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Abstract

In this thesis we study market risk in turbulent markets over different risk horizons. We
construct portfolios which represent possible investments for a life assurance fund. The
portfolios consist of equities, fixed income instruments, cash positions and interest rate
derivatives. The most commonly used metrics for measuring market risk are Value-at-
Risk (VaR) and Expected Shortfall (ES), and they will be central. For the completeness
of the thesis, we introduce necessary theory from quantitative finance related to asset
price dynamics and security pricing. Interest rate related instruments are handled by
the LIBOR Market Model (LMM), while equity prices are modeled as geometric Brow-
nian motions. By combinding the two, we implement a risk model and make daily and
quarterly market risk estimates between 2000-2008 for the portfolios. We choose some
central events from the last quarter of 2008, a critical phase of the ongoing financial
crisis, and analyze how the portfolios and the corresponding risk estimates are affected.
Comparison of the portfolio losses against the risk estimates allows us to evaluate the
reliability of the broadly adopted model.

Our findings show that large losses occure more frequently than expected from the
model for all market conditions, but in particular during the turbulent 2008. The high
frequency is most evident from violations of risk estimates far into the tails of the loss
distribution. This is a result of our assumption of normal distributed logreturns for as-
sets, which provides a better fit closer to the center of the loss distribution. For a daily
risk horizon we find strong tendencies of clustering between extreme losses, especially
around October 2008.

In the light of the extreme volatility under the current market conditions, combined
with the weaknesses of our model assumptions, we expected the model to be flawed.
However, it performed better than expected, and it is clear that in many cases it gives
valuable information about the level of market risk for the tested portfolios, even during
the financial crisis of 2008. To exploit this information it is important to be aware of
the weaknesses of the model.
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Chapter 1

Introduction

This thesis is a study of market risk over different time horizons during different market
regimes. We focus on the volatile markets observed recently. As there have been extreme
price movements in the stock market followed by frequent interest rate cuts, we analyze
to what extend these observations are extreme according to common market risk models.

1.1 Background

Whether you are a major bank with billions of dollars worth of assets, a professional
investor, or a pensioner with only a few hundreds, you would like to have a perception
of how large losses may occur as a result of market deviations. For risk managers, as-
set managers, or anyone exposed to market risk, it is preferable to have standardized
techniques to measure risk quantitatively. After the market crash in the 90’s it has
been developed metrics such as Value at Risk (VaR) and Expected Shortfall (ES). VaR
has become the benchmark for both measuring risk, and for controlling and manage
risk actively. Increased pressure from regulators such as Basel Committee on Banking
Supervision1, globalization of the market which has introduced more sources of risk,
as well as technological advances improving computational speed have all been factors
contributing to the development and focus on quantitative risk management. There is
however a fundamental problem with the models. According to the paper written by
Y. Yamai and T. Yoshiba, Bank of Japan [21] available at BIS2, it is a well known fact
that VaR models do not work under market stress. They are usually based on normal
asset returns and do not work under extreme price fluctuations. Despite this, we will
not modify well established models to try to cope with the problems of fat tails and
asset returns. This thesis is merely a discussion of the already existing models seen in
light of the new extreme market data. We implement a VaR and ES model and analyze

1The Basel Committee on Banking Supervision provides a forum for regular cooperation on banking
supervisory matters. Its objective is to enhance understanding of key supervisory issues and improve
the quality of banking supervision worldwide.

2The Bank for International Settlements (BIS) is an international organisation which fosters interna-
tional monetary and financial cooperation and serves as a bank for central banks.
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2 CHAPTER 1. INTRODUCTION

its performance during the latest decade, focusing on the current financial crisis.

The global financial crisis of 2008-2009 is an ongoing major crisis. It became promi-
nently visible in September 2008 with the failure and merger of several large United
States-based financial firms. The underlying causes leading to the crisis had been re-
ported for many months before September 2008. Several financial papers have written
comments about the financial stability of leading U.S. and European investment banks,
insurance firms and mortgage banks consequent to the subprime mortgage crisis. Begin-
ning with failures of large financial institutions in the United States, it rapidly evolved
into a global credit crisis, deflation and sharp reductions in shipping, resulting in a num-
ber of European bank failures. There has been large reductions in the market value of
equities, commodities and risky bonds world wide. The crisis led to a liquidity prob-
lem and the de-leveraging of financial institutions especially in the United States and
Europe, which further accelerated the liquidity crisis, and a decrease in international
shipping and commerce. World political leaders, national ministers of finance, and cen-
tral bank directors have coordinated their efforts to reduce fear, but the crisis is ongoing
and continues to change. In October 2008 it evolved into a currency crisis with investors
transferring vast capital resources into stronger currencies such as the yen, the dollar and
the Swiss franc. This forced many emergent economies to seek aid from the International
Monetary Fund (IMF) [6].

1.2 Thesis Outline

To evaluate the accuracy of market risk models on empirical market data we need to
define some portfolios to work with. We are concerned with both interest rate risk and
risk from exposure to the stock market. Since the latter tend to dominate between the
two, we will consider portfolios with little or nothing invested in the stock market for
analysing interest rate risk. In addition, we want to analyze portfolios which might rep-
resent real market participants or professional investors. With this in mind, an obvious
candidate is a life assurance fund. The largest investments will be in fixed income instru-
ments. These investments are typical since the funds, due to regulations, are required
to guarantee a certain rate of return to its investors. Smaller amounts will be placed in
equities, cash positions and interest rate derivatives.

In chapter 2, we introduce the theory from financial mathematics describing models
for asset dynamics. In chapter 3, we present different approaches to quantify market
risk and clarify our choice of approach. In chapter 4, we describe some of the central
events during the second half of 2008, and discuss broadely adopted model assumptions
in the light of the extreme price fluctuations. In chapter 5, we describe the data material
and portfolio structures. In chapter 6, the most relevant details from the implementa-
tion are described. In chapter 7, we presents our results and in chapter 8, we present a
conclusion and possible extensions of this thesis.



Chapter 2

Equity and Interest Rate
Dynamics

2.1 Asset Classes and Price Dynamics

Asset classes are groups of securities which exhibit similar characteristics and are sub-
ject to the same laws and regulations. We will focus on the three main classes, namely
equities, fixed income and money market instruments. The two last classes are closely
related and we model their value based on the evolution of interest rates.

It should be noted that in addition to the three main asset classes, some investment
professionals would add real estate and commodities, and possibly other types of invest-
ments. Mathematically, these classes are more challenging to model, and the fields are
less developed compared to equity and interest rate modelling.

2.1.1 Equity

Equity captures shares or any other securities representing ownership interest in compa-
nies. The main objective for companies is typically seen as maximizing the wealth of its
share-holders. This is done through a balance between paying dividends to share-holders
and reinvestment to create future dividend payments or capital gain. The share-price is
based on investors expectations of the future cash flow for the companies which generate
dividends and capital gain for the share holders. Share prices and indices are frequently
quoted in the media. The latter is often used as a benchmark for portfolios since they
reflect how the general stock market is performing. Since they are calculated based on a
set of shares they should have similar nature as individual stocks when it comes to price
evolution.

As emphasized in Wilmott (1995) [14] we will not try to predict tomorrows stock prices.
Even though we have a time series of historical prices we cannot use it to forecast future
prices, but this does not mean that the history tells us nothing. Looking at the history

3



4 CHAPTER 2. EQUITY AND INTEREST RATE DYNAMICS

we can get information of the likely range or even distribution of future prices. It is
common to argue that the stock prices must move randomly because of the efficient
market hypothesis. The hypothesis says two tings [14]

• The past history is fully reflected in the present price, which does not hold any
further information about an asset.

• Markets respond immediately to any new information about an asset.

This means that the evolution of asset prices is based on the stream of new information.
The efficient market hypothesis suggest the prices to follow a Markov process. We denote
the asset price at time t as S. Over a small time interval dt the asset price have changed
to S + dS. We can model the return of the asset dS/S by dividing it into two parts.
Analogue to the risk-free return obtained from having money in the bank we express the
deterministic contribution to the return of the asset as

µdt,

where µ is called the drift of the asset and corresponds to the risk-free rate r if investing
in a bank account. Investing in stocks or portfolios of stocks need not give a positive
return. This is captured by a random term

σdW,

where dW ∼ N(0, dt). σ is called the volatility and measures the standard deviation of
the returns. Combining the two terms gives

dS

S
= µdt+ σdW. (2.1)

By letting dt get infinitesimally small, the dW term becomes Brownian motion and we
have a stochastic differential equation. This is a common mathematical representation
for the price evolution of assets related to share prices.

2.1.2 Interest Rates

Interest rates can be viewed as the price of borrowing or lending money. Since a lender
lose the possibility of investing or spending money he receives interest as compensation.
If this was not the case, lenders would not be willing to lend money. Interest rates are
partly determined by the government and the market. In order to control the level of
inflation the central banks set interest rates. An example is the U.S. Fed Funds rate. It
is the amount the U.S. government charge other banks to borrow money. It affects the
entire supply of money.

Swap rates are the borrowing rates between financial institutions with solid credit rat-
ings. Swap rates are calculated using the fixed rate leg of interest rate swaps1. Swap

1See chapter 2.4.1 for an explanation of interest rate swaps.
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rates form the basis of the swap curve (also known as LIBOR curve). In most emerging
markets with underdeveloped government bond markets, the swap curve is more com-
plete than the treasury yield curve, and is thus used as the benchmark curve. In this
thesis we will use both the yield on government bonds and the swap rates. Due to the
credit crisis the two rates behave more differently than earlier and will thus be treated
separately.

There are some fundamental differences between the behavior of equities and inter-
est rates. Mathematically, it is easier to model the evolution of equities. We list some
reasons described in Hull (2000) [8].

• Interest rates have term structure. There are many interest rates quoted every day
corresponding to the length of their contract (time to maturity).

• The behavior of an individual interest rate is more complicated than that of a
stock price. For instance, interest rates cannot grow unbounded and they are
mean reverting, i.e. large interest rates tend to move towards a historical mean
and similar for small rates.

• The volatilities for the rates corresponding to the different maturities are different.
Short-term rates typically have greater volatility than long-term rates. In addition
the different rates are strongly correlated.

2.2 Derivatives and Hedging

2.2.1 Derivatives

A derivative is a financial instrument whose value is derived from one or more variables,
known as the underlying. It can be described as a side bet on the value of the underlying.
The underlying can be everything from asset prices to weather conditions. In this study
we restrict ourselves to derivatives on interest rates. As there are different types of
assets, there are numerous forms of contracts. They are classified as forwards/futures,
options and swaps. The forward contract is an agreement between to parties. At a set
date in the future, the holder will receive a unit of the underlying asset for paying the
delivery price, or the forward price. The forward price is determined so that the value of
the contract is initially equal to zero. The contract is an obligation for both parts and
there is counter party risk associated with the agreement. That is, there is a risk that
one of the parties will not be able to pay due to liquidity problems. To avoid this risk,
futures were invented. They can be thought of as a set of short term forwards, which
yield the same payoff in the end. They are exchange-traded and often liquid contracts.
An option is a contract written by a seller that gives the buyer the right, but not the
obligation, to buy (in the case of a call option) or to sell (in the case of a put option)
a stated number of units of a particular security at a specified time at a specified price.
In return for granting the option, the seller collects a payment from the buyer. The
payment is known as the option price. The position of the seller is known as ”going
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short” while the buyer ”goes long”. A swap is an agreement between two parties to
exchange, or swap, future cash flows.

