

Drivers of vegetative dormancy across herbaceous perennial plant species

Journal:	Ecology Letters
Manuscript ID	ELE-01196-2017
Manuscript Type:	Letters
Date Submitted by the Author:	30-Nov-2017
Complete List of Authors:	Shefferson, Richard; University of Tokyo, Organization for Programs on Environmental Sciences Kull, Tiiu; Estonian University of Life Sciences Hutchings, Michael; Sussex University of Brighton, School of Life Sciences Selosse, Marc-André; Museum National d'Histoire Naturelle Jacquemyn, Hans; Katholieke Universiteit Leuven, Department of Biology; KU Leuven Kellett, Kimberly; University of Georgia, Odum School of Ecology Menges, Eric; Archbold Biological Station Primack, Richard; Boston University, Biology Department Tuomi, Juha; Turun Yliopisto, Department of Biology Alahuhta, Kirsi; University of Oulu, Department of Ecology and Genetics Hurskainen, Sonja; University of Oulu, Department of Ecology and Genetics Alexander, Helen; University of Natural Resources Brys, Rein Brzosko, Emilia; University of Bialystok, Institute of Biology Dostálik, Slavomir Gregg, Katharine; West Virginia Wesleyan College, Department of Biology Ipser, Zdenek; Jihoceska Univerzita v Ceskych Budejovicich, Department of Biology of Ecosystems Jäkäläniemi, Anne; University of Oulu, Department of Ecology and Genetics Jersáková, Jana; Jihoceska Univerzita v Ceskych Budejovicich, Department of Biology of Ecosystems Kettle, Dean; University of Kansas, Kansas Biological Survey McCormick, Melissa; Smithsonian Environmental Research Center Mendoza, Ana; University of Kansas, Kansas Biological Survey McCormick, Melissa; Smithsonian Environmental Research Center Mendoza, Ana; University of Science and Technology Øien, Dag-Inge; NTNU University Museum, Norwegian University Museum, Norwegian University of Science and Technology Øien, Dag-Inge; NTNU University Museum, Norwegian University of Science and Technology, Department of Natural History; Pütlsepp, Ülle; Eesti Maaulikool Roy, Mélanie; Université Paul Sabatier, Laboratoire Evolution et Diversité Biologique Sather, Nancy; Department of Natural Resources

2	
3	Sletvold, Nina; Uppsala University, Plant Ecology and Evolution
4	Stipkova, Zuzka; Czech Academy of Science, Global Change Research
5	Institute
6	Tali, Kadri; Eesti Maaulikool
7	Warren II, Robert; SUNY Buffalo State, Department of Biology
8	Whigham, Dennis; Smithsonian Environmental Research Center,
9	Kov Worder, latitudinal gradient, adaptation, Asteraceae, Orchidaceae, bet-hedging,
10	Key Words: herbivory, demography, stress
11	
12	
13	
14	
15	SCHOLARONE [™]
16	Manuscripts
17	
18 10	
19 20	
20 21	
21	
22	
23	
25	
26	
27	
28	SCHOLARONE" Manuscripts
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48 49	
49 50	
50	
52	
53	
55 54	
54 55	
55 56	
50 57	
57	
58 59	
59 60	
00	

RH: Drivers of dormancy

1	Drivers of vegetative dormancy across herbaceous perennial plant species
2	
3	Richard P. Shefferson (dormancy@gmail.com) ¹ , Tiiu Kull (Tiiu.Kull@emu.ee) ² ,
4	Michael J. Hutchings (m.j.hutchings@sussex.ac.uk) ³ , Marc-André Selosse (marc-
5	andre.selosse@mnhn.fr) ^{4,5} , Hans Jacquemyn (hans.jacquemyn@kuleuven.be) ⁶ ,
6	Kimberly M. Kellett (kkellett09@gmail.com) ⁷ , Eric S. Menges
7	(emenges@archbold-station.org) ⁸ , Richard B. Primack (primack@bu.edu) ⁹ , Juha
8	Tuomi (juha.tuomi@utu.fi) ¹⁰ , Kirsi Alahuhta (kirsi.alahuhta@oulu.fi) ¹¹ , Sonja
9	Hurskainen (sonja.hurskainen@oulu.fi) ¹¹ , Helen M. Alexander
10	(helenalex914@gmail.com) ¹² , Derek S. Anderson
11	(derek.anderson@state.mn.us) ¹³ , Rein Brys (Rein.Brys@inbo.be) ¹⁴ , Emilia
12	Brzosko (emilka@uwb.edu.pl) ¹⁵ , Slavomir Dostálik
13	(Mirek.Dostalik@seznam.cz) ¹⁶ , Katharine Gregg (gregg@wvwc.edu) ¹⁷ , Zdeněk
14	Ipser (zdenek.ipser@seznam.cz) ¹⁸ , Anne Jäkäläniemi
15	(anne.jakalaniemi@gmail.com) ¹¹ , Jana Jersáková (jersa@centrum.cz) ¹⁸ , W. Dean
16	Kettle (kettle@ku.edu) ¹⁹ , Melissa McCormick (mccormickm@si.edu) ²⁰ , Ana
17	Mendoza (anamendoza@ecologia.unam.mx) ²¹ , Michael T. Miller
18	(mmiller@lgl.com) ²² , Asbjørn Moen (asbjorn.moen@ntnu.no) ²³ , Dag-Inge Øien
19	(dag.oien@ntnu.no) ²³ , Ülle Püttsepp (ylle.pyttsepp@emu.ee) ² , Mélanie Roy
20	(melanie.roy@univ-tlse3.fr) ²⁴ , Nancy Sather (nancy.sather@state.mn.us) ¹³ , Nina
21	Sletvold (nina.sletvold@ebc.uu.se) ²⁵ , Zuzana Štípková (zaza.zuza@seznam.cz) ²⁶ ,
22	Kadri Tali (kadri.tali@emu.ee)², Robert J. Warren II (hexastylis@gmail.com)²²,
23	Dennis F. Whigham (whighamd@si.edu) ²⁰
24	

Ecology Letters

1		RH: Drivers of dormancy
2 3 4	25	¹ Organization for Programs in Environmental Sciences, University of Tokyo,
4 5 6	26	Meguro-ku, Tokyo, Japan
7 8	27	² Estonian University of Life Sciences, Tartu, Estonia
9 10	28	³ School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex, BN1
11 12	29	9QG, UK
13 14 15	30	⁴ Institut de Systématique, Évolution, Biodiversité, Muséum national d'Histoire
16 17	31	naturelle, Sorbonne Universités, Paris, France
18 19	32	⁵ Department of Plant Taxonomy and Nature Conservation, University of Gdansk,
20 21	33	Gdansk, Poland
22 23	34	⁶ KU Leuven, Department of Biology, Leuven, Belgium
24 25	35	⁷ University of Georgia, Odum School of Ecology, Athens, Georgia, USA
26 27 28	36	⁸ Archbold Biological Station, Venus, Florida, USA
29 30	37	⁹ Biology Department, Boston University, Boston, Massachusetts, USA
31 32	38	¹⁰ Department of Biology, University of Turku, Turku, Finland
33 34	39	¹¹ Department of Ecology and Genetics, University of Oulu, Oulu, Finland
35 36	40	¹² Department of Ecology and Evolutionary Biology, University of Kansas,
37 38 39	41	Lawrence, Kansas, USA
40 41	42	¹³ Department of Natural Resources, St. Paul, Minnesota, USA
42 43	43	¹⁴ Research Institute for Nature and Forest, Brussels, Belgium
44 45	44	¹⁵ University of Bialystok, Institute of Biology, Bialystok, Poland
46 47	45	¹⁶ Daskabát, Olomouc, Czech Republic
48 49	46	¹⁷ Department of Biology, West Virginia Wesleyan College, Buckhannon, West
50 51 52	47	Virginia, USA
53 54	48	¹⁸ Department of Biology of Ecosystems, Faculty of Science, University of South
55 56	49	Bohemia, České Budějovice, Czech Republic
57 58 59		

RH: Drivers of dormancy

50	¹⁹ Kansas Biological Survey, University of Kansas, Lawrence, Kansas, USA
51	²⁰ Smithsonian Environmental Research Center, Edgewater, Maryland, USA
52	²¹ Instituto de Ecologia, Universidad Nacional Autonoma de Mexico, Ciudad
53	Universitario, UNAM, Mexico
54	²² LGL Limited, Sidney, British Columbia, Canada
55	²³ NTNU University Museum, Department of Natural History, Trondheim,
56	Norway
57	²⁴ Laboratoire Evolution et Diversité Biologique, Université Paul Sabatier – CNRS,
58	Toulouse, France
59	²⁵ Uppsala University, Dept. of Ecology and Genetics, Uppsala, Sweden
60	²⁶ Global Change Research Institute, Czech Academy of Science, Brno, Czech
61	Republic
62	²⁷ SUNY Buffalo State, Dept. of Biology, Buffalo, New York, USA
63	
64	Submitted as a <i>Letter</i> to <i>Ecology Letters</i>
65	Keywords: adaptation; Asteraceae; bet-hedging; demography; herbivory;
66	Orchidaceae; latitudinal gradient; stress
67	
68	Words in abstract: 150
69	Words in main text (excluding abstract, acknowledgements, references, and table
70	and figure legends): 4996
71	Words in text boxes: 0
72	Number of references: 62
73	Number of figures: 3
74	Number of tables: 0

	RH:	Drivers	of	dormancy
--	-----	---------	----	----------

1		
2		
3	75	Number of text boxes: 0
4		
5	76	
6 7		
8	77	Statement of authorship. RPS developed some of the core ideas of the paper,
9		
10	78	wrote the majority of the piece, and developed and conducted the core analyses.
11		
12	79	TK, MJH, HJ, M-A S, and JT also wrote some sections, and along with KMK, ESM,
13		
14	80	and RP, developed some of the core ideas. All authors contributed demographic
15		
16	81	data, analyses, and substantial revisions to the manuscript.
17 18		
19	82	Data accessibility. Should the manuscript be accepted, we will upload supporting
20		
21	83	data to Dryad and will include the data DOI.
22		
23	84	
24		
25	85	Corresponding author: Richard P. Shefferson. Organization for Programs on
26		
27	86	Environmental Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo
28 29	~ -	
30	87	153-8902 JAPAN. Phone: +81-3-5465-7235 Fax: +81-3-5465-7236 E-mail:
31		
32	88	dormancy@gmail.com
33		
34		
35		
36		
37		
38 39		
40		
40		
42		
43		
44		
45		
46		
47		
48 49		
49 50		
51		
52		
53		
54		
55		
56		
57		

58 59

60

89	Abstract. Vegetative dormancy, i.e. the temporary absence of aboveground
90	growth for \geq 1 year, is paradoxical, because plants cannot photosynthesize or
91	flower during dormant periods. We test ecological and evolutionary hypotheses
92	for its widespread persistence. We show that dormancy has evolved numerous
93	times. Most species displaying dormancy exhibit life history costs of sprouting,
94	and of dormancy itself. Short-lived and mycoheterotrophic species have higher
95	proportions of dormant plants than long-lived species and species with other
96	nutritional modes. Herbivory and foliage loss are associated with higher future
97	dormancy levels, suggesting that carbon limitation promotes dormancy.
98	Maximum dormancy duration is lower under higher precipitation and at higher
99	latitudes. Study length affects estimates of some demographic parameters. Our
100	results identify both life historical and environmental drivers of dormancy. We
101	also highlight the importance of the little understood costs of sprouting and
102	growth, latitudinal gradients in stress, and mixed nutritional modes, in the
103	evolution of herbaceous perennials.

Page 7 of 167

Ecology Letters

RH: Drivers of dormancy

104 INTRODUCTION

105	Many have a second neuron islant an arise renew their characteristic neuron
105	Many herbaceous perennial plant species renew their aboveground parts
106	annually, using resources accumulated during previous growing seasons, and
107	stored in belowground perennating structures such as bulbs and rhizomes.
108	Although it is widely believed that all herbaceous perennials produce
109	aboveground parts every year, detailed studies have shown that many plants in a
110	large number of species from many families do not (Lesica & Steele 1994;
111	Shefferson 2009; Reintal <i>et al.</i> 2010). In these species, plants that fail to emerge
112	aboveground may reappear after ≥1 year of subterranean existence, and some
113	plants cycle irregularly between years with and without aboveground parts. The
114	temporary absence of aboveground growth for one or more years is known as
115	vegetative dormancy, or prolonged dormancy (hereafter, 'dormancy') (Lesica &
116	Steele 1994; Shefferson 2009). In this study, we present the first detailed
117	analysis of the causes, ecological functions, and evolutionary significance of
118	dormancy, using data from all published studies in which it has been recorded.
119	Previous attempts to understand dormancy have used case studies of
120	individual populations or species to infer its biology across all dormancy-prone
121	species. This approach implies that the causes and functions of dormancy are
122	similar wherever it occurs. However, the mean proportion of plants in dormancy
123	in any year, duration of dormancy, and transition rates between dormancy and
124	other life states, vary widely across space, time, populations, and species (Kull &
125	Tuulik 1994; Shefferson & Tali 2007; Brys et al. 2011). If dormancy evolved once
126	in plant evolutionary history, it might be driven by similar factors in all or most
127	species in which it occurs, whereas if it evolved numerous times, the driving
128	mechanisms would probably differ depending on the genetic and evolutionary

Page 8 of 167

Ecology Letters

RH: Drivers of dormancy

129	contexts on each occasion. Because most literature on dormancy assumes that its
130	basis is the same across all plant taxa, we examine the prediction that dormancy
131	has a common origin early in the evolution of herbaceous perennials (the
132	common background hypothesis).
133	Dormancy appears paradoxical, because dormant plants forego
134	reproduction and often suffer higher mortality risk than sprouting plants
135	(Shefferson et al. 2014). However, depending on the costs and benefits
136	associated with dormancy vs. sprouting (i.e. seasonal re-emergence from a
137	perennating organ), natural selection can contribute to maintaining dormancy.
138	Two major, mutually non-exclusive hypotheses have been proposed to explain
139	this: certain life history costs contribute to the evolutionary maintenance of
140	dormancy (the trade-off hypothesis), and dormancy reduces the negative
141	impacts of environmental stress and variation on fitness (the environmental
142	stress hypothesis). We propose four predictions about dormancy across the
143	plant kingdom, derived from these hypotheses: 1) longer lifespan makes
144	dormancy more adaptive (the lifespan prediction), 2) dormancy is more
145	strongly expressed in species utilising non-photosynthesis-based carbon sources
146	(the nutritional mode prediction), 3) commonly experienced weather cues
147	promote dormancy (the common weather prediction), and 4) greater
148	environmental stress at higher latitudes creates a latitudinal gradient of
149	dormancy (the latitudinal gradient prediction). The basis for these hypotheses
150	and predictions is explained below.
151	Life history costs are negative, indirect consequences for life history traits,
152	such as survival or reproduction, caused by optimising other life history traits
153	(Stearns & Magwene 2003). These costs are often caused by patterns of
	7

1	
2	
3 4	
5	
6	
/ 8	
9	
10 11	
12	
13	
14 15	
16	
17	
18 19	
20	
21 22	
23	
24	
25 26	
27	
28 29	
30	
31	
32 33	
34	
35 36	
37	
38	
39 40	
41	
42 43	
44	
45	
46 47	
48	
49 50	
51	
52	
53 54	
55	
56 57	
57 58	
59	

60

RH: Drivers of dormancy

154	allocation of scarce resources or by pleiotropy, and manifested as negative
155	correlations between life history traits (de Jong & van Noordwijk 1992). In the
156	case of dormancy, some life history costs will be evolutionary drivers of
157	dormancy if they are associated with adverse effects on the fitness of sprouting
158	plants, such as reducing future survival, sprouting, or flowering caused by
159	sprouting, growth, or reproduction. If, for example, sprouting in a particular year
160	were associated with a high risk of herbivory, or if rapid growth caused
161	significant loss of limited resources, remaining dormant might be adaptive
162	(Shefferson <i>et al.</i> 2014). The trade-off hypothesis suggests that dormancy-
163	prone species should exhibit strong fitness-related costs caused especially by
164	sprouting and growth (this does not preclude some trade-offs making dormancy
165	less adaptive, as might happen if dormancy itself is associated with future
166	increases in mortality or lower fecundity).
167	The impact of these trade-offs would be expected to depend on lifespan and
168	nutritional mode. Lifespan may selectively influence dormancy because short-
169	lived species have fewer opportunities to sprout and reproduce than long-lived
170	species. Similarly, low costs of dormancy might select for longer lifespan if costs
171	of sprouting are high, because longer lifespan provides more opportunities to
172	reproduce. In one view of classical life history theory, such effects can also stem
173	from recruitment interacting with a trade-off between survival and
174	reproduction, where low or unpredictable recruitment favours long lifespans,
175	while high recruitment favours short lifespans (Stearns 1976). We therefore
176	predict that foregoing reproduction through dormancy will be less adaptive, or
177	even maladaptive, in short-lived vs. long-lived species (the lifespan prediction).
178	Trade-offs might also be very strong in mycoheterotrophs (achlorophyllous

179	plants acquiring all their carbon from mycorrhizal fungi), because limitation of
180	carbon from the mycorrhizal associate would impose a strong physiological cost
181	on sprouting (Bruns et al. 2002; Shefferson et al. 2016). Mixotrophs (green
182	species acquiring carbon from both mycorrhizal fungi and photosynthesis) may
183	suffer intermediate carbon limitation relative to mycoheterotrophs and
184	autotrophs (Selosse & Roy 2009; Merckx 2013). Thus, mycoheterotrophs should
185	be more dormancy-prone than photosynthetic species (the nutritional mode
186	prediction).
187	The environmental stress hypothesis proposes that temporal
188	environmental variation causes sprouting to impose fitness costs. These might
189	be triggered by disturbance or suboptimal growth conditions caused by factors
190	such as weather, herbivory, drought, and disease, increasing mortality or
191	reducing reproduction. Several studies have shown that the proportion of
192	dormant plants in a population in any year is correlated with local weather
193	conditions prior to, or during, the growing season (Shefferson <i>et al.</i> 2001; Miller
194	et al. 2004; Hutchings 2010). Thus, common cues such as rainfall or temperature
195	may determine the extent of dormancy (the common weather prediction).
196	Furthermore, if abiotic stress is greater at higher latitudes, for example due to
197	harsher winters and stronger fluctuations in weather during the growing season
198	(Normand <i>et al.</i> 2009), dormancy would be predicted to increase with latitude
199	(the latitudinal gradient prediction). At its extreme, the environmental stress
200	hypothesis suggests that dormancy may be a "bet-hedging trait", reducing short-
201	term fitness while raising lifetime fitness by avoiding risks associated with
202	sprouting in highly unfavourable years (Shefferson 2009; Gremer et al. 2012), as

60

Ecology Letters

1		RH: Drivers of dormancy
2 3 4	203	also proposed for seed and bud dormancy (Cohen 1966; Nilsson et al. 1996;
4 5 6	204	Childs <i>et al.</i> 2010).
7 8	205	In this study, we test the hypotheses and predictions presented above. A
9 10	206	wide range of data was collated on all herbaceous perennial species in which
11 12	207	dormancy has been documented. We examine the relationships between the
13 14 15	208	proportion of dormant plants in populations, the duration of dormancy, and the
16 17	209	life historical properties of populations and the environmental contexts under
18 19	210	which they were observed. For life historical properties, we examined the effects
20 21	211	on dormancy of perennating structure, nutritional mode, life history costs, and
22 23	212	evolutionary history. For environmental factors, we assessed the impacts on
24 25 26	213	dormancy of the latitude and geographic locations of populations, climate, and
26 27 28	214	herbivory.
29 30	215	
31 32	216	MATERIALS AND METHODS
33 34	217	Dataset development
35 36 27	218	We examined the ecological and evolutionary contexts of dormancy by
37 38 39	219	creating a dataset including a large number of characteristics about dormancy
40 41	220	from every relevant literature source available, supplemented with demographic
42 43	221	data from published and unpublished sources, and subjecting it to statistical and
44 45	222	phylogenetic analyses. Here, we summarise the development of this dataset
46 47 48	223	(hereafter, "main dataset"; full details in Supplemental Methods, and
48 49 50	224	characteristics of the species and populations in <i>Supplemental Results</i>).
51 52	225	First, we conducted a Google Scholar literature search for published data
53 54	226	on dormancy, using several relevant search terms (details in Supplemental
55 56	227	Methods). Next, we analysed demographic datasets to increase the statistical
57 58		

228	power to address questions about dormancy. From these datasets, we assessed
229	relationships between vital rates (probabilities of survival, sprouting, size
230	transitions, flowering, and fruiting), and numbers of flowers and fruits produced,
231	and characteristics including size, sprouting status (sprouting vs. dormant),
232	flowering status (flowering vs. not flowering), individual life history, and year.
233	Among these relationships, trade-offs were identified as significant negative
234	slopes associated with size, sprouting, flowering, or fruiting in either of the
235	previous two years vs. survival, sprouting, flowering, or fruiting in the current
236	year. Costs of reproduction, sprouting, growth, size, and dormancy were noted as
237	binomial variables in the main dataset. All these analyses were performed as
238	generalized linear mixed models (GLMMs) compared with AICc using the
239	packages <i>lme4</i> (Bates, Maechler & Bolker 2012) and <i>MuMIn</i> (Bartoń 2014) in <i>R</i>
240	3.4.1 (R Core Team 2016). Inference proceeded via the best-fit model and equally
241	parsimonious models (Δ AICc \leq 2.0), and <i>via</i> Akaike weights for each independent
242	factor summed across all models, which relate the strength of a factor from 0 (no
243	support) to 1.0 (complete support) (Burnham & Anderson 2002).
244	Next, for each population in each year, the GLMMs obtained were used to
245	create either high-resolution historical (3yr) population projection matrices, or
246	standard ahistorical (2yr) matrices when years of data were too limited for
247	construction of historical matrices. Historical population projection matrices are
248	second-order matrix models, in which transition probabilities represent the
249	probability that an individual in state <i>i</i> in year <i>t</i> -1 and state <i>j</i> in year <i>t</i> transitions
250	to state <i>k</i> in year <i>t</i> +1 (Ehrlén 2000). In ahistorical matrix models, transition
251	values represent the probability that an individual in state <i>j</i> in year <i>t</i> transitions
252	to state k in year $t+1$ (Ehrlén 2000). Projection matrices were used to estimate

RH: Drivers of dormancy

Ecology Letters

		Kit. Drivers of dormancy
	253	the mean life expectancy of individual plants (Steiner et al. 2012), which was
	254	used to examine the influence of lifespan on dormancy.
	255	Finally, we estimated the mean proportion of plants in each population
)	256	that were dormant each year as the complement of the resighting probability
2	257	estimated by Cormack-Jolly-Seber mark-recapture modeling in program MARK
3 	258	(White & Burnham 1999; Shefferson <i>et al.</i> 2001). We also determined the
5	259	frequency distribution of the duration of dormancy episodes per population, and
3	260	median and maximum durations. These metrics were incorporated into our main
)	261	dataset, together with metrics describing the studies and study sites.
<u>)</u> }	262	
+ 5 5	263	Phylogenetic analyses: testing the common background hypothesis
7 ? }	264	We conducted a phylogenetic analysis to infer a hypothetical evolutionary
)	265	history for dormancy, and to assess whether it exhibits phylogenetic signal (i.e.
2	266	the tendency for more closely-related species to share more similar trait values,
} - -	267	Cadotte & Davies 2016). First, we developed a phylogenetic tree of the 114
)) 7	268	species known to exhibit dormancy, based on the Open Tree of Life (Hinchliff et
3	269	al. 2015) using package rotl (Michonneau et al. 2016) for R (R Core Team 2016).
)	270	We also included 261 herbaceous plant species from the COMPADRE database
<u>2</u> 3	271	which, from detailed demographic studies, appear incapable of dormancy
1 5	272	(Salguero-Gómez et al. 2015). The original publications were examined for each
) 7 }	273	of these species, to confirm that dormancy had not been recorded. Onto this tree
))	274	we plotted maximum recorded values per species for mean proportion of
2	275	dormant plants and for duration of dormancy (see Statistical analyses below),
3 1	276	and used the resulting character evolution reconstructions to test the common

