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Abstract 
In the paper a modular manoeuvring model of the passenger ferry “Landegode” is built, validated 

and studied. Global sensitivity analysis based on the variance decomposition is performed to assess 

the sensitivity of the individual model coefficients on the simulation outcomes. It is found that 

uncertainty in both hull hydrodynamic coefficients and the steering and interaction coefficients can 

result in significant uncertainty in the simulation results. The most influential coefficients are defined 

for the standard IMO manoeuvres. The possibility of identification of “true” values of the coefficients 

from full scale trials is studied. Such analysis would allow improving empirical predictions of the 

coefficients. It is found that different combinations of the model coefficients result in similar time-

series. This indicates the presence of correlation between the coefficients. Thus, although the 

identified coefficients can be used for simulations of the ship manoeuvring, it is impossible to identify 

the single “true” value for each coefficient from these sea trials. 
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List of symbols 

𝛼𝑅  Effective inflow angle to rudder 

𝛽  Hull drift angle at midship 

𝛽𝑃  Geometrical inflow angle to propeller 

𝛽𝑅  Effective inflow angle to rudder 

𝛾𝑅  Flow straightening coefficient 

𝛿  Rudder angle 

휀  Ratio of wake fraction at rudder and propeller position 

𝜂  Ratio of rudder area within propeller slipstream to total rudder area 

κ Coefficient to determine increase of longitudinal inflow velocity to rudder due to 

propeller 

𝜌  Water density 

𝜓  Yaw angle of ship 
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∆95%  Width of 95% confidence interval in percent 

Λ  Rudder aspect ratio 

∇  Ship displacement 

𝑎1 … 𝑎9  Regression coefficients for propeller thrust characteristic 

𝑎𝐻  Rudder force increase factor 

𝑓𝛼  Rudder lift gradient coefficient 

𝑙𝑅  Effective longitudinal rudder position  

𝑚  Ship mass 

𝑚𝑥, 𝑚𝑦, 𝐽𝑧 Surge added mass, sway added mass, yaw added moment of inertia 

𝑛𝑃  Propeller revolutions per second 

o-x-y  Coordinate system fixed to the ship with the origin at midship 

std  Standard deviation 

𝑡  Thrust deduction factor 

𝑡 [𝑠]  Time (on figures) 

𝑡𝑅  Steering resistance deduction factor 

𝑢, 𝑣, 𝑟  Surge velocity, sway velocity and yaw rate 

𝑢𝑅 , 𝑣𝑅  Longitudinal and lateral inflow velocity to rudder respectively 

𝑤𝑃  Wake coefficient in propeller position 

𝑤𝑃0  Wake coefficient in propeller position in straight motion 

𝑥𝐺  Longitudinal position of center of gravity relative to midship 

𝑥𝐻  Longitudinal position of application of additional force due to rudder action 

𝑥𝑃  Longitudinal position of propeller relative to midship 

𝑥𝑅  Longitudinal position of rudder relative to midship 

𝐴𝑅  Rudder area 

𝐵  Ship breadth 

C-X-Y  Earth fixed coordinate system 

𝐶𝑏  Block coefficient 

CI  Confidence interval 

𝐷𝑃  Propeller diameter 

𝐸…(… )  Mathematical expectation 

𝐹𝑁  Rudder normal force 



G1  Group of first 21 model coefficients in Table 6 related to hull 

G2 Group of last 10 model coefficients in Table 6 related to steering and interaction 

effects between hull, propulsion and steering 

𝐼𝑧𝐺  Yaw moment of inertia of the ship in the center of gravity 

𝐽𝑃  Propeller advance ratio 

𝐾𝑇  Propeller thrust characteristic 

𝐿𝑝𝑝  Length between perpendiculars 

OA1, OA2 First and second overshoot angles of zigzag test 

𝑃𝑃  Propeller pitch to diameter ratio 

𝑆𝑇𝑖  Total effect of factor i 

𝑈  Total velocity of midship 

𝑈𝑅  Total inflow velocity to rudder 

𝑉…(… )  Variance 

𝑋𝐻 , 𝑌𝐻 , 𝑁𝐻  Surge force, sway force, yaw moment due to hull hydrodynamic effects 

𝑋𝑅 , 𝑌𝑅 , 𝑁𝑅 Surge force, sway force, yaw moment due to steering 

𝑋𝑃  Surge force due to propulsion system 

𝑋𝑢𝑢
′ , 𝑋𝑣𝑣

′ , 𝑋𝑣𝑟
′ , 𝑋𝑟𝑟

′ , 𝑋𝑣𝑣𝑣𝑣
′ , 𝑌𝑣

′, 𝑌𝑟
′, 𝑌𝑣𝑣𝑣

′ , 𝑌𝑣𝑣𝑟
′ , 𝑌𝑣𝑟𝑟

′ , 𝑌𝑟𝑟𝑟
′ , 𝑁𝑣

′ , 𝑁𝑟
′, 𝑁𝑣𝑣𝑣

′ , 𝑁𝑣𝑣𝑟
′ , 𝑁𝑣𝑟𝑟

′ , 𝑁𝑟𝑟𝑟
′  

  Non-dimensional hydrodynamic derivatives of the hull 

 

Introduction 
Ship manoeuvring models are used for prediction of manoeuvring performance of ships on the 

design stage, training of pilots in simulation centers and other engineering studies. One of the most 

popular types of model used for simulation of ship manoeuvres is the Maneuvering Modeling Group 

