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Abstract

In this thesis we show in detail how the Normal Inverse Gaussian process can be used
to model stocks and stock market indices. We explore the properties of the NIG market
model in comparison to empirical findings in the financial markets. Then we will demon-
strate how to price exotic options under this NIG market model using numerical path
integration. Finally, we perform numerous numerical examples to show the efficiency
and accuracy of this implementation approach. Since prices on exotic options are not
publicly available, we will price the options using some fixed parameters, and compare
with Monte Carlo simulation results.
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Chapter 1

Introduction

Through decades, the Black-Scholes model (Black & Scholes 1973) has dominated the
world of financial derivatives pricing, mainly due to its simplicity. However, because of
several explicit simplifying assumptions needed to be made, the model disagrees with
reality in a number of ways, some significant. In particular, the Black-Scholes model
assumes that the logarithm of the daily stock returns are normally distributed. The
impact of this assumption has become especially noticeable through the last year, as it
tends to underestimate the probability of extreme daily variations. Due to such short-
falls of the Black-Scholes model, financial modelers are constantly trying to find more
realistic models for the dynamics of financial instruments. Stochastic volatility and jump-
diffusion models are frequently referred to in the literature, see e.g. (Rebonato 2004).
Different variations of Levy process have also been attempted as modeling tool, see e.g.
(Schoutens 2003). Madan, Carr & Chang (1998) introduced the three parameter Vari-
ance Gamma process, while Barndorff-Nielsen (1994) first introduced the three parameter
Normal Inverse Gaussian (NIG) process as a derivative pricing approach. This thesis will
in debth cover option pricing under this NIG market model.

The numerical path integration method is a well described approach in the case
where the driving noise is Brownian motion (see e.g. (Naess & Moe 2000) or (Skaug
& Naess 2007)). Relatively few articles have been written when the driving noise is a
more general Levy process, such as the Variance Gamma or the Normal Inverse Gaussian
process. The numerical path integration method is used to approximate the probability
density of the solution process of a stochastic differential equation. In the case of the
NIG process, there is no explicit SDE for the development of a financial asset, but we
will in this thesis show how the numerical path integration method can still be applied.

1.1 Thesis Outline

In chapter 2 we make a short introduction to necessary basic financial aspects. If the
reader is familiar with option theory and financial modeling, there are no new insights
to be made. In chapter 3 we define the Normal Inverse Gaussian process and give all
the necessary mathematical preliminaries. We also discuss the impact of changes in the
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2 CHAPTER 1. INTRODUCTION

different parameters. Chapter 4 is dedicated to a thorough statistical analysis of the
performance of the NIG market model with empirical market data. We will calibrate
our model using both historical market data (section 4.1-4.3) and current option prices
(section 4.4). Finally, we explore the NIG market models sensitivity regarding changes
in the parameters in section 4.6. In chapter 5 we show the framework for pricing some
exotic options with the numerical path integration method. Finally we in chapter 6
produce numerical results to verify our implementation, and discuss the accuracy and
computational speed.



Chapter 2

Financial Basics

In this chapter, we will give a brief introduction to the necessary financial basics for this
thesis. In section 2.1 we briefly discuss the concept of indices, while we in section 2.2
introduce the Black-Scholes model. Then we review different types of options in section
2.3, before we in section 2.4 look at different numerical option pricing methods.

2.1 Stocks and Stock Market Indices

A stock market index is a method of measuring a certain section of the stock market.
Stock market indices may be classed in many ways. A broad-base index represents the
performance of a whole stock market - and by proxy, reflects investor sentiment on the
state of the economy. The most regularly quoted market indices are broad-base indices
comprised of the stocks of large companies listed on a nation’s largest stock exchanges,
such as the British FTSE 100, the French CAC 40, the German DAX, the Japanese
Nikkei 225, the American Dow Jones Industrial Average and S&P 500 Index and the
Norwegian Oslo Stock Exchange Benchmark Index (OSEBX). The concept of indices may
be extended well beyond an exchange. The Dow Jones Wilshire 5000 Total Stock Market
Index, as its name applies, represents the stocks of nearly every publicly traded company
in the United States, including all U.S. stocks traded on the New York Stock Exchange
and most traded on the NASDAQ and the American Stock Exchange. More specialized
indices exist tracking the performance of specific sectors in the market. The Morgan
Stanley Biotech Index, for instance, consists of 36 American firms in the biotechnology
industry.

An index may also be classified according to the method used to determine its price.
In a price-weighted index such as the Dow Jones Industrial Average and the NYSE
ARCA Tech 100 Index, the price of each component stock is the only consideration when
determining the value of the index. Thus, price movement of even a single security will
heavily influence the value of the index even though the dollar shift is less significant in
a relatively highly valued issue, and moreover ignoring the relative size of the company
as a whole. In contrast, a market-value weighted or capitalization-weighted index such
as the Hang Seng Index and the OSEBX factors in the size of the company. Thus, a

3



4 CHAPTER 2. FINANCIAL BASICS

relatively small shift in the price of a large company like StatoilHydro ASA, will heavily
influence the value of the OSEBX compared to an equal shift in a smaller company like
Norwegian Air Shuttle.

When we are making mathematical calculations and simulations based on a certain
theoretical market dynamics, it is interesting to make a brief discussion on whether the
model dynamics is suitable for the markets we are looking at. In the next section, we
briefly look at how well the Black-Scholes model fits the historical data from the Dow
Jones Industrial Average. In chapter 4, we will see how the Normal Inverse Gaussian
(NIG) distribution proposed by Barndorff-Nielsen (1994) fits the historical data from
OSEBX, as well as the Dow Jones Industrial Average and some single stocks. We will
also investigate its compatibility to market option prices using implied parameters.

When looking at relatively small indices and prices of single stocks, it is worth notic-
ing how some properties of these may have an impact on the compatibility to the model
dynamics. For instance, the relatively small size of OSEBX makes the index more de-
pendent on certain factors (see e.g. (Bjornland 2008)). These factors are for instance
the oil price and the development on bigger stock markets, such as those in New York
and Asia. This dependence makes it harder to model the OSEBX independently without
looking at what happens to the other markets. Secondly, the models usually assumes
that the market has sufficient liquidity. The essential characteristic of a liquid market is
that there exists buyers and sellers that are willing to sell and buy at all times and for
all desired prices. If the market do not have sufficient liquidity, there would be sudden
extreme movements caused by a lack of buyers or sellers, and these sudden, unexpected
movements are hard to model. For instance, due to the current financial crisis, the
market makers in fall 2008 experience difficulties pricing credit swaps and other credit
derivatives.

2.2 The Black-Scholes Model Dynamics

There are several mathematical models of the underlying stock price dynamics used for
pricing derivatives. The most popular is the Black-Scholes model proposed by Black &
Scholes (1973), which assumes that the stock price develops according to a geometric
Brownian motion given by

dSt = µStdt+ σStdWt (2.1)

where dWt is a Brownian motion with mean 0 and variance dt. Rewriting (2.1),

dSt
St

= µdt+ σdWt

we notice that the stock price follows a lognormal distribution with mean µdt and variance
σ2dt. Under this assumption, the probability for the stock price at time t, St, given that
the stock price at time t′ < t, St′ = s′, is explicitly given as

pt|t′(s|s′) =
1√

2π∆tσs
exp

(
−(log(s)− log(s′)− (r − σ2/2)∆t)2

2σ2∆t

)
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where ∆t = t− t′.
This normality assumption for the log return of the stock prices is the most crucial

assumption of the Black-Scholes framework. The advantage with this model and the
reason for why it has become so popular in the financial industry, is that we only have
two parameters which we need to estimate; the mean µ and the variance σ2. These two
parameters are completely observable in the historic data, which makes the estimation
easy and straightforward. The mean µ is just the average log return, while the variance
σ2 is the volatility in the historic market data.

The downside with the Black-Scholes model, is also the fact that we only have two
parameters to be fitted to the historical data. This gives limited possibilities to take into
account heavy tails due to extreme variations, and also additional kurtosis2.1 for assets
that have most log returns around the mean with some infrequent extreme variations.
In Figure 2.1 we see these properties as the normal PDF fail to include the peak around
zero and especially the extreme log returns between −0.1 and −0.05. And at the same
time it includes to much in the steep areas around the center.
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Figure 2.1: Histogram showing the daily log returns on Dow Jones Industrial Average in
the period from 3rd of January 1950 to 27th of February 2009 with the normal probability
density function (with parameters µ and σ2 estimated from the same data set) as a red
dashed line.

2.1is a measure of the ’peakedness’ of the probability distribution and higher kurtosis means more of
the variance is due to infrequent extreme deviations
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In addition to the normality assumption, Black & Scholes (1973) have made the
following assumptions

• it is possible to lend or borrow cash at a constant risk-free rate r

• there are no transaction costs

• the stocks pay no dividends

• all securities are perfectly divisible (i.e. it is possible to buy fractions of a share)

• short selling is allowed

• trading of the underlying asset can take place continuously

For more details on the Black-Scholes model, and these assumptions, see e.g. Wilmott,
Howison & Dewynne (1995).

2.3 Options

An option is a contract between a buyer and a seller that offers the buyer the right, but not
the obligation, to buy (or sell) a security or another financial asset at an agreed-upon price
(the strike price) during a certain period of time or on a specific date (exercise/maturity
date). In return for granting the option, the seller collects a payment (the premium) from
the buyer. To buy an option is often referred to as having a long position, while selling an
option is referred to as a short position. There are two main types of options - American
and European. An European option can only be exercised at the expiration date, whereas
American options can be exercised at any time before and including the maturity date.
When we have the option to buy the underlying asset, we have a call option, while a
put option is the option to sell the underlying asset. One profits from buying a put if
the price of the underlying asset decreases, and from buying a call when the price of
the underlying increases. There exist numerous different types of options, from simple
European call options to more complicated options. These various options exist because
different institutions and investors have different demands concerning hedging2.2 their
investments. And as long as there are parties willing to make up the opposite side of
the contract, the options are traded in the market. Options that differ from the regular
options types, are called exotic options, and examples of such exotic options are barrier
options, lookback options and Asian options. These exotic options are typically traded
over-the-counter (OTC)2.3.

To illustrate the concept of hedging, we will look at a small example. Assume that
American Airlines profits are a linear function of the oil price as showed in the first graph
in Figure 2.2. Here we see that if the oil price exceeds $120, then American Airlines will

2.2hedging is a financial term for reducing or eliminating risk related to variations in a certain market
2.3expression used for financial products that are traded directly between two parties, and not through

an exchange
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have negative profits. But if American Airlines buy call options with strike X =$120
(with profits showed in the second graph in Figure 2.2), then American Airlines profits
will be as showed in the last graph in Figure 2.2. Hence, by buying call options on the oil
price, American Airlines have hedged away the risk of large negative profits as a result
of a very large oil price.
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Figure 2.2: The upper graph show the profits of American Airlines as a linear function
of the oil price, while the graph in the middle show the profit of a call option on the oil
price, and the lower graph show the hegded profits for American Airlines.

There exists a large quantity of different options, from the simplest Vanilla2.4 options
to more advanced exotic options. In this thesis we will focus on some of the most common
exotic options; barrier options, lookback options and Asian options.

Barrier Options

Barrier options are a type of path dependent options, where the option to exercise de-
pends on the underlying crossing or reaching of a given barrier. These barrier options
were created to make the insurance value of an ordinary Vanilla option, without charg-
ing as much premium. Since they offer much of the same hedging qualities as a regular
Vanilla option for a lower price, they have become very popular.

Barrier options are similar in some ways to ordinary options. There are puts and

2.4term used for a regular call or put option
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calls, as well as European and American varieties. But they become activated or, on the
contrary, null and void only if the underlying asset reaches a predetermined level (barrier).
Among these there are four main types: Up-and-out, down-and-out, up-and-in and down-
and-in. In addition, there are combinations of these, such as an up-and-out-down-and-
out option. An up-and-out options will cease to exist if the underlying asset reaches the
barrier. For an up-and-in option, the holder does not have the option to exercise unless
the underlying asset reaches the barrier. In mathematical modeling of barrier options,
it is also important to discuss how frequently the underlying assets are monitored. It
should be clear that an up-and-out option which is monitored continuously2.5, have a
higher probability of being observed crossing the barrier than a barrier option which
is monitored discretely, i.e. at the end of each trading day. Hence the continuously
monitored barrier options should be cheaper since there is a greater probability that it
will be worth nothing in the end.

Lookback Options

A lookback option is also a type of path dependent option, which allows the investors to
look back at the price of the underlying asset occurring over the life time of the option,
and then exercise based on the underlying asset’s optimal value. This type of option
reduces the uncertainties associated with the timing on market entry for the investor.
They have an obvious appeal to the investors, but since they are expensive, they tend to
be more of a speculative device.

There are two main types of lookback options: options with a fixed strike price and
options with a floating strike price. For a call (or put) with a fixed strike price, the
option holder can look back over the life time of the option and choose to exercise at the
point when the underlying asset was priced at its highest (or lowest). The option payoff
is then the selected past market price minus the fixed strike price. For a call (or put)
with a floating strike price, the payoff is the same as for the fixed strike, except that the
strike price is fixed at maturity as the lowest (or highest) value of the underlying asset
during the life time of the option. As for almost all options, we also have call and put
variations of the option and European and American style lookback options.

Asian Options

The last exotic option type we will consider, is Asian options. They are also path
dependent options, where the payoff at maturity depends on the average price of the
underlying asset during the lifetime of the option. Asian options offers corporations and
traders protection against price manipulations and/or large variations in the price of the
underlying asset due to low trading volume. Obviously it is easier to manipulate the price
at one point in time, compared to manipulating the average over a period of time. Hence
the volatility of Asian options is lower than the volatility of the underlying asset. Due

2.5In this setting, continuously must not be thought of in a mathematical sense. This term is in this
thesis used to represent situations where no discrete monitoring is defined.
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to this low volatility, the Asian options tend to be a cheaper alternative to its European
counterparts.

There are commonly two types of averages used; arithmetic average (Aa) and geo-
metric average (Ag)

AaN =
1

N + 1

N∑
i=0

Si and AgN =

(
N∏
i=0

Si

) 1
N+1

(2.2)

where N is the number of times we are monitoring the price of the underlying asset
during the lifetime of the option. In this thesis we will focus only on the arithmetic
average case, but it should be relatively straightforward to extend the theory to the
geometric case. In addition there are fixed strike (also called average price) and floating
strike (also called average strike), where the latter involves a payoff function depending
on both the average and the price of the underlying asset at maturity. The option prices
also depend on whether the underlying asset is monitored discretely or continuously.

2.4 Numerical Option Pricing Methods

A lot of different methods have been used for pricing and modeling different financial
securities and dynamics. The most common ones are perhaps Monte Carlo simulation
and binomial option pricing model, which we will discuss below. The development in
modern computers have made these methods more applicable with regards to speed, but
there are still a lot of problems that are too time-consuming.

Binomial Option Pricing Model

The binomial option pricing model (BOPM) approach is widely used as it is able to
handle a variety of conditions for which other models can not easily be applied. This
is mainly because the BOPM models the underlying asset over time, and not just at
a particular point in time. Opposed to the Black-Scholes formula, BOPM can easily
be modified to price American options and some exotic options. Although it is slower
than using the Black-Scholes formula, it is considered to be more accurate, especially for
longer-dated options. For these reasons, the BOPM is widely used by practitioners in
the option markets. The essence of the model can be broken down into three steps:

• initializing a binomial tree, where each node represents a possible price of the
underlying asset at a particular point in time

• calculate the option value at each final node (at maturity date)

• calculating the option values backwards from the final nodes to the initial node,
which represents the current option price

The BOPM has, as mentioned above, a certain appeal to the practitioners. But since
there are just two possible movements at each node (either up or down), you must have
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a very small grid size in order to get a binomial tree that represents the reality in a
satisfactory manner. This makes the BOPM very time-consuming, which is a obvious
weakness of this method.

Monte Carlo Simulation

Monte Carlo simulation (MC) is a method that is more straightforward than many of
the other options pricing methods. The MC simulation is a procedure in which random
numbers are generated according to probabilities assumed to be associated with a source
of uncertainty, in our case the underlying assets development in the future. A simple
example of the use of MC simulation in finance, is the pricing of a Vanilla option, with the
Black-Scholes model as the underlying asset dynamics. From (2.1) we have an expression
for the stock price at time t given the stock price at time t′

St = St′ (1 + rdt+ σdWt) (2.3)

where dWt is N(0, dt) and dt = t− t′ > 0. For each step in each simulation, we generate
a normal random variable with mean zero and variance dt. The stock price at the next
time step is then given by (2.3), and at maturity we know the payoff, max [ST −K, 0],
for each simulation. The price of the Vanilla option, is then given as the average payoff
of the option for each simulation, discounted2.6 to the initial point in time.

One of the most attractive properties of MC simulations is that it can be applied on
complicated problems. We will return to Monte Carlo simulation in chapter 5.

Numerical Path Integration

The numerical path integration method involves a stepwise algorithm that computes the
evolution of a probability distribution from an initial state or an initial distribution. For
each discrete time step, we use the conditional transition probability, ptj |tj−1

(xi | xj−1),
to propagate forward in time. This approach have the great advantage of handling
a stochastic differential equation which may be a function of the underlying variable
itself, in a precise way. Some dynamics, such as the Black-Scholes model and our NIG
market model, have explicitly given transition probabilities, while in most cases we must
find an approximate density. Skaug & Naess (2007) discusses two ways of finding this
approximate transition probability, using Euler-Maruyama discretization and simplified
weak Taylor scheme of order 2.0.

When we have an explicit expression for the transition probability from state Xt′ to
Xt, dt = t − t′ > 0, combined with the known initial state or initial distribution, g0(x),
we can propagate forward to find the probability density function at time t

gt(x) =
∫ ∞
−∞

gt′(x∗)pt|t′(x | x∗)dx∗

2.6discounting is a way of taking into account the time value of money
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This probability density function we can use to find the information we want at a given
time in the future, i.e. if Xt′ is a stock price at time t′, then we can find the expected
payoff at expiration T for a European call with strike price K

E
[
(ST −K)+

]
=
∫ ∞
K

(x−K) gT (x)dx

This is essentially what we need in order to price the options, but for some of the exotic
options, we need to extend this to a two-dimensional case.

In addition to finding an approximate density function, there are mainly two numer-
ical challenges when implementing path integration. The first one is to find a balance
between the grid size and the computational speed to achieve a desired accuracy. For
multidimensional problems, it may be critical to use interpolation in order to reduce the
number of grid points. Secondly, it is critical to choose an accurate numerical integration
method. For each time step we have to calculate m (where m is the number of spacial
grid points) integrals, and hence the numerical errors will be considerable if the integra-
tion method is not accurate enough. The accuracy regarding the integration will also be
influenced by the grid size, so we must also in this case consider interpolation in order
to get the necessary accuracy when integrating.
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Chapter 3

The Normal Inverse Gaussian
Process

The Normal Inverse Gaussian (NIG) distribution is a special case of the generalized hy-
perbolic distributions, first introduced by Barndorff-Nielsen (1994). Due to the specific
characteristics, the NIG distribution is very interesting for applications within finance.
With its four parameters, the NIG distribution allows both skewness and higher kurto-
sis3.1 than the Normal (Gaussian) distribution. These properties, especially allowing
slower decreasing tails, makes it a suitable tool for modeling financial derivatives with
most commonly the stock return as the underlying asset.

The name of the NIG process is due to the fact that we can relate the NIG process
to an Inverse Gaussian (IG) time-changed Brownian motion. The Inverse Gaussian dis-
tribution describes the distribution of the time a standard Brownian motion with drift
b > 0 takes to reach a fixed positive level a. The time this takes can of course only be
positive, and thus the Inverse Gaussian process is only defined for x > 0. The density
function for the IG(a, b) distribution is given by

fIG(x; a, b) =
( a

2πx3

) 1
2 exp

(
−a(x− b)2

2b2x

)
(3.1)

and Figure 3.1 show this PDF for different values of b.
A random variable is said to be NIG distributed with parameters α, β, µ and δ,

denoted X ∼ NIG(α, β, µ, δ), where µ is the location, β is the skewness, α the tail-
heaviness and δ the scale. The probability density function for a NIG(α, β, µ, δ)-variable
is given by

fNIG(x;α, β, µ, δ) =
∫ ∞

0
fN (x;µ+ βy, y) · fIG(y; δγ, γ2)dy (3.2)

3.1It is important to be aware that there exist two main kurtosis measures; the Pearson kurtosis and
the Fisher kurtosis. The Fisher kurtosis is equal to the Pearson kurtosis minus 3. The built-in function
kurtosis() in Matlab returns the Pearson kurtosis measure, while the built-in function kurt() in Excel
returns the Fisher kurtosis measure. Since we use Matlab, we have chosen to use the Pearson measure.

13
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Figure 3.1: Inverse Gaussian probability density functions.

where fN denotes the density function of the normal Gaussian distribution, γ =
√
α2 − β2

and
α > 0 , − α < β < α , δ > 0 , µ ∈ R

This density function can also be written as

fNIG(x;α, β, µ, δ) =
αδ

π
exp (δγ + β(x− µ))

K1

(
α
√
δ2 + (x− µ)2

)
√
δ2 + (x− µ)2

(3.3)

where K1(·) denotes the modified Bessel function of the second kind, defined as

K1(u) =
1
2

∫ ∞
0

exp
(
−1

2
u(t+ t−1)

)
dt

For further details on the Bessel function, see e.g. Abramowitz & Stegun (1968). Kale-
manova & Werner (2006) show that the latter representation of the density function is
computationally much more efficient, and so we will later use this representation for the
density function. We can define the NIG process

XNIG = {XNIG
t , t ≥ 0} (3.4)

with XNIG
0 = 0 and stationary and independent NIG distributed increments. XNIG

t+dt −
XNIG
t is then NIG distributed with parameters α, β, µdt and δdt.
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Schoutens (2003) stated that a NIG process XNIG with parameters α > 0, | β |< α,
µ ∈ R and δ > 0 can be obtained by time-changing a standard Brownian motion W =
{Wt , t ≥ 0} with drift by an IG process I = {It , t ≥ 0} with parameters a = 1 and
b = δ

√
α2 − β2. Hence

XNIG
t = µ+ βδ2It + δWIt (3.5)

is a NIG process with parameters α, β, µ and δ. As mentioned earlier, the NIG distri-
bution with its possibility for slower decreasing tails, is a very suitable tool for modeling
financial derivatives. Figure 3.2 show a sample path of a NIG distributed stock price
process, and as we can see there are some extreme movements in the process. These
events happen more frequently in the NIG process, than in the Black-Scholes framework,
which we in chapter 4 will see is more according to historical data collected from various
financial indices and stocks.
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Figure 3.2: A NIG sample path of a stock price development, with S0 = 100, T = 1,
α = 70, β = −15 and δ = 1.