RH: Drivers of dormancy

277	background hypothesis. We reconstructed ancestral character states via
278	maximum likelihood with the <i>R</i> package <i>phytools</i> (Revell 2012).
279	We hypothesized that the capacity for dormancy would yield significant
280	phylogenetic signal if dormancy is constrained by a common genetic background,
281	whereas lack of phylogenetic signal would suggest macroevolutionary lability
282	and/or strong environmental determination of trait values. As species-level
283	measures of the capacity for dormancy, we used the maximum values per species
284	of the mean proportion of dormant plants, and duration of dormancy. We
285	analyzed phylogenetic signal in both metrics using Blomberg's K and
286	bootstrapping to determine significance in <i>R</i> package <i>picante</i> (Kembel <i>et al.</i>
287	2010) for <i>R</i> (R Core Team 2016). See <i>Supplemental Methods</i> for further details.
288	
289	Statistical analyses: tests of the trade-off and environmental stress hypotheses
290	The linear models, matrices, and derived metrics described above, were
291	used to construct the main dataset. This was then analysed evidence of the
292	effects of different life historical characteristics within each population on the
293	mean proportion of plants that were dormant, and maximum duration (years) of
294	dormancy. Although mean or median values might be considered better
295	measures of duration of dormancy, they were rarely reported. Data on maximum
296	duration of dormancy were available from approximately twice as many studies
297	as data on median length of dormancy.
298	We tested the trade-off hypothesis and environmental stress
299	hypothesis by analysing the impacts of life history and environmental variables
300	on dormancy across populations. Firstly, we created two global GLMMs differing
301	only in response term: the first included the logit-transformed mean proportion
	13
	15

Page 15 of 167

Ecology Letters

RH: Drivers of dormancy

302	of plants in dormancy in each population (normally distributed). The second
303	included the maximum duration of dormancy observed in each population
304	(Poisson distributed). Fixed factors tested in both models were one geographic
305	variable (absolute latitude for each population's location), two environmental
306	variables (mean annual precipitation and mean annual temperature throughout
307	the years of each study, obtained from the nearest weather station to the site),
308	five biological variables (nutritional mode, perennating structure, mean life
309	expectancy [years], and any reproductive and sprouting costs [binomial]), and
310	two study description variables (length of study [years] and number of plants
311	recorded). Species was included as a random factor in both models. We also
312	included geography more fully by creating sets of models in which either
313	continent, or longitude varying linearly within continent, was included as a
314	random factor. Significant relationships with biological variables, particularly
315	with costs of sprouting or reproduction, would be evidence supporting the trade-
316	off hypothesis, and significant relationships with geographic and environmental
317	variables would support the environmental stress hypothesis. These models
318	were developed using the <i>lme4</i> package (Bates <i>et al.</i> 2015) for <i>R</i> (R Core Team
319	2016), as before. Although herbivory might be an important driver of dormancy,
320	few studies reported on it, preventing its inclusion in the main mixed models.
321	We also compared factors associated with high vs. low mean proportions
322	of plants in dormancy (defined, respectively, as having means of $>20\%$ and
323	\leq 10% of plants dormant per population), and long <i>vs.</i> short maximum dormancy
324	durations (defined as >3 and \leq 2 years, respectively), as additional tests of the
325	trade-off hypothesis and lifespan prediction. Category limits were chosen to
326	clearly separate high vs. low levels of dormancy, while preserving statistical

327	power. Populations with values between these categories were omitted from the
328	analysis, leaving 128 and 163 populations (66 and 98 species) available for the
329	analysis of proportions and durations of dormancy, respectively. We predicted
330	that populations with short dormancy duration would exhibit short mean life
331	expectancy and high incidence of sprouting, growth, and reproductive costs,
332	whereas the opposite would be true of populations with long dormancy
333	duration.
334	To examine the role of trade-offs further, we also assessed the impacts of
335	different factors on costs of reproduction, sprouting, growth, and dormancy,
336	using GLMMS as before. The same fixed and random factors were included,
337	together with the presence of costs themselves. To assess the prediction that
338	longer-lived would be more dormancy-prone (the lifespan prediction), we
339	examined the relationships between mean life expectancy and the same fixed
340	and random factors, excluding mean life expectancy itself, using GLMMs as
341	before.
342	Dormancy has been widely reported in terrestrial orchids. This may reflect
343	more demographic data having been amassed for Orchidaceae than for other
344	plant families (Reintal et al. 2010). To examine whether orchids behave
345	differently from other families, we repeated all of the mixed modeling described
346	above, first with only the Orchidaceae species in our dataset, and then with only
347	non-orchids.
348	
349	RESULTS
350	Phylogenetic analyses and the common background hypothesis

Ecology Letters

2 3	
$ \begin{array}{r} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 37 \\ 38 \\ \end{array} $	
5 6	
7 8	
9	
10 11	
12 13	
14 15	
16	
17 18	
19 20	
21	
22 23	
24 25	
26	
27	
29 30	
31 32	
33	
34 35	
36 37	
38 39	
40	
41 42	
43 44	
45 46	
47	
48 49	
50 51	
52	
54	
55 56	
57 58	
59	
60	

RH: Drivers of dormancy

351	Maximum duration of dormancy and mean proportion of dormant plants varied
352	strongly across plant families (Figure S1). Ancestral state reconstructions of
353	maximum duration dormant and mean proportion dormant suggested complex
354	evolution with a minimum of, respectively, 22 gains with 32 losses, and 18 gains
355	with 20 losses (Figure S2). In both cases, the most recent common ancestor of
356	the ferns and the angiosperms also appears to be dormancy-prone. We found no
357	evidence of phylogenetic signal in either dormancy metric (proportion: $K = 0.245$
358	vs. K_{random} = 0.153 ± 0.004, P = 0.928; duration: K = 0.192 vs. K_{random} = 0.153 ±
359	0.005, <i>P</i> = 0.908).
360	
361	Trade-offs and life history
362	There was strong support for dormancy being driven by trade-offs (i.e.
363	significant negative correlations between life history traits). Of 81 species for
364	which trade-off data were available, some form of life history cost was found in
365	94.0%. Among 236 populations with data available to test for the presence of at
366	least one cost, only 43 (18.2%) showed no trade-offs. 51.3% of populations
367	exhibited reproductive costs, 58.1% exhibited costs of sprouting, and 27.1%
368	exhibited costs of growth. Costs of reproduction most commonly involved costs
369	to future size (25.0%), and least commonly involved costs to fruiting (8.1%) .
370	Sprouting most commonly exerted costs upon survival (49.6%), seen as
371	increased mortality in the following two years. It affected future fruiting in only
372	5.5% of cases. Costs of growth most commonly affected survival (19.5%), and
373	least commonly affected sprouting (2.5%). Intriguingly, 35.2% of all populations
374	exhibited a life history cost associated with large size, most often expressed
375	through lower future survival (25.0% of cases), or decreased flowering (23.7%).

376	68.2% of populations also exhibited some cost of dormancy, typically expressed
377	as a cost to future sprouting (48.7% of cases) or flowering (36.9%).
378	Trade-offs were most often influenced by latitude and annual
379	precipitation, and by sample size and study duration (Table S2). Reproductive
380	costs were more common in populations from higher latitudes, in those
381	experiencing lower precipitation, and in studies involving more plants (Table
382	S3). Sprouting costs were more common at lower latitudes, under lower
383	precipitation, in mycoheterotrophs, and in longer studies recording more plants
384	(Table S4). Some models that were as parsimonious as the best-fit model
385	suggested that such costs were more common in shorter-lived species (Tables S2
386	and S4). Growth costs were most common in rhizomatous species and least
387	common in taprooted species, and more common at lower latitudes and under
388	lower precipitation (Table S5). Costs of both growth and dormancy were more
389	common in longer studies (Tables S5 and S7). Costs of large size were more
390	common at higher latitudes, under lower precipitation, in short-lived species,
391	and in shorter studies (Table S6). Finally, studies of ≥10yrs duration were twice
392	as likely as studies of \leq 5 years to reveal historical costs of sprouting on survival
393	$(0.114 \pm 0.031 \text{ vs. } 0.059 \pm 0.029, \text{ respectively}).$
394	Populations with high mean proportions of dormant plants had
395	significantly lower mean life expectancies than populations with low mean
396	proportions dormant ($t_{73.7}$ = -4.264, $P < 0.0001$), contradicting the lifespan
397	prediction. These populations were significantly more likely to exhibit costs of
398	sprouting ($t_{107.7}$ = 2.499, P = 0.014), but not costs of reproduction ($t_{94.9}$ = 0.324, P
399	= 0.747) or size ($t_{75.9}$ = 1.873, P = 0.065) (Figure 1a-d). Counterintuitively,
400	populations with longer maximum dormancy duration also had significantly

RH: Drivers of dormancy

Ecology Letters

1		
2 3 4	401	shorter mean life expectancies than those with shorter dormancy ($t_{65.3}$ = -2.430,
5	402	P = 0.018), and were more likely to exhibit costs of sprouting ($t_{104.7}$ = 3.186, P =
7 8	403	0.002) and size ($t_{105.1}$ = 2.797, P = 0.006), but not reproduction ($t_{114.3}$ = 0.857, P =
9 10	404	0.393) (Figure 1e-h).
11 12	405	The best-fit mixed model of mean life expectancy indicated significant
13 14 15	406	influences of type of perennating structure, nutritional mode, costs of sprouting,
16 17	407	and study duration, although the last parameter was not included in some
18 19	408	models that were as parsimonious as the best-fit model (Tables S2 and S8). The
20 21	409	longest life expectancies were found in rhizomatous, autotrophic species with no
22 23	410	sprouting or reproductive costs (the longest estimated mean life expectancy was
24 25 26	411	522 years in Caladenia orientalis [Orchidaceae], and the longest estimated mean
20 27 28	412	life expectancy for a non-orchid species was 169 years in Lathyrus vernus
29 30	413	[Fabaceae]). Shortest mean life expectancies were in mycoheterotrophic species
31 32	414	with sprouting costs. Study duration had a small but significant impact on mean
33 34	415	life expectancy (+0.160 \pm 0.057 years per year of study), suggesting that study
35 36	416	length affects matrix-estimated life history traits (Figure S3; Table S8).
37 38 39	417	
40 41	418	Life historical and environmental drivers of dormancy
42 43	419	Our best-fit mixed model of the mean proportion of dormant individuals
44 45	420	included significant effects of sprouting costs, nutritional mode, and perennating
46 47 48	421	structure, with the latter two factors not occurring in some equally parsimonious
48 49 50	422	models (Table S9). In particular, the mean proportion of dormant plants was
51 52	423	lowest in mixotrophs, and highest in mycoheterotrophs (Figure 2a). Mean
53 54	424	proportion dormant was also lower in species with taproots than in rhizomatous
55 56		
57 58		
50		

425	species (Figure 2b). Species with sprouting costs also had higher proportions of
426	dormant plants (Figure 2; Table S9).
427	Our best-fit model of maximum duration of dormancy included significant
428	effects of study length, sprouting costs, type of perennating structure,
429	precipitation, and absolute latitude, with the latter two factors absent in some
430	models that were as parsimonious as the best-fit model (Tables S2 and S10).
431	Rhizomatous species had the longest maximum dormancy values, whereas those
432	with corms or bulbs had the shortest. On average, species with sprouting costs
433	had maximum duration of dormancy roughly twice that of species without
434	(Figure 3). Higher precipitation was associated with lower proportions of plants
435	in dormancy (Figure 3a). Across all populations and species, the relationship
436	between maximum duration of dormancy and absolute latitude was negative
437	(Figure 3b). Maximum observed dormancy duration also increased by 0.217 \pm
438	0.017 years per year of study (Figure 3c).
439	With few exceptions (see Supplemental Results), the results of mixed
440	model analyses of mean life expectancy, mean proportion dormant, and
441	maximum duration of dormancy were robust when repeated with either orchids
442	or non-orchids excluded from the analyses.
443	Impacts of herbivory or defoliation on future dormancy were reported in
444	37 of 39 populations from 13 studies. In 35 of these populations involving 9
445	species (Castilleja mollis, Cephalanthera longifolia, Cleistesiopsis bifaria,
446	Cypripedium calceolus, Cypripedium reginae, Dactylorhiza lapponica, Lathyrus
447	vernus, Solidago missouriensis, Trillium grandiflorum), a higher proportion of
448	plants were dormant in years following severe herbivory or defoliation.

Ecology Letters

	RH: Drivers of dormancy
449	Herbivory was associated with increased sprouting in only one population, of
450	Liparis loeselii.
451	
452	DISCUSSION
453	Diverse backgrounds
454	Phylogenetic analyses showed that dormancy has evolved numerous
455	times, refuting the common background hypothesis. Although this result
456	suggests that dormancy has probably proved adaptive under many ecological
457	circumstances, we also identified common drivers of dormancy in the form of life
458	history costs and environmental interactions, suggesting that it may evolve
459	repeatedly in response to common evolutionary and genetic contexts. Although
460	data on this subject are not available, the frequency with which dormancy has
461	evolved suggests that it can be achieved with only a small number of mutations
462	at few loci. For example, if dormancy were linked in some clades to climatic
463	stress caused by strong seasonality, its evolution in those clades might be rooted
464	in mutations at loci involved in the physiological breaking of winter dormancy.
465	The genes responsible might be those involved in the ABA-signalling pathway
466	(Footitt et al. 2011), or in the growth of vegetative rhizomes, the latter of which
467	are also engaged in the expression of winter dormancy (Paterson <i>et al.</i> 1995).
468	Mycoheterotrophy is also associated with an effect on the mean annual
469	proportion of plants in dormancy. Carbon provisioning from mycorrhizal fungi
470	makes sprouting largely superfluous except for the purpose of flowering
471	(Shefferson <i>et al.</i> 2016). Some of the structural carbon in the perennating
472	structures of mixotrophs is also provided by fungi (Roy et al. 2013) while growth
473	of the shoot is mainly supported by photosynthesis (Gonneau et al. 2014). Since

RH: Drivers of dormancy

474	mixotrophy and myc	oheterotrophy have	evolved in at least three	e plant families
				- p

475 (Ericaceae, Ophioglossaceae, Orchidaceae), dormancy and mycoheterotrophy

476 may have common evolutionary contexts to both dormancy and

477 mycoheterotrophy, at least within these clades.

Life history relationships

We found strong evidence of certain life history costs, particularly costs of sprouting, being associated with higher levels of dormancy (the trade-off hypothesis). While none of the trade-offs examined (costs of flowering, fruiting, sprouting, growth, size, and dormancy itself) was significant in all populations, almost every population exhibited at least one trade-off. Populations with higher mean proportions of plants in dormancy, and longer maximum durations of dormancy, were more likely to exhibit costs of sprouting (Figures 2 and 3). Furthermore, mycoheterotrophic species had higher mean proportions of dormant plants than autotrophic or mixotrophic species, supporting the nutritional mode prediction (Figure 2a). Although greater growth and larger size are often considered indicators

of higher fitness (Salguero-Gómez & Casper 2010), this study showed that they were associated in many species with lower probabilities of future sprouting and survival, respectively. Since our analyses separated the effects of size from those of reproduction, the significant effects observed are unlikely to have been a reflection of reproduction being a costly activity occurring only in larger plants. Instead, large size and greater growth appear to inflict costs beyond the physiological impacts of previous reproduction (Bierzychudek 1982). One possible explanation is that species displaying such costs, e.g. Asarum arifolium

RH: Drivers of dormancy

Ecology Letters

1		RH: Drivers of dormancy
2	100	
3 4	499	(Aristolochiaceae), Ophrys sphegodes (Orchidaceae), and Corallorhiza
5 6	500	odontorhiza (mycoheterotrophic Orchidaceae), exhibit strong evidence of
7 8	501	senescence; large plants are old plants, subject to higher mortality risk.
9 10	502	Alternatively, the trade-offs documented may be stronger when environmental
11 12	503	conditions deteriorate severely, causing plants that invest in growth under good
13 14	504	conditions to suffer increased mortality risk due to usage rather than storage of
15 16 17	505	resources that subsequently become limiting (Shefferson & Roach 2010).
18 19	506	Shorter-lived species were more likely to exhibit dormancy than longer-
20 21	507	lived species, refuting the lifespan prediction, and also more likely to exhibit
22 23	508	sprouting costs. This may be because they need to allocate resources to
24 25 26	509	sprouting even in very unfavourable years in order to reproduce at all, or
20 27 28	510	because they invest less in storage. If dormancy is indeed an adaptive response
29 30	511	to stress (Shefferson et al. 2005), short-lived species have depleted resource
31 32	512	pools more often than longer-lived species, due to previous sprouting and
33 34	513	growth, increasing their probabilities of dormancy and mortality. This
35 36 37	514	interpretation is supported by our finding that costs of large size are more
38 39	515	common in shorter-lived species, implying a higher probability of exhausting
40 41	516	resources on aboveground growth in order to reproduce.
42 43	517	
44 45 46	518	Environmental stress
48 47 48	519	Support for the hypothesis that environmental stress results in greater
49 50	520	dormancy was equivocal. Maximum dormancy duration was negatively
51 52	521	correlated with annual precipitation (the common weather prediction), although
53 54	522	the influence of this factor was weaker than those of sprouting costs and
55 56 57	523	perennating structure. Other evidence supported an impact of biotic, rather than
58		
59 60		22

524	abiotic, stress. For example, most studies providing data on herbivory or
525	defoliation demonstrated that both increase dormancy levels (e.g., Ehrlén 2003;
526	Knight 2003; McEachern et al. 2009). Some previous studies have suggested that
527	herbivory may be the primary driver of dormancy (Tamm 1972; Gregg 2011).
528	Contrary to our prediction that latitudinal gradients in abiotic
529	environmental stress should result in greater dormancy at higher latitude,
530	maximum dormancy duration decreased with increasing latitude. If longer
531	dormancy indicates stress, this suggests that low-latitude environments are
532	somehow more stressful. This could be explained by stronger biotic interactions
533	nearer the equator (Schemske <i>et al.</i> 2009). For example, the negative impacts of
534	higher conspecific density, including stronger competition and increased
535	exposure to pathogens, are strongest in the tropics (LaManna et al. 2017), as is
536	the impact of herbivory (Zhang et al. 2016). It is also possible that climate-
537	dependent life history costs contribute to or create the latitudinal gradient that
538	we observed (Sletvold & Ågren 2015). Such biotic impacts may explain why costs
539	of sprouting and growth are also more common at lower latitudes, as these
540	trade-offs may be stronger with greater competition or herbivory.
541	
542	Future research and conclusions
543	Our search for drivers of dormancy was limited in ways that suggest a
544	need for further research. Firstly, our interpretation of life history costs is based
545	on a broad definition of trade-offs that includes any mechanisms yielding
546	negative correlations, including physiological constraints and negative genetic
547	correlations, linked gene expression, correlated selection, and indirect
548	relationships driven by factors yielding opposite patterns in unrelated traits

Ecology Letters

1		RH: Drivers of dormancy
2 3	549	(Bell & Kofopanou 1986; Reznick <i>et al.</i> 2000; Knops <i>et al.</i> 2007). Secondly,
4 5 6	550	although we found evidence that weather and climate drive dormancy, we
7 8	551	acknowledge that it may depend more strongly on annual variation in weather
9 10	552	(Kéry et al. 2005; Smith et al. 2005), rather than mean weather variables. Finally,
11 12	553	mixotrophy has only recently been subjected to rigorous study, and it is possible
13 14	554	that some species we treated as autotrophs are actually mixotrophs (Selosse &
15 16 17	555	Roy 2009).
18 19	556	We found widespread evidence for costs of sprouting promoting
20 21	557	dormancy, and for environmental influences, and multiple evolutionary origins
22 23	558	affecting patterns of dormancy in different clades. However, the mechanisms
24 25 26	559	triggering dormancy, and producing sprouting and growth costs, are still not
26 27 28	560	understood (Gregg 2011). We and others have reported different impacts of
29 30	561	temperature, precipitation, and herbivory on dormancy in different species
31 32	562	(Kéry & Gregg 2004; Miller et al. 2004; Light & MacConaill 2006; Hutchings
33 34	563	2010), and that closely-related dormancy-prone species can respond differently
35 36 37	564	to the same climatic variables (Shefferson <i>et al.</i> 2017). The mean proportion of
38 39	565	dormant plants in populations in different years is also known to vary spatially,
40 41	566	even within species (Shefferson & Tali 2007), and the sprouting behaviour of
42 43	567	plants within populations depends on their size, age, life stage, genetic
44 45	568	background, and microclimate (Lacey 1986; Jäkäläniemi et al. 2011). The
46 47 48	569	impacts of biotic factors such as herbivory on dormancy has been insufficiently
49 50	570	explored. The hypothesis that herbivory creates strong costs of sprouting that
51 52	571	favour dormancy requires direct testing. The possible role of biotic interactions
53 54	572	in causing stronger manifestations of dormancy near the equator should also be
55 56	573	examined.
57 58		

RH: Drivers of dormancy

574	This study has demonstrated the importance of life history costs and
575	environmental factors as drivers of dormancy wherever it is found. Trade-offs were
576	identified that drive the life history evolution of many herbaceous perennials, the most
577	notable of which were costs of sprouting and growth, and their relationships with
578	nutritional mode. We observed complex but common relationships with
579	environmental factors, and also with latitude, that require further inquiry. We also
580	demonstrated hitherto unidentified impacts of study length on life history metrics. We
581	urge biologists to focus their efforts on unravelling the specific mechanisms yielding
582	these patterns. These outcomes suggest productive avenues for further research,
583	including detailed studies of life history evolution in herbaceous plant species, the
584	ecology, genetics and physiology behind its expression, and the urgent need for
585	longer-term demographic studies.
586	
587	Acknowledgements
587 588	Acknowledgements RPS thanks R. Salguero-Gómez for access to his <i>Cryptantha</i> dataset, and was
	Acknowledgements
588	RPS thanks R. Salguero-Gómez for access to his <i>Cryptantha</i> dataset, and was
588 589	RPS thanks R. Salguero-Gómez for access to his <i>Cryptantha</i> dataset, and was supported by JSPS Grant-In-Aid 16K07503. TK thanks the TAA Herbarium, and
588 589 590	Acknowledgements RPS thanks R. Salguero-Gómez for access to his <i>Cryptantha</i> dataset, and was supported by JSPS Grant-In-Aid 16K07503. TK thanks the TAA Herbarium, and was supported by institutional research funding IUT21-1 from the Estonian
588 589 590 591	Acknowledgements RPS thanks R. Salguero-Gómez for access to his <i>Cryptantha</i> dataset, and was supported by JSPS Grant-In-Aid 16K07503. TK thanks the TAA Herbarium, and was supported by institutional research funding IUT21-1 from the Estonian Ministry of Education and Research. ESM thanks S. Crate, S. Koontz, P. Quintana-
588 589 590 591 592	Acknowledgements RPS thanks R. Salguero-Gómez for access to his <i>Cryptantha</i> dataset, and was supported by JSPS Grant-In-Aid 16K07503. TK thanks the TAA Herbarium, and was supported by institutional research funding IUT21-1 from the Estonian Ministry of Education and Research. ESM thanks S. Crate, S. Koontz, P. Quintana- Ascencio, S. Smith, M. Tye, C. Weekley, and the Florida Division of Plant Industry,
588 589 590 591 592 593	Acknowledgements RPS thanks R. Salguero-Gómez for access to his <i>Cryptantha</i> dataset, and was supported by JSPS Grant-In-Aid 16K07503. TK thanks the TAA Herbarium, and was supported by institutional research funding IUT21-1 from the Estonian Ministry of Education and Research. ESM thanks S. Crate, S. Koontz, P. Quintana- Ascencio, S. Smith, M. Tye, C. Weekley, and the Florida Division of Plant Industry, and was supported by National Science Foundation grants DEB1347843,
588 589 590 591 592 593 594	Acknowledgements RPS thanks R. Salguero-Gómez for access to his <i>Cryptantha</i> dataset, and was supported by JSPS Grant-In-Aid 16K07503. TK thanks the TAA Herbarium, and was supported by institutional research funding IUT21-1 from the Estonian Ministry of Education and Research. ESM thanks S. Crate, S. Koontz, P. Quintana- Ascencio, S. Smith, M. Tye, C. Weekley, and the Florida Division of Plant Industry, and was supported by National Science Foundation grants DEB1347843, DEB0812717, DEB0233899, and DEB98-15370. RBP was supported in this
588 589 590 591 592 593 594 595	RPS thanks R. Salguero-Gómez for access to his <i>Cryptantha</i> dataset, and was supported by JSPS Grant-In-Aid 16K07503. TK thanks the TAA Herbarium, and was supported by institutional research funding IUT21-1 from the Estonian Ministry of Education and Research. ESM thanks S. Crate, S. Koontz, P. Quintana- Ascencio, S. Smith, M. Tye, C. Weekley, and the Florida Division of Plant Industry, and was supported by National Science Foundation grants DEB1347843, DEB0812717, DEB0233899, and DEB98-15370. RBP was supported in this project only by his love for pink lady's slipper orchids. M-AS was supported by
588 589 590 591 592 593 594 595 596	Acknowledgements RPS thanks R. Salguero-Gómez for access to his <i>Cryptantha</i> dataset, and was supported by JSPS Grant-In-Aid 16K07503. TK thanks the TAA Herbarium, and was supported by institutional research funding IUT21-1 from the Estonian Ministry of Education and Research. ESM thanks S. Crate, S. Koontz, P. Quintana- Ascencio, S. Smith, M. Tye, C. Weekley, and the Florida Division of Plant Industry, and was supported by National Science Foundation grants DEB1347843, DEB0812717, DEB0233899, and DEB98-15370. RBP was supported in this project only by his love for pink lady's slipper orchids. M-AS was supported by the 2015/18/A/NZ8/00149 grant funded by National Science Centre (Poland)

Ecology Letters

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
18	
19	
20	
21	
22	
22	
23 24	
24 25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55 56	
50 57	
57 58	
59	

599	O'Neill, J. Applegate, R. Floyd, P. Petersen, and E. Kelley. MTM thanks G. Allen and
600	J. Antos. MM and DW were supported by grants from the U.S. National Park
601	Service, Smithsonian Institution, and the U.S. Army. DIO and AM thank T.
602	Arnesen and A. Lyngstad. NS and DSA would like to thank R. Dahle, A. Sather, D.
603	Spaeth, J. Beckman, J. Prekker, J. Boe, B. Marty, W. Smith, M. Minchak, J. Provost
604	and staff of the Lake Bronson office of The Nature Conservancy. All authors
605	would like to thank all of those who have helped gather the field data that made
606	this work possible.
607	
608	References
609	Bartoń, K.A. (2014). MuMIn: multi-model inference.
610	Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015). Fitting linear mixed-effects
611	models using <i>lme4. J. Stat. Softw.</i> , 67, 1–48.
612	Bell, G. & Kofopanou, V. (1986). The cost of reproduction. In: Oxford Surveys of
613	Evolutionary Biology (eds. Dawkins, R. & Ridley, M.). Oxford University Press,
614	Oxford, UK, pp. 83–131.
615	Bierzychudek, P. (1982). Life histories and demography of shade-tolerant temperate
616	forest herbs: a review. New Phytol., 90, 757–776.
617	Bruns, T.D., Bidartondo, M.I. & Taylor, D.L. (2002). Host specificity in
618	ectomycorrhizal communities: what do the exceptions tell us? Integr. Comp. Biol., 42,
619	352–359.
620	Brys, R., Shefferson, R.P. & Jacquemyn, H. (2011). Impact of herbivory on flowering
621	behaviour and life history trade-offs in a polycarpic herb: a 10-year experiment.
622	<i>Oecologia</i> , 166, 293–303.

