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ABSTRACT

Several geotechnical engineering problems involve the interaction between
deformation of the soil skeleton and the development of pore water pres-
sures. Very often the deformations are considered to be small, which opens
for a classical Lagrangian finite element analysis. However, large defor-
mations are present in several geotechnical problems. Large deformations
with methods such as updated Lagrangian finite element method might
lead to severe mesh distortion. The material point method (MPM) is a
method that avoids severe mesh distortion and can model large deforma-
tion problems with coupled flow. In literature, all approaches for coupling
flow and mechanics with MPM use explicit time integration.

This thesis aims to develop a two-way coupled flow MPM with implicit
time integration applicable to large deformation problems of flow through
saturated porous media. Implicit time integration allows larger time steps
and fewer computation steps for long-running processes. Minor aims are
extending single-phase MPM software with the proposed method and an
explicit approach from literature, and assessing the performance of the
explicit and implicit approaches.

The explicit formulation uses the phase velocities as primary variables.
The proposed implicit formulation uses the pore pressures and the displace-
ments as primary variables. Additionally, the proposed formulation uses
an iteratively coupled approach that splits the system into a mechanical
part and a flow part which can be solved by separate solvers. This work
couples MPM with the finite volume method (FVM) by taking advantage of
the similarities between the finite element method (FEM) and MPM.

Both the explicit and implicit methods solves the one-dimensional con-
solidation problem. The quasi-static implicit approach has no oscillations
at the beginning of the simulation. The dynamic implicit approach and the
explicit approach experiences oscillations, with the explicit much larger
than the implicit. Implicit time steps are 102 to 103 times larger than the
explicit time steps. The implicit method simulates large deflection of a
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ABSTRACT

poroelastic beam. The bending moment generates suction and pressure
in the upper and lower parts of the beam, respectively. The beam deflects
further while the pore pressures dissipate.

The proposed method can model both large deformations and coupled
flow. The implicit time integration makes the method suitable for solving
slow to medium rate coupled flow problems. Additionally, due to the modu-
lar nature of the proposed method, it is suited for extending single-phase
implicit MPM codes to include coupled effects. Further work includes using
advanced material models and extending the proposed method to model
unsaturated soils.
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1
INTRODUCTION

Several geotechnical engineering problems are large deformation problems
where the presence of water in the soil affects the soil shear strength. Land-
slides are often caused by a rise in pore pressures after for instance heavy
rainfall, while earthquakes might lead to soil liquefaction and subsequent
slides. In addition, water is the driving force in fluvial erosion problems,
such as riverbank erosion and scour around underwater structures. The
soil pore water content and pressures are affected by for instance the water
level in the river [1]. In turn, the soil pore water pressure affects the soil
strength. The erosion problems are large deformation problems because of
the large mass transport and subsequent possible slope failure. Soil pene-
trating procedures such as the cone penetration test (CPT) and pile driving
lead to immediate and local pore pressure generation around the penetrat-
ing shaft, which dissipates in rates from practically undrained to practically
drained [2]. Flow through porous media under large deformations have
applications in fields such as biomechanics [3] and food engineering [4].

Computational models may give an approximate idea of the ground be-
haviour during the above-mentioned processes and other large deformation
problems that includes flow through porous media. Additionally, compu-
tational models may aid in interpreting CPT results, understanding the
pile driving process, and predicting landslide runouts or effects of erosion
and scour on structures. A proper computational model for these problems
must handle both large deformations and coupled flow. MPM is a relatively

1



1. INTRODUCTION

new numerical method which has been considered a promising tool in large
deformation problems [5–7], including the large deformation problems with
coupled flow in geotechnical engineering [8]. Therefore, MPM is chosen as
the focus of this thesis.

Existing approaches developed for coupled MPM include velocity formu-
lations for saturated [9] and unsaturated [10] soils, 2-point formulations
[11–13] where the water and solid phases have each their set of particles,
and coupling of MPM with the the finite difference method (FDM) method
[14]. However, all of the previous approaches use explicit time integration.
Explicit time integration is a good choice for high-velocity problems and
in problems where all stress waves are needed. Similarly, implicit time
integration is a good choice for slower rate problems [15, 16]. There ex-
ist implicit time integration approaches with single-phase MPM [16–19].
Although the quasi-static implicit MPM of Beuth [20] tracked the excess
pore pressures, the method was undrained and therefore did not model the
dissipation process. The consolidation process has not been done together
with implicit time integration in MPM yet. Therefore, this thesis aims
to provide an approach using implicit time integration for the modelling
of coupled flow problems in geotechnical engineering that involves large
deformations.

An approach that iteratively couples the displacements and the pore
pressures has been in use in the field of reservoir engineering for some time
[21–24]. Such coupling lets the displacements and pore pressures be solved
by their own separate solver while keeping the other constant until global
convergence is reached. The accuracy is the same as for the traditional fully
coupled approach [22, 25, 26]. FEM for solving the displacements has been
coupled with FVM for solving the flow [27, 28]. Coupling MPM with FVM
is feasible too, because FEM and MPM both solve the linear momentum
equation at the nodes. This thesis will adapt the iteratively coupled implicit
approach for MPM and FVM.

1.1 Objectives and scope
The main objective is to further extend and adapt MPM for use in geotech-
nical engineering problems. The main research question is:

How can implicit time integration be performed with coupled
flow and large deformations in the material point method (MPM)?

Partial questions are:

2



1.2. Thesis outline

• How can single-phase MPM codes be extended to include coupled
effects?

• What are some of the benefits of implicit time integration on coupled
effects in MPM?

Topics such as exploring several options for implicit time integration for
coupled problems in MPM, constitutive models, advanced flux integration
schemes, and advanced shape functions, are outside the scope of this the-
sis. However, the implicit method derived herein is applicable with more
advanced options for the above-mentioned issues.

1.2 Thesis outline
The main body of this thesis can be split into three parts: background, main
contribution, and validation.

The first part consists of Chapters 2 to 5. Chapter 2 presents a literature
review on the topic of implicit time integration with coupled flow and
displacements for MPM. The mathematical framework of single-phase flow
through saturated porous media is presented in Chapter 3. Then, Chapter 4
presents the single-phase MPM. The velocity formulation for coupled MPM
[9] is derived in Chapter 5, adapted for use with the Uintah computational
framework [29].

The second part consists of the main contribution of this thesis, found
in Chapters 6 and 7. An iteratively coupled implicit dynamic MPM-FVM
is derived in Chapter 6. Chapter 7 describes the implementation into the
Uintah computational framework [29].

The final part validates the methods presented and derived in the thesis.
The velocity formulation in Chapter 5 and the iteratively coupled implicit
MPM-FVM in Chapter 6 are compared and verified by the computation of
the Terzaghi one-dimensional consolidation problem in Chapter 8. The iter-
atively coupled implicit MPM-FVM simulates the bending of a poroelastic
beam. Results are compared and discussed.

The thesis ends with the conclusion in Chapter 9 and suggestions for
further work in Chapter 10.

3
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2
LITERATURE REVIEW

This chapter presents the state-of-the-art of the subtopics of this
thesis, after a general introduction to MPM. The main finding is
the absence of implicit time integration with coupled MPM. The
chapter concludes with proposing an implicit iteratively coupled
approach adapted to MPM.

Chapter outline
2.1 General introduction to the material point method . . . . . . . . . . 6
2.2 Implicit time integration with the material point method . . . . . . 9
2.3 Coupled geomechanics in the material point method . . . . . . . . 10
2.4 Coupling strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Literature review conclusion . . . . . . . . . . . . . . . . . . . . . . . 16

5



2. LITERATURE REVIEW

2.1 General introduction to the material
point method
FEM is often used to solve geotechnical problems such as bearing capacity
and slope stability, in addition to coupled geomechanics problems like set-
tlement calculations and transient groundwater flow1. The basis of FEM
is a discretised grid or mesh of the problem, and this mesh deforms as the
loading increases. Small deformations do not cause severe numerical prob-
lems due to the deformations. For large deformations, however, the mesh
may deform in such a way that some elements become heavily distorted,
thus leading to numerical inaccuracies and a potential breakdown of the
calculation.

A solution to this issue could be remeshing at certain stages of the
calculation, which is done in the coupled Eulerian-Lagrangian (CEL) and
arbitrary Lagrangian-Eulerian (ALE) methods. These methods attempt to
decouple the material displacements and the mesh displacements. There-
fore the mesh may undergo less deformation than the material, and the
problem of mesh distortion may be avoided. The uncoupling of material and
mesh is done by generating a new mesh after the material deformation is
computed if the material is distorted enough [31]. However, such remeshing
might be time-consuming and computationally expensive, and numerical
inaccuracies may be introduced when mapping properties from the old
mesh to the new mesh.

Other types of numerical methods are developed for solving large defor-
mations that avoids the mesh distortion issue by representing the material
as particles instead of a mesh. One of the first meshless methods to be
developed was the smoothed particle hydrodynamics (SPH) method [32],
introduced in 1977. It was aimed at modelling astrophysical phenomena.
Because the universe as we know it has no limits, the need of boundary
conditions other than a free surface was not needed. Other methods sim-
ilar to SPH include the moving least squares approximation, the diffuse
element method, to name a few. In addition to the above-mentioned par-
ticle methods, there exist numerous other meshfree methods, such as the
element-free Galerkin, the discrete element method and the particle-in-cell
(PIC) method.

The PIC method is an older method presented by Evans & Harlow
[33] that introduces a fixed background mesh, combining the benefits of a

1Consult a textbook on finite element analysis with geotechnical engineering, for
instance Potts [30]
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2.1. General introduction to the material point method

computational grid with the advantages of particle-based methods. PIC
provided the basis for the fluid-implicit-particle method (FLIP) by Brackbill
& Ruppel [34]. Later, Sulsky & Brackbill [35] extended FLIP for elastic
bodies, but history-dependent materials could not be used with this method
as the constitutive equations were applied to the grid nodes and not the
particles. Another method based on FLIP were later introduced, but with
the weak Galerkin formulation known from FEM allowing it to be applied
in solid mechanics for history-dependent materials [36, 37]. This method is
now better known as the material point method (MPM).

Like FEM, MPM is a numerical technique for finding approximate
solutions to partial differential equations (PDE) as formulated in many
engineering disciplines such as civil, chemical, mechanical, electrical, or
aeronautical engineering. In classical FEM, the material domain is discre-
tised as a Lagrangian mesh which deforms with the material. Unlike the
classical FEM, MPM is not bound to a mesh or grid. The Eulerian reference
mesh is fixed while the Lagrangian particles are free to move through the
mesh. This combination of space discretisations makes MPM suitable for
large deformation problems, as the distortion of the mesh is avoided while
the material itself is allowed to deform. While MPM still suffers from
the possible introduction of numerical inaccuracies in the mapping phase
as in ALE, the problem of remeshing is solved by fixing the background
grid2, as opposed to ALE which has to compute the ideal remeshing. In a
comparative study of meshless methods for use in hyper-velocity impact
problems, Ma & Zhang [6] deemed the performance of MPM to be better
than FEM and SPH.

In MPM the material points carry the history of loading, such as the
deformation gradient, the volume and the effective stresses. The consti-
tutive model is applied at each material point, which is analogous to the
Gauss integration points of FEM. The conservation equations, however, are
solved at the nodes of the background mesh, as with FEM. MPM and its
predecessor PIC are considered meshfree particle methods [38], despite the
presence of a background mesh.

In Figure 2.1 the stages of an FEM computation is illustrated; the blue
dot in the middle being the Gauss point. In Figure 2.2 the corresponding
stages of MPM is illustrated, with the smaller blue dots being the material
points or particles. The first two stages of the two numerical methods are
similar. The similarities between the particles and the Gauss point is seen
when comparing Figures 2.1 and 2.2. However, the last stage is different.

2The mesh may also be redefined arbitrarily every time step if one wishes.

7



2. LITERATURE REVIEW

Figure 2.1: The phases of FEM from left to right: The initial configuration, the
Lagrangian phase, the updated configuration.

Figure 2.2: The three phases of MPM from left to right: The initial configuration,
the Lagrangian phase, the convective phase.

Additionally, the Gauss point in FEM is fixed to the cell it was created in,
but the particles in MPM are free to move from the original cell to new cells.
In FEM, the deformed cell remains deformed for the rest of the computation.
In MPM, the deformations are computed at the nodes of the mesh and then
mapped onto the particles so they move. During the convective phase, the
particles remain in their updated positions, but the mesh is reset. This way,
mesh distortion is avoided even for large deformations.

MPM was later extended to include modelling of granular materials [39]
and in modelling silo discharge of granular material [40]. Today, several
fields are now developing MPM for their usage, examples include fire and
explosion modelling [41], drifting of arctic sea ice [42], modelling food
processes [43], biomechanics [44] and even modelling the fluid-membrane
interaction in in-vitro fertilization of mice [45]. MPM has also been used
in the field of computer graphics for modelling of granular media, such as
sand [46] and snow [47]. The latter method [47] was used to simulate snow
behaviour in the Disney animated movie Frozen.

MPM is also being developed within the field of geotechnical engineer-
ing and soil mechanics. Some of the recent advances include improcing
frictional contact [48, 49], modelling CPT with various degree of drainage
[2, 9], and modelling of internal erosion [50].

8



2.2. Implicit time integration with the material point method

2.2 Implicit time integration with the ma-
terial point method
Explicit time integration is considered the best approach for high frequency
or velocity problems where the time step has to be small enough to catch
the response [51]. In those cases, the chosen time step is smaller than the
critical time step anyway. For almost any other type of problem where the
elastic wave response is not needed, implicit time integration is preferred
despite the computational cost per time step. Explicit time integration is
limited by the critical time step defined by the Courant-Friedrichs-Lewy
(CFL) condition in order to converge, and is therefore conditionally stable.

Implicit time integration, however, is not limited by the CFL condition.
Implicit time integration is theoretically unconditionally stable, which
guarantees convergence, although accuracy may suffer when the time step
is too large. The accuracy of the solution may be affected by too large
time steps, but in most cases, there will be convergence to a solution.
Allowing for larger time steps, a simulation with implicit time integration
uses fewer time steps in total than the explicit counterpart. However, the
computational cost of one time step with implicit time integration is larger
than for explicit time integration. In the case of explicit time integration,
no extra iterations are needed as the equations are computed off known
variables. In the case of implicit time integration, a system of equations
on the form of Ax=b must be solved for the unknown x. If the system is
linear, the coefficient matrix A must either be inverted or the system solved
by other methods. Solving the system becomes even more expensive if it is
nonlinear, with coefficient matrix A and solution vector b depending on x.
In general, explicit time integration is faster per time step, but need more
time steps than implicit time integration, which is more expensive per time
step, but requires fewer time steps overall.

In the context of MPM, explicit time integration has an added disad-
vantage. When particles move through the mesh, there is a jump in the
acceleration of the particle [37, 52, 53] and unbalance in the nodal internal
forces [18] caused by the individual history variables of each material point
[54]. Steffen et al. [53] showed analytically that the spatial errors dominate
when the time steps are small, as with explicit time integration. Guilkey &
Weiss [18] reported that explicit time integration for quasi-static problems
increased the numerical artefact related to grid crossing, while implicit
time integration did not.

Implicit time integration in MPM can be grouped into two approaches:

9



2. LITERATURE REVIEW

with and without explicitly forming the system tangent stiffness matrix.
Starting with Guilkey & Weiss [18] and Guilkey & Weiss [55], the tangent
stiffness matrix approach has been adopted in both dynamic [16, 56] and
quasi-static [57, 58] formulations.

Cummins & Brackbill [59] proposed a matrix-free Newton-Krylov ap-
proach with a restriction on the time step based on the strain to locate the
yield stress. Therefore the gain in time step size was small compared to
explicit time integration, although the accuracy of the implicit solution was
better than the explicit [59]. Several other matrix-free formulations have
since been developed [17, 19, 60–62].

Using a larger strain restriction than the restriction given by [59], lead
to larger applicable time steps [60]. Sulsky & Kaul [19] succeeded in using
time steps that were in the order of 104 times the explicit time step. There
is however an upper limit to time step size for implicit MPM to avoid
inverting the MPM background grid during one time step [18, 19, 59, 60].

In addition, there are several formulations for implicit MPM formula-
tions with higher-order shape functions, like the generalised interpolation
material point (GIMP) [58, 60] and dual domain material point (DDMP)
[62] methods. GIMP has been combined with both matrix-free [60] and
tangent stiffness [58] approaches.

2.3 Coupled geomechanics in the material
point method
Coupled geomechanics in MPM shares several traits with coupled geome-
chanics in FEM. One of these is which primary variables to use: u-p

formulation or v-w formulation. There exist several approaches for solving
the two-phase problem of geomechanics [63]. The u-p formulation assumes
that the relative acceleration of fluid to solid phase is much smaller than
the acceleration of the solid phase itself. It can be simplified further, for
instance by assuming that the fluid acceleration is negligible or that all
accelerations are negligible (quasi-static assumption). The u-p formula-
tion has one kinematic variable, either displacement u or velocity v of the
solid, in addition to the pore pressure p. This leads to an easily solvable
parabolic problem which can be extended to partially saturated soils by
adding another pressure parameter denoting the pore air pressure. The u-p
formulation can be used to model for instance earthquakes and other slower
phenomena as consolidation, but cannot properly model high-frequency

10
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phenomena [64].
The v-w formulation formulation,3on the other hand, can model high-

frequency problems. Here, v denotes the solid velocity and w is the water
velocity. In velocity formulations, the acceleration of the two phases are
not equal and both are present. The u-p formulation cannot model mixing
and separation of phases because the water velocity is relative to the solid
velocity [12]. As can be seen in Table 2.1, most recent advances in the field
of coupled MPM has been with the v-w formulation.

2.3.1 Spatial discretisation
There are two main approaches of spatial discretisation to model coupled
flow with the MPM: One is using one set of material points to model all
phases, where each phase take up a relative portion of the material point
volume and mass [9, 10, 65, 68, 69]. The other main approach is to use
two sets of material points, one for each phase considering saturated soils
[11–13, 67, 70]. The two-point MPM proposed by Bandara & Soga [13] was
derived for saturated soils, but performed well for partially saturated soils
too.

In their review, Soga et al. [8] pointed out that two-point formulations
do conserve both the mass of water and the mass of the solid skeleton,
while the one point formulations could not guarantee the conservation of
mass of water. Another advantage of the two-point formulation is that
the water particles both can model the pore water within the soil skeleton
and free water. That way, geotechnical problems such as seepage problems
through a dam embankment can be modelled naturally. See for instance
Abe et al. [12] and Bandara & Soga [13] for simulations of levee failure
using two-point MPM formulations.

Coupling MPM with other numerical methods. In addition to pure
MPM, approaches to coupled flow, either with one or two sets of material
points, MPM have been coupled with other numerical methods. Higo et

al. [14] and Higo et al. [66] modelled the solid phase with MPM and the
pore pressures were evaluated at the background mesh cell centres by
FDM. Later, the same authors extended their method to work with GIMP
[72]. They applied the MPM-FDM method on seepage problems and for
unsaturated soils but did not mention how to apply boundary conditions in
the case of large deformations.

3Equivalent to the u-U formulation proposed by Zienkiewicz & Shiomi [64].
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Another coupling approach is to couple MPM with the discrete element
method (DEM), proposed by Yang et al. [71]. The fluid motion and the
interphase forces were modelled with MPM, and the solid particle and
solid boundary interaction as DEM. The main drawback of DEM is the
discretisation size. It would be too expensive to model all soil grains
discretely. Consequently, the results in [71] may not be practically useful
for problems with a large number of grains. However, it did show promising
results for modelling solid particles interspersed in water, as is the case
with debris flow.

Alternative MPM formulations. The standard MPM interpolation func-
tions are linear, which is the cause of several numerical problems [73].
GIMP [54] was suggested to minimize cell-crossing errors by smoothing
out the particle mass, similar to SPH. In addition, other techniques are
developed, such as the shape tracking method of convected particle domain
interpolation (CPDI) [74] and higher-order interpolation functions such as
B-splines [75, 76].

These alternative interpolation techniques have also been applied to
coupled MPM formulations. Abe et al. [12], Zheng et al. [69], and Liu et al.

[70] applied GIMP to coupled MPM formulations to reduce cell crossing
errors. However, Abe et al. [12] pointed out that with fine meshes, GIMP
results tended to original MPM results.

Integration of pore pressures. Pore pressures are integrated either
at the cell centre or at particle location. The two-point formulations are
derived for evaluating the pore pressure at the water particle locations [12,
13, 70]. Although, in order to stabilise the problem, pore pressures are
averaged over the cell and integrated at cell centre [12, 13, 68], analogous
to the kinematic locking mitigation procedures in [20, 77, 78]. This is
equivalent of reduced order pressure interpolation technique, as the Q1-P0
element in FEM [12, 13]. The coupled MPM-FDM also integrates pore
pressures at cell centres by default [14, 66, 72]. Using the cell average of
the pore pressure and evaluating it in the cell centre corresponds to pore
pressures being piecewise constant values.

The one-point formulations also evaluate pore pressures at the particle
locations. Jassim et al. [9], Yerro et al. [10], Zhang et al. [65], and Liu et al.

[70] (v-w formulation) computed pore pressures at particle location using
nodal velocities with gradients computed at the particle location. Zabala &
Alonso [68] and Zheng et al. [69] (u-p formulation) computed pore pressures

13
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at nodes and interpolated to particles, using gradients evaluated at the cell
centre.

2.3.2 Time integration.
FEM and MPM are also similar with regards to time integration methods.
As stated in Section 2.2, explicit time integration must have time steps
within some critical time step bounds. The upper bound is defined by the
CFL condition. However, for coupled geomechanics, Vermeer & Verruijt [79]
defined a lower bound. Zabala & Alonso [68] argued that the CFL condition
for saturated soils gives unacceptable small time steps for simulating
construction and consolidation of saturated materials. The elastic modulus
of the material is used when computing the wave speed. Since the elastic
modulus for an undrained saturated material is large, the accepted time
step will then be small. Zabala & Alonso [68] surpassed the problem by
scaling the material densities. This approach was also used by Jassim et al.

[9].
All coupled MPM approaches discussed here use explicit time integra-

tion. Kularathna & Soga [80] did use a semi-implicit approach for their
MPM formulation for incompressible flow, but this thesis is concerned with
compressible flow.

