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Abstract The problem of human action retrieval based on the representation of the
human body as a 3D mesh is addressed. The proposed 3D mesh sequence descriptor
is based on a set of trajectories of salient points of the human body: its centroid and
its five protrusion ends. The extracted descriptor of the corresponding trajectories
incorporates a set of significant features of human motion, such as velocity, total
displacement from the initial position and direction. As distance measure, a variation
of the Dynamic Time Warping (DTW) algorithm, combined with a k−means based
method for multiple distance matrix fusion, is applied. The proposed method is fully
unsupervised. Experimental evaluation has been performed on two artificial datasets,
one of which is being made publicly available by the authors. The experimentation on
these datasets shows that the proposed scheme achieves retrieval performance beyond
the state of the art.
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1 Introduction

The problem of retrieving 3D static objects has been widely examined by both unsu-
pervised methods, such as [17], [18] and [21] and by supervised ones, such as [2] and
[3]. Recently, the retrieval problem has been extended to the domain of 3D mesh se-
quences, which are becoming more and more common. A challenging application in
this category is human action retrieval and recognition, with applications in surveil-
lance, video games, human-computer interaction etc.

Action retrieval and recognition has recently been addressed in the case of 2D
video [33], [14], [35]. In recent years, human action retrieval and recognition using
the skeletal representation of the human body has attracted the research interest. The
use of a set of critical points to recognize a human action is first introduced by Johans-
son in [8]. In this work, a psychological experiment where a set of bright spots located
on suitable points on the human body, demonstrates that the human optical system is
able to discriminate different human actions by following these points across time.
The representation of the human body as a skeleton, i.e. as a set of points which
represent the joints and the connections between them, has become common. Bench-
mark datasets have been constructed that contain various actions of human skeletons,
such as MSRA-3D [12] and UCF Kinect [13]. Many works have addressed human
action retrieval and recognition using the skeletal representation, such as [34], [15],
[1], [22], [20] and [28]. A comprehensive survey is presented in [19].

Following the spirit of Johansson’s experiment, in this work we tackle the prob-
lem of human action retrieval in 3D mesh sequences using the trajectories of a suit-
ably selected set of salient points on the human body. One of these points is the cen-
troid of the human body which is representative of the general trajectory of an action
and robust to data defects. However, this provides a very ‘abstract’ representation of
human actions. Thus a set of additional 5 points as shown in Fig. 1 is extracted and
their trajectories form the action descriptor. These 5 points correspond to the protru-
sions of the human body, i.e. the top of the head, the upper limb ends and the lower
limb ends. As the human body can be segmented into 6 basic components (head,
core body, arms and legs), each of these salient points is a representative of a body
segment.

A set of features, which incorporates kinematic information for each segment
of the human body, is extracted for each of the 6 aforementioned trajectories. The
similarity computation between the sub-descriptors of the trajectories of identical
salient points is based on the Dynamic Time Warping (DTW) algorithm. Finally, the
resulting similarities are combined using the k − means algorithm to extract the
final similarity between two actions. Experimentation is performed using standard
retrieval measures.

The main contributions of this paper are the following:
– A new method to extract the trajectories of the salient points of the human body

in a consistent way.
– A new trajectory-based descriptor of human body mesh sequences combining the

trajectories of the salient points.
– A new distance measure based on DTW and the fusion of multiple distance ma-

trices.
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Fig. 1 The 5 protrusions of the human body that are used as salient points.

The remainder of this paper is organized as follows: In section 2, the related work
in 3D mesh sequence retrieval is presented. In section 3, the proposed methodology is
detailed. Section 4 is dedicated to the presentation and discussion of the experimental
results. Finally, in section 5, conclusions are drawn and future work is discussed.

2 Related Work

In this section, related work on human action retrieval, using the 3D mesh represen-
tation for human models, is summarized. Both motion clips and full mesh sequences
retrieval are considered.