(MMG) model [1]. In this model, forces for hull, propulsion and steering subsystems are defined 

separately and then interaction between the subsystems is taken into account in form of interaction 

coefficients. The hull coefficients can be defined from model tests, CFD simulations, potential codes 

or empirical formulas, such as [2]. However, the determination of the interaction coefficients is more 

complicated and costly, since it demands the propulsion and steering devices to be included in the 

simulation or experiment. Therefore, in practice more attention is paid to the hull hydrodynamic 

coefficients, while the interaction coefficients are rarely defined using experimental methods or CFD 

simulations. Instead, some reasonable values are assumed or empirical formulas are used. This can 

potentially lead to large errors in the manoeuvring predictions. It is therefore important to 

understand how sensitive are the results of the simulations of typical manoeuvres to the 

uncertainties of the model coefficients. In addition, it is desirable to develop methods to predict the 

interaction coefficients which give sufficient accuracy. One of the possible ways is to use captive 

model test [1]. However, the precision of this approach is expected to be limited due to scale effects. 

Alternatively, system identification methods can be used. System identification of manoeuvring 

coefficients is widely applied in many studies, for instance [3–5]. Often, inertial, propulsion and 



steering coefficients are considered as known constants (typically from empirical formulas) and only 

hull hydrodynamic coefficients are identified. Moreover, Hwang [6] pointed to the effect of 

simultaneous drift of the coefficients during identification, which result in hydrodynamic derivatives 

drifting to wrong values together during identification. However, if the identification of the 

coefficients of MMG model is possible, given reasonable initial approximations, more reliable 

empirical formulas for prediction of interaction coefficients can be developed. 

The goal of this paper is to undestand sensitivity of the model predictions to various model 

coefficients, including hull hydrodynamic coefficients, steering and interaction coefficients, and to 

investigate the possibility of identification of the MMG model coefficients having good initial guess 

for the hull hydrodynamic coefficients. In the first part of the paper, we present the MMG model of a 

passenger ferry “Landegode” which is used as a case vessel in a research project “Sea Trials and 

Model Tests for Validation of Shiphandling Simulation Models” [7]. The model is based on PMM test 

results, strip theory code and empirical data. The model is validated against the results of standard 

IMO full scale manoeuvres, including 35° turning circle, 10°/10° zigzag and 20°/20° zigzag executed to 

port and starboard sides. In the second part of the paper, we perform global sensitivity analysis 

based on variance decomposition to estimate the effects of individual coefficients to the outcomes of 

trials. In the third part of the paper, we estimate the coefficients of the model using random initial 

approximations of the coefficients. The estimation process is repeated multiple times. Thus, 

repeated convergence to local minimum can be avoided. To minimize possible simultaneous drift 

effect of the hull hydrodynamic coefficients, the penalty for large deviations from initial values is 

included in the cost function being optimized. 

 

Description of the vessel 
The case ship Landegode (Figure 1) is a passenger ferry owned by Torghatten Nord and operating 

near Bodø in Norway. The ferry was built in 2012. Table 1 contains main dimensions of the ferry. The 

ferry is equipped with single-screw single-rudder propulsion system with controllable pitch propeller. 

Landegode is chosen for this study as this is a modern ship and the results of PMM tests and full scale 

trials are available. 

 

Figure 1. Ferry “Landegode”. 

 
Table 1. Main dimensions of ferry "Landegode". 

Length overall [m] 96.0 

Breadth midship [m] 16.8 

Draught (max) [m] 4.2 

 



Mathematical model 

 

Figure 2. Coordinate system. C-X-Y is Earth fixed coordinate system which is considered inertial. o-x-y is body fixed 
coordinate system with the center at midhip. 

 

Simulation model used in the paper for analysis of full speed trials is similar to the MMG model [1]. 

Note that although the following expressions are taken from [1], they are based on decades of 

previous research and widely used in many papers. For the sake of brevity, the links to original 

publications are not provided. For more details see [1] and corresponding references. The equations 

for surge, sway and yaw motions are: 

(𝑚 + 𝑚𝑥)�̇� − (𝑚 + 𝑚𝑦)𝑣𝑟 − 𝑥𝐺𝑚𝑟2 = 𝑋𝐻 + 𝑋𝑅 + 𝑋𝑃    (1) 

(𝑚 + 𝑚𝑦)�̇� + (𝑚 + 𝑚𝑥)𝑢𝑟 + 𝑥𝐺𝑚�̇� = 𝑌𝐻 + 𝑌𝑅    (2) 

(𝐼𝑧𝐺 + 𝑥𝐺
2𝑚 + 𝐽𝑧)�̇� + 𝑥𝐺𝑚(�̇� + 𝑢𝑟) = 𝑁𝐻 + 𝑁𝑅    (3) 

Velocity dependent hydrodynamic forces have the following form: 

𝑋𝐻 =
1

2
𝜌𝐿𝑝𝑝

2 𝑈2 (𝑋𝑢𝑢
′ 𝑢′2

+ 𝑋𝑣𝑣
′ 𝑣′2

+ 𝑋𝑣𝑟
′ 𝑣𝑟 + 𝑋𝑟𝑟

′ 𝑟′2
+ 𝑋𝑣𝑣𝑣𝑣

′ 𝑣′4)  (4) 