2.4 Coupling strategies
As discussed in Section 2.2, explicit time integration schemes are condi-
tionally stable. Additionally, for coupled geomechanical systems the range
of applicable time step sizes is narrow, see Section 2.3.2. If the time step
is outside of the valid range, the computation will either become too inac-
curate or fail to converge. Implicit time integration, on the other hand, is
unconditionally stable but leads to computational expensive time steps. In
addition, a system of equations describing coupled phenomena has a larger
number of unknowns than the corresponding single-phase system, which
increases the complexity and computational cost of the problem.

The derivation and implementation of a fully coupled implicit method is
thus an additional challenge. The system is nonlinear as the displacements
affect the pore pressures and the pore pressures affect the displacements.

There exist several approaches to solving problems of flow through
porous media with implicit time integration. In a comparison of coupling
methods, Dean et al. [27] mentions three approaches commonly used for
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solving problems of flow in porous media. Those are the fully coupled,
iteratively coupled and the explicit coupled methods, where the two latter
can be grouped into partially coupled approaches.

2.4.1 Fully coupled approach.
Existing implicit FEM geotechnical codes such as Plaxis use a fully coupled
approach when solving consolidation problems. In this case, both the
hydraulic and the geomechanical problems are solved at once. This scheme
is unconditionally stable.

However, in order to use a fully coupled approach, the fully coupled
equations must be implemented. Due to the coupling terms, this may be
challenging in already existing codes. Furthermore, the resulting system of
equations may be time-consuming and expensive to solve, as the coefficient
matrix is dense.

2.4.2 Partially coupled approaches.
This is a family of approaches of which both the explicit and the iteratively
coupled methods belong. Since the hydraulic and geomechanical equations
are solved separately, each of the subproblems can, therefore, be solved
with separate simulators suitable to the task [81]. Because of this coupling,
extending existing software is made simpler.

Explicit approach. The explicit or staggered approach solve the sub-
problems only once per time step [82] and is conditionally stable, but
additional stabilization measures can be implemented [83].

The partial coupling also allows for using different time steps for the
two subproblems [23]. This loose coupling approach use smaller time steps
for the flow problem, and updates the mechanical problem after a number of
flow steps have been solved. The magnitude of pore volume change decides
the number of mechanical updates: small changes in pore volume give
large geomechanical time steps. Consequently, this approach is economic
in use of computational time, especially because of the cost of solving for
displacements with implicit time integration. However, since this type of
coupling is explicit, this scheme is only conditionally stable [27].

Iteratively coupled approach. Prevost [84] suggested solving tran-
sient coupled field problems by partitioning the fields and iterating. Then
the intermediate solutions from each subproblem are fed into the other
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subproblem repeatedly until convergence. Splitting the displacements and
the pore pressures allow for a combination of solvers to be used [22]. This
concept is applied to couple FVM and FEM simulators [27, 28, 85–88], with
FVM solving the flow equations and FEM the mechanical eqations of the
problem of flow in porous media.

The iteratively coupled approach gives a converged solution that is iden-
tical to the solution obtained by the fully coupled procedure. The approach
may be unconditionally stable depending on how the partial coupling is
performed [24, 26]. Kim [24] describes, verifies and tests four different
iteratively coupled schemes based on the physical problem: drained split,
undrained split, fixed-strain split, and fixed-stress split.

The drained and undrained splits solve the mechanical system first.
The difference between the two splits is that the drained split freezes the
pore pressure field (δp = 0) and the undrained split freezes the change in
fluid mass (δm = 0) while solving the mechanical system. Then the flow
system is solved using the resulting displacement field, which is now kept
constant.

The fixed-strain and fixed-stress split solve the flow system first. The
fixed-strain split freezes the rate of volumetric strain (ε̇v = 0), whereas the
fixed-stress split freezes the rate of volumetric stress (σ̇v = 0). Then the
mechanical system is solved using the pore pressure obtained in the flow
system and with no change in pore pressure (ṗ = 0).

Of these, the undrained and the fixed-stress splits were shown to be
unconditionally stable, with the fixed-stress split having a minor advantage
over the undrained split when dealing with nearly incompressible fluids
[24, 26, 87, 89]. The undrained bulk modulus Ku is used when solving
the mechanical problem using the undrained split, which results in a stiff
system that needs a robust linear solver [24]. White et al. [90] showed that
the fixed-stress operator split is equal to applying an upper triangular block
preconditioner to the fully implicit block system.

However, the unconditional stability of the undrained and fixed-stress
splits is only shown for the quasi-static case [26].

2.5 Literature review conclusion
As mentioned in Chapter 1, several geotechnical applications are types
of problems suitable for implicit time integration. Additionally, implicit
time integration is unconditionally stable and allows for larger time steps,
where explicit time integration is conditionally stable and limited by the
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critical time step. MPM cause several errors, of which the spatial errors are
prominent. The spatial errors are reduced when using larger time steps.

There are two main approaches to implicit time integration with MPM.
One is matrix-free, the other explicitly forms the tangential stiffness matrix,
but the resulting system of equations may also be solved by a matrix-free
approach.

The development of coupled geomechanics with MPM has mainly used
explicit time integration. MPM has been coupled with FDM previously.

Iterative coupling for solving coupled geomechanics problems with the
fixed-stress split is unconditionally stable in the quasi-static case. The dis-
placements and the pore pressures can be solved by different solvers, which
makes it easier to extend existing codes. In MPM, the displacements are
solved at the nodes, which is similar to FEM. Consequently, the application
of this technique to MPM is viable.

The software used in this thesis uses the tangential stiffness matrix
approach for implicit time integration. Therefore that approach is adopted
here for ease of implementation. Furthermore, the fixed-stress split is
applied when iteratively coupling the single-phase implicit MPM with a
newly implemented FVM.
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As far as the laws of mathematics refer to reality,
they are not certain;
and as far as they are certain,
they do not refer to reality.

Albert Einstein
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THEORETICAL BACKGROUND AND

GOVERNING EQUATIONS

This chapter presents the framework and governing equations
for the modelling of coupled problems in saturated porous me-
dia. First, topics in continuum mechanics are presented. Then
the mathematical framework for modelling saturated porous me-
dia is derived. Two formulations are considered, a displacement-
pressure formulation and a velocity formulation. Their correspond-
ing strong governing equations and accompanying boundary
conditions are derived.
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Ω0
ΩX

xinitial configuration at t0

O
x2

x1

x3
current configuration at t

Figure 3.1: Configuration of a body Ω0 at time t0 with a material point of coordi-
nates X, and the same body, now deformed Ω, at time t where the material point
has changed position to x.

3.1 Continuum mechanics preliminaries
The mathematical framework is based on continuum mechanics princi-
ples. This section will introduce the relevant topics that are used when
developing the framework.

We need a frame of reference to track deformations, translations, and
rotations of a body Ω. There are two main types of such references: Eulerian

and Lagrangian frames of reference. Both describe the configuration and
are mathematically and physically equivalent, but the point of view is
different.

As an example, let us consider a moving car. The velocity of the car
varies along the road as a function of space and time. At the same time,
consider the police measuring car velocities by radar. They stand at the
fixed position x. They will also measure various velocities of the cars
passing by as a function of space and time, the velocities are associated only
with this particular spatial point. Now, our car comes along and passes the
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position x at time t. The velocity measured by the police (Eulerian) is the
same as the velocity measured by the moving car (Lagrangian),1 despite
having different frames of reference.

Consider a function that depends on spatial and time coordinates. In a
Eulerian description, a function φ that describes some property, depends on
the current coordinates (x, t). In a Lagrangian description, another function
Φ that describes the same property as the Eulerian φ, depends on the initial

coordinates denoted by (X, t), as seen in Figure 3.1. This initial reference
configuration can either be the configuration at the start of the simulation,
t0 = 0, which is called total Lagrangian. An alternative would be to use the
previous configuration as the initial reference, t0 = tn−1 if tn denotes the
current time step. This approach is called updated Lagrangian.

The location of a material point X within the domain Ω0 is given by the
Lagrangian function

x= x(X, t), (3.1)

which have a unique inverse Eulerian function

X=X(x, t) (3.2)

that describes the initial position X of the material point that happen to be
located at x at time t. Differentiating the Lagrangian function Φ(X, t) with
respect to time gives

∂Φ

∂t
(X, t), (3.3)

since X is independent of time t. The same differential of the Eulerian
function φ(x, t) with respect to time, however, becomes more complex. The
total derivative is

dφ

dt
(x, t)= ∂φ

∂t
+ ∂φ

∂x
∂x
∂t

(3.4)

with the chain rule applied. We note that ∂x/∂t = v and rewrite to

dφ

dt
(x, t)= ∂φ

∂t
+v ···∇∇∇φ, (3.5)

where ∇∇∇ operates on functions defined in the current configuration. This
derivative is often called the material time derivative in Eulerian coordi-
nates. We see that the two time differentials in Equations (3.3) and (3.5)

1Assuming a perfect world with perfect measurements.
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(a) Unsaturated soil (b) Saturated soil

Vs = (1−n)V

Vw = nV

V

(c) Saturated soil as a
continuum

Figure 3.2: Representations of an elemental soil volume consisting of solid grains
(brown) and voids filled with water (blue) and air (white).

are different, with the Eulerian being more complex due to the convective

term v ···∇∇∇φ. The convective term accounts for the relative motion between
the material and the grid.

The choice of reference configuration depends on the problem to solve.
For instance, in solid mechanics, the material state and history of loading
are usually needed, and thus, a Lagrangian description where each ma-
terial point is traced is preferable. Additionally, while fluids experience
large deformations under anisotropic loading, solids may not. A Lagrangian
description may lead to computational breakdown due to the numerical
trouble resulting from severe material distortion. Inversion of material
elements, for example, may result in a negative determinant of the defor-
mation gradient, the Jacobian, J < 0. A negative Jacobian J is physically
inadmissible since it means that the updated volume of the material ele-
ment is negative. A Eulerian description is easier when modelling large
deformations because mesh distortion is avoided, however, the convective
term is computationally expensive and can introduce numerical errors due
to its non-symmetry [91].

For small strains the linearised strain can be used, where higher order
strain terms are cancelled. For large strains and deformations, there exist
several alternative strain measures to choose from. All of them can be
found from the deformation gradient F, which is given as the differential of
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the current position with respect to the reference position:

F= ∂x
∂X

. (3.6)

3.2 Mixture theory
Soil is a porous material that consists of three phases: a solid, a liquid
and a gas phase, see Figure 3.2. Usually, the liquid and gas phases consist
of water and air, respectively. This feature makes soil a heterogeneous
material where its components exhibit different behaviours. For instance,
the soil grains are able to resist shear forces, which water and air are
assumed to be unable to. Additionally, air has negligible weight. Therefore
the ratios between the three phases contribute to the soil behaviour.

The soil skeleton consists of soil grains and voids filled with fluid. The
soil is unsaturated if the fluid is a mix of water and air (Figure 3.2(a)).
The soil is saturated if the voids are completely filled with liquid water
(Figure 3.2(b)). Some porous materials may even have several different
liquids and gases in their voids, as encountered in the field of reservoir
engineering. The soil skeleton is deformable, while both the soil grains and
the water are assumed to be almost or completely incompressible.

Pore water pressure generation or build-up occurs when the soil skeleton
is compressed during loading and the pore pressures increase because
the voids decrease. When the pore pressures increase, the intergranular
stresses between the soil grains are lowered leading to a decrease of the
soil shear strength. Pore water pressure dissipation or consolidation is a
transient state in which the water travels through the pore network. The
water flows from points of higher potential (energy) or excess pore pressure
to points of lower excess pore pressure until steady-state is reached. With
time the water is squeezed out of the soil voids, which in turns leads to lower
pore pressures, smaller voids, and increased intergranular stresses. The
dissipation process heavily influences geotechnical engineering problems
such as settlement calculations.

Saturated soils can be modelled as a single-phase material when subject
to either drained or undrained loading conditions. Drained loading condi-
tions assume that there is no pore pressure build-up at all and therefore
full dissipation. Coarse materials or long-term effects are often assumed to
be drained. In the first case, the water quickly dissipates by flowing almost
freely through the soil skeleton, while in the latter case almost all pore
pressure dissipation is finished. Undrained loading conditions occur when
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water cannot escape from the soil volume. There is pore pressure build-up,
but no dissipation and hence no volume change. Fine-grained clays tend to
have undrained behaviour due to the tiny pores and grains, and undrained
conditions may also be considered for short-term loadings. The two loading
conditions have in common that there is no pore pressure flow relative to
the soil skeleton. In the drained case, there are no pore pressures at all.
In the undrained case, the water moves with the soil. Therefore, drained
and undrained loading conditions may model the soil as a single-phase
material.

For partially drained loading conditions, there is relative movement
between the water and the soil grains. Such conditions are often two-way
coupled problems where displacements and pore pressures influence each
other, and consequently, they are complex to model. To derive the basic set
of equations governing the generation and consequent dissipation of pore
pressures, several simplifying assumptions are made.

First, the soil skeleton can deform, changing the bulk volume. Usu-
ally, the water is modelled as slightly compressible with a very high bulk
modulus, although water may also be considered incompressible. The soil
grains are usually modelled as being incompressible, which means that
there is no volume change of the solid part of the bulk volume. With water
being almost incompressible and soil grains being incompressible, the main
change in bulk volume would have to be due to a change in the size of
pores. Consequently, the bulk volume deforms during consolidation because
of the escape of water from the pores and slightly because of the small
compressibility of water.

To summarise, the following assumptions are made in this thesis:

Assumption 1. The soil is saturated.

Assumption 2. No mass exchange between phases.

Assumption 3. The soil particles are incompressible: Ks =∞

Assumption 4. There is no spatial variation of phase densities

Assumption 5. Isotropic permeability

Assumption 6. The relative acceleration of fluid to solid phase is much

smaller than the acceleration of the solid phase so that aw ≈ as

Properties are given subscripts s and w for solid and water phase respec-
tively, while properties without subscript describe the saturated mixture.

24



3.2. Mixture theory

3.2.1 Volume fractions and density
Mixture theory assumes that every point in a mixture is occupied simulta-
neously by all its components [92]. Considering a saturated soil element
as depicted Figure 3.2(b) with total volume V , the total volume of all soil
grains is Vs and for water Vw. Because the soil is saturated, we can express
the total volume as

V =Vs +Vw, (3.7)

which can be used to form a continuum approximation of the soil as is
done in Figure 3.2(c). There are two common soil properties to denote the
proportion of voids to solids:

e = Vw

Vs
and n = Vw

V
, (3.8)

where e is called the void ratio and n2 the porosity. They can be derived
from one another from

e = n

1−n
and n = e

1+ e
. (3.9)

The volume proportion of the solids to the total volume is ns = (1−n) for
saturated soils since the sum of porosities add up to 1.

Having defined the porosity n, the total density of the mixture of soil
grains and water is expressed by

ρ = nsρs +nρw (3.10)

= (1−n)ρs +nρw. (3.11)

The total density is derived from the assumption that the total mass of the
mixture is the sum of the mass of water and the mass of solids: m = ms+mw.
The averaged densitites are sometimes denoted by superscript, so that
ρs = (1−n)ρs and ρw = nρw. In general terms, the average phase density
ρα, where α is the phase, is written as

ρα = nαρα. (3.12)

3.2.2 The principle of effective stress
With the same total stress, the larger the pore pressures are, the less
strength the total soil skeleton has. Larger pore pressures mean that the

2In porous media physics it is common to denote porosity by ϕ, but this symbol usually
denotes the friction angle in geotechnical engineering.
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pore water carries larger portions of the load, reducing contact between
soil grains. In turn, the shear strength of the soil changes with the pore
pressures since the shear strength is influenced by the contact between
soil grains, like friction and locking. This effect leads to the derivation
of effective stress. The foundation of the principle of effective stress was
introduced by Terzaghi in 1923 [translated in 93]3.

For saturated soils, the total stress can be decomposed into the stress
carried by the solid grains σs and the stress carried by the water σw, so
that

σ= (1−n)σs +nσw, (3.13)

where σw = pI, p is the pore pressure, and I the second order identity
tensor. However, the effective stress concept is used instead, where the
total stress is decomposed into intergranular stresses or effective stresses

and pore water pressure p:

σ=σ′ + pI, (3.14)

where σ is the total stress tensor and σ′ is the effective stress tensor. Then
we can derive that the portion of the stress carried by the solid grains is

(1−n)σs =σ′ + (1−n)pI. (3.15)

The advantage of using the effective stress approach is that a soil consti-
tutive model can govern the effective stresses and Darcy’s law the pore
pressures. Borja & Alarcón [95] remarked that the effective stress approach
is valid for large deformations too.

In this thesis, both the stresses and the pore pressure are considered
negative in compression.

3.2.3 Stiffness moduli
The drained bulk modulus of the soil skeleton is denoted Kdr. For 3D
problems Kdr = K . For 1D problems

K1D
dr = Eoed = 3

1−ν

1+ν
K , (3.16)

where ν is the Poisson ratio and Eoed is the oedometer modulus4 which
reflects the stiffness when the soil is allowed to deform in only one direction.

3Several authors have since developed the principle of effective stress. See de Boer &
Ehlers [94] for a historical review.
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3.3. Governing equations

The Biot modulus M is the stiffness modulus for the pores. The pore
fluid compressibility is the inverse of the Biot modulus and is the sum of
the compressibility of the phases, so we have that

1
M

= n

Kw
+ 1−n

Ks
, (3.17)

and with the assumption that the soil grain stiffness Ks ≈∞, this gives

1
M

= n

Kw
, (3.18)

where Kw ∼ 2.2GPa is the bulk modulus of water.

3.3 Governing equations
Two physical properties need to be conserved to couple soil displacements
and water pressure: the conservation of mass and the conservation of linear
momentum. Three momentum balances can be posed: one for each phase
plus one for the mixture. Only two of those are needed for the computational
framework, though, as two of the three balances can be linearly combined
into the third.

The time differentials of displacements u are denoted as

v(x, t)= u̇= ∂u
∂t

(3.19)

a(x, t)= ü= ∂2u
∂t2 . (3.20)

3.3.1 Conservation of mass
In the case of no mass entering or leaving the domain Ω, the mass of the
continuum should remain constant. Mathematically, the total mass balance
is written as ∫

Ω

[
∂ρ

∂t
+∇∇∇··· (ρv

)]
dΩ= 0, (3.21)

and consequently,

∂ρ

∂t
+∇∇∇··· (ρv

)= ∂ρ

∂t
+v ···∇∇∇ρ+ρ∇∇∇···v= 0, (3.22)

4Also known as the constrained modulus.
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3. THEORETICAL BACKGROUND AND GOVERNING EQUATIONS

which is the conservation of mass in Eulerian reference frame. We can
obtain the conservation of mass in the Lagrangian reference frame by
reintroducing the material time derivative from Equation (3.5), which gives

dρ

dt
+ρ∇∇∇··· (v)= 0. (3.23)

Similarly, assuming no mass exchange between the phases of a mixture
continuum (Assumption 2), we derive the conservation of mass for each
phase. First, we have the conservation of mass of the solid phase in the
Lagrangian frame:

d
dt

[
(1−n)ρs

]+ (1−n)ρs∇∇∇···v= 0, (3.24)

and using Assumption 3 we end up with

−dn

dt
+ (1−n)∇∇∇···v= 0. (3.25)

For the conservation of mass of the water phase, we get

d
dt

(
nρw

)+nρw∇∇∇···w= 0, (3.26)

where w is the phase velocity of water.

The storage equation for u-p formulation. The conservation of mass
for the saturated soil as one continuum can be derived from the conservation
of the phase masses in Equations (3.25) and (3.26). In order to combine the
two phases, we need to write the conservation of mass of the water phase
with respect to the solid skeleton. The superscripts s and w will denote
which phase the material time derivative is done with respect to.

If there is a function f in water phase reference frame, the material
time derivative with respect to the solid skeleton will be

dw f

dt
= ds f

dt
+ (∇∇∇ f ) ···w̃, (3.27)

where w̃=w−v is the relative velocity between the phases: the interstitial

velocity. It represents the velocity of the fluid through the pores relative to
the skeleton while taking into account the portion of the body that is water,
denoted by porosity n.
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3.3. Governing equations

Rewriting Equation (3.26) with respect to the solid skeleton then gives:

dsnρw

dt
+ (∇∇∇nρw

) ···w̃+nρw∇∇∇···v+w̃= 0 (3.28)

n
dsρw

dt
+ρw

dsn

dt
+∇∇∇··· (ρwnw̃

)+nρw∇∇∇···v= 0. (3.29)

Let us introduce the specific discharge5 q defined as the velocity of the pore
water relative to the pores averaged over the entire cross-sectional area
and found from

q= n(w−v)= nw̃, (3.30)

where n is the porosity, and w and v the pore water and solid grains
velocities, respectively.

To find the time derivative of ρw, we apply the chain rule

dρw

dt
= ∂ρw

∂p

dp

dt
, (3.31)

and introduce the linearly compressible water constitutive model

∂ρw

∂p
=− ρw

Kw
. (3.32)

Inserting Equation (3.31) with Equation (3.32) and Equations (3.25) and (3.30)
into Equation (3.29) gives

ρw
dp

dt
= Kw

n

[
ρw∇∇∇···v+∇∇∇··· (ρwq

)]
, (3.33)

and with Assumption 4, we can cancel ρw to obtain

dp

dt
= Kw

n

[∇∇∇···v+∇∇∇···q]. (3.34)

The storage equation for v-w formulation. For writing the storage
equation in Lagrangian coordinates, we obtain first the conservation of
mass for the solid and water phases, respectively:

∂n

∂t
=∇∇∇··· [(1−n)v] (3.35)

ρw
∂n

∂t
+n

∂ρw

∂t
+∇∇∇··· (nρww

)= 0. (3.36)

Using Assumption (4) with Equations (3.31) and (3.32) then gives:

∂p

∂t
= Kw

n
[∇∇∇··· [(1−n)v]+n∇∇∇···w]. (3.37)

5Also called superficial water velocity or Darcy velocity.
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τ

b

x

∂R

R

Ω

Figure 3.3: An arbitrary subregion R with boundary ∂R within the domain Ω. The
subregion R has density ρ and is subject to boundary traction force τ, body force
b, and is moving with velocity v= dx/dt.