Concerning motion clips retrieval, in [30], the vertices of the mesh in each frame
are quantized spatially, forming 1024 spatial clusters. The center of mass of these
clusters are used to generate the corresponding shape distribution histogram [16].
The full action sequences are segmented into motion clips based on the distance be-
tween the produced shape distribution histograms of successive frames. The motion
clips retrieval is based on a Dynamic Programming algorithm, which is a variation of
DTW. An enhanced version of this work is presented in [31] where an additional sub-
descriptor is considered. This sub-descriptor is produced by quantizing the mesh in
each frame into 128 spatial clusters and by constructing a histogram of the geodesic
distances computed between the clusters’ centroids. The whole mesh sequences are
segmented into motion clips using the same methodology as in [30]. Furthermore,
the dissimilarity measure between the motion clips is addressed via the use of DTW,
where the dissimilarity between the descriptors of the frames is a weighted mean of
the dissimilarities between each of the sub-descriptors. In [24], 5 salient points of
the human body (the top of the head and the ends of the upper and lower limbs) are
extracted in each frame of the sequences and the shortest geodesic paths these points
are produced. The set of these geodesic paths is the static descriptor for the meshes
in each frame and it is called Extremal Human Curve (EHC). The full sequences are
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segmented into motion clips using the local extrema of the velocity as the criterion of
segmentation. The DTW distance between the EHC descriptors of the motion clips is
used for the matching process. Additional experimentation related to data clustering
and video summarization has been performed. In [10], the 3D mesh sequences are
transformed to 2D sequences of silhouettes. Using the new representation, a descrip-
tor, called P-Type Fourier descriptor, is extracted.The similarity between the motion
clips is evaluated using a variation of DTW algorithm.

Concerning approaches with full mesh sequences, a supervised human action
recognition method is presented in [6]. In this work, multi-view camera systems are
used. The descriptors used in this paper, called 3D Motion Context and Harmonic
Motion Context, are presented in [5]. These descriptors are based on the motion vec-
tor of the models. The motion vector is extracted using correspondences between the
pixels of the cameras and the vertices of the meshes and, finally, combining the mo-
tion vectors of each view. The normalized correlation coefficient between the same
kind of the two descriptors is used as similarity measure. The classifier is trained
by generating a representative set of descriptors for each action class and a refer-
ence descriptor is estimated as the average of all descriptors for each action class. In
[11], the mesh sequences are transformed to voxel sequences. Using the voxel-based
representation, the human body orientation is estimated based on an estimation of
feet direction. The models are normalized to be invariant to translation and scaling.
Then, the similar postures of the sequences in the training set are clustered using the
k−means algorithm. The centers of the resulting clusters are called dynemes. Each
dyneme is transformed into a vector containing the distances between the specified
dyneme and the posture vectors. These distance vectors are normalized and each ac-
tion is represented by averaging the distance vectors of all postures of this action.
The dimensionality reduction is achieved by using the Linear Discrimination Analy-
sis (LDA). For the classification an SVM classifier is used.

Directly comparable to the proposed approach, is the work in [27]. In this work, a
set of state-of-the-art static shape descriptors are compared in human action retrieval
framework. Particularly, each mesh in the frames of the sequences is represented by
each of these descriptors, leading to sequences of static shape descriptors. The se-
quences are normalized in each dimension and a temporal filtering is applied. The
similarity between the resulting sequences is evaluated using the DTW algorithm.
Additional experimentation, using the Sakoe band for DTW computations, are per-
formed.

3 Methodology

Let V be the set of vertices and F be the set of faces of a 3D mesh M , while a 3D
mesh sequence S with N frames is denoted as S =< Mt >, where t = 1, 2, ..., N .
The core components of the mesh sequence retrieval pipeline are the descriptors ex-
traction and the similarity measure. To this end, the proposed methodology relies
upon a descriptor that incorporates significant features of human motion upon trajec-
tories of human body’s salient points. The similarity measure is computed by using
a variation of DTW coupled with a k −means-based method for multiple distance



Unsupervised Human Action Retrieval using Salient Points in 3D Mesh Sequences 5

matrix fusion. In the sequel, a detailed description of the proposed methodology is
given.

3.1 Trajectories extraction

The trajectories considered in the proposed methodology comprise those that are pro-
duced of five protrusion-oriented salient points and the trajectory of the mesh cen-
troid. In the sequel, the detailed description of the salient points extraction, labeling
and use across frames is given.