3.1 The Effects of changing the Different Parameters

Except from the location parameter µ, it might not be obvious how changing the different
parameters effect the density function and the central moments of a NIG distributed ran-
dom variable. In Figure 3.3 we have plotted the probability density function for the NIG
distribution, varying one of the parameters at a time, to get an intuitive understanding
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of the effects of the changes. As mentioned in the beginning of this chapter, we see that
α controls the tail-heaviness, β the skewness of the density function, µ the location and
δ controls the scale of the density function.
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Figure 3.3: The NIG distributed density functions with one parameter value varying
(default: α = 75, β = 0, µ = 0 and δ = 0.01)

The central moments of the NIG distribution is summarized in Table 3.1. From this
table, it might be a bit hard to intuitively recognize the effect on these moments from a
change in one of the parameters. We have therefore summarized these effects in Table
3.2.
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Moment NIG(α, β, δ)
Mean(E) µ+ δβ

γ

Variance(V) δα2

γ3

Skewness(S) 3β
α
√
δγ

Kurtosis(K) 3 + 3
(

1 + 4
(
β
α

)2
)

1
δγ

Table 3.1: Expressions for the central moments of the NIG distribution

α β µ δ
V K E V S K E V K

Change: ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑
↓ ↑ ↑ ↓ ↑ ↓ ↑ ↓ ↓ ↓

Table 3.2: Parameter effects on the central moments.
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3.2 NIG Market Model

When pricing financial derivatives in a NIG market model framework, we want to model
the logarithmic stock returns with the assumption that they are NIG distributed. If we
let St denote the stock price at time t, then the model is given by

St = S0 · exp
(
X̃NIG
t

)
(3.6)

where X̃NIG
t denotes the NIG process in (3.5) with µ = 0. Comparing this NIG market

model to the more famous geometric Brownian motion model by (Black & Scholes 1973),
there are some drawbacks. First, we can not construct the (in theory) perfect delta
hedge3.2 which in the Black-Scholes model enables us to find a closed form expression
for the price of a Vanilla call option. Secondly, in this geometric Brownian motion case,
moving from the real world to the risk neutral world3.3 is done by setting the drift µ
equal to the risk free rate r minus the continuous dividend yield d. However, for our NIG
model in equation (3.6) there is no unique transformation from the real world to the risk
neutral world. Schoutens (2003) show how we can apply the mean-correcting measure
change, where we simply add a drift term m to our model. Our model is then given by

St = S0 · exp
(
mt+ X̃NIG

t + ωt
)

(3.7)

where Schoutens (2003) showed that in the NIG case, ω is given by

ω = δ
(√

α2 − (β + 1)2 −
√
α2 − β2

)
(3.8)

In the risk neutral world, m must be given as the risk-free rate subtract the continuous
dividend yield, m = r−d. In the real world, m must be estimated from historical data or
some personal insight to how the future market development will be. In the NIG market
model, it is important to notice that all parameters are changed when moving from the
real world to the risk neutral world. This differs from the geometric Brownian motion
case, where the volatility stays the same under the Girsanov measure transformation.
Combining the probability density function from (3.3) with (3.7) and (3.8), the density
for the logarithm om the price, Zt = log(St/S0), is given by

f(z; t) =
αδt

π
exp

(
δt
√
α2 − β2 + β(z − µt)

) K1

(
α
√
δ2t2 + (z − µt)2

)
√
δ2t2 + (z − µt)2

(3.9)

where
µ = m+ ω = m+ δ

(√
α2 − (β + 1)2 −

√
α2 − β2

)
3.2delta hedging is a technique where you remove all risk from a portfolio by continuously selling or

buying δ = ∂V
∂S

of the underlying asset S, where V denotes the fair value of the portfolio or instrument.
3.3term used for the risk-neutral measure, which is a probability measure where one assumes that

the current value of all financial assets is equal to the expected value of the future payoff of the asset,
discounted at the risk-free rate.
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Figure 3.4 show the risk-neutral probability density function for a stock price modeled
by a NIG market model. It also show the PDF for the result using the corresponding
lognormal distribution from Black & Scholes (1973). As we can see from this plot, the
NIG market model allows for both skewness and higher kurtosis, and in the next chapter
we will see that these qualities makes the model coincide better with the historical market
data.
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Figure 3.4: The risk-neutral densities obtained with both a lognormal and NIG distri-
bution of the stock price. Parameters used are S0 = 100, T = 1 year, α = 10, β = −4,
δ = 0.1 and r = 0.05. The corresponding σ for the lognormal distribution for these
parameters is 0.114.

When we later use this in our path integration approach, we will use daily logarithmic
returns

∆Zt = Zt − Zt−∆t = log
(

St
St−∆t

)
(3.10)

and so the density function will be

f(∆z; ∆t) =
αδ∆t
π

exp
(
δ∆t

√
α2 − β2 + β(∆z − µ∆t)

) K1

(
α
√
δ2∆t2 + (∆z − µ∆t)2

)
√
δ2∆t2 + (∆z − µ∆t)2

(3.11)
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Chapter 4

Market Calibration of Parameters

Our motivation for using the more complex NIG market model instead of the Black-
Scholes model, is that we are able to include skewness and kurtosis when fitting our model
to the market data. It should be clear that when we now have four parameters which
need to be calibrated, instead of the normal distributions two variables, we should get a
calibration which is better fitted to the market data. However, an increase in the number
of parameters also lead to a greater model risk, since there are some model risk associated
with each parameter. In this chapter, we will use the two most common approaches for
estimating the parameters; historical and implied. In sections 4.1-4.3 we will use the
historical data approach. We first find the maximum likelihood estimator (MLE) for the
four parameters µ, α, β and δ. Then we will examine if the NIG distribution actually gives
a good fit to the stock returns, and this test of goodness of fit we will do both graphically
and with numeric measures. In section 4.4 we will use market prices on Vanilla options to
calibrate the four parameters. These parameters we call implied parameters. In section
4.6 we will perform a short sensitivity analysis to see how sensitive the price of a Vanilla
call option is to changes in the NIG-parameters.

4.1 Maximum Likelihood Estimator

The Maximum Likelihood Estimator (MLE) is a popular statistical method used for fit-
ting a mathematical model to historical data. The principal of MLE, which originally was
developed by R.A. Fischer in the 1920s, states that the desired probability distribution
is the one that makes the historical data ’most likely’. Hence, we seek the parameter
values that maximizes the likelihood function

L(α, β, δ, µ|∆z) = f(∆z1, . . . ,∆zn|α, β, δ, µ) =
n∏
i=1

f(∆zi|α, β, δ, µ) (4.1)

where f(∆zi|α, β, δ, µ) is the NIG probability density function, α, β, δ and µ are the
NIG parameters we want to estimate and ∆z = [∆z1, . . . ,∆zn] is a vector containing the
historical daily log-return data. The last equality of (4.1) we get from the assumption that

21
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our daily log returns are iid. This assumption is commonly used in financial modelling.
For computational convenience, we obtain the MLE estimate by maximizing the log-
likelihood function

log (L(α, β, δ, µ|∆z)) =
n∑
i=1

log (f(∆zi|α, β, δ, µ)) (4.2)

This is because the two functions in Eq. (4.1) and Eq. (4.2) are monotonically related
to each other. So maximizing either one would produce the same MLE estimate. For
further details on the MLE estimation, see e.g. (Myung 2003).

The maximization of the log-likelihood function is done numerically using a opti-
mization algorithm. We have chosen to use the built-in Matlab function fminsearch,
which uses the Nelder-Mead method (also called downhill simplex method). Using this
nonlinear optimization algorithm, our choice for the initial parameter values is critical.
If a multidimensional solution space have several local minima, we need to choose initial
parameters near the global minima in order to ensure that our solution is the global
minima. These wise initial values, can be found by graphically adjusting the NIG dis-
tributed PDF to the histogram of the daily log returns. The plots in Figure 3.3 show the
effects of changing the different parameters, and can be helpful when finding the initial
parameter values in this way. An alternative way of choosing initial parameter values,
is to estimate the central moments in Table 3.1 using time series estimation, and then
solve the equations to find the initial parameter values.

4.2 Historical Parameter Estimation

The compatibility of mathematical models to historical data may vary a great deal for
different stocks and different indices, due to a varying degree of liquidity and dependence
on different external factors etc. In this thesis, we have chosen to look at two stocks
and two indices, where one is Norwegian and one is American. From the discussion in
section 2.1, one would assume that the NIG model would have a better fit for the large
American Dow Jones Industrial Average index with history back to 1950, than for the
Norwegian StatoilHydro stock.

Table 4.1 show details on the historical data sets we have used, and Table 4.2 show the
MLE estimates for the NIG parameters and the corresponding Black-Scholes parameters.
The historic data used is collected from finance.yahoo.com and are the closing prices
adjusted for dividends etc.
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Ticker Description Data from: Data to:
STL.OL StatoilHydro on the OSE 18.06.2001 27.02.2009

OSEBX.OL Oslo Stock Exchange Benchmark Index 25.05.2001 27.02.2009
KO Coca Cola Company on NYSE 03.01.2000 27.02.2009

ˆDJI Dow Jones Industrial Average 03.01.1950 27.02.2009

Table 4.1: Short description of the data sets with OSE referring to the Oslo Stock
Exchange and NYSE referring to the New York Stock Exchange. Data source :
finance.yahoo.com

NIG Black Scholes
α β δ µ µ σ

StatoilHydro 48.9813 -1.7204 5.4548 0.2902 3.9382× 10−4 0.0214
OSEBX 44.2755 -10.2123 2.6999 0.6457 2.2990× 10−5 0.0165

Coca Cola 41.0038 -0.3620 2.5567 0.0083 −5.7233× 10−5 0.0158
Dow Jones 91.1804 -4.9853 1.9317 0.1657 2.3986× 10−4 0.0096

Table 4.2: Estimated NIG and Black-Scholes (normal) parameters

4.3 Goodness of Fit

With the parameters estimated from our stock return data, we now need to check how
well our NIG model fit the historical data. There are many ways of doing this, and we
will start off with perhaps the most intuitive one. Figure 4.1 show the daily log returns
plotted as a normalized histogram, and according to the theory presented so far, these
log returns should be NIG distributed with the respective estimated parameters from
Table 4.2. The NIG distributed PDF is plotted as the red dashed line, and from the
figure we see that empirical distribution and the theoretical distribution coincides quite
well, except perhaps for StatoilHydro. The green dotted line show the normal probability
distribution with the estimated parameters from Table 4.2. Looking at Figure 4.1, the
NIG distribution seems to give a good fit to the empirical distribution, and a relatively
much better fit than the normal distribution. For StatoilHydro, we see that there is
a small improvement, but it seems hard to find a pattern in the empirical data. As
mentioned before, the size and trading volume etc. will have an impact on an index
or a stocks compatibility to a theoretical model. For StatoilHydro it may seem as the
historical data set and/or the relative size of the company is to small.

Figure 4.1 gives us a fairly good picture of how well the NIG distribution fits the
empirical distribution, but it is hard to see whether the NIG distribution manages to
include the tail events. These events are very hard to model, and in chapter 2 we
discussed how the Black-Scholes model fail to include these. So in order to determine
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Figure 4.1: Normalized histograms over the daily log return for OSEBX, StatoilHydro,
Coca Cola Company and Dow Jones, with the corresponding NIG distributed PDFs (red
dashed line) and the normal PDFs (green dashed line).

how well the NIG distribution includes the tail events, we have in the left column of Figure
4.2 plotted the QQ-plots (Quantile-Quantile plots) for the empirical distribution against
the theoretical NIG distribution with the estimated parameters. For comparison, we
have in the right column of Figure 4.2 plotted the QQ-plots with the normal theoretical
distribution.

If the empirical and theoretical distributions coincides perfectly, then they should
form a straight line (the red dashed line). From the normal QQ-plots in Figure 4.2 we
see how the tails are not included, while the NIG QQ-plots seem to capture the tail
behaviour much better. But still, the NIG distribution do not include all extreme daily
variations. As mentioned earlier, it is very hard to find a model that is able to capture
all these tail events. If we look at the lower left corner of the QQ-plots for the Dow Jones
Industrial Average, we see one extreme outlier. This outlier is due to the famous crash
on the 19th of October 1987, also known as Black Monday, when the stock markets all
over the world crashed and the Dow Jones Industrial Average fell 22.6% in one single
day. The NIG model seem to fit the historical data quite well, but as all other models,
it underestimates the probability of a stock market crash like the one in October 1987.
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Figure 4.2: QQ-plots for the daily log return for OSEBX, StatoilHydro, Coca Cola
Company and Dow Jones. The left column showing the data compared with the NIG
distributed quantiles, while the right column is showing the data compared with the
normal distributed quantiles. The quantiles of the data are on the y-axis.
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Both the distribution plots and the QQ-plots we have presented so far indicates that
the goodness of fit is relatively good for the NIG distribution, with perhaps StatoilHydro
as a small exception. Visual examination of statistical plots is the best way to get an
impression of how well the data fits a theoretical distribution. However, they might
sometimes trick us into making a less correct conclusion. An example of this we see if we
compare the plot for StatoilHydro in Figure 4.1 with Figure 4.3. In Figure 4.3 we have
only divided the histogram into 30 bins, and from the plot, it might seem as the NIG
distribution gives a reasonably good fit. But if we look at the plot in Figure 4.1, where
we have divided the data into 80 bins, we might suspect that the conclusion is different.
For reasons like this, it is also useful to do statistical hypothesis testing. In our case,
the null hypothesis is that the historical daily log return data are generated from a NIG
distribution with parameters given in Table 4.2. There are several tests one can use for
testing goodness of fit, and we will here use the Kolmogorov-Smirnov test.
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Figure 4.3: Normalized histogram of historical log returns for StatoilHydro with only 30
bins, and the corresponding NIG distributed PDF.

The Kolmogorov-Smirnov test is a form of minimum distance estimation used as a
parametric test of equality of one-dimensional probability distributions used to compare a
sample with a reference probability, in our case the NIG distribution with the parameters
from Table 4.2. The Kolmogorov-Smirnov statistic, Dn, quantifies a distance between the
empirical distribution function of the sample, Fn(∆z), and the cumulative distribution
function the reference distribution, F (∆z). The empirical distribution function Fn(∆z)
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for n iid observations ∆zi is defined as

Fn(∆z) =
n∑
i=1

I(∆zi ≤ ∆z)

where I(∆zi ≤ ∆z) is the indicator function, equal to 1 if ∆zi ≤ ∆z and 0 otherwise.
The Kolmogorov-Smirnov statistic for a given cumulative distribution function F (∆z) is

Dn = sup
z
|Fn(∆z)− F (∆z)|

where supz denotes the supremum with respect to z. According to the Kolmogorov-
Smirnov test, our null hypothesis is rejected at level α∗ if

√
nDn > Kα∗ (4.3)

where Kα∗ is found from
P (K ≤ Kα∗) = 1− α∗.

K is a random variable following the Kolmogorov distribution with cumulative distribu-
tion function given by

P (K ≤ x) =
2π
x

∞∑
i=1

exp
(
−(2i− 1)2π2

8x2

)
For more details on the Kolmogorov-Smirnov test, see e.g. (Massey 1951).

α∗ Kα∗

0.5 0.8276
0.3 0.9731
0.2 1.0728
0.1 1.2238
0.05 1.3580
0.025 1.4800
0.01 1.6280
0.005 1.7300
0.001 1.9470

Table 4.3: Quantiles of the Kolmogorov distribution for different values of α∗.

In Table 4.3 we have calculated the value of Kα∗ for different values of α∗, and in
Table 4.4 we have calculated the Kolmogorov-Smirnov test statistic

√
nDn using both

the NIG distribution and the normal distribution as the reference distribution. Using Eq.
(4.3) to compare the test statistic values in Table 4.4 to the quantiles in Table 4.3, we
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get the same conclusions as we have seen before for all α∗-values between 0.001 and 0.5.
Our null hypothesis that the empirical daily log return data follows a NIG distribution
with parameters from Table 4.2 is rejected for all data sets when evaluating against the
normal distribution. And for the NIG distribution, we accept the null hypothesis for all
data sets, except for StatoilHydro.

Name NIG Normal
StatoilHydro 2.6089 2.9492

OSEBX 0.6460 3.9050
Coca Cola 0.4350 4.1474
Dow Jones 0.5809 8.1176

Table 4.4: Values of the Kolmogorov-Smirnov test statistic (
√
nDn) for both NIG and

Normal

To conclude, the NIG distribution seems to fit the two stock indices and the relatively
large and liquid Coca Cola stock reasonably well, as we have seen in several ways. Even
though StatoilHydro is a large corporation in a Norwegian scale, it is still a bit small and
illiquid compared to stock indices and large international corporations.

4.4 Implied Parameter Estimation

The historical parameters discussed in the previous section, seem to give good fit to the
historical data, except perhaps for StatoilHydro. The drawback with this approach is
that the history of the underlying asset may not represent the investors future expectation
regarding the development of the underlying asset in a satisfactory manner. And these
future expectations is in fact what drives the price of the underlying asset, so one might
say that this is the most crucial factor in modelling the future. The second approach,
using the implied parameters in the model, better absorbes these future expectations
by considering the actual prices in the market for derivatives. This approach minimizes
some error measure between the model prices and comparable prices in the market for
all different strikes and maturities.

There are several different pricing error measures for studying the performance of our
model compared to the market. The average relative percentage error4.1 (ARPE), the
root mean square error (RMSE) and the average absolute error (AAE) are defined as:

4.1ARPE will be very high in cases where the market price of options are close to zero, and we will
therefore exclude market option prices less than 0.01.
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ARPE =
1
N

N∑
i=1

∣∣Pmodi − P obsi

∣∣
P obsi

RMSE =

√√√√ 1
N

N∑
i=1

(
Pmodi − P obsi

)2
AAE =

1
N

N∑
i=1

∣∣∣Pmodi − P obsi

∣∣∣
(4.4)

where Pmod are the modelled prices and P obs are the corresponding prices found in the
market. For a given set of option parameters, there is however not one distinct price
in the market. The three most commonly listed prices for an financial instrument are
the bid price, the ask price and the last traded price. The bid and ask price are the
prices that the financial institutions (market makers) offer to buy and sell, respectively,
the instrument. The last traded price tells us at what price the last transaction in this
instrument were bought/sold for. However, this transaction might have been one second
ago or one day, depending on the liquidity of the instrument. This uncertainty makes
the last trade price a less attractive choice compared to the bid/ask prices, where the
market makers constantly update their opinion on what is the fair price.

The difference between the bid and ask price, is called the bid-ask spread. The
market makers make their money on this spread, and in many markets this spread can
be of significant size. The most obvious way to imply a market price from these two, is
to take the average

Pmidi =
P bidi + P aski

2

However, the bid-ask spread may vary significantly across different strikes and maturities
for the same instrument, and so this obvious choice may not be the best choice. The
bid-ask spread is in general a measure of the options liquidity, and higher liquidity gives
a tighter bid-ask spread. When calibrating our model to the market data, it might be
a good idea to give the more liquid options a higher weight, since these option prices
contains more information. If we look at the error measures in (4.4), we see that the
AAE and RMSE assign the options with large spreads more weight, which is exactly the
opposite of what we want. Therefore we will in addition perform the calibration with
a fourth error measure, where we adjust the ARPE with the relative spread Pask

i −P bid
i

Pmid
i

.
This error statistic is given by:

ARPEspread =
1
N

N∑
i=1

∣∣Pmodi − Pmidi

∣∣
Pmidi · P

ask
i −P bid

i

Pmid
i

=
1
N

N∑
i=1

∣∣Pmodi − Pmidi

∣∣
P aski − P bidi

(4.5)

There is naturally no correct answer to what error measure is best, but we will try out
all four and see if we can come to a conclusion later.
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The calibration is performed by using a numerical optimization algorithm to find
the parameters that minimize the error statistics above. As we did earlier, we use the
built-in function fminsearch in Matlab to perform the minimization. In some cases, this
function violates the constraints given for NIG distributed PDF in chapter 2, but this
is solved by adding a penalty term to the objective (see e.g. (Nocedal & Wright 2000)).
When performing the calibration, it is important to be aware of the calibration risk.
Calibration risk is the risk of performing a calibration where the resulting parameters
gives an option price that deviates considerably from the market data. By performing
the calibration with different error measures, as we will do later, we can investigate
the calibration risk by comparing the resulting parameter sets. For further details on
calibration risk, see (Detlefsen & Härdle 2006).

Performing the calibration, we have used option chains4.2 from OBX, StatoilHydro,
Coca Cola and Dow Jones Industrial Average collected from Bloomberg on the 27th of
April 2009. As the risk-free interest rate r we have used the Norwegian and US Treasury
bill rates, because they are in practice the most risk-free rate available. All the modelled
option prices and market prices are listed in Appendix B. We will focus on pricing
call options, and for this purpose it is common to use call option market prices for the
calibration. Table 4.5 show how many of the total modelled call prices that end up inside
the bid-ask spread. Although the optimization is done with concern to the error measures
in (4.4) and (4.5), one might say that this also is a desired property.

ARPEspread ARPE RMSE AAE Total
OBX 41 41 40 41 51
DJI 168 168 168 168 168
KO 49 38 36 41 76
STL 31 25 22 31 46

Table 4.5: Number of call prices inside bid-ask spread. The last column show the total
number of options prices in the option chains.

If we look at the numbers in Table 4.5, we see that for the OBX index, approximately
80% of the modelled prices end up inside the spread and the number does not depend
significantly on the error measure. By considering the calibration results for the OBX in
Table 4.6, we see that the ARPEspread and ARPE errors are relatively small, especially
for ARPE. Considering that we are trying to fit a theoretical model to actual market
data, these results are relatively good. One should not put too much thought into the
numbers in Table 4.5, but they may be a good indication to how well our model fits the
market data.

Continuing to analyse the numbers in Table 4.6, we see that the parameters for the
four different error measures are reasonably similar. One might argue that a difference

4.2data chains containing option prices for all maturities and strike prices available in the market for
the given asset
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NIG Black Scholes
α β δ Error σ Error

ARPEspread 8.9932 -4.5176 1.1528 14.19% 0.3627 47.65%
ARPE 9.2214 -4.5964 1.1783 1.71% 0.3559 4.44%
RMSE 8.9070 -4.8770 1.0764 0.2835 0.3873 0.8717
AAE 8.1057 -4.2033 1.0517 0.2097 0.3823 0.6834

Table 4.6: Implied parameters for OBX option prices. The market data is collected from
Bloomberg on 27th of April 2009, and the index was in 217.61 NOK. The prices are for
three different maturities; T1 = 17

250 , T2 = 37
250 and T3 = 57

250 . For these three maturities,
we have used the 3 month Norwegian Treasury bill rate (1.92%) as the risk-free interest
rate, r.

of 13.8% between the α value from ARPE and AAE is a relatively large deviation, but if
we look at the output prices in Appendix B, we see that the prices are almost identical.
In other words, the calibration risk for the OBX index is very small, at least for this
option chain. In Table 4.6 we have also included implied volatility for the Black-Scholes
model, and we see that the errors under this model are approximately three times as
large. Earlier in this chapter, we discussed how the Black Scholes model fail to include
crucial aspects of the historical data, and here we again observe that the Black-Scholes
model seem to fit the market data considrably less than our NIG model. The fact that
this error is that large, is perhaps a bit surprising, considering that the Black-Scholes
model is the most common model in financial institutions. Therefore one should expect
the Black-Scholes model to have a good fit to the market option prices, since the market
makers most likely have used this model to find their bid/ask prices. One explanation
for this, might be that the market is very irregular due to the current financial situation,
which may affect the market makers pricing. Another reason might be that the market
makers include additional factors to their models.

Figure 4.4 show a plot of the OBX call option prices for our data chain, and as we
can see they fit inside the bid-ask spread quite well, especially the NIG prices. For the
largest strike prices and maturity dates, we see that both modelled prices falls outside
the spread, but elsewhere the NIG prices stay inside this spread. It might be hard to get
much more information from this plot, but all prices are listed in Table B.1 in Appendix
B.