3.3.2 Conservation of momentum
The conservation of momentum is two-fold: conservation of angular mo-
mentum and linear momentum. The conservation of angular momentum is
satisfied if the stress tensor is symmetric, that is, when

σ=σT, (3.38)

with (·)T denoting the transpose of the tensor. The conservation of angular
momentum automatically holds if the stress tensor used is symmetric. The
Cauchy stress tensor and the first Piola stress tensor are symmetric. The
contribution of pore pressure pI to the total stress σ is also symmetric.

The conservation of linear momentum stems from Newton’s second law
of motion:

∑
F = ma. We start out with the linear momentum L of some

subregion R of our domain Ω, as shown in Figure 3.3, written as

L =
∫

R
ρvdR, (3.39)

where ρ is the material density and v is the material velocity. The time
derivative of L should be equal to the forces acting on the subregion R,
which would be the traction τ on the boundary ∂R and the body force per
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3.3. Governing equations

unit mass b acting in the subregion R. Written out, this gives

dL

dt
= d

dt

∫
R
ρvdR =

∫
∂R

τdS+
∫

R
ρbdR. (3.40)

With surface traction defined as τ = σ ···n and applying the divergence
theorem, the first term on the right hand side of Equation (3.40) can be
written as ∫

∂R
τdS =

∫
∂R

σndS =
∫

R
∇∇∇···σdR. (3.41)

After applying the Reynold’s transport theorem and inserting Equation (3.41)
to Equation (3.40), we get∫

R

[
ρ

dv
dt

−∇∇∇···σ+ρb
]

dR = 0, (3.42)

which can be written as

ρa=∇∇∇···σ+ρb, (3.43)

assuming that the integrand of Equation (3.42) is continuous.
For multiphase materials the conservation of momentum for phase α is

dα

dt

∫
R
ραvα dR+∑

β

Pβα =
∫

R
ραbα dR+

∫
∂R

τα dS, (3.44)

where ρα is the averaged phase density defined in Equation (3.12), β

denotes the other phases, and Pβα the momentum between phases β and
α. Saturated soil is a two-phase medium where the momentum exchange
between the water and solid phases is written as

Psw = n
ρw g

k
n(w−v)=−Pws, (3.45)

where n is the porosity, k the hydraulic conductivity, ρw the density of water,
g the magnitude of the acceleration of gravity, and w and v the velocity of
water and solid phase, respectively.

Using Equations (3.44) and (3.45) and performing the same steps as for
Equation (3.40), the balance of momentum for the water phase (α=w) can
be written as

ρwaw =∇∇∇p− ρw g

k
n(w−v)+ρwb, (3.46)
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where aw = dw/dt and b is the body force. For the u-p formulation, Assump-
tion 6 is applied, which means that aw is replaced with the solid phase
acceleration as. If inertial forces of water are neglected, aw = 0 and the
left-hand side of Equation (3.46) vanishes.

The conservation of momentum equation for the mixture is obtained by
summing the conservation of momentum equations for all the phases in the
material. Consequently, the interphase momentums Pαβ cancel eachother
out, as seen from Equation (3.45). This leaves

nρwaw + (1−n)ρsas = n∇∇∇p+nρwb+ (1−n)∇∇∇···σs + (1−n)ρsb. (3.47)

Inserting Equation (3.15) into the solid stress divergence term and grouping
stress terms gives

(1−n)∇∇∇···σs +n∇∇∇p =∇∇∇··· [σ′ + (1−n)pI
]+n∇∇∇p =∇∇∇···σ′ +∇∇∇p. (3.48)

Inserting the above equation and the definition of mixture density of Equa-
tion (3.11) into Equation (3.47) gives the momentum balance of the mixture
as

nρwaw + (1−n)ρsas =∇∇∇···σ′ +∇∇∇p+ρb (3.49)

for the v-w formulation, where aw = ẇ and as = v̇= ü.
For the u-p formulation, Assumption 6 is applied, which reduces Equa-

tion (3.49) to

ρas =∇∇∇···σ′ +∇∇∇p+ρb, (3.50)

because aw ≈ as = ü. Note that Equation (3.50) is equal to Equation (3.43)
with the total stress σ replaced by Equation (3.14). For complete quasi-
static assumptions, the left-hand side of Equation (3.50) vanishes.

3.3.3 Initial and boundary conditions
To complete the description of the boundary value problem, initial and
boundary conditions are needed. Initial conditions provide the starting
point of the solution at time t = t0. Kinematic variables as displacement
u0 and velocity v0 = u̇0 are given in addition to properties such as initial
stress σ0. The initial conditions for stresses are:

σ′(x, t0)=σ′
0 and p(x, t0)= p0, (3.51)

32



3.3. Governing equations

Ω

∂Ω

∂Ωu

∂Ωτ

Figure 3.4: Boundary conditions
of domain Ω. Together, the trac-
tion boundary condition ∂Ωτ and
the displacement boundary condi-
tion ∂Ωu cover the boundary ∂Ω of
the domain Ω.

where σ′
0 is the initial effective stress and p0 the inital pore water pressure

in the soil. The initial conditions for the kinematic variables are

v(x, t0)= v0 = u̇0 and w(x, t0)=w0, (3.52)

where the u-p formulation does not use water velocity w.
Boundary conditions provide the solution at the domain boundaries

independent of time that is compatible with the initial conditions. The
most common type of boundary conditions are Dirichlet and Neumann

boundary conditions, which for the solid phase translates to displacements
and traction, respectively. The surface boundary ∂Ω is divided into two
disjoint sets of boundary conditions [51] so that

∂Ωu ∩∂Ωτ =� and ∂Ωu ∪∂Ωτ = ∂Ω, (3.53)

that is, the traction boundary ∂Ωτ and displacement boundary ∂Ωu do not
overlap, but together they cover the entire surface boundary ∂Ω (Figure 3.4).
With the addition of a water phase, the surface boundary ∂Ω can be divided
into another group of disjoint sets that represent the water phase boundary.
For the u-p formulation, the boundaries can be written as

∂Ωq ∩∂Ωp =� and ∂Ωq ∪∂Ωp = ∂Ω, (3.54)

where ∂Ωq is the surface boundary subset on which the boundary flux is
applied, while ∂Ωp is the prescribed water pressure boundary. For the
v-w formulation, the flux boundary ∂Ωq is replaced with the water velocity
boundary ∂Ωw. The water phase boundaries are independent of the solid
phase boundaries.

The kinematic boundary conditions are defined on ∂Ωu and ∂Ωq for the
solid and water phase, respectively, as

u(x, t)= ū(t) on ∂Ωu (3.55)

q(x, t)= q̄(t) on ∂Ωq (3.56)
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3. THEORETICAL BACKGROUND AND GOVERNING EQUATIONS

or for the v-w formulation

v(x, t)= v̄(t) on ∂Ωu (3.57)

w(x, t)= w̄(t) on ∂Ωw. (3.58)

The Cauchy surface traction τ̄ is given by

σ(x, t) ···n= τ̄ on ∂Ωτ, (3.59)

where σ is the Cauchy stress, n is the boundary surface normal, and
τ̄= τ(x) ···T (t) with T (t) a function governing the change of loading with
time. The prescribed pore water pressure is

p(x, t)= p̄ on ∂Ωp, (3.60)

where p̄ = p(x) ·T (t).

3.3.4 Constitutive model
The constitutive laws that govern the relation between stresses and strains
give the effective stress response of the soil. For large deformations it is
beneficial to let the stress depend on the deformation gradient F [95], as

σ′ =G (F), (3.61)

where G is some constitutive model.
The material response should not depend on the frame of reference, it

should be objective. That is, no matter the reference point, the material
experience the same level of stress. Both the Cauchy stress tensor (the true
stress) σ and the deformation gradient F are objective. A material on the
form of Equation (3.61) is Cauchy-elastic and independent of deformation
path.

3.3.5 Darcy’s law
Fluid flow through soil is most often laminar due to the dissipation by the
viscous interaction between pore fluid and solid grains defined in Equa-
tion (3.45). Therefore the flow can be described by Darcy’s law, which is
a linear relationship between the specific discharge q defined in Equa-
tion (3.30) and the hydraulic gradient, i.e. change in pore pressure head.
The generalised dynamic Darcy’s law [96, 97] is

n(w−v)=− k

ρw g

[∇∇∇p+ρwaw −ρwb
]
, (3.62)
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where the hydraulic conductivity6 [m/s] is given by

k = κ
ρw g

μw
, (3.63)

where κ [m2] is the absolute permeability tensor of the porous medium,
ρw [kg/m3] is the density of water, g [m/s2] is the gravitational acceleration,
and μw [kg/(ms)] is the dynamic viscosity of water. While κ is a property
of the soil skeleton, the hydraulic conductivity is influenced by pore fluid
properties.

Absolute permeability κ is expected to change with porosity n, as
smaller voids would mean less water to flow through the soil skeleton.
In addition, soil is anisotropic and highly nonhomogeneous spatially. There-
fore, a more realistic representation of the permeability κ is a tensor that
varies spatially and with porosity: κ(x,n). In this thesis, however, perme-
ability is regarded as constant both spatially and with respect to porosity,
in addition to being isotropic. This reduces the permeability tensor to a
constant scalar.

3.4 Chapter summary
This chapter presented and derived the mathematical framework for mod-
elling saturated porous media. The strong form of the governing equations
was derived for two formulations: u-p formulation and v-w formulation.
Large deformations have been considered.

6Also called the permeability coefficient.
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You know my methods.
Apply them.

Sir Arthur Conan Doyle
The Sign of Four (1890)
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4
MATERIAL POINT METHOD

This chapter aims to provide the foundation upon which the main
contribution of this thesis is built. The mathematical framework
of both an explicit MPM and an implicit MPM formulation is
presented here. First, the governing equations are derived from
the conservation of mass and momentum. Then, the governing
equations are discretised in space and time for both explicit and
implicit time integrations.
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4. MATERIAL POINT METHOD

4.1 The concept of MPM
Large deformation problems with a Lagrangian description can be fixed
by using smaller time steps or remeshing, but both solutions have draw-
backs. Remeshing, for instance, can be computationally expensive and
also troublesome with history-dependent materials due to the mapping of
material state variables from the old to the new mesh [38]. The material
point method avoids both the Lagrangian problem of mesh distortion and
the Eulerian problem with the convective term. The Lagrangian mate-
rial points or particles eliminate the convective term of the material time
derivative, while the Eulerian background grid avoids mesh distortion.

MPM uses both a Lagrangian and a Eulerian representation. The
continuum body is discretised by Lagrangian material points that can move
through a Eulerian computational grid. The grid can be arbitrarily defined
and redefined. Most often, the grid is fixed in time, although some moving-
mesh formulations have been used [53, 77]. The momentum equations are
solved at grid nodes, while the constitutive equation or material response is
solved at material points after they have deformed together with the grid.
Therefore, the convection term of the Eulerian material time derivative
disappears from the grid solution. The grid is reset after the material
response is computed. The history-dependent material parameters are not
mapped back to the grid, effectively walking through the grid.

Figure 4.1 shows the 3 phases of the MPM algorithm as described by
[37]. First, there is an initialisation or mapping phase where particle
information is interpolated to the nodes of the background grid (a). Then,
the equation of motion is solved at the nodes in a Lagrangian phase where
the background grid serves as an updated Lagrangian frame (b). The
particles move relative to the nodes, as the shape functions use the element
local coordinates, eliminating the convective term of the Eulerian material
time derivative. The convective phase is the final phase where the particles
are updated with their new positions and velocities, while the grid is reset
to its initial configuration or redefined to a new configuration (c).

4.2 Weak form of the governing equations
The mathematical framework describing MPM is based on the equations
for conservation of mass and the conservation of momentum. These equa-
tions are then transformed into weak or integral form from the strong or
differential form. The weak form loosens the continuity requirements of
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(a) Initialisation or mapping phase.
Particle momentums, accelerations
and masses are interpolated to the
nodes.

(b) Lagrangian phase. The back-
ground grid serves as an updated La-
grangian frame. The grid deforms and
the particles move relative to the grid.

(c) Convective phase. The new par-
ticle locations and velocities are up-
dated, and the grid data is deleted.

Figure 4.1: The 3 main phases of MPM. The first is the mapping phase (a), the
second is the Lagrangian phase (b), and the third is the convective phase (c). The
squares are nodes, with the active nodes being black. The circles are particles. The
shaded cells are grid cells that contain particles.

39



4. MATERIAL POINT METHOD

the solution and is, therefore, easier to solve. In addition, the derivatives
of the field variables are replaced by derivatives of interpolation or shape
functions, which are easier to obtain than the true derivatives of the field
variables. This approach is similar to FEM.

Let us first define functional spaces for the solution for the displace-
ments u

U = {u :Ω→R3 | u ∈ H1, u= ū on ∂Ωu
}

(4.1)

where H1 is the Sobolev space of degree 1. This means that the displace-
ment field u is discretised by linear (degree 1) shape functions. We are
seeking the solution of a discrete approximation of this space, that is,
finding uh ∈ Uh where the approximated space Uh is the corresponding
subspace of the solution space U .

The space of the test function η is

U0 =
{
η :Ω→R3 | η ∈ H1, η= 0 on ∂Ωu

}
(4.2)

The approximate test function ηh is defined on the corresponding subspace
U0,h. If the test function η is a kinematically admissible virtual displace-
ment of the system, then this is the principle of virtual work. This means
that the test function η should be continuous and kinematic admissible

on the domain Ω, and 0 on the boundary ∂Ωu. The weak solution of the
problem is obtained by multiplying the strong form of the conservation of
linear momentum equation (3.43) with the corresponding test function ηh

and integrating over the domain Ω, giving∫
Ω
ηh ···ρah dΩ=

∫
Ω
ηh : (∇∇∇···σh)dΩ+

∫
Ω
ηh ···ρbh dΩ, (4.3)

where subscript h denote the approximation of the field variable.
Using integration by parts on the first term on the right-hand side of

Equation (4.3) yields∫
Ω
ηh : (∇∇∇···σh)dΩ=

∫
Ω
∇∇∇··· (ηh : σh

)
dΩ−

∫
Ω
∇∇∇ηh : σh dΩ. (4.4)

The divergence theorem and Cauchy’s formula τ=σh ···n can then be applied
to the first term on the right hand side of Equation (4.4), so that∫

Ω
∇∇∇··· (ηh : σh

)
dΩ=

∫
∂Ω

ηh ···σh ···ndS =
∫
∂Ωτ

ηh ··· τ̄dS, (4.5)
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X0
pMp

Ω0
p

X00
pXM

ΩΩΩΩΩΩΩΩΩΩΩΩ0
p
0000000000

(a) Initial material point discreti-
sation at t0

xpMp

Ωp

(b) Current material point dis-
cretisation at t

Figure 4.2: Material point discretisation in the initial configuration (a) and current
configuration (b). Particle volumes are tracked, but particle shape is not. Particle
mass remains constant, thus fulfilling conservation of mass (Equation (3.23)).

where the integral is now a surface integral with n the surface normal
and τ̄ the prescribed traction. Consequently, Equation (4.5) represents
the traction boundary condition. The boundary of the domain is denoted
by ∂Ω = ∂Ωu ∪∂Ωτ where ∂Ωu and ∂Ωτ are non-overlapping parts of the
boundary with prescribed displacement and traction, respectively.

Reinserting Equations (4.4) and (4.5) into Equation (4.3), we arrive at
the weak form of the momentum equation, defined as the residual rmom:

rmom =−
∫
Ω
ηh ···ρah dΩ−

∫
Ω
σh :∇∇∇ηh dΩ+

∫
∂Ωτ

ηh ··· τ̄dS+
∫
Ω
ηh ···ρbh dΩ= 0.

(4.6)

4.3 Spatial discretisation
MPM uses two discretisations: the computational grid (Eulerian) and the
material points (Lagrangian). The entire computational domain with or
without material is divided into elements, while the material body is divided
into smaller volumes called material points.

4.3.1 Particle discretisation
We divide the original domain Ω0 into subdomains Ω0

p, where p = 1,2, . . . , Np
with Np as the total number of subdomains, as illustrated in Figure 4.2(a).
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Each of these subdomains is referenced by a material point located at the
subdomain’s centroid defined by the position vector X0

p. The material point
carry the concentrated mass Mp which is defined by

Mp = ρpVp, (4.7)

where ρp is the material point density and Vp the volume of the subdomain
represented by the particle. In the current configuration at some time t,
the original subdomains will have deformed into Ωp at a new position xp,
see Figure 4.2(b). The shapes of the subdomains are now unknown1, but
they still carry the same mass as before. Consequently, the conservation of
mass (Equation (3.23)) is automatically fulfilled.

The Dirac delta function is used as the basis function for the mass
density so that

ρ(x, t)=
Np∑
p=1

Mpδ
[
x−xp

]
. (4.8)

This mass density function lumps the mass into one infinitesimal point.
Alternatively, smoother density functions such as given by GIMP [54] may
be used instead. A useful property of the Dirac delta function is that∫

x
f (x)δ(x−a)dx = f (a). (4.9)

Reorganising terms of the weak form of the momentum equation (4.6), we
have ∫

Ω

(
ηh ···ρa+ρσs :∇∇∇ηh

)
dΩ=

∫
Ω
ηh ···ρbdΩ+

∫
∂Ω

ηh ··· τ̄dS, (4.10)

where ρ = ρ(x, t). Stresses σ is a property of the material points. Therefore,
σ is replaced by a specific stress σs defined as

σ= ρσs, (4.11)

which is beneficial when discretising the weak form of Equation (3.43) [5,
36]. So after inserting Equation (4.8) into Equation (4.10) we obtain a
discretised equation:

Np∑
p=1

Mp

[
ηp ·ap +σs

p :∇∇∇ηp

]
=

Np∑
p=1

Mpηp ·bp +
∫
∂Ω

η ··· τ̄dS, (4.12)

where notation has been simplified so that subscript p means that the
variable is evaluated at xp.

1CPDI is an alternative formulation of MPM that tracks the shape of material points.
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4.3.2 Grid discretisation

Let us now define a grid where the coordinates of the grid are denoted by xi

with i = 1,2, . . . , Nn and Nn the total number of grid nodes. The subspaces
of the spaces defined in Equations (4.1) and (4.2) are finite-dimensional,
and allows an approximate solution of the field as

uh =
Nn∑
i=1

ui(t)Ni(x), (4.13)

which is equivalent to FEM interpolation. In this work, Ni is a linear shape
function at node i defined as

Ni(x)=

⎧⎪⎨
⎪⎩

d∏
k=1

(
1−

(
xk − xi,k

)
Δxk

)
if |x−xi| <Δx

0 otherwise,

(4.14)

where d denotes the number of dimensions, xi is the spatial position of
node i, and Δx is the cell dimensions or grid spacing. While linear shape
functions are regarded as the standard of MPM, there are higher-order
alternatives [73].

As previously discussed, the convective term of the material time deriva-
tive of the nodal basis functions disappears since they are applied when
the grid deforms with the particles at the same relative initial positions.
Consequently, the velocity vh, the acceleration ah, and the test function ηh

can all be represented by the same basis functions:

vh(x, t)=
Nn∑
i=1

vi(t)Ni(x) (4.15)

ah(x, t)=
Nn∑
i=1

ai(t)Ni(x) (4.16)

ηh(x, t)=
Nn∑
i=1

ηi(t)Ni(x). (4.17)

The shorthand notation Nip = Ni

(
xp

)
will be used hereafter to denote shape

functions for node i evaluated at material point location xp. The subscript h

will also be dropped because only the approximate solution will be discussed
in the rest of this chapter.
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The momentum equation is solved at nodes, so we can insert Equa-
tions (4.16) and (4.17) at x= xp into Equation (4.12), thus obtaining

Np∑
p=1

Mp

[
Nn∑
i=1

ηiNip

][
Nn∑
j=1

a jNjp

]
+

Np∑
p=1

Mp

[
Nn∑
i=1

ηi∇∇∇Nip

]
σs =

Np∑
p=1

Mp

[
Nn∑
i=1

ηiNip

]
bp +

Nn∑
i=1

ηiNipτ̂i, (4.18)

where

τ̂i =
∫
∂Ω

Ni(x)τ̄(x)dS. (4.19)

The difference from FEM is that the location of the material point xp is
arbitrary within the element, and that the material point can move freely
between elements.

Since ηi is arbitrary and non-zero, we can eliminate it. Then we obtain
the following equation for each node i = 1,2, . . . , Nn:

Np∑
p=1

MpNip

(
Nn∑
j=1

a jNjp

)
︸ ︷︷ ︸∑Nn

j=1 mi ja j

+
Np∑
p=1

Mp∇∇∇Nip : σs

︸ ︷︷ ︸
Fint

=
Np∑
p=1

MpNipbp + τ̂i︸ ︷︷ ︸
Fext

. (4.20)

In the term of nodal internal force Fint we note that Mpσ
s = Mpρpσ=Vpσ,

so that

Fint =
Np∑
p=1

Vp∇∇∇Nip : σ, (4.21)

where σ is evaluated at the material points. In Equation (4.20) a consistent

mass matrix

mi j =
Np∑
p=1

MpNiNj (4.22)

is introduced. It is, however, more common to use a diagonally lumped

mass matrix with MPM [19, 37, 39], although some MPM formulations use
a consistent mass matrix [17]. Additionally, in MPM the nodal mass matrix
is assembled at the beginning of every time step, as the mass associated
with the nodes will change as particles move through the mesh. In FEM
the nodal mass matrix is assembled once. Therefore, the consistent mass
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4.4. Applying initial and boundary conditions

matrix in FEM may be inverted and stored for all subsequent time steps.
In MPM the consistent mass matrix would have to be inverted or solved for
at all time steps.

A diagonally lumped mass matrix is a mass matrix with diagonal terms
only. One of the main benefits is that a diagonal matrix can always be
inverted, which is done by simply inverting the individual entries. A
diagonal matrix can be represented by a vector in computer codes, thus
saving computational space. A drawback, on the other hand, is that some
numerical dissipation of kinematic energy occurs [98].

There exist several approaches to mass matrix lumping [99]. Here the
simple approach of row summation lumping is used [51]. That is, each
diagonal entry in the lumped mass matrix is the corresponding row sum of
the consistent mass matrix:

mi =
Nn∑
j=1

mi j =
Nn∑
j=1

Np∑
p=1

MpNiNj =
Np∑
p=1

MpNi. (4.23)

Introducing the lumped mass matrix defined in Equation (4.23) into Equa-
tion (4.20) and grouping all force vectors to the right hand side, we have

mia=Fext −Fint, (4.24)

which is the equation of conservation of linear momentum at node i. This
equation is identical to the FEM equivalent, demonstrating the similarities
of MPM and FEM. Consequently, many features of FEM can be applied to
MPM. Examples of further improvement of MPM based on FEM are the
implicit time integration proposed by Guilkey & Weiss [18] and the random
material point method proposed by Wang [100].