2.2.2 Hedging

Hedging is the process of reducing the financial risk that either arise in the course of
business operations or investments. Hedging is and important aid in the financial market.
One common form of hedging is insurance where, by paying a fixed amount, you can
protect yourself against certain specified losses. These losses might be due to fire, theft,
or even adverse price movements. Hedging against potential losses from investments can
be done by derivatives. Since the the value of the derivative depend on the underlying, a
position in both might offset the net risk. Derivatives might also be used to the opposite
of hedging, i.e. increase a portfolios exposure against market fluctuations. If an investor
posseses a particular market view, he or she might use derivatives to profit from price
movements. But the major use of financial derivatives, by far, is for hedging and not
speculation.

2.3 Interest Rate Modelling

A rich theory of interest rates is explored in this section. It allows us to connect a whole
family of interest rates, one for each maturity, and provides a clearer understanding of
the interest rate market. Interest rates are closely related to bonds and their yield. A
bonds yield is the interest rate implied by the payment structure. Specifically, it is the
internal rate of return (IRR) of investing in the bond. Thus, the price of government
bonds indirectly reflect the market’s belief of future risk free interest rates. By plotting
the IRRs against the maturity dates of the bonds we get the yield curve Y (t;T ). In
addition, we introduce the forward rate curve F (t;T ). The forward rate reflects the
market’s belief of the future instantaneous rate at T today at t. The zero-coupon bond
price Z(t;T ) at time t for receiving 1 unit of a currency at time T is given by

Z(t;T ) = e−
R T

t F (t,s)ds,

or
F (t;T ) = −∂ logZ(t;T )

∂T
.

This representation of the interest rate relies on bond prices being differentiable with
respect to the maturity date. Consider the value of zero-coupon bonds Z(t;T ) taken
from real data. Define Y (t;T ) by

Y (t;T ) = − log(Z(t : T ))
T − t

.

A more precise definition of the yield curve is the plot of Y (t;T ) against (T − t).

The curve is used to predict changes in the economy and future growth. There are
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three main types of yield curve shapes; normal, inverted and flat (humped). A normal
yield curve is one where longer-term bonds have higher yield than shorter-term bonds.
Investors should be given a larger compensation to tie up money for a long time period,
however this is not always the case. If the short term rate is high and expected to fall
the curve is inverted. It has higher yield on shorter term bonds, and can be a sign of
an upcoming recession. The flat curve is one where the shorter and longer term yields
are close to each other. In Figure 2.1, the yield on US government bonds for 3, 5 and
10 years are plotted. As we can see, the 10 year yield is less volatile than the shorter
ones. This yield is larger than the shorter most of the time (normal shape). There are
two periods where the three rates are fairly similar (flat curve) or even that the short
rates are higher (inverted). These periods are around year 2000 and 2007. As we know
today, both were followed by recessions.
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Figure 2.1: Yield on US government bonds.

2.3.1 LIBOR Market Model

The LIBOR Market Model (LMM) describe the arbitrage-free dynamics of the term
structure of interest rates through the evolution of forward rates. The model is the
discrete counterpart to the Heat-Jarrow-Mortan (HJM) model, but LMM is based on
simple rather than continuously compounded forward rates. This shift has far-reaching
practical and theoretical implications since most market interest rates are based on sim-
ple compounding over intervals. The model has gained rapid acceptance in the financial
industry. An important benchmark in the money market and the standard for the model
is the London Interbank Offered Rate (LIBOR). This is the rate at which banks can bor-
row funds, in marketable size, from other banks in the London interbank market. It is
also the rate at which the important largest commercial borrowers are able to borrow
money. Typically, a multinational corporation with a very good credit rating may be
able to borrow money for one year at LIBOR plus four or five basis points (1 bp =
0.01%). The LIBOR is fixed on a daily basis by the British Bankers’ Association. The
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LIBOR is calculated by a weighted average of the world’s most credit worthy banks’
interbank deposit rates for larger loans with maturities between overnight and one full
year. Rates longer than a year are usually found from the liquid swap market.

We denote the forward LIBOR rate L(0, T ) as the rate set at time 0 for the interval
[T, T + δ]. If we enter a contract at time 0 to borrow 1 at time T and repay it with
interest at time T + δ, the interest due will be δL(0, T ). The identity between forward
LIBOR rates and bond prices is given by

L(0, T ) =
B(0, T )−B(0, T + δ)

δB(0, T + δ)
. (2.2)

It should be noted that equation (2.2) may not hold if the bonds on the one side and
the forward rates on the other reflects different levels of credit-worthiness.

Many derivatives tied to LIBOR and swap rates are sensitive only to a finite set of
maturities, and it is not necessary to introduce a continuum of maturity dates to price
and hedge these securities. We consider a class of models in which a finite set of matu-
rities

0 = T0 < T1 < · · · < TM < TM+1

are fixed in advance. Let

δi = Ti+1 − Ti, i = 0, ...,M

denote the length of the intervals between tenor dates. Furthermore, let Bn(t) denote
the price at time t of a bond maturing at Tn, and write Ln(t) for the forward rate as of
time t for the accrual period [Tn, Tn+1]. Thus, we have

Ln(t) =
Bn(t)−Bn+1(t)

δnBn+1(t)
, 0 ≤ t ≤ Tn, n = 0, 1, ...,M. (2.3)

This relation between bond prices and forward rates can be inverted to produce

Bn(Ti) =
n−1∏
j=i

1
1 + δjLj(Ti)

, n = i+ 1, ...,M + 1.

If we want to find the price Bn(t) for some n > i+ 1 the factor

n−1∏
j=i+1

1
1 + δjLj(t)

discounts the bond’s payment at Tn back to time Ti+1. But in addition we need a
discount factor from Ti+1 to t. We introduce a function η : [0, TM+1) → {1, ...,M + 1}
by taking η(t) to be the integer satisfying

Tη(t)−1 ≤ t < Tη(t),
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thus η(t) gives the next tenor date at time t. Now, we can express the bond prices at
times between tenor dates as

Bn(t) = Bη(t)(t)
n−1∏
j=η(t)

1
1 + δjLj(t)

.

Spot Measure

The evolution of the forward LIBOR rates can be described by a system of SDEs of the
form

dLn(t)
Ln(t)

= µn(t)dt+ σn(t)TdW (t), 0 ≤ t ≤ Tn, n = 1, ...,M, (2.4)

where dW is a d-dimensional standard Brownian motion. In the HJM setting, the
numeraire associated with the risk neutral measure is

β(t) = exp
(∫ t

0
r(u)du

)
.

The simply compounded counter party of β(t) is

B∗(t) = Bη(t)(t)
η(t)−1∏
j=0

[1 + δjLj(Tj)].

The bond price divided by this numeraire is called the deflated bond price and is given
by

Dn(t) =
Bn(t)
B∗(t)

=

η(t)−1∏
j=0

1
1 + δjLj(Tj)

 n−1∏
j=η(t)

1
1 + δjLj(t)

.

The Bη(t)(t) term is canceled out and Dn(t) is expressed by the LIBOR rates only. The
deflated bond prices should be positive martingales which imposes restrictions on the
dynamics in equation (2.4). The drift of the forward LIBOR rates must be

µn(t) =
n∑

j=η(t)

δjLj(t)σTnσj(t)
1 + δjLj(t)

in order for this to be the case. A sketch of a proof is given in Glassermann [7].

Forward measure

The LIBOR market model may alternatively be formulated under the forward measure.
That is, the numeraire asset is replaced with the bond BM+1. The new deflated bond
price is given by

Dn(t) =
Bn(t)

BM+1(t)
=

M∏
j=n+1

(1 + δjLj(t)).
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Again the factor Bη(t)(t) has been canceled out. This causes the arbitrage-free dynamics
of the forward LIBOR rates to have drift

µn(t) = −
M∑

j=n+1

δjLj(t)σn(t)Tσj(t)
1 + δjLj(t)

,

as shown in Glassermann (2000) [7]. The system of SDEs can now be written as

dLn(t)
Ln(t)

= −
M∑

j=n+1

δjLj(t)σn(t)Tσj(t)
1 + δjLj(t)

dt+ σn(t)TdW (t), 0 ≤ t ≤ Tn, n = 1, ...,M.

(2.5)

2.4 Interest Rate Instruments

2.4.1 Swaps, Caps and Floors

A swap is an agreement between two parties to exchange, or swap, future cash flows. For
an interest rate swap, each party agrees to pay either a fixed or floating rate multiplied
by a notional principal amount over a certain time period. The most common agreement
is where one party pays a fixed rate and receives floating rates. The swap rate is the
fixed rate which makes the initial value of the contract equal to zero. Thus, the interest
rate swap is initially an agreement with no upfront payment. Interest rate swaps can
be used by hedgers to manage their risk against changes in rates or by speculators who
possess a particular market view. They are very popular and highly liquid instruments.
The swap which pays fixed and receives floating rates is called a payer swap and its
counter party is called a receiver swap.

An interest rate cap is a derivative in which the buyer receives payments at the end
of each period if the interest rate exceeds the agreed strike price. The interest rate cap
can be viewed as a series of European call options or caplets which exist for each period
during the agreement. An investor which is obligated to pay the floating rate may pur-
chase the cap so that the net payment each period will not exceed the strike. Similarly,
an interest rate floor is a series of European put options or floorlets on a specified ref-
erence rate. The parity between, swaps, caps and floors on the same rate with the same
strike is given by

Swap = Cap− Floor
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2.4.2 Bonds

Bonds represent deterministic cash flows, meaning that the coupons and the face value
are known in advance. However, the price for two bonds with identical payment struc-
ture may differ. This is due to the creditworthiness of the bond issuer. For government
bonds, the default risk is usually considered to be zero, but for bonds issued by lever-
aged companies the default risk can not be neglected. While it is very rare that a state
defaults (even though this happened in Russia in the late 90’s), exchange traded firms
with a higher leverage such as commercial banks and other financial institutions, have
over and over again showed their sensitivity to sudden market collapses, and are treated
thereby. When companies face problems with their liquidity they might not be able to
meet their obligations to the bond holders. For the market to have a perception of the
economic robustness of the companies, they are rated by independent credit rating agen-
cies (such as Fitch, Moody’s, or Standard & Poors). Risky bonds (speculative bonds)
trade at lower prices than safe (investment-grade bonds), which means that investors
demand higher yield for higher risk.

Many pension funds and other investors (banks, insurance companies), however, are
prohibited in their by-laws from investing in bonds which have ratings below a partic-
ular level. As a result, the lower-rated securities have a different investor base than
investment-grade bonds. The value of speculative bonds is affected to a higher degree
than investment grade bonds by the possibility of default. For example, in a recession
interest rates may drop, and the drop in interest rates tends to increase the value of
investment grade bonds. However, a recession tends to increase the possibility of default
in speculative-grade bonds.

To price a bond, the creditworthiness of the issuer must be reflected in the discount
rate for its cash flow. Therefore, if we want to model the evolution of bond prices, we
need to calibrate the Market Model2 to data reflecting the corresponding creditworthi-
ness. That is, for government bonds we use their historical yield, while for money market
instruments we use LIBOR rates.