- 623 Burnham, K.P. & Anderson, D.R. (2002). Model selection and multimodel inference:
- 624 a practical information-theoretic approach. Springer-Verlag New York, Inc., New
- 625 York, New York, USA.
- 626 Cadotte, M.W. & Davies, T.J. (2016). Phylogenies in ecology: a guide to concepts
- 627 and methods. Princeton University Press, Princeton, New Jersey, USA.
- 628 Childs, D.Z., Metcalf, C.J.E. & Rees, M. (2010). Evolutionary bet-hedging in the real
- 629 world: empirical evidence and challenges revealed by plants. Proc. R. Soc. Lond. B
- 630 Biol. Sci., 277, 3055–3064.
- 631 Cohen, D. (1966). Optimizing reproduction in a randomly varying environment. J.
- *Theor. Biol.*, 12, 119–129.
- 633 Ehrlén, J. (2000). The dynamics of plant populations: does the history of individuals
 634 matter? *Ecology*, 81, 1675–1684.
- 635 Ehrlén, J. (2003). Fitness components versus total demographic effects: Evaluating
- 636 herbivore impacts on a perennial herb. *Am. Nat.*, 162, 796–810.
- 637 Footitt, S., Douterelo-Soler, I., Clay, H. & Finch-Savage, W.E. (2011). Dormancy
- 638 cycling in *Arabidopsis* seeds is controlled by seasonally distinct hormone-signaling
- 639 pathways. Proc. Natl. Acad. Sci., 108, 20236–20241.
- 640 Gonneau, C., Jersáková, J., de Tredern, E., Till-Bottraud, I., Saarinen, K., Sauve, M.,
- *et al.* (2014). Photosynthesis in perennial mixotrophic *Epipactis* spp. (Orchidaceae)
- 642 contributes more to shoot and fruit biomass than to hypogeous survival. J. Ecol., 102,
- 643 1183–1194.
- 644 Gregg, K.B. (2011). Recovery from bud disappearance explains prolonged dormancy
- 645 in Cleistes bifaria (Orchidaceae). Am. J. Bot., 98, 326–330.

Ecology Letters

1		
2 3	646	Gremer, J.R., Crone, E.E. & Lesica, P. (2012). Are dormant plants hedging their bets?
4 5 6	647	Demographic consequences of prolonged dormancy in variable environments. Am.
7 8	648	Nat., 179, 315–327.
9 10	649	Hinchliff, C.E., Smith, S.A., Allman, J.F., Burleigh, J.G., Chaudhary, R., Coghill,
11 12	650	L.M., et al. (2015). Synthesis of phylogeny and taxonomy into a comprehensive tree
13 14	651	of life. Proc. Natl. Acad. Sci., 112, 12764-12769.
15 16	652	Hutchings, M.J. (2010). The population biology of the early spider orchid Ophrys
17 18 19	653	sphegodes Mill. III. Demography over three decades. J. Ecol., 98, 867–878.
20 21	654	Jäkäläniemi, A., Crone, E.E., Närhi, P. & Tuomi, J. (2011). Orchids do not pay costs
22 23	655	at emergence for prolonged dormancy. Ecology, 92, 1538–1543.
24 25	656	de Jong, G. & van Noordwijk, A.J. (1992). Acquisition and allocation of resources:
26 27	657	genetic (co)variances, selection, and life histories. Am. Nat., 139, 749-770.
28 29	658	Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly,
30 31	659	D.D., et al. (2010). Picante: R tools for integrating phylogenies and ecology.
32 33 34	660	Bioinformatics, 26, 1463–1464.
35 36	661	Kéry, M. & Gregg, K.B. (2004). Demographic analysis of dormancy and survival in
37 38	662	the terrestrial orchid Cypripedium reginae. J. Ecol., 92, 686-695.
39 40	663	Kéry, M., Gregg, K.B. & Schaub, M. (2005). Demographic estimation methods for
41 42	664	plants with unobservable life-states. Oikos, 108, 307-320.
43 44	665	Knight, T.M. (2003). Effects of herbivory and its timing across populations of
45 46 47	666	Trillium grandiflorum (Liliaceae). Am. J. Bot., 90, 1207–1214.
48 49	667	Knops, J.M.H., Koenig, W.D. & Carmen, W.J. (2007). Negative correlation does not
50 51	668	imply a tradeoff between growth and reproduction in California oaks. Proc. Natl.
52 53 54 55 56 57	669	Acad. Sci., 104, 16982–16985.
-		

670	Kull, T. & Tuulik, T.	(1994). Orchid studies on	permanent plots. In: Orchid ecology
-----	-----------------------	---------------------------	-------------------------------------

and protection in Estonia (ed. Kull, T.). Tartu University Press, Tartu, Estonia, pp.

672 35–42.

- 673 Lacey, E.P. (1986). The genetic and environmental control of reproductive timing in a
- 674 short-lived monocarpic species Daucus carota (Umbelliferae). J. Ecol., 74, 73–86.
- 675 LaManna, J.A., Mangan, S.A., Alonso, A., Bourg, N.A., Brockelman, W.Y.,
- 676 Bunyavejchewin, S., et al. (2017). Plant diversity increases with the strength of
- 677 negative density dependence at the global scale. *Science*, 356, 1389–1392.
- 678 Lesica, P. & Steele, B.M. (1994). Prolonged dormancy in vascular plants and
- 679 implications for monitoring studies. *Nat. Areas J.*, 14, 209–212.
- 680 Light, M.H.S. & MacConaill, M. (2006). Appearance and disappearance of a weedy
- 681 orchid, *Epipactis helleborine*. *Folia Geobot.*, 41, 77–94.
- 682 McEachern, A.K., Thomson, D.M. & Chess, K.A. (2009). Climate alters response of
- 683 an endemic island plant to removal of invasive herbivores. *Ecol. Appl.*, 19, 1574–
- 684 1584.
- 685 Merckx, V.S.F.T. (2013). Mycoheterotrophy: an introduction. In: *Mycoheterotrophy:*
- 686 the biology of plants living on fungi (ed. Merckx, V.S.F.T.). Springer Science and
- 687 Business Media, New York, New York, USA, pp. 1–17.
- 688 Michonneau, F., Brown, J.W. & Winter, D.J. (2016). *rotl*: an *R* package to interact
- 689 with the Open Tree of Life data. *Methods Ecol. Evol.*, 7, 1476–1481.
- 690 Miller, M.T., Allen, G.A. & Antos, J.A. (2004). Dormancy and flowering in two
- 691 mariposa lilies (*Calochortus*) with contrasting distribution patterns. *Can. J. Bot.*, 82,
 - 1790–1799.
 - 693 Nilsson, P., Tuomi, J. & Åström, M. (1996). Bud dormancy as a bet-hedging strategy.
- 694 Am. Nat., 147, 269–281.

RH: Drivers of dormancy

449.

A., 92, 6127–6131.

Ecology Letters

Normand, S., Treier, U.A., Randin, C., Vittoz, P., Guisan, A. & Svenning, J.-C.

Paterson, A.H., Schertz, K.F., Lin, Y.R., Liu, S.C. & Chang, Y.L. (1995). The

weediness of wild plants - Molecular analysis of genes influencing dispersal and

persistence of Johnsongrass, Sorghum halepense (L) Pers. Proc. Natl. Acad. Sci. U. S.

R Core Team. (2016). R: a language and environment for statistical computing. R

Reintal, M., Tali, K., Haldna, M. & Kull, T. (2010). Habitat preferences as related to

the prolonged dormancy of perennial herbs and ferns. *Plant Ecol.*, 210, 111–123.

Revell, L.J. (2012). *phytools*: an *R* package for phylogenetic comparative biology

Reznick, D.N., Nunney, L. & Tessier, A. (2000). Big houses, big cars, superfleas and

Roy, M., Gonneau, C., Rocheteau, A., Berveiller, D., Thomas, J.-C., Damesin, C., et

al. (2013). Why do mixotrophic plants stay green? A comparison between green and

achlorophyllous orchid individuals in situ. Ecol. Monogr., 83, 95–117.

Salguero-Gómez, R. & Casper, B.B. (2010). Keeping plant shrinkage in the

Salguero-Gómez, R., Jones, O.R., Archer, C.R., Buckley, Y.M., Che-Castaldo, J.,

Caswell, H., et al. (2015). The Compadre Plant Matrix Database: an open online

Foundation for Statistical Computing, Vienna, Austria.

(and other things). Methods Ecol. Evol., 3, 217–223.

demographic loop. J. Ecol., 98, 312-323.

the costs of reproduction. Trends Ecol. Evol., 15, 421-425.

repository for plant demography. J. Ecol., 103, 202–218.

(2009). Importance of abiotic stress as a range-limit determinant for European plants:

insights from species responses to climatic gradients. *Glob. Ecol. Biogeogr.*, 18, 437–

2	
2 3	695
4 5 6	696
7 8	697
9 10	698
11 12	699
13 14	700
15 16	701
17 18	702
19 20 21	703
22 23	704
24 25	705
26 27	706
28 29	707
30 31	708
32 33 34	709
35 36	710
37 38	711
39 40	712
41 42	713
43 44	714
45 46 47	715
47 48 49	716
50 51	717
52 53	718
54 55	
56 57	
58 59	
59 60	

- 719 Schemske, D.W., Mittelbach, G.G., Cornell, H.V., Sobel, J.M. & Roy, K. (2009). Is
- there a latitudinal gradient in the importance of biotic interactions? *Annu. Rev. Ecol.*
- 721 Evol. Syst., 40, 245–269.
- 722 Selosse, M.-A. & Roy, M. (2009). Green plants that feed on fungi: facts and questions
- about mixotrophy. *Trends Plant Sci.*, 14, 64–70.
- 724 Shefferson, R.P. (2009). The evolutionary ecology of vegetative dormancy in mature
- herbaceous perennial plants. J. Ecol., 97, 1000–1009.
- 726 Shefferson, R.P., Kull, T. & Tali, K. (2005). Adult dormancy induced by stress in
- 727 long-lived orchids. *Ecology*, 86, 3099–3104.
- 728 Shefferson, R.P., Mizuta, R. & Hutchings, M.J. (2017). Predicting evolution in
- response to climate change: the example of sprouting probability in three dormancy-
- 730 prone orchid species. R. Soc. Open Sci., 4, 160647.
- 731 Shefferson, R.P. & Roach, D.A. (2010). Longitudinal analysis of *Plantago*: adaptive
- benefits of iteroparity in a short-lived, herbaceous perennial. *Ecology*, 91, 441–447.
- 733 Shefferson, R.P., Roy, M., Puttsepp, Ü. & Selosse, M.-A. (2016). Demographic shifts
- related to mycoheterotrophy and their fitness impacts in two *Cephalanthera* species.
- *Ecology*, 97, 1452–1462.
- 736 Shefferson, R.P., Sandercock, B.K., Proper, J. & Beissinger, S.R. (2001). Estimating
- 737 dormancy and survival of a rare herbaceous perennial using mark-recapture models.
- *Ecology*, 82, 145–156.
- 739 Shefferson, R.P. & Tali, K. (2007). Dormancy is associated with decreased adult
- survival in the burnt orchid, *Neotinea ustulata*. J. Ecol., 95, 217–225.
- 741 Shefferson, R.P., Warren II, R.J. & Pulliam, H.R. (2014). Life history costs make
- 742 perfect sprouting maladaptive in two herbaceous perennials. J. Ecol., 102, 1318–1328.

Ecology Letters

2	
3 ∧	
5	
3 4 5 6 7 8 9 10	
7	
8	
9	
10	
12	
13	
14	
15	
16	
17 18	
19	
20	
21	
22	
23	
24 25	
26	
27	
28	
29	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	
32	
33	
34	
35	
36 27	
38	
39	
40	
41	
42 43	
43 44	
45	
46	
47	
48 49	
49 50	
51	
52	
53	
54	
55 56	
50 57	
58	
59	

60

RH: Drivers of dormancy

- 743 Sletvold, N. & Ågren, J. (2015). Climate-dependent costs of reproduction: Survival
- and fecundity costs decline with length of the growing season and summer
- 745 temperature. *Ecol. Lett.*, 18, 357–364.
- 746 Smith, M., Caswell, H. & Mettler-Cherry, P. (2005). Stochastic flood and
- 747 precipitation regimes and the population dynamics of a threatened floodplain plant.
- 748 Ecol. Appl., 15, 1036–1052.
- 749 Stearns, S.C. (1976). Life-history tactics: a review of the ideas. Q. Rev. Biol., 51, 3–
 - 750 47.
 - 751 Stearns, S.C. & Magwene, P. (2003). The naturalist in a world of genomics. *Am. Nat.*,
 752 161, 171–180.
- 753 Steiner, U.K., Tuljapurkar, S., Coulson, T. & Horvitz, C. (2012). Trading stages: life
 - 754 expectancies in structured populations. *Exp. Gerontol.*, 47, 773–781.
 - 755 Tamm, C.O. (1972). Survival and flowering of some perennial herbs. II. The
- 756 behaviour of some orchids on permanent plots. *Oikos*, 23, 23–38.
- 757 White, G.C. & Burnham, K.P. (1999). Program *MARK*: survival estimation from
- 758 populations of marked animals. *Bird Study*, 46 Supplement, 120–138.
- 759 Zhang, S., Zhang, Y. & Ma, K. (2016). Latitudinal variation in herbivory:
- 760 hemispheric asymmetries and the role of climatic drivers. J. Ecol., 104, 1089–1095.
- 761

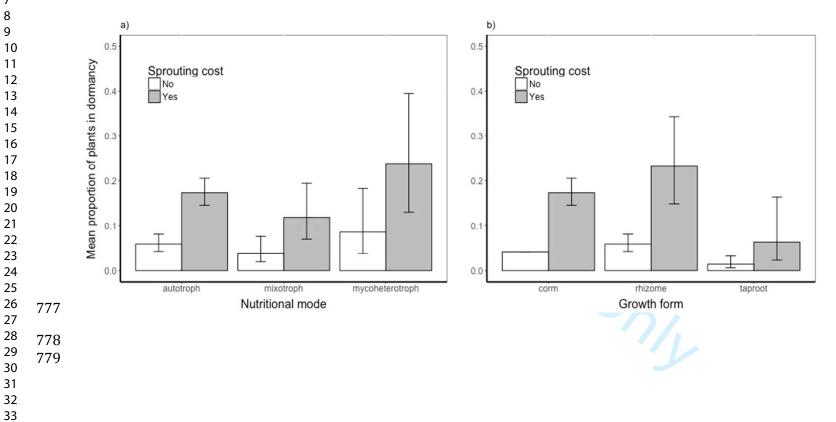
Figure Legend.

Figure 1. Life history characteristics of populations with high vs. low mean proportions of plants in dormancy (a-d), and short vs. long

- 764 maximum dormancy lengths (e-h). Characteristics shown are mean life expectancy (a, e), probability of sprouting costs (b, f), probability
- of reproductive costs (c, g), and probability of size costs (d, h). Means \pm 1 se are shown.

766 Figure 2. Mean proportions of plants dormant per population as a function of nutritional mode (a) and perennating structure (b). In (b),

- 767 corm refers to plants with corms, bulbs, or tubers. Means \pm 1 se are shown.
- **Figure 3.** Maximum observed length of dormancy as a function of (a) mean total annual precipitation occurring at the study sites, (b)
- 769 latitude at which studies were carried out, and (c) study length in years. No distinction is made between latitude in the Northern and
- 570 Southern Hemispheres. Points represent actual values from individual populations, and lines represent the relationship given using the
- 771 best-fit mixed model explaining maximum observed duration of dormancy. Solid line indicates trends in maximum dormancy duration
- 772 with no sprouting costs, while the dashed line indicates maximum dormancy trends with sprouting costs.


Page 35 of 167

46 47 Ecology Letters

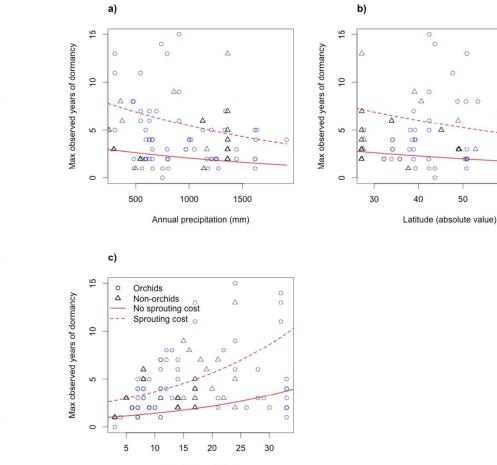
1 2 RH: Drivers of dormancy 3 4 5 6 773 Figure 1. 7 8 9 b) a) c) d) 10 1.0 1.0 1.0 11 20 Mean life expectancy (yrs) 12 0.8 0.8 0.8 P(reproductive costs) P(sprouting costs) 13 15 P(size costs) 0.6 0.6 0.6 14 10 0.4 0.4 0.4 15 16 0.2 0.2 2 0.2 17 18 0.0 0.0 0.0 0 19 High High High Low Low Low High Low 20 Mean proportion of plants in dormancy 21 22 23 h) e) f) g) 24 1.0 40 1.0 1.0 25 Mean life expectancy (yrs) 0.8 0.8 0.8 26 P(reproductive costs) 30 P(sprouting costs) P(size costs) 27 . 0.6 0.4 0.6 0.6 28 20 0.4 0.4 29 30 10 0.2 0.2 0.2 31 0.0 0.0 0.0 32 0 Short Long Short Long Short Long Short Long 33 34 Maximum duration of dormancy 35 774 36 37 775 38 39 40 41 42 43 44 45

RH: Drivers of dormancy

Figure 2.

Page 37 of 167

Ecology Letters


0 0

0 0

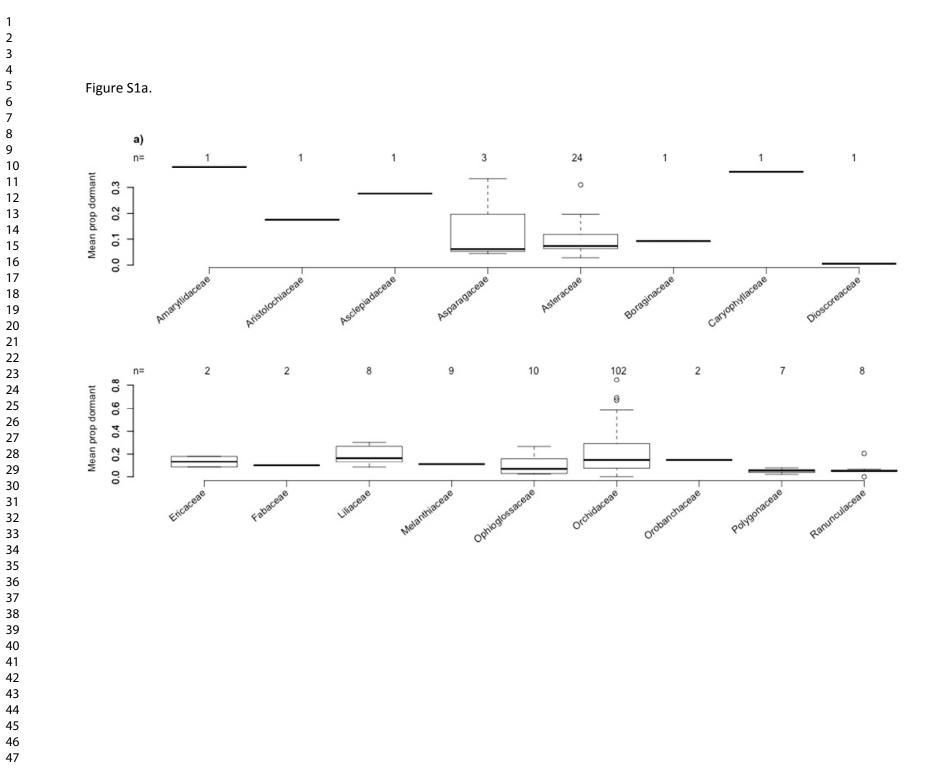
ത്ത്ര

RH: Drivers of dormancy

780 Figure 3.

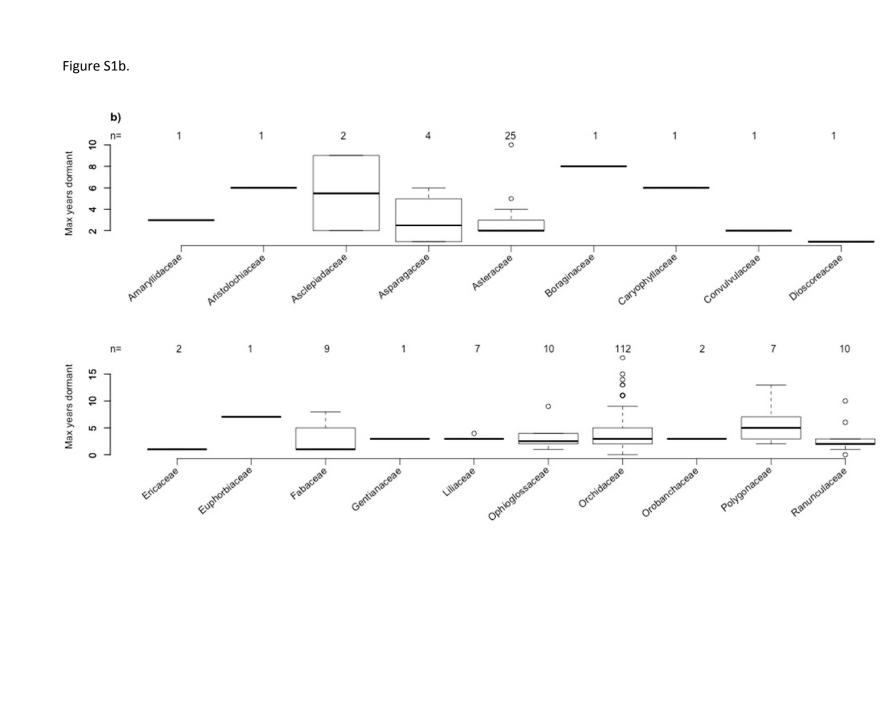
Length of study (yrs)

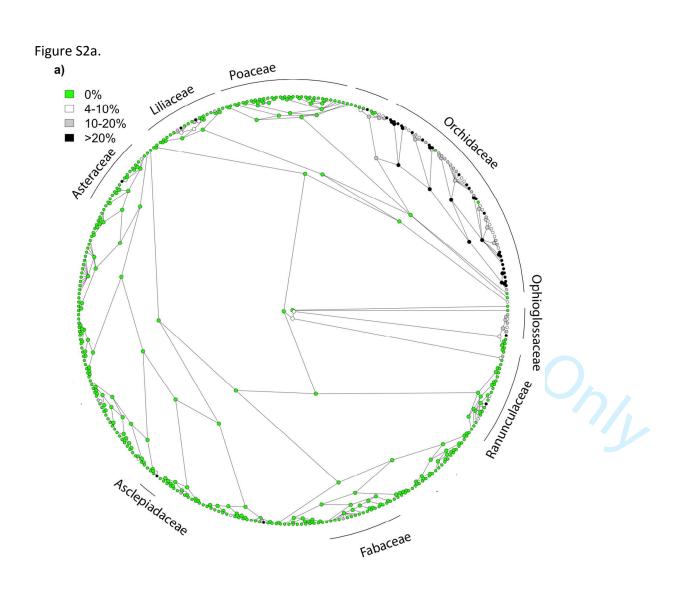
Figure Legend


Figure S1. Quartiles of (a) mean proportion dormant per population and (b) maximum duration of dormancy per population in years across plant families. Numbers show the number of populations included in each distribution, which are not the same in (a) and (b) because of inconsistent availability of metrics across studies. Only families with estimated values for each of the dormancy metrics are shown. Figure S2. The reconstructed evolutionary history of (a) maximum proportion dormant per population and (b) maximum duration of dormancy in years, shown on the Open Tree of Life. In both cases, green labels indicate species in which dormancy is thought not to occur, based on evidence from demographic monitoring. For mean proportion dormant, white, grey, and black refer to species with <10%, 10-20%, and ≥20% of the individuals dormant on average per population, respectively. For maximum duration of dormancy, white, grey, and black refer to species with <2, 2-4, and \geq 4 years maximum duration of dormancy, respectively. Taxon labels are omitted, except for key families of interest. Figure S3. The relationship between mean expected longevity and study length, both in years, as a function of nutritional mode. Lines indicate patterns in autotrophs (solid lines), mixotrophs (dashed lines), and mycoheterotrophs (dotted lines), in rhizomatous species with sprouting costs (a), species with taproots and sprouting costs (b), species with corms, bulbs, or tubers, and sprouting costs (c), and rhizomatous species without sprouting costs (d). Lines are derived from the best-fit mixed linear models of mean life expectancy across the entire dataset, and we indicate data points for the Orchidaceae (blue circles) and non-Orchidaceae (red triangles) as symbols in the background of each plot.