We have seen that the OBX prices are quite consistent, and Table 4.7 show that the
errors for the Dow Jones Industrial Average are even smaller. The ARPE is less than
1%, and the parameters are quite similar. The fact that both the parameters and the
modelled prices are almost identical, again indicate that the calibration risk is relatively
small in this case as well. In Table 4.5 we see that all 168 modelled call prices are inside
the bid-ask spread, and in Figure 4.5 we have plotted the call prices for four maturity
dates.
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Figure 4.4: OBX call option prices for our data chain. The NIG prices are calculated
with the ARPE-parameters and are shown as colored dashed lines, while the Black and
Scholes (BS) prices are shown as black dashed lines.

The data chain we collected for the Dow Jones Industrial Average, contained for some
unknown reason mainly deep-in-the-money4.3 call option prices, and as we can see from
Figure 4.5, the option prices are then almost linear. This is perhaps one of the reasons
for the very good calibration results. We also see that the bid-ask spread is relatively
wide for these options, which again may explain why all 168 modelled option prices fall
inside the spread.

One last thing worth noticing about the parameters in Table 4.7, is that all four
error measure optimization results lie on the boundary |β| ≤ α. This may indicate that
our solutions most likely are not the global solutions of the unconstrained optimization
problem. However, we see that our calibration results are very good for this option chain.

So far, we have seen satisfying results for OBX and Dow Jones. However, for Dow
Jones the option chain collected limited our analysis to deep-in-the-money call options,
which are almost linear. In Table 4.8 we see that the calibration results for Coca Cola
are not nearly as good as OBX and Dow Jones. First of all, we see that the ARPEspread

4.3term used when the intrinsic value, which is the value of exercising the option now, is relatively large
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NIG Black Scholes
α β δ Error σ Error

ARPEspread 0.5836 -0.5836 0.0948 5.03% 0.2762 12.72%
ARPE 0.5737 -0.5737 0.0875 0.75% 0.2761 1.66%
RMSE 0.5809 -0.5809 0.0932 0.2572 0.2859 0.7203
AAE 0.5653 -0.5653 0.0838 0.2209 0.2788 0.5799

Table 4.7: Implied parameters for Dow Jones Industrial Average option prices. The
market data is collected from Bloomberg on 27th of April 2009, and the index was in
80.25$. The prices are for 8 different maturities ranging from T1 = 14

250 to T8 = 424
250 . For

these maturity dates, we have used the US Treasury bill rates (ranging from 0.07% to
0.90%) as the risk-free interest rate, r.
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Figure 4.5: Call option prices on the Dow Jones Industrial Average for four of the ma-
turity dates in our data chain. The modelled NIG prices are calculated with the ARPE-
parameters.

results have an error of 73%, while the error for the ARPE calibration is only 7.8%.
To find the explanation for this, we have in Table 4.9 calculated the average bid-ask
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spread for the four option chains. From this table we see that for the Coca Cola case,
the average is far less than 1, which together with Eq. (4.5) explain the high error for
the ARPEspread calibration. Secondly, we see that the RMSE parameters deviate much
from the other parameters, which may indicate that the calibration risk for this data
chain in considerable. However, looking at the modelled call option prices in Appendix
B, this large deviation in the parameters is not reflected in the output prices. Hence the
calibration risk might not be as large as the parameter deviation would indicate.

So far we have not commented on the calibration errors of RMSE and AAE since
they may be a bit hard to analyse without knowing the option prices. Is an error of 0.25
significant? In an attempt to get a quick intuition on this, we have in Table 4.9 also
calculated the average mid prices. From this table, we see that the average mid price
for Dow Jones and OBX are three to four times as large as Coca Cola. This indicates
that an RMSE error of 0.25 for Coca Cola is considerable worse than for Dow Jones or
OBX. The average mid prices in Table 4.9 might also explain why the ARPE errors for
OBX and Dow Jones are smaller than for Coca Cola and StatoilHydro.

NIG Black Scholes
α β δ Error σ Error

ARPEspread 26.4502 -17.3990 0.8872 73.47% 0.2536 109.22%
ARPE 18.7369 -7.3969 0.9497 7.81% 0.2378 8.56%
RMSE 89.0449 -55.8721 2.6938 0.2501 0.2503 0.2532
AAE 17.2344 -8.4112 0.8265 0.1777 0.2485 0.1975

Table 4.8: Implied parameters for Coca Cola option prices. The market data is collected
from Bloomberg on 27th of April 2009, and the spot price was 42.24$. The prices are
for 6 different maturities ranging from T1 = 13

250 to T6 = 435
250 . For these maturity dates,

we have used the US Treasury bill rates (varying from 0.07% to 0.90%) as the risk-free
interest rate, r.

OBX DJI KO STL
Spread 2.0637 4.7307 0.2743 1.4576

Mid Price 24.7858 33.5228 7.6878 12.6451

Table 4.9: Average bid-ask spread and average mid price for the market call option prices.

At last, we have made the same calculations for StatoilHydro, with the resulting pa-
rameters and errors shown in Table 4.10. Here we again see relatively large deviations in
the parameters, especially for the RMSE. From Table 4.5 we also see that for RMSE, less
than half of the modelled prices fit inside the bid-ask spread. All errors are significantly
higher than for the three other option chains, and one might be tempted to conclude
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that StatoilHydro is hard to model because of its relatively small size. Looking at the
output prices in Appendix B, we also see that this is the first case where the option
prices seem to deviate significantly for some strikes and maturities. One last thing worth
noticing, is that the normality assumption from Black-Scholes seem to be almost as good
as the NIG model. For the AAE calibration results, the error is actually smaller for the
Black-Scholes calibration results.

NIG Black Scholes
α β δ Error σ Error

ARPEspread 9.7278 -3.2261 1.1524 41.48% 0.3551 47.18%
ARPE 3.8591 -2.4536 0.5722 17.84% 0.3569 20.24%
RMSE 326.5750 -318.7785 0.4351 0.7103 0.3415 1.1781
AAE 13.7671 -6.0458 1.3167 0.8450 0.3511 0.7545

Table 4.10: Implied parameters for StatoilHydro option prices. The market data is
collected from Bloomberg on 27th of April 2009, and the spot price was 120.30 NOK.
The prices are for three different maturities; T1 = 37

250 , T2 = 102
250 and T3 = 167

250 . For these
three maturity dates, we have used the 3 month and 6 month Norwegian Treasury bill
rates (1.92% and 1.81%) as the risk-free interest rate, r.

To conclude this section, it seems as OBX, Dow Jones and Coca Cola are reasonably
well fitted to the market data with the NIG market model, while StatoilHydro again seem
to be harder to model accurately. It might be hard to make this conclusion definitively,
since the data we base our analysis on, are somewhat incomplete. This is perhaps the
biggest drawback with the implied parameter calibration method, since the available
market data may often not be completely adequate. One other issue working in the
implied parameter calibration methods disfavour, is that the parameters may often vary
a lot depending on which options we want to price. For instance, we are in this thesis
mainly focusing on pricing exotic options, and then we should use exotic option market
data to find our parameters. However, as mentioned earlier, these exotic options are
traded OTC, which means that the option prices are not publicly listed and therefore
are hard to collect unless you are actually buying.

4.5 Historical vs. Implied

We have now tried two different approaches to fit our NIG market model to data in the
market. The conclusion so far have been that our model seem to fit market data better
than the widely used Black-Scholes model proposed by Black & Scholes (1973) and that
we get reasonable prices as long as we look at large, liquid indices or stocks. But which
one should we choose? The historical approach has the advantage that the data are easy
to collect and that we often have a sufficient amount of data. The drawback is that the
history seldom contain the investors future expectation regarding skewness, return etc.
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The implied approach capture this property, but has the drawback that the amount of
market data are limited, and if we want to price exotic options there may not be any
market data available at all. For instance, for the Dow Jones call option data above,
it may not be satisfying to have deep-in-the-money market data to calculate implied
parameters for the price of an out-of-the-money call option.
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Figure 4.6: Coca Cola call option prices using the market bid/ask prices and the param-
eters estimated from historical data (Table 4.2)

In many cases, we are then forced to use the historical parameters due to the lack
of market option data. Figure 4.6 show the result from pricing Coca Cola call options
using the parameters obtained by historical calibration. If we look at the figure, we see
that for the long maturity, T = 435

250 years, the results are relatively satisfying. For several
strike prices, the price end up inside the bid-ask spread. For the short maturity, which
often has more liquidity and hence smaller bid-ask spread, the results are considerably
worse. A possible intermediate approach between the historical and implied parameter
estimation, which we will not consider in this thesis, might be to assign the newer history
more weight than the old history.
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4.6 Sensitivity Analysis

So far we have tried our best to fit the NIG market model to market data, both with
historical data and with implied parameters. The results of this calibration is important
for market makers when they are modelling financial derivatives. But there is one aspect
of the modelling that is as important, if not more important, for practitioners; How does
the price of the option change with respect to changes in the different parameters? These
change measures are in finance referred to as the Option Greeks, or just the Greeks. The
reason why the option Greeks are of such practical importance, is that the financial
institutions that sell the derivatives want to remove as much as possible of the risk
associated with the options. They do not want to carry the risk themselves; they want
to hedge their positions.

When using a theoretical model, in our case the NIG market model, there are in
practice a certain risk associated with each parameter in the model. In the Black-Scholes
model, the option’s sensitivity to small changes in the implied volatility is called the Vega
or the Zeta. In the NIG market model wee have three parameters that play the role of
the volatility in the Black-Scholes model. It is therefore of great interest to see how the
option prices change when these parameters change. We have not seen Option Greeks
in the NIG market model context before, and hence we define them with the following
names:

AlphaZeta =
∂V

∂α

BetaZeta =
∂V

∂β

DeltaZeta =
∂V

∂δ

where V is the option value. Naturally, there are no analytic expression for these Greeks,
and we will calculate them numerically using the following finite difference scheme:

∂V

∂α
≈V (α+ ∆α)− V (α−∆α)

2∆α
∂V

∂β
≈V (β + ∆β)− V (β −∆β)

2∆β
∂V

∂δ
≈V (δ + ∆δ)− V (δ −∆δ)

2∆δ

Figures 4.7-4.9 show the visualization of these three Greeks for a Vanilla call option with
X = 100, r = 0.05, α = 10, β = −4 and δ = 1. To understand what these plots tell us,
it can be helpful to take a look at Figure 3.3 to see how a positive change in one of the
parameters influences the PDF, and hence also the probability distribution for the daily
log returns.

Before looking at Figure 4.7, we recall from earlier that if we increase the α-value,
then the PDF will be more peaked with thinner tails. In other words; the probability of
small daily variations increases, while the probability of larger daily variations decreases.
This is more or less analogous to decreasing the volatility in the Black-Scholes model.
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Figure 4.7: Graphical visualization of ∂V
∂α as a function of time to maturity T − t and

stock price St.

Since β = −4, the PDF is a little skew towards negative daily variations, and so smaller
tails will in this case be a desired change for the holder of the call option. Looking at
Figure 4.7, we see that around St = 250 and for long maturity dates we have the largest
value of ∂V

∂α . This is because these stocks have the most to gain from loosing some of
the probability of negative daily returns, since they have a high intrinsic value4.4 and a
long time until expiry.

In the other end of the scale, where St is around the strike price X, it is not a good
thing for the call option holder that the tails decrease. If for example St = 99 and there
are 5 days until maturity, then you do not loose any money on the call option if the
stock price falls. Hence, you will have a greater probability of earning money on the call
option if the probability of larger daily returns increases. This is why ∂V

∂α is negative for
stock prices around X = 100.

Figure 4.8 looks quite similar to Figure 4.7, which seems reasonable since small
changes in α and β have a relatively similar effect on the PDF (see Figure 3.3). And so
the explanation behind ∂V

∂β follows the same reasoning as for ∂V
∂α .

4.4the value of an option if it were cashed in now
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Figure 4.8: Graphical visualization of ∂V
∂β as a function of time to maturity T − t and

stock price St.

Considering Figure 4.9, we see that the picture is very different from the two other
plots. This is because a small change in δ, can make a large impact on the PDF (ref.
Figure 3.3). So a small positive change in the δ-value, may result in a large increase
in the probability of large daily variations. This leads to an opposite reasoning of the
one above. Around the strike price X = 100 we see a positive value of ∂V

∂δ since the
probability that the stock price will end up above X = 100, is greater. For large values
of St and T − t we have a relatively large negative value of ∂V∂δ since the probability that
the stock price will fall below X = 100 has increased relatively much.

Looking at the magnitude of these Greeks, we see that for AlphaZeta and BetaZeta
with St = 250 and T − t = 1.5, we get values of around 7. Compared to the intrinsic
value of 150, this is a relatively large change, almost 5%. However, if we look at the
DeltaZeta, this ratio is almost 40%. These values are very high, but it should be noticed
that call options with an intrinsic value of 150% of the strike price are very rare.

The purpose of this section was not to make a conclusion about the sensitivity prop-
erties of the NIG market model. To make this conclusion is hard without having similar
results to compare with. However, it is important to be aware of this aspect of financial
modelling when comparing different models.
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Chapter 5

Option Pricing and Numerical Path
Integration

We have now shown how the NIG distributed density function can be fitted nicely to
empirical market data, and we will in this section focus on pricing several options under
the NIG market model using numerical path integration with given parameters. Unlike
option pricing with the Black-Scholes framework, we do not have any analytic formula
for option pricing under the NIG market model. And since the options we are pricing in
this thesis are typically traded OTC, we have no market prices to compare with either.
Instead we will use Monte Carlo simulation to verify our answers. Pricing European
options with Monte Carlo simulation is reasonably straight forward, and hence if the
results from the MC and path integration are equal, it should be a good indication of
correctness.

To explain the path integration approach, we will mainly focus on the barrier option
situation, since this easily can be extended to both the Vanilla case and the lookback
case. An important practical issue when pricing these exotic options, is how often the
barrier, the maximum/minimum or the average is monitored. These monitoring times
can either be discrete or continuous. In equities and commodities, it is said to be most
common with discrete monitoring, while in FX markets continuous monitoring is the
standard. The discrete monitoring value is often set to the official daily closing price,
and unless otherwise specified, we will use daily monitoring in this chapter.

5.1 Model

We will in this thesis mainly focus on pricing discretely monitored lookback options and
Asian options, which we briefly explained in chapter 2. However, since the underlying
probability calculations for the barrier option case is the foundation for pricing lookback
option, we will use some time to verify that our barrier option calculations are correct.
The payoff for the lookback and Asian options at maturity T are summarized in Table
5.1 and Table 5.2.

From the tables, we see that in addition to call and put options, there are two types
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Payoff at maturity T

Fixed strike Call max(MT −XLB, 0)
Put max(XLB −mT , 0)

Floating strike Call max(ST −mT , 0)
Put max(MT − ST , 0)

Table 5.1: Payoff for fixed and floating strike lookback options. MT and mT denotes the
maximum and minimum, respectively, of the underlying asset, ST , at maturity T . XLB

denotes the fixed strike price.

of lookback/Asian options; fixed strike and floating strike. For the fixed strike options,
the payoff only depend on the maximum/minimum or the average, while for the floating
strike the payoff in addition depend on the price of the underlying asset at maturity, ST .

Payoff at maturity T

Fixed strike Call max(AT −XA, 0)
Put max(XA −AT , 0)

Floating strike Call max(ST −AT , 0)
Put max(AT − ST , 0)

Table 5.2: Payoff for fixed and floating strike Asian options. AT denotes the arithmetic
average of the underlying asset, ST , at maturity, T . XA denotes the fixed strike price.

The strike price for the barrier options is denoted by XB, the strike price for the
lookback options XLB and the strike price for the Asian option XA. Further, the upper
barrier is denoted by U , lower barrier by L, and a constant interest rate r is assumed.
Initial stock price is denoted S0. The maximum of the stock price St up to and including
time t is denoted Mt and the corresponding minimum is denoted mt. The arithmetic
average of the stock price St up to time t and including S0 is denoted At. For the barrier
options, the up-and-out-down-and-out option becomes worthless if the stock price St is
larger than or equal to the upper barrier U or less than or equal to the lower barrier L at
any of the monitoring times. If the stock price stays within the barrier interval at every
monitoring time until maturity, the barrier call option value is max(0, ST −XB) at the
maturity time T . The underlying asset is monitored at N different times τj , j = 1, . . . , N
such that 0 < τ1 < τ2 < · · · < τN−1 < τN = T . For the initial conditions to make sense,
we must have X < U and L < S0 < U .

To find the price of the barrier option, or the underlying cumulative distribution
function for the lookback option (see section 5.2.1), we need the conditional probability
distribution function for the stock price at maturity, T , conditional on the property that
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the stock price, St, has stayed within the barrier interval the entire time t ∈ [0, T ]

S̃τi = Sτi · I{L < Sτj < U ∀ 0 < τj ≤ τi} (5.1)

Throughout this chapter, we will work with the process Zt = log(St/S0) instead of St.
Denoting this conditional probability density function for S̃T expressed in terms of ZT
by qN (z), it is clear that the double barrier call option value is given by:

c = e−rT
∫ log(U/S0)

log(X/S0)
(S0e

z −X) qN (z)dz (5.2)

From this it follows that the only difference between pricing Vanilla options and barrier
options, is that we need to calculate the function qN (z) on a limited interval in space. It
should however be noted that since we for a Vanilla option only are interested in what
happens at the end, it is more inefficient to price a Vanilla option this way. From the
definition of qN (z) above, we get

qN (z) =
∫ log(U/S0)

log(L/S0)
· · ·
∫ log(U/S0)

log(L/S0)
pN |N−1(z|zN−1) · · · p2|1(z2|z1)p1|0(z1|0)dz1 · · · dzN−1

(5.3)
where pi|i−1(z|zi−1) denotes the transition probability density function of Zτi from τi−1

to τi given Zτi−1 = zi−1. When this multiple integral is solved, we obtain the option price
we need from Eq. (5.2). In the case of an up-and-out option, we just set L = 0, and for
down-and-out we have U = ∞. If we want to price a Vanilla option, we set L = 0 and
U =∞. Setting L = 0 will produce a singularity, since we have chosen to work with Zt
instead of St. However, this problem is nearly a theoretical one, and we lose no accuracy
by instead considering limL→0 log(L/S0) = −∞ as the lower limit.

Similarly, the price of fixed strike lookback call and put options, given that the
probability density functions fMN

(η) and fmN (ξ) exists, are given by

Cfixed(X,T ) = e−rT
∫ ∞
XLB

(η −XLB)fMN
(η)dη

Pfixed(X,T ) = e−rT
∫ XLB

0
(XLB − ξ)fmN (ξ)dξ

(5.4)

In the case of a floating strike lookback option, XLB = SN . Hence, if the joint probability
density functions fMN ,ZN

(η, z) and fmN ,ZN
(ξ, z) are known, the price of the floating call

and put options can be calculated by

Cfloating(T ) = e−rT
∫ ∞
−∞

∫ S0ez

0
(S0e

z − ξ)fmN ,ZN
(ξ, z)dξdz

Pfloating(T ) = e−rT
∫ ∞
−∞

∫ ∞
S0ez

(η − S0e
z)fMN ,ZN

(η, z)dηdz
(5.5)
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For the case of the floating strike Asian option, given that the joint probability density
function fZN ,AN

(z, y) is known, the price is given by

Cfloating(T ) = e−rT
∫ ∞
−∞

∫ S0ez

0
(S0e

z − y)fZN ,AN
(z, y)dydz

Pfloating(T ) = e−rT
∫ ∞
−∞

∫ ∞
S0ez

(y − S0e
z)fZN ,AN

(z, y)dydz
(5.6)

where ρ = 1 if call option and ρ = −1 if put option. For the fixed strike Asian option,
we only need the marginal density function, fAN

, which we get by integrating out of the
joint density function fZN ,AN

(z, y). The price of a fixed strike Asian call or put option
is then given by

Cfixed(X,T ) = e−rT
∫ ∞
XA

(y −XA)fAN
(y)dy

Pfixed(X,T ) = e−rT
∫ XA

0
(XA − y)fAN

(y)dy
(5.7)

5.2 Implementation

Skaug & Naess (2007) showed that whenever the transition probability density pi|i−1(z |
z′) for i = 1, . . . , N is known, we can obtain qN (z) from Eq. (5.3). When the NIG market
model is used, the transition probability density can be derived from the PDF given in
(3.11). Assuming equidistant monitoring times, with ∆τ = τi − τi−1, it is found that

p1|0(z|0) = q1(z) = f(z; ∆τ) (5.8)

and
pi|i−1(z|z′) = f(z − z′; ∆τ) , i = 2, . . . , N (5.9)

Hence it follows that, for i = 2, . . . , N ,

qi(z) =
∫ log(U/S0)

log(L/S0)
f(z − z′; ∆τ)qi−1(z′)dz′ (5.10)

All the integrals are computed using numerical techniques. Since the NIG density
function contains the modified Bessel function of the second kind, it contains a hidden
integral, but both Matlab and Excel have this as a built-in function. Still, calculating
the Bessel function is a significant part of the total computation time, when we apply
the numerical path integration method on the NIG market model.

When the function qN (z) has been calculated for a given set of barriers, finding the
option price for any given strike X and maturity T = τi for i ≤ N , or any given binary
option, is done just as fast as finding the value of a Vanilla call option by Eq. (5.2).
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5.2.1 Lookback Options

So far we have looked at how we can price different barrier options using the numeri-
cal path integration, and this approach will make up the foundation when pricing the
lookback options. For the lookback call (put) option with fixed strike, the only variable
element is the maximum (minimum) of the underlying asset St during the lifetime of
the option. For the floating strike lookback options there are two variable elements, the
price of the underlying asset at maturity T , ST , and the minimum (maximum) of the
underlying asset. We will first focus on the fixed strike lookback option.

Fixed strike lookback options

In order to price a fixed strike lookback option, we see from Eq. (5.4) that we need
to find the marginal density function fMN

(fmN for put option). If we have already
priced a floating strike lookback option, we have obtained the joint probability density
function fMN ,ZN

(fmN ,ZN
for a call option), and then it should be straightforward to find

the marginal density function by just integrating out. However, this is an unnecessary
time-consuming approach, since we have to use two dimensional interpolation etc.

The function qN (z) from Eq. (5.3) is the probability density function for the logarithm
of the stock at time T = τN given that the stock has not crossed the upper or lower barrier
level during its lifetime. Focusing on an up-and-out call option (letting L = 0), we see
that the probability that the stock, and hence the maximum of the stock, is less than
U = η, is given by

FMN
(η) = P (MN ≤ η) = P (Sτ1 ≤ η ∩ Sτ2 ≤ η ∩ · · · ∩ SτN ≤ η)

= P (S̃T ≤ η) =
∫ log(η/S0)

−∞
qN (z)dz

(5.11)

where S̃τi is defined in (5.1). This calculation we repeat for a range of different barriers,
η ∈ {ηmin, ηmin + dη, . . . , ηmax − dη, ηmax}, where ηmin and ηmax are chosen such that
FMN

(ηmin) ≈ 0 and FMN
(ηmax) ≈ 1. As an example of what is meant by this, in the

graph in Figure 5.1 these limits would typically be 90 and 150, respectively.
Calculating FMN

(η) for grid with small values of dη, is very time-consuming, and
hence we should choose our grid carefully. If we look at the CDF/PDF in Figure 5.1,
we see that the most critical part is around S0 and so it is crucial that the gridsize dη
is small in the range around S0. We have therefore chosen a relatively much smaller
gridsize in this range, and then applied piecewise cubic interpolation in order to get an
accurate representation of the cumulative distribution function. The probability density
function is then obtained by taking the derivative of FMn(η)

fMN
(η) =

dFMN
(η)

dη

When we have calculated this probability density function, the price of a fixed strike
lookback call option is given by Eq. (5.4). In the same manner, we can find the cumulative
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Figure 5.1: A realization of the cumulative distribution function FMN
(η) (upper graph)

and the corresponding fMN
(η) (lower graph) as functions of the barrier η. In this example,

S0 = 100.

distribution function for the minimum, mN , by

FmN (η) = P (mN ≤ η) = 1− P (mN ≥ η)
= 1− P (Sτ1 ≥ η ∩ Sτ2 ≥ η ∩ · · · ∩ SτN ≥ η)

= 1− P (S̃T ≥ η) = 1−
∫ ∞
log(η/S0)

qN (z)dz
(5.12)

The probability density function fmN (η) is obtained by taking the derivative as above,
and the fixed strike lookback put option price is then given by Eq. (5.4).