𝑌𝐻 =
1

2
𝜌𝐿𝑝𝑝

2 𝑈2 (𝑌𝑣
′𝑣′ + 𝑌𝑟

′𝑟′ + 𝑌𝑣𝑣𝑣
′ 𝑣′3

+ 𝑌𝑣𝑣𝑟
′ 𝑣′2𝑟′ + 𝑌𝑣𝑟𝑟

′ 𝑣′𝑟′2 + 𝑌𝑟𝑟𝑟
′ 𝑟′3)  (5) 

𝑁𝐻 =
1

2
𝜌𝐿𝑝𝑝

3 𝑈2 (𝑁𝑣
′𝑣′ + 𝑁𝑟

′𝑟′ + 𝑁𝑣𝑣𝑣
′ 𝑣′3

+ 𝑁𝑣𝑣𝑟
′ 𝑣′2𝑟′ + 𝑁𝑣𝑟𝑟

′ 𝑣′𝑟′2 + 𝑁𝑟𝑟𝑟
′ 𝑟′3)  (6) 

Where 𝑋𝑢𝑢
′ , 𝑋𝑣𝑣

′ , 𝑋𝑣𝑟
′ , 𝑋𝑟𝑟

′ , 𝑋𝑣𝑣𝑣𝑣
′ , 𝑌𝑣

′, 𝑌𝑟
′, 𝑌𝑣𝑣𝑣

′ , 𝑌𝑣𝑣𝑟
′ , 𝑌𝑣𝑟𝑟

′ , 𝑌𝑟𝑟𝑟
′ , 𝑁𝑣

′ , 𝑁𝑟
′, 𝑁𝑣𝑣𝑣

′ , 𝑁𝑣𝑣𝑟
′ , 𝑁𝑣𝑟𝑟

′ , 𝑁𝑟𝑟𝑟
′  - non-

dimensional polynomial hydrodynamic coefficients, 𝑈 = (𝑢2 + 𝑣2)1/2  - total speed of the ship. Note 

that only 𝐿𝑝𝑝 is used to make the forces and moment in these expressions non-dimensional, contrary 

to 𝐿𝑝𝑝 and draught in [1]. 

Surge hydrodynamic force due to propeller: 

𝑋𝑃 = (1 − 𝑡)𝜌𝑛𝑃
2𝐷𝑃

4𝐾𝑇(𝐽𝑃 , 𝑃𝑃)      (7) 

Thrust coefficient 𝐾𝑇 is modelled as a polynomial depending on propeller advance ratio 𝐽𝑃 and pitch 

to diameter ratio 𝑃𝑃, the latter is needed since the propeller has controllable pitch: 

𝐾𝑇(𝐽𝑃 , 𝑃𝑃) = 𝑎1 + 𝑎2𝑃𝑃 + 𝑎3𝑃𝑃
2 + 𝑎4𝐽𝑃 + 𝑎5𝐽𝑃𝑃𝑃 + 𝑎6𝐽𝑃𝑃𝑃

2 + 𝑎7𝐽𝑃
2 + 𝑎8𝐽𝑃

2𝑃𝑃 + 𝑎9𝐽𝑃
2𝑃𝑃

2  (8) 

Advance ratio 𝐽𝑃 is calculated as 



𝐽𝑃 = 𝑢(1 − 𝑤𝑃)/𝑛𝑃𝐷𝑃        (9) 

Propeller inflow angle  

𝛽𝑃 = 𝛽 − 𝑥𝑃
′ 𝑟′        (10) 

affects the propeller wake fraction 𝑤𝑃 according to 

𝑤𝑃 = 𝑤𝑃0exp (−4𝛽𝑃
2)       (11) 

There are also alternative expressions discussed in [1], but as far as no model tests or other ways to 

estimate the coefficients in the more complicated formulas for 𝑤𝑃 are available, the simplest 

expression is used. 

Steering forces due to rudder are estimated using expressions 

𝑋𝑅 =  −(1 − 𝑡𝑅)𝐹𝑁 sin 𝛿      (12) 

𝑌𝑅 = −(1 + 𝑎𝐻)𝐹𝑁 cos 𝛿      (13) 

𝑁𝑅 =  −(𝑥𝑅 + 𝑎𝐻𝑥𝐻)𝐹𝑁 cos 𝛿      (14) 

𝐹𝑁 is rudder normal force and calculated as 

𝐹𝑁 =
1

2
𝜌𝐴𝑅𝑈𝑅

2𝑓𝛼 sin 𝛼𝑅       (15) 

The steering model has a number of simplifications, for instance, the tangential force is neglected. 

The coefficient 𝑡𝑅 reflects combined rudder-hull effect of surge resistance reduction during 

manoeuvring.  𝑎𝐻 and 𝑥𝐻 reflect increase of the steering force and moment due to presence of hull. 

Total rudder inflow velocity 𝑈𝑅 and rudder effective angle of attack 𝛼𝑅 are expressed as 

𝑈𝑅 = (𝑢𝑅
2 + 𝑣𝑅

2)1/2       (16) 

𝛼𝑅 = 𝛿 − tan−1(𝑣𝑅/𝑢𝑅)      (17) 

Longitudinal inflow velocity to rudder is calculated as  

𝑢𝑅 =  휀(1 − 𝑤𝑃)√𝜂 {1 + κ (√1 +
8𝐾𝑇

𝜋𝐽𝑃
2 − 1)}

2

+ (1 − 𝜂)  (18) 

The expression takes into account the increase of the inflow to the rudder due to the propeller 

thrust. 