Ecology Letters

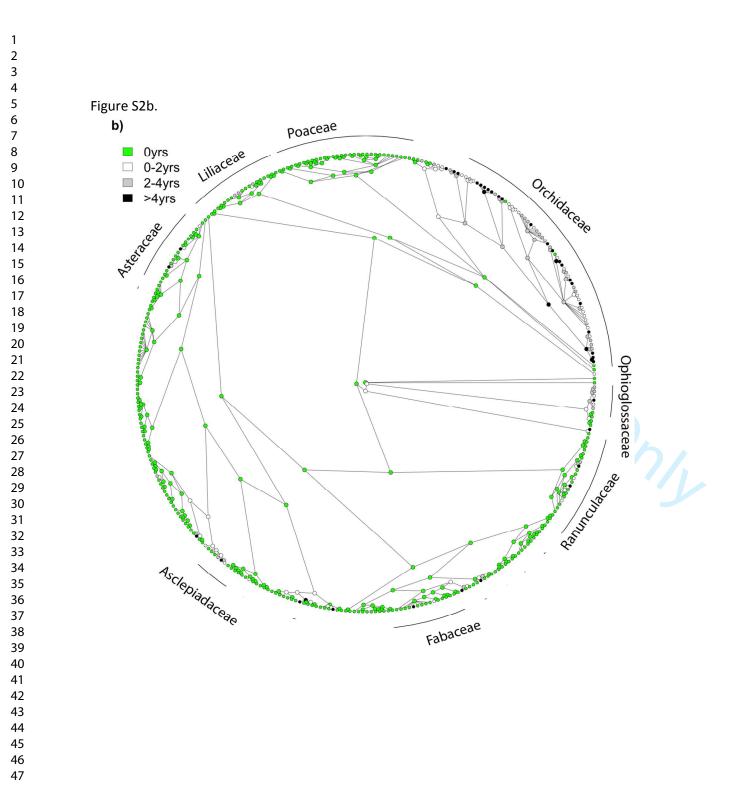
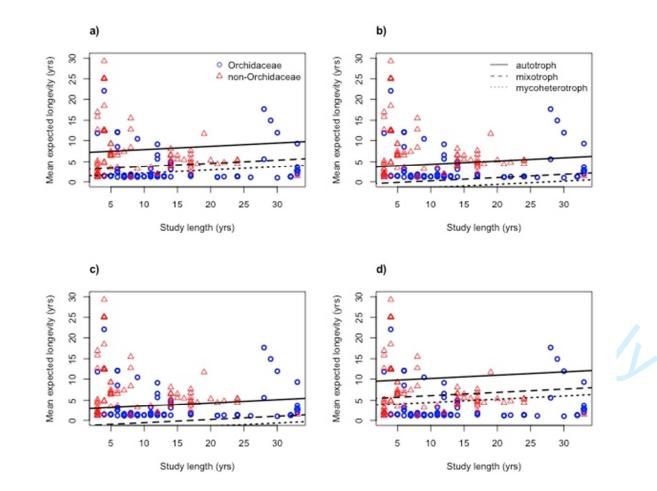
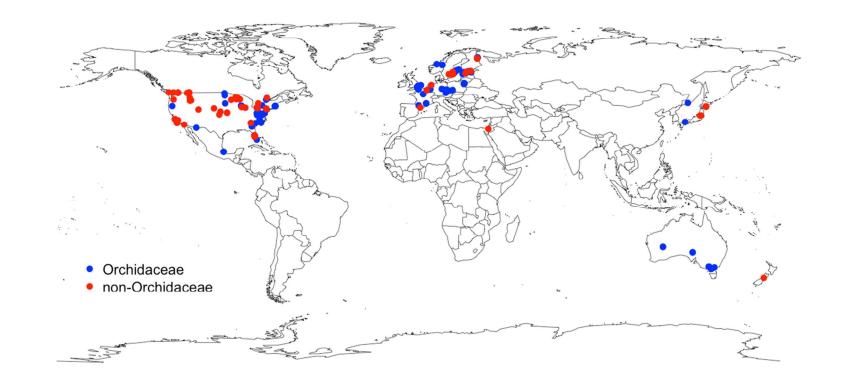
Figure S4. Locations of populations included in this study. 299 populations were included, approximately half of which were species in the Orchidaceae (blue circles). Non-Orchidaceae are shown by red circles. Many sites included sympatric populations. As a consequence, fewer than 299 points are displayed on the map. Latitudes of study sites ranged from 19.52° to 66.37° in the Northern Hemisphere, and 27.67° to 43.03° in the Southern Hemisphere.

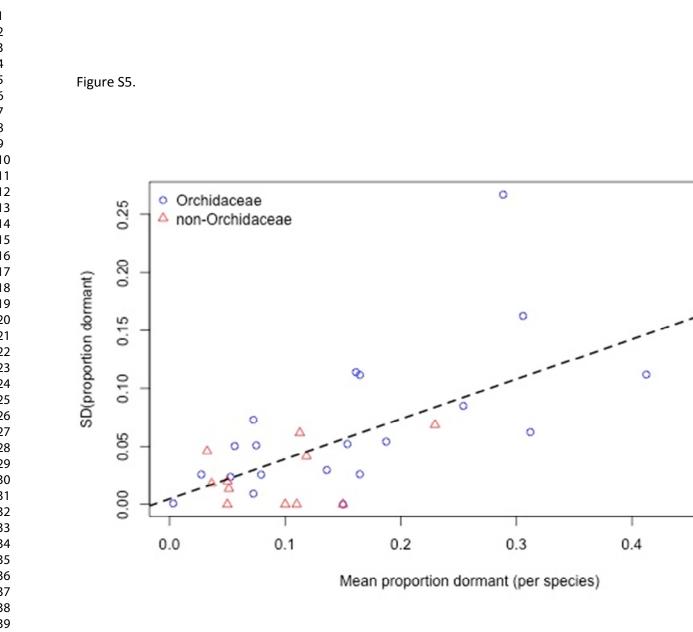

Figure S5. The standard deviation of the proportion of individuals that were dormant per population per species as a function of the mean proportion of plants that were dormant per species. The black line indicates the linear regression between these two variables (slope = 0.344 ±


0.066; $F_{1,30} = 27.25$, $P = 1.25 \times 10^{-5}$).

Page 41 of 167

Ecology Letters


Figure S3.

Page 45 of 167

Figure S4.

0.5

Ecology Letters

Table S1. Summary of species and the 99 papers included in our demographic analysis of the characteristics of vegetative dormancy in herbaceous perennials. Synonyms used by the Open Tree of Life Project and hence used in our phylogenetic analyses are noted in parentheses. Asterisks in the populations column indicate the presence of albinos, which were treated demographically as distinct from green plants demographically. Missing locations, study periods, and sample sizes occur in cases where these descriptions were not provided. We entered "≥1" under Populations when insufficient information was provided to determine the number of populations studied, and ">x" when we felt certain that a number of individuals greater than x was sampled (generally due to incomplete reporting of sample size in a paper).

Family	Species	Populations	Regions	No. of years	Sample	Citation
					size	
Amaryllidaceae	Allium amplectens	1	British	1995-2000	481	(Hawryzki <i>et al.</i>
			Columbia,			2011)
			Canada			
Apiaceae	Chaerophyllum	≥1	Former Soviet			(Rabotnov 1969)

	prescotti		Union			
Araliaceae	Panax quinquefolius	4	Québec, Canada	1986-1988	345	(Charron & Gagnon 1991; Nantel <i>et al.</i> 1996)
Aristolochiaceae	Hexastylis arifolia (Asarum arifolium)	1	Georgia, USA	1999-2006	6235	R. Pulliam unpublished data
Asclepiadaceae	Asclepias incarnata	≥1				(Reintal <i>et al.</i> 2010)
	Asclepias meadii	1	Kansas, USA	1992-2006	252	(Alexander <i>et al.</i> 2009, 2012)
		2	Illinois, USA	1995-2000		(Bowles <i>et al.</i> 2001)

Asparagaceae	Chlorogalum	1	California, USA	1998-2004	375	(Guretzky <i>et al.</i>
	purpureum					2005)
	Polygonatum	1	Georgia, USA	1999-2006	4715	R. Pulliam
	biflorum					unpublished dat
	Polygonatum	1	Estonia			(Reintal <i>et al.</i>
	multiflorum					2010)
	Polygonatum	1	Estonia			(Reintal <i>et al.</i>
	odoratum					2010)
Asteraceae	Arnica angustifolia	6	Finland	1996-2009	600	(Jäkäläniemi
						2011)
	Echinacea	5	Kansas, USA	1996-1998		(Hurlburt 1999)
	angustifolia					
		1	Kansas, USA	1939-1971	417	(Dalgleish <i>et al.</i>

						2010)
	Liatris ohlingerae	19	Florida, USA	1997-2016	2995	(Tye <i>et al.</i> 2016); E. Menges <i>unpublished data</i>
	Liatris scariosa 🦯	1	Indiana, USA	1995-2000		(Ellis <i>et al.</i> 2012)
	Solidago missouriensis	1	Minnesota, USA	1984-2001	140	(Morrow & Olfelt 2003)
Boraginaceae	Cryptantha flava	1	Utah, USA	1997-2012	3835	(Salguero-Gómez <i>et al.</i> 2012)
Caryophyllaceae	Silene spaldingii	1	Montana, USA	1987-2005	179	(Lesica & Crone 2007)
Convulvulaceae	Іротоеа	2	Nebraska, USA	1979-1989	320	(Keeler 1991)

Dioscoreaceae	Borderea chouardii (Dioscorea chouardii)	1	Spain	1995-2002	545	(García 2003)
Dryopteridaceae	Dryopteris carthusiana	3	Estonia	2001-2003	510	(Rünk <i>et al.</i> 20
	Dryopteris dilatata	3	Estonia	2001-2003	277	(Rünk <i>et al.</i> 20
	Dryopteris expansa	3	Estonia	2001-2003	258	(Rünk <i>et al.</i> 20
Ericaceae	Pyrola japonica	1	Japan	2015-2017	127	R. Shefferson unpublished de
	Pyrola subaphylla	1	Japan	2015-2017	83	R. Shefferson unpublished de

Ecology Letters

Euphorbiaceae	Euphorbia	1	Florida, USA	2004-2008	1463	(Smith & Menges
	rosescens					2016)
Fabaceae	Astragalus	2	Montana &	1986-1993	>375	(Lesica 1995)
	scaphoides		Idaho, USA			
	Crotalaria	1	Florida, USA	1998-2014	803	(Menges <i>et al.</i>
	avonensis					2016)
	Lathyrus vernus	6	Sweden	1988-1991;	2599	(Ehrlén 1995;
				1988-1995		Ehrlén & Van
						Groenendael 2001;
						Ehrlén 2002)
Gentianaceae	Gentiana	6	Netherlands	1987-1991		(Oostermeijer <i>et</i>
	pneumonanthe					al. 1994)

Liliaceae	Calochortus lyallii	3	British	1996-2000	2600	(Miller <i>et al.</i> 2004
			Columbia,			2007, 2012)
			Canada			
	Calochortus	3	British	1996-2000	1000	(Miller <i>et al.</i> 2004
	macrocarpus		Columbia,			2007, 2012)
			Canada			
	Tulipa systola	2	Israel	1981-1985	500	(Boeken 1991)
Lythraceae	Lythrum salicaria	2	Québec, Canada	1995-1997		(Lacroix 2004)
Melanthiaceae	Trillium	9	Wisconsin, USA	1997-2000	2004	(Rooney & Gross
	grandiflorum					2003)
		12	Pennsylvania,	1998-2002;	547	(Knight 2003)
			USA	1999-2002		

	Trillium ovatum	3	Montana, USA	2001-2009		COMPADRE
						Database
Ophioglossaceae	Botrychium	1	New Zealand	1987-1993	117	(Kelly 1994)
	australe					
	Botrychium	≥1	USA	1987-1993		(Reintal <i>et al.</i>
	campestre					2010)
	Botrychium	≥1	USA	1987-1993		(Reintal <i>et al.</i>
	gallicomontanum					2010)
	Botrychium	1	Alberta, Canada	1989-1994	250	(Lesica &
	hesperium					Ahlenslager 1996)
	Botrychium	1	Belgium	1986-1990	56	(MULLER 1993)
	matricariifolium					
	Botrychium	1	Alberta, Canada	1989-1994	100	(Lesica &
	paradoxum					Ahlenslager 1996)

	Botrychium simplex	≥1	USA	1987-1993		(Reintal <i>et al.</i>
						2010)
	Botrychium	1	Alberta, Canada	1989-1994	25	(Lesica &
	watertonense					Ahlenslager 199
	Sceptridium	5	Pennsylvania,	1977-1988	300	(Montgomery
	dissectum		USA			1990)
Orchidaceae	Caladenia amoena	1	Victoria,	1996-2007	80	(Tremblay et al.
			Australia			2009)
	Caladenia argocalla	1	South Australia,	2003-2007	429	(Tremblay et al.
			Australia			2009)
	Caladenia clavigera	1	Victoria,	1997-2007	6	(Tremblay et al.
			Australia			2009)
	Caladenia elegans	1	Western	1998-2002	22	(Tremblay et al.
			Australia,			2009)

		Australia			
Caladenia	1	Western	2004-2007	18	(Tremblay et al.
graniticola		Australia,			2009)
		Australia			
Caladenia	1	South Australia,	2001-2007	98	(Tremblay et al.
macroclavia		Australia			2009)
Caladenia	1	Victoria,	1997-2007	22	(Tremblay <i>et al.</i>
oenochila		Australia			2009)
Caladenia orientalis	2	Victoria,	2000-2008;	186	(Coates & Dunca
		Australia	2002-2008		2009)
Caladenia rosella	1	Victoria,	2003-2007	17	(Tremblay <i>et al.</i>
		Australia			2009)
 Caladenia valida	1	Victoria,	2000-2007	188	(Tremblay et al.
		Australia			2009)
Calypso bulbosa	5	Finland	2002-2010	307	(Jäkäläniemi &

					Tuomi 2017;
					Metsähallitus
					2017)
Cephalanthera	1*	France	2006-2008	657	(Shefferson et al.
damasonium					2016)
Cephalanthera	3	Estonia	2002-2008	142	(Shefferson et al.
longifolia					2005, 2012)
	1*	Estonia	1992-2005	36	(Shefferson <i>et al.</i>
					2016)
Cephalanthera	1	Estonia	1994-2007	31	T. Kull unpublishe
rubra					data
Cleistesiopsis	2	W. Virginia and	1983-1996	695	(Gregg & Kéry
bifaria		Florida, USA			2006)
	2	North Carolina,	1985-1992;	118	(Gregg 1991); K.
		USA	1991-1998		Gregg unpublished

					data
Cleistesiopsis	2	North Carolina,	1985-1992;	136	(Gregg 1991); K.
divaricata		USA	1991-1998		Gregg unpublished
					data
Coeloglossum viride	1	Netherlands	1989-1995	161	(Willems & Melser
(Dactylorhiza					1998)
viridis)					
Corallorhiza	1	Maryland, USA	1998-2008	2042	(Shefferson <i>et al.</i>
odontorhiza					2011)
Corallorhiza trifida	1	Spain	2001-2006		(Salguero-Gómez
					et al. 2015)
Cyclopogon	1	Florida, USA	1986-1989	36	(Calvo 1990)
cranichoides					
Cyclopogon	2	Veracruz,	2006-2009	891	(Juárez <i>et al.</i> 2014)
luteoalbus		Mexico			

Cypripedium acaule	3	Massachusetts,	1984-1994;	627	(Primack & Stacy
		USA	1984-1991		1998)
Cypripedium ×	1	Illinois, USA	1994-2017	16	R. Shefferson
andrewsii					unpublished data
Cypripedium	3	Poland	1989-2000	391	(Brzosko 2002;
calceolus					Nicolè <i>et al.</i> 2005)
	2	Estonia	2002-2008	106	(Shefferson <i>et al.</i>
					2005, 2012)
	3	Finland	2000-2016	273	(Metsähallitus n.d.;
					Jäkäläniemi <i>et al.</i>
					2017)
	1	Spain	1994-2002	567	(García <i>et al.</i> 2002)
Cypripedium	1	Illinois, USA	1994-2017	119	(Shefferson 2006;
candidum					Shefferson &
					Simms 2007), R.

					Shefferson
					unpublished data
	1	New York, USA	1986-1990	970	(Falb & Leopold
					1993)
Cypripedium	29	Oregon, USA	1996-2007	892	(Thorpe et al.
fasciculatum					2011)
Cypripedium	1	Illinois, USA	1994-2017	1472	(Shefferson <i>et al</i> .
parviflorum					2001, 2003;
					Shefferson &
					Simms 2007;
					Shefferson <i>et al.</i>
					2014)
 Cypripedium	2	W. Virginia, USA	1993-2003;	356	(Kéry & Gregg
reginae			1989-1999		2004)
Dactylorhiza	1	Norway	1981-2013	296	Sletvold, Moen &

cruenta					Øien unpublishe
					data
Dactylorhiza incarnata	1	Sweden	1944-1971	33	(Tamm 1972)
		Norway	1983-2013	472	Sletvold, Moen Øien <i>unpublish</i> data
Dactylorhiza Iapponica	2	Norway	1981-2013	1407	(Sletvold <i>et al.</i> 2013), Sletvold Moen & Øien <i>unpublished dat</i>
	1	Norway	1999-2001	399	(Øien & Peders 2005)
Dactylorhiza maculata	2	Norway	1981-2013	246	Sletvold, Moen Øien <i>unpublish</i>

27 28 29 30 31 32 33 34 35 36 37

					data
Dactylorhiza	2	Sweden	1942-1971;	128	(Tamm 1972)
sambucina			1943-1971		
	1	Czech Republic	1999-2012	439	J. Jersakova unpublished data
Epipactis albensis	1	Czech Republic	1979-1993	833	(Rydlo 1995)
Epipactis	2	Finland	2000-2008	332	(Jäkäläniemi et a
atrorubens					2011)
Epipactis	1	Canada	1985-2004	1591	(Light &
helleborine					MacConaill 2006
Gymnadenia	2	England	1977-1997	8145	M. Hutchings
conopsea					unpublished data
	2	Norway	1981-2013	513	Sletvold, Moen &
					Øien unpublished
					data

Page 63 of 167

Herminium	1	England	1966-1995	?	(Wells <i>et al.</i> 1998)
monorchis					
Himantoglossum	1	Germany	1976-2001	2900	(Pfeifer <i>et al.</i>
hircinum					2006)
Isotria medeoloides	5	SE. USA	1979-1984	300	(Mehrhoff 1989)
	2	Virginia, USA	2008-2015	359	M. McCormick
					unpublished data
Liparis lilifolia	1	Maryland, USA	1986-1990	40	(Whigham &
					0'Neill 1991)
	1	West Virginia,	2008-2014	247	K. Gregg
		USA			unpublished data
Liparis loeselii	1	England	1983-1990	517	(Wheeler et al.
					1998)
Listera ovata	1	Sweden	1944-1971	79	(Tamm 1972)
(Neottia ovata)					

Listera smallii	1	West Virginia,	2008-2014	397	K. Gregg
		USA			unpublished date
Malaxis	1	Sweden			(Elveland 1993)
monophyllos					
Malaxis unifolia	1	West Virginia,	2008-2014	113	K. Gregg
		USA			unpublished date
Neotinea tridentata	1	Czech Republic	1997-2009	865	M. Dostalik
					unpublished dat
Neotinea ustulata	6	Estonia	1993-2004	1013	(Shefferson & Ta
					2007)
Neottia nidus-avis	1	Estonia	1984-1989	14	(Kull & Tuulik
					1994)
Ophrys apifera	1	England	1979-1989	468	(Wells & Cox
					1991)
Ophrys insectifera	1	Netherlands	1996-2005		(Dorland &

					Willems 2002)
Ophrys sphegodes	1	England	1975-2006	3681	(Hutchings 1987a)
					b, 2010)
Orchis mascula	1	Sweden	1943-1956	52	(Tamm 1972)
Orchis militaris	1	England	1977-1995	100	(Hutchings et al.
					1998)
Orchis morio	1	England	1978-1995	103	(Wells <i>et al.</i> 1998)
(Anacamptis morio)					
Orchis purpurea	2	Belgium	2003-2013	689	H. Jacquemyn
					unpublished data
	2	Belgium	2003-2009	592	(Jacquemyn <i>et al.</i>
					2010)
Orchis simia	1	Netherlands	1972-1981	57	(Willems 1982)
Platanthera bifolia	2	Poland	1996-2001;	750	(Brzosko 2003); E
			1996-2008		Brzosko

		1				
		1	Czech Republic	2001-2006	52	J. Jersakova unpublished data
P	Platanthera ciliaris	1	West Virginia, USA	1983-1986	62	(Gregg 1990)
	Platanthera praeclara	3	Minnesota, USA	1985-2015; 1995-2015	612	(Sather & Anderson 2010); MN Dept. of Natural Resources (<i>unpublished data</i>)
P	Pogonia japonica	3	Japan	2001-2003		(Tatarenko & Kondo 2006)
		4	Primorskiy Kraj, Russia	1984-1986		(Tatarenko & Kondo 2006)
P	Prasophyllum	1	Australia	1992-2003	124	(Coates <i>et al.</i>

	correctum					2006)
	Spiranthes	2	USA	1983-1989	196	(McClaran & Sundt
	delitescens					1992)
	Spiranthes spiralis	1	England	1962-1965	559	(Wells 1967)
Orobanchaceae	Castilleja mollis	2	California, USA	1995-2006	3500	(McEachern <i>et al.</i>
		76				2009)
Polygonaceae	Eriogonum	7	Florida, USA	1990-2013	2067	(Satterthwaite et
	<i>longifolium</i> var.					<i>al.</i> 2002)E. Menges
	gnaphalifolium			1/2		unpublished data
Ranunculaceae	Actaea elata	2	British	2005-2007		(Mayberry & Elle
			Columbia,			2010)
			Canada			

	3	Oregon, USA	1992-1997		(Kaye & Pyke 2003)
Anemone americana	1	Georgia, USA	1999-2006	3873	(Shefferson <i>et al.</i> 2014)
Callianthemum miyabeanum	5	Hokkaido, Japan	2001-2004	522	(Nishikawa <i>et al.</i> 2005)
Delphinium gypsophilum	1	California, USA	1941-1952 (or longer)		(Epling & Lewis 1952)
Delphinium par	ishii 1	California, USA			(Epling & Lewis 1952)
			Y		

10 References from Table S1.

11 Alexander, H.M., Reed, A.W., Kettle, W.D., Slade, N.A., Bodbyl Roels, S.A., Collins, C.D., et al. (2012). Detection and plant

12 monitoring programs: lessons from an intensive survey of *Asclepias meadii* with five observers. *PLoS ONE*, 7, e52762.