Floating Strike Lookback Option

For the floating strike lookback option we also need to calculate the density function for
the maximum (minimum), but in addition we need the probability density function for
the stock price at maturity. These two variables are not independent, and so we can not
perform these two calculations independently. Because of this, we need to calculate the
joint density function fMn,Zn(η, z). As we did for the fixed strike case, we do this by
first calculating the joint cumulative distribution function, FMn,Zn(η, z), and then take
the partial derivatives. As mentioned in the introduction, the maximum at time τn is
defined as Mn = max(S1, S2, . . . , Sn) where the stock price at time τn is included.
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The joint CDF for the maximum of the stock, MN , and the stock price SN , is given
by

FMN ,ZN
(η, z) = P (MN ≤ η, ZN ≤ z)

=

{
P (MN ≤ η) if S0e

z ≥ η
P (MN ≤ η, ZN ≤ z) if S0e

z < η

(5.13)

where P (MN ≤ η) is given in Eq. (5.11). Considering the first case, when S0e
z ≥ η, we

see that the joint CDF is independent of z, which should be intuitive, since Sn can not
be greater than Mn when the maximum at τn includes Sn. The joint PDF is found by
taking the partial derivatives (see (5.16)), and hence we get

fMn,Zn(η, z) = 0 for S0e
z > η (5.14)

For S0e
z < η we should expect a dependence of both z and η. We get

FMN ,ZN
(η, z) = P (MN ≤ η, ZN ≤ z) =

∫ z

−∞
qηN (z′)dz′ (5.15)

where qηN (z) depends on η through the fact that it is the PDF for Z̃N = ZN · I{Zj ≤
log( η

S0
) ∀ 0 < τj ≤ τN}, and we have denoted this with the additional superscript.

So the area of interest, is the triangular spanned by ηmin ≤ η ≤ ηmax and S0e
z ≤ η,

where the joint probability density function is nonzero. As we did for the fixed strike
case, we then calculate FMN ,ZN

(η, z) from Eq. (5.15) for η ∈ {ηmin, ηmin+dη, . . . , ηmax−
dη, ηmax} and 0 ≤ S0e

z ≤ η, where ηmin and ηmax are chosen such that FMN
(ηmin) =∫∞

−∞ FMN ,ZN
(ηmin, z)dz ≈ 0 and FMN

(ηmax) =
∫∞
−∞ FMN ,ZN

(ηmax, z)dz ≈ 1. The two
dimentional probability density function fMn,Zn(η, z) is then given by

fMn,Zn(η, z) =
∂

∂z

(
∂FMn,Zn(η, z)

∂η

)
(5.16)

When we have calculated this joint PDF, the price of a floating strike lookback put option
is given by Eq. (5.5).

When implementing this in Matlab, our Barrier function return qN (z) for a given bar-
rier η. This is the probability density function for z = log( s

S0
) given that the stock (and

hence the maximum) has stayed beneath η at all points in time. To find FMN ,ZN
(η, z)

from this, we have to first calculate the integral in Eq. (5.15) for all z ≤ log( η
S0

) and then
later take the partial derivative with respect to z again. This is an inefficient way to do
it, and we may get some unnecessary extra numerical errors. We will instead calculate

∂

∂z
FMN ,ZN

(η, z) = qηN (z)

for all ηmin ≤ η ≤ ηmax and 0 ≤ S0e
z ≤ η, and then find the joint probability density

function by taking the partial derivative with respect to η.
In the same manner, we find the joint probability density function for the minimum

by calculating
∂

∂z
FmN ,ZN

(ξ, z) = 1− qξN (z)
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where the superscript ξ now denotes the lower barrier for the stock price during its
lifetime. The joint PDF is then found by taking the partial derivative with respect to
ξ. With the resulting joint PDF, we can find the price of a floating strike lookback call
option from Eq. (5.5).

5.2.2 Asian Options

When pricing Asian options, we are interested in the density function at maturity of
two variables, the price of the underlying asset SN and the average price AN . We now
propose two different approaches for finding fZN ,AN

(z, y) from Eq. (5.6).

Approach 1

Lets define the running average process as

An =
1

n+ 1

n∑
i=0

Si =
S0

n+ 1

n∑
i=0

eZi for n = 1, . . . , N (5.17)

which also can be written as

An =
n

n+ 1
An−1 +

S0

n+ 1
eZn (5.18)

Using (5.18) and the transition probability for z, pi|i−1(z|z′), from Eq. (5.9), we can
define a transition probability distribution for {(Zi, Ai)′}Ni=0 as follows

fZi,Ai|Zi−1,Ai−1
(z, y|z′, y′) = δ

(
y − 1

i+ 1
y′ − S0

i+ 1
ez
)
· pi|i−1(z|z′) (5.19)

where δ denotes the Dirac measure, that is, δ(B) = 1 if 0 ∈ B for any set B, and δ(B) = 0
if 0 /∈ B.

Assuming that the random variables Zi−1 and Ai−1 are specified by a joint PDF
fZi−1,Ai−1 , the law of total probability then implies that the joint probability density
function of Zi and Ai, fZi,Ai , is given by

fZi,Ai(z, y) =
∫ ∞
−∞

∫ ∞
0

fZi,Ai|Zi−1,Ai−1
(z, y|z′, y′)fZi−1,Ai−1(z′, y′)dy′dz′ (5.20)

From this relation and Eq. (5.19), it can now be shown that the joint PDF, fZi,Ai , is
given by

fZi,Ai(z, y) =
i+ 1
i

∫ ∞
−∞

f(z − z′; ∆τ)fZi−1,Ai−1

(
z′,

i+ 1
i

y − S0

i
ez
)
dz′ (5.21)

where f(z, t) is the probability density function given in (3.11).
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With given numerical initial conditions Z0 = 0 and A0 = S0, the initial joint PDF
fZ0,A0(z, y) is not a proper PDF, but rather a product of delta distributions of singular
type. Formally it can be written as

fZ0,A0(z, y) = δ(z)δ(y − S0) (5.22)

However, this kind of initial distribution is not convenient numerically, and so we will
derive a closed form expression for the nonsingular PDF, fZ2,A2(z, y). Using Bayes rule,
we can write fZ2,A2 as

fZ2,A2(z, y) = fA2|Z2
(y|z)fZ2(z) (5.23)

The conditional probability density function fA2|Z2
can be derived by transformation. If

we denote A2|Z2 = u(Z1) and then Z1 = u−1(A2|Z2) = w(A2|Z2), we get

fA2|Z2
(y|z) = fZ1 (w(y|z)) ·

∣∣w′(y|z)∣∣ (5.24)

Combining (5.23) and (5.24), and rearranging, we get the following initial PDF:

fZ2,A2(z, y) = fZ1

(
log
(

3y
S0
− 1− ez

))
·

∣∣∣∣∣ 1
3y
S0
− 1− ez

3
S0

∣∣∣∣∣ · fZ2(z) (5.25)

Starting with this initial joint PDF, and using Eq. (5.21) recursively for i = 3, . . . , N ,
an approximation is obtained for the time-dependent joint PDF associated with the vector
stochastic process (Zt, At). We can then calculate the option prices from Eq. (5.6) and
Eq. (5.7).

Approach 2

An alternative approach, is to define Yn as

Yn =
n∑
i=0

Si = S0

n∑
i=0

eZi = Yn−1 + S0e
Zn (5.26)

for n = 1, . . . , N .
Using the same reasoning as for approach 1, the joint PDF is given by:

fZi,Yi(z, y) =
∫ ∞
−∞

f(z − z′; ∆τ)fZi−1,Yi−1(z′, y − S0e
z)dz′ (5.27)

and the initial condition from Eq. (5.25) is now

fZ2,Y2(z, y) = fZ1

(
log
(
y

S0
− 1− ez

))
·

∣∣∣∣∣ 1
y
S0
− 1− ez

1
S0

∣∣∣∣∣ · fZ2(z) (5.28)

In the same manner as above, Eq. (5.27) is used recursively for i = 3, . . . , N to obtain
fZN ,YN

(z, y). However, before calculating the option prices, we need to make a small
modification to Eq. (5.6) and (5.7):

Vfloating(T ) = e−rT
∫ ∞
−∞

∫ ∞
0

ρ ·
(
S0e

z − 1
N + 1

y

)
fZN ,YN

(z, y)dydz (5.29)
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and
Vfixed(X,T ) = e−rT

∫ ∞
0

ρ ·
(

1
N + 1

y −X
)
fYN

(y)dy (5.30)

The disadvantage of this approach, is that we need to adjust the grid at each time step τi,
i = 3, . . . , N , since the value of Yi is growing for each monitoring. Hence, this approach
is less practical, especially for larger values of N .

5.3 Monte Carlo Simulation

To verify our answers in the next chapter, we will use Monte Carlo (MC) simulation. The
main advantage with MC simulation, is that the implementation is reasonably straight-
forward, while the drawback is that it is often very time-consuming. However, for the
purposes of this thesis, we are interested in verifying our answers, and the time this takes
is not of importance.

Monte Carlo simulation uses the Law of Large Numbers. The Law of Large Numbers
states that given a random variable with a finite expected value (in our case the price of
the stock, and hence the price of the option), if its values are repeatedly sampled, and as
the number of these observations increases, their mean will tend to approach and stay
close to the expected value. So if we denote the option price for each sample path in the
Monte Carlo simulation as Xi, i = 1, . . . , Nsim, then the sample mean

X̄Nsim =
1

Nsim

Nsim∑
i=1

Xi

converges to the expected value, µ,

X̄Nsim −→ µ as Nsim →∞

In our case, the expected value µ is the unknown price of the option. Running the MC
simulation with a very high number of simulations, we will in theory get this price. But
increasing the number of simulations enough to get this answer, is very costly and we
can not be sure when we have reached this price. So instead, we will in this thesis set
Nsim = 6×106 and then use the Central Limit Theorem to give a 95% confidence interval
for µ. The Central Limit Theorem states that√

Nsim
(
X̄Nsim − µ

) D−→ N(0, σ2)

where µ = E[Xi] and σ2 = Var[Xi]. From this we get the confidence interval

P
(∣∣∣∣X̄Nsim − µ

σ/
√
Nsim

∣∣∣∣ ≤ zα/2) = 1− α

where zα/2 is the quantile for the standard normal distribution. In our case, we do not
know σ, and so we have to estimate it by using the empirical standard deviation from
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all the simulations, s,

V̂ar[Xi] = s2 =
1

Nsim − 1

Nsim∑
i=1

(
Xi − X̄Nsim

)2 (5.31)

Since we had to estimate the variance, our statistic is in theory no longer normally
distributed, but student t-distributed with Nsim − 1 degrees of freedom. However, the
student t-distribution will converge to a standard normal distribution as the number of
degrees of freedom gets sufficiently large, which is the case here. Using α = 0.05, our
confidence interval is given as

P
(
X̄Nsim −

s√
Nsim

· z0.025 ≤ µ ≤ X̄Nsim +
s√
Nsim

· z0.025

)
= 0.95

where z0.025 = 1.96.
To simulate the development of the stock price, we need to generate NIG distributed

random variables. These NIG random variables are easy to generate, because the NIG
process can be viewed as an Inverse Gaussian time-changed Brownian motion (see chapter
2). We can simulate the NIG process (and hence the stock price) by drawing a random
Inverse Gaussian number and a random standard normal number. The corresponding
random NIG number is given by Eq. (3.5). Drawing random numbers from the normal
distribution can be done by using a built-in function (randn() in Matlab), but for the
Inverse Gaussian distributed random variable, this is not the case. Several people have
proposed algorithms for generating an IG(a, b) random number X, among them are
(J. Michael & Haas 1976) which proposed the following algorithm:

1. generate a realization of Y , where Y ∼ χ2
1

2. calculate

Y1 =
1
a

+
b2

2a4

(
Y +

√
Y + 4

a3

b2
Y

)

Y2 =
1
a

+
b2

2a4

(
Y −

√
Y + 4

a3

b2
Y

)

3. generate a realization of U, where U ∼ uniform(0, 1)

4. set

X =

{
Y1 if U ≤ a

a+bY1

Y2 if U > a
a+bY1

Combining this IG(a, b)-generator with Eq. (3.5), we can then generate a NIG(α, β, µ, δ)
random variable Z in the following manner:

1. generate Y1 ∼ IG(δ
√
α2 − β2, α2 − β2) according to the algorithm above
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2. generate Y2, where Y2 ∼ N(0, 1)

3. then Z = µ+ βY1 +
√
Y1 · Y2

When we have this NIG random number generator, we can simulate the development
of the stock price forward in time. For the path dependent options we are working on in
this thesis, we need to do som modifications to the simulation:

• Barrier option: if the stock price at any monitoring time crosses the barrier level,
we set the stock price to zero

• Lookback option: in addition to simulating the stock price, we also keep track of
the maximum/minimum of the stock price at all monitoring times

• Asian option: in addition to simulating the stock price, we also sum up the stock
prices at each monitoring time, dividing by the number of monitoring times at the
end

With these modifications, we can use the payoff functions in Table 5.1 and Table 5.2
to find the simulated price Xi. Repeating this Nsim times, we can calculate a 95%
confidence interval for the price of the option as described above.

The Monte Carlo technique that we have described here, is the brute-force way of
using Monte Carlo simulation. There exists several methods to increase the efficiency
of the MC simulation, e.g. variance reduction by control variates, simulation with anti-
thetic variables and simulation with quasi-random sampling. For further details on these
methods, see e.g. (Jäckel 2002). However, since we in this thesis are only concerned with
the MC simulation for validation purposes, we will use the brute-force method.



Chapter 6

Numerical Results

Until now, we have discussed the compatibility of the NIG market model to the market,
and also showed how to use numerical path integration together with the NIG market
model to price barrier options, lookback options and Asian options. In this chapter
we will present the results from our path integration implementation, and as mentioned
earlier, we will use Monte Carlo simulation to verify our results. The goal with this thesis
was originally to price these exotic options using implied parameters and then compare
the results to market prices, as we did for Vanilla options in section 4.4. However, these
exotic options are, as mentioned before, traded OTC and we have not succeeded in
collecting prices for these exotics from any financial institution. We will therefore in this
section compare our results to MC simulation, and leave the discussion on compatibility
to market to chapter 4.

Pricing the barrier and lookback options, we will use the fixed parameters from Table
6.1 unless stated otherwise. In some of the tables below, we have used the notation ’PI’
for the results using path integration , while ’MC’ is the Monte Carlo simulation results.

S0 100
XB 100
XLB 105
r 0.05
d 0
α 10
β -4
δ 1
T 0.2 (50 trading days)

Table 6.1: Fixed input parameters

53
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6.1 Barrier Options

As mentioned earlier, the implementation for pricing barrier options is later used when
pricing lookback options, and it is therefore important that qN (z) from Eq. (5.3) is
accurate. As a first check of the correctness of the implementation, we will price some
barrier call and put options, and compare with the results from (Aukrust & Naess 2008)
and our Monte Carlo results. Table 6.2 show the prices for several different up-and-out-
down-and-out call options. The first thing one might notice, is that we achieve the same
results as Aukrust & Naess (2008) with one third of the gridsize M . The reason for this,
is that we have used piecewise cubic interpolation to reduce the number of calculation of
the integral in Eq. (5.10) at each time step. This reduction also show in the computing
time which have been reduced with almost 50%. For the purpose of pricing single barrier
options, one might argue that this reduction is not very important. But when we later
price lookback options, we will perform these calculations many times, and this reduction
will then show to be very significant.

Aukrust Our results
L U M=600 MC M=200 MC 95% CI for MC
50 150 6.169 6.168 6.168 6.166 [6.159 , 6.173]
60 140 5.852 5.853 5.852 5.850 [5.844 , 5.857]
70 130 5.054 5.054 5.054 5.053 [5.048 , 5.059]
80 120 3.273 3.273 3.273 3.273 [3.269 , 3.278]
90 110 0.735 0.735 0.735 0.735 [0.733 , 0.736]
Computing time: 2.2 s > 5000 s 1.15 s < 220 s

Table 6.2: Down-and-out-up-and-out call prices for different barrier levels. The Monte
Carlo calculations are calculated with 6 × 106 simulations, and the PI calculations are
made M = 200 gridpoints.

The prices in Table 6.2 seem to coincide very well with the results found by Aukrust
& Naess (2008), and also with our Monte Carlo results. We see that all prices are
inside the 95% confidence interval for the MC calculations, which is a strong indication
that our implementation of the barrier options is accurate. Further, in Table 6.3 we
have calculated the prices for several up-and-out call option prices, with varying barrier
values. Here we have used a smaller gridsize, M = 350, because the stock price range
is wider. For the up-and-out-in-and-out option, the range was at most 100 (50 to 150),
while here the maximum stock price range is 155. Hence, the computing time for our
path integration implementation also depend on the stock price range we need in order
to get the desired accuracy. Looking at the prices in Table 6.3, we see that our prices
again coincides very well with both the results from (Aukrust & Naess 2008) and the
MC results, and all prices stay inside the 95% confidence interval.
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Aukrust Our results
Barrier PI MC PI MC 95% CI for MC
105 0.114 0.114 0.114 0.114 [0.114 , 0.115]
115 2.000 2.001 2.000 1.998 [1.995 , 2.001]
125 4.317 4.319 4.317 4.315 [4.310 , 4.320]
135 5.541 5.541 5.541 5.539 [5.533 , 5.545]
145 6.046 6.042 6.047 6.049 [6.043 , 6.056]
155 6.245 6.246 6.245 6.245 [6.238 , 6.252]

Computing time: - > 5000 s 2.9 s < 220 s

Table 6.3: Up-and-out call prices for different barrier levels. The Monte Carlo calculations
are calculated with 6× 106 simulations, and my PI calculations are made with M = 350
gridpoints.

The results presented in Table 6.2 and Table 6.3 seem to be very accurate and fast,
which is a good start when we now move on to price lookback options.

6.2 Lookback Options

As we showed in section 5.2.1, the underlying probability density function for Z̃T =
log( S̃N

S0
), qN (z), make up the foundation when pricing both fixed and floating strike

lookback options. The accuracy we have seen above, is a good indication that our
implementation of qN (z) is accurate, and so we will now use this to price lookback
options, starting with the fixed strike case. Before we start, it is important to recognize
that there are now two main numerical aspects which influences the speed and accuracy;
the stock price range gridsize M as before and also the size of the interval between each
evaluation, dη. In addition the range ηmax−ηmin will influence the speed, and should be
chosen wisely. If we make the range to narrow, we might not capture all the probability.
At the same time one should not choose a too wide range, because we might end up
doing many relatively time-consuming calculations where the probability density is zero.
So if we need a small dη to get an accurate answer, the 50% reduction in computing time
from above may be very significant. These aspects we will discuss further below.

6.2.1 Fixed Strike Lookback Options

When we price fixed strike lookback call and put options, we follow the reasoning from
section 5.2.1, and use the fixed parameters from Table 6.1. As we mentioned above, the
choice of M and dη influences the results with regards to both speed and accuracy, and
we have therefore in Table 6.4 experimented with different values of M and dη to see
how the accuracy and speed vary.
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M = 200 M = 300 M = 400 M = 500
Price Time Price Time Price Time Price Time

dη = 10 6.195 22s 6.137 48s 6.141 96s 6.141 147s
dη = 5 6.106 31s 6.102 74s 6.102 140s 6.102 227s
dη = 3 6.075 41s 6.099 106s 6.099 205s 6.099 332s
dη = 2 6.077 56s 6.099 144s 6.098 280s 6.098 460s
dη = 1 6.072 94s 6.099 265s 6.098 521s 6.098 855s

Table 6.4: Price of a fixed strike lookback call option with strike price XLB = 105, with
varying gridsize M and dη. The price for this call option according to the Monte Carlo
simulation is 6.098 (with the corresponding 95% confidence interval [6.091 , 6.105]). The
computing time for the MC calculations is approximately 270 seconds.

In section 5.2.1, we briefly discussed the critical part around S0, and for all the results
below we have used dη = 1 in the range [S0− 5, S0 + 5]. For the particular case in Table
6.4, where we have XLB = 105 and a call option, this modification have little impact
since the payoff function for the option is zero for η ≤ 105. However, for lower values of
XLB or a put option with XLB ≥ 100, this modification will have a significant impact.
This smaller value of dη around S0 is also the reason that the computing time is not
linear with respect to dη, as we normally might expect.

From the results in Table 6.4, we see that the prices using dη = 3 gives us a very
satisfying result, at least for M ≥ 300. We have used this dη-value when pricing fixed
strike lookback call options with different strike prices in Table 6.5. For our validation
purposes in this thesis, we will use small gridsizes since we are interested in verifying
the accuracy of our implementation. However, in practice it does not make much sense
to calculate lookback option prices with the accuracy of three decimals, since the model
error almost certainly will be much higher, and also because a typical bid-ask spread can
be as high as several percentage points.

Recall from Table 6.4 that dη = 3 gave satisfying results, and in Table 6.5 we have
calculated the prices for fixed call options with different strike prices. For the purpose of
verifying the convergence behavior with respect to M , we have done this for three values
of M . As we can see from Table 6.5, there is almost nothing to gain in accuracy by
increasing M above 300, considering the corresponding increase in computing time. The
results seem very accurate compared to the MC results, and we see that all prices are
inside the 95% confidence interval for the MC simulations. The computing time is also
considerably smaller than for the MC simulations. As we discussed above, for practical
purposes this high accuracy might not be necessary, which again would lead to an even
smaller computing time.

In Table 6.6 we have calculated the prices for a fixed strike put, for varying gridsize
values M and dη. The computing times in Table 6.6 differs a bit from the corresponding
call prices in Table 6.4, and the reason for this is that the range [ηmin, ηmax] is different.
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Strike (X) M = 300 M = 400 M = 500 MC 95% CI for MC
65 44.513 44.513 44.513 44.516 [44.508 , 44.524]
70 39.564 39.564 39.564 39.565 [39.557 , 39.573]
75 34.615 34.615 34.615 34.622 [34.615 , 34.630]
80 29.667 29.667 29.667 29.662 [29.654 , 29.669]
85 24.721 24.721 24.721 24.724 [24.717 , 24.732]
90 19.780 19.780 19.780 19.782 [19.774 , 19.790]
95 14.850 14.850 14.850 14.848 [14.841 , 14.856]
100 9.977 9.977 9.977 9.979 [9.972 , 9.987]
105 6.099 6.099 6.099 6.098 [6.091 , 6.105]
110 3.549 3.549 3.550 3.549 [3.544 , 3.555]
115 1.992 1.992 1.993 1.996 [1.992 , 2.001]
120 1.100 1.100 1.100 1.100 [1.097 , 1.104]
125 0.606 0.606 0.607 0.606 [0.603 , 0.608]
130 0.337 0.337 0.338 0.339 [0.337 , 0.341]
135 0.190 0.191 0.191 0.191 [0.189 , 0.192]
140 0.109 0.109 0.110 0.111 [0.110 , 0.112]

Computing time 106s 205s 332s <270 s

Table 6.5: Fixed strike lookback call prices for different strike prices. The Monte Carlo
calculations are calculated with 6 × 106 simulations, and the PI calculations are made
with varying number of gridpoints M and dη = 3.