The transverse inflow velocity component is affected by flow straightening effects and is calculated 

as 

𝑣𝑅 = 𝑈𝛾𝑅𝛽𝑅        (19) 

where  

𝛽𝑅 =  𝛽 − 𝑙′𝑟′        (20) 

𝑙′ is effective longitudinal rudder position which can differ from geometrical rudder longitudinal 

coordinate.  



Model coefficients 
Although Yasukawa [1] demonstrates how to determine all the interaction coefficients 

experimentally, it is rarely done in practice. Traditionally much more attention is paid to the hull 

hydrodynamic coefficients. Thus, we define hull hydrodynamic coefficients for sway force and yaw 

moment from PMM tests. A total number of 19 test series is used for identification. Figure 3 

compares original time-series of sway force and yaw moment measured in PMM and reproduced 

with the model. Two oscillating cycles for each test are presented. One can see that the model fits 

experiments very well. Surge hydrodynamic coefficients are estimated using the strip theory code 

“HullVisc” developed by SINTEF OCEAN as a part of the ShipX package [8]. Coefficient 𝑋𝑢𝑢
′  is 

estimated from straight-line motion of the real ship to ensure correct loading of the propeller. Open 

water diagram for the controllable pitch propeller is provided by the propulsion system designer 

based on CFD simulations. 

 

Figure 3. Identification of sway and yaw coefficients of the model from PMM tests. 

Some interaction coefficients are estimated using formulas found in [9]: 

𝑎𝐻 = 40∇/𝐿𝑝𝑝
3        (21) 

𝑥𝐻
′ = −(0.4 + 0.1𝐶𝑏)      (22) 

𝛾1 = 1.77𝐶𝑏 + 0.18      (23) 

𝛾2 = 1.37𝐶𝑏 + 0.41     (24) 

휀 = 2.71𝐶𝑏
𝐵

𝐿𝑝𝑝
+ 0.92      (25) 

The following expressions for 𝑡𝑅, 𝑤𝑃0, 휀, 𝛾 and 𝑓𝛼 are found in [2]: 

1 − 𝑡𝑅 = 0.28𝐶𝐵 + 0.55     (26) 

𝑤𝑃0 = 0.5𝐶𝐵 − 0.05      (27) 

𝑓𝛼 =
6.13Λ

Λ+2.25
       (28) 

Thrust deduction is estimated using an expression from [10]: 



𝑡 = 0.6𝑤𝑃0       (29) 

For the effective longitudinal rudder position 𝑙′  the geometrical rudder position is used. The 

coefficients are collected in Table 2 - Table 5.  

We would like to stress that the empirical regressions are often based on the ships built decades ago, 

while Landegode is a modern ship. Moreover, different empirical formulas can be found in literature, 

sometimes resulting in completely different values for the coefficients. Often, application ranges 

where the formulas are applicable are not presented. Finally, simple formulas cannot take into 

account all important effects affecting the values of the coefficients. For instance, the study reported 

in [11] shows that rudder profile significantly affects manoeuvring results, while in the expression for 

rudder lift coefficients only aspect ratio is used. 

 

Table 2. Main ship parameters. 

𝑚 [𝑘𝑔] 2.56e+6 𝐿𝑝𝑝 [𝑚] 95.6 ∇ [m3] 2497.6 

𝐼𝑧𝐺  [𝑘𝑔𝑚2] 1.46e+9 𝐵/𝐿𝑝𝑝 0.175   

𝑥𝐺  [𝑚] -9.3 𝐶𝐵 0.433   

 

Table 3. Hydrodynamic coefficients and added masses, e-4. 

𝑚𝑥
′  2.30 𝑋𝑣𝑣𝑣𝑣

′  241.90 𝑁𝑣
′  -30.52 

𝑚𝑦
′  57.52 𝑌𝑣

′ -106.92 𝑁𝑟
′ -15.66 

𝐽𝑧
′  3.93 𝑌𝑟

′ 11.15 𝑁𝑣𝑣𝑣
′  -314.76 

𝑋𝑢𝑢
′  -7.72 𝑌𝑣𝑣𝑣

′  -980.67 𝑁𝑣𝑣𝑟
′  -561.30 

𝑋𝑣𝑣
′  -33.80 𝑌𝑣𝑣𝑟

′  -456.81 𝑁𝑣𝑟𝑟
′  -122.47 

𝑋𝑣𝑟
′  23.20 𝑌𝑣𝑟𝑟

′  -140.65 𝑁𝑟𝑟𝑟
′  -15.49 

𝑋𝑟𝑟
′  -2.80 𝑌𝑟𝑟𝑟

′  -16.49   

 

Table 4. Parameters of propulsion model. 

𝐷𝑝 [𝑚] 3.2 𝑎2 0.761 𝑎7 -0.574 

𝑥𝑃
′  -0.496 𝑎3 -0.087 𝑎8 0.431 

𝑤𝑃0 0.17 𝑎4 -0.091 𝑎9 -0.053 

𝑡 0.10 𝑎5 -0.113   

𝑎1 -0.156 𝑎6 -0.072   

 

Table 5. Parameters of rudder model. 