Equation (4.24) is only semi-discretised, as it is only the spatial partial
derivatives that have been discretised, not the temporal. Refer to Sec-
tion 4.5 for explicit time integration and to Section 4.6 for implicit time
integration of the governing equations.

4.4 Applying initial and boundary
conditions
In MPM the initial conditions defined in Equations (3.51) and (3.52) are
directly applied to the particles during the creation procedure, along with
material properties. Due to the two discretisation levels of MPM, the
boundary conditions are applied to both boundaries depending on boundary
type, as shown in Figure 4.3.
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grid boundary
material boundary particle

Figure 4.3: In MPM boundary conditions can be applied to either the grid (thick
dark line) or to boundary particles (filled circles).

τ(t0)

τ(t)

Figure 4.4: Traction applied to boundary
particles (filled) is moving with the de-
forming body.

4.4.1 Boundary conditions applied to particles

The traction boundary is applied on boundary particles, as shown in Fig-
ure 4.4. This allows the traction boundary to move with the body, as opposed
to traction applied to the fixed background grid. During particle creation
at the very start of the simulation, the boundary particles are located and
flagged. Then the surface area Aτ where the traction is applied and the
number of boundary particles Nbp are computed. Then at each time step t

the boundary particles are assigned a traction force as follows:

ftrac
p = Aτ

Nbp
τ(t). (4.25)
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4.5. Explicit material point method

The Uintah computational framework [29] has the special case of pressure
traction boundary conditions available, meaning stress is applied in the
direction of the boundary surface normal. This means that the surface
traction τ(t) is found from

τ(t)= p(t) ·n, (4.26)

where p is the prescribed pressure where the sign indicates direction of
loading, and n is the boundary surface normal. Zero traction boundaries
need not be defined explicitly.

An alternative to applying traction forces on a layer of boundary par-
ticles is to create a moving mesh, as described in [77]. The idea is that
the boundary surface always aligns with the computational grid, in a man-
ner similar to FEM. The moving mesh boundary can also be applied to
kinematic boundary conditions, for instance, the application of prescribed
displacements or velocities. However, in the case of large deformations, the
moving mesh procedure can lead to mesh distortion, and it is also difficult
to mesh properly if the boundary surface is irregular, such as the surface of
a failing slope.

4.4.2 Boundary conditions applied to grid
Zero kinematic boundary conditions or symmetric boundary conditions are
applied directly on the boundary nodes. These boundary conditions are
applied by setting the nodal displacement or velocity component that is
normal to the grid boundary to 0 before the equation of motion is computed.
In general, the procedures for applying boundary conditions directly at grid
nodes are similar to FEM.

4.5 Explicit material point method
The original material point method used explicit time integration [18, 37],
and it is by far the most common in literature [8]. Explicit time integration
makes advancing the solution in time straightforward because no iterations
are needed per time step. The current solution is used together with a time
step to achieve the new solution, on the form of a first order Taylor series
expansion around the known value:

f n+1 = f n + d f

dt

∣∣∣∣
n
Δt, (4.27)
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where f is some function of time, the differential d f /dt is evaluated at n,
Δt is the stride or time step, and superscripts n and n+1 denotes solutions
at time tn and tn+1 = tn +Δt.

Using a lumped mass matrix and explicit time integration, we first
solve for the nodal acceleration ai from the equation of conservation of
linear momentum

miai =Fext −Fint, (4.28)

which is done by dividing with the nodal mass mi. Equation (4.28) can be
solved at all nodes independently due to the lumped mass matrix.

Then the particle velocities are computed directly from the nodal accel-
erations through

vn+1
p = vn

p +Δt
Nn∑
i=1

an+1
i Nn

ip, (4.29)

where Nn
ip

is simplified notation for Ni(xn
p). This is done to avoid first

updating the nodal velocities and then interpolating to the particles [37].
After obtaining the particle velocities, the nodal velocities are updated from
the momentum as

mn
i vn

i =pn
i , (4.30)

where the nodal momentum pn
i

is the sum of particle momentums computed
from the particle velocities by

pn
i =

Np∑
p=1

MpNn
ipvn

p. (4.31)

The reason for using the nodal accelerations to update the particle velocities
is to overcome the small mass problem identified by Sulsky et al. [37]. The
small mass problem arises when particles are positioned very close to one
boundary in an otherwise empty element, as illustrated in Figure 4.5. The
opposite nodes will then have very small masses due to the interpolation
weight, and this may result in unphysically large nodal accelerations [18, 37,
52–54]. This approach does not eliminate these accelerations, as division by
mass is still done to solve for the acceleration in Equation (4.28). However,
by updating the nodal velocities through the particle momentums, the
number of nodal mass divisions is minimized. In addition, the accelerations
are smoothed, which is another feature that dissipates energy [52].
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Mp(1− x̄p)

Mp

x̄p

1

i p j

Figure 4.5: The small mass problem in 1D. When a particle p is very close to node
j, the interpolated mass to the opposite node i will be very small as normalised
position x̄p of the particle approaches the normalised node spacing.

With the acceleration an
i

from Equation (4.28) and velocity vn
i

from
Equation (4.30), the updated nodal velocity is found from

vn+1
i = vn

i +an
i Δt, (4.32)

which is a simple forward Euler step. The particle updated positions are
computed from the nodal velocity, as

xn+1
p = xn

p +Δt
Nn∑
i=1

vn+1
i Nn

ip, (4.33)

while the particle velocity is aleady updated from Equation (4.29).
During the Lagrangian step of solving the equations of motion, the grid

is assumed to deform in the flow of material, keeping all particles in the
same relative position as in the undeformed configuration. This means that
the basis functions Nn

ip
are valid throughout this phase before the grid is

reset.

4.5.1 Critical time step
Explicit time integration is conditionally stable, which means that there
will be no convergence and hence no solution if the time step is too large.
This was pointed out by Courant et al. [101] and lead to the formulation
of the CFL condition, which states that no information can travel past
its immediate neighbours during one time step. This condition must be
fulfilled to obtain stability, but it is not enough to guarantee stability.
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An example of a violation of the condition would be a wave travelling
through the material with a velocity v such that the travelled distance
during one time step, Δu= vΔt, is greater than the grid spacing Δx. In this
case, the following equality most hold to obtain a solution:

Δu= vΔt ≤Δx. (4.34)

The largest speed in the material would give the lowest time step. Therefore
the dilational wave speed of the material c is used to compute the critial
time step, and is computed from

c =
√

K +4/3G

ρ
, (4.35)

where ρ the material density, and K and G are the bulk and shear moduli,
respectively. Since the equations of motion are solved at the nodes in MPM,
the grid spacing determines Δtc and not the distance between material
points. The smallest grid spacing Δxmin across all dimensions is used to
estimate Δtc. With unstructured meshes, it may be difficult to find Δxmin,
but this is not a problem with the MPM part of the Uintah computational
framework [29] as it uses a fixed regular Cartesian mesh.

The critical time step can then be found from

Δtc ≤ Δxmin

c
. (4.36)

The critical time step Δtc is updated at every time step because the particle
density ρ changes with time. A coarser grid allows for larger time steps,
but will also lead to a less accurate solution.

4.5.2 Outline of one time step
Refer to Figure 4.1 for an illustration of the phases described below. The
explicit MPM code in the Uintah computational framework [29] performs
one time step as follows:

1. Mapping phase
Particle quantities are mapped from particles to nodes.

1) Apply external loads on boundary particles

2) Map particle masses to nodes:

mn
i =

Np∑
p=1

MpNn
ip (4.37)
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4.5. Explicit material point method

3) Compute particle momentums:

pn
p = Mpvn

p (4.38)

4) Compute nodal velocities from Equation (4.38):

vn
i =

∑Np
p=1 pn

pNn
ip

mn
i

(4.39)

5) Map particle external loads to node:

Fn
ext =

Np∑
p=1

Fn
p, extN

n
ip (4.40)

6) Compute nodal internal force from particle stress:

Fn
int =

Np∑
p=1

Vp∇∇∇Nn
ip : σ (4.41)

Note that subscript i is omitted for the notation of the internal and
external nodal forces.

2. Lagrangian phase
Momentum equation (4.28) is solved for the nodal acceleration an

i
. Fur-

thermore, the following is done:

1) Compute particle velocities from nodal acceleration

vn+1
p = vn

p +Δt
Nn∑
i=1

an
i Nn

ip (4.42)

2) Compute nodal velocities

vn+1
i = vn

i +an
i Δt (4.43)

3) Compute particle velocity gradients

Ln+1
p =∇∇∇v∗

p =∇∇∇
(

Nn∑
i=1

vn+1
i Nn

ip

)
(4.44)

4) Update particle volume

5) Apply the constitutive model on particles to get σn+1
p
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3. Convective phase
Particles are moved and grid properties are deleted. The particle dis-
placements and positions are updated from the nodal velocities:

xn+1
p = xn

p +Δt
Nn∑
i=1

vn+1
i Nn

ip (4.45)

4.6 Implicit material point method
This thesis extends the single-phase implementation of an implicit MPM
found in the Uintah open-source computational framework [29]. Since the
approach used in that framework is the tangential stiffness method pro-
posed by Guilkey & Weiss [18], that is the approach that will be presented
here.

We start from defining a residual r from Equation (4.24), noting that
all kinematic properties are evaluated at timestep n+1, which gives

r=Man+1 −Fn+1
ext +Fn+1

int = 0. (4.46)

This is the global system. In the rest of this section, superscript n+1 will
be omitted when superscript k or k+1 is used.

The iterative Newton-Raphson method is applied to Equation (4.46) to
obtain an approximation of the residual at iteration k+1, written as

rk+1 ≈ rk + ∂r
∂u

∣∣∣∣
k

duk = 0. (4.47)

The time differentials are integrated by use of the Newmark-β method
[102] for the displacements u:

an+1 = 1
βΔt2

(
un+1 −un

)− 1
βΔt

vn − 1−2β
β

an (4.48)

vn+1 = γ

βΔt

(
un+1 −un

)+(1− γ

β

)
vn +Δt

(
1− γ

2β

)
an (4.49)

where γ= 1/2 and β= 1/4 corresponds to constant acceleration during the
time interval Δt, while β = 1/6 corresponds to linear acceleration [102].
The equations for acceleration an+1 and velocity vn+1 can be simplified by
noticing that un = 0 due to the grid resetting of MPM. In the derivations
that follow, β= 1/4 and γ= 1/2.
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In order to find the system stiffness matrix, that is, the differential in
Equation (4.47), we differentiate the terms of Equation (4.46). The first
term is

∂ak

∂uk
= 4

Δt2 . (4.50)

Furthermore, we have that

∂Fint

∂u
≡K, (4.51)

where K=Kmat +Kgeo is the tangent stiffness matrix which in non-linear
analysis consists of the material stiffness matrix

Kmat =
∑
p

BTDBVp, (4.52)

and the non-linear geometric stiffness matrix

Kgeo =
∑
p

BT
NLσBNLVp. (4.53)

The strain-displacement matrix B=∇∇∇N written out is⎡
⎢⎢⎢⎢⎢⎢⎢⎣

dN1/dx 0 0 · · · dN8/dx 0 0
0 dN1/dy 0 · · · 0 dN8/dy 0
0 0 dN1/dz · · · 0 0 dN8/dz

dN1/dy dN1/dx 0 · · · dN8/dy dN8/dx 0
0 dN1/dz dN1/dy · · · 0 dN8/dz dN8/dy

dN1/dz 0 dN1/dx · · · dN8/dz 0 dN8/dx

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (4.54)

which is a 6× (3 ·8) matrix. The numerical subscript denotes the node, and
with a 3D Cartesian grid, there are 8 nodes per element.

The non-linear strain-displacement matrix BNL is a 3× (3 ·8) matrix:⎡
⎣dN1/dx 0 0 · · · dN8/dx 0 0

0 dN1/dy 0 · · · 0 dN8/dy 0
0 0 dN1/dz · · · 0 0 dN8/dz

⎤
⎦. (4.55)

We assume Fn+1
ext to be independent of the displacement, and consequently

its derivative with respect to the displacement is 0. Then, by inserting
Equation (4.46) and the differentials defined in Equations (4.50) and (4.51)
into Equation (4.47), we get

Mak −Fn+1
ext +Fk

int +
(

4
Δt2 M+K

)
duk+1 = 0. (4.56)
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Introducing K̄≡ (4/Δt2)M+K, inserting Equation (4.48), and grouping the
terms with known quantities on the right hand side of the above equations,
leads to the implicit tangent stiffness method for the material point method
[18, 55]:

K̄duk+1 =Fn+1
ext −Fk

int −M
(

4
Δt2 uk − 4

Δt
vn −an

)
, (4.57)

where un = 0 because the grid is reset at the start of each time step. The
above system of equations can be written more compactly as

K̄duk+1 =−rk. (4.58)

The iterations are run until the convergence criteria are met. Two criteria
are defined, and both should be satisfied. There are a displacement based
criterion and a criterion based on the product of the displacement increment
and the residual:∥∥duk

∥∥
‖dumax‖ <DTOL and

∥∥duk+1rk+1∥∥∥∥du0r0
∥∥ <RTOL, (4.59)

where ‖dumax‖ is the maximum value of the displacement increment norm,
and

∥∥du0r0∥∥ is the initial value of the corresponding norm. DTOL and
RTOL are user-defined tolerances.

4.6.1 Outline of one time step
In the implicit MPM code distributed with the Uintah open-source compu-
tational framework [29], one time step is performed as follows:

1. Mapping phase
Particle quantities are mapped from particles to nodes. This is identical
to the explicit MPM time step except that the computation of the internal
force is moved to the iterative loop.

1) Apply external loads on boundary particles

2) Map particle masses to nodes:

mn
i =

Np∑
p=1

MpNn
ip (4.60)

3) Compute particle momentums:

pn
p = Mpvn

p (4.61)
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4) Compute nodal velocities from Equation (4.61):

vn
i =

∑Np
p=1 pn

pNn
ip

mn
i

(4.62)

5) Map particle external loads to node:

Fn
ext =

Np∑
p=1

Fn
p, extN

n
ip (4.63)

Note that subscript i is omitted for the notation of the internal and
external nodal forces.

2. Lagrangian phase
The system of equations (4.58) is solved iteratively.

1) Initialization. Compute σk
p

(
uk
)
, V k

p , K̄, Fint

(
σk
)
, and rk.

2) Solve for displacement increment duk+1

3) Update grid kinematics by the Newmark β-method and the trape-
zoidal rule:

uk+1 =uk +duk+1 (4.64)

vk+1 = 2
Δt

uk+1 −vn (4.65)

Note that Δuk+1 = uk+1 −un = uk+1 since grid is reset at the begin-
ning of each time step (un = 0).

4) Check for convergence from∥∥duk+1∥∥
‖dumax‖ <DTOL and

∥∥duk+1rk+1∥∥∥∥du0r0
∥∥ <RTOL (4.66)

If not both convergence criteria are met, points (1)-(4) are repeated until
convergence criteria is met. Else, the converged state is saved and the
grid acceleration computed from Equation (4.48).

3. Convection phase
Particles are moved and grid properties are deleted. The particle po-
sitions and velocities are updated from the nodal displacements and
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accelerations:

xn+1
p = xn

p +
Nn∑
i=1

un+1
i Nip (4.67)

vn+1
p = vn

p +
Δt

2

[
an

p +
Nn∑
i=1

an+1
i Nip

]
(4.68)

4.7 Chapter summary
In this chapter the single-phase the material point method (MPM) was
presented and derived. After the MPM discretisation procedure, the system
of equations is similar to the corresponding system of FEM. The system
of equations is solved at the grid nodes in both MPM and FEM. Therefore,
methods developed for FEM can be applied to MPM too.

Two time integration schemes have been presented: one explicit scheme
using the simple forward Euler method, and one implicit scheme using
Newmark-β method with coefficients that correspond to the trapezoidal rule.
The explicit MPM must fulfil the Courant-Friedrichs-Lewy (CFL) condition
in order to converge, while the implicit MPM has no such constraint on the
time step other than the accuracy may be lower with larger time steps.
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5
COUPLED DYNAMIC

VELOCITY-BASED MPM

This chapter presents the coupled v-w formulation with explicit
time integration as described by Jassim et al. [9]. The approach
acknowledges the difference between solid and water acceler-
ations and keeps track of two separate velocity fields, one for
each phase. It is a one-point formulation, and the points move
according to the solid velocity. A single-phase explicit MPM code
[29] is extended with this formulation in this study.
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5.1 Governing equations
The v-w formulation by Jassim et al. [9] is based on the conservation of
linear momentum and mass as presented in Section 3.3. The relevant
strong equations used to derive the weak formulation are repeated here for
convenience.

First, we need the equation of the conservation of fluid linear momen-
tum:

ρwaw =∇∇∇p− ρw g

k
n(w−v)+ρwb, (5.1)

where ρw is the density of water, aw the acceleration of water, p pore
pressure, k is the hydraulic conductivity, g is the magnitude of gravitational
acceleration, n is the porosity, w and v are the water and solid velocities,
respectively, and b represents body forces such as gravity.

Next, we need the equation of the conservation of the mixture linear
momentum:

nρwaw + (1−n)ρsas =∇∇∇···σ+ρb, (5.2)

where ρs is the density of the solid grains, ρ = nρw+(1−n)ρs is the saturated
density of the soil, as is the acceleration of the solid phase, and σ=σ′ + pI
is the total stress. Equations (5.1) and (5.2) will be turned into the weak
form through the MPM discretisation procedure.

At the material point level, a constitutive model that describes the
relationship between strain and effective stress is needed:

σ′ =G (F), (5.3)

where G is some constitutive function that depends on the deformation
gradient F. When using explicit time integration, the time steps are often
so small that a small strain assumption can be used. In that case, we could
use a linear elastic material model with

σ′ =D : ε, (5.4)

where D is the stiffness matrix, and the small strain tensor in terms of
deformation gradient F is

ε= 1
2

(
F+FT

)
−I. (5.5)
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For the evolution of the pore pressures, we need the storage equation
derived from the conservation of mixture mass, written as

∂p

∂t
= Kw

n
[(1−n)∇∇∇···v+n∇∇∇···w], (5.6)

where Kw is the bulk modulus of water, and n is assumed to be spatially
constant [77].

To complete the boundary value problem, the initial conditions are:

σ′(x, t0)=σ′
0 and p(x, t0)= p0 (5.7)

v(x, t0)= v0 and w(x, t0)=w0. (5.8)

The Dirichlet boundary conditions are

v(x, t)= v̄(t) on ∂Ωu (5.9)

w(x, t)= w̄(t) on ∂Ωw, (5.10)

and the Neumann boundary conditions are

σ(x, t) ···n= τ̄(t) on ∂Ωτ (5.11)

p(x, t) ···n= p̄(t) on ∂Ωp. (5.12)

5.1.1 Weak form of the governing equations
The governing equations in strong form (5.1) and (5.2), need to be trans-
formed into weak form. The procedure is similar to the single-phase MPM
presented in Chapter 4, and covered in more detail in Section 4.2. First, we
define a space of test functions so that

V0 =
{
ηh :Ω→R3 | ηh ∈ H1, ηh = 0onΓv

}
, (5.13)

where H1 is the Sobolev space of degree 1. Both primary variables v and
w belong to this space, which means that the velocity fields of both phases
are discretised by the same linear (degree 1) shape functions. The weak
solution is obtained by multiplying Equations (5.1) and (5.2) with the test
functions ηh and integrating over the domain Ω. This gives

∫
Ω
ηh ···ρwaw, h dΩ=∫

Ω
ηh ···∇∇∇ph dΩ−

∫
Ω
ηh ···

ρw g

k
n(wh −vh)dΩ+

∫
Ω
ηh ···ρwbdΩ (5.14)
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∫
Ω
ηh ···nρwaw, h dΩ+

∫
Ω
ηh ··· (1−n)ρsas, h dΩ=∫

Ω
ηh ··· (∇∇∇···σh)dΩ+

∫
Ω
ηh ···ρbdΩ. (5.15)

Applying the divergence theorem on the pore pressure gradient term gives∫
Ω
ηh ···∇∇∇ph dΩ=

∫
∂Ω

ηh p̄dS−
∫
Ω

ph

(∇∇∇···ηh

)
dΩ, (5.16)

where p̄ = phn is the prescribed pore pressure at the boundary of ∂Ωp with
outward surface normal n. Similarly, the divergence theorem is applied to
the total stress term as in Equation (4.3), which gives∫

Ω
ηh ··· (∇∇∇···σh)dΩ=

∫
∂Ω

ηh ··· τ̄dS−
∫
Ω
∇∇∇ηh : σh dΩ, (5.17)

where the prescribed traction at the boundary is τ̄=σh : n.
Reinserting Equations (5.16) and (5.17) into Equations (5.14) and (5.15)

and reorganising terms gives the weak form for the conservation of momen-
tum for the water as∫

Ω
ηh ···ρwaw, h dΩ=

∫
∂Ω

ηh p̄dS−
∫
Ω

ph

(∇∇∇···ηh

)
dΩ

−
∫
Ω
ηh ···

ρw g

k
n(wh −vh)dΩ+

∫
Ω
ηh ···ρwbdΩ, (5.18)

and for the conservation of momentum for the mixture as∫
Ω
ηh ··· (1−n)ρsas, h dΩ=−

∫
Ω
ηh ···nρwaw, h dΩ

+
∫
∂Ω

ηh ··· τ̄dS−
∫
Ω
∇∇∇ηh : σh dΩ+

∫
Ω
ηh ···ρbdΩ. (5.19)

5.1.2 Application of initial and boundary conditions
As discussed in Section 4.4 for the single-phase MPM, the boundary condi-
tions can be applied either to the grid or directly on the particles. The water
phase boundary conditions are applied in the same way. In other words,
the prescribed pore water pressure boundary is applied to the boundary
particles, while zero kinematic boundary conditions, which equals imper-
meable boundaries with zero flux, are applied to the grid. Prescribed water
velocity is not included in this implementation and is therefore 0 by default,
but can be applied to particles during creation procedure.

