
 1 

Direct finite element method for nonlinear earthquake 
analysis of three-dimensional semi-unbounded  

dam–water–foundation rock systems 
 
 
 

Arnkjell Løkke1 and Anil K. Chopra2 
1 Department of Structural Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway. 
2 Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, CA 94720, U.S.A. 

 

DISCLAIMER 

This is the pre-peer reviewed version of the following article: "Løkke, A., and Chopra, AK. (2018) Direct 
finite element method for nonlinear earthquake analysis of three-dimensional semi-unbounded dam–
water–foundation rock systems. Earthquake Engineering and Structural Dynamics, 47: 1309–1328"  
which has been published in final form at Wiley Online Library [DOI: 10.1002/eqe.3019]. This article 
may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-
Archiving. 
 

SUMMARY 

A direct finite element method for nonlinear earthquake analysis of two-dimensional dam–water–
foundation rock systems has recently been presented. The analysis procedure uses standard viscous-
damper absorbing boundaries to model the semi-unbounded foundation-rock and fluid domains, and 
specifies the seismic input as effective earthquake forces at these boundaries. Presented in this paper is a 
generalization of the direct finite element method with viscous-damper boundaries to three-dimensional 
dam-water-foundation rock systems. Step-by-step procedures for determining the effective earthquake 
forces starting from a ground motion specified at a control point on the foundation-rock surface is 
developed, and several numerical examples are computed and compared with independent benchmark 
solutions to demonstrate the effectiveness of the analysis procedure for modelling three-dimensional 
systems.  
 

1. INTRODUCTION 

Earthquake analysis of arch dams requires three-dimensional models of dam–water–foundation rock 
systems that recognize the factors known to significantly influence the earthquake response of concrete 
dams [1]: dam–water interaction including water compressibility and wave absorption in sediments 
deposited at the reservoir bottom [2]; dam–foundation rock interaction including mass, flexibility and 
damping in the rock [3,4]; radiation damping due to the semi-unbounded sizes of the reservoir and 
foundation-rock domains [3,5]; spatial variation of the ground motion at the dam–canyon interface [6,7]; 
nonlinear behavior of the dam and foundation rock [8–12].  

Analysis procedures based on the substructure method [13–15] have long been available for 
linear frequency-domain analysis of three-dimensional dam–water–foundation rock systems. Most dam 
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engineers however, prefer to work with the direct method of analysis – implemented in commercial FE 
software with their user-friendly interfaces – that models the entire system using finite elements (FEs) and 
analyzes it directly in the time-domain. While these programs are able to model nonlinear mechanisms, 
they often neglect or use simplistic models for dam–water–foundation rock interaction and the semi-
unbounded domains. Furthermore, the spatial variation of earthquake motions at the dam–canyon 
interface is typically ignored in dam engineering practice, although there is substantial evidence that such 
variations can significantly influence the response of arch dams [6,7].  

Accurate modelling of dam–water–foundation rock systems by the direct method requires a FE 
model that includes the mass, stiffness, and material damping properties of the foundation rock, the 
compressibility of water, and the effects of sediments at the reservoir bottom. The semi-unbounded fluid 
and foundation-rock domains must be reduced to bounded sizes using absorbing boundaries [16,17], and 
the seismic input specified by effective earthquake forces applied directly to these boundaries [17,18], or 
alternatively, in a single layer of elements interior of the boundaries [19,20]. Utilizing the latter approach, 
Basu [21] developed an advanced analysis procedure using Perfectly Matched Layer (PML) [22] 
boundaries and the Effective Seismic Input method (ESI) [19] to specify effective earthquake forces. 
However, ESI and PML are features that require modification of the FE source code, and the procedure is 
currently only available in LS-DYNA [23].  

Utilizing the former approach, a direct FE method for nonlinear earthquake analysis of two-
dimensional dam–water–foundation rock systems has recently been presented [24]. Viscous-damper 
absorbing boundaries [25] were selected to model the semi-unbounded domains, and the effective 
earthquake forces were specified directly at these boundaries. These are standard features in FE analyses, 
thus ensuring that this direct FE method can be implemented with any commercial software without 
modification of the source code.  

The objective of the work presented in this paper is to generalize the direct FE method with 
viscous-damper boundaries to three-dimensional dam–water–foundation rock systems. Step-by-step 
procedures for computing effective earthquake forces at the boundaries of the foundation-rock and fluid 
domains are presented, and several examples are documented to validate the accuracy of the analysis 
procedure applied to three-dimensional problems.  

2. SYSTEM AND GROUND MOTION 

2.1. Semi-unbounded dam–water–foundation rock system 

The idealized, three-dimensional dam–water–foundation rock system considered consists of three 
subsystems (Fig. 1): (1) the concrete dam with nonlinear properties; (2) the foundation rock, consisting of 
a bounded region adjacent to the dam that may be nonlinear, inhomogeneous, and irregular in geometry; 
and the exterior, semi-unbounded, region with "regular" geometry that has linear constitutive properties 
and is homogeneous or horizontally layered; and (3) the fluid domain, consisting of a bounded region of 
arbitrary geometry adjacent to the dam that may be constitutively nonlinear; and a uniform channel, 
unbounded in the upstream direction, that is restricted to be linear.  

By "regular" geometry of the semi-unbounded foundation-rock region we mean that the canyon 
upstream of the bounded region has a uniform cross-section, and similarly, the canyon downstream of the 
bounded region has a uniform cross-section; however, the two cross-sections may be different. The 
assumption of homogeneous or horizontally layered properties in the exterior foundation-rock region is 
introduced to permit use of a deconvolution method to define the seismic input for the system starting 
from a ground motion specified at the surface of the foundation rock (Sec. 2.2). 

