machine precision.

The maximum componentwise error is calculated as

‖p− pexact‖∞ = max
k=1, ..., N

|pk − pexact(centroid(Tk))| = max
k=1, ..., N

|pk − centroidz(Tk)|.

This method is expected to give exact solution on a simple problem like this. With
N = 6 · 23 = 24 elements, the maximum componentwise error is in the range of the
convergence criterion (error of magnitude 10−9).

35

36 CHAPTER 8. NUMERICAL RESULTS

Figure 8.1: The solution to (8.1). The coloring is the pressure p, and the arrows denote the
velocity field v = −∇p. Ω is discretized into 6 · 103 tetrahedra.

8.1.1 Error Analysis

The cuboid implementation is tested on a synthetic case. The solution to the problem

v = −K(x)∇p in Ω = (0, 1)3,
∇ · v = 0 in Ω,

p = 0 on ΓD0 = {z| z = 0},
p = 1 on ΓD1 = {z| z = 1},

v · n = 0 on ΓN = ∂Ω \ {ΓD0 ∩ ΓD1}.

(8.2)

is found on a fine grid with grid size h. The permeability field, K, is defined to be

K(x, y, z) =

{
10 for |x− 0.5| ≥ 0.3 or |y − 0.5| ≥ 0.3
1 elsewhere.

(8.3)

The permeability field can be described as a low-perm cuboid inscribed in a high-perm
medium. See Figure 8.2.

The solution corresponding to the fine scale grid is used as an approximation of the
exact solution. A numerical solution to (8.2) is shown in Figure 8.2.

According to error analysis in [10], assuming a constant permeability field, the error
of the mixed method,

‖v − vh‖Hdiv(Ω) + ‖p− ph‖L2(Ω) ≤ Ch‖v‖H2(Ω).

The convergence rate of the error can be approximated by finding the solution of grids

8.1. VERIFICATION OF THE IMPLEMENTATIONS 37

Figure 8.2: The permeability field and the numerical solution to (8.2), represented by stream-
lines calculated in Paraview. The asymmetry of the streamlines is from Paraview and not the
numerical solution.

with grid size H > h. The error in the pressure variable can be approximated by

‖p− pH‖L2(Ω) = ‖p− ph + ph − pH‖L2(Ω)

≤ ‖ph − pH‖L2(Ω) + ‖p− ph‖L2(Ω)︸ ︷︷ ︸
O(h)

≈ ‖ph − pH‖L2(Ω) =

(
Nh∑
k=1

h3
(
(ph)k − (P h

HpH)k

)2
)1/2

,

(8.4)

where P h
H prolongates the solution vector from the grid with NH elements to a solution

vector of length Nh.
The error in the pressure variable was calculated as described in (8.4) for different

mesh sizes H. The solution on a uniform grid with Nh = (160)3 = 4 096 000 elements was
used as an approximation to the exact solutions. The error is shown in Figure 8.4. Based
on linear regression on the following regression model,

log ‖ph − pH‖L2(Ω) = C + q logH,

the order of convergence, q, was estimated to 1.06. This result coincides with the theoret-
ical bound for the error.

38 CHAPTER 8. NUMERICAL RESULTS

A similar error estimate can be calculated for the velocity field,

‖v − vH‖2
Hdiv(Ω) ≈

∫
Ω
|vh(x)− vH(x)|2 + (div(vh(x)− vH(x)))2 dΩ

=
Nh∑
k=1

∫
Tk

∣∣∣vk
h(x)− vk

H(x)
∣∣∣2 +

(
div(vk

h(x)− vk
H(x))

)2

︸ ︷︷ ︸
ek(x)

dΩ,

where vh and vH denotes the approximate velocity solution on grids with element sizes h
and H respectively and h < H. The error is calculated by defining an error function on
each fine scale element Tk, ek(x), and adding up the contributions from all elements in the
fine scale grid.

The integral of the error function, ek(x), is calculated by applying a numerical quadra-
ture (Gauss-Legendre) with a sufficient high order such that the quadrature error becomes
neglectable compared with the discretization error. The sets of the quadrature points,
{ξα}m

α=1, and the corresponding weights, {wα}m
α=1, defines the quadrature rule. The inte-

gral can be approximated by∫
Tk

ek(x) dΩ =
∫

bT ek(gk(x̂))︸ ︷︷ ︸
êk(x̂)

|J(ξ)| dξ

≈ h3
m∑

α=1

wαê
k(ξα)

where gk(·) is the local-to-global map and |J(·)| denotes the determinant of the Jacobian
of the inverse map. This is necessary due to transformation of the variables in the integral.
See Figure 8.3. For the simple grid in this analysis, |J(ξ)| = h3 for all elements.

The error estimates for different grid sizes is shown in Figure 8.4. Regression estimates
the convergence rate for the velocity to be O(h0.83). This is a bit slower than the expected
theoretical bound which is O(h). A reason for the slower convergence rate is most likely
related to the inhomogeneous permeability field. The permeability field has some jumps
which could lead to singularities in the solution and affect the convergence rate.

In Figure 8.5 a cross-section of the spatial error distribution is shown. There are large
error estimates at the corners of the inscribed low-perm cuboid. By local refinement of
the grid in these areas, the convergence rate may increase.

x

y

pg(p)

Ek

g

ref

1

1

Figure 8.3: Map, g, from the reference element �ref to the element Ek.

8.1. VERIFICATION OF THE IMPLEMENTATIONS 39

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

10
1

Grid size, h

||
E

rr
o
r|

|

Observed error in velocity

Regression, error=h
0.83

Observed error in pressure

Regression, error=h
1.06

Figure 8.4: The observed error estimates vs. the grid size. The observed errors in the velocity
variable, ‖v − vh‖Hdiv(Ω) is denoted by red dots. Regression estimates the error to be pro-

portional to h0.83. The error in the pressure variable, ‖p− ph‖L2(Ω), is denoted by blue dots.
Regression estimates the error to be proportional to h1.06.

!

"

#

#

$ $%& $%' $%($%) $%* $%+ $%, $%- $%. &
$

$%&

$%'

$%(

$%)

$%*

$%+

$%,

$%-

$%.

&

$

$%&

$%'

$%(

$%)

$%*

$%+

$%,

$%-

$%.

&
!#&$

!+

Figure 8.5: Error estimate of the velocity variable in a cross-section (y = 0.5) of the model
shown in Figure 8.2. The error at the corners of the inscribed low-perm cuboid is very large
compared with the error in the rest of the domain.

40 CHAPTER 8. NUMERICAL RESULTS

8.1.2 Tetrahedron Implementation

The implementations based on tetrahedra shaped elements described in chapter 4 and 5
should be independent of the geometry. In these implementations the problem must be
specified in terms of boundary conditions and the permeability field in the domain.

A pipe shaped domain with bends and a homogeneous permeability field is used to
verify that the implementation is flexible with respect to the geometry. The difference in
pressure between the two end surfaces of the pipe is equal to one. The solution of the
problem can be shown in Figure 8.6. The model was downloaded from INRIA’s 3D mesh
database6 and can only be used for research or non-commercial use.

The solution shows that the velocity is larger at the inner curves. This behaviour can
be explained by a larger pressure drop pr. distance in these areas. See Figure 8.7. By
Darcy’s law the velocity is proportional to the gradient of the pressure, and explains the
higher velocities at the inner curves.