𝑥𝑅
′  -0.5 𝑡𝑅 0.33 𝛾𝑅(𝛽𝑅 > 0) 0.31 

𝐴𝑅 7.68 𝑎𝐻 0.11 𝛾𝑅(𝛽𝑅 < 0) 0.51 

Λ 1.33 𝑥𝐻
′  -0.44 𝑙′ -0.5 

𝑓𝛼 2.28 휀 1.13   

𝜂 0.97 κ 0.5   

 

Comparison with full scale trials results 
To assess the quality of the model, we compare results of its simulation with measurements made 

during full-scale trials of the “Landegode” ferry. Note that the same control input (time-series of 



rudder, rps and propeller pitch) is used in simulations and experiments. Comparison of tracks for 35° 

starboard and port turning circles is shown in Figure 4. Corresponding velocities are shown in Figure 

5 for starboard and Figure 6 for port trials. Comparison of time-series of heading and velocities for 

10°/10° zigzag to starboard, 20°/20° zigzag to starboard and 20°/20° zigzag to port sides are shown in 

Figure 7 - Figure 9 respectively.  

 

Figure 4. Comparison of tracks of 35° turning circle for simulations and full scale ship. 

 

Figure 5. Comparison of velocities of 35° turning circle to starboard for simulations and full scale ship. 



 

Figure 6. Comparison of velocities of 35° turning circle to port for simulations and full scale ship. 

 

Figure 7. Comparison of heading and velocities of 10°/10° zigzag to starboard for simulations and full scale ship. 



 

Figure 8. Comparison of heading and velocities of 20°/20° zigzag to starboard for simulations and full scale ship. 



 

Figure 9. Comparison of heading and velocities of 20°/20° zigzag to port for simulations and full scale ship. 

One can see that the time-series of the velocities and yaw rate for 35° turning circle (Figure 5 and 

Figure 6) look very much alike for simulations and experiments, except for some difference in yaw 

rate during the steady rotation part. This leads to the visual difference between the tracks (Figure 4). 

20°/20° degrees zigzag to starboard side is reproduced rather well (Figure 8), especially the first part 

including the first overshoot. Fit of the 10°/10° to starboard (Figure 7) and 20°/20° zigzags to port 

side (Figure 9) is noticeably worse. Thus, the combination of PMM tests, empirical formulas, CFD and 

potential code provided a model that predicts ship manoeuvring in a realistic way, even though there 

surely are some deviations from the full scale trial results. The deviations of the simulated results 

from the experimental results can be due to model errors, including simplification of the model 

structure and imprecise model coefficients, but also partly due to unknown environmental effects 

affecting the results of full scale trials. 

Sensitivity analysis 
To understand how the model parameters affect the results of the simulations, we perform 

sensitivity analysis. Due to the highly nonlinear system, a global sensitivity analysis is preferable. We 

use the variance decomposition to calculate total effects for each parameter [12]. The total effect 𝑆𝑇𝑖 

of some model parameter i is a number between 0 and 1, indicating the influence of this parameter 

on the results of the simulation. 𝑆𝑇𝑖 = 0 means that the parameter i has no influence on the results 

of the simulation. The index is defined as 



𝑆𝑇𝑖 =  𝐸𝑿~𝑖
(𝑉𝑋𝑖

(𝑌|𝑿~𝑖 = 𝒙~𝑖
∗ )) /𝑉(𝑌)     (30) 

Where 𝑿 – the vector of model parameters, 𝑿~𝑖 – the vector of model parameters except i-th, 

𝑉𝑋𝑖
(𝑌|𝑿~𝑖 = 𝒙~𝑖

∗ ) - the variance of the result of the model simulation 𝑌(𝑿), where all input 

parameters except for i-th are fixed in some values 𝒙~𝑖
∗  from their possible range of variation and i-th 

parameter can change it’s value, 𝐸𝑿~𝑖
(… ) – expectation of the argument taken over all possible 

values of 𝑿~𝑖, 𝑉(𝑌) – unconditioned model variance. Thus, 𝑆𝑇𝑖𝑉(𝑌) shows expected residual 

variance, if all parameters except one are fixed. More details and a practical way of calculation of 𝑆𝑇𝑖 

is found in [12]. An example of application of the global sensitivity analysis based on the variance 

decomposition to manoeuvring problems is found in [13]. 

To calculate the total effects, one has to define possible ranges of variation for the model 

parameters. These ranges significantly affect the values of the total effects. For instance, if some 

parameter is deterministic and has zero range of variation, the corresponding total effect is equal to 

zero. The possible range of variation of the model parameters can hardly ever be defined objectively. 

However, such a problem is typical for all kinds of sensitivity analysis. For instance, in the classic 

example of indirect sensitivity analysis by Hwang [6], all the coefficients are changed by 20% to 

calculate sensitivities. The approach used in this paper is more flexible and allows using any types 

and size of distribution for the model parameters. Although the total effects calculated in this paper 

should be treated carefully and considered in combination with the corresponding input 

distributions, the analysis still gives useful insights in the model internal structure and importance of 

the individual and groups of the coefficients for the simulations. Thus, care must be taken to pick the 

variations of input parameters properly. 

We assume uniform distribution of all the parameters. Table 6 contains all non-fixed parameters with 

corresponding distributions.  

Table 6. Variation ranges of the model parameters. 