The semi-unbounded system in Fig. 1 is modeled by a three-dimensional FE discretization of a 
bounded system with wave-absorbing boundaries at the bottom and side boundaries of the foundation-
rock domain to model its semi-unbounded geometry, and at the upstream end of the fluid domain to 
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model its essentially "unbounded" length (Fig. 2). Although many absorbing boundaries have been 
proposed in the literature, the well-known viscous damper [25] is chosen herein because of its availability 
in almost every commercial FE code, acceptable accuracy, and ease of implementation. 

 

 
Figure 1: Three-dimensional semi-unbounded dam–water–foundation rock system showing three subsystems: (1) the 

nonlinear dam; (2) the foundation rock, consisting of an irregular, nonlinear region and a semi-unbounded linear 
region with "regular" geometry and properties; (3) the fluid domain, consisting of an irregular (possibly nonlinear) 

region, and a semi-unbounded uniform channel with linear fluid.  

The linear, regular parts of the foundation-rock and fluid domains included in the FE model (Fig. 
2) provide a transition from the irregular geometry and nonlinear behavior adjacent to the dam to the 
regular geometry and linear behavior required at the absorbing boundaries. The minimum sizes for these 
domains are determined by the ability of the viscous-damper boundaries to absorb outgoing (scattered) 
waves from the system. Because the viscous damper is a "simple" absorbing boundary, larger domain 
sizes are required than if an "advanced" boundary such as PML was used.  

The use of finite elements for the entire system permits modeling of arbitrary geometry and 
inhomogeneous, nonlinear material properties of the dam, canyon, and foundation-rock and fluid domains 
adjacent to the dam. Furthermore, it allows for modelling of nonlinear mechanisms such as cracking of 
the dam concrete, sliding and separation at construction joints, lift joints, and at concrete–rock interfaces, 
discontinuities in the rock due to local cracks and fissures, and cavitation in the fluid.  

2.2. Earthquake excitation 

Equations governing the response of the system of Fig. 2 subjected to earthquake excitation defined by 
the "free-field" ground motion – the motion that would occur in the foundation rock without the dam and 
water present – will be formulated in Sec. 3. These equations require that the spatially varying free-field 
motions at all boundaries of the FE model are known. Specifying such motions remains a challenging 
problem. 

The most general approach is to perform large-scale simulation of seismic wave propagation from 
an earthquake source to the dam site, shown schematically in Fig. 3a. Here, physics-based finite element 
or finite difference models of large 3D regions subjected to a fault slip are analyzed. Although such 
regional simulations have been reported in the research literature [26,27], they seem impractical for 
concrete dam analyses for two reasons: (1) information regarding the details of the earthquake fault 
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rupture and properties of the geological materials is lacking; and (2) simulation models are currently 
limited to lower frequencies compared to the vibration properties of concrete dams.  

Another approach would be to use boundary element methods (BEM) to compute the free-field 
motions resulting from incident plane waves propagating from infinity to the dam site at predefined 
angles, shown schematically in Fig. 3b. Such methods have been used to compute the free-field motions 
at the surface of canyons and to investigate the influence of assumed incident angles on the dam response 
[7,28]. However, due to the obvious difficulty in selecting a combination of wave types and their 
incidence angles for an actual situation, these methods are rarely applied to solve practical problems.  

 

 
Figure 2: Dam–water–foundation rock system with truncated foundation-rock  

and fluid domains: (a) 3D perspective view; (b) section view through center of canyon.  

Presently, the standard approach is to define the earthquake excitation by three components of 
free-field acceleration at a control point on the foundation-rock surface (Fig. 3c): the stream component, 

( )x
ga t , the cross-stream component ( )y

ga t  and the vertical component ( )z
ga t . Because the ground motion 

cannot be defined uniquely, we are interested in an ensemble of motions. These should, in some sense, be 
consistent with a target spectrum that represents the seismic hazard at the site, e.g., the uniform hazard 
spectrum (UHS) or some variation of the conditional mean spectrum (CMS). Several methods have been 
developed to select and scale ground motion records to "match" a target spectrum [29]. The UHS (and 
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CMS) applies to an outcrop location on level ground; this control point is usually chosen at the elevation 
of the dam abutments. It could also be at other locations however, for example if the purpose is to 
perform analysis using earthquake input motions recorded at specific locations near the dam.  

The free-field motion at the bottom and side boundaries of the foundation-rock domain can be 
determined from the surface control motion ( )ga t  using a deconvolution-type analysis (Fig. 3c). For this 
analysis, it will be assumed that the incident wave field consists solely of plane SH-, SV- and P-waves 
propagating vertically upwards from the underlying semi-unbounded foundation rock. This is clearly a 
major simplification, but at the present time, it seems to be a reasonable pragmatic choice.  

 

 
Figure 3: Schematic overview of methods to obtain free-field earthquake motion: (a) large scale fault-rupture 

simulation; (b) boundary element method with incident plane waves propagating from infinity at predefined angles; 
(c) deconvolution analysis starting with a free-field surface control motion ( )ga t .   

When specifying the earthquake excitation this way, spatial variation of the ground motion, both 
amplitude and phase, is automatically considered in the analysis. Variations in the vertical direction arise 
from wave propagation effects, and scattering and diffraction of waves from the canyon cause variation in 
the horizontal direction. Because of the simplifying assumption of vertically propagating incident waves, 
this spatial variation is significant in the vertical direction, but less so in the horizontal direction. 