The correctness of the implementation is verified by calculating the upscaled perme-
ability tensor on the two-layered model with 8 cuboids shown in Figure 3.3. Every cuboid
is divided into 6 tetrahedra. The upscaled permeability tensor calculated by this imple-
mentation is exactly the same as the analytical solution found in section 3.2.

8.1.3 Cuboid Implementation

The correctness of the implementation based on cuboid shaped elements is verified by
the error analysis in section 8.1.1, and by comparing the upscaled permeability tensor of a
core sample with the tensor found with Sintef’s implementation. The two implementations
gives the exact same permeability tensor and the implementation is assumed to be correctly
implemented.

6INRIA GAMMA’s 3D mesh database, http://www-c.inria.fr/Eric.Saltel/

http://www-c.inria.fr/Eric.Saltel/

8.1. VERIFICATION OF THE IMPLEMENTATIONS 41

Figure 8.6: The flow problem solved on a more complex grid based on tetrahedra. The
boundary conditions are p = 1 on the end surface to the left and p = 0 on the end surface to
the right. On the rest of the boundary, the no-flow condition is applied.

Figure 8.7: The pressure through a bend on the model above. This together with Darcy’s law
explains why the velocity is higher through an inner curve.

42 CHAPTER 8. NUMERICAL RESULTS

8.2 Upscaled Permeability of a Core Sample

The implementation based on cuboid shaped elements was used on a model with per-
meability data coming from a laboratory study of a core sample. The dimension of the
homogeneous grid is 100 × 100 × 11 blocks. The permeability field and the numerical
solution is shown in Figure 8.8. The solution shows that the flow goes through the high
permeable areas of the plug in the direction of the pressure drop, as expected. The figure
is generated in Paraview.

Figure 8.8: The permeability field and the velocity solution of (4.2) with fixed boundary
conditions and pressure drop in the negative z-direction.

Fixed boundary conditions are applied, i.e. no flow through other faces than the faces
with normal vector parallel to the pressure drop direction. This yields a diagonal upscaled
permeability tensor,

K̃ =

 3.02162 · 10−8 0 0
0 3.02103 · 10−8 0
0 0 114.738

 .
The upscaled horizontal permeabilities are of magnitude 10−8. This is because the cylin-
drical shaped plug is inscribed in a cuboid shaped box. All elements outside the cylinder
have permeability set to 10−9 which in practice means that no flow goes through this
area. This is the exact same result as the upscaling code developed by Sintef gives. Their

8.3. EFFICIENCY 43

implementation utilizes a mimetic finite difference method which is more flexible with the
shape of the elements. On a regular grid the mimetic finite difference method and the
mixed finite element with lowest order Raviart-Thomas elements are equivalent [7].

8.3 Efficiency

The implementation based on cuboid shaped elements generate system of equations of
same size as the implementation from Sintef. Since the generated problem is of the same
size, it is possible to compare results, time usage and memory requirement of the solvers.

Making the code efficient has been a long process. The plug showed in Figure 8.8 with
110 000 elements and 322 200 unknowns (pressure at the interior faces) was used as a
test case. The run-time of this program was initially several hundreds times slower than
the program implemented by Sintef. First of all the cuboid shaped elements needed to
be implemented so the system of equations could be comparable. The implementation
based on tetrahedra shaped elements, divides each cuboid in the model into tetrahedra,
and the system matrix increases accordingly. By implementing cuboid shaped elements,
the problem size became identical.

The second dramatic improvement was to abandon the matrix-matrix multiplication
approach used in creating the Schur-complement reduction matrix (discussed in section
5.3.3). These improvements made the implementation approx. 4 times slower than the
Sintef implementation. From this point, the computational time is dominated by the time
used in the linear solver, and not by the time used to transform the system of equations.
Functionality for solving the linear system of equations is provided within DUNE.

The source code and the results of a time measurement was posted on DUNE’s mail-
inglist. Some of the developers of DUNE looked into the code and made proposals of
fine-tuning the setup of the AMG preconditioner for this problem. This reduced the solu-
tion time to a factor of around 2.3 compared with SAMG. The best proposal was to use
the direct solver, SuperLU, to solve the system on the coarsest level.

The latest improvement was to use a newer compiler than gcc-3.4.6. The later
versions of gcc apply more optimization for template parameterized functions and this
benefit the heavily templatized DUNE framework. The final implementation uses now
58% longer time than SAMG. The different timing results can be showed in Table 8.1.

From the table, it can be seen that just by upgrading the compiler, it is possible to
reduce the computation time by approx 30%(!) for all problem sizes. For the largest
problem size, the time is reduced by over 50%. This is explained by new optimizations
of template parametrized functions and classes introduced in the later gcc compilers.
These have a great impact on heavily templated code such as code based on DUNE. The
SAMG solver is implemented in Fortran, and requires the matrix and right hand side to
be in a specific data structure. Most likely it is not possible to optimize the SAMG solver
considerably by development of newer compilers, since the information about the data
representation of the matrices and vectors could be (and probably was) exploited when
the solver was developed.

It is also possible to see that the AMG approach in DUNE uses more iterations than
the SAMG solver, and the number seem to grow with the problem size. It may be possible
to tune the parameters in the AMG preconditioner for this problem to reduce the number
of iterations, but there are algorithmic differences between the methods. According to
the developers of DUNE, the iteration count is expected to increase with the problem size
for this type of problem. A great advantage with the implementation based on DUNE

44 CHAPTER 8. NUMERICAL RESULTS

Table 8.1: Different timing results depending on which program used and problem size. Setup
denotes the time used to set up the grid hierarchy.

Dune, gcc-3.4.6 Dune, gcc-4.3.3 SAMG
Setup Total Iter. Setup Total Iter. Setup Total Cycles

N [sec] [sec] [-] [sec] [sec] [-] [sec] [sec] [-]
13 240 0.25 0.53 15 0.14 0.34 15 0.12 0.36 17
29 460 0.60 1.33 16 0.32 1.00 16 0.28 0.78 17
81 100 1.73 4.21 20 0.95 2.68 20 0.88 2.27 17

116 520 2.52 6.57 23 1.41 4.43 23 1.25 3.30 17
206 560 4.51 13.04 26 2.54 8.91 26 2.34 6.09 17
261 180 5.73 16.84 27 3.23 11.31 27 3.05 7.78 17
322 200 7.12 21.46 29 4.00 15.13 29 3.78 9.55 17

3 042 424 75.61 418.23 50 38.91 208.92 50 39.72 100.72 18

is that the memory usage is only 50% of Sintef’s implementation for the largest problem
investigated (approx. 3 · 106 unknowns). The memory usage in Sintef’s implementation is
dominated by the SAMG solver.

The stop criterion used in these two linear solvers are not exactly the same, since the
solvers are not based on identical alghorithms. The timing results is not directly compa-
rable, since one of the solver may solve the system with higher accuracy than the other.
What actually can be seen in Figure 8.9 is that the DUNE solver has higher complexity
than the SAMG solver. One explanation for this, is that the number of iterations used by
the conjugate gradient method increases with the problem size. The SAMG solver uses
one extra iteration when the number of unknowns increases from 322 200 to 3 042 424, a
factor of almost 10, while CG uses 21 extra iterations for the same increase in number of
unknowns.