Ecology Letters

a cryptic
col., 5,
col.
). <i>Bot. J</i> .
n. Bot.
Bot., 77,
<i>Ecol.</i> , 79,
atened
n. Boi

Ecology Letters

2 3	
4 5	2
6 7 8	3
9 10	3
11 12	3
13 14 15	3
15 16 17	3
18 19	3
20 21 22	3
23	3
24 25 26 27	3
28	3
29 30	4
31 32 33	4
34 35	4
36 37 38	4
38 39 40	4
41 42	
43 44	
44 45 46	
40	

47

- 30 *correctum* D.L. Jones and implications for grassland management in south-eastern Australia. *Biol. Conserv.*, 129, 59.
- 31 Dalgleish, H.J., Koons, D.N. & Adler, P.B. (2010). Can life-history traits predict the response of forb populations to changes in
- 32 climate variability? J. Ecol., 98, 209–217.
- 33 Dorland, E. & Willems, J.H. (2002). Light climate and plant performance of *Ophrys insectifera*; a four-year field experiment in The
- 34 Netherlands (1998-2001). In: Trends and fluctuations and underlying mechanisms in terrestrial orchid populations (eds. Kindlmann,
- 35 P., Willems, J.H. & Whigham, D.F.). Backhuys Publishers, Leiden, The Netherlands, pp. 225–238.
- 36 Ehrlén, J. (1995). Demography of the perennial herb *Lathyrus vernus*. II. Herbivory and population dynamics. *J. Ecol.*, 83, 297–308.
- 37 Ehrlén, J. (2002). Assessing the lifetime consequences of plant-animal interactions for the perennial herb *Lathyrus vernus* (Fabaceae).
- 38 Perspect. Plant Ecol. Evol. Syst., 5, 145–163.
- Ehrlén, J. & Van Groenendael, J. (2001). Storage and the delayed costs of reproduction in the understorey perennial *Lathyrus vernus*. *J. Ecol.*, 89, 237–246.
- 41 Ellis, M.M., Williams, J.L., Lesica, P., Bell, T.J., Bierzychudek, P., Bowles, M., et al. (2012). Matrix population models from 20
- 42 studies of perennial plant populations. *Ecology*, 93, 951–951.
- 43 Elveland, J. (1993). Dynamik hos knottblomster pa Storön vid norrbottenskusten. Sven. Bot Tidskr, 87, 147–167.
 - 44 Epling, C. & Lewis, H. (1952). Increase of the adaptive range of the genus *Delphinium*. *Evolution*, 6, 253–267.

Ecology Letters

1 2		
3 4 5	45	Falb, D.L. & Leopold, D.J. (1993). Population dynamics of Cypripedium candidum Muhl. ex Willd., small white ladyslipper, in a
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 23	46	western New York fen. Nat. Areas J., 13, 76-86.
	47	García, M.B. (2003). Demographic viability of a relict population of the critically endangered plant Borderea chouardii. Conserv.
	48	Biol., 17, 1672–1680.
	49	García, M.B., Guzmán, D. & Goñi, D. (2002). An evaluation of the status of five threatened plant species in the Pyrenees. <i>Biol</i> .
	50	Conserv., 103, 151–161.
	51	Gregg, K.B. (1990). The natural life cycle of Platanthera. In: North American native terrestrial orchid propagation and production
	52	(ed. Sawyers, C.E.). Brandywine Conservancy, Chadds Ford, Pennsylvania, USA, pp. 25-39.
	53	Gregg, K.B. (1991). Variation in behaviour of four populations of the orchid <i>Cleistes divaricata</i> , an assessment using transition matrix
	54	models. In: Population ecology of terrestrial orchids (eds. Wells, T.C.E. & Willems, J.H.). SPB Academic Publishing, The Hague,
	55	Netherlands, pp. 139–159.
	56	Gregg, K.B. & Kéry, M. (2006). Comparison of size vs. life-state classification in demographic models for the terrestrial orchid
	57	Cleistes bifaria. Biol. Conserv., 129, 50–58.
33 34 35	58	Guretzky, J.A., Clark, E.R. & Woodbury, D. (2005). <i>Life history of the threatened purple amole (</i> Chlorogalum purpureum <i>var</i> .
36 37	59	purpureum): Fort Hunter Liggett, California (No. ERDC/CERL TR-05-32). US Army Corps of Engineers, Engineer Research and
38 39 40	60	Development Center, Aberdeen Proving Ground, Maryland, USA.
41 42		
43 44		

61 Hawryzki, A.R., Allen, G.A. & Antos, J.A. (2011). Prolonged dormancy in the geophyte Allium amplectens on Vancouver Island.

Botany, 89, 737–744.

- Hurlburt, D.P. (1999). Population ecology and economic botany of *Echinacea angustifolia*: a native prairie medicinal plant. University
 of Kansas.
- 65 Hutchings, M.J. (1987a). The population biology of the early spider orchid, *Ophrys sphegodes* Mill. I. A demographic study from

66 1975 to 1984. J. Ecol., 75, 711–727.

- Hutchings, M.J. (1987b). The population biology of the early spider orchid, *Ophrys sphegodes* Mill.: II. Temporal patterns in behavior. *J. Ecol.*, 75, 729–742.
- 69 Hutchings, M.J. (2010). The population biology of the early spider orchid *Ophrys sphegodes* Mill. III. Demography over three decades.

70 J. Ecol., 98, 867–878.

- 71 Hutchings, M.J., Mendoza, A. & Havers, W. (1998). Demographic properties of an outlier population of *Orchis militaris* L.
- 72 (Orchidaceae) in England. Bot. J. Linn. Soc., 126, 95–107.
- 73 Jacquemyn, H., Brys, R. & Jongejans, E. (2010). Size-dependent flowering and costs of reproduction affect population dynamics in a
- tuberous perennial woodland orchid. J. Ecol., 98, 1204–1215.
- Jäkäläniemi, A. (2011). Narrow climate and habitat envelope affect the survival of relict populations of a northern *Arnica angustifolia*.
- *Environ. Exp. Bot.*, 72, 415–421.

1 2 2		
3 4 5	77	Jäkäläniemi, A., Crone, E.E., Närhi, P. & Tuomi, J. (2011). Orchids do not pay costs at emergence for prolonged dormancy. <i>Ecology</i> ,
6 7	78	92, 1538–1543.
8 9 10	79	Jäkäläniemi, A. & Tuomi, J. (2017). Demographic data set of Calypso bulbosa 2007-2010.
11 12	80	Jäkäläniemi, A., Tuomi, J. & Hurskainen, S. (2017). Demographic data set of Cypripedium calceolus 2006-2016.
13 14	81	Juárez, L., Montaña, C. & Franco, M. (2014). The viability of two populations of the terrestrial orchid Cyclopogon luteoalbus in a
15 16 17	82	fragmented tropical mountain cloud forest: Dormancy delays extinction. Biol. Conserv., 170, 162–168.
17 18 19	83	Kaye, T.N. & Pyke, D.A. (2003). The effect of stochastic technique on estimates of population viability from transition matrix models.
20 21	84	Ecology, 84, 1464–1476.
22 23	85	Keeler, K.H. (1991). Survivorship and recruitment in a long-lived prairie perennial, <i>Ipomoea leptophylla</i> (Convolvulaceae). <i>Am. Midl.</i>
24 25 26	86	Nat., 126, 44–60.
27 28	87	Kelly, D. (1994). Demography and conservation of <i>Botrychium australe</i> , a peculiar, sparse mycorrhizal fern. N. Z. J. Bot., 32, 393-
29 30	88	400.
31 32 33	89	Kéry, M. & Gregg, K.B. (2004). Demographic analysis of dormancy and survival in the terrestrial orchid Cypripedium reginae. J.
33 34 35	90	<i>Ecol.</i> , 92, 686–695.
36 37	91	Knight, T.M. (2003). Effects of herbivory and its timing across populations of Trillium grandiflorum (Liliaceae). Am. J. Bot., 90,
38 39	92	1207–1214.
40 41		
42 43		
44 45		
45 46		
47		

1 2		
3		
4 5 6	93	Kull, T. & Tuulik, T. (1994). Orchid studies on permanent plots. In: Orchid ecology and protection in Estonia (ed. Kull, T.). Tartu
6 7 8	94	University Press, Tartu, Estonia, pp. 35–42.
9 10	95	Lacroix, C.A. (2004). Population dynamics and invasion biology of purple loosestrife (Lythrum salicaria L.). University of Guelph.
11 12	96	Lesica, P. (1995). Demography of Astragalus scaphoides and effects of herbivory on population growth. West. North Am. Nat., 55,
13 14 15	97	142–150.
15 16 17	98	Lesica, P. & Ahlenslager, K. (1996). Demography and life history of three sympatric species of Botrychium subg. Botrychium in
18 19	99	Waterton Lakes National Park, Alberta. Can. J. Bot., 74, 538-543.
20 21	100	Lesica, P. & Crone, E.E. (2007). Causes and consequences of prolonged dormancy for an iteroparous geophyte, Silene spaldingii. J.
22 23 24	101	<i>Ecol.</i> , 95, 1360–1369.
25 26	102	Light, M.H.S. & MacConaill, M. (2006). Appearance and disappearance of a weedy orchid, Epipactis helleborine. Folia Geobot., 41,
27 28	103	77–94.
29 30 31	104	Mayberry, R.J. & Elle, E. (2010). Conservation of a rare plant requires different methods in different habitats: demographic lessons
31 32 33	105	from Actaea elata. Oecologia, 164, 1121–1130.
34 35	106	McClaran, M.P. & Sundt, P.C. (1992). Population dynamics of the rare orchid, Spiranthes delitescens. Southwest. Nat., 37, 299–303.
36 37	107	McEachern, A.K., Thomson, D.M. & Chess, K.A. (2009). Climate alters response of an endemic island plant to removal of invasive
38 39 40 41	108	herbivores. Ecol. Appl., 19, 1574–1584.
42		
43		
44 45		
46		
47		

1 2 3		
4 5	109	Mehrhoff, L.A. (1989). The dynamics of declining populations of an endangered orchid, Isotria medeoloides. Ecology, 70, 783–786.
6 7 8	110	Menges, E.S., Pace-Aldana, B., Haller, S.J. & Smith, S.A. (2016). Ecology and conservation of the endangered legume Crotalaria
9 10	111	avonensis in Florida scrub. Southeast. Nat., 15, 549-574.
11 12	112	Metsähallitus. (2017). Demographic data set of Calypso bulbosa 2002-2006.
13 14 15	113	Metsähallitus. (2017). Demographic data set of Cypripedium calceolus 2000-2006.
16 17	114	Miller, M., Antos, J. & Allen, G. (2007). Demographic differences between two sympatric lilies (Calochortus) with contrasting
18 19	115	distributions, as revealed by matrix analysis. <i>Plant Ecol.</i> , 191, 265–278.
20 21 22	116	Miller, M.T., Allen, G.A. & Antos, J.A. (2004). Dormancy and flowering in two mariposa lilies (Calochortus) with contrasting
23 24	117	distribution patterns. Can. J. Bot., 82, 1790–1799.
25 26	118	Miller, M.T., Antos, J.A. & Allen, G.A. (2012). Demography of a dormancy-prone geophyte: influence of spatial scale on
27 28 29	119	interpretation of dynamics. <i>Plant Ecol.</i> , 213, 569–579.
29 30 31	120	Montgomery, J.D. (1990). Survivorship and predation changes in five populations of <i>Botrychium dissectum</i> in eastern Pennsylvania.
32 33	121	<i>Am. Fern J.</i> , 80, 173–182.
34 35	122	Morrow, P.A. & Olfelt, J.P. (2003). Phoenix clones: recovery after long-term defoliation-induced dormancy. Ecol. Lett., 6, 119–125.
36 37 38	123	MULLER, S. (1993). Population dynamics in <i>Botrychium matricariifolium</i> in Bitcherland (northern Vosges Mountains, France). <i>Belg</i> .
39 40	124	J. Bot., 126, 13–19.
41 42		
43 44		
45 46		

Nantel, P., Gagnon, D. & Nault, A. (1996). Population viability analysis of American ginseng and wild leek harvested in stochastic environments. Conserv. Biol., 10, 608-621. Nicolè, F., Brzosko, E. & Till-Bottraud, I. (2005). Population viability analysis of Cypripedium calceolus in a protected area: longevity, stability and persistence. J. Ecol., 93, 716-726. Nishikawa, Y., Miyaki, M., Ohara, M. & Takada, T. (2005). Comparisons of size class structure among populations and growth characteristics as population dynamics of Callianthemum miyabeanum. Jpn. J. Ecol., 55, 99–104. Øien, D.-I. & Pedersen, B. (2005). Seasonal pattern of dry matter allocation in Dactylorhiza lapponica (Orchidaceae) and the relation between tuber size and flowering. Nord. J. Bot., 23, 441-451. Oostermeijer, J.G.B., Van't Veer, R. & Den Nijs, J.C.M. (1994). Population structure of the rare, long lived perennial Gentiana pneumonanthe in relation to vegetation and management in the Netherlands. J. Appl. Ecol., 31, 428–438. Pfeifer, M., Wiegand, K., Heinrich, W. & Jetschke, G. (2006). Long-term demographic fluctuations in an orchid species driven by weather: implications for conservation planning. J. Appl. Ecol., 43, 313-324. Primack, R. & Stacy, E. (1998). Cost of reproduction in the pink lady's slipper orchid (Cypripedium acaule, Orchidaceae): an eleven-year experimental study of three populations. Am. J. Bot., 85, 1672-1679. Rabotnov, T.A. (1969). On coenopopulations of perennial herbaceous plants in natural coenoses. Veg. Acta Geobot., 19, 85–95.

1 2 3		
4 5	140	Reintal, M., Tali, K., Haldna, M. & Kull, T. (2010). Habitat preferences as related to the prolonged dormancy of perennial herbs and
6 7	141	ferns. Plant Ecol., 210, 111-123.
8 9 10	142	Rooney, T.P. & Gross, K. (2003). A demographic study of deer browsing impacts on Trillium grandiflorum. Plant Ecol., 168, 267-
11 12	143	277.
13 14 15	144	Rünk, K., Moora, M. & Zobel, M. (2006). Population stage structure of three congeneric Dryopteris species in Estonia. Proc. Est.
15 16 17	145	Acad. Sci., 55, 15–30.
18 19	146	Rydlo, J. (1995). Long-term observation of the Epipactis albensis populations on the permanent plot in the Libicky luh floodplain
20 21	147	forest. Muz. Součas. Roztoky Sernatur, 9, 81–98.
22 23 24	148	Salguero-Gómez, R., Jones, O.R., Archer, C.R., Buckley, Y.M., Che-Castaldo, J., Caswell, H., et al. (2015). The Compadre Plant
25 26	149	Matrix Database: an open online repository for plant demography. J. Ecol., 103, 202–218.
27 28	150	Salguero-Gómez, R., Siewert, W., Casper, B.B. & Tielbörger, K. (2012). A demographic approach to study effects of climate change
29 30 31	151	in desert plants. Philos. Trans. R. Soc. B Biol. Sci., 367, 3100-3114.
31 32 33	152	Sather, N. & Anderson, D. (2010). Twenty-five years of monitoring the western prairie fringed orchid (Platanthera praeclara Sheviak
34 35	153	& Bowles) in Minnesota. In: (eds. Williams, D., Butler, B. & Smith, D.). Presented at the 22nd North American Prairie Conference,
36 37 20	154	Cedar Falls, Iowa, pp. 126–134.
38 39 40		
41		
42 43		
44		
45		
46 47		

Satterthwaite, W.H., Menges, E.S. & Quintana-Ascencio, P.F. (2002). Assessing scrub buckwheat population viability in relation to fire using multiple modeling techniques. Ecol. Appl., 12, 1672–1687. Shefferson, R.P. (2006). Survival costs of adult dormancy and the confounding influence of size in lady's slipper orchids, genus *Cypripedium*. *Oikos*, 115, 253–262. Shefferson, R.P., Kull, T. & Tali, K. (2005). Adult dormancy induced by stress in long-lived orchids. *Ecology*, 86, 3099–3104. Shefferson, R.P., Kull, T., Tali, K. & Kellett, K.M. (2012). Linking vegetative dormancy to fitness in two long-lived herbaceous perennials. Ecosphere, 3, 13. Shefferson, R.P., McCormick, M., K., O'Neill, J.P. & Whigham, D.F. (2011). Life history strategy in herbaceous perennials: inferring demographic patterns from the aboveground dynamics of a primarily subterranean, myco-heterotrophic orchid. Oikos, 120, 1291–1300. Shefferson, R.P., Proper, J., Beissinger, S.R. & Simms, E.L. (2003). Life history trade-offs in a rare orchid: the costs of flowering, dormancy, and sprouting. Ecology, 84, 1199-1206. Shefferson, R.P., Roy, M., Puttsepp, Ü. & Selosse, M.-A. (2016). Demographic shifts related to mycoheterotrophy and their fitness impacts in two Cephalanthera species. Ecology, 97, 1452-1462. Shefferson, R.P., Sandercock, B.K., Proper, J. & Beissinger, S.R. (2001). Estimating dormancy and survival of a rare herbaceous perennial using mark-recapture models. Ecology, 82, 145-156.

1 2		
3 4	150	
5 6	170	Shefferson, R.P. & Simms, E.L. (2007). Costs and benefits of fruiting to future reproduction in two dormancy-prone orchids. J. Ecol.,
7 8	171	95, 865–875.
9 10	172	Shefferson, R.P. & Tali, K. (2007). Dormancy is associated with decreased adult survival in the burnt orchid, Neotinea ustulata. J.
11 12	173	<i>Ecol.</i> , 95, 217–225.
13 14 15	174	Shefferson, R.P., Warren II, R.J. & Pulliam, H.R. (2014). Life history costs make perfect sprouting maladaptive in two herbaceous
16 17	175	perennials. J. Ecol., 102, 1318–1328.
18 19	176	Sletvold, N., Dahlgren, J.P., Øien, DI., Moen, A. & Ehrlén, J. (2013). Climate warming alters effects of management on population
20 21	177	viability of threatened species: results from a 30-year experimental study on a rare orchid. Glob. Change Biol., 19, 2729–2738.
22 23 24	178	Smith, S.A. & Menges, E.S. (2016). Population dynamics and life history of Euphorbia rosescens, a perennial herb endemic to Florida
25 26	179	scrub. PLOS ONE, 11, e0160014.
27 28	180	Tamm, C.O. (1972). Survival and flowering of some perennial herbs. II. The behaviour of some orchids on permanent plots. Oikos, 23,
29 30 31	181	23–38.
32 33	182	Tatarenko, I.V. & Kondo, K. (2006). Population biology of Pogonia japonica in Russia and Japan. Plant Species Biol., 21, 185–192.
34 35	183	Thorpe, A.S., Stanley, A.G., Kaye, T.N. & Latham, P. (2011). Population trends, demography, and the effects of environment and
36 37 38	184	disturbance on Cypripedium fasciculatum in southern Oregon.
38 39		
40 41		
41 42		
43		
44		
45 46		
40 47		

1

2 3		
4 5	185	Tremblay, R.L., Perez, M., Larcombe, M., Brown, A., Quarmby, J., Bickerton, D., et al. (2009). Dormancy in Caladenia: a Bayesian
6 7 8	186	approach to evaluating latency. Aust. J. Bot., 57, 340-350.
9 10	187	Tye, M.R., Menges, E.S., Weekley, C., Quintana-Ascencio, P.F. & Salguero-Gómez, R. (2016). A demographic ménage à trois:
11 12	188	interactions between disturbances both amplify and dampen population dynamics of an endemic plant. J. Ecol., 104, 1778–1788.
13 14 15	189	Wells, T.C & Cox, R. (1991). Demographic and biological studies of Ophrys apifera: some results from a 10 year study. In:
16 17	190	Population ecology of terrestrial orchids (eds. Wells, T.C & Willems, J.H.). SPB Academic Publishing, The Hague, the Netherlands,
18 19	191	pp. 47–61.
20 21	192	Wells, T.C., Rothery, P., Cox, R. & Samford, S. (1998). Flowering dynamics of Orchis morio L. and Herminium monorchis (L.) R.Br.
22 23 24	193	at two sites in eastern England. Bot. J. Linn. Soc., 126, 39–48.
25 26	194	Wells, T.C.E. (1967). Changes in a population of Spiranthes spiralis (L.) Chevall. at Knocking Hoe National Nature Reserve,
27 28	195	Bedfordshire, 1962-65. J. Ecol., 55, 83–99.
29 30 31	196	Wheeler, B.D., Lambley, P.W. & Geeson, J. (1998). Liparis loeselii (L.) Rich. in eastern England: constraints on distribution and
32 33	197	population development. Bot. J. Linn. Soc., 126, 141-158.
34 35	198	Whigham, D.F. & O'Neill, J. (1991). The dynamics of flowering and fruit production in two eastern North American terrestrial
36 37	199	orchids, Tipularia discolor and Liparis lilifolia. In: Population ecology of terrestrial orchids (eds. Wells, T.C & Willems, J.H.). SPB
38 39 40	200	Academic Publishing, The Hague, the Netherlands, pp. 89–101.
41 42		
43 44		
45		
46		

1 2		
3 4 5	201	Willems, J.H. (1982). Establishment and development of a population of Orchis simia Lamk. in the Netherlands. New Phytol., 91, 757-
6 7	202	765.
8 9 10	203	Willems, J.H. & Melser, C. (1998). Population dynamics and life-history of Coeloglossum viride (L.) Hartm.: an endangered orchid
11 12	204	Willems, J.H. & Melser, C. (1998). Population dynamics and life-history of <i>Coeloglossum viride</i> (L.) Hartm.: an endangered orchid species in the Netherlands. <i>Bot. J. Linn. Soc.</i> , 126, 83–93.
13 14 15	205	
15 16 17	206	
18 19		
20 21 22		
22 23 24		
25 26		
27 28 29		
30 31		
32 33		
34 35 26		
36 37 38		
39 40		
41 42		
43 44 45		
45 46 47		

Table S2. Strength of factors determining life history costs, mean life expectancy, mean proportion dormant, and maximum years of dormancy. Here, the strength of each factor (column) is given as the summed Akaike weight of models incorporating that factor in the model selection table resulting from general mixed modeling of the response term listed for each row. Bold indicates factors in the best-fit model for each response term, and asterisks indicate factors in the best-fit model that were lacking in equally parsimonious models (those with $\triangle AICc \le 2.0$). Blanks indicate that the factor was not tested for that Jr D

response term.

Response	Absolute	Annual	Annual	Perennating	Nutrition	Mean life	Study
	latitude	precipitation	temperature	structure		expectancy	duration
Reproductive cost	0.630*	0.748*	0.345	0.198	0.136	0.250	0.347
Sprouting cost	0.845	0.993	0.451	0.083	0.340*	0.367	0.709*
Growth cost	0.466*	0.315	0.644*	0.997	0.218	0.341	0.349
Size cost	0.827	0.628	0.308	0.255	0.218	0.634	0.605
Dormancy cost	0.261	0.316	0.249	0.116	0.223	0.248	0.605*
Mean life							
expectancy	0.362	< 0.001	< 0.001	0.986	0.964		0.431*

Mean proportion							
dormant	0.028	< 0.001	0.056	0.550*	0.525*	* 0.008	0.060
Maximum years							
dormant	0.370*	0.603*	0.271	0.713	0.160	0.299	0.999
		Root I					
Response	Study	Sample	Reproductive	Sprouting	Continent	Longitude	
	duration	size	costs	costs		continent	
Reproductive cost	0.347	0.987					
Sprouting cost	0.709*	0.999		V O			
Growth cost	0.349	0.736					
Size cost	0.605	0.589					
Dormancy cost	0.605*	0.257					
Mean life							
expectancy	0.431*	< 0.001	0.326	0.960	0.264	0.036	
Mean proportion	0.060	0.003	0.143	0.999	0.239	0.023	

0.999

0.255

0.164

0.246

For Review Only

1 2 3 4 5	
6 7	
8 9	
10 11	
12	214
13 14 15	215
16 17 18	216
19 20	
21	
22 23	
24 25	
26	
27 28	
29 30	
31 32	
33	
34 35	
36 37	
38	
39 40	
41 42	
43 44	
45	
46	

47

dormant

dormant

Maximum years

0.999

0.501

21	17	Table S3. I	Model selection	on table show	ving the characte	ristics of the top	ten mixed mod	lels describing th	e presence of
21	18	reproducti	ve costs. Moo	lels are arra	nged in decreasin	g explanatory p	ower, beginning	g with the best-fit	t model (model 1).
21	19	Numbers u	nder factors	indicate slop	e coefficients. The	e + sign indicate	es that the mode	l included the ca	tegorical variable
22	20	indicated (perennating	structure or	nutritional mode)	. Blanks indicat	e that the term	was not included	in that model. Th
22	21	presence o	f reproductiv	e costs was a	a binomial variabl	e under a logit l	ink, and species	s was included as	the sole random fa
		Model #	Intercept	Abs	Annual	Mean	Perennating	Mean life	-
				latitude	precipitation	annual	structure	expectancy	
						temperature			
		1	-0.469	0.059	-0.002				
		2	2.902		-0.003		5	/	
		3	2.393		-0.003				
		4	-3.624	0.089					
		5	-4.050	0.110	-0.002	0.133			
		6	-0.009	0.044	-0.002				
									-

7	-6.938	0.137		0.122	2	
8	-0.486	0.068	-0.002			+
9	3.158		-0.002	-0.05	1	
10	-0.443	0.061	-0.002			-0.008
Model #	Sample	Study	df	AICc	ΔΑΙϹϲ	AICc
	size	duration				weight
1	0.005		5	119.150	0	0.082
2	0.005		4			
	0.005		4	119.572	0.422	0.067
3	0.005		5	119.572 119.616	0.422 0.466	0.067 0.065
3 4						
	0.004	0.133	5	119.616	0.466	0.065
4	0.004 0.004	0.133	5	119.616 119.962	0.466 0.812	0.065 0.055

	8	0.004		7	121.207	2.057	0.029
	9	0.005	-0.051	5	121.213	2.063	0.029
	10	0.005		6	121.303	2.153	0.028
223							
224							
225							
223							
							0.028

 226
 Table S4. Model selection table showing the characteristics of the top ten mixed models describing the presence of sprouting

 227
 costs. Models are arranged in decreasing explanatory power, beginning with the best-fit model (model 1). Numbers under

 228
 factors indicate slope coefficients. The + sign indicates that the model included the categorical variable indicated (perennating

 229
 structure or nutritional mode). Blanks indicate that the term was not included in that model. The presence of sprouting costs

 230
 was a binomial variable under a logit link, and species was included as the sole random factor.