3. EQUATIONS OF MOTION 

The equations governing a two-dimensional dam–water–foundation rock system idealized as an ensemble 
of finite elements with viscous-damper absorbing boundaries were derived in [24] by interpreting dam–
water–foundation rock interaction as a scattering problem in which the dam perturbs the "free-field" 
motion in an auxiliary state of the system. The resulting equations of motion have recently been 
generalized to three-dimensional dam–water–foundation rock systems [30]. Presented here without 
derivation, the final equations of motion for the FE system (Fig. 4) are: 
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where tr  is the vector of total displacements in the dam and foundation rock; tp  is the vector of total 
hydrodynamic pressures in the fluid idealized as a linear*, inviscid, irrotational and compressible acoustic 
fluid; m  and c  are the standard mass and damping matrices, respectively, for the dam–foundation rock 
system; ( )tf r  is the vector of internal forces due to (nonlinear) material response; s , b  and h  are the 
"mass", "damping" and "stiffness" matrices for the acoustic fluid [31], respectively; fc  is the matrix of 
normal and tangential damper coefficients for the viscous dampers (dashpots) on the foundation-rock 
boundaries f ; rc  is the matrix of damper coefficients for the viscous dampers on the upstream fluid 
boundary r ;   is the density of water; hQ  and bQ  are matrices that couple accelerations to 
hydrodynamic pressures at the dam–water interface h  and water–foundation rock interface b , 
respectively; stR  is the vector of static forces that includes self-weight, hydrostatic pressures, and static 
foundation-rock reactions at  f . 
 

 
Figure 4: Schematic overview of FE model of (a) dam and foundation-rock domain, (b) fluid domain. Highlighted 
are the viscous damper boundaries f  and r  at the truncation of the foundation-rock and fluid domains, and the 

fluid-solid interfaces h  at the upstream dam face and b  at the reservoir bottom and sides. 

Hydrodynamic wave energy is lost at b  – the bottom and side boundaries of the reservoir – by 
means of two different mechanisms. The first is wave absorption in sediments deposited at the reservoir 
bottom. This mechanism is modeled by the reservoir bottom reflection coefficient   [32], and its effects 
are included in Eq. (1) through the damping matrix b . The second mechanism, associated with water–
foundation rock interaction, is explicitly considered in the FE model through the coupling matrix bQ . 
Because this mechanism automatically accounts for some radiation of hydrodynamic waves, care should 
be taken not to overestimate the total amount of energy lost at these boundaries when also including 
sediment absorption in the FE model. 

The earthquake excitation is specified in Eq. (1) by the effective earthquake forces 0
fP  and 0

rP  
[30]: 

                                                      

* For convenience of notation, the fluid is assumed to be linear also in the irregular fluid part. The resulting 
formulation is applicable to nonlinear fluids in the irregular fluid part with appropriate generalization [49].  
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where the free-field motion 0
fr  and free-field boundary forces 0

fR  at f  are to be computed from 
analysis of the free-field foundation rock, defined as the foundation-rock domain without the dam and 
reservoir (Fig. 5a); and the free-field hydrodynamic pressures 0

rp  at r  are to be computed from analysis 
of the free-field fluid domain, defined as the uniform channel upstream of r  (Fig. 5b).  

The free-field variables 0
fr , 0

fR  and 0
rp  represent the minimal set of data required to determine 

the response of the dam–water–foundation rock system to earthquake excitation. Procedures for 
computing these variables at the different boundaries will be presented next in Sec. 4.  

4. COMPUTING EFFECTIVE EARTHQUAKE FORCES 

4.1. Forces at bottom boundary of foundation-rock domain 

To facilitate implementation of the procedure, it is convenient to reformulate Eq. (2a) for the effective 
earthquake forces at the bottom foundation-rock boundary [30]:  

 
0 02f f IP c r   (3) 

where 0
Ir  is the motion at the bottom boundary associated with the incident (upward propagating) seismic 

waves. Because this equation only requires the incident motion 0
Ir , it avoids computation of the free-field 

boundary tractions 0
fR  that are required when using Eq. (2a) directly. 

The incident motion 0
Ir  is obtained by 1D deconvolution of the surface motion ( )ga t  assuming 

vertically propagating seismic waves and a homogeneous (or horizontally layered) rock halfspace (Fig. 
3c). Deconvolution is an inverse procedure to determine the amplitude and frequency content of an input 
signal to be consistent with the observed output signal. It is most conveniently implemented in the 
frequency domain, either directly by computing the transfer function for a 1D halfspace, or by utilizing 
1D wave propagation software such as SHAKE [33] or DEEPSOIL [34].  

 

 
Figure 5: (a) Free-field foundation rock system (without dam or reservoir) with displacements defined by 0r , 

 (b) "free-field" fluid channel upstream of r  with hydrodynamic pressures defined by 0p . 

Although rather straightforward, deconvolution is often subject to considerable confusion because 
1D wave propagation software operate with two possible motions at every depth [35]: an outcrop motion 
and a within motion. By definition, the within motion is the superposition of the incident and reflected 
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waves, i.e., it is the total (or "actual") motion at any given depth in the halfspace. In contrast, the outcrop 
motion is the motion that would occur at a theoretical outcrop location at the same depth; this is equal to 
twice the amplitude of the incident motion. Thus, the incident motion 0

Ir  needed in Eq. (3) is one-half the 
outcrop motion at the bottom boundary determined from the deconvolution analysis. The procedure to 
compute effective earthquake forces 0

fP  from Eq. (3) is summarized in Box A1 in Appendix A. 
Some researchers have avoided deconvolution of the surface motion by idealizing the foundation 

rock as a homogeneous, undamped halfspace [5,36]. In this special case, a vertically propagating wave 
does not attenuate, implying that the incident motion 0

Ir  at the bottom boundary is equal to one-half the 
surface control motion, except for a time shift. While this simplification may be appropriate for some 
cases (rock with high stiffness and very little inherent material damping), it does not appear to be always 
valid. 