M = 200 M = 300 M = 400 M = 500
Price Time Price Time Price Time Price Time

dη = 10 13.573 19s 13.289 41s 13.272 71s 13.281 110s
dη = 5 13.414 31s 13.267 65s 13.249 113s 13.257 176s
dη = 3 13.451 43s 13.248 92s 13.249 160s 13.254 248s
dη = 2 13.434 61s 13.249 130s 13.248 227s 13.254 349s
dη = 1 13.420 111s 13.250 239s 13.247 411s 13.254 639s

Table 6.6: Price of a fixed strike lookback put option with strike price XLB = 105, with
varying gridsize M and dη. The price for this put option according to the Monte Carlo
simulation is 13.252 (with the corresponding 95% confidence interval [13.244 , 13.260]).
The computing time for the MC calculations is approximately 275 seconds.

While we for the call prices had a consistency in the price already at M = 300 and
dη = 3, we here see some small variations for smaller gridsizes. But these variations are
relatively small, especially compared to factors like model error and bid-ask spreads. As
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for the call price case above, we are satisfied with the accuracy given by dη = 3, and will
use this dη-value when pricing fixed put options for different strike prices in Table 6.7.

Strike (X) M = 300 M = 400 M = 500 MC 95% CI for MC
65 0.160 0.160 0.161 0.163 [0.162 , 0.164]
70 0.310 0.308 0.310 0.311 [0.310 , 0.313]
75 0.573 0.573 0.575 0.576 [0.573 , 0.578]
80 1.032 1.031 1.034 1.034 [1.030 , 1.037]
85 1.805 1.804 1.808 1.805 [1.801 , 1.809]
90 3.078 3.078 3.082 3.085 [3.080 , 3.090]
95 5.124 5.124 5.129 5.125 [5.119 , 5.132]
100 8.409 8.410 8.415 8.410 [8.402 , 8.417]
105 13.248 13.249 13.254 13.252 [13.244 , 13.260]
110 18.189 18.190 18.195 18.193 [18.185 , 18.200]
115 23.137 23.138 23.144 23.147 [23.139 , 23.154]
120 28.087 28.088 28.094 28.091 [28.084 , 28.099]
125 33.038 33.039 33.044 33.048 [33.040 , 33.055]
130 37.988 37.989 37.994 37.996 [37.988 , 38.003]
135 42.938 42.939 42.944 42.948 [42.940 , 42.955]
140 47.888 47.889 47.895 47.894 [47.886 , 47.901]

Computing time 92s 160s 248s < 275 s

Table 6.7: Fixed strike lookback put prices for different strike prices. The Monte Carlo
calculations are calculated with 6 × 106 simulations, and the PI calculations are made
with varying number of gridpoints M and dη = 3.

In Table 6.7 we see that the put prices seem to be relatively accurate. If we compare
the prices for the different M -values, we see that the prices with M = 500 are a bit
higher than for M = 300 and M = 400. From Table 6.6 we saw the same thing for
dη = 3 to dη = 5. The reason for this, we have no good explanation for, other than
a small numerical inaccuracy. Looking at the prices with M = 300 and M = 400
which are relatively alike, we see that they mostly lie around the lower limit of the 95%
confidence interval. Some fall outside, while some are inside the interval. Again it is
worth mentioning that we are dealing with a very narrow confidence interval, and for
practical use these results are more than enough regarding accuracy. And as we can
see, they are much faster than the MC simulation results. Considering the results with
M = 500, we see that all prices, except for X = 65, end up inside the confidence interval
which again shows that our numerical path integration implementation is very accurate.
And even for M = 500 the path integration approach is faster than the Monte Carlo
simulation.
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6.2.2 Floating Strike Lookback Options

When we now price floating strike lookback call and put options, we follow the reasoning
in section 5.2.1, and use the fixed parameters from Table 6.1. As explained before, we
now have to keep track of the probability density for the stock price at maturity T , ST ,
in addition to the maximum/minimum. In order to reduce the computing time consid-
erably, it is necessary to use cubic interpolation, both one and two dimensional. This
interpolation may not preserve the property from Eq. (5.14) in a satisfactory manner,
and it is therefore important that we adjust our implementation accordingly.

M = 200 M = 300 M = 400 M = 500
Price Time Price Time Price Time Price Time

dη = 10 10.351 33s 9.036 64s 9.054 102s 8.981 153s
dη = 5 10.473 45s 9.182 95s 9.290 151s 9.285 231s
dη = 3 10.382 60s 9.180 127s 9.291 208s 9.283 320s
dη = 2 10.558 80s 9.184 166s 9.291 286s 9.282 435s
dη = 1 10.552 148s 9.182 301s 9.291 511s 9.281 811s

Table 6.8: Price of a floating strike lookback call option with varying gridsize M and dη.
The price for this call option according to the Monte Carlo simulation is 9.282 (with the
corresponding 95% confidence interval [9.275 , 9.289]). The computing time for the MC
calculations is approximately 215 seconds.

Table 6.8 show the results from calculating the price of a floating strike lookback
call option for different gridsizes M and dη. From the table, we first notice that the
computing times are not significantly different from the corresponding calculations with
fixed strikes. As for the fixed strike put prices in Table 6.6, we see some small variations
in the prices for smaller gridsizes than M = 300 and dη = 3. The fact that the fixed
strike put prices and the floating strike call prices are similar in this manner, is not
surprising, since they both use the minimum in their payoff function. We see that for
M ≥ 400 and dη ≤ 5 we get relatively satisfying results, but we must have M = 500 in
order to get inside the 95% confidence interval.

Table 6.9 show the price of a floating strike lookback put option for different gridsizes
M and dη. The results show much of the same consistency as we had for the fixed call
options in Table 6.4, which are also based on the maximum of the stock. The results
seem to converge quite well, and we see that forM ≥ 400 and dη ≤ 3 our resulting prices
end up inside the 95% confidence interval.

Considering the computational speed, we see that in order to get a theoretically
respectable accuracy, we do not necessarily end up with the answer much faster than
using Monte Carlo simulations for these two cases. However, if we take a closer look into
the implementation theory in section 5.2.1, we may notice that for each value of η, we
run calculations that are independent of each other. Hence, we can in practice run the
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M = 200 M = 300 M = 400 M = 500
Price Time Price Time Price Time Price Time

dη = 10 15.482 28s 17.986 57s 19.528 88s 20.3357 132s
dη = 5 9.170 40s 8.948 83s 8.975 127s 8.991 196s
dη = 3 9.141 52s 8.867 109s 8.860 171s 8.858 265s
dη = 2 9.372 72s 8.878 144s 8.862 232s 8.862 358s
dη = 1 9.783 127s 8.885 254s 8.866 415s 8.863 644s

Table 6.9: Price of a floating strike lookback put option with varying gridsize M and dη.
The price for this put option according to the Monte Carlo simulation is 8.863 (with the
corresponding 95% confidence interval [8.855 , 8.871]).

calculations for each value of η simultaneously if we take parallel computing into use.
This would lead to a drastic decrease with respect to computing time.

We conclude this section by considering call and put prices on floating strike lookback
options for different values of S0. In addition we also test our implementation for options
with weekly monitoring, in addition to the daily monitoring options we have discussed so
far. Changing the value of ∆τ should, unlike many other numerical problems, not cause
any change in the accuracy of our results. This because the only element depending
on ∆τ in Eq. (5.10), is f(z − z′; ∆τ), which is explicitly given by Eq. (3.11) for all
values of ∆τ . From Table 6.10 and Table 6.11 we see that changing from daily to weekly
monitoring changes the prices, but not the accuracy.

PI MC 95% CI for MC

dt = 1
50

S0 = 60 4.928 4.929 [4.925 , 4.933]
S0 = 80 6.564 6.566 [6.561 , 6.572]
S0 = 100 8.208 8.211 [8.205 , 8.218]
S0 = 120 9.852 9.852 [9.844 , 9.860]
S0 = 140 11.490 11.491 [11.481 , 11.501]

dt = 1
250

S0 = 60 5.586 5.577 [5.573 , 5.581]
S0 = 80 7.438 7.436 [7.430 , 7.442]
S0 = 100 9.281 9.282 [9.275 , 9.289]
S0 = 120 11.144 11.148 [11.139 , 11.157]
S0 = 140 13.002 12.996 [12.986 , 13.006]

Table 6.10: Floating lookback call option prices with varying dt and S0. For the PI
calculation, M = 500 and dη = 1 is used.

First considering Table 6.10, we see that the results are quite good. All the prices
are inside the 95% confidence interval for the Monte Carlo simulations, except for the
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case with daily monitoring and S0 = 60. Here the price for some reason is less than
0.1% below the lower limit. In Table 6.11 we see that all put prices end up inside the
95% confidence interval. In general these results confirm that the our path integration
implementation works very well for different values of dt and S0, which is reassuring.

PI MC 95% CI for MC

dt = 1
50

S0 = 60 4.611 4.612 [4.607 , 4.616]
S0 = 80 6.151 6.148 [6.142 , 6.154]
S0 = 100 7.685 7.687 [7.679 , 7.695]
S0 = 120 9.225 9.226 [9.217 , 9.235]
S0 = 140 10.756 10.762 [10.752 , 10.773]

dt = 1
250

S0 = 60 5.323 5.321 [5.317 , 5.326]
S0 = 80 7.096 7.090 [7.083 , 7.096]
S0 = 100 8.863 8.863 [8.855 , 8.871]
S0 = 120 10.627 10.630 [10.621 , 10.640]
S0 = 140 12.401 12.410 [12.399 , 12.421]

Table 6.11: Floating lookback put option prices with varying dt and S0. For the PI
calculation, M = 500 and dη = 1 is used.

When calculating these results, we have used dη = 1 and M = 500, since we have
seen from the tables above that these gridsizes consistently gives us accurate results.
However, making the calculations with such a narrow grid is time-consuming. And as
we have discussed before, we will get adequate results with relatively much wider grid,
and hence save significantly with respect to computing time.

6.3 Asian Options

We have implemented the two different approaches described in section 5.2.2. When
calculating the results, we have used the two fixed parameter sets in Table 6.12 unless
stated otherwise. The results below, are made mainly with monthly monitoring because
the computing time and the need of a very accurate grid is otherwise too large. The
parameter values in set 1 are chosen as the same that Fusai & Meucci (2008) used when
pricing their Asian options. Although they only presented prices for one call option, we
still get a second verification that our Monte Carlo simulation is correct.

Below we will use the following notation for the different approaches:

• PI1: path integration using approach 1 from section 5.2.2

• PI2: path integration using approach 2 from section 5.2.2

We start off by using the results obtained by Fusai & Meucci (2008) to verify that our
Monte Carlo simulations are correct. Although the standard errors presented by Fusai



62 CHAPTER 6. NUMERICAL RESULTS

Set 1 Set 2
S0 100 100
X 90 90
r 0.0367 0.05
α 6.1882 10
β -3.8941 -4
δ 0.1622 1
T 1 1
dt 1

12
1
12

d 0 0

Table 6.12: Fixed input parameters for Asian options

& Meucci (2008) are relatively high, they still have a compliance between their results
using Monte Carlo with control variates and their results using numerical quadrature.
From Table 6.13 we see that our Monte Carlo results coincides very well with the results
from (Fusai & Meucci 2008), and this gives us a good indication that our Monte Carlo
simulation results are reasonably correct.

MCFM SEFM QuadFM MC 95% CI for MC

dt = 1
12

X = 90 12.623 0.341 12.622 12.624 [12.617 , 12.631]
X = 100 5.061 0.223 5.061 5.058 [5.053 , 5.063]
X = 110 1.014 0.176 1.014 1.013 [1.010 , 1.015]

dt = 1
50

X = 90 12.661 0.333 12.661 12.663 [12.657 , 12.670]
X = 100 5.104 0.221 5.104 5.106 [5.101 , 5.111]
X = 110 1.038 0.177 1.038 1.036 [1.033 , 1.038]

dt = 1
250

X = 90 12.672 0.329 NA 12.671 [12.664 , 12.678]
X = 100 5.116 0.218 NA 5.117 [5.112 , 5.122]
X = 110 1.044 0.176 NA 1.044 [1.041 , 1.046]

Table 6.13: Prices for fixed strike Asian call option for different values of dt and X. Here
MCFM denotes the Monte Carlo results for (Fusai & Meucci 2008) with SEFM denoting
the corresponding standard error. QuadFM denotes the results Fusai & Meucci (2008)
obtained with numerical quadratures. MC denotes our Monte Carlo results.

Now that we have made a quick and rough verification of our Monte Carlo simulation,
we will calculate the prices of fixed and floating strike Asian put and call options. Table
6.14 show the results for different gridsize values M , using parameter set 1 and path
integration approach 1 (PI1).
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M = 100 M = 200 M = 400 MC 95% CI for MC

Fixed Call 12.315 12.548 12.579 12.624 [12.617 , 12.631]
Put 1.306 1.238 1.149 1.191 [1.187 , 1.194]

Floating Call 5.235 5.177 5.190 5.170 [5.165 , 5.175]
Put 3.344 3.387 3.378 3.359 [3.354 , 3.365]

Computing time: 43s 363s 3037s 50s
Maximum error 9.66% 3.95% 3.53%
Average error 3.45% 1.38% 1.21%

Table 6.14: Asian option prices with PI1 for Set 1, with varying number of gridpoints M

From Table 6.14 we see that maximum and average percentage error is decreasing
with decreasing gridsize, which naturally is a good sign. However, if we look at the prices,
we see that they are not necessarily converging to the same price as for the Monte Carlo
simulation. The maximum error is for all three M -values given by the fixed strike put
option price, which is reasonable since these prices have the lowest values. If we calculate
the absolute deviation, we see that the fixed strike call option price deviates the most,
but closely followed by the fixed put price. We also see that the Monte Carlo simulation
takes about 50 seconds to calculate, while the the path integration implementation is
much more time-consuming in order to achieve convergence. Although it is not included
in Table 6.14 to Table 6.17, we have also calculated the prices with M = 700, to verify
that we actually have achieved convergence at M = 400.

M = 100 M = 200 M = 400 MC 95% CI for MC

Fixed Call 12.523 12.572 12.579 12.624 [12.617 , 12.631]
Put 1.220 1.150 1.147 1.191 [1.187 , 1.194]

Floating Call 5.272 5.189 5.190 5.170 [5.165 , 5.175]
Put 3.360 3.379 3.379 3.359 [3.354 , 3.365]

Computing time: 60s 497s 3730s 50s
Maximum error 2.43% 3.44% 3.69%
Average error 1.31% 1.20% 1.26%

Table 6.15: Asian option prices with PI2 for Set 1, with varying number of gridpoints M

Table 6.15 show the results of the same calculations as Table 6.14, but here approach
2 (PI2) have been used to calculate the prices. Comparing the results with Table 6.14,
we see that these results are converging to the same prices. However, using PI2 we see
that for M = 100, the prices are much closer to the converged prices.

In Table 6.16 and Table 6.17 we have done the same calculations as above, but using
parameter set 2. Here we see the same deviation from the Monte Carlo results, but we
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M = 100 M = 200 M = 400 MC 95% CI for MC

Fixed Call 14.562 14.577 14.578 14.750 [14.737 , 14.762]
Put 2.750 2.718 2.717 2.817 [2.812 , 2.823]

Floating Call 8.875 8.882 8.882 8.946 [8.935 , 8.958]
Put 6.517 6.513 6.513 6.484 [6.477 , 6.492]

Computing time: 27s 282s 2259s 50s
Maximum error 2.38% 3.51% 3.55%
Average error 1.24% 1.46% 1.47%

Table 6.16: Asian option prices with PI1 for Set 2, with varying number of gridpoints M

also observe a much faster convergence than we had for parameter set 1.

M = 100 M = 200 M = 400 MC 95% CI for MC

Fixed Call 14.577 14.578 14.578 14.750 [14.737 , 14.762]
Put 2.717 2.717 2.717 2.817 [2.812 , 2.823]

Floating Call 8.882 8.882 8.882 8.946 [8.935 , 8.958]
Put 6.513 6.513 6.513 6.484 [6.477 , 6.492]

Computing time: 41s 361s 2670s 50s
Maximum error 3.55% 3.55% 3.55%
Average error 1.47% 1.47% 1.47%

Table 6.17: Asian option prices with PI2 for Set 2, with varying number of gridpoints M

We have now seen that for monthly monitoring, our results using both PI1 and PI2
for parameter set 1 and 2 are not as accurate as we had expected. In section 6.3.1 we
discuss possible elements that might have caused this inaccuracy in the results. We have
in Table 6.18 and Table 6.19 calculated the option prices for both parameter sets with
weekly monitoring. The results are found using only PI1, since the process of finding the
dynamic grid combined with a high demand for an accurate grid, makes PI2 much less
practical for smaller values of dt.

From Table 6.18 and Table 6.19 we see that the prices are actually not as bad one
might have expected. For parameter set 1, we actually have three out of four prices
inside the 95% confidence interval for the MC results. For parameter set 1 we also notice
that by increasing M from 500 to 700, we get a considerable change in the prices. For
parameter set 2, the prices have converged already at M = 300. This shows that the
convergence depends on the parameter set we use. The surprisingly large change in the
prices for set 1 when increasing M from 500 to 700, may be an indication that perhaps
the prices with monthly monitoring has not converged completely. However, computing
the monthly monitoring prices with M = 700 gives the same prices as for M = 400 for
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both methods and both parameter sets.

M = 300 M = 500 M = 700 MC 95% CI for MC

Fixed Call 0.003 12.622 12.653 12.657 [12.650 , 12.663]
Put 73.738 1.380 1.237 1.234 [1.230 , 1.238]

Floating Call 0.038 5.209 5.219 5.215 [5.210 , 5.221]
Put 6.056 3.405 3.398 3.410 [3.404 , 3.416]

Computing time: 12610s 23980s 74050s 200s

Table 6.18: Asian option prices with PI1 for Set 1, with varying number of gridpoints M
and with dt = 1

50

M = 300 M = 500 M = 700 MC 95% CI for MC

Fixed Call 14.759 14.759 14.759 14.844 [14.831 , 14.857]
Put 2.909 2.909 2.909 2.914 [2.908 , 2.919]

Floating Call 8.962 8.962 8.962 9.054 [9.042 , 9.065]
Put 6.601 6.601 6.601 6.594 [6.586 , 6.602]

Computing time: 9600 23025s 98430s 200s

Table 6.19: Asian option prices with PI1 for Set 2, with varying number of gridpoints M
and with dt = 1

50

Seeing the somewhat inaccurate results for monthly monitoring above, it is quite
surprising that the results for weekly monitoring in Table 6.18 and Table 6.19 are that
accurate. The only element in Eq. (5.21) depending on the number of monitoring times
N , is f(z−z′; ∆τ), and this element is explicitly given for all values of ∆τ by Eq. (3.11).

6.3.1 Error Analysis

As we can see from the results above, our prices for the monthly monitored Asian options
are not as accurate as the results we had for the lookback options. Why is this so? The
first reason we came up with, was naturally that there is some numerical inaccuracy in
the implementation we have performed. Looking at Eq. (5.21) in section 5.2.2, we see
that the only element that may cause such a numerical inaccuracy, is the interpolation
we use when finding fZi−1,Ai−1 . Here we have used the built-in Matlab function interp2()
with bicubic interpolation. If this interpolation is the reason for our inaccurate results,
one should expect that the deviation in the option price will decrease as we increase the
number of gridpoints M . This because the increased number of gridpoints that we make
the interpolation based on, will give the interpolation more constraints.
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Other factors that may have caused this numerical inaccuracy, is the choice of Zmin,
Zmax, Amin and Amax. But as seen from Figure 6.1, the joint probability density function
is far from nonzero at any of the endpoints. We also, for each time step, integrate up
the PDF to make sure that the total probability of the entire grid is 1. For all our
calculations this was the case, with only an absolute deviation in the magnitude of less
than 0.005.

Figure 6.1: Plot showing the joint probability density function fZN ,AN
for parameter set

2 using PI1.

In the search for this numerical inaccuracy, we did not manage to improve the results
by changing the grid values and the gridsize. Therefore we looked at the initial PDF,
which also integrated up to 1, to see if this initial joint PDF were the source to our
inaccurate results. First we tried to price an option using only two monitoring points,
that is N = 2. These prices also deviated from the corresponding results found by Monte
Carlo simulation. This seems strange, since the calculations leading to Eq. (5.25) and
Eq. (5.28) are relatively straightforward. However, as a second attempt for a initial
joint PDF, we tried to use the same procedure as Skaug & Naess (2005). fZ1,A1(z, y) is
originally on the singular form

fZ1,A1(z, y) = δ

(
y − S0

2
(1 + ez)

)
· f(z; ∆τ)
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In this approximation, we introduce Ỹ1 = S0
2 (1 + eZ1) + E where E ∼ N(0, e2) and e is

sufficiently small. Then the nonsingular approximation of fZ1,A1(z, y) is given by

fZ1,A1(z, y) = ΦN

(
y;
S0

2
(1 + ez), e2

)
· f(z; ∆τ)

Using this initial PDF, and calculating Eq. (5.21) and Eq. (5.27) recursively for i =
2, . . . , N , we end up with results relatively identical to the results above. Hence, it seem
as the initial joint PDF is not causing the inaccuracy.

As a final attempt to find the cause of the inaccuracy, we tried to implement a
dynamic grid. The initial PDF is only nonzero at a very narrow range on the grid,
especially compared to the PDF at t = T , and so it may give us an numerical inaccuracy
to have a static grid large enough to include the entire final PDF. However, implementing
such a dynamic grid, did not improve our results significantly.

The cause of the inaccurate prices for the Asian options presented in this section,
remains a mystery. The theory in section 5.2.2 is relatively straight-forward, and should
give us relatively exact results. As explained above, we have tried to go through the
different aspects of this problem to find out where the inaccuracy occurs, but we have
not succeeded.
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Conclusion

In chapter 4 we have shown that the Normal Inverse Gaussian market model looks to
have a good fit to historical market data, except perhaps for StatoilHydro. However, for
practical use it may not be adequate to find the parameter values using historical data,
since the market and the financial assets are driven by the investors expectations to the
future development of the financial market. Therefore, we also calculated the implied
parameters, where we use current option prices in the calibration. For some of the data
sets, the calibration results are depending on which error measure we chose, which is an
indication that the calibration risk is significant for some data sets. We proposed four
different error measures, and which one to use, will depend on the problem at hand.
Compared to the more commonly used Black-Scholes model, we have seen that the NIG
market model fits market data better, both with historical and implied parameters.

In chapter 5 and 6 we focused on pricing different varieties of barrier, lookback and
Asian options for fixed parameter sets. For the barrier options and both the fixed and
floating strike lookback options the results were very accurate. The computing time was
also smaller than for the Monte Carlo simulations. For the Asian option calculations,
we experienced some inaccuracy compared to the Monte Carlo prices. However, from a
practical point of view, the magnitude of these deviations are not deterrent, considering
other uncertainty aspects of financial modeling, such as model and calibration risk etc.
But still, there is an unknown source of inaccuracy in the implementation of the Asian
options that we have not succeeded in uncovering.