3.1.1 Protrusion-oriented salient point extraction

In this section, we describe the extraction of salient points (SP1, SP2, ..., SP5) which
correspond to the protrusions of the human body, namely the head and the limbs.
Starting from a random vertex, the geodesic distances between this vertex to all
other vertices of the mesh are computed. The first salient point is the vertex with
the maximum distance from the random vertex and the second salient point is de-
termined as the vertex that is most geodesically distant to the first salient point. The
third salient point is then the vertex with the maximum cumulative geodesic distance
from the first two salient points. This process is continued until five salient points
SP1, SP2, ..., SP5 are extracted.

3.1.2 Protrusion-oriented salient point labeling

The salient points SP1, SP2, ..., SP5 are next labeled according to the point in the
human anatomy that they represent. A crucial observation for this labeling is that the
feet are the longest protrusions of the human anatomy while the head is the shortest;
the discrimination algorithm is thus based on the relative ordering of the cumulative
geodesic distances from each of the 5 salient points.

We first compute the geodesic distances from each salient point to the others. Let
Gi1i2 for i1 = 1, 2, ..., 5 and i2 = 1, 2, ..., 5 represent the geodesic distance between
salient points SPi1 and SPi2 . The cumulative geodesic distances GD(SPi1) using
SPi1 as starting point, for i1 = 1, 2, ..., 5, are then evaluated as per Eq. 1:

GD(SPi1) =

5∑
i2=1
i2 6=i1

Gi1i2 (1)

Since the human body is symmetric, there will be two pairs of cumulative dis-
tances that are (approximately) equal and correspond to the ends of the hands and
feet. Since the feet are the longest and the head is the shortest protrusion in the hu-
man body, the following inequality will be satisfied:

GD(SPi1 ≡ TH) < GD(SPi1 ≡ UL) < GD(SPi1 ≡ LL) (2)

where TH , UL and LL refer to the top of the head, the ends of the upper limbs
(either left or right) and the ends of the upper limbs (either left or right), respectively.
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Inequality 2, allows us to label by SP1...SP5 the top of the head, the ends of the
upper limbs and the ends of the lower limbs (the ends of limbs are not discriminated
between left and right).

3.1.3 Salient points across frames

The algorithm of subsection 3.1.2 is not sufficient to identify corresponding salient
points across frames of the sequence, as the cumulative geodesic distances for the
left and the right corresponding ends of the limbs are (approximately) equal, due
to the symmetry of the human body. Note that the head is uniquely identified as it
corresponds to the minimum of the cumulative geodesic distances given in Eq. 1.
We need to also detect the remaining salient points across frames and to this end,
we assume that there is displacement coherence for the salient points across frames.
Without loss of generality, let us suppose that salient points SP2, SP3 correspond to
the ends of the upper limbs. If pt−1

i1
= (xt−1

i1
, yt−1i1

, zt−1i1
) and pt

i2
= (xt

i2
, yti2 , z

t
i2
),

for i1, i2 = 2, 3, are the positions of the salient points SP2 and SP3 in frames t − 1
and t, respectively, we need to find which corresponds to which as we move from
t− 1 to t. To this end, four Euclidean distances (d22, d23, d32, d33) are computed:

di1i2 =
√
(xt−1

i1
− xt

i2
)2 + (yt−1i1

− yti2)
2 + (zt−1i1

− zti2)
2 (3)

for each i1, i2 = 2, 3. These four distances are shown in Fig. 2.

Fig. 2 The four distances d22, d23, d32, d33 computed in Eq. 3.

In the case of the ends of the upper limbs, point pt
i2
, i2 = 2, 3 corresponds to

pt−1
i1

, i1 = 2, 3 if the following conditions are satisfied:

max{d22, d23}
min{d22, d23}

> ratio (4)
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max{d32, d33}
min{d32, d33}

> ratio (5)

where, in our experiments, ratio was set to 2. Obviously, two salient points of one
frame should not be matched to the same salient point of the other frame.