4.2. Forces at side boundaries of foundation-rock domain 

4.2.1. Free-field boundary elements  

The computation and application of effective earthquake forces at the four side boundaries of the 
foundation-rock domain (Eq. 2a) can be performed automatically within the FE code using a special class 
of free-field boundary elements [37]. These elements solve the radiation condition for one-dimensional 
wave propagation and apply consistent forces at the boundaries at every time step as the analysis 
progresses in time. However, only a very few commercial programs have such boundary elements 
available for three-dimensional analysis, examples are PLAXIS [38] and FLAC [39].  

In light of the limited availability of these elements, we will present an alternative procedure 
wherein the effective earthquake forces are computed in a separate auxiliary analysis of the free-field 
system before the actual dam–water–foundation rock system is analyzed. This approach has the advantage 
that it does not require modification of the FE source code, but has the disadvantage that it requires major 
data transfer. 

4.2.2. Computing 0
fP  at side boundaries 

The free-field motion 0
fr  and boundary forces 0

fR  required to compute the effective earthquake forces 0
fP  

at the four side boundaries of the foundation-rock domain from Eq. 2a are to be determined from dynamic 
analysis of the foundation-rock in its free-field state (Fig. 5a). Although this system is much simpler than 
the actual dam–water–foundation rock system, it is still too complicated to analyze directly by the direct 
FE method because it contains the irregular canyon interior of the boundary f .   

The quantities 0
fr  and 0

fR  that enter in Eq. (2a) can instead be determined for each component of 
ground motion from two sets of four simpler analyses [30]: (i) four 1D corner columns subjected to forces 
of Eq. (3) at the base are analyzed first to provide 0

fr  and 0
fR  for the corner nodes; (ii) analyses of four 

2D systems subjected to forces of Eq. (3) at its base and forces 0
fP  on the sides determined from the first 

set of 1D analyses (required because the domain has been truncated) provides 0
fr  and 0

fR  for nodes on all 
four side boundaries. The procedure is illustrated in Fig. 6 and summarized in step-by-step form in Box 
A2 in Appendix A. 

This procedure for computing 0
fP  at the side boundaries of a system with arbitrary geometry is 

based on the assumption that the motion in each of the four 2D systems in Fig. 6a can be determined 
independently of the other 2D systems. This assumption is reasonable as long as the foundation-rock 
domain is large enough, which is generally the case because the viscous-damper boundaries already 
require large domains to ensure acceptable modeling of the semi-unbounded domains. A more detailed 
discussion on the significance of this assumption can be found in [30].  
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Figure 6: Computing 0
fP  at side boundaries of foundation-rock domain: (a) free-field system with corresponding 1D 

corner columns and 2D systems; (b) example analysis of 1D corner column to compute 0
fr  and 0

fR  at corners, 
 (c) example analysis of 2D system to compute 0r f  and 0R f  at the four side boundaries.  

Implementation of this procedure (Box A2) means that eight auxiliary analyses are required for 
each of the three components of ground motion. The computational effort required for these linear 
dynamic analyses is minimal, and the procedure can be automated in a pre-processing script that is set up 
and executed before the nonlinear dynamic analysis of the dam–water–foundation rock system takes 
place. For example, we use MATLAB [40] to compute and store effective earthquake forces that are used 
with the FE code OPENSEES [41]; a similar methodology has been implemented by Saouma [42] with the 
FE code MERLIN [43].  

This disadvantage of this approach is that substantial management and transfer of data is required 
for three-dimensional models, which may easily have tens of thousands of boundary nodes. The authors 
are currently developing a simplified form of the direct FE method that drastically reduces these 
requirements.  

4.3. Forces at upstream boundary of fluid domain 

The free-field hydrodynamic pressures 0
rp  required to compute 0

rP  at r  are to be determined by 
dynamic analysis of the fluid in its free-field state: a fluid channel of uniform cross-section unbounded in 
the upstream direction (Fig. 5b). Because this system is uniform in the upstream direction, the analysis 
reduces to two dimensions. For cross-stream and vertical components of ground motion, the free-field 
pressures 0

rp  on the boundary  r  are computed from analysis of the 2D fluid domain cross-section (Fig. 
7); the stream component of ground motion will not generate any hydrodynamic pressures, thus implying  

0
r P 0 . The procedure is summarized in step-by-step form in Box A3 in Appendix A. 

Before closing this section we note that the forces 0
rP  are associated with earthquake-induced 

hydrodynamic pressures caused by vertical and cross-stream excitation of the part of the fluid domain that 
has been eliminated upstream of  r . These forces are required because of the system idealization (Fig. 
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1), where the earthquake excitation is implicitly assumed to extend along the entire length of the 
unbounded fluid channel. 
 

 
Figure 7: Computing 0

rP  at upstream boundary of fluid domain: analysis of 2D fluid cross-section  
subjected to vertical and cross-stream excitation to compute 0

rp .  