𝐼𝑧 +/- 10% 𝑌𝑣𝑣𝑣
′  +/- 10% 𝑤𝑃0 0.1 … 0.3 

𝑚𝑥
′  +/- 10% 𝑌𝑣𝑣𝑟

′  +/- 10% 𝑡 0.0 … 0.2 

𝑚𝑦
′  +/- 10% 𝑌𝑣𝑟𝑟

′  +/- 10% 𝑎𝐻 0.1 … 0.4 

𝐽𝑧
′  +/- 10% 𝑌𝑟𝑟𝑟

′  +/- 10% 𝑡𝑅 0.1 … 0.4 

𝑋𝑢𝑢
′  +/- 10% 𝑁𝑣

′  +/- 10% 𝑥𝐻
′  -0.5 … -0.4 

𝑋𝑣𝑣
′  +/- 10% 𝑁𝑟

′ +/- 10% 𝛾𝑅(𝛽𝑅 > 0) 0.3 … 0.7 

𝑋𝑣𝑟
′  +/- 10% 𝑁𝑣𝑣𝑣

′  +/- 10% 𝛾𝑅(𝛽𝑅 < 0) 0.3 … 0.7 

𝑋𝑟𝑟
′  +/- 10% 𝑁𝑣𝑣𝑟

′  +/- 10% 𝑙′ -0.8 … -0.4 

𝑋𝑣𝑣𝑣𝑣
′  +/- 10% 𝑁𝑣𝑟𝑟

′  +/- 10% 휀 1.0 … 1.2 

𝑌𝑣
′ +/- 10% 𝑁𝑟𝑟𝑟

′  +/- 10% 𝑓𝛼 2.0 … 2.5 

𝑌𝑟
′ +/- 10%     

 

The variation range +/- 10% is chosen for the hull hydrodynamic parameters, added masses and 

moment of inertia and rigid body moment of inertia. This variation is in agreement with the one used 

in [6], and we believe that it is a good estimate for possible precision of those coefficients. The 

remaining hull related model parameters are considered constant. The open water propeller 

characteristic is also considered constant for simplicity. For the remaining ten coefficients in Table 6  

some typical ranges are assumed based on common sense, different model examples and reference 

sources such as [14,15]. 



As the only distinction in the model between starboard and port side trials is the slight difference in 

flow straightening effect coming from the propeller rotation direction, we present the results only for 

the starboard trials, noting that for the port trials total effects for 𝛾𝑅(𝛽𝑅 > 0) and 𝛾𝑅(𝛽𝑅 < 0) are 

opposite. Additionally, the variance decomposition analysis allows estimating joint sensitivity of a 

group of parameters. Thus, for each trial the total effects of two groups of coefficients are presented. 

The first group (designated as G1) contains the first 21 coefficient from the Table 6 – the hull 

hydrodynamic coefficients, the added masses and the moment of inertia, while the second group 

(designated as G2) contains the remaining 10 coefficients, describing the steering part and hull-

propeller-rudder interactions.  

Before we present the results of the sensitivity analysis, it is useful to define what the resulting 

scatter of the simulation outcomes corresponding to the uncertainty of the model parameters in 

Table 6 is. Figure 10 shows simulated time-series of the heading and the rudder angle for 10°/10° 

zigzag manoeuvre, and Figure 11 shows the plot for the 35° turning circle trial. Although one can use 

several different indices characterizing the results of the trials, we will limit the analysis to only four 

characteristics for each type. For zigzag trial these indices are the first and second overshoot angle, 

and the times from the first rudder execute when the overshoot point is reached (the latter two 

characterize the length of the manoeuvre). For the turning circle the indices are the advance, the 

transfer, the tactical diameter and the yaw rate during steady turning. The relative width of the 95% 

confidence interval is calculated as 

∆95%= 4
𝑠𝑡𝑑(𝑖𝑛𝑑𝑒𝑥)

𝑚𝑒𝑎𝑛(𝑖𝑛𝑑𝑒𝑥)
100%      (31) 

The results are presented in Table 7. One can see that the resulting scatter of all the indices 

characterizing the results of the simulations is significant, sometimes approaching the value of the 

index itself. Thus, it is highly important to understand which of the parameters contribute the most 

to this scatter. 

 

Figure 10. Results of the Monte Carlo simulations of the 10°/10° zigzag to starboard. 

 



 

Figure 11. Results of the Monte Carlo simulation of 35° turning circle to starboard. 

Table 7. Relative width of the 95% confidence intervals for the simulation outcomes in percent according to (31). OA – 
overshoot angle, t (OA) – time after the first rudder execute when the overshoot is reached. See Figure 10 and Figure 11. 

 OA1 [%] OA2 [%] t (OA1) [%] t (OA2) [%] 

10°/10° zigzag 70.9 95.8 36.1 36.8 

20°/20° zigzag 55.1 53.1 30.7 29.5 

 Advance [%] Transfer [%] Tact. Diam. [%] Yaw rate [%] 

35° turning circle 29.4 56.3 48.0 28.3 

 

Total effects of the individual model coefficients, as well as combined effects for the groups G1 and 

G2 are presented in Figure 12 for 10°/10° zigzag, Figure 13 for 20°/20° zigzag and Figure 14 for 35° 

turning circle. It is useful to understand what particular values of the total effect coefficient means. 

From Eq. (30) it follows that the total effect is the relative expected residual variance due to one 

particular coefficient, when the other coefficients are fixed. Thus, the scatter due to single coefficient 

according to Eq. (31) is equal to total scatter multiplied by the square root of the total effect. For 

instance, the total scatter of the tactical diameter resulting from uncertainty of the model 

parameters in Table 6 is 48%, according to Table 7. Parameter 휀 has 𝑆𝑇𝜀 = 0.14 (Figure 14). Thus, the 

expected scatter due to the single parameter 휀 is around 18%. 