In most cases, the above criterion is sufficient to track each of the left and right
salient points across frames. However, in situations where two salient points come
close together, the inter-frame distances are no longer discriminative. In such cases,
the DTW algorithm [29] between geodesic paths is used. Let P (SP t−1

1 , SP t−1
2 ),

P (SP t−1
1 , SP t−1

3 ) be the geodesic paths from the top of the head to the end of the
two upper limbs in frame t−1 and P (SP t

1 , SP
t
2), P (SP t

1 , SP
t
3) be the corresponding

geodesic paths in frame t. Four DTW distances {D22, D23, D32, D33} are computed:

Di1i2 = DTW (P (SP t−1
1 , SP t−1

i1
), P (SP t

1 , SP
t
i2)) (6)

for i1, i2 = 2, 3. The pairs of salient points (SP t−1
2 , SP t

2) and (SP t−1
3 , SP t

3) are
corresponding if the minimum of the set {D22, D23, D32, D33} is D22 or D33 while
the pairs of salient points (SP t−1

2 , SP t
3) and (SP t−1

3 , SP t
2) correspond if the min-

imum of the set is D23 or D32. The same method is used for the ends of the lower
limbs.

Note that the DTW-based method can solve the correspondence problem across
frames without using the Euclidean distance method. However, DTW distance com-
putation is far more expensive than the corresponding Euclidean distance computa-
tion, so the DTW-based method is only resorted to if the conditions expressed by Eq.
4 and 5 are not satisfied.

In Fig. 3, three successive frames of an action are shown. In this case, the dis-
tance between the ends of the upper limbs of the model is low and the conditions in
Eq. 4 and 5 are not satisfied. However, the corresponding geodesic paths in succes-
sive frames do not change significantly and they provide a reliable way to provide a
temporal correspondence between the salient points.

Fig. 3 Three successive frames with the corresponding geodesic paths between head and the ends of the
upper limbs.



8 Christos Veinidis et al.

In addition to the 5 aforementioned trajectories, the trajectory of the centroid of
the human body is also extracted, which is a representative point for the whole mesh.
Given a mesh with | V | vertices xn, yn, zn for n = 1, 2, ..., | V |, the centroid of the
mesh in frame t is defined as:

pt
6 =

1

| V |
· (
|V |∑
n=1

xn,

|V |∑
n=1

yn,

|V |∑
n=1

zn)
T (7)

The trajectory of the centroid of a mesh sequence is defined as the successive posi-
tions of the centroid along the sequence.

3.2 Feature extraction

Feature extraction is preceded by a normalization step with respect to translation,
scale and direction of motion; a noise filter is also applied in this step on the trajecto-
ries of the salient points pt

i, i = 1, 2, ..., 6.

3.2.1 Normalization step

To make the trajectories invariant to translation, we subtract the mean value of the tra-
jectory coordinates. If Trx,Try,Trz are the sequences of x, y, z coordinates of the
trajectory, respectively, and mean(Trx), mean(Try), mean(Trz) are their mean
values, respectively, the trajectory becomes:

Tr1 = (Trx −mean(Trx), Try −mean(Try), Trz −mean(Trz)) (8)

where the mean value of each component of Tr1 is zero. For scale invariance, we
divide them by the length of the vector that defines the most distant point from the
origin. Thus the maximum magnitude value of the trajectories corresponds to one
unit. The scale invariant trajectory Tr2 is given by:

Tr2 =
Tr1

max{‖pt
i‖}Lt=1

(9)

where L is the number of frames of the sequence.
For denoising, we next apply a median filter with a window of size 3 frames

to each of Tr2x, Tr2y and Tr2z, thus producing the sequence components Tr3x,
Tr3y and Tr3z of the filtered trajectory Tr3.

Finally, it is necessary to perform a restricted form of rotation normalization
where we normalize with respect to the direction of motion, as actions should not
be differentiated if they are performed, for example, eastwards or westwards. Con-
sider the ‘horizontal’ plane of motion as the xz plane; the maximum motion differ-
ence is then assigned to the x axis, while the minimum motion difference to the z
axis. The ‘vertical’ component is assigned to the y axis. To this effect, an exhaustive
search of the rotated trajectory about the y axis is performed (by 180o with 1 degree
increments) with the aim of maximizing the difference between the maximum and
minimum value on the x axis. This normalization step results in the trajectory Tr4.
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3.2.2 Action sequence descriptor

The mesh sequence features are based on the velocity vector and the overall dynamics
vector of a sequence which are complemented by the sequence of relative positions
of the salient points in each frame. In particular, the proposed features are detailed as
follows:

– The vector of overall dynamics of each salient point pi, for each i = 1, 2, ..., 6,
with respect to the initial frame is defined as in [32]:

dt
i = pt+1

i − p1
i = (xt

pi
− x1

pi
, ytpi
− y1pi

, ztpi
− z1pi

) (10)

for each frame t = 1, 2, ..., L − 1 and i = 1, 2, ..., 6. This vector represents the
displacement of each salient point pi, for each i = 1, 2, ..., 6, with respect to its
initial position.
The horizontal and vertical components of the overall dynamics vector are dt

i,h =

(xt
pi
− x1

pi
, ztpi
− z1pi

) and dt
i,v = (ytpi

− y1pi
) for each t = 1, 2, ..., L − 1 and

i = 1, 2, ..., 6.
– The velocity vector is defined as:

vti = pt+1
i − pt

i = (xt+1
pi
− xt

pi
, yt+1

pi
− ytpi

, zt+1
pi
− ztpi

) (11)

and its horizontal and vertical components are vti,h = (xt+1
pi
−xt

pi
, zt+1

pi
−ztpi

) and
vti,v = (yt+1

pi
− ytpi

) respectively for each t = 1, 2, ..., L − 1 and i = 1, 2, ..., 6.
Thus, di,h and vi,h are 2D time trajectories, while di,v and vi,v are 1D time tra-
jectories, for each i = 1, 2, ..., 6.

– The pairwise differences between the salient points in each frame. Specifically,
this feature vector is defined in frame t as follows:

pdt = pt
i1
− pt

i2
(12)

where i1, i2 = 1, 2, ..., 6. This feature has 62 − 6 = 30 components for each
frame (all potential differences between the salient points except the differences
each salient point’s from itself).

The final descriptor of the sequence S is:

DS
i = (DS

i,1,DS
2 ) = ([DS

i,1(1),DS
i,1(2),DS

i,1(3),DS
i,1(4),DS

i,1(5),DS
i,1(6)],DS

2 )
(13)

for each salient point i = 1, 2, ..., 6, where

DS
i,1 = [([‖vti,h‖, ‖vt

i,v‖], [‖dt
i,h‖, ‖dt

i,v‖], vti,h, vti,v,dt
i,h,dt

i,v)]
L−1
t=1 (14)

where ||x|| is the magnitude of a vector x and for each salient point i = 1, 2, ..., 6.
Also:

DS
2 = [pdt]Lt=1 (15)

For the sake of clarity, the points pi, for each i = 1, 2, ..., 6, denote the points of the
normalized trajectories Tr4, as described in subsection 3.2.1.
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3.3 Similarity measure

The DTW algorithm is used as a distance measure between two mesh sequences. In
this algorithm, a minimum cost path is determined on an M ×N grid, where M,N
are the number of frames of two sequences respectively [29]. This optimal path is
called warping path. However, the DTW algorithm enforces that the starting point of
the warping path is (1, 1) and the ending point is (M,N). This is a serious limitation
of DTW in cases where two sequences which belong to the same action class are
temporally misaligned, i.e. one of the two sequences is temporally delayed against
the other.

To overcome this restriction, the DTW algorithm is applied on pre-aligned se-
quences using a sample cross-correlation criterion. The sample cross-correlation func-
tion is evaluated between the amplitude of the velocity vector ||v6|| of the centroid of
the query-sequence Q and the target-sequence T .

Let l∗ be the point where the sample cross-correlation function is maximized. We
can distinguish three cases:

– If l∗ = 0, the two sequences are well aligned and the DTW algorithm is applied
between the descriptors of Q and T without changes.

– If l∗ > 0, the best alignment between the descriptors of Q and T occurs when we
skip the first l∗ − 1 items from the second sequence.

– If l∗ < 0, the best alignment between the descriptors of Q and T occurs when we
skip the first |l∗| − 1 items from the first sequence.

In other words, if l∗ > 0, the starting point on the grid for DTW is (1, l∗) while
if l∗ < 0, the starting point is (|l∗|, 1); only if l∗ = 0 is the starting point (1, 1) as in
the original DTW. In Fig. 4 the sample cross-correlation function values between the
velocity magnitudes of the centroid trajectory of two actions is shown.

In this case, the sample cross-correlation function is maximized when lag = 8,
so the first 7 frames of the second sequence are skipped and then the DTW distance
between the two sequences is computed.