5. SUMMARY OF ANALYSIS PROCEDURE 

The earthquake input for the three-dimensional dam–water–foundation rock system is the free-field 
ground acceleration ( )k

ga t , , ,k x y z , specified at a control point on the foundation-rock surface at the 
level of the dam abutments (Fig. 3c). This motion could for example be from an ensemble of recorded 
ground motions selected and scaled to "match" a target spectrum, or synthetic motions developed for an 
earthquake scenario. 

Analysis of a 3D dam–water–foundation rock system by the direct FE method is organized in 
three major phases: initial static analysis, linear dynamic analyses of the free-field foundation-rock and 
fluid domains, and nonlinear dynamic analysis of the dam–water–foundation rock system [30]. 

 
Initial static analysis:  

1. Develop a FE model for static analysis of the dam–foundation rock system with an appropriate 
material model for the dam concrete and an appropriate static model for the foundation rock. 

2. Compute the response of this system to hydrostatic forces and the self-weight of the dam and 
foundation rock. 

3. Record the static state of the dam and foundation rock, including displacements, stresses and 
strains, and reactions from the foundation rock at the boundary f . 
 

Linear dynamic analysis of free-field foundation-rock and fluid domains: 
4. Obtain the outcrop motion at the bottom boundary of the foundation-rock model by 

deconvolution of the surface ground motion ( )ga t . 
5. Calculate the effective earthquake forces 0

fP  at the bottom boundary of the foundation-rock 
domain using the procedure summarized in Box A1.  

6. Compute the effective earthquake forces 0
fP  at the side boundaries of the foundation-rock domain 

using the procedure summarized in Box A2. 
7. Calculate the effective earthquake forces 0

rP  at the upstream boundary of the fluid domain using 
the procedure summarized in Box A3. 
 

Step 6 may be avoided if free-field boundary elements [37] are employed at the side boundaries of the 
truncated foundation-rock domain. 
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Nonlinear dynamic analysis of dam–water–foundation rock system: 
8. Develop a FE model of the dam–water–foundation rock system with viscous-damper boundaries 

at the truncations of the semi-unbounded foundation-rock and fluid domains at f  and r , 
respectively. Use solid elements for the dam and foundation rock, acoustic fluid elements for the 
water, interface elements at the dam–water and water–foundation rock interfaces, and surface 
elements for the sediments at the reservoir bottom and sides.  

9. Calculate the response of this FE model subjected to effective earthquake forces 0
fP  computed in 

Step 5 at the bottom foundation-rock boundary and in Step 6 at the side boundaries, 0
rP  computed 

in Step 7 at the upstream fluid boundary, as well as self-weight, hydrostatic forces and static 
foundation-rock reactions at f . The static state of the dam (Step 3) is taken as the initial state in 
the nonlinear dynamic analysis.  

6. NUMERICAL VALIDATION OF THE DIRECT FE METHOD 

In this section, several examples are documented to validate the accuracy of the direct FE method, which 
was implemented with the FE program OPENSEES [41]. First, the ability of the method to reproduce free-
field motions at the surface of a flat foundation box is documented. The free-field response of a uniform, 
semi-cylindrical canyon cut in a foundation halfspace is determined next and compared with classical 
solutions. Lastly, the dynamic response of Morrow Point Dam is computed and compared with results 
obtained from the substructure method.  

6.1. Free-field motion at horizontal ground surface 

The flat box model shown in Fig. 8a has a domain size and mesh density that is representative of an actual 
dam–water–foundation rock system, and viscous dampers employed at the bottom and side boundaries. A 
free-field control motion ( )ga t  is defined at the surface in the two horizontal and vertical directions by 
the S69E, S21W and vertical components, respectively, of the motion recorded at Taft Lincoln School 
Tunnel during the 1952 Kern County earthquake. Each component of ground motion is deconvolved, 
effective earthquake forces 0

fP  are computed from the procedures summarized in Appendix A and applied 
to the bottom and side boundaries of the foundation domain, and the response of the system is computed. 
 

 
Figure 8: (a) FE model of flat foundation box, (b) FE model of semi-cylindrical canyon cut in halfspace. 
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The results presented in Fig. 9 show a near perfect match between the specified free-field control 
motion and the computed surface motions at every node at the surface of the flat box, thus demonstrating 
that the direct FE method is able to exactly reproduce free-field conditions for this simple system to 
within FE discretization error. This is achieved without using iterative procedures to adjust the amplitude 
and/or frequency content of the input motion, which is sometimes used by dam engineers to overcome 
deficiencies in their FE models. 

6.2. Free-field motion at canyon surface 

Next, we evaluate the ability of the direct FE method to accurately compute the free-field motion at the 
surface of a semi-cylindrical canyon; this is the motion that in turn will excite a dam supported in the 
canyon. Available analytical and numerical solutions for this classical problem [44,45] serve as the 
benchmark for the evaluation.  

The semi-cylindrical canyon with radius R discretized as a FE system with viscous-damper 
boundaries (Fig. 8b) is subjected to effective earthquake forces 0

fP  computed from the procedures 
summarized in Appendix A, but with the vertically incident seismic motion 0

Ir  specified as a plane wave 
of unit amplitude and frequency f. The forces 0

fP  are applied to the bottom and side boundaries of the FE 
model, and the displacement response along the canyon and top surface of the foundation is computed. 
Results are presented for Poisson's ratio   = 1/3 and different values of the dimensionless frequency 

2 / sfR V  , where sV  is the shear wave velocity of the foundation medium;   may be interpreted as the 
ratio of the canyon width to the wavelength of the incident waves. When plotted in this form, the results 
are independent of the actual material properties as long as the ratio / sR V  is maintained.  