60



5.2. Spatial discretisation

5.2 Spatial discretisation
The v-w formulation presented here is a one-point formulation. Similar to
the single-phase MPM described in Chapter 4, the domain Ω0 is divided
into one set of subdomains Ω0

p with Np subdomains. Each point represents
the saturated mixture, and the concentrated particle mass Mp is therefore

Mp = ρVp, (5.20)

where ρ = nρw + (1−n)ρs is the saturated density of the particle. Particle
masses for the water and solid phases is defined as

Mw = ρwVp and Ms = ρsVp, (5.21)

respectively. Note that these masses are not the actual phase masses of the
particle, as they have not been scaled to their respective volume fraction.

Doing the same discretisation procedure as in Section 4.3 on the conser-
vation equations of momentum (5.18) and (5.19), we get

Np∑
p=1

Mw
[
ηh ·aw, h

]=∫
∂Ω

ηh p̄IdS−
∫
Ω

ph

(∇∇∇···ηh

)
dΩ

+
Np∑
p=1

Mwηh ·b−
Np∑
p=1

Mwηh ···
g

k
n(wh −vh) (5.22)

for the water phase, and

Np∑
p=1

Ms(1−n)
[
ηh ·as, h

]=−
Np∑
p=1

Mwn
[
ηh ·aw, h

]+ Np∑
p=1

Mpηh ·b+
∫
∂Ω

ηh ···τ̄dS

−
∫
Ω
∇∇∇ηh : σh dΩ (5.23)

for the mixture. Then the approximate field variables ηh, aw, h, as, h, vh,
and wh are replaced by their discretised counterparts, here represented by
the generic variable Xh:

Xh =
Nn∑
i=1

XiNi(x). (5.24)
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Now, we can eliminate the discretised test functions ηi(t):

mw, j︷ ︸︸ ︷
Np∑
p=1

Mw

Nn∑
i=1

Nip

Nn∑
j=1

Njp aw, j =

Fext, w︷ ︸︸ ︷∫
∂Ω

Nn∑
i=1

Nip p̄IdS+
Np∑
p=1

Mw

Nn∑
i=1

Nip ·b

−
(
∇∇∇···

Nn∑
i=1

Nip

)
pVp︸ ︷︷ ︸

Fint,w

−
Np∑
p=1

Mw

Nn∑
i=1

Nip ··· g

k
n

(
Nn∑
i=1

wiNip −
Nn∑
i=1

viNip

)
︸ ︷︷ ︸

Fdrag

(5.25)

ms, j︷ ︸︸ ︷
Np∑
p=1

Ms(1−n)
Nn∑
i=1

Nip

Nn∑
j=1

Njp as, j =−
Np∑
p=1

Mwn
Nn∑
i=1

Nip

Nn∑
i=1

Njpaw, j

+
Np∑
p=1

Mp

Nn∑
i=1

Nip ·b+
∫
∂Ω

Nn∑
i=1

Nip ··· τ̄dS

︸ ︷︷ ︸
Fext

−∇∇∇
Nn∑
i=1

Nip : σVp︸ ︷︷ ︸
Fint

. (5.26)

Finally, introducing the lumped phase mass matrices

mα =
Np∑
p=1

MαNiNj (5.27)

m̄α =
Np∑
p=1

nαMαNiNj (5.28)

where α denotes the phase, we get the spatially discretised system

mwaw =Fext,w −Fint,w −Fdrag

m̄sas =−m̄waw +Fext −Fint.
(5.29)

Note that Fint is the internal force of the total stress σ.

5.3 Time integration
The spatial discretisation and the initial and boundary conditions give the
following system of ordinary differential equations:

mw
dw
dt

=Fext,w −Fint,w −Fdrag (5.30)

m̄s
dv
dt

=−m̄waw +Fext −Fint, (5.31)
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5.3. Time integration

where mw, m̄w and m̄s are mass matrices for water and solid phase, as
defined in Equation (5.29); dw/dt = aw is the acceleration of the water
phase, and dv/dt = as is the acceleration of the solid phase.

To obtain the velocities v and w, the above equations need to be inte-
grated over the timestep from time t to time t+Δt, as follows

∫t+Δt

t
mw

dw
dt

dt =
∫t+Δt

t

(
Fext,w −Fint,w −Fdrag

)
dt (5.32)∫t+Δt

t
m̄s

dv
dt

dt =
∫t+Δt

t

(−m̄waw +Fext −Fint
)
dt. (5.33)

Reordering terms and applying the simple Euler forward time integration
from Equation (4.27), leads to

mw
(
wn+1 −wn

)≈ (Fn
ext,w −Fn

int,w −Fn
drag

)
Δt (5.34)

m̄s
(
vn+1 −vn

)≈ (−m̄wan
w +Fn

ext −Fn
int
)
Δt, (5.35)

where superscripts n and n+1 denote time steps at times t and t+Δt,
respectively.

Rewriting Equations (5.34) and (5.35) to solve for the velocities at time
step n+1, gives

wn+1 =wn +m−1
w

(
Fn

ext,w −Fn
int, w −Fn

drag

)
Δt (5.36)

vn+1 = vn +m̄−1
s
(−m̄wan

w +Fn
ext −Fn

int
)
Δt. (5.37)

The mass matrices mw and m̄s need to be inverted. However, as they are
diagonally lumped as the total mass matrix defined in Equation (4.23), the
system of equations is decoupled. Consequently, Equations (5.36) and (5.37)
are solved iteratively and separately at each node by dividing the force
residuals in the parentheses with the scalar nodal phase mass.

The discretised governing equations Equations (5.30) and (5.31) are
solved at nodes for the accelerations. The nodal accelerations are used to
update both the nodal velocities and the particle velocities to avoid the so-
called small mass problem, which is discussed in more depth in Section 4.5.
Let us therefore define nodal accelerations from Equations (5.36) and (5.37)
as

an
w =m−1

w

(
Fn

ext,w −Fn
int,w −Fn

drag

)
(5.38)

an
s = m̄−1

s
(−m̄wan

w +Fn
ext −Fn

int
)
. (5.39)
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By use of the interpolation functions in the same manner as for the single-
phase MPM of Section 4.5, the particle velocities are updated directly from
the nodal accelerations through

wn+1
p =wn

p +Δt
Nn∑
i=1

an
wNn

ip, (5.40)

vn+1
p = vn

p +Δt
Nn∑
i=1

an
s Nn

ip. (5.41)

Then the particle displacement is updated from the particle solid velocity:

un+1
p =Δtvn+1

p . (5.42)

Note that only the solid velocity vp influences the displacement up. The
particle strain increment can, for instance, be found from the particle
velocity gradient

Ln+1
p =∇∇∇v∗

p, (5.43)

where v∗
p is the particle solid velocity interpolated from the nodal updated

velocity vn+1. The constitutive model gives the effective stress response of
the particle based on the strain increment.

The newly computed phase velocities are used to compute the new pore
pressure pn+1 at the particle, which is also integrated in time with a simple
forward Euler step:

pn+1 ≈ pn + dp

dt
Δt, (5.44)

where porepressure rate dp/dt is found from the storage equation defined
in Equation (3.37). This gives

pn+1 = pn + Kw

n

[
(1−n)∇∇∇···vn+1 +n∇∇∇···wn+1]Δt. (5.45)

Note that when the phase accelerations are almost equal, the phase veloci-
ties will be too. Consequently, the water phase has similar displacements
as the solid phase. However, when this is not true, then the pore pressure
is computed with velocity values sampled at different locations. Therefore,
the v-w formulation does not guarantee that fluid mass is conserved [8].
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5.4. Outline of one time step

Critical time step. There will be pore pressure oscillations because of
the type of mathematical problem that poromechanics produces. These
oscillations will worsen with smaller time steps. The abrupt change in load
at the draining boundary disturbs the system.

Vermeer & Verruijt [79] suggested a lower limit for the time step in
such cases, written as

Δtw ≥ 1
6

(Δh)2

θcv
, (5.46)

where Δh is the cell size closest to the draining boundary, 0≥ θ ≥ 1 deter-
mines type of time integration, and cv is the coefficient of consolidation.

5.4 Outline of one time step
Repeating here the anatomy of an explicit time step as performed in the
Uintah framework [29], first presented in Section 4.5.2. Equations are
added in order to transform an existing explicit MPM code into a code that
can model pore pressure generation and dissipation. Refer to Figure 4.1 for
an illustration of the phases described below.

1. Mapping phase
Particle quantities are mapped from particles to nodes.

1) Apply external loads on boundary particles

2) Map particle masses to nodes:

mn
i =

Np∑
p=1

MpNn
ip (5.47)

mn
w,i =

Np∑
p=1

Mp,wNn
ip (5.48)

3) Compute particle momentums:

pn
p = (1−n)Mpvn

p (5.49)

pn
p,w = nMp,wwn

p (5.50)
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4) Compute nodal phase velocities from Equations (5.49) and (5.50):

vn
i =

∑Np
p=1 pn

pNn
ip

mn
i

(5.51)

wn
i =

∑Np
p=1 pn

p,wNn
ip

mn
w,i

(5.52)

5) Map particle external loads to node:

Fn
ext =

Np∑
p=1

Fn
p, extN

n
ip (5.53)

6) Compute nodal internal force from particle total stress:

Fn
int =

Np∑
p=1

Vp∇∇∇Nn
ip :

(
σ′n + pnI

)
(5.54)

And compute nodal internal fluid force and nodal fluid drag force:

Fn
int,w =

Np∑
p=1

Vp∇∇∇Nn
ip : pnI (5.55)

Fn
drag =

(
wn

i −vn
i

) Np∑
p=1

Nip
ng

k
Mp,w (5.56)

Note that the node subscript i is omitted for simplicity in the notation
of the internal, external and drag nodal forces.

2. Lagrangian phase
Momentum equations (5.38) and (5.39) are solved for nodal accelerations
an

i
. First, we solve for fluid acceleration, as it is used to compute the

solid acceleration. Furthermore, the following is done:

1) Compute particle velocities from nodal acceleration.

wn+1
p =wn

p +Δt
Nn∑
i=1

an
wNn

ip (5.57)

vn+1
p = vn

p +Δt
Nn∑
i=1

an
s Nn

ip (5.58)
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2) Compute nodal velocities

wn+1
i =wn

i +an
wΔt (5.59)

vn+1
i = vn

i +an
s Δt (5.60)

3) Compute particle solid velocity gradients

Ln+1
p =∇∇∇v∗

p =∇∇∇
(

Nn∑
i=1

vn+1
i Nn

ip

)
(5.61)

4) Update particle volume

5) Apply the constitutive model on particles to get σn+1
p

6) Update pore pressure from Equation (5.45).

3. Convective phase
Particles are moved and grid properties are deleted. The particle dis-
placements and positions are updated from the nodal velocities:

xn+1
p = xn

p +Δt
Nn∑
i=1

vn+1
i Nn

ip (5.62)
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It matters little who first arrives at an idea,
rather what is significant is how far that idea can go

Sophie Germain
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6
ITERATIVELY COUPLED IMPLICIT

MPM-FVM: DERIVATION

This chapter contains the main contribution of this thesis. It de-
scribes an implicit, dynamic, one-point MPM iteratively coupled
with FVM displacement-pressure formulation for saturated soils.
The governing equations are discretised in space and time. A pre-
conditioner is applied to obtain a split system of equations, which
is justified both mathematically and physically. The split coupled
problem is solved iteratively by MPM for the displacements and
FVM for the pore pressures. The implementation of the method
is described in Chapter 7 and verified in Chapter 8.
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6. ITERATIVELY COUPLED IMPLICIT MPM-FVM: DERIVATION

6.1 Governing equations
The formulation adopted here is a dynamic u-p formulation, which was in-
troduced and derived in Section 3.3. The governing equations are repeated
here for convenience. The acceleration of either phase is denoted as a in
this chapter because the u-p formulation assumes no relative acceleration
of water and solid phases. First, we need the conservation of momentum
for the mixture:

∇∇∇···σ′ +∇∇∇p+ρb−ρa= 0, (6.1)

where σ′ is the effective stress, p is the pore pressures, ρ is the saturated
density, b is the body force, and a the acceleration. Then, we need the mass
conservation equation with fluid flow or storage equation with ε̇v =∇∇∇···v1:

n

Kw
ṗ− ε̇v −∇∇∇···q= 0 (6.2)

The effective stress σ′ is computed from a constitutive soil model of choice,
as

σ′ =G (F), (6.3)

where F is the deformation gradient. Furthermore, q is the specific dis-
charge defined by

q=− k

ρw g

[∇∇∇p+ρw(a−b)
]
, (6.4)

where k is the hydraulic conductivity.
The initial conditions are given as

σ′(x, t0)=σ′
0 and p(x, t0)= p0, (6.5)

and the Dirichlet boundary conditions are

u(x, t)= ū(t) on ∂Ωu (6.6)

p(x, t)= p̄(t) on ∂Ωp. (6.7)

and the Neumann boundary conditions are

σ(x, t) ···n= τ̄(t) on ∂Ωτ (6.8)

q(x, t) ···n= q̄(t) on ∂Ωq, (6.9)
1This relation holds for large deformations too.

70



6.2. Weak form of the governing equations

6.2 Weak form of the governing equations
As mentioned in Chapter 4, the spatial discretisation process of MPM
and FEM are similar because the conservation equations are solved at
the nodes of the background mesh. Therefore, discretisation techniques
where the equations are split between FEM and FVM are also applicable
to MPM. In this section, the conservation of momentum equation (6.1) is
discretised at nodes, which is common for FEM and single-phase MPM (see
Chapter 4), while the conservation of mass equation (6.2) is discretised at
cell centers as with FVM. Similar to FEM and MPM, FVM also operates on
a weak formulation of the governing equations. While a common approach
with FEM and MPM is to multiply the governing equations with a test
function and then integrate over the entire domain Ω, FVM is derived by
a volume integral over the individual element only. However, FVM may
also be derived in the same manner as FEM and MPM, if the test function
is piecewise constant [86, 88, 103, 104]. The transformation process from
strong form to weak form is described in more depth in Section 4.2 for the
single-phase MPM.

First, let us define the solution function spaces for the field variables u
and p and their essential boundary conditions as

U = {u :Ω→R3 | u ∈ H1, u= ū on ∂Ωu
}

(6.10)

P = {p :Ω→R | p ∈ L2, p = p̄ on∂Ωp

}
, (6.11)

where H1 is the Sobolev space of degree 1 and L2 is the space of square inte-
grable functions. This means that the displacement field u is discretised by
linear (degree 1) shape functions, and the pore pressure field p by constant
(degree 0) shape functions. The finite-dimensional approximated spaces Uh

and Ph are the corresponding subspaces of the infinite-dimensional solution
spaces U and P . We are seeking the solution of a discrete approximation
of these spaces by finding (uh, ph) ∈Uh ×Ph.

The spaces of the corresponding test functions η and ϕ are

U0 =
{
η :Ω→R3 | η ∈ H1, η= 0 on ∂Ωu

}
(6.12)

P0 =
{
ϕ :Ω→R | ϕ ∈ L2, ϕ= 0 on ∂Ωp

}
, (6.13)

The approximate test functions ηh and ϕh are defined on the corresponding
subspaces U0,h and P0,h and use the same shape functions as defined in
Equation (6.22). The weak solution of the problem is obtained by multiply-
ing Equations (6.1) and (6.2) with the corresponding test functions

{
ηh,ϕh

}
and integrating over the domain Ω.
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6.2.1 Weak form of the fluid mass equation
Multiplying Equation (6.2) with the test function ϕh over the domain Ω,
gives ∫

Ω
ϕh

n

Kw
ṗh dΩ−

∫
Ω
ϕhε̇v,h dΩ−

∫
Ω
ϕh∇∇∇···qh dΩ= 0. (6.14)

With ϕh being piecewise constant, meaning that

ϕh,n(x)=
{

1 if x in element n

0 otherwise,
(6.15)

Equation (6.14) can be interpreted as FVM with the conservation of mass
being imposed on an element-by-element basis. Let us separate the terms of
the generalised Darcy’s law (6.4) and write the third term of Equation (6.14)
as an integral over element volume Ωn:∫

Ωn

∇∇∇···qh dΩn =
∫
Ωn

∇∇∇··· q̂h dΩn +
∫
Ωn

∇∇∇··· k

g
bdΩn −

∫
Ωn

∇∇∇··· k

g
ah dΩn, (6.16)

where the pore pressure gradient term is defined as

q̂≡− k

(ρw g)
∇∇∇p. (6.17)

With constant permeability k over the element, we can apply the divergence
theorem on the first term on the right hand side of Equation (6.16) which
gives: ∫

Ωn

∇∇∇··· q̂h dΩn =
∫
∂Ωn

q̂h ···ndS = ∑
f ∈faces

∫
∂Ω f

q̂h ···n f dS, (6.18)

where boundary surface normal n is the outward normal. The same pro-
cedure can be applied to the body force term and the inertial term of
Equation (6.16). In this thesis, we disregard the boundary effects of open
boundaries, which means that the body force term is 0 due to the con-
stant gravitational field. The inertial term is kept as a volume integral to
maintain its similarity to the velocity divergence term. Inserting Equa-
tions (6.16) and (6.18) into Equation (6.14) leads to the approximate weak
form of the fluid mass conservation equation over an element n:

rmass, n =
∫
Ωn

n

Kw
ṗh dΩn −

∫
Ωn

∇∇∇···vh dΩn −
∑

f ∈faces

∫
∂Ω f

q̂h ···n f dS

+ k

g

∫
Ωn

∇∇∇···bdΩn − k

g

∫
Ωn

∇∇∇···ah dΩn = 0, (6.19)

where ∇∇∇···v= ε̇v.
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6.2.2 Weak form of the momentum equation
The weak problem of Equation (6.1) is similar to the weak problem derived
for the single-field MPM in Equation (4.6). The difference is the linear split
of the total stress σ=σ′ + pI. Replacing the total stress σ with the effective
stress σ′ and the pore pressure pI from Equation (4.6) gives∫

Ω
∇∇∇ηh : σh dΩ=

∫
Ω
∇∇∇ηh : σ′

h dΩ+
∫
Ω
∇∇∇ηh : phIdΩ

=
∫
Ω
∇∇∇ηh : σ′

h dΩ+
∫
Ω
∇∇∇···ηh ph dΩ, (6.20)

because ∇∇∇ηh : I = tr
(∇∇∇ηh

) = ∇∇∇ ···ηh. Inserting Equation (6.20) into Equa-
tion (4.6) then gives the coupled weak form of the momentum equation
as:

rmom =−
∫
Ω
ηhρah dΩ+

∫
∂Ωτ

ηhτ̄dS−
∫
Ω
∇∇∇ηh : σ′

h dΩ

−
∫
Ω
∇∇∇···ηh ph dΩ+

∫
Ω
ηhρbdΩ= 0. (6.21)

6.3 Spatial discretisation
This section will finish the spatial discretisation process, and we will end
up with a system of equations on matrix form similar to FEM, MPM and
FVM. The residuals will be considered separately.

We start by partitioning the domain Ω with boundary ∂Ω into nonover-
lapping elements such that Ω=∪NeΩe, with Ne the number of elements in
domain and Ωe the partitioned volume. With finite-dimensional subspaces,
an approximate solution of the field is written as

uh =
Nn∑
i=1

ui(t)Ni(x) (6.22)

ph =
Ne∑

n=1
pn(t)ϕn(x), (6.23)

where Nn is the number of nodes, Ne is the number of elements, ϕn is the
piecewise constant shape function of the pressure p which is identical to
the test function ϕh (6.15), and Ni is the linear shape function at node
i defined in Equation (4.14). The other kinematic variables vh = u̇h and
ah = üh are discretised as uh in Equation (6.22).
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6.3.1 Spatial discretisation of the residual ofmomentum
conservation.

Inserting the interpolation functions as defined in Equations (6.22) and (6.23)
into the weak problem of Equation (6.21), and discretising the body into
particles as in the process described in Section 4.3, we obtain the following
residual equation for a node i:

rmom, i =−

∑Nn
j=1 mi ja j︷ ︸︸ ︷

Np∑
p=1

MpNip

(
Nn∑
j=1

a jNjp

)
+

Fext, i︷ ︸︸ ︷
Np∑
p=1

MpNipbp + τ̂i

−
Np∑
p=1

Vp∇∇∇Nip : σ′

︸ ︷︷ ︸
F′

int, i

−
Ne∑

n=1
∇∇∇···NipVpϕn︸ ︷︷ ︸

Q1,ni

pn = 0. (6.24)

As for the single-phase MPM, the consistent mass matrix defined here is
replaced with a lumped mass matrix. Creating a global system of equations
for the residual of momentum conservation, gives

rmom =−Ma−Fint −Q1p+Fext = 0, (6.25)

where M is the lumped mass matrix, and Q1 the coupling matrix. Note
that the internal force from effective stress F′

int is the same as the internal
force from the total stress Fint in the single-phase formulation because Fint
depends on effective stress σ′ only. The apostrophe is omitted from F′

int for
simplicity for the remainder of this chapter. Also note that the internal fluid
force term Q1p is the only difference in the definition of rmom for coupled
(6.25) and single-phase formulation (4.46).

6.3.2 Spatial discretisation of the residual of mass con-
servation.

The pore pressures are discretised by piecewise constant shape functions,
defined in Equation (6.23). Replacing the variables with their discretised
counterparts defined in Equations (6.22) and (6.23) into Equation (6.19),
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yields

rmass, n = k

g

Q2,in︷ ︸︸ ︷∫
Ωn

Nn∑
i=1

∇∇∇···Nin dΩn ai −

Q2,in︷ ︸︸ ︷∫
Ωn

Nn∑
i=1

∇∇∇···Nin dΩn vi

+
∫
Ωn

n

Kw
dΩn︸ ︷︷ ︸

Cn

ṗn −
∑

f ∈faces

∫
∂Ω f

q̂h ···n f dS

+ k

g

∫
Ωn

∇∇∇···bdΩn︸ ︷︷ ︸
Fext, w, n

= 0, (6.26)

over element n. Continuity is forced on the boundary between elements
by the flux term defined in Equation (6.18). There are several approaches
of approximating the flux q̂. The particular choice of flux approximation
method does not influence the derivation that follows and is further ex-
plained in Section 7.1.5. When assembled, the flux term is written as Tp
where T is the transmissibility matrix and p is an n-length vector of all
element centre pore pressures pn.