8.3.1 Comparing DUNE’s AMG with other Alternatives

The system of equations from the synthetic case discussed in section 8.1.1 was used to
compare the efficiency of DUNE’s AMG preconditioner with other alternatives. The result
of this comparison can be seen in Figure 8.10. The direct solver, SuperLU has a higher
complexity than the iterative methods, and is also verified by this analysis. The SuperLU
solver is not suitable for large problems, but the advantage with the direct solver is that
it is not dependent of a symmetric, positive-definite matrix as the conjugate gradient
method.

The two preconditioned conjugate gradient solvers with respectively symmetric succes-
sive over-relaxation and incomplete LU factorization used as preconditioner have compa-
rable performance, but the AMG solver accelerated with the conjugate gradient method is
superior to the other solvers. For the largest problem investigated with 1.27·106 unknowns
it uses 33 seconds, while the next best alternative, CG with ILU0 uses 95 seconds, and
the difference increase accordingly with the problem size.

8.3. EFFICIENCY 45

10
4

10
5

10
6

10
7

10
−1

10
0

10
1

10
2

10
3

unknowns, N

ti
m

e
 i
n

 s
o

lv
e

r
[s

e
c
s
]

Dune, gcc−3.4.6

Dune, gcc−4.3.3

SAMG

Figure 8.9: Time used by the solver in the three cases with respect to the problem size

0 2 4 6 8 10 12 14

x 10
5

0

20

40

60

80

100

120

140

160

unknowns, N

ti
m

e
 u

s
e

d
 i
n

 s
o

lv
e

r
[s

e
c
s
]

SuperLU

CG with SSOR

CG with ILU0

CG with AMG

Figure 8.10: Time used by different linear solvers on the same problems. The conjugate
gradient method with AMG as preconditioning is superior to the other alternatives investigated.

46 CHAPTER 8. NUMERICAL RESULTS

8.3.2 Analysis of Time Usage in the Cuboid Implementation

The time spent in the most time-consuming parts of the cuboid implementation is mea-
sured. The result of this is shown in Figure 8.11. Many parts of the implementation seem
to scale almost perfectly with respect to the problem size. Perfect scaling means a linear
relation between computation time and the number of elements.

The time used in the CG solver seem not to scale perfectly. The conjugate gradient
method has the highest complexity, and also dominate the time usage in total. To achieve
higher performance in total, this part should be looked into first.

The figure also shows that the calculation of the upscaled permeability is a very cheap
operation, once the velocity solution is found.

10
3

10
4

10
5

10
6

10
−7

10
−6

10
−5

10
−4

10
−3

elements, N

ti
m

e
 p

e
r

e
le

m
e

n
t

[s
e

c
]

Total time

Time in CG

Setup of AMG−hierarchy

Schur−complement reduction

Assembly of the matrix

Init. the matrix blocks

Reading Eclipse grid

Perm. calculations

Figure 8.11: Time usage per element of different parts in the code. This figure indicates the
scalability of the implementation.

8.4 Comments

The mixed and mixed hybrid finite element methods based on tetrahedron shaped elements
give identical solutions, but the first method generate a linear system of equations which
is too expensive to solve for large problems. The only difference between the two mixed
hybrid methods is the shape of the elements used.

The method based on cuboid shaped elements is the most applicable for StatoilHydro
since the Eclipse grid files used as input are uniform grids of cuboids. This grid type is
a special case of the more general and widely used corner point grid. This is the reason
why this implementation is analyzed thoroughly in the previous sections.

8.4. COMMENTS 47

In the section where the efficiency is discussed, it is shown that the program developed
in this thesis has lower performance than the program developed by Sintef. The reason
for this is mainly the difference in the linear solver used. The solver used in the cuboid
implementation has higher complexity than SAMG which was used in the other imple-
mentation. By tuning the parameters in the AMG preconditioner, it will probably be
possible to achieve higher performance. Further development of the gcc compiler could
also improve the performance by more optimizations aimed for the relative new template
programming technique.

The DUNE framework is also in development, and have a great potential to be com-
petitive with proprietary solvers. The users of DUNE can supply the community with
experiences and results, and are important for the further development of the framework.

48 CHAPTER 8. NUMERICAL RESULTS

Chapter 9

Conclusion

There has been a rapid development in the DUNE framework within the last year. There
are large changes in the core modules, and especially within the grid module. Several
external modules based on the DUNE core modules are being developed. The result of
this will reduce the complexity of implementing solvers such as the ones developed in this
thesis.

The elliptic PDE discussed in chapter 3 was solved with three different implemen-
tations. The mixed method described in chapter 4 has the great disadvantage that the
generated system of equations is not positive definite, and restricts the number of linear
solvers which can be used. The poor scalability of this implementation, was the motivation
for implementing the mixed hybrid method described in chapter 5. From the first working
version of the implementation of the hybrid method to the final version, there has been a
dramatic improvement in terms of performance. Since the software is GPL licensed, there
are also possibilities for others to improve the implementation.

The existing program for permeability upscaling have been a great resource for the
code development. The other implementation has worked as a measure in performance,
and a goal to reach for.

The efficiency of the algebraic multigrid preconditioner in DUNE is superior compared
to the other alternatives investigated. Compared with the proprietary SAMG solver, the
performance is comparable for small problem sizes, while SAMG outperforms DUNE’s
AMG for larger problem sizes. It could be interesting to know if this is mostly due to
more advanced optimizations in SAMG or if it is only related to the algorithmic difference
of the two AMG solvers.

A great advantage with the implementation based on DUNE is that the memory usage
is only 50% of Sintef’s implementation for the largest problem investigated (approx. 3 ·106

unknowns). This can be of importance when the problem size is very large. One can
imagine that Sintef’s implementation could fail to run on a single machine due to the
memory requirement, while the implementation based on DUNE runs, but uses longer
time.

The open-source software for permeability upscaling based on DUNE has a potential to
replace Sintef’s implementation. The advantages are lower memory requirement and the
GPL license. Currently, the greatest disadvantages are no support for more general Eclipse
grids and slower performance. There is a great possibility for an increase in performance
as a result of further development of the DUNE framework and the g++-compiler. The
software developed in this thesis is open-source and makes it possible for everyone to
improve and add functionality to the software.

49

50 CHAPTER 9. CONCLUSION

9.1 Suggestions for Further Work

I suggest the following should be looked into:

• Support for more general Eclipse grids, and not just structured cuboid grids.

• Support for linear and periodic boundary conditions.

• Evaluate if the code should be based on the dune-pdelab module.

Bibliography

[1] GNU. General Public License, http://www.gnu.org/licenses/gpl.html.

[2] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber,
M. Ohlberger, and O. Sander. A Generic Grid Interface for Parallel and Adaptive
Scientific Computing. Part II: Implementation and Tests in DUNE. Submitted to
Computing.

[3] The Visualization Toolkit. Homepage, http://www.vtk.org/.

[4] Wikipedia. Permeability, http://en.wikipedia.org/wiki/Permeability_
(earth_sciences).

[5] Creative Commons. Attribution-Share Alike License, http://creativecommons.
org/licenses/by-sa/2.5/.

[6] Dietrich Braess. Finite elements. Theory, fast solvers, and applications in solid me-
chanics. Cambridge University Press, 2007.

[7] SINTEF. Single-phase upscaling module for SBED/XMODEL. Technical report,
SINTEF, 2006.

[8] Ricarcdo G. Durán. Mixed finite element methods. In Lecture Notes in Mathematics,
Mixed Finite Elements, Compatibility Conditions, and Applications. Springer, 2008.