 

 

Figure 9: Comparison of 5% damped pseudo-acceleration response spectra for control  
motion and computed motion at nodes on flax box surface. 

The displacement amplification, defined as the ratio of the Fourier transform of the computed 
displacements to the unit amplitude input motion, are presented in Fig. 10 for incident SH-, SV- and P-
waves; these correspond to excitation in the canyon, cross-canyon and vertical directions, respectively. 
The results obtained by the direct FE method closely match the analytical results by Trifunac [44] for 
incident SH-waves, and the numerical results using boundary integral methods by Wong [45] for incident 
SV-waves and P-waves. The small discrepancies are due to the inability of the viscous damper boundaries 
to perfectly absorb all scattered and diffracted waves from the canyon. This is most prominent in the 
response to incident SV-waves and P-waves because these excitations generate surface waves that are not 
effectively absorbed by the viscous dampers; but even for these excitations, the discrepancies are small. 
The excellent agreement demonstrates the ability of the direct FE method to accurately predict free-field 
motions at the surface of a canyon. 
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Figure 10: Displacement amplitudes at semi-cylindrical canyon computed by the direct FE method and  
compared with results by Trifunac [44] and Wong [45]. Responses to incident SH-, SV-, and P-waves  
are plotted against the dimensionless distance /Y R , where Y  is the cross-canyon distance from the  

center of the canyon and R is the radius of the canyon. 

6.3. Dynamic response of Morrow Point Dam 

6.3.1. System analyzed 

The ability of the direct FE method to accurately compute the dynamic response of concrete dams is 
evaluated numerically by analyzing Morrow Point Dam, a 142 m high, approximately symmetric, single 
centered arch dam located on the Gunnison River in Colorado. The material properties and damping 
values selected for the dam concrete and foundation rock are based on the results from forced vibration 
tests of the dam and subsequent numerical studies performed to match the experimental results [46,47]. 
The concrete and foundation rock is assumed to be homogeneous, isotropic and linearly elastic. The 
concrete has a modulus of elasticity sE  = 34.5 GPa, density s  = 2403 kg/m3, and Poisson's ratio s  = 
0.20. The foundation rock has a modulus of elasticity fE  = 24.1 GPa (i.e. /f sE E  = 0.70), density f  = 
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2723 kg/m3 and Poisson's ratio f  = 0.20. The impounded water has the same depth as the height of the 
dam, density   = 1000 kg/m3, and pressure-wave velocity C = 1440 m/s. The reservoir-bottom reflection 
coefficient is chosen as   = 0.80. 

Material damping in the dam and foundation rock is modeled in the direct FE method by 
Rayleigh damping with s  = 1% and f  = 2% viscous damping specified for the dam concrete and 
foundation rock, respectively, at two frequencies: 1f  = 5Hz, the fundamental resonance frequency of the 
dam on rigid rock, and at three times this frequency. The damping matrix for the complete system is then 
constructed using standard procedures for assembling damping matrices for two subdomains [48]. 
Determined by the half-power bandwidth method applied to the resonance curve, the overall damping in 
the combined dam–water–foundation rock system is 3-5% for the first few modes of vibration, consistent 
with the range of measured damping values [46]. 

 

Figure 11: OpenSees FE model of Morrow Point Dam: (a) dam; (b) fluid domain; (c) foundation-rock domain.  

The FE mesh shown in Fig. 11 is assembled using standard 8-node brick elements, with 800 full-
integration solid elements for the dam, 42,000 reduced-integration solid elements for the foundation rock, 
and 9,200 acoustic fluid elements for the water in the reservoir. Interface elements couple accelerations 
with hydrodynamic pressures at the fluid-solid interfaces, surface elements at the bottom and sides of the 
reservoir model wave absorption due to sediments, and viscous dampers (dashpots) at the boundaries of 
the foundation-rock domain and at the upstream end of the fluid domain model the semi-unbounded 
extent of these domains. The combined FE model consists of approx. 63,000 elements and 150,000 
DOFs, and its overall dimensions are 700m × 700m × 400m, corresponding to approx. 5H × 5H × 3H, 
where H is the height of the dam.  
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6.3.2. EACD3D-08 model for substructure method 

The dynamic response of this FE model – computed by the direct FE method – will be compared with 
independent results obtained by frequency-domain analysis using the substructure method [14]. Analyzed 
using the computer program EACD3D-08 [15], wherein the foundation rock is treated as a semi-
unbounded halfspace, the fluid domain as unbounded in the upstream direction, and the earthquake 
excitation is specified directly at the dam–canyon interface, this method avoids artificial model 
truncations and absorbing boundaries. The EACD3D-08 model, shown in Fig. 12, includes 800 solid 
elements for the dam, the FE mesh for the irregular part of the fluid domain, and the boundary element 
mesh at the dam–foundation rock interface.  

Material damping in the substructure method is modeled by rate-independent, constant hysteretic 
damping defined by the damping factors s  = 0.02 and f  = 0.04 specified for the dam and foundation-
rock separately; these correspond to viscous damping ratios of s  = 1% and f  = 2% at all frequencies 
of vibration. A numerical investigation confirmed that the damping in the direct FE method, as defined 
earlier, is sufficiently close to this rate-independent damping over the frequency range of interest [30]. 
Because EACD3D-08 does not consider water–foundation rock interaction, this is also excluded in the 
direct FE method to ensure a meaningful comparison. 

 

 

Figure 12: EACD3D-08 model for Morrow Point Dam: (a) FE model for dam, (b) FE model for semi-unbounded 
fluid domain, (c) boundary element mesh for foundation-rock domain discretized at the dam–canyon interface. 