2We write Market Model since the model introduced as LMM can be used on other rates than the
LIBOR.
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Chapter 3

Market Risk

Generally, financial risk is classified into the broad categories; market risk, credit risk,
liquidity risk, operational risk and legal risk. There are strong dependencies between
the categories. E.g. for speculative bonds the credit risk is reflected in the prices. Since
market risk is concerned with price fluctuation it will be affected by the change in credit
risk. We focus on market risk.

3.1 Forms of Market Risk

Market risk arises from the movements in market prices (volatility). Market risk can
take two forms, absolute risk measured in dollar terms and relative risk measured rel-
ative to a benchmark index. While the former focuses on the volatility of the total
return, the latter measures risk in terms of deviation from the index. The latter is
typical of interest for funds which are benchmarked against a certain index, such as
The Norwegian Government Pension Fund. For our purposes it is natural to evaluate
the volatility of the total return since we implement fictitious portfolios. Market risk is
also divided into directional and non directional risk. Directional risk involve exposure
to the direction of movements in financial variables. These exposures are measured by
linear approximations such as beta for stocks and delta for options. Non directional risk
then involves the remaining risk which consist of nonlinear exposures and exposures to
hedged positions or to volatilities. An example is quadratic exposure when dealing with
options which is measured by gamma. Market risk is controlled by limits on notionals,
maximum exposures, VaR limits and supervision by risk managers.

13
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3.2 Risk Measures

There are four different approaches to measuring risk according to McNeil, Frey and Em-
brechts (2005) [1]. They are listed as the notional amount approach, factor-sensitivity
measures, risk measures based on loss distributions and risk measures based on scenarios.

The simplest of the four is the notional amount approach. This approach esti-
mates risk by a weighted sum of the notional values, where the weights assigned to the
underlying securities reflect how risky they are. Its advantage is the simplicity, but there
are several disadvantages. Netting effects from positions canceling each other are ignored
as well as diversification effects of the portfolio. Also, there are problems in assigning
weights to derivatives since their value can differ widely from their notional amount.

Factor sensitivity measures give the change in the portfolio value due to a pre-
determined change in one of the underlying factors. The ”Greeks” from option pricing
are examples of this. Factor sensitivity measures give information about how robust the
value of the portfolio is with respect to the underlying variables, but it does not give the
overall riskiness of the position.

Risk measures based on loss distributions are today the most used methods. They
estimate the loss distribution corresponding to a predetermined time horizon. Two cen-
tral approaches are VaR and ES. Using the loss distribution is justified since the worrying
part of risk is possible losses and not so much the possible profits. It also overcomes the
problems of the two former methods since both netting effects and diversification are
captured, as well as it gives a quantification of the overall risk for the portfolio. Last, it
does not lay restrictions on the shape of the portfolio distributions.

Scenario based risk measures are concerned with future scenarios with insulated
or simultaneous change in the risk factors. The worst case scenario can be measured
as the maximum loss under all tested scenarios. If appropriate, the most extreme ones
can be weighted down. Scenario based risk measures are widely used during turbulent
markets. We will, however, focus on risk measures based on loss distributions.

3.2.1 The Loss Distribution

Consider a portfolio with value V (s) at time s. It may consist of bonds, collections
of equities, interest rate derivatives or more general the overall position of a financial
institution. The loss of the portfolio over a period ∆t is denoted by

L[s,s+∆t] = −(V (s+ ∆t)− V (s)). (3.1)

It is an estimated probability density distribution for the portfolio value at time ∆t
into the future at time s. The most critical part is the probability of large losses and
hence the upper tail of the loss distribution. The concept makes sense on all levels of
aggregation from a portfolio consisting of a single instrument to the overall position of



3.3. VALUE-AT-RISK (VAR) 15

a financial institution, and can be compared across different portfolios.

An important accounting detail that will affect the results is whether the fund man-
ager have decided to keep the securities until they expire or not. We assume the latter
and thus need to make a mark-to-market1 valuation of the portfolio. Mark-to-market or
fair value accounting refers to the accounting standards of assigning a value to a position
held in a financial instrument based on the current fair market price for the instrument
or similar instruments. It is the benchmark for the risk metrics we will consider.

3.3 Value-at-Risk (VaR)

Let FL(l) denote the cumulative probability function corresponding to the loss distribu-
tion of a portfolio, i.e. FL(l) = P (L < l). Given some confidence level α ∈ (0, 1), the
VaR of a portfolio is given by the smallest number l so that the probability of loss L
exceeding l is no larger than (1− α). Formally

V aRα = inf{l ∈ R : P (L > l) ≤ 1− α} = inf{l ∈ R : FL(l) ≥ α}. (3.2)

VaR is thus a quantile of the loss distribution corresponding to a certain confidence
level. The time horizon of interest may be one day for trading activities and months or
years for portfolio management. It is supposed to be the timescale associated with the
orderly liquidation of the portfolio, meaning the sale of assets at a sufficiently low rate
for the sale to have little impact on the market. The VaR estimate is thus an estimate
of loss that can be realized, not just a paper loss. For a small investor investing in liquid
assets, the liquidation horizon may be much shorter than months, but longer horizon
VaR can be of interest for other reasons. For portfolio managers releasing quarterly
reports, the three months VaR might be appropriate to disclose. The confidence level α
is typically set between 95% and 99%. Naturally, we are most concerned with the tails
of the loss distribution and hence the relative high α values. On the other hand, it is
very challenging to estimate the probability of rare events, due to statistical significance
of past data, so the α should not be set unreasonably high.

VaR is usually estimated assuming normal market circumstances, meaning extreme mar-
ket conditions such as crashes are not considered, or they are examined separately. In
addition, no trading is assumed over the VaR horizon. The calculation of VaR requires
the following data: the current price of all assets in the portfolio, their volatility and
the correlation between them. For traded assets we take prices quoted in the market
(mark-to-market). For OTC2 contracts we must use some ”approved model”. This is
called mark-to-model.

1Fair value accounting has been a part of US Generally Accepted Accounting Principles (GAAP)
since the early 1990s. The use of fair value measurements has increased steadily over the past decade,
primarily in response to investor demand for relevant and timely financial statements that will aid in
making better informed decisions.

2Over the counter (OTC) contracts are not exchange traded, but are agreements between specific
buyers and sellers. There is counter party risk associated with these contracts.
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3.3.1 Parametric Methods

The most common parametric method used is the Variance-Covariance method which
assumes that the risk factor changes are multivariate normally distributed, Xt+1 ∼
Nd(µ,Σ), where µ is the mean vector and Σ is the covariance matrix. Further it assumes
that the portfolio distribution can be expressed sufficiently accurate through a linear
relation to the distribution of the risk factors. That is

L∆
t+1 = −(ct + b

′
tXt+1), (3.3)

for some constant scalar ct and vector bt assumed known at time t. The VaR can thus
be found analytically.

For complex portfolios with interest rate instruments, and especially interest rate deriva-
tives, the linear assumption is poor, and Monte Carlo based methods are preferable.

3.3.2 Sampling from Empirical Distribution

Sampling from historical data does not assume any particular distribution for the risk fac-
tor changes. Instead, it uses the empirical distribution of the historical data, xt−n+1, ..., xt.
Based on these observations one can simulate losses by drawing risk factor changes from
the past data. Let L̂m be the resulting loss if the risk factor changes from period m
would reoccur, then

L̂m = −(f(t+ 1, zt + xm)− f(t, zt)). (3.4)

This can be repeated n times and we have a simulated distribution of the portfolio
change. VaRα and ESα can be estimated by the use of empirical quantile estimation.
That is, if we have n = 1000 we estimate L̂t+1,1, ..., L̂t+1,1000, sort them, and use the
tenth largest value as an estimate of VaRα=0.99. ES0.99 is found from averaging over the
ten largest. Historical sampling is easy to implement and we need not make parametric
assumptions of the risk factor changes. However, it needs a large amount of data. There
is no more information added by increasing the number of simulations when the sample
is limited. In addition, this method does not capture the current volatility at time t. It
would make no difference if the dataset contained a volatile period in the beginning of
the data set or in the end, which is relevant since volatility vary over time.

3.3.3 Monte Carlo Simulation

In the Monte Carlo approach we fit the historical data to a parametric model. By
simulating possible paths according to stochastic models we get an empirical distribution
for the losses for the next period. The VaR quantile can be estimated as in the historical
simulations, by sorting the M simulated losses in increasing order and pick element α·M .
The procedure is described superficially by algorithm 3.1. Because of its flexibility, Monte
Carlo simulation is by far the most powerful approach to VaR and ES. The accuracy
of the method will naturally depend on the model assumptions and specifications. The
simulation may be computationally expensive which is the drawback of the method.
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Algorithm 3.1 Monte Carlo Simulation
Fit data xt−n+1, ...,xt to a parametric distribution D(θ)
for i = 1 to M do

Draw Xi
t+1 ∼ D(θ)

Calculate L̂it+1 = −(f(t+ 1, zt + xit+1)− f(t, zt))
end for
Return L̂t+1

3.4 Expected Shortfall (ES)

By definition, the VaR at confidence level α does not give any information about the
severity of losses which occur with probability (1 − α). Two portfolios with equal VaR
estimates for a certain confidence level might not be equally risky. If one portfolio have
much heavier tails than the other for the distribution beyond the VaR, it is clearly more
risky. A complementary measure for VaR is the expected shortfall (ES). It measures the
expected loss given that it exceeds the VaR limit. The ES is thus concerned with the
distribution of the tails and it is not just a quantile as VaR. ES is also referred to as
Conditional Value at Risk (CVaR) and Expected Tail Loss (ETL).

For a loss L with E(|L|) < ∞ and cumulative distribution function FL the expected
shortfall at confidence level α ∈ (0, 1) is defined as

ESα =
1

1− α

∫ 1

α
qu(FL)du, (3.5)

where qu(FL) is the quantile function of the loss distribution FL. ES is closely related to
VaR. This becomes evident when the quantile function is written as qu(FL) = V aRu(L)
and we can write ES as

ESα =
1

1− α

∫ 1

α
V aRu(L)du, (3.6)

Expected shortfall can also be written more intuitively as the conditional expectation

ESα = E(L|L ≥ V aRα) =
E(L;L ≥ V aRα)

1− α
, (3.7)

where E(X;A) := E(XIA) and IA = 1 if X ∈ A and IA = 0 else.
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Chapter 4

Financial Crisis and Model
Assumptions

4.1 Central Events During the Crisis

We analyze the effect of some of the major events during the critical phase of the latest
financial crisis. We focus on the following four events.

4.1.1 March 16 2008, JP Morgan Chase Acquires Bear Stearns

Bear Stearns, with base in New York City, was one of the largest global investment banks
and securities trading and brokerage firms prior to its sudden collapse and distress sale
to JP Morgan Chase Sunday March 16 2008. Bear Stearns pioneered the securitization
and asset-backed securities markets, and as investor losses mounted in those markets
in 2006 and 2007, the company actually increased its exposure, especially against the
mortgage-backed assets that were central to the subprime mortgage crisis. On March
14 2008, the Federal Reserve Bank of New York provided an emergency loan through
JP Morgan to try to avert a sudden collapse of the company. They feared the potential
market crash that would result from Bear Stearns becoming insolvent because of its
commitments to the other large financial institutions. The Fed’s decision to guarantee a
temporary credit line from JP Morgan was the first time the central bank has bailed out
a brokerage firm since the Great Depression of the 1920s. However the company could
not be saved, and was sold to JP Morgan Chase for as low as ten dollars per share, far
below the traded $93 a share as late as February 2008 [17, 3].