 240
 Model # Intercept Abs

 Annual
 Mean annual

 Nutritional

		latitude	precipitation	temperature	mode
1	100.735	-2.095	-0.044		+
2	119.682	-1.664	-0.024	-2.073	
3	132.618	-1.960	-0.027	-2.058	
4	86.511	-1.478	-0.045		+
5	59.690	-0.612	-0.028		
6	100.281	-1.327	-0.038		
7	173.911	-2.645	-0.058		

	8	50.457			-0.072		3.5	589		
	9	83.009	-1.060		-0.020		-1.	049		
	10	64.823	-0.765		-0.026					
31										
	Model #	Mean life	9	Sample	Study		df	AICc	ΔΑΙϹϲ	AICc
		expectancy	9	size	duration					weight
	1		().282	1.468		8	44.970	0	0.162
	2	-0.253	(0.037	0.712		8	45.631	0.660	0.116
	3		(0.060	0.807		7	45.780	0.809	0.108
	4	-0.275	().206	1.198		9	46.692	1.722	0.068
	5		().233			5	46.826	1.856	0.064
	6		().124	0.561		6	47.064	2.093	0.057
	7	-0.384	().165	1.695	_	7	47.216	2.246	0.053
	8		().271			5	47.660	2.690	0.042

9			0.093	6	47.953	2.982	0.036
10	-0.0)48	0.120	6	48.910	3.939	0.023
232							
233							
234							
			For Rey				

Ecology Letters

4

5

6

1.236

0.472

0.502

Table S5. Model selection table showing the characteristics of the top ten mixed models describing the presence of growth 235 236 costs. Models are arranged in decreasing explanatory power, beginning with the best-fit model (model 1). Numbers under factors indicate slope coefficients. The + sign indicates that the model included the categorical variable indicated (perennating 237 238 structure or nutritional mode). Blanks indicate that the term was not included in that model. The presence of growth costs was 239 a binomial variable under a logit link, and species was included as the sole random factor. Model # Intercept Annual **Perennating Nutritional** Abs Mean latitude precipitation annual structure mode temperature 1 8.863 -0.118 -0.274 + 2 7.448 -0.106 0.001 -0.282 + 3 8.324 -0.121 -0.269

-0.058

-0.111

0.001

+

+

+

+

	7	8.045	-0.103		-0.247	-	F	
	8	1.551			-0.061	-	ŀ	
	9	-0.158				-	F	
	10	9.038	-0.121		-0.280	-	F	+
240				06				
	Model #	Mean life	Sample	Study	df	AICc	ΔΑΙCc	AICc
		expectancy	size	duration				weight
	1		0.001		7	98.057	0	0.076
	2		0.001		8	99.361	1.304	0.040
	3		0.001	0.037	8	99.444	1.387	0.038
	4		0.001		6	99.513	1.456	0.037
	5		0.001		7	99.567	1.510	0.036
	6		0.001		5	99.842	1.785	0.031
	7	-0.031	0.001		8	99.922	1.865	0.030

1 2									
3 4 5 6		8	-0.053	0.001		7	100.062	2.005	0.028
7 8		9		0.001	0.043	6	100.343	2.286	0.024
9 10 11		10		0.001		9	100.548	2.491	0.022
12 13	241				~		100.548		
14 15	242								
16 17	243								
18 19 20									
20 21 22									
23 24									
25 26									
27 28 29									
29 30 31									
32 33									
34 35									
36 37									
38 39									
40 41 42									
42 43 44									
45 46									
47									

6

7

-1.559

-2.385

0.066

0.078

1

244 Table S6. Model selection table showing the characteristics of the top ten mixed models describing the presence of size costs. 245 Models are arranged in decreasing explanatory power, beginning with the best-fit model (model 1). Numbers under factors indicate slope coefficients. The + sign indicates that the model included the categorical variable indicated (perennating 246 247 structure or nutritional mode). Blanks indicate that the term was not included in that model. The presence of size costs was a 248 binomial variable under a logit link, and species was included as the sole random factor. Model Intercept Abs Annual Mean annual Nutritional Perennating # latitude precipitation temperature structure mode 10.789 0.679 -0.014 1 2 6.892 0.721 -0.014 4.853 0.766 -0.013 0.197 3 4 -2.002 0.061 5 -1.594 0.065 + +

+

Page 95	of	167
---------	----	-----

8	10.048	0.679	-0.013			+
9	10.251	0.690	-0.014		+	
10	-4.190	0.999	-0.015	0.181		
Model	Mean life	Sample	Study	df AICc	ΔΑΙϹϲ	AICc
#	expectancy	size	duration			weight
1	-0.473		-0.654	6 112.110	0	0.203
2	-0.460	0.001	-0.639	7 113.590	1.480	0.097
3	-0.480		-0.660	7 114.114	2.004	0.074
4		0.001		4 115.644	3.535	0.035
5		0.001		8 116.181	4.072	0.026
6		0.001		6 116.509	4.400	0.022
7	-0.033	0.001		5 116.559	4.450	0.022
8	-0.466		-0.642	8 116.702	4.592	0.020

1 2 3									
4 5 6		9	-0.480		-0.656	8	116.760	4.651	0.020
7 8		10	-0.535	0.002	-0.775	8	117.232	5.122	0.016
9 10 11	250					<u>.</u>			
11 12 13	251								
14 15	252								
16 17									
18 19 20									
21 22									
23 24									
25 26 27									
27 28 29									
30 31									
32 33									
34 35 36									
37 38									
39 40									
41 42									
43 44 45									
45 46 47									

Ecology Letters

Table S7. Model selection table showing the characteristics of the top ten mixed models describing the presence of dormancy
costs. Models are arranged in decreasing explanatory power, beginning with the best-fit model (model 1). Numbers under
factors indicate slope coefficients. The + sign indicates that the model included the categorical variable indicated (perennating
structure or nutritional mode). Blanks indicate that the term was not included in that model. The presence of dormancy costs
was a binomial variable under a logit link, and species was included as the sole random factor.

Model #	Intercept	Abs	Annual	Mean annual	Nutritional	Mean life
		latitude	precipitation	temperature	mode	expectancy
1	5.009					
2	8.705			V		
3	4.294		0.001			
4	4.702				J.	
5	5.132					-0.024
6	4.896			0.009		
7	5.003	0.0002				

8	6.857			0.003		
9	0.939					+
10	6.617	0.049				
Model	# Sample	Study	df	AICc	ΔΑΙϹϲ	AICc
	size	duration				weight
1		0.266	3	49.742	0	0.095
2			2	51.025	1.283	0.050
3		0.244	4	51.842	2.100	0.033
4	0.0002	0.282	4	51.843	2.100	0.033
5		0.272	4	51.898	2.156	0.032
6		0.266	4	51.935	2.193	0.032
7		0.266	4	51.939	2.196	0.032
8			3	52.078	2.335	0.030

	9	0.186	5	52.111	2.369	0.029
	10		3	52.944	3.202	0.019
259						
260						
261						

Table S8. Model selection table showing the characteristics of the top ten mixed models describing mean life expectancy from germination. Models are arranged in decreasing explanatory power, beginning with the best-fit model (model 1). Numbers under factors indicate slope coefficients. The + sign indicates that the model included the categorical variable indicated (perennating structure or nutritional mode). Blanks indicate that the term was not included in that model. Mean life expectancy was treated as a continuous Gaussian variable under an identity link, and species was included as a random factor in all models.

Model #	Intercept	Abs	Perennating	Nutritional	Sprouting	Reproductive
		latitude	structure	mode	cost	cost
1	4.072		+	+	-2.349	
2	-2.535	0.186	+	+	-2.277	
3	6.721		+	+	-2.010	
4	4.169		+	+	-2.298	-0.166
5	-2.474	0.187	+	+	-2.206	-0.243
6	4.021		+	+	-2.308	

7	6.330			+	+	-1.952	
8	6.825			+	+	-1.948	-0.208
9	-2.535	0.186		+	+	-2.277	
10	4.119			+	+	-2.251	-0.179
		4					
Model #	Study	Continent	df	AICc	ΔΑΙϹϲ	AICc weig	ht
	duration						
1	0.160		9	709.974	0	0.172	
					Ū	0.172	
2			9	710.362	0.387	0.172	
2 3			9 8	710.362 711.226			
	0.159				0.387	0.142	ア
3	0.159		8	711.226	0.387 1.252	0.142	$\boldsymbol{\mathcal{V}}$
3	0.159 0.153	+	8 10	711.226 711.547	0.387 1.252 1.572	0.142 0.092 0.079	y

1 <u>2</u> 3 4					<u>, </u>			
5		8			9	712.635	2.661	0.046
		9		+	10	712.702	2.727	0.044
)		10	0.152	+	11	713.685	3.711	0.027
	269					,		
4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7	270							
7 8 9								
) <u>)</u>								
} 								
5								

Ecology Letters

Table S9. Model selection table showing the characteristics of the top ten mixed models describing the mean proportion of272individuals dormant in a population (logit-transformed). Models are arranged in decreasing explanatory power, beginning273with the best-fit model (model 1). Numbers under factors indicate slope coefficients. The + sign indicates that the model274included the categorical variable indicated (perennating structure or nutritional mode). Blanks indicate that the term was not275included in that model. Species was included as a random factor in all models.

Model	Intercept	Perennating	Nutritional	Sprouting	Reprod.	Continent	df	AICc	ΔAICc	AICc
#		structure	mode	cost	cost					weight
1	-3.242	+	+	1.666			8	306.981	0	0.161
2	-3.402	+		1.685	V		6	307.259	0.278	0.140
3	-3.078		+	1.641			6	307.538	0.558	0.122
4	-3.186			1.666		Y	4	307.667	0.687	0.114
5	-3.242	+	+	1.666		+	9	309.304	2.324	0.050
6	-3.402	+		1.685		+	7	309.504	2.523	0.046
7	-3.078		+	1.641		+	7	309.784	2.803	0.040

-	8	-3.186		1.666		+	5	309.838	2.857	0.039
	9	-3.177	+	+ 1.689	-0.106		9	310.727	3.747	0.025
	10	-3.333	+	1.710	-0.119		7	310.811	3.830	0.024
276			~							
277										
278										
			t							

Ecology Letters

Table S10. Model selection table showing the characteristics of the top ten mixed models describing the maximum observed duration of dormancy in a population. Models are arranged in decreasing explanatory power, beginning with the best-fit model (model 1). Numbers under factors indicate slope coefficients. The + sign indicates that the model included the categorical variable indicated (perennating structure or nutritional mode). Blanks indicate that the term was not included in that model. Species was included as a random factor in all models.

Mode	Intercept	Abs	Annual	Mean	Perennatin	Sprouting	Sample
1#		latitude	precipitatio	annual	g structure	cost	size
			n	temperatur			
				e	ν_{O}		
1	0.728	-0.014	-0.001		+	0.957	
2	-0.396				+	1.087	
3	-0.157		-0.0002		+	1.066	
4	-0.145		-0.0003		+	1.023	0.00007
5	0.636	-0.012	-0.0005		+	0.931	0.00006

	6	-0.393					+		1.044	0.00007
	7	-0.215		-0.0004		0.019	+		1.019	
	8	-0.044		-0.0004			+		0.969	
	9	-0.027		-0.0004			+		0.925	0.0001
	10	-0.767		0			+		0.999	0.0001
284						2				
	Mode	Study	Continen	Longitud	df	AICc	ΔAICc	AICc	_	
	l #	duration	t	e				weigh		
	l #	duration	t	e Continent				weigh t		
	l# 1	duration 0.043	t		8	482.369	0			
			t		8	482.369 483.010	0 0.642	t	Ľ	
	1	0.043	t					t 0.031	L	
	1 2	0.043 0.038	t		6	483.010	0.642	t 0.031 0.023	L	
	1 2 3	0.043 0.038 0.038	t		6 7	483.010 483.106	0.642 0.737	t 0.031 0.023 0.022		

!									
		6	0.038			7	483.298	0.929	0.020
		7	0.042			8	483.686	1.318	0.016
		8	0.040	+		8	483.803	1.435	0.015
		9	0.040	+		9	483.901	1.532	0.014
		10			O [†]	1			
			0.046			0	484.406	2.037	0.011
	285						er.		
	286								
	287								
							484.400		

2 3									
4 5	288	Table S11	. Model select	tion table sho	owing the charact	eristics of the to	op ten mixed mo	dels describing t	he presence of
6 7 8	289	reproducti	ve costs in sp	ecies within	the Orchidaceae.	Models are arr	anged in decrea	sing explanatory	power, beginning with
9 10	290	the best-fit	model (mode	el 1). Numbe	ers under factors i	ndicate slope co	oefficients. The +	sign indicates th	at the model included
11 12	291	the categor	rical variable	indicated (p	erennating struct	ure or nutrition	al mode). Blank	s indicate that the	e term was not included
13 14 15	292	in that mod	lel. The prese	ence of repro	oductive costs was	s a binomial var	iable under a lo	git link, and speci	ies was included as the
16 17	293	sole rando	m factor.						
18 19 20		Model #	Intercept	Abs	Annual	Mean	Perennating	Mean life	
20 21 22				latitude	precipitation	annual	structure	expectancy	
23 24						temperature			
25 26 27		1	-1.146	0.064	-0.002				
28 29		2	-4.309	0.094					
30 31 32		3	2.208		-0.003				
32 33 34		4	2.913		-0.003				
35 36		5	-0.732	0.063	-0.002			-0.045	
37 38 39									
40 41									
42 43 44									
44 45 46									
47									

6	3.334		-0.002	-0.12	12		
7	-0.544	0.048	-0.002				
8	-1.681	0.068	-0.002			+	
9	-4.070	0.094					-0.03
10	3.322		-0.003	~			-0.048
				2			
Model #	Sample	Study	df	AICc	ΔΑΙϹϲ	AICc	
	size	duration				weigh	t
1	0.004		5	70.571	0.000	0.068	
2	0.003		4	71.333	0.762	0.046	
3	0.004	0.073	5	71.388	0.818	0.045	
4	0.005		4	71.752	1.181	0.037	
5	0.005		6	71.760	1.189	0.037	

37 38 39 40 41 42 43
39 40 41 42
42
44 45 46 47

7	0.004	0.038	6	72.377	1.807	0.027
8	0.005		6	72.663	2.093	0.024
9	0.004		5	72.672	2.101	0.024
10	0.005		5	72.838	2.267	0.022

Ecology Letters

2 3											
4 5	297	Table S12. Model selection table showing the characteristics of the top ten mixed models describing the presence of									
6 7 8	298	reproductiv	ve costs in sp	ecies outside	of the Orchidace	ae. Models are	arranged in dec	reasing explanat	ory power, beginning		
9 10	299	with the be	The + sign indica	tes that the model							
11 12	300	included th	e categorical	variable indi	icated (perennati	ng structure or	nutritional mod	e). Blanks indica	te that the term was not		
13 14 15	301	included in	that model.	The presence	e of reproductive	costs was a bin	omial variable u	nder a logit link,	and species was		
16 17	302	included as	the sole rand	dom factor.							
18 19 20		Model #	Intercept	Abs	Annual	Mean	Perennating	Nutrition			
20 21 22				latitude	precipitation	annual	structure				
23 24 25						temperature					
26 27		1	-37.962	1.424			+				
28 29		2	-47.461	1.805	0.023	-1.540	+		1		
30 31 32		3	-31.720	1.376			+				
33 34		4	-55.529	1.616	0.009		+		1		
35 36 37		5	-34.562	1.737		-0.580	+				
37 38 39											
40 41 42											

6	-49.123	1.597	0.008		+		
7	-61.357	2.282	0.025	-1.437	+		
8	-33.247	1.887		-0.597	+		
9	-37.632	1.409			+		
10	-37.920	1.423	06		+	+	
			R				
Model #	Mean life	Sample	Study	df	AICc	ΔΑΙϹϲ	AICc
	expectanc	y size	duration				weight
							C
1		0.005		6	43.930	0.000	0.081
1 2		-		6 8	43.930 44.385	0.000	
		0.005	-0.319				0.081
2		0.005		8	44.385	0.455	0.081 0.065
2 3		0.005 0.006 0.005		8 7	44.385 44.437	0.455 0.507	0.081 0.065 0.063

1 2 3									
4 5 6		7		0.007	-0.262	9	46.213	2.283	0.026
7 8		8		0.008	-0.330	8	46.447	2.517	0.023
) 0 1		9	0.016	0.005		7	46.508	2.578	0.022
2 3		10		0.005		7	46.510	2.580	0.022
14 15 16	304				06	1			
17 18	305								
9 20 21					Or Ro				
22 23									
24 25 26									
.7 .8									
9 0 1									
2 3									
4 5 6									
7 8									
9 0 1									
42 43									
44 45 46									
46 47									

Table S13. Model selection table showing the characteristics of the top ten mixed models describing the presence of sprouting costs in species within the Orchidaceae. Models are arranged in decreasing explanatory power, beginning with the best-fit model (model 1). Numbers under factors indicate slope coefficients. The + sign indicates that the model included the categorical variable indicated (perennating structure or nutritional mode). Blanks indicate that the term was not included in that model. The presence of sprouting costs was a binomial variable under a logit link, and species was included as the sole random factor.

Model #	Intercept	Abs	Annual	Mean annual	Perennating	Nutritional
		latitude	precipitation	temperature	structure	mode
1	48.979	-0.605	-0.008	-1.319		
2	52.135	-0.669	-0.007	-1.547	h.	+
3	62.090	-0.807	-0.012	-1.517		
4	75.052	-1.016	-0.013	-1.963		+
5	48.593	-0.590	-0.008	-1.341		
6	48.373	-0.605	-0.008	-1.366	+	

_									
7		50.274	-0.657		-0.007	-1	.569		+
8		53.817	-0.674		-0.007	-1	.611		
9		60.007	-0.770		-0.011	-1	.508		
1()	60.048	-0.787	\wedge	-0.012	-1	.526		+
				\sim					
Μ	odel #	Mean life		Sample	Study	df	AICc	ΔΑΙϹϲ	AICc
		expectancy		size	duration				weight
1				0.024		6	34.710	0.000	0.181
2				0.024		8	35.342	0.632	0.132
3				0.023	0.214	7	36.095	1.385	0.090
4				0.022	0.333	9	36.563	1.852	0.072
5		-0.053		0.023		7	36.643	1.933	0.069
6				0.028		7	36.879	2.169	0.061
7				0.027		9	37.725	3.015	0.040

2 3 4								
5 6	8	-0.053	0.024		9	37.770	3.059	0.039
7 8 9	9	-0.045	0.022	0.192	8	38.286	3.576	0.030
10 11	10		0.027	0.205	8	38.452	3.742	0.030
12 313 13	3				ł			
14 15 314 16	4							
17 18								
19 20 21								
22 23								
24 25 26								
26 27 28								
29 30								
31 32 33								
34 35								
36 37								
38 39 40								
41 42								
43 44								
45 46 47								

Ecology Letters

Table S14. Model selection table showing the characteristics of the top ten mixed models describing the presence of sprouting costs in species outside of the Orchidaceae. Models are arranged in decreasing explanatory power, beginning with the best-fit model (model 1). Numbers under factors indicate slope coefficients. The + sign indicates that the model included the categorical variable indicated (perennating structure or nutritional mode). Blanks indicate that the term was not included in that model. The presence of sprouting costs was a binomial variable under a logit link, and species was included as the sole random factor.

Model #	Intercept	Abs	Annual	Mean annual	Nutritional
		latitude	precipitation	temperature	mode
1	250.668	-4.642			
2	420.385			C	h.
3	409.697	-6.572		-6.198	
4	216.754	-3.687			
5	252.330	-4.662	-0.001		
6	231.741	-4.330			

$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 1\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36$	
3	
4	
5	
6	
7	
8	
9 10	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
25	
26	
27	
28	
29	
30	
31	
32	
27 27	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44 45	
45 46	
40	
77	

	7	251.143	-4.654					
	8	250.969	-4.648					+
	9	98.388						
	10	41.369		\sim				
21				0				
	Model #	Mean life	Samp	ole Study	df	AICc	ΔΑΙϹϲ	AICc
		expectancy	size	duration	n			weight
	1				2	4.214	0.000	0.086
	2	-25.953			2	4.214	0.000	0.086
	3				3	6.436	2.222	0.028
	4	-1.325			3	6.436	2.222	0.028
	5				3	6.436	2.222	0.028
	6		0.010		3	6.436	2.222	0.028
	7			-0.001	3	6.436	2.222	0.028

1 2 3 4									
5 6		8				3	6.436	2.222	0.028
7 8 9		9	-8.140		6.168	3	6.436	2.222	0.028
9 10 11		10	-4.282	0.175		3	6.436	2.222	0.028
12 13	322			$\mathbf{\wedge}$		1			
14 15	323								
16 17 18	324								
19 20									
21 22									
23 24 25									0.028
25 26 27									
28 29									
30 31									
32 33									
34 35 36									
37 38									
39 40									
41 42									
43 44									
45 46 47									

5 1	Гable S15.	. Model selecti	ion table show	ving the characteri	istics of the top	ten mixed mode	ls describing th
26 c	costs in spe	ecies within th	ne Orchidaceae	e. Models are arra	inged in decreas	sing explanatory	y power, beginn
27 n	model (mo	del 1). Numbe	ers under facto	ors indicate slope	coefficients. The	e + sign indicates	s that the mode
28 c	categorical	variable indic	cated (perenna	ating structure or	nutritional mod	le). Blanks indic	ate that the teri
29 t	that model	. The presence	e of growth co	sts was a binomia	l variable under	r a logit link, and	species was in
30 r	random fac	ctor.					
N	Model #	Intercept	Abs	Annual	Mean	Perennating	Mean life
			latitude	precipitation	annual	structure	or most on arr
			latituut	precipitation	annuar	Structure	expectancy
			latitude	precipitation	temperature		expectancy
1	1	1.492					expectancy
1		1.492 1.256					expectancy
	2						-0.028
2	2	1.256					

6	2.193	-0.013					
0	2.195	-0.015					
7	1.201		0.00	0			
8	1.476			(0.002		
9	1.440						-0.024
10	1.402		04			+	
				P			
Model #	Sample	Study	df	AICc	ΔΑΙϹϲ	AICc	_
	size	duration				weight	
1			2	50.999	0.000	0.090	
2	0.001		3	51.821	0.822	0.060	
3			3	52.784	1.786	0.037	ľ
4		0.026	3	52.810	1.812	0.036	
5			3	52.943	1.944	0.034	
			3	53.102	2.103	0.031	

	_					
	7		3	53.155	2.156	0.031
	8		3	53.270	2.271	0.029
	9	0.001	4	53.863	2.864	0.022
	10	0.001	4	54.074	3.075	0.019
332			4			
333						