[9] C. Bahriawati and C. Carstensen. Three MATLAB implementations of the lowest-
order Raviart-Thomas MFEM with a posteriori error control. Computational Methods
in Applied Mathematics, 5:333–361, 2005.

[10] Franco Brezzi and Michael Frotin. Mixed and Hybrid Finite Element Methods.
Springer Verlag, 1999.

[11] Peter Bastian. dune-pdelab - Howto.

[12] DUNE. Documentation, http://www.dune-project.org/doc/doxygen/
html/.

[13] K. Stüben. A review of algebraic multigrid. Journal of Computational and Applied
Mathematics, 2001.

[14] William K. Briggs, Van Emden Henson, and Steve F. McCormick. A Multigrid Tu-
torial. –2nd. edition. SIAM, 2000.

[15] Adrian C. Muresan and Yvan Notay. Analysis of aggregation-based multigrid. SIAM
Journal on Scientific Computing, 30(2):1082–1103, 2008.

51

http://www.gnu.org/licenses/gpl.html
http://www.vtk.org/
http://en.wikipedia.org/wiki/Permeability_(earth_sciences)
http://en.wikipedia.org/wiki/Permeability_(earth_sciences)
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://www.dune-project.org/doc/doxygen/html/
http://www.dune-project.org/doc/doxygen/html/

52 BIBLIOGRAPHY

Appendix A

A.1 Two Layered Eclipse Model

The two layered model shown in Figure 3.3 consisting of eight cubes with right angles in
Eclipse grid format:
SPECGRID
2 2 2 1 F /

COORD
0.000 0.000 0.000 0.000 0.000 1.000
0.500 0.000 0.000 0.500 0.000 1.000
1.000 0.000 0.000 1.000 0.000 1.000
0.000 0.500 0.000 0.000 0.500 1.000
0.500 0.500 0.000 0.500 0.500 1.000
1.000 0.500 0.000 1.000 0.500 1.000
0.000 1.000 0.000 0.000 1.000 1.000
0.500 1.000 0.000 0.500 1.000 1.000
1.000 1.000 0.000 1.000 1.000 1.000
/

ZCORN
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.500 0.500
0.500 0.500 0.500 0.500 0.500 0.500
0.500 0.500 0.500 0.500 0.500 0.500
0.500 0.500 0.500 0.500 0.500 0.500
0.500 0.500 0.500 0.500 0.500 0.500
0.500 0.500 0.500 0.500 0.500 0.500
1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000
/

ACTNUM
1 1 1 1 1 1 1 1 /

PERMX
0.01 0.01 0.01 0.01 4 4 4 4 /

PORO
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 /

SATNUM
1 1 1 1 2 2 2 2 /

53

54 APPENDIX A. APPENDIX

A.2 Code Listing

This section is a code listing for the most important functions in the implementation of
permeability upscaling on cuboid grids. For a simple code structure, see Figure 5.1.

The code is available at http://folk.ntnu.no/arne/upscaling.tar.gz. See
section 6.3 for installation instructions.

A.2.1 Main Program

This is the file where the main function is located.
1 /**
2 * upscaling
3 *
4 **
5 *
6 * Software for calculating upscaled permeability tensor using fixed
7 * boundary conditions on a homogeneous cuboid grid in the Eclipse grid
8 * format
9 *

10 * Copyright Arne Rekdal, 2009
11 *
12 **
13 *
14 * upscaling is free software: you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation, either version 3 of the License, or
17 * (at your option) any later version.
18 *
19 * upscaling is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with upscaling. If not, see <http://www.gnu.org/licenses/>.
26 *
27 ***/
28

29 #ifdef HAVE CONFIG H
30 # include "config.h"
31 #endif
32

33 #include <iostream>
34

35 //DUNE includes
36 #include<dune/common/mpihelper . hh>
37 #include<dune/common/ except i on s . hh>
38 #include<dune/common/ timer . hh>
39 #include<dune/ g r id / i o / f i l e /vtk/ vtkwr i t e r . hh>
40 #include<dune/ g r id / s g r i d . hh>
41 #include<dune/ i s t l / bvector . hh>
42 #include<dune/ i s t l / i o . hh>
43 #include<dune/ i s t l / s o l v e r s . hh>
44 #include<dune/common/ f v e c t o r . hh>
45 #include<dune/ i s t l /paamg/amg . hh>
46 #include<dune/ i s t l /paamg/ p in fo . hh>
47

48 //Own header includes
49 #include"EclipseGridParser.h"
50 #include"eclipsegridinfo.h"
51 #include"rt0cube.h"
52

53 /**
54 * PROBLEM SPECIFICATION
55 ***/

http://folk.ntnu.no/arne/upscaling.tar.gz

A.2. CODE LISTING 55

56 template<class G , typename RT>
57 class FixedBC{
58 typedef typename G : : template Codim<1>::Entity FaceEntity ;
59 enum {dim=G : : dimension } ;
60 typedef Dune : : FieldVector<double , dim> CornerVector ;
61 typedef Dune : : FieldVector<double , dim> IntVector ;
62

63 public :
64 //Constructor for the fixed BC problem
65 FixedBC (int flowdimension_ , const CornerVector& corner_ ,
66 const std : : vector<double>& k_)
67 : flowdimension (flowdimension_) , corner (corner_) , k (k_) { }
68

69 //Boolean function whether the face is on the Dirichlet boundary
70 bool onDirichletBoundary (const FaceEntity& e) const {
71 //Extracts the important component of the face’s centroid
72 const double meanDim=
73 e . geometry () . global (Dune : : FieldVector<double , 2 > (0 .25)) [flowdimension] ;
74

75 return (fabs (meanDim−corner [flowdimension]) < 1e−10 | |
76 fabs (meanDim) < 1e−10) ;
77 }
78

79 //Function returning the Dirichlet B.C. on the boundary face
80 RT dirichletValue (const FaceEntity& e) {
81 const double meanDim=
82 e . geometry () . global (Dune : : FieldVector<double , 2 > (0 .25)) [flowdimension] ;
83

84 //Return 1 if the face is located on the inhomogeneous Dirichlet boundary
85 return (RT) (fabs (meanDim) < 1e−10) ;
86 }
87

88 //Function returning the inverse permeability in the element
89 RT kInverse (int index) const{ return 1 .0/k [index] ; }
90

91 //Returns in which coordinate axis it is imposed a pressure drop
92 int flowDimension () const { return flowdimension ; }
93

94 //Returns the second corner of the grid (first is in the origin)
95 const CornerVector& getCorner () const { return corner ; }
96

97 private :
98 const int flowdimension ;
99 const CornerVector& corner ;

100 const std : : vector<double> k ;
101 } ;
102

103

104

105 /**
106 *
107 * MAIN METHOD
108 *
109 ***/
110

111 int main (int argc , char∗∗ argv)
112 {
113 const int dim=3;
114

115 //General type definitions
116 typedef double RT ;
117 typedef Dune : : SGrid<dim , dim> GridType ;
118 typedef GridType : : Codim<0>::LeafIterator ElementIterator ;
119 typedef Dune : : BlockVector< Dune : : FieldVector<int ,1> > IntVector ;
120 typedef FixedBC<GridType , RT> Problem ;
121 typedef RT0CubeAssembler<GridType , Problem , RT> Assembler ;
122 typedef Assembler : : BCRSMatrix Matrix ;
123 typedef Assembler : : Vector Vector ;