4.1.2 September 15 2008, Lehman Brothers Collapses

Lehman Brothers filed for bankruptcy protection on September 15, 2008. The bankruptcy
of Lehman Brothers is the largest bankruptcy filing in U.S. history with Lehman hold-
ing over $600 billion in assets. In 2008, Lehman faced an unprecedented loss due to the
continuing subprime mortgage crisis. Lehman’s loss was a result of having held on to

19
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large positions in subprime and other lower-rated mortgage tranches when securitizing
the underlying mortgages. Whether Lehman did this because it was simply unable to
sell the lower-rated bonds, or made a conscious decision to hold them, is unclear. In any
event, huge losses accrued in lower-rated mortgage-backed securities throughout 2008.
In the second fiscal quarter, Lehman reported losses of $2.8 billion and was forced to
sell off $6 billion in assets. In the first half of 2008 alone, Lehman stock lost 73% of
its value as the credit market continued to tighten. In August 2008, Lehman reported
that it intended to release 6% of its work force, 1,500 people, just ahead of its third-
quarter-reporting deadline in September. The collapse of Lehman deepend the fear in
the credit market. The large financial institutions were tied to each other through com-
plicated OTC agreements. The lending between banks dried up, and the de-leveraging
of financial institutions accelerated [13].

4.1.3 October 3 2008, $700 Billion US Bailout Package Gets Approved

The Emergency Economic Stabilization Act of 2008, commonly referred to as a bailout
package to the U.S. financial system, is a law enacted in response to the global financial
crisis of 2008 authorizing the United States Secretary of the Treasury to spend up to
US $700 billion to purchase distressed assets, especially mortgage-backed securities, and
make capital injections into banks. Both foreign and domestic banks are included in the
bailout. The purpose of the plan is to purchase bad assets, reduce uncertainty regarding
the worth of the remaining assets, and restore confidence in the credit markets. On
October 3, the Senate voted 263-171 to enact the bill into law. President Bush signed
the bill within hours of its enactment, creating a $700 billion Troubled Assets Relief
Program to purchase failing bank assets.

Supporters of the bailout plan argued that the market intervention called for by the
plan was vital to prevent further erosion of confidence in the U.S. credit markets, and
that failure to act could lead to an economic depression. Opponents of the rescue plan
emphasized that the problems of the American economy were created by excess credit
and debt, and that a massive infusion of credit and debt into the economy only would
exacerbate the problems with the economy [4].

4.1.4 October 9 2008, Central Banks Execute Coordinated Interest
Rate Cuts

The world’s major central banks lowered their benchmark interest rates Wednesday
October 9 2008. It was a coordinated effort to halt a collapse of share prices and a
freeze in credit markets that threatened to set off the first global recession since the
early 1970s. The Federal Reserve, the European Central Bank, the Bank of England
and the central banks of Canada and Sweden all reduced primary lending rates by a
half percentage point. Switzerland also cut its benchmark rate, while the Bank of Japan
endorsed the moves without changing its rates. In addition, the Chinese central bank
joined the effort without explicitly saying it was doing so by reducing its key interest
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rate and lowering bank reserve requirements to free up cash for lending. Together with
other moves in the United States, Britain and Continental Europe the previous days, the
rate cuts was part of a broader, global strategy that embraces aggressive use of monetary
policy and taxpayer recapitalization of ailing banks, generating cautious optimism among
crisis-weary analysts [5].

4.2 Standard & Poor 500 and The VIX Index

The Standard & Poor 500 (S&P 500) is a value weighted index published since 1957
of the prices of 500 common stocks actively traded in the United States. The stocks
included in the S&P 500 are those of large publicly held companies that trade on either
of the two largest American stock markets, the New York Stock Exchange and NASDAQ.
Almost all of the stocks included in the index are among the 500 American stocks with
the largest market capitalizations. Figure 4.1 shows the historical level for the index
from June 2007 to January 2009. The key events during the beginning of the financial
crisis are shown. The short term reaction of JP Morgans acquisition of Bear Stearns
seem to result in a rally, since the government shows willingness to rescue a troubled
financial institution. After the fall of Lehman Brothers the market collapses. The US
Bailout package does not seem to calm the market either. However, the dramatic fall
seems to slow down when the coordinated interest rate cut is announced.
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Figure 4.1: S&P 500 and central events during the financial crisis.

VIX is the ticker symbol for the Chicago Board Options Exchange Volatility Index,
a popular measure of the implied volatility of S&P 500 index options. A high value
corresponds to a more volatile market and therefore more costly options, which can
be used to defray risk from volatility. If investors see high risks of a change in prices,
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they require a greater premium when issuing options. Often referred to as the fear
index, it represents a measure of the market’s expectation of volatility over the next
30 day period. Since the S&P index represents a broad part of the US stock market,
the volatility index reflects the level of market stress in the US. In Figure 4.2 the four
selected events are shown in the plot of the historical levels of the VIX. After Lehman
collapses, the market volatility picks up dramatically and does not seem to be affected
by the announcement of the US bailout package. The increase in volatility slows down
after the coordinated interest rate cuts. Since wall street and other financial centers
are known to be well informed and influenced by rumors, market reactions may start in
advance of major events. It is thus challenging to determine how the events are actually
affecting the market.
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Figure 4.2: The market volatility index for S&P 500, VIX.

As stock- and commodity prices have dropped worldwide during the global financial
crisis, there have been spectacular price movements. It has been fundamental uncertainty
about the direction of the future global economy, and there still is. The crisis is more
global than earlier and it is hard to see how the world is going to break the negative spiral
of the bearish markets. On the other hand, the central banks, and in particular the US
government, have shown willingness to take dramatic actions to prevent the world from
going into a depression. Since this is done in a much larger scale than earlier, economists
are uncertain about the outcome. Some mean that the markets should be left to their own
destiny, while others argue that stimuli from the government is inevitable. In addition
to the uncertainty about the companies future earnings, the small trading volumes have
contributed to even greater volatility, since small trades have moved prices.
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4.3 Model Assumptions and Financial Turbulence

We will base our model on Monte Carlo simulation, and we will need to make numerous
assumptions for the behavior of the relevant financial instruments. The VaR and ES
estimates are forward looking in the sense that they measure future loss quantiles and
expectations. Ideally we would base the model on forward looking market estimates,
like implied volatilities. However, a major part of the calibration will be based on
historical data, such as volatility for government bonds and correlations between the
risk factors. This means that we are predicting the future based on the past, and there
are no guarantees that future scenarios are reflected in the past. Large and unexpected
losses can not be foreseen. Nevertheless, there is information in historical data and
there are different approaches for how to utilize it. Where it is necessary to estimate
parameters based on historical market data we will follow the guide lines of the technical
document of RiskMetrics1.

4.3.1 Multivariate Normal Distributed Risk Factors

In order to get a VaR estimate from a Monte Carlo simulation, we need to assume a
probability distributions for the relevant risk factors. It is common to base the marginal
distributions of the risk factors on the normal distribution. We will additionally assume
that the risk factors are multivariate normal. Historical logreturns for equity and interest
rates are more sharp-peaked and fat-tailed than suggested by the normal distribution.
This means that models based on the normal assumption should underestimate the like-
lihood of extreme events. This might be a poor assumption, especially during financial
turbulence.

4.3.2 Correlation Between the Risk Factors

One of the main challenges when calibrating the risk model is estimating the correlations
between the risk factors. The correlation structure has great impact on the total volatil-
ity for the portfolio and the risk estimates. As the correlations between assets might
change rapidly, this can be a source to misleading VaR estimates. Typically, markets
which are independent or very little correlated during normal market conditions might
become strongly correlated during a recession. There are common factor for all markets,
supply of capital (liquidity) and investors willingness to take risk. During recessions with
huge price drops, large investors may be forced to liquidate their positions in risky assets
due to margin calls, loss limits or risk regulations. This leads to further price drops,
and further liquidations of positions. The market for risky assets become illiquid, and
the prices are affected by the more overall market view. For ”well diversified” portfolios
of assets representing a certain level of risk, it seems reasonable that the volatility for
the total portfolio would have potential to increase due to increased correlation. We will

1RiskMetrics started as a free service offered by JP Morgan in 1994 to promote VaR as a risk
management tool. Later the bank spun off its risk-management group as the RiskMetrics Group. They
developed the benchmark for modelling market risk.



24 CHAPTER 4. FINANCIAL CRISIS AND MODEL ASSUMPTIONS

make simulations based on the estimated correlation from the simulation point in time.
From there we assume a constant correlation matrix. For daily risk estimates this might
be a reasonable assumption, but for long horizons, e.g. quarterly, this is not as realistic.
A plot of how estimated correlations change over time is shown in Figure 6.2.



Chapter 5

Data Material and Portfolios

The data set contains market quotes for S&P 500 and Euro Stoxx 50, and USD swap
rates and yield on US government bonds. In addition, we have market volatilities for
S&P 500 and USD swap rates. The market quotes are from January 3 2000 to January
28 2009. The data is provided by DnB NOR Markets through their access to Reuters
and Bloomberg.

Dow Jones Euro Stoxx 50 is a stock index designed by Stoxx Ltd, a joint venture of
Deutsche Boerse AG, Dow Jones & Company and SIX Swiss Exchange. According to
Stoxx, its goal is ”to provide a blue-chip1 representation of Supersector leaders in the
Eurozone.”

For all interest rate related instruments, we consider products with maturity of 3, 5,
and 10 year. These rates are liquid and the quality of the market data is therefore
higher.

5.1 Portfolio Structures

5.1.1 Markowitz Portfolio Theory

The Markowitz Portfolio Theory is a famous theory about how to allocate capital in
possible investments. It gives answers to how a portfolio should be diversified to obtain
the lowest risk subject to a predetermined expected rate of return. By diversifying our
investments, we reduce specific risk. Opposite to systematic risk, specific risk does not
contribute to a higher expected rate of return. Risk is in this context defined as the
standard deviation of the portfolio returns. We would expect a life insurance fund to
have a dynamic investment strategy, at least for the equity positions. Therefore, we
implement a Markowitz model for asset allocation. Let Si,t denote the price (adjusted

1A blue chip stock is the stock of a well-established company having stable earnings and no extensive
liabilities. The term derives from casinos, where blue chips stand for counters of the highest value. Most
blue chip stocks pay regular dividends, even when business is faring worse than usual.
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for dividend payments and stock splits) for stock i at time t. The relative price change
over one period (e.g. one day) is

Rt =
St − St−1

St−1
(5.1)

Assuming we have data for t ∈ {1, 2, ..., T} we estimate the expected return r̄i for the
stock i by

r̄i =
1
T

T∑
t=0

Ri,t. (5.2)

As suggested in RiskMetrics we use an exponential weighted moving average to esti-
mate the covariance matrix at time T , Σ(T ). The covariance between asset i and j
corresponding to price changes over one period is estimated by

Σ̂i,j(T ) =

√√√√ 1∑T
t=1 λ

T−t

T∑
t=1

λT−t(Rt,i − r̄i)(Rt,j − r̄j),

where λ ∈ (0, 1). RiskMetrics suggest λ = 0.94. Having estimated the expected rate
of return and the covariance matrix, and determined the risk free rate for the relevant
investment horizon we turn to the modern portfolio theory to determine the weights
for the risky assets. To develop a solution, suppose that there are n risky assets in the
market. We assign weights w1, w2, ..., wn to the assets such that

∑n
i=1wi = 1. This will

result in a expected return for the portfolio rp =
∑n

i=1wir̄i. The standard deviation for

the portfolio is given by σp =
√∑

i,j wiwjΣi,j . Figure 5.1 shows possible combinations

of risk/return. By investing in the risky assets alone, the efficient frontier is the optimal
portfolio given a certain expected rate of return r̄. Having the opportunity to borrow
and lend at the risk free rate rf , the optimal portfolio will occur at the line which tangent
the efficient frontier. However, we will use the model to determine only the allocations
in equity, and we are thus interested in the market portfolio.