The assembled global system can then be written as

rmass = k

g
Q2a−Q2v+Cṗ−Tp+Fext,w = 0, (6.27)

where C is the fluid compressibility matrix which is a diagonal matrix and
Q2 =QT

1 is the coupling matrix.

6.4 Fully implicit system
The two residuals defined in Equations (6.25) and (6.27) must be discretised
in time. Displacement variable u needs to be integrated twice in time, while
pore pressure variable p needs to be integrated once in time. The time
differentials are integrated by use of the Newmark-β method [102] for the
displacements u and simple backwards Euler for pore pressures p [105]:

an+1 = 1
βΔt2

(
un+1 −un

)− 1
βΔt

vn − 1−2β
β

an

vn+1 = γ

βΔt

(
un+1 −un

)+(1− γ

β

)
vn +Δt

(
1− γ

2β

)
an

ṗn+1 = pn+1 −pn

Δt
,

(6.28)
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where γ= 1/2 and β= 1/4 corresponds to constant acceleration during the
time interval Δt, while β = 1/6 corresponds to linear acceleration [102].
The equations for acceleration an+1 and velocity vn+1 can be simplified by
noticing that un = 0 due to the grid resetting of MPM.

The Newmark-β method with γ = 1/2 is second-order accurate and
is unconditionally stable when β≥ γ/2 for linear structural dynamics, al-
though Hughes [106] proved stability cannot be guaranteed in the nonlinear
regime. Furthermore, there is no high-frequency numerical damping with
this scheme [107]. The backwards Euler method is also unconditionally sta-
ble but is first-order accurate. The backwards Euler method has damping
properties, which is beneficial for diffusion equations because the response
should be smooth regardless of load [107]. For example, in the case of
coupled flow and displacements, an instantaneous applied load will still
result in a smoothed pore pressure field.

We develop the Newton-Raphson set-up of the system of equations as
in Section 4.6 on single-phase implicit MPM. A Taylor expansion around
the fixed-point with respect to the field variables u and p at time step n+1
gives:

rk+1
mom ≈ rk

mom + ∂rmom

∂u
duk+1 + ∂rmom

∂p
dpk+1 = 0

rk+1
mass ≈ rk

mass +
∂rmass

∂u
duk+1 + ∂rmass

∂p
dpk+1 = 0,

(6.29)

where superscripts k and k+1 denote iterations within the current time
step. Because superscripts k and k+1 imply that we are at time step n+1,
the superscript n+1 is omitted for clarity.

Differentiating Equation (6.25) with respect to uk gives

∂rmom

∂u
=−M

∂ak

∂uk
− ∂Fint

∂u

=−
(

1
βΔt2 M+Kk

)
=−K̄k, (6.30)

where ∂Fint/∂u=K=Kmat +Kgeo is the nonlinear stiffness matrix defined
in Equation (4.51) in Section 4.6. Differentiating Equation (6.25) with
respect to pk gives

∂rmom

∂p
=−Q1. (6.31)
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Introducing the direct time integration from Equation (6.28) into Equa-
tion (6.27) gives

rk
mass =Q2

[
k

g

(
1

βΔt2 uk − 1
βΔt

vn − 1−2β
β

an

)

−
(

γ

βΔt
uk +

[
1− γ

β

]
vn +Δt

[
1− γ

2β

]
an

)]

+C
1
Δt

(
pk −pn

)
−Tpk +Fk

ext, w = 0. (6.32)

Consquently, the partial derivatives of rmass with respect to the field vari-
ables uk and pk become

∂rmass

∂u
=− 1

Δt
Q2

[
γ

β
− k

g

1
βΔt

]
=− 1

Δt
Q̄2 (6.33)

∂rmass

∂p
=− 1

Δt
(ΔtT−C). (6.34)

Multiplying Equation (6.29) with -1 and multiplying rk+1
mass with Δt leads to

a system in block matrix form defined as

Ak dxk =−rk, (6.35)

where

Ak =
[ −∂rmom/∂u −∂rmom/∂p
−Δt∂rmass/∂u −Δt∂rmass/∂p

]
=
[

K̄k Q1
Q̄2 ΔtT−C

]
(6.36)

dxk =
[
duk

dpk

]
rk =−

[
rk

mom
Δtrk

mass

]
, (6.37)

and the variables are updated by

xk+1 = xk +dxk (6.38)

when Equation (6.35) is solved at iteration k, preparing for the next itera-
tion at k+1. The dimensions of the different blocks of the coefficient matrix
Ak are (dNn)× (dNn) for the upper left, with Nn the number of nodes and
d the number of dimensions; (dNn)×Ne for the upper right, with Ne the
number of elements or cells; Ne × (dNn) and Ne ×Ne for the lower left and
right, respectively.
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Remark. The system of equations in Equation (6.35) with coefficient
matrix in Equation (6.36) is defined for the dynamic case of u-p formulation.
In general, there are three cases of u-p formulation. The first case is
dynamic, that is, all inertial terms are included. The second case is quasi-
static, that is, all inertial terms are excluded. The third case is the exclusion
of inertial terms in the fluid only. In the second and third case, Q̄2 reduces
to Q2 if the solid velocity v= u̇ is integrated with simple backwards Euler
as for the pore pressure rate ṗ. Additionally, K̄k reduces to Kk in the second
case. The residuals rk

mom and rk
mass must be adjusted accordingly.

6.5 Iteratively coupling the fully implicit
coupled system
A system on the form of A x = b, can be solved directly by computing
the inverse of A and then solve x = A−1b. However, this is rarely a good
approach as the computational cost of inverting the coefficient matrix A can
be high especially if the dimension n of the system is very large. Iterative
methods that avoid matrix inversions are equally as good, if not better,
than direct methods. This is due to round-off errors and the computer’s
inability to represent floating-point numbers accurately anyway.

There are many iterative methods to choose from. Preconditioned
stationary iterative methods of the Richardson family are written on the
form

xk+1 = (I−P−1A
)
xk +P−1b, (6.39)

where P−1 is a preconditioning matrix that aims to improve convergence
by reducing the condition number of the system. Premultiplying all terms
with P gives a system without inverted matrices:

Pxk+1 = (P−A)xk +b. (6.40)

The method can also be rewritten to solve for the incremental dxk = xk+1−xk:

Pdxk =b−Axk =−rk. (6.41)

Block-structured systems may also use this approach. Consequently, a
preconditioner P can be applied to the nonlinear system defined in Equa-
tion (6.35).
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A good choice of preconditioner could be an upper triangular block
preconditioner

P=
[

K̄ Q1

S̃A

]
(6.42)

where the Schur complement approximation is

S̃A =ΔtT−C−αMp, (6.43)

with α= 1/Kdr and Mp is the pressure mass matrix

Mp =
∫
Ω
ϕiϕ j dΩ, (6.44)

which for piecewise constant interpolation functions ϕ gives a diagonal
matrix. The pressure mass matrix Mp acts as a preconditioner by ensuring
diagonal dominance of the coefficient matrix S̃A. This particular choice
of Schur complement approximation can be justified physically since it
corresponds to the fixed-stress operator split discussed in Section 2.4.2, as
shown by White et al. [90].

The resulting preconditioned system of equations in Equation (6.41) is
triangular, and can be solved by iteratively solving each of the following
subsystems:

S̃A dpk = rk
mass (6.45)

K̄k duk = rk
mom −Q1 dpk. (6.46)

Two different solution strategies—or even softwares—may be used for
solving the preconditioned system in Equations (6.45) and (6.46) because
the coupling between the two systems is only through terms on the right-
hand side. The derivations shown in this and the previous sections have
been applied for coupling schemes of FEM and FVM [86, 88], where the
former is solving for displacements and the latter for pore pressures. As
noted in Chapter 4, the equations of motion are solved for displacements at
the nodes in MPM in the same manner as FEM. The difference lies in the
nodal interpolation, as explained in Section 4.3, with regards to particle
location within the cell and weighting functions of integration point values.
The resulting discrete system of equations for the Lagrangian phase is
however similar for both MPM and FEM. Consequently, the displacement
system of Equation (6.46) can be solved by a single-phase implicit MPM
code with an added pore pressure term. The details of the discretisation and
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set-up procedure for Equation (6.46) is therefore not covered here, as the
details are in Chapter 4. The details on adapting the single-phase implicit
MPM code to include the pore pressure term, is covered in Chapter 7.

From the matrix assemblies, we note that S̃A has the same structure
as the transmissibility matrix T: sparse and symmetric. Furthermore, S̃A

is constant over the time step n+1. Sparse and symmetric systems can be
solved efficiently by the conjugate gradient (CG) method. The conjugate
gradient method does not require the sparse matrix to be fully assembled,
thus saving memory. There are many ways to represent a sparse matrix in
computer code. The CG solver from Hypre [108] use a so-called 7-stencil
representation which associates the transmissibility entries for the centre
cell and its neighbours with the centre cell.

Remark. The choice of Kdr depends on the type and dimension of prob-
lem modelled. That means that K1D

dr = Eoed, that is the constrained or
oedometer modulus, for 1D oedometer problems, and K3D

dr = K for similar
problems in 3D. Of course, the exact value of Kdr cannot be obtained for
problems with complex boundary conditions. In that case, the choice of
Kdr based on dimension is a good estimate. Kim [24] proves that a safe
choice regardless of problem type and dimension is the K3D

dr (drained bulk
modulus), as it will remain unconditionally stable. The other way around,
that is, using the constrained modulus K1D

dr in higher dimension problems,
leads to conditional stability.

6.6 Chapter summary
In this chapter we have seen that:

• the governing equations can be discretised in time and space by
different time integration methods and spatial shape functions;

• a fully coupled implicit system of equations can be preconditioned
so that the subproblems can be solved independently, leading to an
iteratively coupled system;

From Chapter 4 we know that the resulting system of equations from
the discretisation procedure of MPM, is equal in matrix form as FEM.
Consequently, MPM and FVM can be iteratively coupled with MPM solving
for displacements and FVM for pore pressures.
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Chapter 7 demonstrates how to adapt the iteratively coupled system
derived in the current chapter to a single-phase implicit MPM code.
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MPM-FVM: ADAPTATION

This chapter uses the framework derived in Chapter 6. The chap-
ter discusses how to implement the fully discretised iteratively
coupled system of equations into a single-phase MPM code. The
FVM properties are adapted to the MPM framework to include
the changes in cell contents during simulation.
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7.1 Creating the flow problem solver
The flow solution part, the FVM, must be created. Taking advantage of the
Cartesian regular mesh, a 7-stencil representation is a good and easy choice.
The code should also be able to track cell centre variables and compute
cell centre gradients to nodes. To solve the system of equations resulting
from the initial problem set-up, a prewritten library could be used, and is
also recommended. Furthermore, an outer loop check of convergence of the
combined solution from both the flow solver and the mechanical solver is
needed.

7.1.1 Definition of control volume and cell average
At the start of the simulation during particle initialization, the particle
volumes are computed from the geometrical cell volume as

Ωp = Ve

Nep
, (7.1)

where Ωp is the particle volume and Ve the geometric cell/element volume,
with Nep the number of particles per cell. However, the total particle
volume of each cell will change during the course of the simulation since
the particles will cross over from one cell to the next, in addition to the
particle volume change due to loading. The cell volume is a property related
to the material deformation and stresses and should therefore represent
the material volume, not the geometrical volume. Consequently, the control
volume of one cell is equal to the sum of all particle volumes within that
particular cell at the start of the time step n, so that

V n
c =∑

p
Ωn

p, (7.2)

where Vc denotes the control or material volume as opposed to the geomet-
rical cell volume Ve.

The areas through which the flux is flowing, on the other hand, are the
same as the geometrical face area of the cell1. That is because it is the
geometrical distance between pore pressure heads that governs the flux
value, not material properties.

1While the flux area is equal to the geometrical area of cell face for cells that are not on
the boundary, this is not true for the boundary cells. An improvement of this is beyond the
scope of this thesis.
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The cell average of the measured value ϕ is found from averaging the
product of volume and field value

ϕ̄= 1
Vc

∫
V
ϕdV . (7.3)

With MPM there is no continuous field function of ϕ to integrate over the
cell volume, so Equation (7.3) is discretized into

ϕ̄= 1
Vc

∑
p

ϕpΩp. (7.4)

Higo et al. [14] averaged the pore pressure value by dividing with the
number of particles in cell. That approach equals Equation (7.4) when the
particles have approximately equal volumes.

The cell volume assignment and the cell pore pressure average p̄n are
computed at the start of each time step. They are kept constant during the
Lagrangian phase. At the end of the timestep, during the advection phase
but before the particles move, the particles are assigned the updated cell
pore pressure average p̄n+1.

7.1.2 Porosity, mass and volume updates
The mass of material points do not change for single-phase MPM. Mass
is also conserved for two-point multiphase MPM [12, 13] and one-point
multiphase MPM when porosity is constant [68].

During consolidation processes the change in volume equals the ex-
pellation of water. Water volume diminishes while solid volume remains
constant. Or, mass of water diminishes, while mass of soil grains is un-
changed.

The mass of one material point can be written as

Mp = mw +ms = ρwVw +ρsVs = nρwV +ms, (7.5)

where ρw is the density of water, ρs the density of soil grains, both constant;
V , Vw and Vs are the total volume and volume of water phase and solid
phase, respectively, but Vs is constant; and n is the porosity or volume
fraction of water. With ρs and Vs constant, then it follows that ms is
constant.

After each time step porosity n and total particle volume V is updated,
and consequently, the total particle mass is updated too, as follows:

Mn+1
p = ms +nn+1V n+1ρw. (7.6)
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7.1.3 The coupling matrices Q2 =QT
1

An entry in the coupling matrix Q2 for cell c is

Q2,c =
∑
i∈c

∇∇∇···NciVc, (7.7)

where indices c and i denotes the cell and nodes respectively, Nci is the
interpolation from node n to cell centre c, and Vc is the cell volume. The
fully written out Q2 matrix has a block structure with blocks of size 1×d

per cell node i where d is the dimension of the problem.

7.1.4 The compressibility and mass pressure matrices
C and αMp

The compressibility and mass pressure matrices are diagonal matrices
where the entries are

Cc = n

Kw
VcI (7.8)

αMp,c = 1
Kdr

VcI, (7.9)

where c denotes the cell, Vc the cell volume, and n is the material poros-
ity with Kw the bulk modulus of water and α = 1/Kdr the drained bulk
compressibility of the soil.

7.1.5 Transmissibility matrix T
FVM shows local mass conservation, meaning that the flux out of one face
of a cell is equal but with opposite signs of the flux into the neighbouring
cell through the same face. The transmissibility matrix T represents the
flux between cells. Its entries are found from the integral of the face normal
component of the pore pressure gradient

q̂=− k

ρw g
∇∇∇p (7.10)

over the element face area. In this section we are going to assemble the
transmissibility matrix T defined in Section 6.3.1. The transmissibility
matrix is usually constructed geometrically.

Any grid discretisation can be used with FVM, so it is possible to use the
same grid as the MPM discretisation. In this work, a cell-centred scheme
on a Cartesian regular hexahedral grid is adopted. With a Cartesian grid
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these face normals are the same as the global Cartesian axes. In addition,
there is no need to search for the neighbouring cells used for computing
the flux through the cell as the surface, as they are found by adding or
subtracting 1 from the current normalised cell coordinates in the direction
of the face normal.

Yet another advantage with a Cartesian grid is that a line connecting
the cell centres of two neighbouring cells is normal to the cell boundary.
This is the orthogonality property. When it holds, we can use the simplest
flux schemes for computing the transmissibility between cells: the two-
point flux approximation (TPFA), without losing consistency. TPFA cannot
be used on meshes that deform, because the deformation may break the
orthogonality property. Because the mesh of MPM is fixed, deformation of
that kind is no issue, and TPFA can safely be adopted. There are, however,
more advanced flux schemes, but the exploration of those is beyond the
scope of this thesis.

TPFA is approximating the pore pressure gradient between the neigh-
bouring cells by using two points, namely the pore pressure value of the
current cell and its neighbour cell in either of the 2d directions, with d

being the number of dimensions. The following derivation is for the 3-
dimensional case. Per finite volume standard notations, the neighbour cells
are commonly named after their abbreviated compass locations: North,
East, South, West, and the addition of Top and Bottom in 3D, with P

denoting the current cell. Additionally, the edges between the centre cell
and the neighbours are denoted with the corresponding lowercase letters of
the neighbours.

The flux qe = q̂e ·ne between the centre cell P and the east cell E, can
be linearly approximated by

qe = k

ρw g

pP − pE

Δxe
(7.11)

where Δxe is the distance between the cell centres of cell P and E. With a
regular grid, the denominator is constant for each cell in each dimension.
However, the cell centre distance does not have to be constant, it may vary
from cell to cell depending on the mesh.

The flux is computed at the faces. To obtain the volumetric flow rate V̇e

through the east face e, the flux qe is multiplied with the area of the face
Ae: V̇ = qA. The total flow rate through the cell is the sum of the flow rates
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on all its faces, leading to

V̇total =
∑
f

k

ρw g

pP − pf

Δx f
A f (7.12)

= k

ρw g

∑
f

A f

Δx f
pP − k

ρw g

∑
f

A f

Δx f
p f (7.13)

= TP pP −∑
f

Tf p f , (7.14)

where f is an index referring to each of the six faces of a 3D cell. We note
that

TP =∑
f

Tf . (7.15)

The transmissibility matrix is the matrix that results from assembling a
system of equations from Equation (7.14) for all cells. The final assembled
transmissibility matrix T is in 3D a 7-banded symmetric sparse matrix
with dimension equal to the number of cells.

Because of the coupling of FVM to MPM, there must be a way to mark
the empty cells. The empty cells, that is, the cells that do not contain any
material points, are automatically given a pore pressure p = 0. To avoid
resizing the transmissibility matrix during the simulation runtime, empty
cells are given the value 1 in the cell centre, and 0 elsewhere. This will
not negatively affect the Schur complement S̃A , and the conjugate gradient
method may still be applied.

7.2 Flow boundary conditions
The flow boundary conditions with the structured FVM using a TPFA
scheme are applied to the boundary faces, and derived with the help of
ghost cells. TPFA is a central differencing scheme, and can be replaced
with higher order schemes and schemes that also use the corner neighbour
cells. The ghost cells are a means to derive the flux values at the boundary
faces, and they are not used in the simulation.

Let us assume that there is a boundary on the east face of the boundary
cell P. This means that the cell E is outside the boundary. Consequently, the
transmissibility matrix must be altered to include the boundary condition
because the ghost east cell pore pressure pE can now be written in terms of
the center cell pore pressure pP .
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Regardless of type of boundary condition the transmissibility coefficient
TE = 0, while the centre cell coefficient TP is changed depending on bound-
ary condition type. The right hand side of Equation (6.45) should also be
adjusted if the boundary value is not equal to 0. However, since we are
dealing with either no-flux or drained boundaries, all applied boundary val-
ues are 0 and consequently no adjustment is needed nor presented herein.
The next sections will derive the adjusted T̃P for each of the two types of
boundary conditions in detail.

7.2.1 Neumann boundary conditions

Neumann boundary conditions assign a given flux q̄ in the normal direction
of the boundary face. Symmetric boundary conditions are a special case
of Neumann boundary conditions where the boundary flux q̄ = 0. Zero
flux or symmetric boundary conditions can be obtained by setting the pore
pressure of the ghost cell to pE = pP , as this will make the flux through the
boundary face equal to 0. Inserting this into Equation (7.14) gives

TP pP −∑
f=N,S,E,

W ,T,B

Tf p f = TP pP −TE pP −∑
f=N,S,
W ,T,B

Tf p f (7.16)

= (TP −TE)pP −∑
f=N,S,
W ,T,B

Tf p f . (7.17)

Therefore the adjusted centre cell coefficient is

T̃P = TP −TE = TW +TN +TS +TT +TB. (7.18)

7.2.2 Dirichlet boundary conditions

These boundary conditions are for imposing a given pore pressure p̄. It
is used to assign the open, drained surface, that is, the surface with pore
pressure p = 0. As with the Neumann boundary conditions, the boundary
face coefficient is TE = 0.

The correction of the centre cell coefficient can be derived as follows.
Let the east cell E be a ghost cell and set its value to pE =−pP . This gives
p = 0 at the boundary by use of linear interpolation. Inserting pE =−pP
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into Equation (7.14) gives

TP pP −∑
f=N,S,E,

W ,T,B

Tf p f = TP pP −TE(−pP )−
∑

f=N,S,
W ,T,B

Tf p f (7.19)

= (TP +TE)pP −∑
f=N,S,
W ,T,B

Tf p f . (7.20)

Therefore the adjusted centre cell coefficient is

T̃P = TP +TE = 2TE +TW +TN +TS +TT +TB. (7.21)

7.2.3 Moving boundary conditions
Consider a slope where intially the groundwater table is coinciding with the
surface, see Figure 7.1. When this slope is undergoing large deformations,
the final drained boundary is not at the same location as the initial drained
boundary, assuming that the groundwater table still is coinciding with the
slope surface.

Applying the boundary conditions to simulate an open boundary need
only be done once in a problem with small deformations as the material
boundary will not change substantially from the initial configuration. But
in a problem with large deformations, the material boundary and hence
the boundary conditions need to be updated. To accomodate for this, the
material boundary conditions are applied at the beginning of each time
step when the transmissibility matrix T is assembled. The grid boundaries
are fixed.

The transmissibility matrix T depend only on the grid and the perme-
ability, hence this matrix will be constant during an entire simulation if
permeability is constant and boundaries are unchanged. However, when
FVM is coupled with MPM, the boundary of the material will change during
the course of the simulation. Therefore the boundary conditions should be
able to move with the deforming material.

The moving boundary is applied when the neighbour cell has a cell
volume of less than some treshold value Vmin. At the beginning of each
timestep all cell volumes of domain are initialized to 0, before the sum of
all particles volumes within the cell is assigned. Therefore, any cell with
particles will have a positive non-zero value of the cell volume.

With Vmin = 0 the moving boundary is assigned on the cell faces between
material cells and completely empty cells. It may be reasonable to set
Vmin =αV , where V is the initial fully-filled cell volume and 0≤α≤ 1. For
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7.2. Flow boundary conditions

Figure 7.1: Sketch of a slope in initial state (light) and deformed state (dark). The
deformed slope geometry differs greatly from the initial slope geometry.

material point

moving boundary condition

Figure 7.2: Moving finite volume boundary conditions. On each timestep the
boundary of the material is determined by identifying the cells which has at least
1 empty neighbour cell. When detected the boundary condition is applied to the
transmissibility matrix as described in Section 7.2.