56 APPENDIX A. APPENDIX

124

125 //AMG specific type definitions
126 typedef Dune : : MatrixAdapter<Matrix , Vector , Vector> Operator ;
127 typedef Dune : : Amg : : CoarsenCriterion
128 <Dune : : Amg : : UnSymmetricCriterion<Matrix , Dune : : Amg : : FirstDiagonal> > Criterion ;
129 typedef Dune : : SeqILU0<Matrix , Vector , Vector> Smoother ;
130 typedef Dune : : Amg : : SmootherTraits<Smoother> : :Arguments SmootherArgs ;
131 typedef Dune : : Amg : : AMG<Operator , Vector , Smoother> AMG ;
132

133 try{
134 //Input check
135 bool writeOutput=false ;
136 double relax=1;
137 if (argc<2){
138 std : : cout << "No Eclipse grid-file specified. Aborting." << std : : endl ;
139 return (1) ;
140 }
141 if (argc>2) writeOutput=atoi (argv [2]) ;
142 if (argc>3) relax=atof (argv [3]) ;
143

144 //Parsing Eclipse file
145 std : : cout << "Running upscaling on <" << argv [1] << ">." << std : : endl ;
146 char∗ eclipsefile=argv [1] ;
147 EclipseGridParser gp (eclipsefile) ;
148 EclipseGridInfo eclgridinfo (gp) ;
149

150 //Grid creation
151 const Dune : : FieldVector<GridType : : ctype , dim> L (0) ;
152 const Dune : : FieldVector<GridType : : ctype , dim>& H=eclgridinfo . getCorner () ;
153 const Dune : : FieldVector<int , dim>& N=eclgridinfo . getGridSize () ;
154 Dune : : FieldVector<bool , dim> periodic (false) ;
155 GridType grid (N , L , H) ;
156

157 //Solving three flow problems, one per coordinate axis
158 for (int flowdimension=0; flowdimension<dim ; flowdimension++){
159

160 //Creating the problem and assembles the system of equations
161 Problem problem (flowdimension , H , gp . getFloatingPointValue ("PERMX")) ;
162 Assembler assembler (grid , problem) ;
163 assembler . assemble () ;
164 assembler . schurReduction () ;
165

166 //Extracts the system of equations
167 Matrix& S=assembler . getMatrixS () ;
168 Vector& r=assembler . getRHSVector () ;
169

170 //Setting up the AMG preconditioner
171 Operator op (S) ;
172 Vector pi (r) ;
173 SmootherArgs smootherArgs ;
174 smootherArgs . relaxationFactor=relax ;
175 Criterion criterion ;
176

177 //Creating the AMG preconditioner
178 AMG prec (op , criterion , smootherArgs , 1 ,1 , 1 , false) ;
179

180 //Convergence criterion of CG
181 double reduction=1e−8;
182 int maxit=S . N () ;
183 int verbose=1;
184

185 //Solve the system of equations
186 Dune : : CGSolver<Vector> solver (op , prec , reduction , maxit , verbose) ;
187 Dune : : InverseOperatorResult res ;
188 solver . apply (pi , r , res) ;
189

190 //Back-substitution
191 Vector p (grid . size (0)) ;

A.2. CODE LISTING 57

192 Vector v (6∗grid . size (0)) ;
193 assembler . solvePressure (pi , p) ;
194 assembler . solveVelocity (pi , p , v) ;
195

196 //Export the solution and perm field along the z-coordinate axis if requested
197 if (writeOutput && flowdimension==dim−1) {
198 Dune : : VTKWriter<GridType : : LeafGridView> vtkwriter (grid . leafView ()) ;
199 vtkwriter . addCellData (p , "pressure") ;
200 vtkwriter . addCellData (gp . getFloatingPointValue ("PERMX") , "permeability") ;
201 vtkwriter . addVertexData (new RT0CubeVelocityFunction<GridType , Vector>(grid ,

v)) ;
202 vtkwriter . write ("upscaling") ;
203 }
204

205 //Calculates the upscaled permeability
206 const double perm=calculatePerm (grid , v , problem) ;
207 printf (" K(%i, %i)=%f\n" , flowdimension , flowdimension , perm) ;
208 }
209 return 0 ;
210 }
211 catch (Dune : : Exception &e) {
212 std : : cerr << "Dune reported error: " << e << std : : endl ;
213 }
214 catch (. . .) {
215 std : : cerr << "Unknown exception thrown!" << std : : endl ;
216 }
217 }

A.2.2 RTOCubeLocal Class

Code listing for the RT0CubeLocal class. The functionality of this class is discussed in
section 5.3.1. In the listing below, D denotes the Π-block described in chapter 5.

1 /**
2 * Local assembler
3 ***/
4 template<class GV , class RT>
5 class RT0CubeLocal{
6 //Ectracts the type information from the grid
7 typedef typename GV : : Grid : : ctype DT ;
8 typedef typename GV : : template Codim<0>::Entity ElementEntity ;
9 typedef typename GV : : template Codim<1>::Entity FaceEntity ;

10 typedef typename GV : : IntersectionIterator IntersectionIterator ;
11

12 public :
13 // Types for matrics, vectors and boundary conditions
14 enum { dim=GV : : dimension } ;
15 const static int dof=6;
16 typedef Dune : : FieldMatrix<RT , dof , dof> Matrix ; // Diagonal matrix for B_local
17 typedef Dune : : FieldVector<RT , dof> Vector ; // Vector for holding C_local
18 typedef Dune : : BlockVector<Vector> BlockVector ; // Vector of Vectors, for D_local
19 typedef Dune : : FieldVector<DT , dim> CVector ; // Coordinate Vector
20

21 // Constructor
22 RT0CubeLocal () : D_ (dof) { }
23

24 ˜RT0CubeLocal () {}
25

26 // Contribution from one element
27 void assemble (const ElementEntity& e , RT Kinv) {
28 RT volume=e . geometry () . volume () ;
29 const CVector midPoint=e . geometry () . global (CVector (0 . 5)) ;
30 const CVector lowerCorner=e . geometry () . global (CVector (0)) ;
31 const CVector upperCorner=e . geometry () . global (CVector (1)) ;
32 const CVector h=upperCorner−lowerCorner ;
33

34 //Finding the quadrature rule for this element type

58 APPENDIX A. APPENDIX

35 const int p=3;
36 Dune : : GeometryType gt=e . type () ;
37 const Dune : : QuadratureRule<DT , dim>& rule=Dune : : QuadratureRules<DT , dim> : :rule (

gt , p) ;
38

39 //Fills the local B stiffness matrix by applying a quadrature
40 B_=0;
41 for (typename Dune : : QuadratureRule<DT , dim> : :const_iterator i=rule . begin () ; i!=

rule . end () ; ++i) {
42 CVector qp1=(e . geometry () . global (i−>position ())) ;
43 for (int j=0; j<dim ; j++) qp1 [j]=(qp1 [j]−lowerCorner [j]) /h [j] ;
44 CVector qp2 (qp1) ; qp1∗=−1; qp1+=1;
45

46 double b11 , b22 , b33 , b44 , b55 , b66 , b12 , b34 , b56 ;
47 b11=b22=b33=b44=b55=b66=b12=b34=b56=0;
48

49 //B_11, B_33, B_55
50 b11+=qp1 [0] ∗ qp1 [0] ;
51 b33+=qp1 [1] ∗ qp1 [1] ;
52 b55+=qp1 [2] ∗ qp1 [2] ;
53