Market portfolio 
r

Efficient frontier 

fr

σ

Figure 5.1: Efficient frontier and the market portfolio.
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The problem of determining the market portfolio corresponds to maximizing the
sharp ratio (rp − rf )/σp. This leads to solving a system of linear equations [12]. Let
v = (v1, ..., vn)T and the excess return vector r̄e = (r̄1 − rf , ..., r̄n − rf )T . Solve

Σ̂v = r̄e (5.3)

for v. Normalizing the v’s gives the desired weights

wi =
vi∑n
i=1 vi

. (5.4)

This solution does not guarantee the weights to be positive. Since we are only allocating
the investments in two indices, we will prevent shorting by substituting negative weights
to zero and place all equity investments in the other index.

5.1.2 Portfolios

Portfolio 1

We start our risk analysis on a simple portfolio consisting of US government bonds. This
allows us to analyze interest rate risk isolated. There will be equal amounts invested in
the 3Y, 5Y and 10Y zero coupon bonds.

Portfolio 2

We continue by implementing portfolio 2 which reflect the level of market risk suitable for
a life assurance company. The portfolio consist of 20% equities and 80% US government
bonds. The bond portfolio have the same structure as in portfolio 1. The indices are
weighted according to the Markowitz Portfolio Theory (market portfolio).

Portfolio 3

In portfolio 3, we add cash positions in the money market. They receive LIBOR rates and
are hedged with interest rate floors. The interest rate derivatives increase the complex-
ity of the portfolio. There will be 5% invested in stock indices, 30% in US government
bonds and 65% invested in cash and floors. The floors will initially be out-of-the money.
Capital invested in equities is allocated dynamically according to the Markowitz theory.

We do not allocate investments according to Markowitz across different asset classes.
Since they are different of nature, the risk in form of standard deviation is not directly
comparable. Moreover, if we have a static portfolio (between the asset classes) it is easier
to make comparisons of results over time and interpret the results. That is, we do not
want to add unnecessary complexity to the portfolio. The only dynamic elements come
from the market portfolio for equities and the hedged cash positions. Since the floor
prices change over time, the positions are adjusted so that the value of the floors and
the cash add up to 65% of the portfolio value. In addition, the notional amount for the
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floors have to equal the notional on the cash position.

Since bonds change characteristics as they move towards maturity, we want to update
the portfolio along the way. That is, at the beginning of all time periods evaluated, the
bonds have equal time to maturity, i.e. 3Y, 5Y and 10Y. In practice, we would have
to re-balance the portfolio after each time period. The position receiving LIBOR rates
with corresponding floors are updated similarly. We will try to keep the portfolio as
unchanged as possible as time evolves. We do not focus on how well the portfolios are
performing in form of ROI or similar. We neglect transaction costs, and whether the
bonds are really traded. The weights are shown in the table in Figure 5.2.

Investment Portfolio 1 Portfolio 2 Portfolio 3

Stock Indecies 0 % 20 % 5 %

Standard & Poor 500 0 % Markowitz Markowitz

Euro Stoxx 50 0 % Markowitz Markowitz

Government bonds 100 % 80 % 30 %

US 3Y 33 % 27 % 10 %

US 5Y 33 % 27 % 10 %

US 10Y 33 % 27 % 10 %

Cash and floors 0 % 0 % 65 %

Figure 5.2: Portfolio weights.

The proportions of the total equity position invested in S&P 500 and Euro Stoxx 50
are shown in Figure 5.3. As we see, the estimated optimal portfolio change rapidly over
time.
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Figure 5.3: Proportion of equity invested in S&P 500 and Euro Stoxx 50.
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Implementation

6.1 Volatilities

The technical document of RiskMetrics [10] suggests using an exponential weighted mov-
ing average (EWMA) to estimate the volatility for the risk factors, with λ = 0.94. The
alternative is to use implied volatilities. Figure 6.1 shows the volatility estimated from
historical data versus the VIX for S&P500. The two measures follow each other relatively
tightly, but the historical lays systematically below the implied. A more qualitatively
argument for using implied volatilities is that they are forward looking and based on
expectations of market participants. The historical estimates based on the past do not
necessarily determine future risk. We will use implied volatilities for assets where these
are available. For S&P500 we use the VIX index, and for LIBOR rates we use cap
volatilities. For Euro Stoxx 50 and the yield on government bonds we use historical.
Since the implied volatility systematically lays above the historical, we approximate im-
plied volatilities by scaling up the historical. We will estimate the scaling factors based
on comparable instruments. Even if we prefer to use implied volatilities, it should be
stressed that their quality rely on liquid markets for the options and derivatives they are
based on.
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Figure 6.1: The yearly volatility for S&P 500 estimated by EWMA from historical data
and the VIX index.
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6.2 Correlations

Similarly to volatilities, historical correlations are not constant over time. They change
rapidly. In addition, correlations depend on the size of the time horizon considered.
Two assets might have almost independent daily fluctuations, but be stronger correlated
when we consider a longer time scale. Ideally, if we consider a quarterly VaR we would
like to estimate the correlations based on quarterly data. Thus, if we want to estimate
the VaR for a long time horizon we should have a large data set with prices going far
into the history.

We estimate the correlations by EWMA. The risk factors are defined as the logchanges
of the stock prices (indices) adjusted for dividends and stock splits, and for fixed income
the logchange of the LIBOR rates and yield on government bonds. Consider the histor-
ical prices S0, S1, ..., SN , we estimate the covariance between asset i and j over a time
horizon from tN to tN+1 by

σ̂i,j,tN+1|tN = (1− λ)(ri,tN − r̄i,tN )(rj,tN − r̄j,tN ) + λ σ̂i,j,tN |tN−1
(6.1)

where

rk,tN = ln(Sk,tN /Sk,tN−1
) and r̄k,tN =

1
N

ln(Sk,tN /Sk,t0). (6.2)

The correlation between asset i and j is estimated from

ρ̂i,j =
σ̂i,j
σ̂iσ̂j

, (6.3)

where σ̂2
i = σ̂i,i. Figure 6.2 shows how some of the estimated correlations vary over time.

The correlation between the yield on US government bonds with maturity 3 and 5 years
varies between 0.35 and 0.9, while the correlation between the yield on US government
bonds with maturity 3 years and S&P500 fluctuates between -0.2 and 0.6. This shows
that correlations are far from constant. An observation worth mentioning is that the
latter correlation seems to increase during bearish markets. The explanation might be
that during normal market conditions both markets are liquid and there are no reasons
for the daily changes of the two to have an effect on each other. However, when the stock
markets have large drops, large funds can be forced to turn to government bonds as safe
harbors for their assets. Large transactions from a falling stock market to government
bonds would force up the bond prices, and thus yields on these bonds drops in line with
the stock market.

The main conclusion from the figure is that the way to estimate correlation, either
by EWMA with different levels of λ or equally weighted history will have a huge im-
pact on the estimated volatility for the total portfolio and the VaR estimate. Since the
correlations seem to be time dependent we believe the EWMA is the better choice.
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Figure 6.2: Estimated correlation between the yield on US government bonds with
maturity 3 and 5 years, S&P 500 and Euro Stoxx 50, and between the yield on US
government bonds with maturity 3 years and S&P 500.

6.3 Pricing and Modeling of Portfolio Instruments

When we model the dynamics of the portfolio instruments during the VaR horizon, we
assume the same behavior as when pricing them. That is, geometric Brownain motion
(GBM) for equity and LMM for forward rates. There is however one important differ-
ence. While the derivatives are priced under a risk neutral measure, the real dynamics
should be modeled under the real measure. That is, instead of using risk neutral drift
we use the historical drift.

The correlation matrix contains the correlation between all portfolio risk factors. We
write

ρ̂ = BBT ,

whereB is found by an eigenvalue-decomposition. If we let Z ∼ N(0, I), then Cov(BZ) =
E{BZ(BZ)T } = BBT . We can thus generate multivariate normal variables according
to the historical correlation structure by setting Z̃ = BZ, where Z ∼ N(0, I) [9].

6.3.1 Equities

The indices have similar nature as liquid stocks and are modeled as geometric Brownian
motion according to equation (2.1). For this we need the current stock price St and esti-
mates for the volatility σ as well as the real drift µ. The result is lognormal distributions
for the future prices given by

ŜT,i = St,i exp
(

(µ̂i −
1
2
σ̂2
i )(T − t) +

√
T − tσ̂iZ̃i

)
. (6.4)
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6.3.2 Interest Rate Related Instruments

To capture the price dynamics of interest rate instrument, we first simulate the under-
lying rates by Market Models using the real drift parameters. The Market Models are
especially appropriate for pricing interest rate derivatives for which we have no closed
form formula, and is thus suitable for all three portfolios.

Simulation of forward rates is a special case of simulating a system of SDEs. There
are many choices of how to discretize and under which measure to simulate. In addition
we need to choose a numerical scheme. In order to avoid negative rates, which is highly
relevant today, we choose the Euler Scheme to logLn. That is, we simulate the forward
rates as geometric Brownian motions over [ti, ti+1] with drift and volatility parameters
fixed at ti. We will use the spot measure.

When pricing interest rate derivatives, we are first of all interested in the simulated
forward rates when they coincide with the simply compounded spot rates, i.e. Li(Ti).
They are used to both calculate the payoffs and discounting. Thus, it is sensible to let
the maturity dates be grid points in the time discretization, i.e. ti = Ti. Restricting
ourself to the Euler scheme to logLn under the spot measure leads to the discretized
version of the system of SDEs in equation (2.4)

L̂n(ti+1) = L̂n(ti)× exp
([
µn(L̂(ti), ti)−

1
2
σn(ti)2

]
[ti+1 − ti]

√
ti+1 − tiσn(ti)T Z̃i,n

)
,

where

µn(L̂n(ti), ti) =
n∑

j=η(ti)

δjL̂n(ti)σn(ti)σj
1 + δjL̂j(ti)

,

and Z̃i is generated according to the correlation structure. We assume the volatilities
are functions of time to maturity (stationary) and constant between tenor dates, thus
for each rate we have∫ Tn

0
σ2
n(t)dt = σ2

n(T0)δ0 + σ2
n(T1)δ1 + · · ·+ σ2

n(Tn−1)δn−1.