When pricing financial derivatives with path integration, it is crucial that the numer-
ical scheme used is accurate. In our implementation, the computational speed has not
been our main focus. Especially, one can make huge improvements in the computing time
when calculating the cumulative distribution function needed to price lookback options.
These computations are independent of each other, and by running these calculations in
parallel on a network of computers, one can reduce the computational speed significantly.
Noticing that the transition probabilities in general are quite narrow, there is also a con-
siderable gain to be made by concentrating the computation around the center of the
mean. It is also worth noticing that we in this thesis have focused on the accuracy and
convergence properties of our implementation and in practice, it may not be necessary
to calculate the prices with this degree of accuracy, since the model and calibration risk
may be quite significant compared to any numerical inaccuracy.
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processes, Journal of Banking and Finance 32: 2076–2088.

J. Michael, W. S. & Haas, R. (1976). Generating random variates using transformations
with multiple roots, American Statistician pp. 88–90.
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Appendix A

Source Code

All implementation have been programmed using Matlab. The code included below is the
code used to produce all results in chapter 6, with some small modifications. Especially,
we need to choose the range [ηmin, ηmax] according to what values of S0 we are working
with. In order to reduce the number of inputs in our function calls, we have chosen to
do these modifications inside the code. The Matlab functions presented below are:

• NIGBarrierPI(): - calculates the price of a barrier option or returns the PDF
qN (z) under the NIG market model using numerical path integration

• NIGBarrierMC(): - calculates the price of a barrier option under the NIG market
model using Monte Carlo simulation

• NIGLookbackPIF ixed(): - calculates the price of a fixed strike lookback option
under the NIG market model using numerical path integration

• NIGLookbackPIF loating(): - calculates the price of a floating strike lookback
option under the NIG market model using numerical path integration

• NIGLookbackMC(): - calculates the price of both fixed strike and floating strike
lookback options under the NIG market model using Monte Carlo simulation

• NIGAsianPI1(): - calculates the price of both fixed strike and floating strike
Asian options under the NIG market model using path integration approach 1

• NIGAsianPI2(): - calculates the price of both fixed strike and floating strike
Asian options under the NIG market model using path integration approach 2

• NIGAsianMC(): - calculates the price of both fixed strike and floating strike
Asian options under the NIG market model using Monte Carlo simulation

function p r i c e = NIGBarrierPI (S0 ,X, r , d , T, L , U, alpha , beta , de l ta , M2, . . .
p r i ceF lag , CPflag )

t ic
%input :

71
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%S0 − i n i t i a l s t ock pr i c e
%X − s t r i k e p r i c e f o r the ba r r i e r opt ion
%r − i n t e r e s t ra t e
%d − d iv idend y i e l d
%T − time to maturi ty ( in years )
%L − lower ba r r i e r
%U − upper ba r r i e r
%alpha − parameter o f the NIG d i s t r i b u t i o n
%beta − parameter o f the NIG d i s t r i b u t i o n
%de l t a − parameter o f the NIG d i s t r i b u t i o n
%M2 − number o f i n t e r v a l s in the s tock g r i d
%pr i ceF lag − 1 i f p r i c e o f c a l l opt ion i s returned , 0 i f p r o b a b i l i t y F(B)
%i s returned and e l s e q ( z ) i s re turned
%CPflag − ’ c ’ i f c a l l option , put opt ion o therwi se

%output :
%pr i c e − the p r i c e o f the c a l l opt ion i f p r i ceF lag == 1 , F(B) i f
%pr i ceF lag == 0 and q ( z )

dt = 1/250 ; %s t e p l e n g t h on the time gr i d (250 t rad ing days per years )

%i n i t i a l i z i n g :
M1 = 5∗M2;
Smin = L ;
Smax = U;
dS=(Smax−Smin )/M1; %Because o f the rounding
M = M1+1;
N = round(T∗(1/ dt ) ) ; %Number o f days
T = N/(1/ dt ) ; %To take care o f rounding er ror s
help = [ 1 : 5 :M] ;
Mhelp = length (help ) ;

%mean cor r e c t i n g measure :
mc = dt ∗( r−d+de l t a ∗( sqrt ( alpha^2 − (beta+1)^2) − sqrt ( alpha^2−beta ^2 ) ) ) ;

%de f i n in g the p o s s i b l e s t ock p r i c e s :
Srange = Smin : dS : Smax ;

%crea t ing two temporary vec t o r s :
S1 = repmat ( Srange , [ 1 , Mhelp ] ) ;
S2 = repmat ( Srange (help ) , [M, 1 ] ) ;
S2 = S2 ( : ) ’ ;

%crea t ing the matrix conta in ing a l l p o s s i b l e z−va lue s :
zFu l l = log ( S2 . / S1 ) − mc;
zMatrix = reshape ( zFul l ,M,Mhelp ) ’ ;

%ca l c u l a t i n g a matrix conta in ing a l l p o s s i b l e va lue s o f f ( z ; d t ) :
fExpMatrix = ( ( alpha ∗ de l t a ∗dt/pi ) ∗ exp( d e l t a ∗dt∗sqrt ( alpha^2−beta^2) . . .
+ beta∗ zMatrix ) . ∗ besselk (1 , alpha ∗sqrt ( ( d e l t a ∗dt )^2 + zMatrix . ^ 2 ) ) . . .
. / ( sqrt ( ( d e l t a ∗dt )^2 + zMatrix . ^ 2 ) ) ) ;

%ca l c u l a t i n g the f i r s t s t ep :
zOne = log ( Srange/S0 ) − mc;
g = ( ( alpha ∗ de l t a ∗dt/pi ) ∗ exp( d e l t a ∗dt∗sqrt ( alpha^2−beta^2) + beta∗zOne ) . . .
.∗ besselk (1 , alpha ∗sqrt ( ( d e l t a ∗dt )^2 + zOne . ^ 2 ) ) . / ( sqrt ( ( d e l t a ∗dt )^2 + . . .
zOne . ^ 2 ) ) ) ;

gTemp = zeros (1 ,Mhelp ) ;
for i = 2 :N %loop ing over a l l po in t s in time

for j = 1 :Mhelp %loop ing over a l l p o s s i b l e s t ock p r i c e s in the s tock g r i d
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h = g .∗ fExpMatrix ( j , : ) ; %making the c a l c u l a t i o n s i n s i d e the i n t e g r a l
gTemp( j ) = sum( ( h ( 1 : ( end−1)) + 0 .5∗ d i f f (h ) ) . ∗ ( d i f f ( zOne ) ) ) ; %in t e g r a t i n g

end
g = interp1 ( Srange (help ) , gTemp , Srange , ’ cub ic ’ ) ;

end

i f ( p r i c eF lag == 1)
i f ( CPflag == ’ c ’ ) %return ing pr i c e o f c a l l opt ion

p r i c e = exp(−r ∗T)∗ trapz ( log ( Srange/S0 ) ,max( 0 , ( Srange−X)) .∗ g ) ;
else %return ing pr i c e o f put opt ion

p r i c e = exp(−r ∗T)∗ trapz ( log ( Srange/S0 ) ,max( 0 , (X−Srange ) ) .∗ g ) ;
end

e l s e i f ( p r i c eF lag == 0)
%return ing p r o b a b i l i t y F(B)
p r i c e = trapz ( log ( Srange/S0 ) , g ) ;

else
p r i c e = [ g Srange ] ;

end
toc
end

function [ p r i c e , lower ,upper ] = NIGBarrierMC(S0 , X, r , d , T, L , U, alpha , beta , . . .
de l ta , Nsim , CPflag )

t ic
%input :
%S0 − i n i t i a l s t ock pr i c e
%X − s t r i k e p r i c e f o r the ba r r i e r opt ion
%r − i n t e r e s t ra t e
%d − d iv idend y i e l d
%T − time to maturi ty ( in years )
%L − lower ba r r i e r
%U − upper ba r r i e r
%alpha − parameter o f the NIG d i s t r i b u t i o n
%beta − parameter o f the NIG d i s t r i b u t i o n
%de l t a − parameter o f the NIG d i s t r i b u t i o n
%Nsim − number o f s imu la t i ons
%CPflag − ’ c ’ i f p r i c e o f c a l l opt ion i s returned , e l s e p r i c e o f put
%opt ion i s re turned

%output :
%pr i c e − the p r i c e o f the c a l l opt ion i f CPflag == ’c ’ , e l s e p r i c e o f put
%lower − lower l im i t o f the 95% conf idence i n t e r v a l
%upper − upper l im i t o f the 95% conf idence i n t e r v a l

%i n i t i a l i z i n g time gr i d :
N = round(T∗250 ) ;
T = N/250 ;
dt = 1/250 ;

%mean cor r e c t i n g measure :
m = ( r−d+de l t a ∗( sqrt ( alpha^2 − (beta + 1)^2) − sqrt ( alpha^2 − beta ^2 ) ) ) ;

act iveArray = ones (Nsim , 1 ) ; %array keeping t rack o f whether each process . . .
%has passed the b a r r i e r s
S = S0∗ ones (Nsim , 1 ) ; %i n i t i a l s t ock pr i c e f o r a l l s imu la t i ons

for j = 1 :N %loop ing over a l l t imes t eps
rand = nigrnd ( alpha , beta , 0 , d e l t a ∗dt , Nsim , 1 ) ; %genera te s random . . .
%NIG d i s t r i b u t e d v a r i a b l e s
S = S .∗exp(m∗dt + rand ) ; %ca l c u l a t i n g new s tock p r i c e s
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%check ing i f the new s tock p r i c e s have passed the ba r r i e r ( s ) :
act iveArray = act iveArray .∗(1−(S<=L ) ) ;
act iveArray = act iveArray .∗(1−(S>=U) ) ;

end
size (S)
s ize ( act iveArray )

%ca l c u l a t i n g pr i c e and CI fo r c a l l and put opt ion :
p r i c e_ca l l = exp(−r ∗T)∗max(0 , S−X) . ∗ act iveArray ;
price_put = exp(−r ∗T)∗max(0 ,X−S ) . ∗ act iveArray ;
x_bar_call = mean( p r i c e_ca l l ) ;
x_bar_put = mean( price_put ) ;
%s i g_ca l l = s q r t ( (1/( (Nsim−1)∗Nsim))∗sum(( p r i c e_ca l l − x_bar_cal l ) . ^ 2 ) ) ;
%sig_put = s q r t ( (1/( (Nsim−1)∗Nsim))∗sum(( price_put − x_bar_put ) . ^2 ) ) ;
s i g_ca l l = std ( p r i c e_ca l l )/ sqrt (Nsim ) ;
sig_put = std ( price_put )/ sqrt (Nsim ) ;
l ower_ca l l = x_bar_call − 1 .96∗ s i g_ca l l ;
lower_put = x_bar_put − 1 .96∗ sig_put ;
upper_cal l = x_bar_call + 1.96∗ s i g_ca l l ;
upper_put = x_bar_put + 1.96∗ sig_put ;

i f ( CPflag == ’ c ’ ) %return ing pr i c e o f c a l l opt ion :
p r i c e = x_bar_call ;
lower = lower_ca l l ;
upper = upper_cal l ;

else %return ing pr i c e o f put opt ion :
p r i c e = x_bar_put ;
lower = lower_put ;
upper = upper_put ;

end
toc
end

function p r i c e = NIGLookbackPIFixed (S0 ,X, r , d , T, alpha , beta , de l ta , M2, . . .
dB1 , CPflag )

t ic
%input :
%S0 − i n i t i a l s t ock pr i c e
%X − s t r i k e p r i c e f o r the lookback opt ion
%r − i n t e r e s t ra t e
%d − d iv idend y i e l d
%T − time to maturi ty ( in years )
%alpha − parameter o f the NIG d i s t r i b u t i o n
%beta − parameter o f the NIG d i s t r i b u t i o n
%de l t a − parameter o f the NIG d i s t r i b u t i o n
%M2 − number o f i n t e r v a l s in the s tock g r i d
%dB1 − g r i d s i z e on the Barrier−g r i d
%CPflag − ’ c ’ i f c a l l option , put opt ion o therwi se

%output :
%pr i c e − the p r i c e o f the opt ion

%de f i n in g the Barrier−g r i d :
i f ( CPflag == ’ c ’ )

B = [ 7 0 : dB1 : ( S0−5) (S0−4 ) : 1 : ( S0+4) ( S0+5):dB1 : 2 5 0 ] ;
else

B = [ 2 0 : dB1 : ( S0−5) (S0−4 ) : 1 : ( S0+4) ( S0+5):dB1 : 1 2 0 ] ;
end
length (B)
F = ones (1 , length (B) ) ;
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%ca l c u l a t i n g F(B) :
for i =1: length (B)

i f ( CPflag == ’ c ’ )
F( i ) = NIGBarrierPI (S0 ,X, r , d , T, 10 , B( i ) , alpha , beta , de l ta , M2, . . .

0 , ’ c ’ ) ;
i f ((1−F( i ) < 0 .00001 ) )

break ;
end

else
F( i ) = 1 − NIGBarrierPI (S0 ,X, r , d , T, B( i ) , 250 , alpha , beta , de l ta , . . .

M2, 0 , ’p ’ ) ;
i f (1 − F( i ) < 0 .00001)

break ;
end

end
i
toc

end
help = (F < 0 ) ;
F(help ) = 0 ;

%in t e r p o l a t i n g F(B) :
dB = 0 . 0 0 5 ;
Bintp l = B( 1 ) : dB :B(end ) ;
F intp l = interp1 (B,F , Bintpl , ’ cub ic ’ ) ;
n=length ( F intp l ) ;

subplot ( 2 , 1 , 1 ) , plot ( Bintpl , F intp l ) ;
xlabel ( ’ Ba r r i e r ␣B∗ ’ ) ;
ylabel ( ’F(B∗) ’ ) ;
t i t l e ( ’The␣ cumulat ive ␣ d i s t r i b u t i o n ␣ func t i on ␣F(B∗) ’ )

%ca l c u l a t i n g the pdf f (B) :
f = ( F intp l ( 2 : n)−Fintp l ( 1 : ( n−1)) ) ./dB ;
Bintp l2 = Bintp l ( 1 : ( end−1)) ;

a = simpsons (dB, f )
f = f /a ;

subplot ( 2 , 1 , 2 ) , plot ( Bintpl2 , f )
xlabel ( ’ Ba r r i e r ␣B∗ ’ ) ;
ylabel ( ’ f (B∗) ’ ) ;
t i t l e ( ’The␣ p r obab i l i t y ␣ dens i ty ␣ func t i on ␣ f (B∗) ’ )

%ca l c u l a t i n g the pr i c e :
i f ( CPflag == ’ c ’ )

p r i c e = exp(−r ∗T)∗ simpsons (dB,max(0 , Bintpl2−X) . ∗ f ) ;
else

p r i c e = exp(−r ∗T)∗ simpsons (dB,max(0 ,X−Bintp l2 ) . ∗ f ) ;
end

toc
end

function svar = simpsons (h , y )
svar = (h/3)∗ ( y (1 ) + y(end) + 4∗sum( y ( 2 : 2 : ( end−1))) + 2∗sum( y ( 3 : 2 : ( end−2 ) ) ) ) ;
end

function p r i c e = NIGLookbackPIFloating (S0 , r , d , T, alpha , beta , de l ta , M2, . . .
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dB1 , CPflag )
t ic
%input :
%S0 − i n i t i a l s t ock pr i c e
%r − i n t e r e s t ra t e
%d − d iv idend y i e l d
%T − time to maturi ty ( in years )
%alpha − parameter o f the NIG d i s t r i b u t i o n
%beta − parameter o f the NIG d i s t r i b u t i o n
%de l t a − parameter o f the NIG d i s t r i b u t i o n
%M2 − number o f i n t e r v a l s in the s tock g r i d
%dB1 − g r i d s i z e on Barr ier c a l c u l a t i o n s
%CPflag − ’ c ’ i f c a l l option , put opt ion o therwi se

%output :
%pr i c e − the p r i c e o f the opt ion

dt = 1/250 ; %da i l y monitoring

%ca l c u l a t i n g mean co r r e c t i n g measure :
mc = dt ∗( r−d+de l t a ∗( sqrt ( alpha^2 − (beta+1)^2) − sqrt ( alpha^2−beta ^2 ) ) ) ;

%i n i t i a l i z i n g the g r i d :
i f ( CPflag == ’p ’ )

B = [ 7 0 : dB1 : ( S0−5) (S0−4 ) : 1 : ( S0+4) ( S0+5):dB1 : 1 7 0 ] ;
dSint = (170−20)/M2;
Sintp = [ 2 0 : dSint : 1 7 0 ] ;
Zintp = log ( Sintp /S0)−mc;

else
B = [ 3 0 : dB1 : ( S0−5) (S0−4 ) : 1 : ( S0+4) ( S0+5):dB1 : 1 5 0 ] ;
dSint = (240−50)/M2;
Sintp = [ 5 0 : dSint : 2 4 0 ] ;
Zintp = log ( Sintp /S0)−mc;

end

%ca l c u l a t i n g the cumulat ive p r o b a b i l i t y :
F = zeros ( length ( Zintp ) , length (B) ) ;
for i =1: length (B)

i f ( CPflag == ’p ’ )
temp = NIGBarrierPI (S0 , 100 , r , d , T, 20 , B( i ) , alpha , beta , de l ta , . . .

M2, 2 , ’ c ’ ) ;
F ( : , i ) = interp1 ( log ( temp ( (end/2+1):end)/ S0)−mc, temp ( 1 : ( end/2 ) ) , . . .

Zintp , ’ cub ic ’ ) ’ ;
else

temp = NIGBarrierPI (S0 , 100 , r , d , T, B( i ) , 240 , alpha , beta , de l ta , . . .
M2, 2 , ’p ’ ) ;

F ( : , i ) = interp1 ( log ( temp ( (end/2+1):end)/ S0)−mc, temp ( 1 : ( end/2 ) ) , . . .
Zintp , ’ cub ic ’ ) ’ ;

end
end

%in t e r p o l a t i n g :
dB = 0 . 0 0 5 ;
Bintp l = B( 1 ) : dB :B(end ) ;
[ BI , ZI ] = meshgrid ( Bintpl , Zintp ) ;
F intp l = interp2 (B, Zintp ,F , BI , ZI , ’ cub ic ’ ) ;

%f ind in g the p a r t i a l d e r i v a t i v e with r e spec t to B:
i f ( CPflag == ’p ’ )

f = (−Fintp l ( : , ( 1 : end−1))+Fintp l ( : , ( 2 : end ) ) ) /dB ;
else

f = ( F intp l ( : , ( 1 : end−1))−Fintp l ( : , ( 2 : end ) ) ) /dB ;
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end

%cor r e c t i n g numerical inaccuracy :
i f ( CPflag == ’p ’ )

he lp1 = ( repmat ( Sintp ’ , 1 , length ( Bintp l2 ) ) > repmat ( Bintpl2 , length ( Sintp ) , 1 ) ) ;
else

help1 = ( repmat ( Sintp ’ , 1 , length ( Bintp l2 ) ) < repmat ( Bintpl2 , length ( Sintp ) , 1 ) ) ;
end
f ( he lp1 ) = 0 ;
help2 = ( f <0);
f ( he lp2 ) = 0 ;

CP = 0 ;
i f ( CPflag == ’ c ’ )

CP = 1 ;
else

CP = −1;
end

%ca l c u l a t i n g the pr i c e :
temp2 = zeros (1 , length ( Zintp ) ) ;
for i =1: length ( Zintp )

temp2 ( i ) = simpson ( Bintpl2 ,max(CP∗( Sintp ( i ) − Bintp l2 ) , 0 ) . ∗ f ( i , : ) ) ;
end
p r i c e = exp(−r ∗T)∗ trapz ( Zintp , temp2 ) ;

toc
end

function i n t = simpson (x , y )
n = length ( x ) ;
h = (x (end) − x ( 1 ) ) / ( n−1);
i n t = (h/3)∗ ( y (1 ) + y(end) + 4∗sum( y ( 2 : 2 : ( end−1))) + 2∗sum( y ( 3 : 2 : ( end−2 ) ) ) ) ;
end

function [ p r i c e , lower ,upper ] = NIGLookbackMC(S0 ,X, r , d , T, alpha , beta , . . .
de l ta , Nsim , FixedFlag , CPflag )

t ic
%input :
%S0 − i n i t i a l s t ock pr i c e
%X − s t r i k e p r i c e f o r the ba r r i e r opt ion
%r − i n t e r e s t ra t e
%d − d iv idend y i e l d
%T − time to maturi ty ( in years )
%alpha − parameter o f the NIG d i s t r i b u t i o n
%beta − parameter o f the NIG d i s t r i b u t i o n
%de l t a − parameter o f the NIG d i s t r i b u t i o n
%Nsim − number o f s imu la t i ons
%FixedFlag − 1 i f f i x e d s t r i k e pr ice , 0 i f f l o a t i n g s t r i k e p r i c e
%CPflag − ’ c ’ i f p r i c e o f c a l l opt ion i s returned , e l s e p r i c e o f put
%opt ion i s re turned

%output :
%pr i c e − the p r i c e o f the c a l l opt ion i f CPflag == ’c ’ , e l s e p r i c e o f put
%lower − lower l im i t o f the 95% conf idence i n t e r v a l
%upper − upper l im i t o f the 95% conf idence i n t e r v a l

%i n i t i a l i z i n g time gr i d :
N = round(T∗250 ) ;
T = N/250 ;
dt = 1/250 ;
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%mean cor r e c t i n g measure :
mc = ( r−d+de l t a ∗( sqrt ( alpha^2 − (beta + 1)^2) − sqrt ( alpha^2 − beta ^2 ) ) ) ;

S = S0∗ ones (Nsim , 1 ) ; %i n i t i a l s t ock pr i c e f o r a l l s imu la t i ons
Smax = zeros (Nsim , 1 ) ; %vec tor keeping t rack o f the maximum . . .

%of a l l s imu la t i ons
Smin = 10000∗ ones (Nsim , 1 ) ; %vec tor keeping t rack o f the . . .