54 //B_22, B44, B_66
55 b22+=qp2 [0] ∗ qp2 [0] ;
56 b44+=qp2 [1] ∗ qp2 [1] ;
57 b66+=qp2 [2] ∗ qp2 [2] ;
58

59 //B_12, B_34, B_56
60 b12+=qp1 [0] ∗ qp2 [0] ;
61 b34+=qp1 [1] ∗ qp2 [1] ;
62 b56+=qp1 [2] ∗ qp2 [2] ;
63

64 const double weight=i−>weight () ;
65 const double detjac=e . geometry () . integrationElement (i−>position ()) ;
66 const double factor=weight∗detjac ;
67

68 B_ [0] [0]+=b11∗factor ; B_ [1] [1]+=b22∗factor ;
69 B_ [2] [2]+=b33∗factor ; B_ [3] [3]+=b44∗factor ;
70 B_ [4] [4]+=b55∗factor ; B_ [5] [5]+=b66∗factor ;
71

72 B_ [0] [1]+=b12∗factor ;
73 B_ [2] [3]+=b34∗factor ;
74 B_ [4] [5]+=b56∗factor ;
75 }
76 B_ [1] [0]= B_ [0] [1] ;
77 B_ [3] [2]= B_ [2] [3] ;
78 B_ [5] [4]= B_ [4] [5] ;
79 B_∗=Kinv ;
80

81 //Fills the C vector
82 C_[0]=−volume/h [0] ; C_ [1]=volume/h [0] ;
83 C_[2]=−volume/h [1] ; C_ [3]=volume/h [1] ;
84 C_[4]=−volume/h [2] ; C_ [5]=volume/h [2] ;
85

86 //Fills the local D vectors, each corresponding to a face of the element
87 int alpha=0;
88 for (IntersectionIterator is=e . ileafbegin () ; is!=e . ileafend () ; ++is , alpha++){
89 CVector normal=is−>unitOuterNormal (Dune : : FieldVector<RT , 2 > (0 .5)) ;
90 RT facearea =is−>intersectionGlobal () . volume () ;
91 Vector Dalpha (0) ;
92 const int sign=((alpha+1)%2)?1:−1;
93 Dalpha [alpha]=−sign∗facearea ;
94 D_ [alpha]=Dalpha ;
95 }
96 }
97

98 RT B (int alpha , int beta) { return B_ [alpha] [beta] ; }
99

100 RT C (int alpha) { return C_ [alpha] ; }

A.2. CODE LISTING 59

101

102 Vector D (int alpha) { return D_ [alpha] ; }
103

104 private :
105 Matrix B_ ; // Corresponds to B_lcoal
106 Vector C_ ; // Corresponds to C_local
107 BlockVector D_ ; // Corresponds to D_local
108 } ;

A.2.3 RTOCubeAssembler Class

Code listing for the RT0CubeAssembler class. This class creates the system of equa-
tions, and tranforms the system into a symmetric positive definite system with the func-
tion schurReduction. Once the solution of this system is found, e.g. by an iterative
method, the solution can be transformed back to the original variables with the functions
solvePressure and solveVelocity.

In the listing below, D denotes the Π-block described in chapter 5, and the transformed
matrix D in (5.16) is denoted E.

1 /**
2 * Assembler of the system of equations
3 ***/
4 template<class G , class P , typename RT>
5 class RT0CubeAssembler{
6 typedef typename G : : template Codim<0>::LeafIterator ElementIterator ;
7 typedef typename G : : template Codim<1>::LeafIterator FaceIterator ;
8 typedef typename G : : template Codim<0>::Entity ElementEntity ;
9 typedef typename G : : template Codim<1>::Entity FaceEntity ;

10 typedef typename G : : LeafGridView : : IntersectionIterator IntersectionIterator ;
11 enum {dim=G : : dimension } ;
12

13 public :
14 typedef typename Dune : : template BCRSMatrix<Dune : : FieldMatrix<RT ,1 ,1 > > BCRSMatrix

;
15 typedef typename Dune : : template BlockVector<Dune : : FieldVector<RT ,1> > Vector ;
16 typedef typename Dune : : FieldVector<RT ,6> FixedVector ;
17 typedef typename Dune : : template BlockVector<Dune : : FieldVector<int ,1> > IntVector ;
18

19 // Constructor
20 RT0CubeAssembler (const G& g , const P& p) : grid (g) , problem (p) , elementfaces (grid .

size (0)) , f2dof (grid . size (1)) {
21 lagrangemult=0;
22 init () ;
23 }
24

25 // Destructor
26 ˜RT0CubeAssembler () {
27

28 }
29

30 // Init function: Setting up the structure of the global blocks B, C, D.
31 void init () {
32 // Finds the number of faces that are unknown Lagrange multipliers
33 for (FaceIterator it=grid . template leafbegin<1>() ; it!= grid . template leafend

<1>() ; ++it) {
34 int faceIndex=grid . leafIndexSet () . index (∗it) ;
35 if (! problem . onDirichletBoundary (∗it)) {
36 f2dof [faceIndex]=lagrangemult++;
37 } else {
38 f2dof [faceIndex]=−1;
39 }
40 }
41

42 //=============================

60 APPENDIX A. APPENDIX

43 // Sets up the global B block
44 //=============================
45 int systemsize=6∗grid . size (0) ;
46 B . setBuildMode (BCRSMatrix : : row_wise) ;
47 B . setSize (systemsize , systemsize , 2∗systemsize) ;
48 bd . resize (systemsize) ;
49 bd=0;
50

51 typedef typename BCRSMatrix : : CreateIterator Iter ;
52 for (Iter row=B . createbegin () ; row!=B . createend () ; ++row) {
53 // Add nonzeros on the diagonal
54 row . insert (row . index ()) ;
55

56 // Above/below the diagonal?
57 const int sign=((row . index () +1)%2)?1:−1;
58 row . insert (row . index ()+sign) ;
59 }
60 B=0;
61

62

63 //=============================
64 //Sets up the global C block
65 //=============================
66 C . setBuildMode (BCRSMatrix : : row_wise) ;
67 C . setSize (grid . size (0) ,systemsize , 6∗grid . size (0)) ;
68

69 for (Iter row=C . createbegin () ; row!=C . createend () ; ++row) {
70 // Add nonzeros on the diagonal
71 int index=6∗row . index () ;
72 for (int alpha=0; alpha<6; alpha++)
73 row . insert (index+alpha) ;
74 }
75 C=0;
76

77 //=============================
78 //Sets up the global D block
79 //=============================
80 D . setBuildMode (BCRSMatrix : : random) ;
81 D . setSize (lagrangemult , systemsize) ;
82 face2elements . resize (lagrangemult) ; face2elements=−1;
83 for (int i=0; i<lagrangemult ; i++){ D . setrowsize (i , 0) ; }
84

85 // STEP 1: Determine rowsizes.
86 for (ElementIterator it=grid . template leafbegin<0>() ; it!= grid . template leafend

<0>() ; ++it) {
87 int elementIndex=grid . leafIndexSet () . index (∗it) ;
88

89 for (int alpha=0; alpha<6; alpha++){
90 int indexAlpha=grid . leafIndexSet () . template subIndex<1>(∗it , alpha) ;
91 int dofIndex=f2dof [indexAlpha] ;
92