The volatilities are calibrated to the market from cap volatilities at-the-money. To find
the σ2

n(Ti)’s we solve

σ2
c (0, Tn)Tn = σ2

n(T0)δ0 + σ2
n(T1)δ1 + · · ·+ σ2

n(Tn−1)δn−1, n = 1, ...,M

where σ2
c (0, Tn) denotes the cap volatility for the cap maturing at Tn.

Government Bonds

A zero cupon bond with face value 1 and maturity at Tm have a marking-to-market
value at t = 0 given by

B̂(0, Tm) =
m−1∏
j=0

1
(1 + δjL̂j(0))

, (6.5)
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where Lj(t) represents the simply compounded forward rate between tj and tj+1 at time
t. Note that this rate is not the LIBOR rate, but the forward rate corresponding to the
yield on government bonds. To capture the dynamics of the bond prices we simulate the
forward rates for the desired time horizon, ∆t. Assume ∆t < δ0. The simulated bond
value is approximated by

B̂(∆t, Tm) =
1

1 + (δ0 −∆t)L̂0(0)

m−1∏
j=1

1
(1 + δjL̂j(∆t))

. (6.6)

This will be one realization of a Monte Carlo simulation.

Interest rate derivatives

If we want to price a derivative with payoff g(L̂n(Tn)) at time Tn where L̂n(Tn) is
simulated under the spot measure, Glassermann [7] states that we can average over
independent replications of

g(L̂n(Tn)) ·
n−1∏
j=0

1
1 + δjL̂j(Tj)

(6.7)

For interest floors, the payment at Ti is determined by the spot rate at Ti−1. The value
of an interest rate floor with strike K and with payments at Ti, i = 2, ...,M , and with a
notional amount of 1, is thus found by averaging over independent replications of

M∑
n=2

δn−1(K − L̂n−1(Tn−1))+ ·
n−1∏
j=0

1
(1 + δjL̂j(Tj))

 .

As mentioned in the description of portfolio 3, the floor contract will initially be out-of-
the money. More precisely we set K = L1(0)− 0.25%.

For a payer swap contract, with the same payment legs as above, we average over inde-
pendent replications of

M∑
n=2

δn−1(L̂n−1(Tn−1)−K) ·
n−1∏
j=0

1
(1 + δjL̂j(Tj))

 .

We implement a cash position that receive the floating LIBOR rates, like the floating legs
of the payer interest rate swap. A notional amount of 1 is payed back at the maturity
of the contract. Since (

K − Li(Ti)
)+ + Li(Ti) = max

(
K,Li(Ti)

)
, (6.8)

the value of the net cash flow from both contracts is found by averaging over independent
replications of

M∑
n=2

δn−1 max(K, L̂n−1(Tn−1)) ·
n−1∏
j=0

1
(1 + δjL̂j(Tj))

+
M−1∏
j=0

1
(1 + δjL̂j(Tj))

. (6.9)
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In addition, we are concerned with how the value of the contract might change over
the VaR horizon and we want to simulate prices at ∆t into the future. This is done by
taking the time step ∆t under the real probability measure. The resulting rates Lj(∆t)
are then used as the initial forward rates, and the valuation at ∆t is based on these. The
time to maturity for all payment legs are reduced by ∆t. Figure 6.3 shows a simplified
visualization of the simulation.
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Figure 6.3: Simulation of future values for interest rate derivatives. Paths are simulated
up to time ∆t using the real drift parameters. The resulting rates are used as the initial
rates for the derivative pricing under the risk neutral measure.

This is much more computationally expensive than the modeling of the other port-
folio instruments. If we need to make B realizations to price a floor, we would need
M · B runs to get the VaR contribution from the derivative. And if we want to esti-
mate daily VaR for the entire history (10 years) the simulation becomes time consuming.

For the interest rate derivatives we assume payment legs at the tenors dates for which
we have data. An alternative would be to have e.g. yearly payments, and approximate
the missing rates based on the spot rate, the 3Y, 5Y and 10Y rates. This would de-
scribe more realistic contracts, but make minor differences to the price dynamics and
the market risk estimates. Since we focus on the computational efficiency, we make this
simplification.

A more comprehensive description of the implementation is given in Appendix A. Pseu-
docode for estimating drift, and making time steps and pricing interest rate derivatives
by LMM, is enclosed. The routine for estimating risk is also described through an
algorithm.
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6.4 Number of Replications

In general, Monte Carlo simulation has a slow convergence. The error due to the simula-
tion decrease as O(1/M). By making many VaR estimates and measuring the standard
deviation we can get an idea of how many replications are necessary. With 10000 replica-
tions the standard deviation is less than 0.5% of the mean VaR, which seems acceptable.
This result is based on the 97.5% quantile. Quantiles further into the tails are more
sensitive to the number of replications. If there are significant large errors due to a low
number of replications, this will be visible from the VaR plots, with jagged estimates
from period to period, and unstable distances between the quantiles.

6.5 Time Horizons and Confidence Levels for Risk Esti-
mates

We make VaR estimates for both daily and quarterly changes. Daily VaR is typically rel-
evant for traiders and investors with highly liquid positions, i.e. the positions are small
compared to the total market and it is possible to sell out quickly. Quarterly VaR can
be of interest for larger funds, with longer liquidation horizon or simply for accounting
purposes. The simplest VaR models based on normal distributed asset returns suggest
that the VaR for a longer time horizon can be found by multiplying the VaR for a short
period by a the square root of a time factor. Since we have instruments with non-linear
dependence of the underlying risk factors, both bonds and interest rate derivatives, and
the correlation structure depends on the time horizon we avoid this assumption. Nat-
urally, daily VaR is estimated based on daily historical data. For the quarterly VaR
we would ideally use a long time series of quarterly data. But since we only have data
from 2000 to the beginning of 2009, and since we want to estimate VaR from 2001, we
use weekly data as a compromise. We will estimate VaR for the 95%, 97.5% and 99%
confidence levels and expected shortfall for the 99% level. Evaluating a set of quantiles
allows us to determine how far into the tails extreme events occur and we can get a
deeper insight to the behavior of the portfolio compared to the model.

The process to obtain VaR and ES estimates from the data material is illustrated through
a flowchart in the next section.



36 CHAPTER 6. IMPLEMENTATION

6.6 Flowchart
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Cap volatilities
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Implied volatilities
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(LMM for IR derivatives)

Future rates at t = Δt
(LMM with real drift)
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(Markowitz for equities)
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Figure 6.4: Flowchart for risk estimation routine.
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Results

Obviously, the VaR metric is a widely general term, and the properties will depend on
the models we choose and how we construct them. Parametric or non parametric mod-
els, the distribution of asset returns, how to estimate volatilities and correlation, the
portfolio structure are all factors with impact on the estimates. Naturally, we will focus
on the features of our model with the corresponding assumptions, and the results will
be valid only under these conditions, not for VaR and ES in general.

Having implemented a model describing the total portfolio dynamics, we are interested
in how this model fits the real market observations. This can be checked by making
back testing. Given the historical data up to time t we estimate VaR for the next period
t + ∆t. This estimate is compared with the actual portfolio loss over the same period.
This is done for the whole data history. When the portfolio loss exceeds the VaR limit,
this is referred to as a VaR break. If the model is a good representation of the portfolio
dynamics, the VaR breaks should be randomly distributed over the data history. In
addition the losses should exceed the VaR limits in line with the confidence level, i.e.
the losses should be greater than the 95% limit in 5 of 100 observations over time. We
examine if there exist any pattern for when the losses exceed the VaR and ES thresholds,
with focus on the level of market stress.

Do the model make reasonable forecasts for the VaR and ES? How much larger are
the VaR estimates during volatile markets? Do VaR breaks occur more often during
market stress? Are the extreme observations further into the tails during turbulent mar-
kets? What happened to the risk estimates and portfolio losses during the most central
events of the financial crisis of 2007- 2009? These are questions we address and will try
to answer.
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7.1 Daily Risk Estimates

7.1.1 Comparison of Risk Estimates and Real Losses

In this section we evaluate the VaR and ES estimates versus the actual portfolio losses.
This allows us to evaluate the nature of the portfolio fluctuations, and the reliability of
the models on a daily basis. We will analyze how the models perform at different levels of
market stress, by measuring the frequency of VaR breaks during predefined periods. We
divide the dataset into periods of either normal or turbulent marked conditions. Based
on the VIX index, the periods from September 2001 to December 2003, and July 2007
to January 2009 are defined to be turbulent, while the period between January 2004 and
June 2007 which is characterized by low volatility, is defined as normal.

Portfolio 1

Figure 7.1 shows the daily VaR estimates and the losses for portfolio 1. The estimates
seem to follow the size of the large losses, which clearly is a good sign. There are
no observations unreasonable far into the tails. The VaR estimates are largest during
the turbulent periods in the beginning and at the end of the data set. For a portfolio
consisting of pure investment grade bonds, it seems like the interest rate risk is not much
larger during the late credit crunch than during the previous recession.
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Figure 7.1: Daily VaR estimates and losses for portfolio 1.

The table in Figure 7.2 shows the number and frequency of VaR violations during
the predefined periods. The VaR(95%) estimates seem to match the actual losses well.
This limit is violated only slightly more than expected from the confidence level. As we
move further into the tails the breaks deviate more from what we would expect. The
VaR(99%) is violated at a frequency of almost 2%. This indicate that the loss distri-
bution for the bond portfolio has fatter tails than our model suggests, which is most
likely a consequence of our assumption of normal distributed logreturns for the interest
rates. An interesting observation is that the risk thresholds are violated less during the
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financial crisis, and especially for the VaR(99%).

For the first period the ES(99%) is violated 15 times over 867 days. Since the tail
distributions for losses are right skewed, the ES should be further out than the median
of the tail distribution. For observations breaking VaR(99%) we would expect 50% to
exceed a tail median by definition, and thus less than 50% to violate the ES(99%). That
means that less than 0.5% of the losses should be larger than the ES(99%). The later
periods have less ES breaks and seem to match the theoretical expectations better.

Portfolio 1 From To Trading days VaR(95%) VaR(97.5%) VaR( 99%) ES(99%)

Number of breaks

Turbulent Sep-01 Dec-03 867 45 28 17 15

Normal Jan-04 Jun-07 911 54 29 17 7

Turbulent Jul-07 Jan-09 412 21 11 4 1

Break frequency

Turbulent Sep-01 Dec-03 867 5,19 % 3,23 % 1,96 % 1,73 %

Normal Jan-04 Jun-07 911 5,93 % 3,18 % 1,87 % 0,77 %

Turbulent Jul-07 Jan-09 412 5,10 % 2,67 % 0,97 % 0,24 %

Figure 7.2: VaR violations versus market conditions for portfolio 1.

Portfolio 2

Figure 7.3 shows the portfolio losses and the daily VaR estimates for portfolio 2. From
the second half of 2008 the VaR(95%) estimates are almost four times larger than it was
at its lowest during the bull market from 2004 to mid-2007. The largest portfolio loss
in one day was 1.3% at January 21 2008. This day was a ”Black Monday” in worldwide
stock markets, especially for the European market. The Guardian wrote on January
22 2008: ”Since the start of the year share prices have dropped by 14%, with the near
900-point fall in the FTSE 100 wiping out all the gains of the last 18 months and putting
renewed pressure on pension funds. Yesterday’s 5.48% fall was the biggest in percentage
terms since the immediate aftermath of the 9/11 terrorist attacks but less than half as
big as the record 12.2% drop in October 1987.”