6.3.3. Frequency response functions for dam response 

Results for the dam response are presented in the form of dimensionless frequency response functions that 
represent the amplitude of radial acceleration at the crest of the dam† due to unit harmonic free-field 
motion. These functions are determined in the direct FE method from time-domain analysis of the FE 
model (Fig. 11) subjected to effective earthquake forces computed from the procedures summarized in 
Appendix A at the bottom and side boundaries of the foundation rock and at the upstream fluid boundary. 
The free-field control motion, ( )ga t , is specified at the control point on the foundation-rock surface as a 
long sequence of unit harmonics with gradually increasing frequency; further details of this procedure are 
available in [30]. 

Implemented in the frequency domain, the substructure method directly provides frequency 
response functions; however, the earthquake excitation is here defined by the free-field motion at the 
dam–canyon interface. To determine this motion consistent with the specified control motion ( )ga t , we 
implement a direct FE analysis of the foundation-rock domain without the dam or impounded water (Fig. 
13) subjected to the same boundary forces 0

fP  as described in the preceding paragraph. The motion 

                                                      

† The actual location at the dam crest is selected at node 34 – the center node – for upstream and vertical ground 
motions, and at node 47 for cross-stream motion. 
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recorded at the dam–canyon interface is then used as the spatially varying input excitation to the 
EACD3D-08 analysis. 

 

 
Figure 13: FE model of foundation-rock domain to compute  

free-field motion at dam–canyon interface used as input to EACD3D-08 analysis. 

Frequency response functions obtained by the direct FE and substructure methods for the dam on 
flexible foundation rock are compared for two cases: empty reservoir and full reservoir in Figs. 14 and 15, 
respectively. Additional validation examples for the dam–water–foundation rock system covering a wide 
range of conditions are available in [30]. Results for a full reservoir are presented here only for the stream 
component of ground motion, because limitations in the EACD3D-08 computer program does not allow 
for a meaningful comparison with the direct FE method for cross-stream and vertical ground motions.  

 

 

Figure 14: Frequency response functions for the amplitude of radial acceleration at the crest of Morrow Point dam 
including dam–foundation rock interaction (empty reservoir) subjected to stream, cross-stream and vertical ground 

motions. Results are computed by direct FE and substructure methods. 

The response results obtained by the direct FE method are very close to those from the 
substructure method. The small discrepancies near some of the resonant peaks (Fig. 14), and at 
frequencies higher than 15 Hz (Fig. 15), are primarily caused by reflections from the viscous-damper 
boundaries, which are incapable of perfectly absorbing all scattered waves. Such errors will generally 
decrease with larger domain sizes.  
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The good agreement demonstrates the ability of the direct FE method to model the factors 
important for earthquake analysis of arch dams: dam–water–foundation rock interaction including water 
compressibility and wave absorption at the reservoir boundaries, radiation damping in the semi-
unbounded foundation-rock and fluid domains, and the earthquake excitation specified by a control 
motion at the surface of the foundation-rock domain. 
 

 
Figure 15: Frequency response functions for the amplitude of radial acceleration at the crest of Morrow Point dam 
including dam–water–foundation rock interaction (full reservoir) subjected to stream ground motion. Results are 

computed by direct FE and substructure methods. 
 

6.3.4. Response to earthquake excitation 

The FE system in Fig 11 is analyzed with the free-field control motion in the stream direction, ( )x
ga t , 

defined by the S69E component of the Taft ground motion. The radial accelerations and displacements at 
the crest of the dam relative to the base of the dam (node 40) are presented in Fig. 16, and envelope 
values of maximum tensile arch and cantilever stresses on the upstream face of the dam in Fig. 17. The 
results computed by the direct FE method closely match those from the substructure method: the 
displacements and accelerations at the crest show a near perfect match, and the envelope stress values are 
also close. The slight discrepancies in the stress contour plots were found to be caused by differences 
between the FE stress recovery algorithms in the two computer programs.  

The effectiveness of the direct FE method with viscous-damper boundaries is apparent from the 
fact that these excellent results (Figs. 14-17) are achieved even with relatively moderate domain sizes: the 
overall dimensions of the FE model are approx. 5H × 5H × 3H, where H is the height of the dam. In 
passing, we note that larger domains were required to ensure similar levels of accuracy for two-
dimensional analysis of gravity dams [24]. 

The direct FE analyses were implemented in OPENSEES on a laptop computer (without parallel 
processing capabilities) using simple MATLAB scripts to perform the data management for computing 
and applying effective earthquake forces. The CPU-time required in determining the dynamic response of 
the FE model in Fig. 12 with roughly 150,000 DOFs was 68 min for 2000 time-steps; approximately 13 
min were required for the auxiliary analyses to set up the effective earthquake forces, and 55 min for the 
linear dynamic analysis of the dam–water–foundation rock system. The computational effort required to 
determine the effective earthquake forces for the system is small compared to the time required for 
dynamic analysis of the overall system. Clearly, it will become negligible compared to the CPU-time 
required to perform a more sophisticated nonlinear dynamic analysis of such systems.  

A
b
so

lu
te

 v
al

u
e 

o
f 

ra
d
ia

l

 a
cc

el
er

at
io

n
 a

t 
d
am

 c
re

st

0 5 10 15 20
0

5

10

15

20

25

 f , Hz

Stream ground motion

Substructure method

Direct FE method



 18 

 
Figure 16: Radial displacements and accelerations at the crest of Morrow Point Dam including dam–water–

foundation rock interaction subjected to S69E component of Taft ground motion applied in the stream direction. 
Results are computed by direct FE and substructure methods. 