93 // Checks if the face is a non-Dirichlet face
94 if (dofIndex >=0) {
95 if (face2elements [dofIndex][0]==−1)
96 face2elements [dofIndex] [0]= elementIndex ;
97 else
98 face2elements [dofIndex] [1]= elementIndex ;
99

100 D . incrementrowsize (f2dof [indexAlpha] , 6) ;
101 }
102 }
103 }
104 D . endrowsizes () ;
105

106 // STEP 2: Determine indices
107 for (ElementIterator it=grid . template leafbegin<0>() ; it!= grid . template leafend

<0>() ; ++it) {
108 int elementIndex=grid . leafIndexSet () . index (∗it) ;

A.2. CODE LISTING 61

109 for (int alpha=0; alpha<6; alpha++){
110 int indexAlpha=grid . leafIndexSet () . template subIndex<1>(∗it , alpha) ;
111

112 // faceAlpha is a DOF
113 if (f2dof [indexAlpha] >=0) {
114 // Adds the index corresponding to the C block
115 for (int i=0; i<6; i++)
116 D . addindex (f2dof [indexAlpha] , 6∗elementIndex+i) ;
117 }
118 }
119 }
120 D . endindices () ;
121 D=0;
122 }
123

124 // Function for filling the system of equations once the blocks are set up
125 void assemble () {
126 for (ElementIterator it=grid . template leafbegin<0>() ; it!= grid . template leafend

<0>() ; ++it) {
127 int elementIndex=grid . leafIndexSet () . index (∗it) ;
128

129 //Assemble the elementstiffness matrix
130 double kinv=problem . kInverse (elementIndex) ;
131 rt0local . assemble (∗it , kinv) ;
132

133 //Assemble the B, C and D block and the rhs vector bd
134 for (int alpha=0; alpha<6; alpha++){
135 const int faceindex=6∗elementIndex+alpha ;
136 B [faceindex] [faceindex]=rt0local . B (alpha , alpha) ;
137 const int sign=((alpha+1)%2)?1:−1;
138 B [faceindex] [faceindex+sign]=rt0local . B (alpha , alpha+sign) ;
139

140 int lagrangeindex=f2dof [grid . leafIndexSet () . template subIndex<1>(∗it , alpha)
] ;

141 elementfaces [elementIndex] [alpha]=lagrangeindex ;
142

143 if (lagrangeindex>=0){
144 //Face is NOT a Dirichlet Face
145 for (int beta=0; beta<6; beta++)
146 D [lagrangeindex] [6 ∗ elementIndex+beta]=rt0local . D (alpha) [beta] ;
147 } else {
148 //Face is a Dirichlet Face
149 RT p=problem . dirichletValue (∗ (it−>template entity<1>(alpha))) ;
150 for (int beta=0; beta<6; beta++)
151 bd [6∗elementIndex+beta]=−p∗rt0local . D (alpha) [beta] ;
152 }
153 C [elementIndex] [faceindex]=rt0local . C (alpha) ;
154 }
155 }
156 return ;
157 }
158

159 //Function for transforming the system of equations
160 void schurReduction () {
161 typedef typename BCRSMatrix : : RowIterator RowIter ;
162

163 //==============================
164 //Inverts B
165 //==============================
166 for (RowIter row=B . begin () ; row!=B . end () ; ++row) {
167 const int i=row . index () ;
168 const double determinant=B [i] [i]∗B [i+1] [i+1]−B [i] [i+1]∗B [i+1] [i] ;
169

170 const double temp=B [i+1] [i+1] ;
171 B [i+1] [i+1]=B [i] [i] / determinant ;
172 B [i] [i]=temp/determinant ;
173 B [i] [i+1]/=−determinant ;
174 B [i+1] [i]/=−determinant ;

62 APPENDIX A. APPENDIX

175

176 ++row ;
177 }
178

179 //==============================
180 //Calculate diagonal E matrix
181 //==============================
182 E . resize (C . N ()) ; E=0;
183 for (unsigned int i=0; i<C . N () ; i++){
184 for (int alpha=0; alpha<6; alpha++){
185 const signed int sign=2∗((alpha+1)%2)−1;
186 const int k1=6∗i+alpha ;
187 const int k2=6∗i+alpha+sign ;
188

189 E [i]+=C [i] [k1] ∗ (B [k1] [k1]∗C [i] [k1] + B [k1] [k2]∗C [i] [k2]) ;
190 }
191 }
192

193 //==============================
194 //Sets up the global F block
195 //==============================
196 typedef typename BCRSMatrix : : RowIterator RowIter ;
197 typedef typename BCRSMatrix : : ColIterator ColIter ;
198 typedef typename BCRSMatrix : : ConstRowIterator ConstRowIter ;
199 typedef typename BCRSMatrix : : ConstColIterator ConstColIter ;
200

201 typedef typename BCRSMatrix : : row_type Row ;
202

203 F . setBuildMode (BCRSMatrix : : random) ;
204 F . setSize (D . M () , C . M ()) ;
205

206 for (ConstRowIter row=D . begin () ; row!=D . end () ; ++row) {
207 for (ConstColIter col=row−>begin () ; col!=row−>end () ; ++col) {
208 int j=col . index () ;
209 if ((j+1)%6 ==0)
210 F . incrementrowsize (row . index ()) ;
211 }
212 }
213 F . endrowsizes () ;
214 for (ConstRowIter row=D . begin () ; row!=D . end () ; ++row) {
215 for (ConstColIter col=row−>begin () ; col!=row−>end () ; ++col) {
216 int j=col . index () ;
217 if ((j+1)%6 ==0){
218 int colindex=(int)floor (j/6) ;
219 F . addindex (row . index () ,colindex) ;
220 }
221 }
222 }
223 F . endindices () ;
224 F=0;
225

226 for (ConstRowIter row=D . begin () ; row!=D . end () ; ++row) {
227 int i=row . index () ;
228 for (ConstColIter col=row−>begin () ; col!=row−>end () ; ++col) {
229 int j=col . index () ;
230 int colindex=(int)floor (j/6) ;
231 const int sign=2∗((j+1)%2)−1;
232 const double term1=B [j] [j]∗C [colindex] [j] ;
233 const double term2=B [j] [j+sign]∗C [colindex] [j+sign] ;
234 F [i] [colindex]+=D [i] [j] ∗ (term1+term2) ;
235 }
236 }
237

238 //==============================
239 //Create S matrix
240 //==============================
241 //STEP1: Determine row-sizes
242 S . setBuildMode (BCRSMatrix : : row_wise) ;

A.2. CODE LISTING 63

243 S . setSize (D . N () , D . N ()) ;
244

245 typedef typename BCRSMatrix : : CreateIterator Iter ;
246

247 for (Iter row=S . createbegin () ; row!=S . createend () ; ++row) {
248 const int elementP=face2elements [row . index ()] [0] ;
249 const int elementM=face2elements [row . index ()] [1] ;
250

251 for (int alpha=0; alpha<6; alpha++){
252 if (elementP >=0)
253 if (elementfaces [elementP] [alpha]>=0)
254 row . insert (elementfaces [elementP] [alpha]) ;
255 if (elementM >=0)
256 if (elementfaces [elementM] [alpha]>=0)
257 row . insert (elementfaces [elementM] [alpha]) ;
258 }
259 }
260 S=0;
261