91



7. ITERATIVELY COUPLED IMPLICIT MPM-FVM: ADAPTATION

instance, for an initial 4-particle cell, a cell can be considered empty if
it contains only 1 particle in the context of drained boundary conditions,
which suggests α= 0.25. In this thesis, however, Vmin = 0.

The extra cost of applying updated drained boundaries is of O (1) since
it depends on a table lookup. This is because any given cell has known
neighbours; no search is needed.

This approach described here is limited because the exact material
boundary is not detected, illustrated in Figure 7.2. In Figure 7.2 a very
coarse mesh is used, but by refining the mesh, the inaccuracy stemming
from the crude outline of the boundary conditions is improved. The inaccu-
racy with the boundary following the cell outline will lead to slightly wrong
pore pressure gradients on the actual material boundary.

7.3 Adding pore pressure to single-phase
MPM
The single-phase code used in this thesis, the module of Uintah
software [29], is based on the framework of Guilkey & Weiss [18]. Refer
to Section 4.6 for other implicit MPM formulations. Due to the iteratively
coupled approach, any implicit formulation may be used, as long as the flow
solver is given a displacement increment. The single-phase implicit MPM
code solves the following incremental system of equations:

K̄k duk =Fn+1
ext −Fk

int −M
(

1
βΔt2 uk − 1

βΔt
vn − 1−2β

β
an

)
(7.22)

where Fk
int depends on the stress state σk, the global tangential stiffness

matrix is K̄k, duk is the new change in displacement, and Fn+1
ext is the

external force applied at time step n+1. The inertial term on the right
hand side of Equation (7.22) is written out with the Newmark integration
of acceleration ak from Equation (6.28)2 The superscripts k and k+1 denote
local iteration numbers, where k is the result from the previous iteration
and k+1 is the result of the next. Any superscript with k denotes a value
at time step n+1, so for simplicity, superscript n+1 is omitted whenever k

is present. Displacement uk+1 is updated from

uk+1 =uk +duk. (7.23)

2Recall that un = 0 at the beginning of each timestep, so that at the end of the timestep
un+1 equals the displacement increment du=∑k duk of the step.
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7.3. Adding pore pressure to single-phase MPM

The iteratively coupled solution of incremental displacements defined in
Equation (6.46) is fully written out as:

K̄k duk =Fn+1
ext −Fk

int −M
(

1
βΔt2 uk − 1

βΔt
vn − 1−2β

β
an

)
−Q1pk −Q1 dpk.

(7.24)

Noticing that pk+1 =pk +dpk allows us to group the pore pressure terms
above so that the iteratively coupled system for solving for the incremental
displacements duk is

K̄k duk =Fn+1
ext −Fk

int −M
(

1
βΔt2 uk − 1

βΔt
vn − 1−2β

β
an

)
−Q1pk+1. (7.25)

The only difference between Equations (7.22) and (7.25) is the pore pressure
contribution term. Note that Fint depends solely on effective stress σ′,
which is equal to total stress σ for the single-phase MPM. Consequently,
to turn a single-phase implicit MPM code into an iteratively coupled MPM
code, the only change needed is to add the pore pressure contribution found
from solving Equation (6.45).

The coupling matrix Q1 for a node i is found from

Q1,i =
∑
c∈i

∇∇∇···NicIVc, (7.26)

where the gradient from node i to cell centre c is constant for a regular
Cartesian mesh. An alternative way of introducing the pore pressure
term Q1pk+1 into Equation (7.25), is by including it in the internal force
term to get Fk

int, total. The advantage is that the coupling matrix Q1 is
not assembled. An additional advantage is the physical interpretation of
finding the internal force based on total stress in the material. All particles
within one cell have the same pore pressure p equal to the cell pore pressure
p̄c. Introducing the particle pore pressure p in the internal force expression
for node i, gives:

Fk
int, total =

Np∑
p=1

∇∇∇···Nip

(
σ′k

p + pk+1I
)
V k

p . (7.27)

Note that the volume of cell Vc defined in Equation (7.3) is equal to the sum
of particle volumes Vp in the cell c at start of time step. Also note that the
shape functions are chosen to be linear, which means that its gradient is
constant. Hence it does not matter where within the cell the pore pressure
value is sampled from.
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7.4 Outline of one time step
For one time step there are two main tasks: solving the flow problem
with output of pore pressure p, and solving the mechanical problem with
output of displacement u. When convergence is achieved, regular MPM
housekeeping is performed.

1. Mapping phase
Identical to the mapping phase of single-phase MPM, adding the follow-
ing steps:

1) Compute new cell volume:

V n
c =∑

p
V n

p (7.28)

2) Compute cell average pore pressure:

p̄n = 1
V n

c

∑
p

pn
pVp (7.29)

In addition, the nodal displacement vector should be initialized to u0 = 0.

2. Lagrangian phase
The flow problem and the mechanical problem are solved iteratively,
using the other output as input, until global convergence is reached.

1) Initialization. Schur complement approximation

S̃A =ΔtT−C−αMp (7.30)

is assembled from Equations (7.8), (7.9) and (7.14). Boundary condi-
tions are applied to the transmissibility matrix T.

2) Solve flow problem in Equation (6.45) based on uk from the mechani-
cal problem output.

i. Assemble right hand side rk
mass in Equation (6.32) of the flow

problem.
ii. Input S̃A and rk

mass to a library solver of choice. In this im-
plementation the conjugate gradient solver of Hypre [108] was
used.

3) Solve the mechanical problem as described in Section 4.6.1, but add
contribution of pk+1. This can be done in two ways:
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7.5. Chapter summary

i. directly through computing the internal force Fk
int, total as in

Equation (7.27) where it is noted that the particle pore pres-
sure pk+1 is equal to the corresponding cell pore pressure p̄k+1

computed by the flow solver.
ii. add the coupled pore pressure term −Q1pk+1 to the right hand

side of Equation (4.58), as shown in Equation (6.46).

4) Check for global convergence [90]:∥∥∥rk
mass

∥∥∥< ITOL. (7.31)

If no convergence go to step (2) again.

3. Convection phase
The convection phase is identical to the mapping phase of single-phase
MPM, with the addition of the following steps:

1) Update the particle pore pressure pn+1 = p̄k+1 directly from the
computed cell pore pressure.

2) Update particle porosity and mass.

7.5 Chapter summary
In this chapter we have seen that:

• several FVM quantities must be adapted to MPM because of change
in cells during simulation;

• FVM boundary conditions must be updated to adapt to the changing
material boundary;

• only minor adjustments are needed to extend an existing implicit
MPM code to include the generation and dissipation of pore pressures.

The next chapter demonstrates and verifies the coupled MPM-FVM method,
and compares results with the explicit coupled MPM presented in Chap-
ter 5.
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On two occasions I have been asked, — "Pray, Mr. Babbage,
if you put into the machine wrong figures, will the right
answers come out?"

Charles Babbage, 1864
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8
VERIFICATION AND VALIDATION

This chapter aims to verify the two coupled MPM approaches that
were presented in Chapters 5 and 6. The two approaches differ
in three ways: one is an explicit one-point velocity formulation,
and the other is an implicit displacement-pressure formulation
that coupled MPM with FVM. Both approaches are verified by the
one-dimensional consolidation problem, and briefly compared
to each other and the analytical solution. To validate that the
iteratively coupled MPM-FVM method works for the large defor-
mation problems, a poroelastic cantilever beam subject to large
deflection is modelled.

Chapter outline
8.1 Verification: One-dimensional consolidation problem . . . . . . . . 98
8.2 Validation: Large deflection of a poroelastic beam . . . . . . . . . . 105
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8. VERIFICATION AND VALIDATION

8.1 Verification: One-dimensional
consolidation problem
The one-dimensional consolidation problem is modelled to verify that the
both coupled MPM approaches presented in this thesis solve the underlying
mathematical diffusion equation. The problem is described by the Terzaghi
one-dimensional consolidation equation

cv
∂2 p

∂z2 = ∂p

∂t
, (8.1)

where p is the pore pressure, z the spatial variable, and the consolidation
coefficient cv defined here as

cv = k

ρw g

(
1

K1D
dr

+ n

Kw

) , (8.2)

where k is the hydraulic conductivity, ρw is the density of water, g is
the magnitude of acceleration of gravity, n the porosity, K1D

dr is the one-
dimensional constrained modulus, and Kw the bulk modulus of water.

The consolidation differential equation (8.1) is analogous to the heat
equation. It may be solved analytically if given initial and boundary con-
ditions. Here, one-way drainage has been assumed with z = h at the
impermeable boundary where h is the height of the soil column. The initial
condition is

p(z,0)= p0, (8.3)

and the boundary conditions are

p(0, t)= 0 (8.4)
∂p

∂z
(h, t)= 0. (8.5)

The analytical solution is obtained from Fourier series analysis and given
as

p(z, t)= p0
4
π

∞∑
k=1

(−1)k−1

2k−1
cos

[
(2k−1)

π

2
z

h

]
exp

[
− (2k−1)2 π2

4
T

]
, (8.6)

where the dimensionless time factor

T = cvt

h2 (8.7)

has been introduced.
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d

h

b
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Figure 8.1: Schematic illustra-
tion of the model geometry.
The height h of the column
is 1 m, and the section area
b×d = 0.1×0.1m2. The dark
shaded area on the top of the
column is the open boundary,
while the lightly shaded sides
and the bottom are imperme-
able boundaries.

8.1.1 Model setup

Model geometry. A soil column with height 1m and square base area
0.1×0.1m2 is modelled. The top surface is an open surface, which equals
a Dirichlet boundary condition with prescribed pore pressure p̄ = 0. The
remaining 5 surfaces (bottom and 4 sides) are impermeable, which equals
to symmetric or no-flux Neumann boundary conditions, with prescribed
flux q̄ = 0. The geometry is illustrated in Figure 8.1.

Material properties. The soil is modelled as a saturated, isotropic elas-
tic material with input parameters K = 3.333333MPa and G = 5MPa,
which corresponds to a constrained modulus of K1D

dr = 10MPa and Poisson
ratio v = 0. A compressible Neo-Hookean constitutive model was used,
which reduces to Hooke’s law in the small strain regime.

The poroelastic properties are hydraulic conductivity k = 10−3 m/s, bulk
modulus of water Kw = 2.2GPa, and initial porosity n = 0.4. The water
density is ρw = 1000kg/m3 and the saturated density ρ = 2000kg/m3.

Loading conditions. The initial effective stress in the soil is set to
σ′

0 = 0kPa, and the initial pore pressure is set to p0 = 10kPa (pressure). A
distributed compressional load of q = 10kPa is applied at the top drained
boundary at t = 0+ s for the implicit method and t = 0.01s for the explicit
method. The load is constant for the rest of the simulation.
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8. VERIFICATION AND VALIDATION

Figure 8.2: Model setup for simu-
lation of Terzaghi 1D consolidation
problem. The discretisation shows 1
material point per cell, with 6 cells
in the horizontal x-direction, 40 cells
in the vertical y-direction, and 1 cell
in the in-plane z-direction. The black
lines indicate no flow boundary condi-
tions q̄ = 0. The open boundary with
p̄ = 0kPa is given a distributed load
of q = 10kPa.

Discretisation. The problem was divided into 40 elements in the vertical
y-direction with an extra 8 empty elements above the material body. There
were 6 elements in the x-direction and 1 element in the z-direction. Each
element had 1 material point. The discretisation is illustrated in Figure 8.2.

An additional simulation with 10+2 elements was also run for the
implicit method to check for mesh influence on the solution.

Size of time steps. The simulation with the implicit method is carried
out with time steps Δt = 10−4 s, Δt = 10−3 s, and Δt = 10−2 s. The purpose is
to see how the time step size affects the solution. With oscillations due to
the incompressible limit at the start of the simulation, the smallest time
step Δt = 10−4 s is chosen to check how the implicit method performs in
this range. A larger time step of Δt = 10−2 s was chosen to check how the
implicit method performs with larger time steps.

The explicit method is limited by two criterions, so time step size was
chosen as Δt = 10−5 s.
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8.1. Verification: One-dimensional consolidation problem

Figure 8.3: Excess pore pressure isochrones for the Terzaghi one-dimensional
consolidation problem. Results from the iteratively coupled MPM-FVM with a
mesh of 10 cells (filled circles) and a mesh of 40 cells (open circles) and time step
Δt = 0.001s.

8.1.2 Results and discussion

The iteratively coupled MPM-FVM produced results that are very close to
the analytical solution even at times T < 0.05 (Figure 8.3). The quasi-static
MPM-FVM showed no oscillations at small time steps as expected (see
Figure 8.6), while the dynamic MPM-FVM method leads to some initial
oscillations (see Figure 8.4). The oscillations experienced with the explicit
method are greater than the oscillations experienced with the dynamic
implicit method. As seen in Figure 8.5, the oscillations for the explicit
method are so large that the results for the small time steps seem very
far off. Any other choice of time step than Δt = 10−5 s for the explicit
method resulted in a numerical breakdown. The oscillations come from
the hyperbolic property of the dynamic differential equation and are worse
for smaller time steps. The differences between the explicit and implicit
methods that are noted here may also stem from the choice of primary
variables of the respective formulations. The u-p formulation will have
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8. VERIFICATION AND VALIDATION

Figure 8.4: Excess pore pressure isochrones for the Terzaghi one-dimensional
consolidation problem. Results from the implicit iteratively coupled MPM-FVM
method with inertial terms included (dynamic) for time steps Δt = 0.01s (filled
circles) and Δt = 0.001s (open circles).

a dampening effect in addition to the dampening effect introduced by the
time integration scheme.

There are several measures to minimize the oscillations present in
the explicit simulation. The mass can be scaled up so that the time step
may be increased [68, 77] , so that the CFL condition and the condition
from Vermeer & Verruijt [79] still hold. This approach skips the problems
with the small time steps, and that may lead to other types of problems
converging and not failing. As noted by Zabala & Alonso [68], mass-scaling
can only be performed in the quasi-static regime anyway, which is a regime
more suitable for implicit time integration. Jassim et al. [9] also introduced
a local damping force for both the solid and the fluid phase. None of these
approaches has been attempted in this thesis.

The advantage of the implicit MPM-FVM is the lack of oscillations in
the undrained limit at the start of the simulation, and that larger time
steps may be used while still obtaining an accurate enough solution, see
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8.1. Verification: One-dimensional consolidation problem

Figure 8.5: Excess pore pressure isochrones for the Terzaghi one-dimensional
consolidation problem. Results from the coupled explicit dynamic MPM with a
mesh of 40 cells and a time step Δt = 10−5 s.

Figure 8.6 and Figure 8.4 for quasi-static and dynamic results, respectively.
Without any additional measures, such large time steps would lead to a
numerical breakdown of the coupled explicit MPM. For the dynamic case,
the larger time step had higher accuracy for T > 0.01. This demonstrates
the dampening effect from the time integration scheme.

8.1.3 Summary

Both methods converged to the correct result for the Terzaghi one-dimensional
consolidation problem described by Equation (8.1).

Oscillations

• The iteratively coupled implicit quasi-static MPM-FVM had the most
accurate results, with no oscillations even for T < 0.02.

• The iteratively coupled implicit dynamic MPM-FVM experienced
some oscillations for T < 0.02, but the oscillations were not severe.

• The coupled explicit MPM had large oscillations for T < 0.2, so severe
that the resulting consolidation curves look wrong.
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Figure 8.6: Excess pore pressure isochrones for the Terzaghi one-dimensional
consolidation problem. Results from the implicit iteratively coupled MPM-FVM
(quasi-static) with a mesh of 40 cells and time steps Δt = 10−4 s, Δt = 10−3 s, and
Δt = 10−2 s.

Time step size

• The coupled explicit MPM needed time step size Δt = 10−5 s to con-
verge.

• The iteratively coupled implicit dynamic MPM-FVM had good results
with time step size Δt = 10−2 s.

• The iteratively coupled implicit quasi-static MPM-FVM had very
accurate results for time step sizes Δt = 10−4 s and Δt = 10−3 s, and
tolerable good results for time step size Δt = 10−2 s.

The time step size for the implicit MPM can, therefore, be of the order 102

to 103 larger than the time step size for the explicit MPM.
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8.2 Validation: Large deflection of a
poroelastic beam
The previous section verified that the iteratively coupled implicit MPM-
FVM method (in this section refer to as the proposed method for brevity)
did solve the mathematical equations of the one-dimensional consolidation
problem. However, we also need to validate that the proposed method is
able to model the physics of large deformation problems. Therefore, in this
section, a poroelastic beam subject to large deflection is modelled.

Large deflection of an elastic beam is a common benchmark of MPM,
as it demonstrates the capability of modelling large deformations and
rotations without having to handle large strains at the same time. Large
deflection of a poroelastic beam would show that there is a coupling of flow
and displacements while the beam is experiencing large deformations. We
would expect pore pressure generation where the beam is experiencing
tension or compression from the bending moment generated by the load.
We would expect suction where there are tension and pressure where there
is compression. We would expect that the beam deflects further when the
generated pore pressure dissipates. In short, we expect two-way coupling:
that the displacements affect the pore pressure and the pore pressure affects
the displacements. The results will be compared with results obtained by Li
et al. [109], where a poroelastic beam with axial diffusion and no transverse
diffusion was modelled with the finite difference method.

To summarise, in this section we seek to verify that

1. the method is able to model large deformations with particles crossing
cells;

2. the method is two-way coupled;

3. the results are in line with results obtained in [109].

Analytical beam deflection. There exist no analytical solution to the
saturated poroelastic beam bending problem, but there exist several elas-
tic beam bending theories. The Euler-Bernoulli beam theory is valid for
transverse loads and assumes no change in cross-sectional areas or length
of centreline of the beam. Additionally, shear effects are assumed to be
negligible compared to bending effects.

The limit between small and large deflections can be determined from
the maximum slope of the beam. For example, with slope dy/dx = 0.1, the
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denominator of the non-linear Euler-Bernoulli equation

y′′[
1+ (y′)2

]3/2 =− M

EI
(8.8)

becomes 1.01504. The deviation from 1 is small, and therefore acceptable
for small deflection theory.

In general, small deflection theory applied to large deflection problems
overestimates the final deflection. When the beam is subject to large
deflection, the moment arm of the loading will decrease, resulting in less
moment applied to the beam. Consequently, with smaller moment the
deflection will be less than the linearly extrapolated deflection obtained
from the small deflection theory.

There exist several attempts at producing analytical solutions for elas-
tic beams. However, the initial loading step of the poroelastic beam in this
thesis is verified by the simple small deflection theory. The small deflection
theory does not take into account changes of the x-coordinate. The analyt-
ical solution of deflection y for a cantilever beam subject to a distributed
load w is found from

y(x)=− wL4

24EI

( x

L

)2[
6−4

x

L
+
( x

L

)2]
, (8.9)

so that the maximum deflection Δmax is given as

Δmax = wL4

8EI
, (8.10)

where L is the length of the beam, E the elastic stiffness modulus and
I = d ·h3/12 the second moment of area about the y-axis, where h and d

are the height and depth of the beam, respectively. The distributed load
w = q ·d where q is the surface load. The reasons for using depth to denote
the more common breadth of a beam, is that the model in this section is in
effect a 2D plane strain model, and as such, has no actual breadth.

Cross-sectional pore pressure moment. Li et al. [109] plotted the
cross-sectional pore pressure moment Mp along the beam coordinates.
Their finite difference method solution to the beam bending problem solved
directly for Mp, defined as

Mp =−
∫

A
pydA, (8.11)
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where p is the pore pressure, y the distance to the centroidal y-axis1, and
A is the cross-sectional area. For beam bending problems, cross-sectional
area A may be assumed to be constant during the entire duration of the
simulation.

To compute the value of Mp for the MPM, the following was done:

• The cross-sectional area A was computed based on the problem geom-
etry;

• The particles’ initial x-position was used to group the particles into
beam cross-sections;

• The particles’ initial y-position were used to find the distance to the
centroidal y-axis.

This approach is valid due to the assumption of negligible deformation of
A.

8.2.1 Model setup

The model setup aims to reproduce the settings provided in [109] within the
possibilities of the Uintah computational framework [29]. The deviations
from the setup in [109] are remarked when encountered.

Geometry. A cantilever poroelastic beam is modelled. The length of the
beam L = 1m in the x-direction, with height h = 0.3m in the y-direction,
and depth d = 0.1m in the z-direction, as shown in Figure 8.7.

The end at x = 0 is fixed while the end at x = L is free to bend and
move. The flow boundary conditions are p̄ = 0 at x = 0 and x = L, that is,
permeable beam ends. The beam sides in the longitudinal direction are set
as impermeable with applied flux q̄ = 0. While the impermeable boundary
conditions are perfectly imposed on z = 0 and z = d because they are applied
at the boundaries of the computational grid, the same is not true for the y

boundaries. As discussed in Section 7.2 and illustrated in Figure 7.2, there
will be minor inaccuracies in the pore pressure gradient due to the flow
boundaries being imposed on cell boundaries.

1In [109], z is the vertical direction, not y.
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free end at x = L
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Figure 8.7: Geometry and boundary conditions of the poroelastic beam. The beam
dimensions are L = 1m, h = 0.3m and d = 0.1m.

Material properties. As with the one-dimensional consolidation prob-
lem in Section 8.1, the material is a fully-saturated, isotropic linear elastic
material input parameters K = 3.333333MPa and G = 5MPa.

The poroelastic properties are hydraulic conductivity k = 10−4 m/s, bulk
modulus of water Kw = 2.2GPa, and initial porosity n = 0.4. The water
density is ρw = 1000kg/m3 and the saturated density ρ = 2000kg/m3.

This material deviates from the material used in [109]. Li et al. [109]
only allow diffusion in the axial direction and their material is transversely
isotropic.

Loading conditions. First, we need to determine the size of applied dis-
tributed load w determined by the initial maximum normalised deflection
Δmax shown in Figure 8.8 [109]. Using Equation (8.10) to solve for w, gives
w = 5.4KN/m, which in turn gives the surface load

q = w

b
= 5.4kN/m

0.1m
= 54kPa. (8.12)
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Figure 8.8: Deflection of the poroelastic cantilever beam at times T = 0, 0.08 and
0.85 with diffusion boundaries that are permeable at both ends. Fixed end is at
x = 0 and free end is at x = 1. Digitally traced from Li, L et al. Large deflection
analysis of poroelastic beams. International Journal of Non-Linear Mechanics 33,
1–14 (1998), p.9, Figure 2a [109]. Copyright 1997, with permission by Elsevier
Science Ltd.