Let L′Q and L′T be the length of the sequences Q and T , respectively, after the
pre-alignment based on sample cross-correlation. The distances between the sub-
descriptors DQ

i,1(r) of Q and DT
i,1(r) of T are first computed as shown below.

Disti,r(Q,T ) = DTW (DQ
i,1(r),DT

i,1(r)) / min{L′Q − 1, L′T − 1} (16)

for r = 1, 2, ..., 6 and for each salient point i = 1, 2, ..., 6.
Distances Dist3 −Dist6 are weighted by the weights w3 − w6, where

wi,r =
max{difQ

i,r, dif
T
i,r}

min{difQ
i,r, dif

T
i,r}

(17)

and
difS

i,r = max
t
‖DS

i,1(r)‖ −min
t
‖DS

i,1(r)‖ (18)
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Fig. 4 The sample cross-correlation values between the velocity magnitudes of the centroid trajectory of
two actions.

for i = 1, 2, 3, 4, 5, 6, r = 3, 4, 5, 6 and S ∈ {Q,T}. The weights of Eq. 17 aim to
further discriminate the actions where the horizontal component of the corresponding
sub-descriptors dominate the vertical component and vice versa.

The distance between sub-descriptor D2, given in Eq. 15, is computed as follows:

Dist7(Q,T ) = DTW (DQ
2 ,DT

2 ) / min{L′Q, L′T } (19)

Setting each sequence of the datasets as query, a set of distance matrices is created
using the above process. Since D1 (Eq. 14) consists of 6 different sub-descriptors
and there are 6 salient points, 36 distance matrices related to D1 are created. Also,
since there are 30 pairwise distances between the 6 salient points (without taking into
account the differences each salient point’s from itself), 30 distance matrices related
to D2 are created. Thus, 66 distance matrices are produced in total.

To generate a single final distance matrix from these 66 distance matrices, the
following process is followed: The k −means algorithm with 10 clusters is applied
for the values contained in each of the 66 distance matrices produced for the given
query sequence. The nth row of each of the 66 distance matrices relates to the dis-
tances of the sequence with index n to all other sequences, which includes the zero
value i.e. the distance of the given sequence from itself. The distance values which
are contained in the same cluster as the zero value determine the sequences whose
distance from the query is smallest, i.e. the ones that are most similar.

Let Qj
row be the row of the jth distance matrix, j = 1, 2, ..., 66, containing the

distances between the sequence Q and the target sequences T . We proceed in pro-
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ducing an ordering of the distances in this row. Our aim is to divide the values in
this ordering so that close values are kept together. For this purpose, a k − means
algorithm is applied wherein the cluster which contains the items that are grouped
together with the item having zero distance (the distance to itself) determines the
weighting factor as shown in Eq. 20. In particular, this factor is computed by taking
into account the cardinality of the chosen cluster CQ,j .

S(Q,T ) =

66∑
j=1

mj ·
1

card(CQ,j)
(20)

where card(CQ,j) is the cardinality of CQ,j and:

mj =

0, T /∈ CQ,j

1, T ∈ CQ,j
(21)

for each j = 1, 2, ..., 66. In other words, the weights are only applied if the target
sequence is an element of CQ,j , j = 1, 2, ..., 66. As a consequence of the weighting,
the smaller the card(CQ,j), j = 1, 2, ..., 66, the larger its expected discriminative
power and thus its weight.

4 Experimental results

4.1 Datasets

Two artificial datasets have been used for evaluation, named the USurrey dataset and
the DUTH dataset. The DUTH dataset is presented for first time in this paper and is
being made publicly available for the research community.

4.1.1 DUTH dataset

The DUTH dataset is a new dataset containing 60 mesh sequences in total. Each of
6 models, both men and women, has performed 10 actions. The corresponding mesh
sequences consist of a number of frames which ranges from 21 to 250. The 10 ac-
tion classes are the following: (1) “hop on left foot”, (2) “jumping”, (3) “jumping
forward”, (4) “jumping-Turn”, (5) “running”, (6) “walking-90 degrees turn left”, (7)
“walking-90 degrees turn right”, (8) “walking”, (9) “walking with arms out - balanc-
ing”, (10) “washing window”. The corresponding data are made publicly available
through [37] and example frames are shown in Fig. 5.