334	Table S16	. Model selectio	on table showi	ing the character	istics of the top	ten mixed mode	ls describing tl	he presence of	growth
335	costs in spe	ecies outside o	f the Orchidac	eae. Models are a	arranged in de	creasing explanat	ory power, beg	ginning with tl	ne best-fit
836	model (mo	del 1). Numbe	rs under facto	rs indicate slope	coefficients. Th	e + sign indicates	s that the mode	el included the	!
37	categorical	variable indic	ated (perenna	ting structure or	nutritional mo	de). Blanks indica	ate that the ter	rm was not inc	luded in
838	that model	. The presence	of growth cos	sts was a binomia	l variable unde	er a logit link, and	species was in	ncluded as the	sole
339	random fac	ctor.							
	Model #	Intercept	Abs	Annual	Mean	Perennating	Nutritional		
			latitude	precipitation	annual	atmuatura	mode		
			Intitudo	precipitation	annuar	structure	moue		
				precipitation	temperature		moue		
				precipitation			moue		
	1	2.981		precipitation			moue		
	1 2	2.981 2.977		precipitation					
						+	+		
	2	2.977				+			
	2 3	2.977 2.904	-0.004			+++++++++++++++++++++++++++++++++++++++			

6		2.791			0.008		+	
7		2.849		0.000			+	
8		4.129		-0.001			+	
9		4.164			-0.044		+	
10	0	2.747	0.016	0			+	
)				R				
M	odel #	Mean life	Sample	Study	df	AICc	ΔΑΙϹϲ	AICc
		expectancy	size	duration				weight
1		-0.599	0.002		5	42.598	0.000	0.130
1 2		-0.599 -0.503	0.002		5	42.598 43.327	0.000 0.730	0.130 0.090
			0.002					
2		-0.503		0.017	4	43.327	0.730	0.090
2 3		-0.503 -0.586	0.002	0.017	4 6	43.327 45.379	0.730 2.781	0.090

<u>2</u> 3 4									
5		7	-0.593	0.002		6	45.401	2.803	0.032
		8	-0.590			5	45.633	3.036	0.029
)		9	-0.568			5	45.777	3.179	0.027
		10	-0.552		Or Re	5	45.858	3.260	0.026
	341				Ö.	<u>.</u>			
	342								
)									
5									
,									

2 3		
4 5	343	Tabl
6 7 8	344	with
9 10	345	Num
11 12	346	indic
13 14 15	347	pres
16 17		Mod
18 19		
20 21		1
22 23		
24 25		2
26 27		3
28 29		4
30 31 32		5
33 34		6
35 36		7
37 38		
39 40		
41 42		
43 44		
45		
46 47		

1

le S17. Model selection table showing the characteristics of the top ten mixed models describing the presence of size costs in the Orchidaceae. Models are arranged in decreasing explanatory power, beginning with the best-fit model (model 1). bers under factors indicate slope coefficients. The + sign indicates that the model included the categorical variable cated (perennating structure or nutritional mode). Blanks indicate that the term was not included in that model. The ence of size costs was a binomial variable under a logit link, and species was included as the sole random factor. lel # Intercept Mean annual Perennating Nutritional Abs Annual latituda procipitation tomnoroturo mode at was at a was

		latitude	precipitation	temperature	structure	mode
1	79.837	6.322	-0.122			
2	167.930	4.795	-0.130	-3.170		
3	88.855	4.738	-0.096		+	
4	97.156	5.326	-0.107			+
5	7.043		-0.004	-0.181		
6	9.673		-0.004	-0.355		
7	49.720		-0.025			

8	5.903		-0.005				
9	6.877		-0.005				+
10	38.155		-0.017	-0.	374		
.8		\wedge					
Model #	Mean life	Sample	Study	df	AICc	ΔΑΙϹϲ	AICc
	expectancy	size	duration				weight
1	-4.619		-7.629	6	41.391	0.000	0.636
2	-4.654		-6.588	7	45.390	3.998	0.086
3	-4.822		-6.127	7	46.211	4.819	0.057
4	-4.799		-6.895	8	47.370	5.979	0.032
5	-0.123	0.006		6	48.515	7.124	0.018
6	-0.158	0.009	-0.119	7	48.669	7.277	0.017
7	-0.565			4	49.632	8.240	0.010
8	-0.121	0.006		5	49.802	8.411	0.009

	9	-0.098	0.004	6	50.397	9.005	0.007
	10	-0.491		5	50.587	9.195	0.006
349							
350							

Tab	ole S1	B. Model sele	ction table sho	owing the character	istics of the top to	en mixed models	describing the pi	resence of size cost					
2 outs	side of	f the Orchida	ceae. Models a	are arranged in deci	reasing explanato	ory power, beginn	ing with the bes	t-fit model (model					
B 1). I	1). Numbers under factors indicate slope coefficients. The + sign indicates that the model included the categorical variable												
indi	indicated (perennating structure or nutritional mode). Blanks indicate that the term was not included in that model. The												
presence of size costs was a binomial variable under a logit link, and species was included as the sole random factor.													
Мо	del	Intercept	Abs	Annual	Mean annual	Perennating	Nutritional	Mean life					
#			latitude	precipitation	temperature	structure	mode	expectancy					
1		-5.436			0.449			0.250					
2		-21.524	0.379	0.012	7	6	+						
3		-58.779	0.896	0.012	1.088								
4		-59.609	1.077	0.031		+							
5		-12.304	0.111		0.614			0.230					
6		-39.411	0.611	0.007	0.647								
7		-47.081	0.877	0.022			+	-0.267					

8	-40.825	0.649		0.012	0.561			+	
9	-5.299			0.001	0.408				0.244
10	-5.477				0.450			+	0.251
Model	Sample	Study	df	AICc	ΔΑΙСс	AICc	-		
#	size	duration				weight			
1	0.002	-0.292	6	54.853	0.000	0.104			
2	0.003	-0.318	7	55.379	0.527	0.080			
3	0.004	-0.245	7	55.556	0.703	0.073			
4	0.004	-0.703	8	56.052	1.199	0.057			
5	0.002	-0.266	7	57.171	2.319	0.033			
6	0.002		6	57.246	2.393	0.031			
7	0.003	-0.326	8	57.260	2.407	0.031			
8	0.003	-0.308	8	57.354	2.501	0.030	1		

	9	0.002	-0.294	7	57.569	2.716	0.027
	10	0.002	-0.291	7	57.623	2.771	0.026
7 -							Ч С Л
58							
9							

2 3 4 5 360 6 7 361 9 362 11 363 12 363 13 364 15 365 16 365 17 365 18 19 20 21 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 1	2	
4 5 360 6 361 7 361 8 9 10 362 11 363 12 363 13 364 15 365 16 365 18 19 20 21 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40		
6 7 361 8 9 10 362 11 363 12 363 13 364 15 365 16 365 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 40		
7 361 8 9 9 362 11 363 12 363 13 364 15 365 16 365 17 365 18 19 20 21 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40		360
8 9 362 11 363 12 363 13 364 15 365 16 365 17 365 18 19 20 21 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40		
9 362 11 363 12 363 13 364 15 365 16 365 17 365 18 19 20 21 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40		361
10 362 11 363 12 363 13 364 15 365 16 365 17 365 18 19 20 21 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40		
11 12 363 13 364 15 365 16 365 17 365 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 40		362
13 14 364 15 365 16 365 17 365 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 40		
14 364 15 365 16 365 17 365 18 9 20 21 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40		363
15 365 16 365 17 365 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40		
16 365 17 365 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 40		364
17 365 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 40		
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40		365
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40		
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	19	
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	20	
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40		
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40		
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40		
27 28 29 30 31 32 33 34 35 36 37 38 39 40		
28 29 30 31 32 33 34 35 36 37 38 39 40		
29 30 31 32 33 34 35 36 37 38 39 40		
30 31 32 33 34 35 36 37 38 39 40		
31 32 33 34 35 36 37 38 39 40		
32 33 34 35 36 37 38 39 40		
33 34 35 36 37 38 39 40		
35 36 37 38 39 40		
36 37 38 39 40		
37 38 39 40		
38 39 40		
39 40		
41	40	
42		
43 44		
44 45		
46		
47		

1

Table S19. Model selection table showing the characteristics of the top ten mixed models describing the presence of dormancy costs in species within the Orchidaceae. Models are arranged in decreasing explanatory power, beginning with the best-fit model (model 1). Numbers under factors indicate slope coefficients. The + sign indicates that the model included the categorical variable indicated (perennating structure or nutritional mode). Blanks indicate that the term was not included in that model. The presence of dormancy costs was a binomial variable under a logit link, and species was included as the sole random factor.

Model #	Intercept	Abs	Annual	Mean annual	Perennating	Mean life
		latitude	precipitation	temperature	structure	expectancy
1	0.316		0.008	-0.468		
2	-0.971		0.007	-0.422	h.	
3	-2.158		0.007	-0.391		
4	-18.935	0.209	0.011			
5	-5.213	0.074	0.010	-0.440		
6	-0.176		0.008	-0.502		0.021

7	0.595			0.007	-0.466	+	
8	0.313			0.008	-0.467		
9	0.847						
10	-1.838			0.008	-0.474		0.036
			$\mathbf{\hat{O}}$	6			
Model #	Sample	Study	df	AICc	ΔΑΙϹϲ	AICc	
	size	duration				weight	
1			4	35.225	0.000	0.087	
						0.007	
2		0.105	5	35.931	0.707	0.061	
2 3	-0.001	0.105 0.206	5				
	-0.001 -0.001			35.931	0.707	0.061	
3		0.206	6	35.931 36.934	0.707 1.709	0.061 0.037	
3 4		0.206	6	35.931 36.934 36.997	0.707 1.709 1.772	0.061 0.037 0.036	

	8	< 0.001		5	37.704	2.479	0.025
	9		0.136	3	37.938	2.713	0.023
	10		0.115	6	38.044	2.819	0.021
367							
368							
							0.023

Ecology Letters

Table S20. Model selection table showing the characteristics of the top ten mixed models describing the presence of dormancy costs in species outside of the Orchidaceae. Models are arranged in decreasing explanatory power, beginning with the best-fit model (model 1). Numbers under factors indicate slope coefficients. The + sign indicates that the model included the categorical variable indicated (perennating structure or nutritional mode). Blanks indicate that the term was not included in that model. The presence of dormancy costs was a binomial variable under a logit link, and species was included as the sole random factor.

Model	Intercept	Abs	Annual	Mean annual	Nutritional	Mean life	Sample
#		latitude	precipitation	temperature	mode	expectancy	size
1	-86.262						
2	753.989	-11.674	-0.297		51		
3	-60.362		-0.267	22.852			
4	252.235	-4.678			+		
5	-57.402		-0.035				
6	-66.457						0.094

7	-86.264						0.002	
8	-83.730					+		
9	-80.778				-0.788			
10	-92.081	0.118						
				0				
Model #	Study	df	AICc	ΔΑΙϹϲ	AICc	_		
	duration				weight			
1	21.597	2	4.333	0.000	0.098			
2		-	6.606					
2		3	6.686	2.352	0.030			
3		3	6.686	2.352 2.352	0.030	$O_{n_{l}}$		
						Phy		
3	18.046	3	6.686	2.352	0.030			
3 4	18.046 11.304	3	6.686 6.686	2.352 2.352	0.030 0.030			

1 2 3 4								
5 6		8	21.067	3	6.686	2.352	0.030	
7 8		9	22.131	3	6.686	2.352	0.030	
9 10 11		10	21.576	3	6.686	2.352	0.030	
12 13	376				\wedge			
14 15	377							
16 17 18	378						ien Onj	
19 20								
21 22								
23 24 25								
26 27								
28 29								
30 31 32								
33 34								
35 36								
37 38 39								
39 40 41								
42 43								
44 45								
46 47								

2 3	
4	
5	
6 7	
8	
9 10	
11	
12	
13 14	
15	
16 17	
18	
19	
20 21	
22	
23 24	
24 25	
26	
27 28	
29	
30 31	
32	
33	
34 35	
36	
37 38	
39	
40	
41 42	
43	
44 45	
43 46	
47	

1

379 **Table S21.** Model selection table showing the characteristics of the top ten mixed models describing mean life expectancy 380 from germination in species within the Orchidaceae. Models are arranged in decreasing explanatory power, beginning with the best-fit model (model 1). Numbers under factors indicate slope coefficients. The + sign indicates that the model included 381 382 the categorical variable indicated (perennating structure or nutritional mode). Blanks indicate that the term was not included in that model. Mean life expectancy was treated as a continuous Gaussian variable under an identity link, and species was 383 384 included as a random factor in all models. Donno du ativo Ctuday Model # Intorcont Deconneting Nutritional Sprouting

Model #	Intercept	Perennating	Nutritional	Sprouting	Reproductive	Study
_		structure	mode	cost	cost	duration
1	1.952	+	+	-1.526	-1.095	0.156
2	1.926	+		-1.550	-1.108	0.157
3	1.669	+	+	-1.838		0.147
4	4.495	+	+	-1.430		
5	4.809		+	-1.451		
6	4.807	+	+	-1.199	-0.765	

	7	5.1	08		+	-1.209	-0.797	
	8	1.5	37	+		-1.870		0.151
	9	2.9	65		+	-1.506	-1.117	0.136
	10	1.04	43	+	+		-1.406	0.144
385					0			
	Model #	df	AICc	ΔΑΙϹϲ	AICc wei	ght		
	1	9	388.005	0.000	0.080	· ·		
	2	7	388.344	0.339	0.067	- 6		
	3	8	388.615	0.610	0.059			
	4	7	388.853	0.848	0.052			
	5	6	389.009	1.004	0.048			
	6	8	389.040	1.035	0.047			
	7	7	389.054	1.049	0.047			
	8	6	389.158	1.153	0.045			

<u>)</u> }						
		9	8	389.447	1.442	0.039
		10	8	389.607	1.602	0.036
	386					
 2 3 4	387					
						or Rev
-						
;						
, ;						
1 2 3						
4 5						
6 7						

Ecology Letters

Table S22. Model selection table showing the characteristics of the top ten mixed models describing mean life expectancy from germination in species outside of the Orchidaceae. Models are arranged in decreasing explanatory power, beginning with the best-fit model (model 1). Numbers under factors indicate slope coefficients. The + sign indicates that the model included the categorical variable indicated (perennating structure or nutritional mode). Blanks indicate that the term was not included in that model. Mean life expectancy was treated as a continuous Gaussian variable under an identity link, and species was included as a random factor in all models.

Model #	Intercept	Abs	Perennating	Nutritional	Sprouting	Reproductive
		latitude	structure	mode	cost	cost
1	33.198		+	+	-26.070	
2	33.429		+	+	-26.115	-0.197
3	11.285	0.334	+	+	-18.693	
4	11.340	0.337	+	+	-18.676	-0.209
5	34.809		+		-27.681	
6	32.824		+	+	-26.162	

	7	34.528				+	-27.024
	8	10.816	0.36	52	+		-19.471
	9	35.020			+		-27.744 -0.157
	10	9.945	0.34	18	+	+	-18.488
394					0		
	Model #	Study	df	AICc	ΔΑΙϹϲ	AICc weigh	t
		duration					
	1		7	246.587	0.000	0.410	
	2		8	248.510	1.923	0.157	
	3		8	248.566	1.979	0.152	
	4		9	250.577	3.990	0.056	J.
	5		6	250.823	4.236	0.049	
	6	0.061	8	251.899	5.312	0.029	
	7		5	252.293	5.706	0.024	

8 7 252.433 5.846 0.022 9 7 252.691 6.104 0.019 10 0.068 9 253.854 7.267 0.011 395 396	1 2								
9 7 252.691 6.104 0.019 10 0.068 9 253.854 7.267 0.011 395	4				1				
9 7 252.691 6.104 0.019 10 0.068 9 253.854 7.267 0.011 395 396			8		7	252.433	5.846	0.022	
10 0.068 9 253.854 7.267 0.011 12 395 13 396 14 396 15 396 16 0 17 18 19 0 20 0 21 0 22 0 23 0 24 0 25 0 26 0 27 0 28 0 303 0	7 8		9						
51	10		10	0.068	9	253.854	7.267	0.011	
51	12	395							
51									
51	15	396							
51	17								
51									
51	20								
51	22								
51									
51	25								
51	27								
51									
51	30								
51	32								
	35								
36 37									
38 39									
40	40								
41 42									
43 44									
45	45								
46 47									

Table S23. Model selection table showing the characteristics of the top ten mixed models describing the mean proportion of individuals dormant in a population (logit-transformed) in species within the Orchidaceae. Models are arranged in decreasing explanatory power, beginning with the best-fit model (model 1). Numbers under factors indicate slope coefficients. The + sign indicates that the model included the categorical variable indicated (perennating structure or nutritional mode). Blanks indicate that the term was not included in that model. Species was included as a random factor in all models.

Model #	Intercep	Perennatin	Nutritiona	Sprouting	Reproductiv
	t	g structure	l mode	cost	e cost
1	-3.132			1.681	
2	-3.457	+		1.684	VO
3	-2.943		+	1.656	
4	-3.225	+	+	1.662	
5	-2.003		+	1.772	
6	-3.082			1.706	-0.105
7	-2.178	+	+	1.769	

Page 145 of 167

Ecology Letters

							0.007 402
	8	-3.408		+		1.708	-0.097 402
	9	-2.543				1.771	
	10	-2.917			+	1.670	-0.057
403							
	Model #	Study	d	AICc	ΔΑΙϹϲ	AICc	_
		duration	f			weight	
	1		4	198.805	0.000	0.171	
	2		5	199.024	0.219	0.153	
	3		6	199.252	0.447	0.137	r o
	4		7	199.760	0.955	0.106	On,
	5	-0.055	7	200.464	1.659	0.075	
	6		5	201.945	3.140	0.036	
	7	-0.053	8	202.128	3.323	0.033	
	8		6	202.269	3.464	0.030	

406

0.027

0.025

For Review Only

3.702

3.854

5

7

202.507

202.659

1 2 3 4 5			
6		9	-0.043
7 8		10	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 4 25 26 27 28 29 30 31 23 34 35 36 37 38 9 40 41 42 43 44 5	407		
46			

Ecology Letters

-3.018

-2.915

-2.863

-2.976

+

+

4

5

6

7

408 **Table S24.** Model selection table showing the characteristics of the top ten mixed models describing the mean proportion of 409 individuals dormant in a population (logit-transformed) in species outside of the Orchidaceae. Models are arranged in decreasing explanatory power, beginning with the best-fit model (model 1). Numbers under factors indicate slope coefficients. 410 The + sign indicates that the model included the categorical variable indicated (perennating structure or nutritional mode). 411 412 Blanks indicate that the term was not included in that model. Species was included as a random factor in all models. **Intercept** Perennating Nutritional Sprouting Reproductive df AICc Model ΔAICc AICc # mode cost weight structure cost 1 -3.065 101.167 + 1.488 6 0.000 0.275 2 -3.018 1.325 4 102.154 0.987 0.168 3 -3.173 1.600 102.197 7 1.030 0.164 + +

1.363

1.449

1.289

1.566

-0.114

-0.155

-0.172

+

+

5

7

5

8

103.536

104.932

105.397

105.561

2.369

3.765

4.230

4.394

0.084

0.042

0.033

0.031

	8	-1.842					3	105.888	4.721	0.026
	9	-2.825		+	1.337	-0.194	6	106.475	5.308	0.019
	10	-1.544	+			in the second se	5	106.570	5.403	0.018
413				•						
414										
415										
416										

Ecology Letters

Table S25. Model selection table showing the characteristics of the top ten mixed models describing the maximum observed duration of dormancy in a population in species within the Orchidaceae. Models are arranged in decreasing explanatory power, beginning with the best-fit model (model 1). Numbers under factors indicate slope coefficients. The + sign indicates that the model included the categorical variable indicated (perennating structure or nutritional mode). Blanks indicate that the term was not included in that model. Species was included as a random factor in all models. Mad т. A 1 . 3.4 р ... c ... n

I# latitude precipitatio annual g structure cost e cost n temperatur e e 1 -0.443 1.087 1.087 2 -0.159 -0.159 1.085 1.085 1.085 3 -0.006 -0.010 -0.018 + 1.097 - 4 -0.645 0.001 - 1.013 - -	Mode	Intercept	Abs	Annual	Mean	Perennatin	Sprouting	Reproductiv
e 1 -0.443 + 1.087 2 -0.159 1.085 3 -0.006 -0.010 + 1.097 4 -0.645 0.018 + 1.119	1#		latitude	precipitatio	annual	g structure	cost	e cost
1 -0.443 + 1.087 2 -0.159 1.085 3 -0.006 -0.010 + 1.097 4 -0.645 0.018 + 1.119				n	temperatur			
2 -0.159 1.085 3 -0.006 -0.010 + 1.097 4 -0.645 0.018 + 1.119					e			
3 -0.006 -0.010 + 1.097 4 -0.645 0.018 + 1.119	1	-0.443				+	1.087	
4 -0.645 0.018 + 1.119	2	-0.159					1.085	
	3	-0.006	-0.010			+	1.097	
5 -0.253 0.001 + 1.043	4	-0.645			0.018	+	1.119	
	5	-0.253		0.001		+	1.043	

6	0.385	-0.013					1.099
7	0.777	-0.017	<	0.001		+	1.009
8	-0.460					+	1.062 0.077
9	-0.418				0.022		1.123
10	-0.443			0.		+	1.080
2					P		
Mode	Sample	Study	df	AICc	ΔΑΙϹϲ	AICc	
l #	size	duration				weigh	
						t	
1		0.039	5	296.665	0.000	0.075	
2	_	0.033	4	297.791	1.126	0.043	
3		0.042	6	298.147	1.482	0.036	
4		0.042	6	298.285	1.620	0.033	
5		0.039	6	298.626	1.961	0.028	

	6		0.038	5	298.642	1.977	0.028	
	7		0.043	7	298.796	2.131	0.026	
	8		0.038	6	298.924	2.259	0.024	
	9		0.036	5	299.028	2.363	0.023	
	10	0.001	0.039	6	299.028	2.363	0.023	
424								

1	
2	
2	
4	
4 5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20 29	
30	
30 31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	

Table S26. Model selection table showing the characteristics of the top ten mixed models describing the maximum observed duration of dormancy in a population in species outside of the Orchidaceae. Models are arranged in decreasing explanatory power, beginning with the best-fit model (model 1). Numbers under factors indicate slope coefficients. The + sign indicates that the model included the categorical variable indicated (perennating structure or nutritional mode). Blanks indicate that the term was not included in that model. Species was included as a random factor in all models.

Model #	Intercept	Abs	Annual	Mean annual	Perennating	Nutrition	Mean life
		latitude	precipitation	temperature	structure		expectancy
1	-0.125				+	+	
2	-0.343			4	+	+	
3	-0.901				+	+	0.018
4	0.058				+	+	
5	-0.076				+	+	
6	-0.318	0.003			+	+	
7	-0.088			-0.005	+	+	

	8	-0.087	(0.001			+		+
	9	-0.205			-0.044				
	10	-2.350	0.031						
30									
	Mode	Sprouting	Reproductive	Sample	Study	df	AICc	ΔΑΙϹϲ	AICc
	l #	cost	cost	size	duration				weight
	1	1.196				6	184.094	0.000	0.095
	2	1.223			0.015	7	186.028	1.933	0.036
	3	1.867				7	186.070	1.975	0.035
	4	1.147	-0.161			7	186.165	2.071	0.034
	5	1.140		0.001		7	186.613	2.518	0.027
	6	1.279				7	186.720	2.625	0.025
	7	1.242				7	186.739	2.645	0.025
	8	1.204				7	186.778	2.684	0.025

1 2 3									
4 5 6		9	1.277	0.001	0.065	6	187.966	3.872	0.014
7 8		10	1.538	0.001	0.072	6	188.031	3.937	0.013
9 10 11	431								
12 13									
14 15 16									
17 18									
19 20									
21 22 23									
24 25									
26 27									
28 29 30									
31 32									
33 34									
35 36 37									
38 39									
40 41									
42 43 44									
44 45 46									
47									

Ecology Letters

1 SUPPLEMENTAL METHODS	
-------------------------------	--

2 Data table development: Literature search

We used Google Scholar (scholar.google.com) to search the literature for all papers documenting vegetative dormancy in any herbaceous perennial plant species. We searched for the following terms: "prolonged dormancy", "vegetative dormancy", "herbaceous perennial", and "geophyte". We then narrowed the scope of the search to include only studies that involved demographic monitoring, and finally searched manually for all papers documenting dormancy. We also included reviews of dormancy, most notably Lesica and Steele (1994), Shefferson (2009), and Reintal et al. (2010), and papers cited therein. From the final list of papers, we gathered descriptive (non-numerical) information about the species studied, as well as statistics on the studies themselves, information about the populations studied, and relationships between life history variables for each species (provided in the paragraphs below).