 

 
Figure 17: Envelope values of maximum tensile stresses, in MPa, on the upstream face of Morrow Point Dam 

including dam–water–foundation rock interaction subjected to S69E component of Taft ground motion applied in 
the stream direction; static stresses are excluded. Results are computed by direct FE and substructure methods. 

7. CONCLUSIONS 

The direct FE method with viscous-damper boundaries that was recently presented for nonlinear 
earthquake analysis of two-dimensional dam–water–foundation rock systems [24] has been generalized to 
three-dimensional systems. This analysis procedure considers all the factors important in the earthquake 
response of arch dams: dam–water interaction including water compressibility and wave absorption at the 
reservoir boundaries; dam–foundation rock interaction including mass, stiffness and damping in the rock; 
radiation damping due to the semi-unbounded sizes of the foundation-rock and fluid domains; spatial 
variation of the ground motions around the dam–canyon interface; and nonlinear behavior in the dam and 
adjacent parts of the foundation-rock and fluid domains. 

The seismic input to the procedure is specified by a free-field ground motion at a control point on 
the surface of the foundation rock. Deconvolution of this control motion provides the motion at the 
bottom boundary of the foundation-rock domain. Then, effective earthquake forces are computed from a 
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set of 1D and 2D analyses and applied to the boundaries of the FE model. Each of these analyses is 
simple, requires very little computational effort and can be implemented without modifying the FE source 
code, the main challenge is the management and transfer of large amounts of data. 

Several examples have been documented to validate the accuracy of the direct FE method applied 
to three-dimensional problems. One of these examples compares the dynamic response of Morrow Point 
Dam computed by the direct FE method with independent benchmark solutions obtained by the 
substructure method. The close agreement demonstrates that (i) the effects of dam–water–foundation rock 
interaction are accurately modeled, (ii) the bounded foundation-rock and fluid models with viscous-
damper boundaries are able to simulate the semi-unbounded extent of these domains, and (iii) the 
earthquake excitation is appropriately defined by specifying – at the boundaries of the FE model – 
effective earthquake forces determined from a surface control motion.  
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APPENDIX A 

Presented in this appendix are step-by-step procedures for computing effective earthquake forces 0
fP  at 

the bottom and side boundaries of the foundation-rock domain and 0
rP  at the upstream boundary of the 

fluid domain. Additional details regarding the computational procedures can be found in [30]. 
 
 

Box A1: Step-by-step procedure for computing 0
fP  at bottom boundary of foundation-rock domain. 

1. Determine the outcrop motion at the bottom foundation–rock boundary by one-
dimensional deconvolution of each component of the surface control motion ( )k

ga t ; 
, ,k x y z .  

2. Compute the incident motion 0
Ir  as one-half of the outcrop motion at the bottom 

boundary determined in Step 1.  
3. Calculate the effective earthquake forces 0

fP  at the bottom boundary from Eq. (3) using 
0
Ir  from Step 2.  

 
 
Box A2: Step-by-step procedure for computing 0

fP  at side boundaries of foundation-rock domain. 

 
Analysis of four 1D corner columns (Fig. 6b) 

1. Develop FE models for each of the four 1D corner columns for the foundation rock that 
have the same mesh density as the corners of the main FE model. 

2. For each component of ground motion, , ,k x y z , add a viscous damper at the base in 
the k-direction and constrain DOFs in other directions to permit only shear ( ,k x y ) or 
axial ( k z ) deformation of the 1D column. 

3. Apply effective earthquake forces (Eq. 3) to the base in k-direction and compute 0
fr  and 

0
fR  at every node along the height.  

 

Analysis of four 2D systems (Fig. 6c) 

4. Develop FE models for each of the four 2D systems for the foundation rock, with the 
same mesh density as the side boundaries of the main FE model. 

5. For each component of ground motion, , ,k x y z , add viscous dampers at the bottom 
and side boundaries and constrain DOFs at the faces to model "infinite length" conditions 
in the direction normal to the boundary (e.g., if the x-axis is normal to the boundary, two 
nodes with the same  y-, and z-coordinates should be constrained to move identically). 

6. Apply effective earthquake forces from Eq. (3) to the bottom boundary and from Eq. (2a) 
to the side boundaries using 0

fr  and 0
fR  from the 1D analyses in Step 3, and compute 0

fr  
and 0

fR  at every node in the 2D system.  

 

Computing effective earthquake forces 

7. Compute the effective earthquake forces 0
fP  at every node on the four side boundaries of 

the foundation-rock domain from Eq. (2a) using 0
fr  and 0

fR  from Step 6. 
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Box A3: Step-by-step procedure for computing 0

rP  at upstream boundary of fluid domain. 

 
Analysis of two-dimensional fluid section (Fig. 7) 

1. Develop a FE model of the 2D fluid cross-section with the same mesh density as the 
main model at the upstream fluid boundary r , add surface elements at the reservoir 
bottom and sides to model sediments.  

2. For cross-stream and vertical components of ground motion, ,k y z , calculate 0
rp  at 

every node by analyzing the 2D model subjected to accelerations 0
br  at the reservoir 

bottom and sides, where 0
br  is the (spatially varying) foundation-rock accelerations at the 

intersection b r  ; this can be extracted from the relevant 2D analysis described in 
Box A2. 

 

Computing effective earthquake forces 

3. Compute the effective earthquake forces 0
rP  for every node at the fluid boundary from 

Eq. (2b) using 0
rp  from Step 2. 

 
 