262 //STEP3: Fill the matrix
263 for (RowIter row=S . begin () ; row!=S . end () ; ++row) {
264 const int i=row . index () ;
265 for (ColIter col=row−>begin () ; col!=row−>end () ; ++col) {
266 const int j=col . index () ;
267

268 //The first term: D*Binv*D’
269 ConstColIter col_i=D [i] . begin () ; ConstColIter col_j=D [j] . begin () ;
270 while (col_i != D [i] . end () && col_j != D [j] . end ()) {
271 const int m=col_i . index () ;
272 const int n=col_j . index () ;
273 const int sign=((m+1)%2) ? 1 : −1;
274

275 if (m==n) {
276 ∗col+=(∗col_i ∗ ∗col_j) ∗(B [m] [m]) ;
277 ∗col+=(∗col_i ∗ D [j] [m+sign]) ∗B [m] [m+sign] ;
278 ++col_j ;
279 } else if (m<n) ++col_i ;
280 else ++col_j ;
281 }
282

283 //The second term: -F*Einv*F’
284 const Row& Frow_i=F [i] ;
285 const Row& Frow_j=F [j] ;
286 col_i=Frow_i . begin () ; col_j=Frow_j . begin () ;
287 while (col_i != Frow_i . end () && col_j != Frow_j . end ()) {
288 const int m=col_i . index () ;
289 const int n=col_j . index () ;
290

291 if (m == n) {
292 ∗col−=(∗col_i ∗ ∗col_j) /E [m] ;
293 ++col_i ;
294 ++col_j ;
295 } else if (m < n) ++col_i ;
296 else ++col_j ;
297 }
298 }
299 }
300

301 //==============================
302 //Filling RHS-Vector
303 //==============================
304 Vector rtemp (B . N ()) ;
305 typedef typename Vector : : Iterator VecIt ;
306

307 //Binv*bd
308 B . mv (bd , rtemp) ;
309

310 //(D-F*Einv*C)*Binv*bd

64 APPENDIX A. APPENDIX

311 r . resize (D . N ()) ;
312 D . mv (rtemp , r) ; // r=D*Binv*bd2
313

314 BCRSMatrix EinvC (C) ;
315 for (RowIter row_i=EinvC . begin () ; row_i!=EinvC . end () ; ++row_i) {
316 const int i=row_i . index () ;
317 const RT Eii=E [i] ;
318

319 for (ColIter col_j=row_i−>begin () ; col_j!=row_i−>end () ; ++col_j)
320 ∗col_j/=Eii ;
321 }
322 schurtemp . resize (C . N ()) ;
323 EinvC . mv (rtemp , schurtemp) ; //schurtemp=Einv*C*Binv*bd
324 F . mmv (schurtemp , r) ; // r-=F*schurtemp
325 }
326

327 // Method for calculating the pressure in each element,
328 // when the Lagrange multiplicators are found
329 void solvePressure (const Vector& pi , Vector& p) {
330 p=0;
331 F . umtv (pi , p) ; // Calculate p+=FˆT*pi
332

333 //Calculate p=Einv*p
334 typedef typename Vector : : Iterator VecIt ;
335 for (VecIt elem=p . begin () ; elem!=p . end () ; ++elem) {
336 const int i=elem . index () ;
337 const RT Eii=E [i] ;
338 ∗elem/=Eii
339 }
340 p−=schurtemp ;
341 }
342

343 void solveVelocity (const Vector& pi , const Vector& p , Vector& v) {
344 //v=binv*(bd+CˆT*p-DˆT*pi)
345 Vector temp (bd) ;
346 C . umtv (p , temp) ;
347 D . mmtv (pi , temp) ;
348

349 B . mv (temp , v) ;
350 }
351

352 // Getters for the matrix system
353 const BCRSMatrix& getMatrixS () const{ return S ; }
354

355 BCRSMatrix& getMatrixS () { return S ; }
356

357 Vector& getRHSVector () { return r ; }
358

359 IntVector& getFaceMap () { return f2dof ; }
360

361 private :
362 const G& grid ;
363 P problem ;
364 Dune : : BlockVector< Dune : : FieldVector<int , 6> > elementfaces ;
365 Dune : : BlockVector< Dune : : FieldVector<int , 2> > face2elements ;
366 int flowDimension , lagrangemult ;
367 IntVector f2dof ;
368 BCRSMatrix B , C , D , F , S ;
369 Vector E , bd , bn , r , schurtemp ;
370 RT0CubeLocal<typename G : : LeafGridView , RT> rt0local ;
371 } ;

A.2. CODE LISTING 65

A.2.4 Utility Function for Calculation of Upscaled Permeability

Code listing for the function which calculates the upscaled permeability.
1 /**
2 * Function for calculating the upscaled permeability
3 ***/
4 template<class G , class V , class P>
5 double calculatePerm (const G& grid , const V& vel , const P& problem) {
6 enum {dim=G : : dimension } ;
7 typedef typename G : : template Codim<0>::Entity Entity ;
8 typedef typename G : : template Codim<1>::Entity FaceEntity ;
9 typedef typename G : : template Codim<0>::LeafIterator ElementIterator ;

10

11 typedef typename G : : ctype ctype ;
12 typedef Dune : : FieldVector<ctype , dim> CVector ; // Coordinate Vector
13

14 double perm=0;
15 double integrand0=0, integrand1=0;
16 double area0=0, area1=0;
17 const int flowdimension=problem . flowDimension () ;
18

19 for (ElementIterator it=grid . template leafbegin<0>() ; it!=grid . template leafend
<0>() ; ++it) {

20 const int elementIndex=grid . leafIndexSet () . index (∗it) ;
21 for (int alpha=0; alpha<6; alpha++){
22

23 // Checks if this face is on the Dirichlet boundary
24 // => This is included in the average flux
25 if (problem . onDirichletBoundary (∗ (it−>template entity<1>(alpha)))) {
26 const double facearea=it−>template entity<1>(alpha)−>geometry () . volume () ;
27 const double velocity=vel [6∗elementIndex+alpha] ;
28 const double meanDim=it−>template entity<1>(alpha)−>geometry () . global (Dune

: : FieldVector<double , 2 > (0 .5)) [flowdimension] ;
29 if (fabs (meanDim) < 1e−10) { // Located on the "bottom"
30 integrand0+=facearea∗velocity ;
31 area0+=facearea ;
32 } else {
33 integrand1−=facearea∗velocity ;
34 area1+=facearea ;
35 }
36 }
37 }
38 }
39 perm=−problem . getCorner () [flowdimension] ∗ (integrand1/(2∗area1)−integrand0/(2∗

area0)) ;
40 return perm ;
41 } ;

	Title Page
	Problem Description
	Introduction
	What is DUNE?
	License
	Modules

	Permeability Upscaling
	Calculating Upscaled Permeability
	Boundary Conditions

	Mixed Finite Element Method
	Strong Form
	Weak Form
	Discretization
	Comments

	Mixed Hybrid Finite Element Method
	Weak Form
	Discretization
	Implementation Details
	Comments

	Mixed Hybrid FEM with Cuboid Shaped Elements
	Discretization
	Implementation Details
	Installation and Usage

	Algebraic Multigrid (AMG)
	What is AMG?
	Two-Level Grid Cycle

	Numerical Results
	Verification of the Implementations
	Upscaled Permeability of a Core Sample
	Efficiency
	Comments

	Conclusion
	Suggestions for Further Work

	Bibliography
	Appendix
	Two Layered Eclipse Model
	Code Listing