The load q is applied along the top of the beam, starting from position
x = 0.05m from the fixed end running until the free end. The reason for
this was numerical trouble with immediate large deflections of the beam if
the beam had a distributed load along its entire length.

The load q is applied as immediately as possible in the quasi-static
simulation, which in this case was at t = 0.06s. The quasi-static simulation
is run to reproduce results in [109].

Discretisation. In order to compute the cross-sectional pore pressure
moment Mp, which is the variable that is reported in [109], we need to
properly catch the variation in pore pressure in the cross-section. Hence,
the discretisation in the y-direction must be relatively fine, since the pore
pressure is constant within each cell.

The computational grid is defined with Δy =Δx = 0.015m and only 1
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Figure 8.9: Discretisation of the poroelastic beam. Each cell has 2×2 particles.

cell in the z-direction. With a mesh size of y= 1.2m, x = 1.5m and z = 0.1m
this gives a total of 8000 cells, of which 1407 are cells that contains any
beam material at initialization.

In each cell 2×2×1 particles are initialised in x-, y-, and z-direction,
respectively, see Figure 8.9. This gives 4 particles/cell. Not all cells were
fully filled with particles at creation. A total of 5320 particles were created
in the domain.

Size of time steps. The results of the one-dimensional consolidation
problem presented in Section 8.1.3 showed that for equivalent times T > 0.05,
a large time step of Δt = 10−2 s produces accurate enough results. For the
beam bending problem, we are most interested in results after T > 0.05. In
addition, in order to minimize initial oscillations due to the abrupt change
in loading, Δt = 2 ·10−2 was chosen.
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(a) t = 0.02s

(b) t = 0.06s

(c) t = 0.14s

Figure 8.10: Pore pressure particle plots of bending poroelastic beam for times
t = 0.02, 0.06, and 0.14s. Values in Pa. Suction is negative, pressure is positive.
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(a) t = 0.3s

(b) t = 0.6s

(c) t = 1.2s

Figure 8.11: Pore pressure particle plots of bending poroelastic beam for times
t = 0.3, 0.6, and 1.2s. Values in Pa. Suction is negative, pressure is positive.
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Figure 8.12: Deflection of the poroelastic cantilever beam at times t = 0 (no deflec-
tion), 0.1, 0.6 and 1.2s (black lines) compared with small deflection theory (grey
line). The deflection at t = 0.6s is the maximum deflection obtained despite not all
pore pressures have dissipated yet.

8.2.2 Results
Let us first inspect the pore pressure plot of the bending beam to see
whether it is physically expected results, see Figures 8.10 and 8.11. We see
that the bending induces pore pressures in the beam. There is suction in the
upper part of the beam that experiences stretching, and there is pressure in
the lower part of the beam that experiences compression, see Figure 8.10(b).
This is physically viable. As the simulation progresses, we can observe
the pore pressure dissipation. Towards the end of the simulation, there is
no cross-sectional pore pressure moment because the pore pressures are
equal per cross-section. Furthermore, we can clearly see the effect of the
boundary conditions of the beam: the open ends and the closed sides, with
a pore pressure distribution that resembles the pore pressure distribution
of a one-dimensional two-way drainage consolidation problem. Therefore,
the physics of the simulation makes sense.

Because the loading is applied in the negative Cartesian y-direction,
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the beam is stretched. Therefore, the pore pressures in the beam at the end
of the simulation is in suction.

The beam deflection curves at various time intervals are shown in Fig-
ure 8.12. The initial deflection of the beam should theoretically correspond
to the linear elastic quasi-static solution of beam bending. As seen in Fig-
ure 8.12, there is a small deviation from the analytical solution, though
only in the curvature. This may be due to the generated pore pressures
which give a higher stiffness in that region of the beam. Nonetheless, the
results from the initial load step give trust in the method in that the input
of load and beam characteristics result in a predictable deflection.

After the initial deflection due to the immediately applied distributed
load, we see an additional increase in deflection plotted in Figure 8.12. The
load has already been applied and displacements have already resulted
from that load, as discussed in the previous paragraph. Therefore, the
additional deflection stems from the pore pressure dissipation. As pore
pressures decrease, the beam will give a softer response. This shows that
the pore pressures are able to influence the displacement response. This is
in line with results obtained in Figure 8.8 [109].

Next, we look at Figure 8.14 to see and verify the evolution of the cross-
sectional pore pressure moment Mp. The aim is to compare the results
obtained from the method with results obtained by Li et al. [109], see
Figure 8.13 [109]. The similarities between the two results depicted in
Figures 8.13 and 8.14 are that Mp is fairly high close to the fixed end at
x = 0 and quickly diminishing along the beam towards the free end at x = L.
Additionally, Mp diminishes with time, corresponding to the pore pressure
redistribution observed in Figures 8.10 and 8.11. We observe that the
proposed method is able to generate pore pressures based on displacements
and to dissipate the pore pressures while maintaining the largely deformed
state.

There are, however, differences in the results depicted in Figures 8.13
and 8.14. The finite difference solution in Figure 8.13 converges towards a
symmetric distribution of pore pressure moment along the beam, whereas
the proposed method does not. The maximum pore pressure moment of
the proposed method shown in Figure 8.14 does move towards the centre
of the beam, but never reaches symmetry. There may be several reasons
for this. The beam modelled with the proposed method allows transverse
diffusion inside the beam, which allows the pore pressures to redistribute
in the transverse direction. The pore pressure moment diminishes when
the pore pressures above and below the beam centreline become equal. The
transverse pore pressure gradient may be larger than the axial gradient

114



8.2. Validation: Large deflection of a poroelastic beam

0.0 0.5 1.0
0.0

0.5

1.0

1.5

T = 0
T = 0.08
T = 0.26
T = 1.00

Position from fixed end x

Po
re

pr
es

su
re

m
om

en
tu

m
M

p

Figure 8.13: Normalised cross-sectional pore pressure moment Mp along poroe-
lastic cantilever beam at times T = 0, 0.08, 0.26 and 1 with diffusion boundaries
that are permeable at both ends. Fixed end is at x = 0 and free end is at x = 1.
Digitally traced from Li, L et al. Large deflection analysis of poroelastic beams.
International Journal of Non-Linear Mechanics 33, 1–14 (1998), p.9, Figure 3a
[109]. Copyright 1997, with permission by Elsevier Science Ltd.

due to the difference between suction and pressure. In turn, this may lead
to faster pore pressure dissipation in the transverse direction than in the
axial direction, quickly removing pore pressure moment as a result.

8.2.3 Summary
This section demonstrated that the proposed method is able to

1. model large deformation that also includes particles crossing cells;

2. couple flow and mechanics;

3. produce results that are similar to Li et al. [109].

Additionally, the moving boundary conditions seem to be implemented
correctly.
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Figure 8.14: Normalised cross-sectional pore pressure moment Mp along the poro-
elastic cantilever beam at times t = 0, 0.06, 0.2 and 0.8s with diffusion boundaries
that are permeable at both ends. Fixed end is at x = 0 and free end is at x = 1.
Results obtained by the implicit iteratively coupled MPM-FVM method.
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CONCLUSION

This work has been focused on developing and implementing the material
point method (MPM) to model the coupling between mechanical displace-
ments and pore pressure generation and dissipation under large deforma-
tions of saturated porous media.

There exist several formulations for MPM with implicit time integration
and several formulations of coupled MPM with explicit time integration.
However, the combination of a coupled MPM approach with implicit time
integration is new. The iteratively coupled implicit dynamic MPM-FVM
method presented herein was developed with the goal of modelling large
deformation problems with coupled hydromechanics for geotechnical engi-
neering problems, but the method can be applied in other problems of flow
through porous media.

Explicit velocity formulation. First, the explicit MPM solver of Uintah
[29] was extended with the explicit velocity formulation originally adapted
to MPM by Jassim et al. [9]. The velocity formulation assumes that solid
and water accelerations are not equal. However, if that assumption is true,
then the fluid mass is not conserved.

The implementation worked for the analytical one-dimensional consoli-
dation problem. However, for the dimensionless time T < 0.2 the explicit
formulation produced large oscillations, in line with existing knowledge.
The explicit method needed time steps around 10−5 to give good results
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for a hydraulic coefficient of k = 10−3. With critical time step size being
influenced by permeability, this would mean that for solving problems with
a less permeable material, the time step size must be even smaller. As a
consequence, long-term simulations with low-permeable materials would
be very time-consuming.

To circumvent the problems mentioned here, there exist several ap-
proaches to add to the explicit formulation, such as mass scaling to reduce
time step size and local damping to reduce oscillations. Mass scaling is
most appropriate for almost quasi-static conditions [68]. None of those
approaches was implemented in this work as it was beyond the scope.

Iteratively coupled implicit formulation. This thesis proposes a dy-
namic approach based on the u-p formulation with implicit time integration.
The proposed method uses an iteratively coupled approach called the fixed-
stress operator split [24, 25, 90] to solve the fully implicit coupled system
of equations. The iteratively coupled approach allows displacements and
pore pressures to be solved by separate solvers. Previously, FEM has been
coupled with FVM. In this thesis, the proposed method couples MPM with
FVM. The coupling approach between MPM and FVM supports that there
are many advantages originating from the similarities of FEM and MPM
and applying methods initially derived for FEM to MPM.

The proposed method was verified by benchmarks. The first benchmark
was the same analytical one-dimensional consolidation problem that was
used to verify the explicit implementation. The method could properly
solve the mathematical equation with time steps of the order of 10−3 s to
10−2 s for a hydraulic coefficient of k = 10−3 m/s. Additionally, there were no
oscillations for the quasi-static approach, but there were small oscillations
for dimensionless time T < 0.2 when inertial terms were included.

The second benchmark was simulating the bending of a poroelastic
beam. The proposed method was able to model large deformations while
simultaneously generating and dissipating pore pressures. The coupled
effect between flow and mechanics could be seen from the pore pressures be-
ing generated from the bending moment, and the beam deflection increased
with time when pore pressure diminished. The results were along the same
lines as published results on a similar problem.

Implications of research. The benefit of the proposed method is two-
fold. First, the method could be a valuable approach when modelling porous
flow problems. Examples of such flow problems would be earthquakes,
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slope failure, dam embankments, pile driving. Since the proposed method
uses implicit time integration, it can use larger time steps than explicit
approaches. Consequently, the proposed method is more suited for long-
term simulations.

Second, the proposed method aids the process of extending a single-
phase implicit MPM code to be able to model coupled flow. With the it-
eratively coupled approach, minor changes to the mechanical solver are
necessary and a flow solver must be added. The flow component may draw
on already existing features with the mechanical solver, such as the back-
ground mesh. Using a Cartesian background mesh also allowed for using
the simplest flux scheme in FVM, namely the two-point flux approximation
method.

Summary of contributions. The main contribution of this thesis is the
development and implementation of an iteratively coupled implicit dynamic
MPM-FVM method. The proposed method has been verified to work with
consolidation and large deformations. Other minor contributions in this
thesis are

• the extension of a single-phase explicit MPM code to coupled hydrome-
chanics;

• development of using the material volume of FVM cells instead of the
geometrical cell volume in order to account for the changing material
volume due to particle migration between cells;

• development of updated FVM boundary conditions based on the cur-
rent material body configuration;

• simulation and analysis of the bending of a poroelastic beam.
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One never notices what has been done;
one can only see what remains to be done.

Marie Curie
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10
RECOMMODATIONS FOR

FURTHER WORK

The areas of further research can be divided into two parts: further refine-
ment of the proposed method itself, and extensions of the proposed method
to model geotechnical problems. The goal of refining the proposed method
would be to obtain a more accurate method than the one presented in this
thesis, and may be accomplished by including the following features:

Advanced moving boundary conditions The moving flow boundary con-
ditions in this work are following the cell borders. To increase accu-
racy, the boundary conditions may be attempted to follow the surface
of the material point body.

Advanced flux schemes The simple two-point flux approximation scheme
has been used in this work. There exist several other schemes that
might be beneficial in order to model flow diagonally across the mesh.

Shape functions of higher order In this work, the standard linear shape
functions were used for the MPM interpolation. However, the re-
search front in MPM uses more advanced shape functions, either by
using B-splines or other higher order shape functions, but also using
GIMP. Higher order shape functions for the displacements, allow for
potentially using shape functions for the cell pore pressures too.
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10. RECOMMODATIONS FOR FURTHER WORK

For adapting the proposed method for solving geotechnical engineering
problems, both advanced material models and the ability to model unsatu-
rated soils are needed:

Advanced material models. The verification of the iteratively coupled
implicit dynamic MPM-FVM method used an isotropic elastic ma-
terial model. Advanced material models should be implemented to
investigate the proposed method’s usability within the field of geotech-
nical engineering.

Extension to unsaturated soils. Iteratively coupled methods for FEM
and FVM are able to model unsaturated soils. The proposed method
herein should be extended to allow for unsaturated soils.

Introduce contact formulations. In geotechnical engineering, many prob-
lems include soil-water-structure interaction. For the proposed method
to be of practical interest, contact formulations should be included.

122



123





REFERENCES

1. Darby, SE, Rinaldi, M & Dapporto, S. Coupled simulations of flu-
vial erosion and mass wasting for cohesive river banks. Journal of

Geophysical Research 112, F03022 (2007).

2. Ceccato, F & Simonini, P. Numerical study of partially drained
penetration and pore pressure dissipation in piezocone test. Acta

Geotechnica 12, 195–209 (2017).

3. Cowin, SC. Bone poroelasticity. Journal of biomechanics 32, 217–38
(1999).

4. Zhang, J, Datta, AK & Mukherjee, S. Transport processes and large
deformation during baking of bread. AIChE Journal 51, 2569–2580
(2005).
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SYMBOLS

as acceleration of solid phase
aw acceleration of water phase
a (solid) acceleration vector
ah approximate (solid) acceleration vector
ai (solid) acceleration vector evaluated at node i

ap (solid) acceleration vector evaluated at xp

b solution vector; body force
bh approximate body force
bp body force evaluated at xp

c dilational wave speed
cv coefficient of consolidation
d number of dimensions, 1, 2 or 3; depth of soil

column; depth of beam cross-section
e void ratio, Vw/Vs for saturated soils
f a function; element face
ftrac

p boundary particle traction force
g magnitude of the acceleration of gravity
h height of soil column; height of beam cross-

section
Δh cell size closest to draining boundary
k hydraulic conductivity; as superscript: vari-

able evaluated at iteration k

L length of beam
m total mass of mixture; fluid mass (Chapter 2)
mi diagonally lumped mass matrix
mi j consistent mass matrix
mα diagonally lumped mass matrix for phase α

m̄α average diagonally lumped mass matrix for
phase α
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SYMBOLS

n porosity, Vw/V for saturated soils; as super-
script: variable evaluated at time step n

nα volume proportion of phase α to total volume
ns volume proportion of solids to total volume,

1−n for saturated soils
n surface normal vector
n f surface normal vector of element face f

p pore pressure
p0 initial pore pressure
p̄ prescribed pore pressure
p̄n cell pore pressure average at time step n

ṗ pore pressure rate
pE pore pressure in east cell E

pf pore pressure in neighbour cell that shares
face f

ph approximate pore pressure
pn

i
nodal momentum in node i at time step n

pP pore pressure in centre cell P

p(t) prescribed pressure traction in Uintah
q surface load
qe flux on east face of cell
q specific discharge, Darcy velocity, n(w−v)
q̂ pore pressure gradient term of flux q
r residual
rmass, n residual of mass for element n

rmom residual of momentum
t time; current time
t0 intial time
tn time at time step n

Δt time step size
Δtc critical time step size
Δtw critical time step size for water
u displacement vector
u0 initial displacement vector
ū prescribed displacement vector
u̇ velocity v
ü acceleration a
uh approximate solution of displacements
ui nodal displacements
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Symbols

v (solid) velocity vector
v0 initial (solid) velocity vector
v̄ prescribed (solid) velocity vector
v̇ (solid) acceleration vector as
vh approximate (solid) velocity vector
vi (solid) velocity vector evaluated at node i

v∗
p particle (solid) velocity vector interpolated

from nodal velocities
w distributed load
w water velocity vector
w0 initial water velocity vector
w̄ prescribed water velocity vector
ẇ water acceleration vector aw
wh approximate water velocity vector
w̃ interstitial velocity, w−v
x vector of unknowns; current coordinate
Δxe distance between cell centres of centre cell and

east cell
Δx f distance between cell centres of centre cell and

cell that shares face f

xi nodal coordinate
xp current material point coordinate
Δx cell dimension
Δxmin minimum cell dimension
y deflection of beam
z spatial variable in one-dimensional consolida-

tion problem

A surface area
Aτ traction surface area
A coefficient matrix
B strain-displacement matrix ∇∇∇N
BNL non-linear strain-displacement matrix
C fluid compressibility matrix
D stiffness matrix
E elastic stiffness modulus
Eoed oedometer or constrained modulus
F deformation gradient
Fdrag nodal drag force vector
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SYMBOLS

Fext nodal external force vector
Fext, w nodal external solid force vector
Fint nodal internal force vector
Fint, w nodal internal water force vector∑

F sum of forces
G shear modulus
H1 Sobolev space of degree 1
I second moment of area
I second order identity tensor
J Jacobian, determinant of F
K bulk modulus
Kdr drained bulk modulus
Ks bulk modulus of soil grains
Ku undrained bulk modulus
Kw bulk modulus of water ≈ 2.2 GPa
K tangent stiffness matrix
K̄ tangent stiffness matrix with inertial terms
Kgeo non-linear geometric stiffness matrix
Kmat material stiffness matrix
L linear momentum
L2 space of square integrable functions
Lp particle velocity gradient
M Biot modulus
Mp concentrated mass in material point; cross-

sectional pore pressure moment
M global mass matrix
Mp pressure mass matrix
N shape function matrix
Nbp number of boundary particles
Ne number of elements in domain
Ni shape function evaluated at node i

Nin shape function at node i evaluated at cell cen-
tre of element n

Nip shorthand notation for Ni

(
xp

)
Nn total number of grid nodes
Np total number of subdomains Ω0

p in Ω0

P0 element with constant pressures
Pβα momentum between phases β and α

P preconditioning matrix
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Symbols

Q1 element with displacements in linear space
Q1 coupling matrix
Q2 coupling matrix
Q̄2 coupling matrix with inertial terms
R some subregion
R real one-dimensional space
R3 real three-dimensional space
S integral over surface of element
S̃A Schur complement approximation matrix
T dimensionless time factor cvt/h2

Tf transmissibility coefficient of face f

TP transmissibility coefficient of centre cell P

T̃P adjusted transmissibility coefficient of centre
cell P for boundary conditions

T transmissibility matrix
V total volume
Vc material element volume
V̇e volumetric flow rate through east face of cell
V̇total total volumetric flow rate through all cell faces
Ve geometric element volume
Vmin minimum volume for boundary assignment
Vp material point volume
Vs volume of solid
Vw volume of water
X initial coordinate
X0

p initial centroid position vector of subdomain
Ω0

p

DTOL user-defined displacement tolerance
ITOL user-defined tolerance for the global conver-

gence of the coupled MPM-FVM
RTOL user-defined residual tolerance

G general constitutive model
O () big O notation
P functional space for solution of pore pressures

p

P0 functional space for the test function ϕ

P0,h functional subspace of P0for the approximate
test function ϕh
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SYMBOLS

Ph functional subspace of P for the approximate
solution of pore pressures ph

T loading function
U functional space for solution of displacements

u
U0 functional space for the test function η

U0,h functional subspace of U0for the approximate
test function ηh

Uh functional subspace of U for the approximate
solution of displacements uh

V0 functional space for the test function η

α a phase; 1/Kdr
β another phase; Newmark method coefficient
γ Newmark method coefficient
δ infinitesimal change; Dirac delta function
ε strain tensor
εv volumetric strain
ε̇v volumetric strain strate
η test function
ηh approximate test function
ηi test function evaluated at node i

ηp test function evaluated at xp

θ coefficient for time integration
κ absolute permeability scalar
κ absolute permeability tensor
μw dynamic viscosity of water
ν Poisson ratio
ρ total density
ρα density of phase α

ρα average density of phase α

ρp material point density
ρs density of solid
ρs average density of solid phase
ρw density of water
ρw average density of water phase
σ stress tensor
σ0 initial stress tensor
σ′ effective stress tensor
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Symbols

σ′
0 initial effective stress tensor

σh approximate stress tensor
σp stress tensor evaluated at xp

σs solid stress tensor
σs specific stress tensor σ/ρ
σs

p specific stress tensor σ/ρ evaluated at xp

σv volumetric stress
σ̇v volumetric stress strate
σw water stress tensor
τ boundary traction force
τ̄ prescribed boundary traction force
τ̂i integrated prescribed boundary traction force

at node i

φ a Eulerian function
ϕ test function for pore pressures
ϕh approximate test function for pore pressures
ϕn shape function in element n for pore pressures

Δmax maximum deflection
Φ a Lagrangian function
Ω a body, volume or domain; deformed body, vol-

ume or domain
Ω0 a body, volume or domain at initial time t0
Ω0 the original domain
Ω0

p the original subdomains
Ωe element domain
Ωn volume of element n

Ωp partice volume
∂Ω boundary of the domain
∂Ω f surface of element face f

∂Ωn surface of element n

∂Ωp pore pressure boundary, subset of ∂Ω

∂Ωq water flux boundary, subset of ∂Ω

∂Ωτ traction boundary, subset of ∂Ω

∂Ωu displacement boundary, subset of ∂Ω

∂Ωw water velocity boundary, subset of ∂Ω

∂R boundary of a subregion
∇ vector partial differential operator,

[
∂x,∂y,∂z

]
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ACRONYMS

ALE arbitrary Lagrangian-Eulerian

CEL coupled Eulerian-Lagrangian
CFL Courant-Friedrichs-Lewy
CPDI convected particle domain interpolation
CPT the cone penetration test

DDMP dual domain material point
DEM the discrete element method

FDM the finite difference method
FEM the finite element method
FLIP the fluid-implicit-particle method
FVM the finite volume method

GIMP generalised interpolation material point

MPM the material point method

PDE partial differential equations
PIC particle-in-cell

SPH smoothed particle hydrodynamics

TPFA two-point flux approximation
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