From the figures one can see that for most of the manoeuvring indices the rudder and interaction 

coefficients (G2) significantly contribute to the resulting scatter. This contribution is especially strong 

for timewise characteristics of the zigzags. From the hull hydrodynamic coefficients, only a few 

significantly affect the manoeuvring indices. The linear derivatives 𝑁𝑣
′  and 𝑁𝑟

′ are important for 

overshoot angles of 10°/10° zigzag. For 20°/20° zigzag, both linear coefficients 𝑁𝑣
′  and 𝑁𝑟

′ and 

nonlinear coefficients 𝑁𝑣𝑣𝑟
′  and 𝑁𝑣𝑟𝑟

′  are important. For the 35° turning circle, the strongest effect is 

observed for the coefficient 𝑁𝑣𝑟𝑟
′ , while other linear and nonlinear coefficients in yaw are less 

important. From the second group of coefficients, the overshoot angles of zigzags are mainly affected 

by the flow straightening coefficients with smaller effect of 𝑙′. Timewise characteristics of the zigzags 

are mainly affected by 𝑎𝐻, 휀 and 𝑓𝛼. The remaining coefficients are much less important. For the 

turning circle, the relative effect of the interaction coefficients is weaker than for zigzag tests. The 

strongest effect is observed for 휀, 𝑎𝐻, 𝛾𝑅 and 𝑓𝛼 are also affecting the geometrical indices.  



 

Figure 12. Total effects of the model coefficients on the outcomes of the simulations of the 10°/10° zigzag to starboard. 

 

Figure 13. Total effects of the model coefficients on the outcomes of the simulations of the 20°/20° zigzag to starboard. 

 

Figure 14. Total effects of the model coefficients on the outcomes of the simulations of the 35° turning circle to starboard. 

Model tuning 
The sensitivity analysis shows that the hull-propeller-interaction coefficients significantly affect the 

predictions of the ship manoeuvres. However, in practice it is much more complicated and expensive 

to define interaction coefficients than the hull manoeuvring coefficients, both experimentally and by 

means of CFD, as both propeller and rudder should be considered. Moreover, it is not yet well 

understood how the coefficients are affected by scale effects. Thus, it is desirable to develop 

satisfactory empirical formulae to predict the interaction coefficients with sufficient accuracy. One of 

the possible ways is to use system identification to define the coefficients from full scale tests data. In 

this section, we perform multiple model optimization with random initial coefficients according to the 

distributions in the Table 7. The random initial values are important to understand if the values of the 

coefficients converge to the global minimum or local minima. The cost function used for optimization 

is mean squared difference between experimental and simulated time-series of normalized surge, 

sway and yaw velocities for eight trials: 35° turning circles to port and starboard, two 10°/10° zigzags 

to starboard, three 20°/20° zigzags to starboard and one 20°/20° zigzag to port. Similar trials are 

included to minimize possible effects of random factors such as environment. In addition, penalty is 

added to avoid large deviations of the hull hydrodynamic coefficients from original values. The quasi 

Newton algorithm implemented in Matlab solver ‘fminunc’ [16] is used for optimization. To 

conveniently assess the similarity of two time-series, the following expression is used (𝑦 represents 

experimental data, �̂� – simulated data): 



𝑓𝑖𝑡 =  (1 −
‖𝑦−�̂�‖

‖𝑦−𝑚𝑒𝑎𝑛(𝑦)‖
) ∙ 100%     (32) 

First, we compare optimized models where all 31 coefficient from Table 6 are adjusted and models 

where only the last 10 coefficients are tuned. 20 models for each of the optimization settings is 

identified. Then, the fit is averaged for all the trials for each model. Table 8 presents mean fit and 95 

% confidence interval calculated as four multiplied by standard deviation.  

Table 8. Average fit of the optimized models and the data. 

  u v r 

All coefficients are tuned 

mean fit 75.83 82.32 93.14 

95% CI 2.38 0.57 0.13 

Last ten coefficients are tuned 

mean fit  69.95 78.70 88.05 

95% CI 0.37 0.24 0.13 

 

One can see that the models where only interaction coefficients are tuned fit the experimental data 

worse than the models where all the coefficients are tuned. This can indicate insufficient accuracy of 

the hull hydrodynamic coefficients identified by means of PMM tests, for instance due to scale 

effects. For all the models the fit is best for yaw velocity, and worse for sway and surge velocity. This 

can be partly explained by possible uncertainties of experimental data due to environmental effects 

such as wind, current and waves. Finally, spread between the models is very small, which means that 

the simulation of the models resulted in very similar time-series. Examples of yaw rate time series for 

20°/20° zigzag and 35° turning circles are presented on Figure 15 and Figure 16. The blue lines 

correspond to the models where only interaction coefficients are tuned and the red lines correspond 

to the models where all the coefficients are tuned. Each of the lines represent twenty simulated 

time-series plotted with the same colour. The repeatability is so good that it is almost impossible to 

distinguish the individual time-series.  

 

Figure 15. Comparison of tuned models with experimental time-series of yaw rate for 20°/20° zigzag trial to starboard (each 
thick line representing simulations consists of twenty independent lines representing individual simulations of models with 
different coefficients).  