The Euro stoxx 50 fell 7.3% that day. In addition, at this time 80% of the equity
was invested in this index. This explains the size of the portfolio loss.

Many of the largest portfolio losses occurred during October 2008, e.g. a 1.12% drop
at the 9th. But for comparison, the S&P500 index fell more than 9% three of the days
during the same period. Not surprisingly, the portfolio is much less risky than portfolios
consisiting purely of stocks. On average, the positions in indices contribute to approxi-
mately 60% of the portfolio fluctuations. This means that the relatively small fraction
invested in equities dominate the portfolio losses.
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It is clear from Figure 7.3 that the size of the relative profits are often larger than
the losses. This has a natural explanation. If a stock price is first halved and later reach
its original price, it has dropped 50% and then had a positive gain of 100%.
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Figure 7.3: Daily VaR estimates and losses for portfolio 2.

The VaR violations for the different periods are shown in figure 7.4. As before the
limits are violated at a higher frequency than what would be natural from the confi-
dence level. The deviations are larger further into the tails for this portfolio as well. The
VaR(99%) is violated almost twice as often as desired, and surprisingly most during the
normal market conditions.

For the ES breaks, close to half of the losses exceeding VaR(99%) also violate the
ES(99%). The latest period has the highest frequency of breaks. Again, the ES vio-
lations support a more heavy tailed distribution for the actual losses.

Portfolio 2 From To Trading days VaR(95%) VaR(97.5%) VaR(99%) ES(99%)

Number of breaks

Turbulent Sep-01 Dec-03 867 52 27 15 7

Normal Jan-04 Jun-07 911 55 35 20 10

Turbulent Jul-07 Jan-09 412 31 16 8 5

Break frequency

Turbulent Sep-01 Dec-03 867 6,00 % 3,11 % 1,73 % 0,81 %

Normal Jan-04 Jun-07 911 6,04 % 3,84 % 2,20 % 1,10 %

Turbulent Jul-07 Jan-09 412 7,52 % 3,88 % 1,94 % 1,21 %

Figure 7.4: VaR violations versus market conditions for portfolio 2.



7.1. DAILY RISK ESTIMATES 41

Portfolio 3

This portfolio has more complex dynamics than the previous. The VaR estimates in
Figure 7.5 indicate that it has a sligtly smaller risk level than portfolio 1, and a signif-
icantly smaller level than portfolio 2. The latter is primarily due to the lower fraction
invested in equities, the first is probably the result of diversification and hedging. In
addition, the estimates are more stable over the data history, meaning that the portfolio
according to the model is less sensitive to the changes in market regimes.
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Figure 7.5: Daily VaR estimates and losses for portfolio 3.

In line with what we have seen earlier, figure 7.6 shows that also for portfolio 3, the
VaR limits are violated more frequent than expected from the confidence level, especially
for the latest period. Here, almost three percent of the losses are larger than VaR(99%).

The number of ES(99%) breaks are high for all three periods, and particularly the
1.94% for the latest period. A frequency of 2% corresponds to more than four times the
number of violation, than what would be in line with the 99% confidence level.

Portfolio 3 From To Trading days VaR(95%) VaR(97.5%) VaR(99%) ES(99%)

Number of breaks

Turbulent Sep-01 Dec-03 867 45 26 15 9

Normal Jan-04 Jun-07 911 49 29 16 9

Turbulent Jul-07 Jan-09 412 25 17 12 8

Break frequency

Turbulent Sep-01 Dec-03 867 5,19 % 3,00 % 1,73 % 1,04 %

Normal Jan-04 Jun-07 911 5,38 % 3,18 % 1,76 % 0,99 %

Turbulent Jul-07 Jan-09 412 6,07 % 4,13 % 2,91 % 1,94 %

Figure 7.6: VaR violations versus market conditions for portfolio 3.
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7.1.2 Central Events and Portfolio Losses

In this subsection we evaluate how the portfolios were affected by some of the most
critical announcements during the most rough period of the financial crisis. October
2008 has later been referred to as ”Black October”. Due to the market collapse, the
market volatility increase dramatically. The risk estimates more than triples during this
month.

Portfolio 1

The VaR estimates versus the losses for the government bond portfolio are shown in
Figure 7.7. The announcement of the bankruptcy of Lehman Brothers causes the large
profit of 0.87% the very same day. This is the largest one day profit during the whole
data set. It shows how the risk willingness of investors was reduced by this event. The
two other events do not seem to have caused large market reactions, at least not on the
same days as the news were announced. This might be due to the flow of information.

The VaR limits are not violated more than expected even though it is the most volatile
period of the dataset. This agrees with the results in Figure 7.2. That is, for portfolio
1, the VaR breaks are less frequent and close to what is expected from the confidence
level during the financial crisis.

Figure 7.7 also shows a one day lag for the size of the risk estimates compared to
the size of the profits and losses. As the volatilities are based on historical data for the
government bonds, large fluctuation will cause larger VaR estimates for the next trading
day. This can be seen from the sharp increase in the VaRs for the day after the huge loss
at September 19, followed by a decrease the next trading day September 22, which agree
with the small loss that day. This confirmes that the indecies in the implementation are
correct.
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Figure 7.7: Losses and risk estimates during the market crash of September and October
2008 for portfolio 1.
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Portfolio 2

From figure 7.8 we can get a closer look at the losses and risk estimates for portfolio 2,
during the same period. As we see, the portfolio did not have the largest fluctuations
at any of the event dates. This might be due to the flow of information to investors, or
because the diversification between equities and government bonds cancel large portfolio
fluctuations. As shown earlier in figure 6.2, the correlation between the logreturns on
the 3 year government bond yield and the Standard & Poor 500, is high during the last
part of 2008. This means that the bond and equity prices tend to move in the opposite
direction, especially during financial turbulence.

By analyzing the portfolio closer, it seems like the direction of the losses occur as we
would expect for an equity portfolio. That is, the collapse of Lehman Brothers causes
a portfolio loss. For the three events, we can calculate how much of the fluctuations
were caused by the equity positions versus the bond positions. At the day Lehman col-
lapses, 71% of the portfolio fluctuation are caused by the stocks. The day of the bailout
package, 80% of the fluctuation were from stocks. And last, for the coordinated interest
rate cuts 70% of the fluctuations were from stocks. Since ”only” 60% of the portfolio
fluctuations are caused by the equity positions on average, it seem like the equity market
is affected more than usual by the critical announcements, compared to the bond market.

October 6-10 was the worst week for the stock market in 75 years. The Dow Jones
loses 22.1 percent, its worst week on record, down 40.3 percent since reaching a record
high a year earlier. The S&P 500 loses 18.2 percent, its worst week since 1933, down
42.5 percent since its own high October 9, 2007. That this week was a disaster for the
portfolio is evident from Figure 7.8, with four of five days breaking the VaR(95%), and
three days breaking VaR(99%).
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Figure 7.8: Losses and risk estimates during the market crash of September and October
2008 for portfolio 2.
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Portfolio 3

Figure 7.9 shows the losses around October 2008 for portfolio 3. Since the portfolio
structure is more complex, it is more difficult to have a perception of how the underly-
ing risk factors contribute to the losses. However, this portfolio have the largest number
of breaks during the rough period. The largest loss occur at the day of the coordinated
interest rate cuts. This might look awkward since the floors will raise in value with sink-
ing rates. But as we saw earlier, portfolio 1 also had a loss that day despite it consists
purely of bonds. According to our data, the yield on government bonds did not sink
that day. It was again a signal of the severity of the crisis, and might have increased
investors fear of a state default.

For the previous two portfolios, the distance between the VaR thresholds seem to increase
roughly proportional to the VaRs. This indicate that the shapes of the loss distributions
are preserved over time. For portfolio 3, the distances are much larger during turbulent
periods. The shape of the estimated loss distribution change becomes more heavy tailed
during turbulence.

As for portfolio 2, the number of VaR breaks are high. The VaR(95%) and VaR(97.5%)
thresholds are violated seven times, while the VaR(99%) four times.
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Figure 7.9: Losses and risk estimates during the market crash of September and October
2008 for portfolio 3.
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7.1.3 Cumulative Number of VaR Violations

Figure 7.10 shows the cumulative number of VaR breaks versus time for portfolio 2. If
the VaR breaks were evenly distributed, this would be a perfectly straight line. But
since the observations should be randomly spread out, we expect a jagged line. To
have a perception of how this line should look, we have generated 2263 independent
realizations from a Bernoulli distribution, the number of historical observations. By
assigning a probability of success to be 5%, this line represents how the cumulative
number of breaks for the VaR(95%) might look if the model was a perfect fit. The
most significant difference between the two is that the cumulative break for VaR(95%)
have a steeper trend. Further, the cumulative breaks show two periods with extra high
frequencies of breaks. The end of the periods are marked with vertical lines. They are
both during financial turbulence with increasing volatility, which support that the models
might perform slightly worse during market stress. However, as an overall picture, the
cumulative number of violations seem to behave fairly similar to the randomly generated
line. And it does not appear to be any obvious changes in regimes from evaluating the
cumulative number of VaR violations. Before the analysis we expected the model to
fail during the market crash of 2008. Interestingly, there is not a clear change in the
accuracy of the estimates compared to previous periods, which are under completely
different market conditions.
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Figure 7.10: Cumulative number of losses exceeding VaR(95%), VaR(97.5%) and
VaR(99%) from 2000 to 2008 for portfolio 2. For comparison we have generated in-
dependent realizations from a Bernoulli distribution.
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7.1.4 Likelihood of Extreme Observations

October 2008 was the most volatile period of the data set, and the number of VaR
breaks are high. For portfolio 2, the VaR(95%) is violated 7 of 39 days, and both the
VaR(97.5%) and the VaR(99%) are violated 5 times. This corresponds to a frequency
of 17.9% and 12.8%, respectively. All quantiles are therefore violated way more than
desired. It is of interest to find the probability of these extreme observations given that
the model fit the data. Let Bα be the number of VaR breaks for the VaR corresponding
to the confidence level α. Based on the model assumptions, the probability of a VaR
violation p should be constant with p = 1−α, and the violations should be independent.
Over this subset with n = 39 observations, the Bα should be binomial distributed,
bin(n, p). That is, the probability for Bα to take the value b is given by

p(Bα = b) =
(
n
b

)
(1− α)bαn−b. (7.1)

The probability of observing b or more violations is thus

p(Bα ≥ b) = 1− p(Bα < b) = 1−
b−1∑
k=0

p(Bα = k). (7.2)

This value is known as the p-value. Table 7.1 shows the p-values for the VaR breaks. The
probability of observing the same number of VaR violations or more is 0.29%, 0.28% and
0.0043% for the α’s in increasing order. Five violations or more for the 99% VaR in 39
days is expected to happen once out of 23,256 such periods. This is thus almost unlikely
to happen, given that our model represents the data1. This is a strong indication of
clustering between tail events.

α for VaR breaks frequency p-value
95 % 7 17.9% 0.29%
97.5% 5 12.8% 0.28%
99 % 5 12.8% 0.0043%

Table 7.1: Test for the probability of the large number of VaR breaks.