%minimum of a l l s imu la t i ons

for j = 1 :N %loop ing over a l l time s t e p s
rand = nigrnd ( alpha , beta , 0 , d e l t a ∗dt , Nsim , 1 ) ; %genera te s random . . .
%NIG d i s t r i b u t e d v a r i a b l e s
S = S .∗exp(mc∗dt + rand ) ; %ca l c u l a t i n g new s tock p r i c e s

%updat ing the minimum and maximum vec to r s :
Smax = (S < Smax ) . ∗Smax + (1 − (S <= Smax ) ) . ∗ S ;
Smin = (S > Smin ) . ∗ Smin + (1 − (S >= Smin ) ) . ∗ S ;

end

%ca l c u l a t i n g pr i c e and CI fo r c a l l and put opt ion :
i f ( CPflag == ’ c ’ )

i f ( FixedFlag == 1)
price_vec = exp(−r ∗T)∗max(Smax − X, 0 ) ;

else
price_vec = exp(−r ∗T)∗max(0 , S − Smin ) ;

end
else

i f ( FixedFlag == 1)
price_vec = exp(−r ∗T)∗max(X − Smin , 0 ) ;

else
price_vec = exp(−r ∗T)∗max(0 ,Smax − S ) ;

end
end
x_bar = mean( pr ice_vec ) ;
s i g = std ( pr ice_vec )/ sqrt (Nsim ) ;
lower = x_bar − 1 .96∗ s i g ;
upper = x_bar + 1.96∗ s i g ;
p r i c e = x_bar ;

toc
end

function [ p r i c eF ixedCa l l , pr iceFixedPut , p r i c eF l oa tCa l l , p r i ceF loatPut ] = . . .
NIGAsianPI1 (S0 ,X, r , d , dt , T, alpha , beta , de l ta , M2)

t ic
%input :
%S0 − i n i t i a l s t ock pr i c e
%X − s t r i k e p r i c e f o r the ba r r i e r opt ion
%r − i n t e r e s t ra t e
%d − d iv idend y i e l d
%dt − number o f monitoring po in t s per year
%T − time to maturi ty ( in years )
%alpha − parameter o f the NIG d i s t r i b u t i o n
%beta − parameter o f the NIG d i s t r i b u t i o n
%de l t a − parameter o f the NIG d i s t r i b u t i o n
%M2 − number o f i n t e r v a l s in the s tock g r i d

%output :
%pr i c eF i xedCa l l − the p r i c e o f the f i x e d s t r i k e c a l l op t ion
%priceFixedPut − the p r i c e o f the f i x e d s t r i k e put opt ion
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%pr i c eF l oa t i n gCa l l − the p r i c e o f the f l o a t i n g s t r i k e c a l l opt ion
%pr i ceF loa t ingPut − the p r i c e o f the f l o a t i n g s t r i k e put opt ion

N = round(T∗(1/ dt ) ) ; %Number o f days
T = N/(1/ dt ) ; %To take care o f rounding er ror s

%mean co r r e c t i n g measure :
mc = dt ∗( r−d+de l t a ∗( sqrt ( alpha^2 − (beta+1)^2) − sqrt ( alpha^2−beta ^2 ) ) ) ;

%i n i t i a l i z i n g g r i d :
Smin = 5 ;
Ymin = 5 ;
Smax = 280 ;
Ymax = 250 ;
M1 = 5∗M2;
dS=(Smax−Smin )/M1;
dY=(Ymax−Ymin)/M1;
M = M1 + 1 ;

%to decrease computing time , c a l c u l a t i n g s are not made in a l l g r i d po i n t s :
i n t p l = [ 1 : 1 5 : f loor (M/4) f loor (M/4)+5:5 : f loor (3∗M/4) f loor (3∗M/4)+15:15 :M] ;
i f ( i n t p l (end) == M)

M = M;
else

i n t p l = [ i n t p l M] ;
end
Mintpl = length ( i n t p l ) ;

%de f i n in g the p o s s i b l e s t ock p r i c e s :
Srange = Smin : dS : Smax ;
Yrange = Ymin :dY:Ymax;

%crea t ing two temporary vec t o r s :
S1 = repmat ( Srange , [ 1 , Mintpl ] ) ;
S2 = repmat ( Srange ( i n t p l ) , [M, 1 ] ) ;
S2 = S2 ( : ) ’ ;

%crea t ing the matrix conta in ing a l l p o s s i b l e z−va lue s :
zFu l l = log ( S2 . / S1 ) − mc;
zMatrix = reshape ( zFul l ,M, Mintpl ) ’ ;

%ca l c u l a t i n g a matrix conta in ing a l l p o s s i b l e va lue s o f f ( z − z ’ ; d t ) :
fExpMatrix = ( ( alpha ∗ de l t a ∗dt/pi ) ∗ exp( d e l t a ∗dt∗sqrt ( alpha^2−beta^2) . . .
+ beta∗ zMatrix ) . ∗ besselk (1 , alpha ∗sqrt ( ( d e l t a ∗dt )^2 + zMatrix . ^ 2 ) ) . . .
. / ( sqrt ( ( d e l t a ∗dt )^2 + zMatrix . ^ 2 ) ) ) ;

%ca l c u l a t i n g f_{z_{1}}:
Zrange = log ( Srange/S0 ) − mc;
f1 = ( ( alpha ∗ de l t a ∗dt/pi ) ∗ exp( d e l t a ∗dt∗sqrt ( alpha^2−beta^2) + beta∗Zrange ) . . .
.∗ besselk (1 , alpha ∗sqrt ( ( d e l t a ∗dt )^2 + Zrange . ^ 2 ) ) . / ( sqrt ( ( d e l t a ∗dt )^2 + . . .
Zrange . ^ 2 ) ) ) ;

%computing f_{z_{2}}:
f2Temp = zeros (1 , Mintpl ) ;
for j = 1 : Mintpl

h = f1 .∗ fExpMatrix ( j , : ) ;
f2Temp( j ) = trapz ( Zrange , h ) ;

end
f 2 = interp1 ( Srange ( i n t p l ) , f2Temp , Srange , ’ cub ic ’ ) ;

%ca l c u l a t i n g f_{y_{2} ,z_{2}}:
temp1 = (3/S0 )∗ repmat (Yrange ,M, 1 ) − 1 − repmat ( Srange ’ , 1 ,M)/S0 ;
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help5 = ( temp1 <= 0 ) ;
temp1 ( help5 ) = 10^(−50);
zTemp = log ( temp1 ) − mc;
f2Temp = ( ( alpha ∗ de l t a ∗dt/pi ) ∗ exp( d e l t a ∗dt∗sqrt ( alpha^2−beta^2) + beta∗zTemp) . . .
.∗ besselk (1 , alpha ∗sqrt ( ( d e l t a ∗dt )^2 + zTemp . ^ 2 ) ) . / ( sqrt ( ( d e l t a ∗dt )^2 + . . .
zTemp . ^ 2 ) ) ) ;
f2Temp2 = f2Temp .∗ abs ( ( 1 . / temp1 )∗ (3/ S0 ) ) ;
f = f2Temp2 .∗ repmat ( f2 ’ , 1 ,M) ;

%making sure t ha t the i n i t i a l j o i n t pdf i n t e g r a t e s up to 1 :
q = trapz ( Zrange , f , 1 ) ;
w = trapz (Yrange , q )
toc

for i = 3 :N %loop ing over a l l po in t s in time
fNew = zeros (Mintpl , Mintpl ) ;
for j = 1 : Mintpl %loop ing over z_{ i }

%in t e r p o l a t i n g f_{z_{ i −1},y_{z_{ i −1}}:
Yold = ( ( i +1)/ i )∗Yrange ( i n t p l ) − (1/ i )∗ Srange ( i n t p l ( j ) ) ;
[ YI , SI ] = meshgrid (Yold , Srange ) ;
fTemp = ( ( i +1)/ i )∗ interp2 (Yrange , Srange , f , YI , SI , ’ cub ic ’ ) ;

%i f any va lue s o f Yold are ou t s i d e the gr id , Matlab ’ s in t e rp2
%re turns NaN, so the se va lue s we s e t to zero :
help = isnan ( fTemp ) ;
fTemp(help ) = 0 ;

%ca l c u l a t i n g f_{z_{ i } ,y_{ i }} fo r a l l y_{ i } :
a = repmat ( fExpMatrix ( j , : ) ’ , 1 , Mintpl ) . ∗ fTemp ;
fNew( j , : ) = trapz ( Zrange , a , 1 ) ;

end

%in t e r p o l a t i n g to ge t va lue s at the en t i r e g r i d :
[ YI2 , SI2 ] = meshgrid (Yrange , Srange ) ;
f = interp2 ( Yrange ( i n t p l ) , Srange ( i n t p l ) , fNew , YI2 , SI2 , ’ cub ic ’ ) ;

%cor r e c t i n g any p o s s i b l e numerical inaccuracy :
help3 = ( f < 0 ) ;
f ( he lp3 ) = 0 ;

%making sure the j o i n t pdf s t i l l i n t e g r a t e s up to 1 :
x = trapz ( Zrange , f , 1 ) ;
x2 = simpson (Yrange , x )
f = f /x2 ;

end

%p l o t t i n g f_{z_{N} ,y_{N}}:
surf ( Yrange ( i n t p l ) , Srange ( i n t p l ) , f ( i n tp l , i n t p l ) )
xlabel ( ’ average ’ )
ylabel ( ’S ’ )

%ca l c u l a t i n g the p r i c e s :
V = zeros (1 ,M) ;
for i =1:M

V( i ) = trapz ( Zrange , f ( : , i ) ’ ) ;
end
pr i c eF ix edCa l l = exp(−r ∗T)∗ simpson (Yrange ,max( ( Yrange − X) , 0 ) . ∗V) ;
pr iceFixedPut = exp(−r ∗T)∗ simpson (Yrange ,max( (X − Yrange ) , 0 ) . ∗V) ;

V2Call = zeros (1 ,M) ;
V2Put = zeros (1 ,M) ;
for i =1:M
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V2Call ( i ) = simpson (Yrange ,max( ( Srange ( i ) − Yrange ) , 0 ) . ∗ f ( i , : ) ) ;
V2Put( i ) = simpson (Yrange ,max( ( Yrange − Srange ( i ) ) , 0 ) . ∗ f ( i , : ) ) ;

end

p r i c eF l o a tCa l l = exp(−r ∗T)∗ trapz ( Zrange , V2Call ) ;
pr i ceF loatPut = exp(−r ∗T)∗ trapz ( Zrange , V2Put ) ;

toc
end

function [ p r i c eF ixedCa l l , pr iceFixedPut , p r i c eF l oa tCa l l , p r i ceF loatPut ] = . . .
NIGAsianPI2 (S0 ,X, r , d , dt , T, alpha , beta , de l ta , M2)

t ic
%input :
%S0 − i n i t i a l s t ock pr i c e
%X − s t r i k e p r i c e f o r the ba r r i e r opt ion
%r − i n t e r e s t ra t e
%d − d iv idend y i e l d
%dt − number o f monitoring po in t during a year
%T − time to maturi ty ( in years )
%alpha − parameter o f the NIG d i s t r i b u t i o n
%beta − parameter o f the NIG d i s t r i b u t i o n
%de l t a − parameter o f the NIG d i s t r i b u t i o n
%M2 − number o f i n t e r v a l s in the s tock g r i d

%output :
%pr i c eF i xedCa l l − the p r i c e o f the f i x e d s t r i k e c a l l op t ion
%priceFixedPut − the p r i c e o f the f i x e d s t r i k e put opt ion
%pr i c eF l oa t i n gCa l l − the p r i c e o f the f l o a t i n g s t r i k e c a l l opt ion
%pr i ceF loa t ingPut − the p r i c e o f the f l o a t i n g s t r i k e put opt ion

N = round(T∗(1/ dt ) ) ; %Number o f days
T = N/(1/ dt ) ; %To take care o f rounding er ror s

%mean co r r e c t i n g measure :
mc = dt ∗( r−d+de l t a ∗( sqrt ( alpha^2 − (beta+1)^2) − sqrt ( alpha^2−beta ^2 ) ) ) ;

%i n i t i a l i z i n g the dynamic g r i d :
Ymax = 1.5∗ S0 ;
Ymin = 0.5∗ S0 ;
for j = 1 :N %loop ing over a l l t imes t eps

Ymax = [Ymax (2 . 4∗ j + 1)∗S0 ] ; %for s e t 2 and 1.8∗ j f o r s e t 1
Ymin = [Ymin (−0.4∗ j + 1)∗S0 ] ; %for s e t 2 and 0.2∗ j f o r s e t 1

end
Smin = 2 ;
Smax = 280 ;
M1 = 5∗M2;
dS=(Smax−Smin )/M1;
dY=(Ymax(3)−Ymin(3 ) ) /M1;
M = M1 + 1 ;

%to decrease computing time , c a l c u l a t i n g s are not made in a l l g r i d po i n t s :
i n t p l = [ 1 : 5 : f loor (3∗M/4) f loor (3∗M/4)+15:15 :M] ;
i f ( i n t p l (end) == M)

M = M;
else

i n t p l = [ i n t p l M] ;
end
Mintpl = length ( i n t p l ) ;

%de f i n in g the p o s s i b l e s t ock p r i c e s :
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Srange = Smin : dS : Smax ;
Yrange = Ymin ( 3 ) :dY:Ymax( 3 ) ;

%crea t ing two temporary vec t o r s :
S1 = repmat ( Srange , [ 1 , Mintpl ] ) ;
S2 = repmat ( Srange ( i n t p l ) , [M, 1 ] ) ;
S2 = S2 ( : ) ’ ;

%crea t ing the matrix conta in ing a l l p o s s i b l e z−va lue s :
zFu l l = log ( S2 . / S1 ) − mc;
zMatrix = reshape ( zFul l ,M, Mintpl ) ’ ;

%ca l c u l a t i n g a matrix conta in ing a l l p o s s i b l e va lue s o f f ( z − z ’ ; d t ) :
fExpMatrix = ( ( alpha ∗ de l t a ∗dt/pi ) ∗ exp( d e l t a ∗dt∗sqrt ( alpha^2−beta^2) . . .
+ beta∗ zMatrix ) . ∗ besselk (1 , alpha ∗sqrt ( ( d e l t a ∗dt )^2 + zMatrix . ^ 2 ) ) . . .
. / ( sqrt ( ( d e l t a ∗dt )^2 + zMatrix . ^ 2 ) ) ) ;

%ca l c u l a t i n g f_{z_{1}}:
Zrange = log ( Srange/S0 ) − mc;
f1 = ( ( alpha ∗ de l t a ∗dt/pi ) ∗ exp( d e l t a ∗dt∗sqrt ( alpha^2−beta^2) + beta∗Zrange ) . . .
.∗ besselk (1 , alpha ∗sqrt ( ( d e l t a ∗dt )^2 + Zrange . ^ 2 ) ) . / ( sqrt ( ( d e l t a ∗dt )^2 + . . .
Zrange . ^ 2 ) ) ) ;

%computing f_{z_{2}}:
f2Temp = zeros (1 , Mintpl ) ;
for j = 1 : Mintpl

h = f1 .∗ fExpMatrix ( j , : ) ;
f2Temp( j ) = trapz ( Zrange , h ) ;

end
f 2 = interp1 ( Srange ( i n t p l ) , f2Temp , Srange , ’ cub ic ’ ) ;

%ca l c u l a t i n g f_{y_{2} ,z_{2}}:
temp1 = (1/S0 )∗ repmat (Yrange ,M, 1 ) − 1 − repmat ( Srange ’ , 1 ,M)/S0 ;
he lp5 = ( temp1 <= 0 ) ;
temp1 ( help5 ) = 10^(−50);
zTemp = log ( temp1 ) − mc;
f2Temp = ( ( alpha ∗ de l t a ∗dt/pi ) ∗ exp( d e l t a ∗dt∗sqrt ( alpha^2−beta^2) + beta∗zTemp) . . .
.∗ besselk (1 , alpha ∗sqrt ( ( d e l t a ∗dt )^2 + zTemp . ^ 2 ) ) . / ( sqrt ( ( d e l t a ∗dt )^2 + . . .
zTemp . ^ 2 ) ) ) ;
f2Temp2 = f2Temp .∗ abs ( ( 1 . / temp1 )∗ (1/ S0 ) ) ;
f = f2Temp2 .∗ repmat ( f2 ’ , 1 ,M) ;

%making sure t ha t the i n i t i a l j o i n t pdf i n t e g r a t e s up to 1 :
q = trapz ( Zrange , f , 1 ) ;
w = trapz (Yrange , q )
toc

for i = 3 :N %loop ing over a l l po in t s in time
%changing the Y−g r i d :
dY=(Ymax( i+1)−Ymin( i +1))/M1;
YrangeOld = Yrange ;
Yrange = Ymin( i +1):dY:Ymax( i +1);
fNew = zeros (Mintpl , Mintpl ) ;
for j = 1 : Mintpl %loop ing over Z

%in t e r p o l a t i n g f_{z_{ i −1},y_{z_{ i −1}}:
Yold = Yrange ( i n t p l ) − Srange ( i n t p l ( j ) ) ;
[ YI , SI ] = meshgrid (Yold , Srange ) ;
fTemp = interp2 (YrangeOld , Srange , f , YI , SI , ’ cub ic ’ ) ;

%i f any va lue s o f Yold are ou t s i d e the gr id , Matlab ’ s in t e rp2
%re turns NaN, so the se va lue s we s e t to zero :
help = isnan ( fTemp ) ;
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fTemp(help ) = 0 ;

%ca l c u l a t i n g f_{z_{ i } ,y_{ i }} fo r a l l y_{ i } :
a = repmat ( fExpMatrix ( j , : ) ’ , 1 , Mintpl ) . ∗ fTemp ;
fNew( j , : ) = trapz ( Zrange , a , 1 ) ;

end

%in t e r p o l a t i n g to ge t va lue s at the en t i r e g r i d :
[ YI2 , SI2 ] = meshgrid (Yrange , Srange ) ;
f = interp2 ( Yrange ( i n t p l ) , Srange ( i n t p l ) , fNew , YI2 , SI2 , ’ cub ic ’ ) ;

%cor r e c t i n g any p o s s i b l e numerical inaccuracy :
help3 = ( f < 0 ) ;
f ( he lp3 ) = 0 ;

%making sure the j o i n t pdf s t i l l i n t e g r a t e s up to 1 :
x = trapz ( Zrange , f , 1 ) ;
x2 = trapz (Yrange , x )
f = f /x2 ;

end

%p l o t t i n g f_{z_{N} ,y_{N}}:
surf ( Yrange ( i n t p l ) , Srange ( i n t p l ) , f ( i n tp l , i n t p l ) )
xlabel ( ’ average ’ )
ylabel ( ’S ’ )

%ca l c u l a t i n g the p r i c e s :
V = zeros (1 ,M) ;
for i =1:M

V( i ) = trapz ( Zrange , f ( : , i ) ’ ) ;
end
pr i c eF ix edCa l l = exp(−r ∗T)∗ simpson (Yrange ,max( ( ( 1 / (N+1))∗Yrange − X) , 0 ) . ∗V) ;
pr iceFixedPut = exp(−r ∗T)∗ simpson (Yrange ,max( (X − (1/(N+1))∗Yrange ) , 0 ) . ∗V) ;

V2Call = zeros (1 ,M) ;
V2Put = zeros (1 ,M) ;
for i =1:M

V2Call ( i ) = simpson (Yrange ,max( ( Srange ( i ) − (1/(N+1))∗Yrange ) , 0 ) . ∗ f ( i , : ) ) ;
V2Put( i ) = simpson (Yrange ,max( ( ( 1 / (N+1))∗Yrange − Srange ( i ) ) , 0 ) . ∗ f ( i , : ) ) ;

end

p r i c eF l o a tCa l l = exp(−r ∗T)∗ trapz ( Zrange , V2Call ) ;
pr i ceF loatPut = exp(−r ∗T)∗ trapz ( Zrange , V2Put ) ;
toc
end

function [ p r i c e , lower ,upper ] = NIGAsianMC(S0 ,X, r , d , dt ,T, alpha , beta , . . .
de l ta , Nsim , FixedFlag , CPflag )

t ic
%input :
%S0 − i n i t i a l s t ock pr i c e
%X − s t r i k e p r i c e f o r the ba r r i e r opt ion
%r − i n t e r e s t ra t e
%d − d iv idend y i e l d
%dt − number o f monitoring po in t s during a year
%T − time to maturi ty ( in years )
%alpha − parameter o f the NIG d i s t r i b u t i o n
%beta − parameter o f the NIG d i s t r i b u t i o n
%de l t a − parameter o f the NIG d i s t r i b u t i o n
%Nsim − number o f s imu la t i ons
%FixedFlag − 1 i f f i x e d s t r i k e pr ice , 0 i f f l o a t i n g s t r i k e p r i c e
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%CPflag − ’ c ’ i f p r i c e o f c a l l opt ion i s returned , e l s e p r i c e o f put
%opt ion i s re turned

%output :
%pr i c e − the p r i c e o f the c a l l opt ion i f CPflag == ’c ’ , e l s e p r i c e o f put
%lower − lower l im i t o f the 95% conf idence i n t e r v a l
%upper − upper l im i t o f the 95% conf idence i n t e r v a l

%i n i t i a l i z i n g time gr i d :
N = round(T/dt )
T = N∗dt ;

%mean cor r e c t i n g measure :
m = r−d+de l t a ∗( sqrt ( alpha^2 − (beta + 1)^2) − sqrt ( alpha^2 − beta^2) ) ;

S = S0∗ ones (Nsim , 1 ) ; %i n i t i a l s t ock pr i c e f o r a l l s imu la t i ons
sum1 = S0∗ ones (Nsim , 1 ) ; %keeping t rack o f the growing sums

for j = 1 :N %loop ing over a l l t imes t eps
rand = nigrnd ( alpha , beta , 0 , d e l t a ∗dt , Nsim , 1 ) ; %genera te s random . . .

%NIG d i s t r i b u t e d v a r i a b l e s
S = S .∗exp(m∗dt + rand ) ; %ca l c u l a t i n g new s tock p r i c e s
sum1 = sum1 + S ; %updat ing the sums

end

%ca l c u l a t i n g the averages :
S_av = sum1/(N+1);

CP = 0 ; %binary v a r i a b l e : 1 i f c a l l , −1 i f put
i f ( CPflag == ’ c ’ )

CP = 1 ;
else

CP = −1;
end

%ca l c u l a t i n g the opt ion p r i c e s o f each s imu la t ion :
i f ( FixedFlag == 1)

pr iceVec = exp(−r ∗T)∗max(CP∗(S_av − X) , 0 ) ;
else

pr iceVec = exp(−r ∗T)∗max(CP∗(S − S_av ) , 0 ) ;
end

%ca l c u l a t i n g the outoput va lue s :
x_bar = mean( pr iceVec ) ;
s i g = std ( pr iceVec )/ sqrt (Nsim)
lower = x_bar − 1 .96∗ s i g ;
upper = x_bar + 1.96∗ s i g ;
p r i c e = x_bar ;

toc
end



Appendix B

Option Prices

Table B.1-B.4 show the option data used for the calibration in chapter 4. All tables show
the calculated prices using the implied parameters obtained by the four different error
measures, ARPEspread, ARPE, RMSE and AAE. The market data is collected from
Bloomberg on 27th of April 2009.