The empirical studies we used are highly diverse, but all share a common approach: they were all demographic studies in which the behaviour of individual plants was recorded over time by carrying out repeated censuses. We define dormancy as situations in which a plant was observed aboveground in one year, not observed in one or more subsequent years, and present aboveground in some later year. True dormancy could be confused with observer error (i.e. the plant had above ground parts in a particular year, but the researcher did not see them or conducted the census prior to the individual's sprouting), within-year herbivory (i.e. the plant did produce aboveground parts in a particular year, but these were completely removed prior to census), or mortality followed by the recruitment of a new plant in the same location as the plant that previously died. To explore the significance of these possible causes of the absence of aboveground parts, some researchers have conducted multiple censuses within each year (Shefferson et al. 2001; Alexander et al. 2009). They have found the

1	
2	
3 4	
4 5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15 16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27 28	
20 29	
30	
31	
32	
33	
34	
35	
36	
37 38	
38 39	
39 40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

26	frequency of such sources to vary from case to case, although they are typically low.
27	Although most studies of dormancy do not include explorations of detection error, the natural
28	history and ease of observation of many of the species in our dataset makes it unlikely that
29	such errors or within-year herbivory are major issues.
30	Species description variables. Species description variables included the species and
31	subspecies name, subfamily and family, the dominant nutritional mode (i.e. autotrophic,
32	mycoheterotrophic, or mixotrophic), the perennating structure (i.e. rhizome, taproot, corm,
33	bulb, or tuber), and the presence or absence of a juvenile period prior to the seedling stage,
34	potentially lasting longer than one year following germination (e.g. the protocorm stage in
35	orchids).
36	Study description variables. Study description metrics included all of the following: the total
37	number of plants for which there were records of behaviour in multiple years, the years in
38	which data were collected, the study duration, the geographic coordinates (latitude and
39	longitude) of each studied population, the country and continent in which the study took
40	place, whether the study was experimental or observational, and the details of treatments
41	applied if the study was experimental.
42	Population and individual plant variables. Population metrics were: the mean population
43	growth rate (deterministic λ , estimated from population projection matrices), the mean life
44	expectancy of individuals from seed germination and from the seedling stage (in some
45	species, most notably terrestrial orchids, germination typically leads to an underground stage
46	that can last for several years prior to the emergence of a true seedling), the observed mean (\pm
47	1 SE) percentage of the population that was dormant during the years of the study, the
48	maximum duration (years) that the study species was observed to spend in dormancy, and
49	various percentile lengths of dormancy (median, 75%, 90%, 95%, and 99%) observed both at

Ecology Letters

the individual level and for the whole recorded population, and whether the authors assumed *a priori* a maximum dormancy duration.

Some of the population variables that we included were derived from demographic datasets and population projection matrices. Where possible, we also gathered demographic datasets or population projection matrices, including some datasets derived from published papers included in our literature review. We used these datasets in methodologically standardized demographic analyses to produce comparable data across datasets. When sufficient demographic data were not available, particularly when deterministic population growth rate and mean life expectancy were not available, we supplemented our data with matrix statistics derived from the COMPADRE database (Salguero-Gómez et al. 2015). We also supplemented our data with climatic data, either by recording the mean annual temperature and mean annual accumulated precipitation noted within a study, or by obtaining such data from the nearest weather station with publicly available historical climate data covering the period of the study.

65 Global dataset development: Analyses of individual monitoring datasets

Where data were available, we explored common influences on the probabilities of survival, sprouting, growth, flowering, and fruiting, and on the number of flowers and number of fruits produced, all of which were response terms in separate mixed models. Predictor terms included plant size (the metrics available for this differed between studies, but commonly included number of leaves, number of sprouts, or height of tallest sprout), sprouting status (emergent vs. dormant), and reproductive status (flowering vs. vegetative). Because of evidence that these characteristics can have different long- and short-term effects. we assessed the impacts of plant size, sprouting status, and reproductive status in both years t-1 and t (Shefferson et al. 2014). Survival was assessed as a response term from year t to

75	year $t+1$, while all other response terms were assessed within year $t+1$. These seven response
76	terms were dependent variables in general linear mixed models in which each response was
77	tested against plant size in years t-1 and t (fixed), flowering status in years t-1 and t (fixed),
78	and all two-way interactions between these terms. Year was included as a random factor in
79	each global mixed model. We then conducted exhaustive model selection, reducing all
80	independent factors down to models in which only a y-intercept and year were left. We
81	developed our inferences from the best-fit model, which was the model with the lowest AICc
82	or an equally parsimonious model ($\Delta AICc < 2.0$) with the fewest parameters. We repeated
83	this process twice, to test for impacts of both sprouting and growth. In the first instance, we
84	substituted sprouting status (whether the plant sprouted in year t-1 and/or year t) for plant size,
85	to enable us to test for the effects of sprouting status on all previously mentioned vital rates
86	(sprouting status was correlated with plant size in many populations because we treated
87	plants in dormancy as having a size of 0). In the second instance, we substituted growth
88	between years $t-1$ and t for plant size in year t (where growth was the absolute difference in
89	size between those two years per individual).
90	The results of general linear mixed modeling were used to infer various life history
91	trade-offs. These trade-offs were: the costs of reproduction, costs of sprouting, costs of
92	growth, costs of size, and costs of dormancy. In each population, qualitative relationships
93	(positive, negative, non-significant) between each demographic variable and its predictors
94	were determined from the sign of the effect in the best-fit model. We inferred costs of
95	reproduction and sprouting, from observation of significant negative effects of flowering
96	(binomial) or sprouting (binomial), respectively, in the best-fit model. For example, a cost to
97	reproduction incurred by sprouting was indicated by a significant negative effect of sprouting
98	(binomial) in year $t-1$ or year t in the best-fit model describing the probability of flowering or
99	fruiting in year $t+1$, or in the model describing the number of flowers or fruits produced in

Ecology Letters

1 2	
3 4	
5 6	
7	
8 9	
10 11	
12	
13 14	
15	
16 17	
18 19	
20 21	
22	
24	
25 26	
26 27 28	
29	
30 31	
32 33	
34	
35 36	
37 38	
39 40	
41	
42 43	
44 45	
46 47	
48	
49 50	
51 52	
53 54	
55	
56 57	
58 59	
60	

100	year $t+1$. A cost to sprouting incurred by reproduction was indicated by a significant negative
101	effect of flowering (binomial) in year t-1 or year t in the mixed model of the probability of
102	sprouting in year $t+1$. A cost of dormancy was inferred from a significant positive effect
103	associated with sprouting. Costs of size were inferred from significant negative effects
104	associated with size in any vital rate, and from significant negative interactions between size
105	in year <i>t</i> -1 and <i>t</i> in any vital rate. Finally, a cost of growth was inferred from a significant
106	negative effect associated with growth between years t-1 and t. All analyses were performed
107	in R 3.4.1 (R Core Team 2017), with mixed modelling performed using the <i>lme4</i> package
108	(Bates, Maechler & Bolker 2012), and model selection using the MuMIn package in R
109	(Bartoń 2014).
110	Where possible, we also used these mixed models to create high-resolution historical
111	(i.e. 3yr, covering years $t-1$, t , and $t+1$) population projection matrices for each population in
112	each year (Ehrlén 2000; Shefferson et al. 2014). In cases where the data were insufficient for
113	the construction of historical matrices, or where mixed modeling suggested that historical
114	matrices were not necessary, we created standard ahistorical matrices, in which state in year
115	t+1 is solely a function of state in year t, using methods described by Caswell (2001).
116	Transitions to and from dormancy were estimated via GLMMs, as were all other transitions,
117	leading to the potential for biased transitions in studies with shorter durations (i.e. this bias
118	would suggest shorter dormancy and higher mortality than is actually the case), but allowing
119	statistical power to remain as high as possible (Shefferson et al. 2001, 2014). Population

120 projection matrices were used to derive the mean deterministic population growth rate (λ),

- 121 given as the dominant eigenvalue of the mean population projection matrix (Caswell 2001),
- and the mean life expectancy of individuals from either germination or the beginning of the
- seedling stage of plants in the population (Keyfitz & Caswell 2005; Steiner *et al.* 2012).
- 5

124	Next, we used mark-recapture methodology to estimate the mean proportion of each
125	population that was dormant, and the lengths of all recorded instances of dormancy in each
126	study. We estimated the mean proportion of the plants in each recorded population that were
127	dormant over time using Cormack-Jolly-Seber (CJS) modeling in program MARK (White &
128	Burnham 1999), in which the mean proportion that was dormant is the complement of the
129	resighting rate, estimated in a model in which survival varied by year and the probability of
130	resighting was constant ($\{\phi_t p_c\}$ in mark-recapture model notation, where ϕ refers to survival
131	probability, p refers to resighting rate, t refers to time, and c is a constant) (Shefferson <i>et al.</i>
132	2001). We did not develop other models, or conduct model selection, to standardize model
133	comparison across studies. This metric was not assumed to represent a transition probability,
134	due to known bias in transition probability estimation via CJS modeling (Kéry et al. 2005).
135	Finally, we also documented every identifiable dormancy episode within each dataset.
136	Identifiable dormancy episodes are defined as years in which an individual did not sprout
137	occurring between years in which it was observed aboveground (i.e. the year before
138	dormancy started and the year after it ended were both included in the period of observation).
139	The length of each dormancy episode was recorded, and the frequency distribution of
140	dormancy episodes was assessed both per population and per individual.
141	
142	Historical matrix modelling of populations
143	We developed and parameterized historical matrices for the individual monitoring
144	datasets using methods described in Ehrlén (2000) and Shefferson et al. (2014). Matrix
145	transitions were the probabilities of transition, or rates of transition, from all possible pairs of
146	stages in years $t-1$ and t , to all possible pairs of stages in years t and $t+1$, respectively.
147	Transition probability values between life stages were given as:
148	$a_{D,ji} = S_{ji} \times (1 - P_{ji}) \tag{1}$

Ecology Letters

149	$a_{k(V),ji} = S_{ji} \times P_{ji} \times g_{k,ji} \times (1 - F_{k,ji})$	(2)
150	$a_{k(F),ji} = S_{ji} \times P_{ji} \times g_{k,ji} \times F_{k,ji}$	(3)
151	where $a_{k,ji}$ is the probability of transitioning to stage k in yea	r t+1 (in individuals that became
152	flowering or vegetative in year $t+1$, k refers to the size of the	e plant in that year), given state j
153	in year t and state i in year t-1; S_{ji} is the probability of surviv	ring from year t to year $t+1$, given
154	state <i>j</i> in year <i>t</i> and state <i>i</i> in year <i>t</i> -1; P_{ji} is the probability of	sprouting in year <i>t</i> +1, given
155	survival from year t and state j in year t and state i in year t-	1; $g_{k,ji}$ is the probability of growth
156	to state k in year $t+1$, conditional upon survival to that time a	and given state <i>j</i> in year <i>t</i> and
157	state <i>i</i> in year <i>t</i> -1; and $F_{k,ji}$ is the probability of flowering in y	year t+1, conditional upon
158	survival to that point and sprouting in that year, and given st	ate j in year t and state i in year t -
159	1. D, V and F refer to dormancy, vegetative (i.e. non-floweri	ing) sprouting, and flowering,
160	respectively. When historical matrices could not be assemble	ed, we created ahistorical
161	matrices in which state in year $t+1$ was solely a function of s	state in year t, using methods
162	described by Caswell (2001).	
163		
164	Phylogenetic analyses	
165	First, we developed a phylogenetic tree of the 114 species in	our dataset in which dormancy
166	has been recorded, based on the Open Tree of Life (Hinchlif	f <i>et al.</i> 2015), using package <i>rotl</i>
167		
		1
		1 2
		-
		-
172	species. The original studies were checked for all these species	ies to confirm that dormancy had
173	not been recorded. Onto this tree, which included a total of 3	375 species, we plotted maximum
	150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 163	150 $a_{k(P),ji} = S_{ji} \times P_{ji} \times g_{k,ji} \times F_{k,ji}$ 151where $a_{k,ji}$ is the probability of transitioning to stage k in year152flowering or vegetative in year t+1, k refers to the size of the153in year t and state i in year t-1; S_{ji} is the probability of surviv154state j in year t and state i in year t-1; P_{ji} is the probability of155survival from year t and state j in year t and state i in year t-156to state k in year t+1, conditional upon survival to that time a157state i in year t-1; and $F_{k,ji}$ is the probability of flowering in y158survival to that point and sprouting in that year, and given st1591. D, V and F refer to dormancy, vegetative (i.e. non-floweri160respectively. When historical matrices could not be assemble161matrices in which state in year t+1 was solely a function of st162described by Caswell (2001).163164Phylogenetic analyses165First, we developed a phylogenetic tree of the 114 species in166has been recorded, based on the Open Tree of Life (Hinchliff167(Michonneau et al. 2016) for R (R Core Team 2017). To this168having been subject to detailed demographic study, have not169dormancy. These species were obtained by filtering entries i170herbaceous perennial species monitored for ≥3 years in whic171reported (Salguero-Gómez et al. 2015). Filtering for absence

2	. – .	
3 4	174	recorded value for mean annual proportion dormant per population, and maximum observed
5 6	175	duration of dormancy. Taxa with missing values for either maximum duration dormant or
7 8	176	maximum proportion dormant were removed (this occurred only in a few cases in which
9 10	177	published papers only reported one of these). We reconstructed ancestral character states of
11 12	178	maximum dormancy duration and maximum proportion dormant via maximum likelihood
13 14	179	with the <i>fastAnc</i> function in package <i>phytools</i> (Revell 2012) for <i>R</i> 3.3.2 (R Core Team 2017).
15 16	180	Because both dormancy metrics were treated as continuous, we considered all proportional
17 18	181	dormancy values below 0.04 (the minimum value observed in the literature) as zero, and
19 20 21	182	rounded all predicted maximum dormancy durations down to the nearest integer. In cases
22 23	183	where there was more than one study of a species in the dataset, we used the highest value for
24 25	184	mean proportion of dormant plants recorded in any study of that species. We consider this
26 27	185	value to be more representative of the species' capacity for dormancy than the mean value
28 29	186	calculated across all studies of the species. The results were then used as a test of the
30 31	187	common background hypothesis. Support for the hypothesis would be provided if the
32 33 34	188	reconstructions indicated that dormancy had a single origin.
35 36	189	Finally, we investigated the possibility of phylogenetic signal in dormancy. We
37 38	190	hypothesized that the maximum proportion of plants in dormancy and the maximum duration
39 40	191	of dormancy would yield significant phylogenetic signal if dormancy in different species is
41 42	192	driven by common ecological drivers, suggesting a common genetical background to its
43 44	193	evolution. We analyzed phylogenetic signal in these two dormancy metrics using Blomberg's
45 46 47	194	K with function Kcalc in package picante (Kembel et al. 2010) for R (R Core Team 2017).
48 49	195	To determine significance, we ranked each value against the ordered vector of associated Ks
50 51	196	from 1000 random permutations of trait values on the phylogeny. Significant phylogenetic
52 53	197	signal was inferred if the estimated K ranked within the highest 5% of bootstrapped Ks.
54 55 56 57 58	198	Demographic data are very sparsely distributed across the Plant Kingdom, and so we

Ecology Letters

2	
1	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 9 30 31 22 33 34 35 36	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
31 32 33 34 35 36 37 38	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

199	assumed that all missing species between those analyzed were capable of dormancy, rather
200	than treating each instance of dormancy as having a unique evolutionary origin.
201	
202	Mixed linear modeling of dormancy proportion and duration across taxonomy
203	The dataset developed was used to assess the impacts of a variety of factors on (i) the
204	mean proportion of the plants in a population that were dormant, and (ii) the maximum length
205	of dormancy in years. Because of the high proportion of orchid species in the dataset (55.3%
206	of 114 species; 50.5% of 299 populations), we repeated the GLMM analysis described in the
207	main paper (see Statistical analyses under Materials and Methods) on subsets of the dataset
208	consisting of (a) only species in the Orchidaceae, and (b) only species from other families. As
209	before, mixed model building and selection was performed with AICc as our criterion using
210	packages <i>lme4</i> and <i>MuMIn</i> in R (Bartoń 2014; Bates et al. 2015; R Core Team 2017). The
211	results were compared against each other, as well as against the results using the whole
212	dataset, for inference.
213	
214	References
215	Alexander, H.M., Slade, N.A., Kettle, W.D., Pittman, G.L. & Reed, A.W. (2009). Detection,
216	survival rates and dynamics of a cryptic plant, Asclepias meadii: applications of mark-
217	recapture models to long-term monitoring studies. J. Ecol., 97, 267–276.
218	Bartoń, K.A. (2014). MuMIn: multi-model inference.
219	Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015). Fitting linear mixed-effects models
220	using lme4. J. Stat. Softw., 67, 1–48.

- **221** Caswell, H. (2001). *Matrix population models: construction, analysis, and interpretation.*
- 222 Second edition. Sinauer Associates, Inc., Sunderland, Massachusetts, USA.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
20 27
27 28
28
29
30
31
32
33
34
35
36
37
38
39
40 41
42
43
44
45
46
47
48
49
50
51
52
53
53 54
55
56
57
58
59

60

1

Ehrlén, J. (2000). The dynamics of plant populations: does the history of individuals matter?

- *Ecology*, 81, 1675–1684.
- 225 Hinchliff, C.E., Smith, S.A., Allman, J.F., Burleigh, J.G., Chaudhary, R., Coghill, L.M., et al.
- 226 (2015). Synthesis of phylogeny and taxonomy into a comprehensive tree of life. *Proc. Natl.*
- 227 Acad. Sci., 112, 12764–12769.
- 228 Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., et
- *al.* (2010). *Picante: R* tools for integrating phylogenies and ecology. *Bioinformatics*, 26,
- **230** 1463–1464.
- 231 Kéry, M., Gregg, K.B. & Schaub, M. (2005). Demographic estimation methods for plants
- with unobservable life-states. *Oikos*, 108, 307–320.
- 233 Keyfitz, N. & Caswell, H. (2005). *Applied mathematical demography*. Third edition.
- 234 Springer Science and Business Media, New York, New York, USA.
- 235 Lesica, P. & Steele, B.M. (1994). Prolonged dormancy in vascular plants and implications for
- 236 monitoring studies. *Nat. Areas J.*, 14, 209–212.
- 237 Michonneau, F., Brown, J.W. & Winter, D.J. (2016). *rotl*: an *R* package to interact with the
- 238 Open Tree of Life data. *Methods Ecol. Evol.*, 7, 1476–1481.
- **239** R Core Team. (2017). *R*: a language and environment for statistical computing. R
- 240 Foundation for Statistical Computing, Vienna, Austria.
- 241 Reintal, M., Tali, K., Haldna, M. & Kull, T. (2010). Habitat preferences as related to the
- prolonged dormancy of perennial herbs and ferns. *Plant Ecol.*, 210, 111–123.
- 243 Revell, L.J. (2012). *phytools*: an *R* package for phylogenetic comparative biology (and other
- 244 things). *Methods Ecol. Evol.*, 3, 217–223.
- 245 Salguero-Gómez, R., Jones, O.R., Archer, C.R., Buckley, Y.M., Che-Castaldo, J., Caswell,
- H., et al. (2015). The Compadre Plant Matrix Database: an open online repository for plant
 - 247 demography. J. Ecol., 103, 202–218.

Ecology Letters

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
27	
37	
37 38	
37 38	
37 38 39	
37 38	
37 38 39 40	
37 38 39 40 41	
37 38 39 40 41 42	
37 38 39 40 41 42	
37 38 39 40 41 42 43	
37 38 39 40 41 42 43 44	
37 38 39 40 41 42 43	
37 38 39 40 41 42 43 44 45	
 37 38 39 40 41 42 43 44 45 46 	
37 38 39 40 41 42 43 44 45	
 37 38 39 40 41 42 43 44 45 46 47 	
 37 38 39 40 41 42 43 44 45 46 47 48 	
 37 38 39 40 41 42 43 44 45 46 47 48 49 	
 37 38 39 40 41 42 43 44 45 46 47 48 49 	
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 	
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 	
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 	
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 	
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	

58 59

60

248 Shefferson, R.P. (2009). The evolutionary ecology of vegetative dormancy in mature

- herbaceous perennial plants. J. Ecol., 97, 1000–1009.
- 250 Shefferson, R.P., Sandercock, B.K., Proper, J. & Beissinger, S.R. (2001). Estimating
- dormancy and survival of a rare herbaceous perennial using mark-recapture models. *Ecology*,
- **252** 82, 145–156.
 - 253 Shefferson, R.P., Warren II, R.J. & Pulliam, H.R. (2014). Life history costs make perfect
 - sprouting maladaptive in two herbaceous perennials. J. Ecol., 102, 1318–1328.
 - 255 Steiner, U.K., Tuljapurkar, S., Coulson, T. & Horvitz, C. (2012). Trading stages: life
 - expectancies in structured populations. *Exp. Gerontol.*, 47, 773–781.
 - 257 White, G.C. & Burnham, K.P. (1999). Program *MARK*: survival estimation from populations

- of marked animals. *Bird Study*, 46 Supplement, 120–138.
- 259

1 SUPPLEMENTAL RESULTS

2 General characteristics

We identified records of dormancy in 114 species from 24 plant families, plus a hybrid (Figure S4; Table S1). Of these, 63 species (55%) were in the family Orchidaceae, 9 species (8%) in the Ophioglossaceae, and 5 species (4%) each in the Asteraceae and Ranunculaceae. The 301 populations included in our database were monitored for a median of 8 years (range: 3-33yrs), and included a median of 148 monitored individuals per population (range: 2-6235). Population projection matrices taken from associated published studies, or constructed from original demographic datasets, incorporated a median of 7 life stages (range: 2-6335, where high dimensionality reflected the development of historical matrix models). The mean life expectancy (MLE) of monitored individuals of dormancy-prone species from germination, as estimated from available or estimated matrix models, was 11.6 ± 3.0 years across all populations (range: 1-522 years). The proportion of plants in populations that were dormant in any year varied considerably. A mean of $16.5 \pm 14.7\%$ (± 1 SE) of the individuals in the populations were dormant per annum, with a range from 0.5% in Orchis purpurea (Orchidaceae) and Borderea chouardii (Dioscoreaceae) to 84.9% in Corallorhiza odontorhiza (Orchidaceae). The maximum duration of dormancy across all populations averaged 3.67 ± 0.21 years, and varied both between species and between populations within species. In 13 species (Actaea elata, Anacamptis morio, Botrychium watertonense, Cephalanthera damasonium, Dactylorhiza viridis, Dioscorea chouardii, Lathyrus vernus, Platanthera ciliaris, Polygonatum multiflorum, P. odoratum, Pyrola japonica, P. subaphylla, and Ophrys *insectifera*) from 7 families, the maximum recorded duration of dormancy was one year. Dactylorhiza lapponica was the only species in which some populations in the database exhibited no vegetative dormancy at all. The longest observed duration of dormancy was 18

Ecology Letters

vears in *Epipactis helleborine*, followed by 15yrs in *Cypripedium parviflorum*, and 14 yrs in Platanthera praeclara (all Orchidaceae). In non-orchid species, the maximum proportion of plants dormant was 38% in Allium amplectens, and the maximum recorded duration of dormancy was 13 years in *Eriogonum longifolium*. Across all species, the standard deviation in the proportion of individuals that was dormant covaried positively with the mean proportion dormant ($F_{1,30} = 27.87$, P < 0.0001; Figure S5), suggesting that species with greater ability to display dormancy also show more variation in the extent of dormancy between different populations.

5 Comparison of Orchidaceae vs. non-Orchidaceae

Modeling the Orchidaceae and non-Orchidaceae separately in analyses of the factors determining the costs of reproduction, sprouting, growth, size, and dormancy yielded patterns that were largely consistent with those obtained from using the original models produced from using the whole dataset. The following minor differences were observed between the Orchidaceae and the non-Orchidaceae. Non-Orchidaceae exhibited differences in the presence of reproductive costs dependent on the type of perennating structure whereas members of the Orchidaceae did not. Dormancy in the Orchidaceae was sensitive to annual precipitation while in the non-Orchidaceae it was not (Tables S11 and S12). Sprouting costs were determined by precipitation and temperature in the Orchidaceae, but not in species outside this family (Tables S13 and S14). The presence of growth costs was dependent on perennating structure in the non-Orchidaceae whereas this was not the case in the Orchidaceae. Growth costs were negatively correlated with mean life expectancy in the non-Orchidaceae but there was no relationship in the Orchidaceae (Tables S15 and S16). The presence of size costs was negatively correlated with mean life expectancy and precipitation in the Orchidaceae, but positively correlated with mean life expectancy, annual temperature,

and sample size in the non-Orchidaceae (Tables S17 and S18). Finally, costs of dormancy varied with both annual temperature and precipitation in the Orchidaceae, but showed no relationship with climate variables in the non-Orchidaceae (Tables S19 and S20). Mean life expectancy, mean proportion dormant, and maximum length of dormancy were determined by similar factors between orchids and non-orchids. However, mean life expectancy was negatively correlated with the presence of reproductive costs in the Orchidaceae, but not in the non-Orchidaceae (Table S21 and S22). Whereas mean proportion of plants that were dormant was dependent on perennating structure in the non-Orchidaceae, ι_μ... his was not the case . dormancy was dependent on nutrition. Orchidaceae (Tables S25 and S26). this was not the case in the Orchidaceae (Tables S23 and S24). Finally, maximum duration of