1The VaR breaks should theoretically be independent of the level of market stress. Since we choose
to evaluate this period beforehand, we can evaluate these extreme data isolated. It would in contrast be
wrong to take a view at the entire dataset, find the periods with the largest number of VaR breaks, and
then do this test isolated for that particular subset.
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7.2 Quarterly Risk Estimates

There is even more uncertainty when making risk estimates for a quarter of a year ahead.
Our model assumes that the correlations and volatilities are constant during the time
horizon for the simulation. In addition, it is challenging to estimate both volatility and
correlation since they should be based on quarterly data and we have a limited length on
the data set. As emphasized in the previous chapter, we make a compromise and base
our estimates on weekly data. Figure 7.11 shows the VaR(95%) from models calibrated
based on data with increments of one day, three days and one week for portfolio 2. As
confirmed by the figure, the choice of increment length have a significant effect on the
estimates. And when comparing the relative differences between the three, it seems like
this assumption will dominate the historical versus implied volatility choice. This would
however not have been an issue if we had had historical prices for decades back in time,
and only were interested in making future risk estimates from the last data point, but in
this thesis we make risk estimates for the whole data set. Since there are only 35 quar-
terly observations in the dataset, there is little significance in comparing risk estimates
with actual losses.

Another observation worth mentioning appears when comparing Figure 7.3 and Figure
7.11. While the daily risk estimates for portfolio 2 are largest during the late financial
crisis, the quarterly VaRs in 7.11 are largest during the less volatile period in the begin-
ning of the dataset. If the daily market risk is largest during the latest period, then we
would believe this to be the case for the quarterly market risk estimates as well. This
is explained by a time lag for quarterly estimates. The largest price fluctuations for the
portfolio were during October 2008. For the daily volatility estimates, these large price
fluctuations will be picked up fast and increase the estimates. The quarterly volatility
estimates for Q4 of 2008 are in contrast estimated based on data up to September 2008.
The size of the quarterly VaR estimates will therefore have a time lag compared to the
daily.

Figure 7.11 shows 35 observations of losses and VaR estimates. The expected num-
ber of VaR breaks for α = 95% is 35 · 5% = 1.75, and the actual breaks are one for all
the three VaR estimates. Because of the limited number of observations, it makes no
sense to draw any conclusions. The estimates do at least look reasonable compared to
the sizes of the actual losses.

The period from 2003 to 2007 is characterized by increasing interest rates in the U.S.
and a bull stock market. This results in a profitable stock portfolio and losses from the
government bond portfolio. As we have concluded earlier, the equity positions have the
largest impact on the portfolio returns, and this is supported by Figure 7.11. During this
bull period, 14 of the quarterly returns are profits in contrast to only four losses. This
period is followed by four quarterly losses on a row when the financial crisis becomes
evident.
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Chapter 8

Conclusion and Further Work

8.1 Conclusion

In order to get VaR and ES estimates from a Monte Carlo simulation, we need to as-
sume probability distributions for the relevant risk factors. It is common to assume
that the logreturns of assets are normal distributed, and this is the case for our model.
The empirical logreturns for equity and interest rates are however more sharp-peaked
and fat-tailed than suggested by the normal distribution. This means that the model
should underestimate the likelihood of extreme losses, and may be an especially poor
assumption during financial turbulence. Additionally, we assume that the logreturns are
multivariate normal, and that the covariance matrix is constant over the risk horizon.
A commonly observed property of asset returns is that during periods with large price
moves, there is a greater degree of co-movements across different assets. This is often
referred to as tail dependence [15]. These two last assumptions introduce additional
weaknesses to the model since the multivariate normal distribution do not exhibit tail
dependence and volatilities are not constant over time. However, broadely adopted mod-
els are constructed this way.

We analyze the performance of the model by comparing the daily risk estimates with the
portfolio losses between 2000 and 2008. The results show that the losses exceed the VaR
quantiles more frequent than what would be natural from the corresponding confidence
level α, i.e. the VaR(α) should be violated (1 − α) of the days, by definition. Further,
the larger we set α, the more misguiding are the estimates. While the 95% quantiles are
violated 5-6% of the days, the 99% quantiles are violated about 2% of the days. The
highest frequencies of violations registered, are from the current financial crisis.

In contrast to VaR(α), we do not know exactly how often ES(α) should be violated
directly from its definition. However, we know that it is less than (1 − α)/2. Since
the tail distributions for losses are right skewed, the ES should be further out than the
median of the tail distribution. For observations violating VaR(99%) we would expect
50% to exceed a tail median, and thus less than 50% to violate the ES(99%). That
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means that less than 0.5% of the losses should be larger than the ES(99%). On average,
the losses exceed the ES more than twice as often. And for the last portfolio we tested,
the ES(99%) is violated about 2% of the days during the latest financial crisis, which is
more than four times more than expected from the confidence level.

The high frequency of VaR and ES violations indicate that the normal assumption for
logreturns result in a model that under-estimate the probability of extreme losses. Large
parts of the theory of mathematical finance is however based on normal distributed asset
returns, such as the Black Scholes framework. Practitioners have found ways to work
around this for many problems, e.g. working with different volatilities for options with
different strikes. In the risk context we are not only estimating one parameter like an
option price, but we are interested in the shape of the whole loss distribution. With the
normal assumption, it seems impossible to get resonable estimates for all VaR quantiles,
using only one loss distribution for all confidence levels.

Investigation of the losses during the rough period around October 2008 shows strong
indications of clustering between large losses. E.g. in one single week, the Var(95%) is
violated four times for one of the portfolios.

In addition to daily horizons, we have analyzed quarterly risk estimates. From the
results, the estimates seem to be reasonable compared to the size of the portfolio losses.
There are however little significance to such analysis, since we only have 39 observations
for quarterly portfolios losses over the data set.

Even if the daily losses exceed the risk estimates too often compared to the correspond-
ing confidence levels, and even though we see strong tendencies of clustering, it is evident
from the results that the risk estimates do give valuable information about the market
risk of the portfolios. For instance, the frequencies of losses exceeding the risk estimates
are relatively stable over time. A priori, we expected the model to be flawed during the
extreme volatile market observed recently, but our analysis indicate that the model in
many cases performes only slightly worse. The risk estimates from the model can thus
be informative even under turbulent market conditions. However, it is important to be
aware of the weaknesses of the model.

8.2 Further Work

To deal with the clustering of VaR violations, plausible solutions point towards time
correlated frameworks for volatilities, such as GARCH models. Among academics and
practitioners, GARCH-type models have gained attention. This is due to the evidence
that time series realizations of returns often exhibit time dependent volatility. Numerous
tests of GARCH-type models to foreign exchange and stock markets have demonstrated
that these approaches can provide somewhat better estimates of volatility than simple
moving averages, particularly over short time horizons such as a day or a week [10].
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A more radical model modification would be to consider alternative distributions for
the risk factors, such as the Normal Inverse Gaussian distribution (NIG). It is more
flexible and provides a better fit to the logreturns for asset.
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Appendix A

Pseudocode

The model is implemented in R. Algorithm A.1 shows how the drift is calculated at a
time step under the spot measure, and algorithm A.2 shows how the forward rates are
simulated from a time step to the next. Algorithm A.3 describes the pricing routine, and
the procedure for estimating VaR is found in algorithm A.4. To make the pseudocode
easy to interpret matrix operations are described as loops.

Algorithm A.1 Drift - Calculate drift at ti under the spot measure
1: Input:
2: Volatilities σn(ti), n = i+ 1, ...,M
3: Forward rates L̂n(ti), n = i+ 1, ...,M
4: Time between tenors δj , j = i, ...,M
5: for n = i+1 to M do
6: for j = i to n do

7: µn(L̂n(ti), ti) = µn(L̂n(ti), ti) + δjL̂n(ti)σn(ti)σj

1+δjL̂j(ti)

8: end for
9: end for

10: Return: µn(L̂(ti), ti), n = i+ 1, ...,M
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Algorithm A.2 LMM - Simulate forward rates for ti+1 based on rates at ti
1: Inputs:
2: σn(ti), n = i+ 1, ...,M
3: L̂n(ti), n = i+ 1, ...,M
4: Do:
5: Draw Z̃i ∼ N(0, ρ̂rates)
6: if spot measure then
7: Drift by algorithm A.1
8: else
9: if real drift then

10: µ̂n = µ̂nreal
11: end if
12: end if
13: for n = i+1 to M do
14: L̂n(ti+1) = L̂n(ti)×exp

([
µn(L̂(ti), ti)− 1

2σn(ti)2
]

[ti+1 − ti] +
√
ti+1 − tiσn(ti)Z̃i,n

)
15: end for
16: Return: L̂n(ti+1), n = i+ 1, ...,M

Algorithm A.3 LMM - Price interest rate derivative by LMM
1: Inputs:
2: Vol σn(ti), n = 1, ...,M − 1, ti = Ti, i = 0, ..., n− 1
3: Initial rates L̂n(0), n = 0, ...,M
4: Time between tenors δj , j = 0, ...,M − 1
5: for b in 1..B do
6: Get L̂n(Tn)b, n = 1, ...,M from algorithm A.2 (ti = T0, ..., TM−2)
7: PVb =

∑M
n=1 g(L̂n(Tn)b) ·

∏n−1
j=0

1
1+δjL̂j(Tj)b

8: end for
9: Price P = 1

B

∑B
b=1 PVb

10: Return P
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Algorithm A.4 Estimate VaR at t = 0
1: Input:
2: History for risk factors x0, ..., xK , K = history length, xd ∈ RD # D # instruments
3: Forward rates Ln(0), n = 0, ...,M
4: Share prices S0,

5: Cap vol σc(0, Ti), i = 1,...,M, VIX
6: ∆t, α
7: Portfolio weights wi, i = 1, ..., d
8: Estimate:
9: Covariance between all risk factors Σ̂ by EWMA

10: Correlation ρ̂ from Σ̂
11: Real drift µ̂real ∈ Rd

12: Mark-to-market:
13: Bonds B̂(0, Tm) =

∏m−1
j=0

1
(1+δjL̂govt,j(0)

, m = 1, ...,M

14: IR derivatives by algorithm A.3(LLIBOR,n(0), n = 0, ...,M)
15: for s = 1 to S do
16: Draw Zs ∼ Nd(0, ρ̂)

17: Ŝs∆t,d = S0,d exp
(

(µ̂− 1
2 σ̂

2)∆t+
√

∆tσ̂Zsd

)
d = 1, ..., dstocks

18: Simulate L̂n(∆t) by algoritm A.2(µ̂real, Ln(0), n = 1, ...,M)
19: B̂(∆t, Tm)s = 1

1+(δ0−∆t)Lgovt,0(0)

∏m−1
j=1

1
(1+δjL̂govt,j(∆t)

, m = 1, ...,M

20: Price IR derivative P (∆t)s by algorithm A.3(L̂n(∆t), n = 1, ...,M)
21: Calculate return rd,s, d = 1, ..., D
22: rs =

∑D
d=1wdrd,s

23: end for
24: r = (r1, ..., rS)

′

25: rsorted = sort(r)
26: VaRα,∆t = rsorted[(1− α) · S]
27: Return: VaRα,∆t
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