 

Figure 16. Comparison of tuned models with experimental time-series of yaw rate for 35° turning circles to starboard and 
port. 

However, the tuned coefficients do not converge to similar values. Figure 17 shows resulting ranges 

of the hull hydrodynamic coefficients for optimized models relative to the original coefficients. One 

can see that several coefficients changed significantly, including highly sensitive yaw moment linear 

and nonlinear coefficients. Figure 18 shows the values of interaction and rudder coefficients for the 

case when all the coefficients are tuned. Thus, we conclude that the coefficients converge to their 

local optimal values rather than to the global optimal values which can be treated as “true” values. 

Moreover, any of the local optima cannot be prioritized because they result in similar fit of the 

experimental data. Therefore, the “true” values of the model coefficients cannot be identified in 

principle, which shows that creating reliable empirical formulas for the interaction coefficients based 

on the identification data is impossible in practice. If the hull hydrodynamic coefficients are 

considered fixed, the scatter of the remaining coefficients is smaller for most of the coefficients 

(Figure 19). However, in addition to the worse fit of experimental time-series, some values (for 

instance, 𝑡𝑅 and 𝑙′) are outside of the range these parameters can belong to. Moreover, some of the 

coefficients having significant influence on the results of simulations have large scatter (𝑎𝐻, 휀 and 

𝑓𝛼). 

 

Figure 17. Relative values of the hull hydrodynamic coefficients after the model tuning (all coefficients are tuned). 



 

Figure 18. Absolute values of the steering and interaction coefficients after the model tuning (all coefficients are tuned). 

 

Figure 19. Absolute values of the steering and interaction coefficients after the model tuning (only these coefficients are 
tuned). 

 

Finally, it is useful to see how the tuned models perform for the trials not used for the identification. 

There are no available tests from full scale trials which are distinct enough to perform the proper 

validation. However, it is possible to simulate such trials using the identified simulation models and 

assess how good the repeatability of the simulation results is. As the control input for the validation 

manoeuvre, we use stepwise function presented on Figure 20. The input is generated in such a way 

that it covers rudder angles in range 10 – 25 degrees. The length of each step when the rudder is 

kept constant is enough for the models to reach steady rotation. We perform simulation for the 

propulsion settings corresponding to the identification trials (17.5 knots approach speed) and also for 

a lower speed (11.5 knots) to see how the models are extrapolating. The resultant time-series of 

velocities are presented on Figure 21. One can see that the models with different coefficients result 

in almost identical time-series of velocities. Thus, the coefficients has the same correlation even for 

extended range of applications. Therefore, additional trials will not improve the identifiability of the 

coefficients. 



 

Figure 20. Rudder input for comparison of tuned model. 

 

Figure 21. Results of the simulations of the case trial performed for 20 tuned models and two speed ranges. 

Discussion and conclusions 
In this paper we presented and studied the MMG modular simulation model of the “Landegode” 

ferry. The hydrodynamic coefficients of the models were identified from oscillating PMM tests (for 

sway and yaw) and strip theory code (for surge), while for steering system and interaction 

coefficients empirical formulas were used. The comparison with the results of full scale trials 

revealed some differences, although the behaviour of the model is similar to the real ship for all the 

tests. It is not possible to conclude what is the source of this difference.  

The global sensitivity analysis based on variance decomposition was applied to understand which of 

the coefficients affect the outcomes of the simulations the most. The analysis showed that both 

hydrodynamic coefficients and steering and interaction similarly significantly affect the results of the 

simulations. It was found that among the hull hydrodynamic coefficients, yaw moment derivatives 

have the strongest effect. 𝑁𝑣𝑣𝑟
′  and 𝑁𝑣𝑟𝑟

′  are the most influential for large rudder angle trials. These 

coefficients can be identified only from combined sway and yaw motions which can be taken into 

account during the design stage of the PMM experiments. However, the precision of the model can 

be significantly limited by steering and interaction coefficients, as in practice they are rarely 

measured with the same accuracy as the hull hydrodynamic coefficients. Thus, further studies are 



recommended to understand what is the sufficient accuracy of the interaction coefficients and if 

more effort should be made to estimate them with higher precision.  

To investigate the possibility of identification of interaction coefficients from full scale trials, the 

model tuning with random initial approximations for the coefficients was done. Two series of the 

identification were performed: in the first one only steering and interaction coefficients were 

adjusted, and in the second one in addition hull hydrodynamic coefficients and the moment of inertia 

of the ship were tuned. Twenty models were identified for each setting. In both cases the identified 

models converged to the same time-series, being closer to the full-scale time-series in the case when 

all the coefficients were tuned. However, the coefficients did not converge to the same “true” values 

and had significant scatter. In the case where only steering and interaction coefficients were tuned, 

some unfeasible values of the identified coefficients were observed, indicating possible errors in 

model structure or hull hydrodynamic coefficients.  Moreover, additional trials of a new type not 

used for the identification for two different approach speeds and propeller settings were simulated 

to see if the correlation between the coefficients is the same for different application ranges. The 

resulting time-series of velocities were also almost identical. Thus, the “true” values of the model 

parameters cannot be identified for the MMG model from full scale tests. And although grey box 

system identification of MMG model can be useful as it provides a set of model coefficients which 

can result in time-series close to those observed for a real ship, extrapolation using such a model 

should be carefully studied. 
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