T Strike Bid Ask NIGARPEspread
NIGARPE NIGRMSE NIGAAE

0.07 147 69 72.75 71.07 71.06 71.13 71.12
0.07 150 66 69.75 68.12 68.11 68.18 68.17
0.07 155 61 64.75 63.21 63.19 63.27 63.26
0.07 160 56.25 60 58.32 58.3 58.39 58.38
0.07 165 51.25 55 53.46 53.44 53.54 53.53
0.07 170 46.5 50.25 48.63 48.61 48.72 48.71
0.07 175 41.5 45.25 43.84 43.82 43.95 43.93
0.07 180 36.75 40.5 39.12 39.09 39.23 39.21
0.07 185 32 35.75 34.46 34.44 34.58 34.56
0.07 190 28 31 29.9 29.88 30.02 29.99
0.07 195 23.5 26 25.47 25.45 25.59 25.55
0.07 200 19.75 21.5 21.2 21.18 21.31 21.26
0.07 205 16 17.75 17.15 17.14 17.24 17.18
0.07 210 12.25 14 13.4 13.39 13.45 13.39
0.07 215 9.5 10.5 10.03 10.04 10.04 9.99
0.07 220 6.9 7.5 7.17 7.19 7.12 7.09
0.07 225 4.7 5.9 4.91 4.93 4.81 4.81
0.07 230 2.95 4.3 3.26 3.27 3.13 3.18
0.07 235 2.05 2.45 2.13 2.14 2.01 2.08
0.07 240 1.25 1.65 1.4 1.4 1.29 1.38
0.07 245 0.7 1.1 0.93 0.93 0.85 0.93
0.15 165 52.5 56.25 54.58 54.55 54.75 54.69
0.15 175 43.5 47.25 45.44 45.41 45.65 45.58
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0.15 180 39 42.75 41.02 40.98 41.23 41.16
0.15 185 34.75 38.5 36.71 36.68 36.92 36.85
0.15 190 30.5 34.25 32.55 32.52 32.75 32.68
0.15 195 26.75 29.25 28.55 28.52 28.74 28.67
0.15 200 23 25.5 24.75 24.72 24.92 24.84
0.15 205 20 21.75 21.17 21.15 21.32 21.24
0.15 210 16.5 18.25 17.85 17.83 17.96 17.88
0.15 215 13.5 15.25 14.82 14.81 14.89 14.82
0.15 220 11 12.75 12.1 12.1 12.13 12.07
0.15 225 9 10 9.72 9.73 9.7 9.67
0.15 230 6.7 7.9 7.68 7.69 7.62 7.61
0.15 235 5.5 6 5.98 5.99 5.89 5.91
0.15 240 4.1 4.6 4.6 4.61 4.48 4.52
0.15 245 3.1 3.45 3.49 3.51 3.37 3.43
0.23 180 41 44.75 42.66 42.62 42.98 42.83
0.23 185 37 40.75 38.62 38.58 38.93 38.79
0.23 190 33 36.75 34.74 34.7 35.04 34.89
0.23 195 30 31 31.02 30.99 31.31 31.17
0.23 200 26.5 27.5 27.5 27.46 27.76 27.62
0.23 205 23 24 24.17 24.14 24.41 24.28
0.23 210 20 21 21.07 21.05 21.28 21.15
0.23 215 17 18 18.2 18.19 18.37 18.25
0.23 220 14.5 15.25 15.58 15.57 15.71 15.6
0.23 225 12 13.5 13.21 13.2 13.3 13.21
0.23 230 10 10.75 11.09 11.09 11.14 11.07
0.23 235 8.25 9 9.23 9.23 9.24 9.19
0.23 240 6.7 7.2 7.61 7.61 7.58 7.55
0.23 245 5.3 5.9 6.21 6.22 6.16 6.15

Table B.1: OBX Call Option prices

T Strike Bid Ask NIGARPEspread
NIGARPE NIGRMSE NIGAAE

0.06 30 47.7 52.5 50.14 50.14 50.14 50.14
0.06 31 46.7 51.5 49.14 49.14 49.14 49.14
0.06 32 45.7 50.5 48.14 48.15 48.14 48.14
0.06 33 44.7 49.5 47.15 47.15 47.15 47.15
0.06 34 43.7 48.5 46.15 46.15 46.15 46.15
0.06 35 42.65 47.45 45.16 45.16 45.16 45.16
0.06 36 41.65 46.45 44.16 44.16 44.16 44.16
0.06 37 40.65 45.45 43.17 43.17 43.17 43.17
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0.06 38 39.65 44.45 42.17 42.17 42.17 42.17
0.06 39 38.65 43.45 41.18 41.18 41.18 41.17
0.06 40 37.7 42.5 40.19 40.18 40.18 40.18
0.06 41 36.7 41.5 39.19 39.19 39.19 39.18
0.06 42 35.7 40.5 38.2 38.19 38.2 38.19
0.06 43 34.7 39.5 37.2 37.2 37.2 37.19
0.06 44 33.7 38.5 36.21 36.2 36.21 36.2
0.06 45 32.7 37.5 35.21 35.21 35.21 35.2
0.06 46 31.7 36.5 34.22 34.22 34.22 34.21
0.06 47 30.7 35.5 33.23 33.22 33.23 33.22
0.06 48 29.7 34.5 32.23 32.23 32.23 32.22
0.06 49 28.7 33.5 31.24 31.23 31.24 31.23
0.06 50 27.7 32.5 30.25 30.24 30.24 30.23
0.16 49 28.5 33.3 31.22 31.2 31.21 31.18
0.16 50 27.55 32.35 30.24 30.22 30.23 30.2
0.16 51 26.6 31.4 29.26 29.23 29.25 29.22
0.16 52 25.6 30.4 28.28 28.25 28.27 28.23
0.16 53 24.6 29.4 27.3 27.27 27.29 27.25
0.16 54 23.6 28.4 26.32 26.29 26.31 26.27
0.16 55 22.65 27.45 25.34 25.31 25.33 25.29
0.16 56 21.65 26.45 24.36 24.33 24.35 24.31
0.16 57 20.7 25.5 23.39 23.35 23.38 23.33
0.16 58 19.7 24.5 22.41 22.38 22.4 22.35
0.16 59 18.75 23.55 21.43 21.4 21.42 21.37
0.16 60 17.8 22.6 20.46 20.42 20.45 20.4
0.16 61 16.85 21.65 19.49 19.45 19.48 19.42
0.16 62 15.9 20.7 18.52 18.47 18.5 18.45
0.16 63 14.95 19.75 17.54 17.5 17.53 17.47
0.16 64 14 18.8 16.57 16.53 16.56 16.5
0.16 65 13.1 17.9 15.61 15.56 15.59 15.53
0.16 66 12.15 16.95 14.64 14.59 14.63 14.56
0.16 67 11.3 16.1 13.68 13.62 13.66 13.59
0.16 68 10.4 15.2 12.71 12.66 12.7 12.62
0.16 69 9.55 14.35 11.75 11.7 11.74 11.66
0.24 30 47.3 52.1 49.75 49.76 49.75 49.76
0.24 35 42.3 47.1 44.86 44.86 44.85 44.85
0.24 40 37.35 42.15 39.97 39.96 39.96 39.94
0.24 45 32.45 37.25 35.09 35.07 35.08 35.05
0.24 46 31.45 36.25 34.11 34.09 34.11 34.07
0.24 47 30.45 35.25 33.14 33.12 33.13 33.1
0.24 48 29.5 34.3 32.17 32.14 32.16 32.12
0.24 49 28.5 33.3 31.2 31.17 31.19 31.15
0.24 50 27.5 32.3 30.22 30.2 30.21 30.17
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0.24 51 26.55 31.35 29.25 29.22 29.24 29.2
0.24 52 25.55 30.35 28.28 28.25 28.27 28.22
0.24 53 24.6 29.4 27.31 27.28 27.3 27.25
0.24 54 23.6 28.4 26.35 26.31 26.34 26.28
0.24 55 22.65 27.45 25.38 25.34 25.37 25.31
0.24 56 21.7 26.5 24.41 24.37 24.4 24.34
0.24 57 20.75 25.55 23.45 23.4 23.44 23.37
0.24 58 19.8 24.6 22.49 22.44 22.47 22.4
0.24 59 18.85 23.65 21.52 21.47 21.51 21.43
0.24 60 17.9 22.7 20.56 20.51 20.55 20.47
0.24 61 17 21.8 19.6 19.54 19.59 19.5
0.24 62 16.1 20.9 18.64 18.58 18.63 18.54
0.42 30 46.85 51.65 49.35 49.37 49.35 49.37
0.42 31 45.85 50.65 48.39 48.4 48.39 48.4
0.42 32 44.85 49.65 47.42 47.44 47.42 47.43
0.42 33 43.9 48.7 46.46 46.47 46.46 46.46
0.42 34 42.9 47.7 45.49 45.5 45.49 45.49
0.42 35 41.9 46.7 44.53 44.54 44.53 44.52
0.42 36 40.9 45.7 43.57 43.57 43.56 43.55
0.42 37 39.9 44.7 42.61 42.61 42.6 42.59
0.42 38 38.95 43.75 41.64 41.64 41.64 41.62
0.42 39 37.95 42.75 40.68 40.68 40.68 40.66
0.42 40 37 41.8 39.72 39.72 39.72 39.69
0.42 41 36 40.8 38.77 38.75 38.76 38.73
0.42 42 35.05 39.85 37.81 37.79 37.8 37.77
0.42 43 34.05 38.85 36.85 36.83 36.84 36.8
0.42 44 33.1 37.9 35.89 35.87 35.88 35.84
0.42 45 32.15 36.95 34.94 34.91 34.93 34.88
0.42 46 31.15 35.95 33.98 33.96 33.97 33.92
0.42 47 30.2 35 33.03 33 33.02 32.96
0.42 48 29.25 34.05 32.08 32.04 32.07 32.01
0.42 49 28.3 33.1 31.13 31.09 31.11 31.05
0.42 50 27.35 32.15 30.18 30.13 30.16 30.09
0.68 30 46.3 51.1 48.75 48.8 48.76 48.79
0.68 31 45.3 50.1 47.81 47.85 47.81 47.84
0.68 32 44.35 49.15 46.87 46.91 46.87 46.89
0.68 33 43.35 48.15 45.93 45.96 45.93 45.95
0.68 34 42.35 47.15 44.99 45.01 44.99 45
0.68 35 41.4 46.2 44.05 44.07 44.04 44.05
0.68 36 40.45 45.25 43.11 43.13 43.11 43.11
0.68 37 39.45 44.25 42.17 42.18 42.17 42.16
0.68 38 38.5 43.3 41.23 41.24 41.23 41.22
0.68 39 37.55 42.35 40.3 40.3 40.29 40.28
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0.68 40 36.6 41.4 39.37 39.36 39.36 39.33
0.68 41 35.65 40.45 38.43 38.43 38.42 38.39
0.68 42 34.7 39.5 37.5 37.49 37.49 37.45
0.68 43 33.75 38.55 36.57 36.55 36.56 36.52
0.68 44 32.8 37.6 35.64 35.62 35.63 35.58
0.68 45 31.9 36.7 34.72 34.69 34.7 34.64
0.68 46 30.95 35.75 33.79 33.76 33.78 33.71
0.68 47 30.05 34.85 32.87 32.83 32.85 32.78
0.68 48 29.15 33.95 31.95 31.9 31.93 31.85
0.68 49 28.2 33 31.02 30.97 31.01 30.92
0.68 50 27.35 32.15 30.11 30.05 30.09 29.99
0.94 30 45.85 50.65 48.15 48.23 48.16 48.23
0.94 31 44.9 49.7 47.23 47.3 47.23 47.3
0.94 32 43.9 48.7 46.31 46.38 46.31 46.37
0.94 33 42.95 47.75 45.39 45.45 45.4 45.44
0.94 34 42 46.8 44.47 44.53 44.48 44.52
0.94 35 41.05 45.85 43.56 43.61 43.56 43.59
0.94 36 40.1 44.9 42.65 42.69 42.65 42.67
0.94 37 39.15 43.95 41.74 41.77 41.73 41.75
0.94 38 38.25 43.05 40.83 40.85 40.82 40.83
0.94 39 37.3 42.1 39.92 39.94 39.91 39.91
0.94 40 36.4 41.2 39.01 39.03 39 38.99
0.94 41 35.5 40.3 38.1 38.11 38.1 38.08
0.94 42 34.55 39.35 37.2 37.2 37.19 37.16
0.94 43 33.65 38.45 36.3 36.29 36.29 36.25
0.94 44 32.75 37.55 35.4 35.39 35.39 35.34
0.94 45 31.85 36.65 34.5 34.48 34.49 34.43
0.94 46 30.95 35.75 33.61 33.58 33.59 33.52
0.94 47 30.05 34.85 32.71 32.68 32.69 32.62
0.94 48 29.2 34 31.82 31.78 31.8 31.72
0.94 49 28.3 33.1 30.93 30.88 30.91 30.81
0.94 50 27.45 32.25 30.05 29.99 30.02 29.92
1.2 40 36.2 41 38.59 38.63 38.59 38.6
1.2 41 35.3 40.1 37.71 37.74 37.7 37.71
1.2 42 34.4 39.2 36.83 36.86 36.83 36.82
1.2 43 33.55 38.35 35.96 35.98 35.95 35.93
1.2 44 32.65 37.45 35.09 35.09 35.08 35.05
1.2 45 31.8 36.6 34.22 34.22 34.2 34.16
1.2 46 30.95 35.75 33.35 33.34 33.34 33.28
1.2 47 30.05 34.85 32.49 32.46 32.47 32.4
1.2 48 29.25 34.05 31.62 31.59 31.6 31.53
1.2 49 28.4 33.2 30.76 30.72 30.74 30.65
1.2 50 27.55 32.35 29.91 29.86 29.89 29.78



90 APPENDIX B. OPTION PRICES

1.2 51 26.75 31.55 29.06 29 29.03 28.91
1.2 52 25.9 30.7 28.21 28.14 28.18 28.05
1.2 53 25.1 29.9 27.36 27.28 27.33 27.19
1.2 54 24.35 29.15 26.52 26.42 26.48 26.33
1.2 55 23.55 28.35 25.68 25.57 25.64 25.47
1.2 56 22.75 27.55 24.84 24.73 24.8 24.62
1.2 57 22 26.8 24.01 23.89 23.97 23.77
1.2 58 21.25 26.05 23.19 23.05 23.14 22.93
1.2 59 20.5 25.3 22.36 22.21 22.32 22.09
1.2 60 21.15 23 21.55 21.39 21.5 21.25
1.7 40 35.8 40.6 37.93 38.08 37.95 38.08
1.7 41 34.95 39.75 37.12 37.25 37.13 37.24
1.7 42 34.1 38.9 36.3 36.42 36.31 36.41
1.7 43 33.3 38.1 35.49 35.59 35.5 35.58
1.7 44 32.45 37.25 34.68 34.77 34.68 34.75
1.7 45 31.65 36.45 33.87 33.95 33.88 33.93
1.7 46 30.8 35.6 33.07 33.14 33.07 33.1
1.7 47 30 34.8 32.27 32.32 32.27 32.28
1.7 48 29.2 34 31.47 31.51 31.47 31.47
1.7 49 28.45 33.25 30.68 30.71 30.67 30.65
1.7 50 27.65 32.45 29.89 29.9 29.87 29.84
1.7 51 26.9 31.7 29.1 29.1 29.09 29.04
1.7 52 26.15 30.95 28.32 28.31 28.3 28.23
1.7 53 25.35 30.15 27.54 27.51 27.52 27.43
1.7 54 24.6 29.4 26.76 26.72 26.74 26.64
1.7 55 23.9 28.7 25.99 25.94 25.96 25.84
1.7 56 23.15 27.95 25.23 25.16 25.2 25.06
1.7 57 22.45 27.25 24.46 24.38 24.43 24.27
1.7 58 23.1 25 23.71 23.61 23.67 23.5
1.7 59 22.4 24.3 22.96 22.85 22.92 22.72
1.7 60 21.75 23.65 22.21 22.09 22.17 21.95

Table B.2: DJI Call Option prices

T Strike Bid Ask NIGARPEspread
NIGARPE NIGRMSE NIGAAE

0.05 37.5 4.8 4.9 4.87 4.82 4.78 4.84
0.05 40 2.55 2.6 2.59 2.51 2.5 2.54
0.05 42.5 0.8 0.9 0.77 0.73 0.82 0.73
0.05 45 0.1 0.15 0.07 0.1 0.11 0.09
0.06 32.5 9.7 9.9 9.76 9.75 9.74 9.76
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0.06 35 7.3 7.5 7.3 7.27 7.25 7.29
0.06 37.5 5.1 5.2 4.9 4.84 4.8 4.87
0.06 40 3 3.2 2.66 2.57 2.57 2.61
0.06 42.5 1.5 1.6 0.89 0.84 0.92 0.84
0.06 45 0.55 0.6 0.11 0.15 0.17 0.14
0.06 47.5 0.1 0.2 0.01 0.02 0.01 0.02
0.32 25 17.2 17.6 17.26 17.25 17.24 17.26
0.32 27.5 14.6 15.1 14.79 14.76 14.75 14.78
0.32 30 12.3 12.5 12.35 12.3 12.27 12.33
0.32 32.5 9.9 10.1 9.97 9.88 9.84 9.93
0.32 35 7.6 7.8 7.72 7.57 7.53 7.65
0.32 37.5 5.6 5.7 5.64 5.46 5.43 5.55
0.32 40 3.8 3.9 3.84 3.64 3.65 3.73
0.32 42.5 2.35 2.45 2.38 2.21 2.26 2.28
0.32 45 1.3 1.35 1.33 1.21 1.29 1.25
0.32 47.5 0.6 0.7 0.65 0.6 0.67 0.62
0.32 50 0.25 0.3 0.27 0.27 0.31 0.28
0.32 52.5 0.05 0.15 0.1 0.12 0.13 0.11
0.32 55 0.05 0.1 0.03 0.05 0.05 0.04
0.58 25 17.2 17.4 17.32 17.29 17.28 17.31
0.58 27.5 14.8 15 14.9 14.84 14.81 14.87
0.58 30 12.4 12.6 12.55 12.44 12.4 12.5
0.58 32.5 10.2 10.4 10.3 10.14 10.09 10.22
0.58 35 8.2 8.3 8.21 7.99 7.95 8.1
0.58 37.5 6.3 6.4 6.32 6.06 6.04 6.19
0.58 40 4.7 4.8 4.68 4.41 4.42 4.54
0.58 42.5 3.3 3.5 3.32 3.07 3.11 3.18
0.58 45 2.2 2.35 2.24 2.04 2.1 2.13
0.58 47.5 1.4 1.5 1.44 1.3 1.36 1.36
0.58 50 0.8 0.9 0.88 0.79 0.85 0.82
0.58 52.5 0.45 0.55 0.51 0.46 0.51 0.48
0.58 55 0.2 0.3 0.28 0.26 0.3 0.27
0.74 20 22.2 22.6 22.31 22.3 22.29 22.3
0.74 22.5 19.7 20.1 19.84 19.82 19.81 19.83
0.74 25 17.2 17.6 17.4 17.35 17.33 17.38
0.74 27.5 14.8 15.2 15.02 14.93 14.9 14.98
0.74 30 12.5 12.9 12.72 12.58 12.54 12.66
0.74 20 22.2 22.6 22.31 22.3 22.29 22.3
0.74 22.5 19.7 20.1 19.84 19.82 19.81 19.83
0.74 25 17.2 17.6 17.4 17.35 17.33 17.38
0.74 27.5 14.8 15.2 15.02 14.93 14.9 14.98
0.74 30 12.5 12.9 12.72 12.58 12.54 12.66
0.74 32.5 10.2 10.7 10.54 10.35 10.3 10.45
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0.74 35 8.2 8.6 8.53 8.28 8.24 8.41
0.74 37.5 6.5 6.9 6.72 6.43 6.41 6.57
0.74 40 5 5.3 5.14 4.84 4.85 4.98
0.74 42.5 3.8 3.9 3.81 3.52 3.56 3.66
0.74 45 2.7 2.85 2.73 2.48 2.54 2.6
0.74 47.5 1.8 1.95 1.89 1.7 1.76 1.78
0.74 50 1.15 1.3 1.27 1.12 1.19 1.18
0.74 52.5 0.7 0.85 0.82 0.73 0.79 0.76
0.74 55 0.4 0.5 0.51 0.46 0.51 0.48
0.74 60 0.1 0.2 0.18 0.17 0.2 0.18
1.74 17.5 24.5 25.3 25.26 25.23 25.22 25.24
1.74 20 22 22.9 22.89 22.83 22.82 22.86
1.74 22.5 19.5 20 20.58 20.48 20.45 20.53
1.74 25 17.2 17.7 18.34 18.19 18.15 18.27
1.74 27.5 15 15.6 16.2 15.99 15.94 16.1
1.74 30 13 13.8 14.18 13.9 13.86 14.05
1.74 32.5 11.1 11.7 12.3 11.97 11.92 12.14
1.74 35 9.5 10.1 10.58 10.19 10.16 10.39
1.74 37.5 8 8.4 9.01 8.59 8.57 8.81
1.74 40 6.9 7.3 7.61 7.17 7.17 7.4
1.74 42.5 5.8 6.2 6.38 5.94 5.95 6.16
1.74 45 4.5 5.1 5.3 4.87 4.9 5.08
1.74 47.5 3.6 4.2 4.37 3.96 4 4.16
1.74 50 3 3.4 3.58 3.2 3.25 3.38
1.74 55 1.75 2.1 2.35 2.05 2.11 2.19
1.74 60 1.1 1.3 1.5 1.28 1.35 1.38
1.74 65 0.5 0.7 0.94 0.79 0.84 0.86
1.74 70 0.3 0.55 0.58 0.48 0.52 0.52

Table B.3: KO Call Option prices

T Strike Bid Ask NIGARPEspread
NIGARPE NIGRMSE NIGAAE

0.15 80 39 42 40.4 40.92 40.47 40.42
0.15 85 34.25 36.75 35.49 36.18 35.57 35.51
0.15 90 29.5 31.25 30.65 31.51 30.75 30.65
0.15 95 24.75 26.5 25.91 26.92 26.02 25.9
0.15 100 20.25 22 21.32 22.44 21.45 21.3
0.15 105 15.75 17.25 16.96 18.11 17.1 16.94
0.15 110 11.75 13 12.94 14 13.05 12.91
0.15 115 8.25 9.5 9.4 10.22 9.4 9.35
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0.15 120 5.5 6.7 6.46 6.92 6.27 6.38
0.15 125 3.5 4.4 4.21 4.34 3.75 4.08
0.15 130 2.15 3.1 2.62 2.62 1.92 2.44
0.15 140 0.75 1.15 0.95 1 0.22 0.75
0.15 150 0.15 0.65 0.34 0.42 0 0.21
0.15 160 0.01 0.5 0.12 0.18 0 0.06
0.15 170 0.01 0.45 0.04 0.08 0 0.02
0.15 180 0.01 0.5 0.01 0.03 0 0
0.41 80 39 42 40.11 41.09 41.22 40.5
0.41 85 34.5 37 35.54 36.81 36.61 35.89
0.41 90 30.25 32.75 31.13 32.65 32.15 31.45
0.41 95 25.75 27.5 26.93 28.65 27.88 27.2
0.41 100 21.75 23.5 22.98 24.82 23.84 23.21
0.41 105 18.25 19.75 19.32 21.2 20.07 19.51
0.41 110 14.75 16.5 15.99 17.82 16.6 16.13
0.41 115 12.25 13.5 13.03 14.71 13.47 13.12
0.41 120 9.75 10.75 10.44 11.9 10.7 10.48
0.41 125 7.7 8.75 8.23 9.44 8.29 8.22
0.41 130 6 6.9 6.37 7.32 6.26 6.33
0.41 140 3.3 4.3 3.64 4.15 3.25 3.54
0.41 150 2 2.5 1.93 2.19 1.46 1.83
0.41 160 0.75 1.4 0.95 1.08 0.54 0.86
0.41 170 0.3 0.8 0.41 0.47 0.16 0.35
0.41 180 0.01 0.55 0.14 0.17 0.03 0.12
0.67 95 27 31 26.49 28.09 28.51 27
0.67 105 20.25 23 19.76 21.63 21.44 20.14
0.67 110 17.75 20 16.81 18.7 18.3 17.13
0.67 115 15 17.25 14.15 15.99 15.44 14.41
0.67 120 12.5 14.75 11.79 13.52 12.88 11.99
0.67 125 10.75 12.75 9.7 11.28 10.59 9.86
0.67 130 9 10.5 7.89 9.29 8.59 8
0.67 140 5.8 7.3 5.02 6.03 5.39 5.06
0.67 150 3.8 5.4 3 3.64 3.14 3
0.67 160 2.1 3.65 1.64 2.01 1.66 1.63
0.67 170 1.3 2.2 0.79 0.98 0.76 0.77
0.67 180 0.7 1.45 0.3 0.38 0.27 0.29
0.67 190 0.3 1.05 0.07 0.08 0.05 0.06
0.67 200 0.01 0.75 0 0 0 0

Table B.4: STL Call Option prices
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