For the process of dataset creation, we transformed publicly available motion
files [38] from BVH format to mesh sequences. In order to produce human models
with different characteristics, such as height, weight, age etc, the open source soft-
ware MakeHuman [39] was used. In order to animate the 3D characters produced by
MakeHuman, the free and open source Blender 3D software suite [40] was used.
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(a)

(b)

(c)

Fig. 5 Example frames from the DUTH-Artificial dataset for the actions: (a) “walking-90 degrees turn
right”, (b) “jumping forward”, (c) “running”.

4.1.2 USurrey dataset

The USurrey dataset [25], [7] contains 392 mesh sequences in total. Specifically, each
of 14 models, both men and women, has performed 28 actions. All mesh sequences
consist of 100 frames and each frame consists of the same numbers of faces and
vertices. Among the 28 actions, 17 are variations of the general action “walking”, 7
are variations of the general action “running” and 4 are other actions. The actions
in this dataset are the following: (1) “faint”, (2) “fastrun”, (3) “fastwalk”, (4) “rockn-
roll”, (5) “runcircleleft”, (6) “runcircleright”, (7) “runturnleft”, (8) “runturnright”, (9)
“shotarm”, (10) “slorun”, (11) “slowalk”, (12) “sneak”, (13) “sprint”, (14) “vogue”,
(15) “walkcircleleft”, (16) “walkcircleright”, (17) “walkcool”, (18) “walkcowboy”,
(19) “walkdainty”, (20) “walkelderly”, (21) “walkmacho”, (22) “walkmarch”, (23)
“walkmickey”, (24) “walksexy”, (25) “walktired”, (26) “walktoddler”, (27) “walk-
turnleft”, (28) “walkturnright”. In Fig. 6, example frames of the artificial dataset are
shown.
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(a)

(b)

(c)

Fig. 6 Example frames from the USurrey-Artificial dataset for the actions: (a) “fastrun”, (b) “rocknroll”,
(c) “vogue”.

4.2 Experimental evaluation

Performance evaluation in terms of retrieval was based on the following standard
scalar measures:

– Nearest Neighbor (NN) : The percentage of queries where the closest match be-
longs to the query class.

– First Tier (FT) : The recall value for the (C − 1) closest matches were C is the
cardinality of the query’s class.

– Second Tier (ST) : The recall value for the 2 · (C − 1) closest matches were C is
the cardinality of the query’s class.

– Discounted Cumulative Gain (DCG) : A statistical measure which places more
weight on correct results near the front of the retrieval list, under the assumption
that a user is less likely to consider elements near the end of the list.

The values of the above metrics are in the interval [0, 1]. Quantitative results can
also be shown using precision-recall diagrams. Precision is the fraction of the re-
trieved sequences which belong to the same class as the query over the total number
of retrieved sequences. Recall is the fraction of the retrieved sequences which belong
to the same class as the query over the total number of sequences which belong to the
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same class as the query. For the experimental evaluation using these measures, the
software offered by the University of Princeton was used [23].

In Table 1 the retrieval results using the four scalar metrics are given for the
DUTH dataset. The corresponding precision-recall diagrams are shown in Fig. 7.
The retrieval results of other methods are related to the optimal values presented in
[27].

Table 1 Experimental retrieval results on the DUTH dataset (scalar metrics).

Method NN FT ST DCG
2D sub-descriptor of Hybrid [27], [17] 0.617 0.390 0.533 0.643
3D sub-descriptor of Hybrid [27], [17] 0.750 0.527 0.717 0.763

Hybrid [27], [17] 0.733 0.547 0.703 0.761
PANORAMA [27], [18] 0.717 0.553 0.650 0.748

Shape Distribution [27], [16] 0.633 0.367 0.563 0.638
Spin Images [27], [9] 0.517 0.337 0.537 0.602

Proposed Method 0.967 0.767 0.863 0.907
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Fig. 7 Precision-recall diagrams for the DUTH dataset.

In Table 2 the retrieval results using the four scalar metrics are given for the
USurrey dataset. The corresponding precision-recall diagrams are shown in Fig. 8.
The retrieval results of the other methods are related to the optimal values presented
in [27]. As can be seen, the proposed method achieves ideal, or in some metrics
almost ideal, results, outperforming competing methods.
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Table 2 Experimental retrieval results on the USurrey dataset with full sequences (scalar metrics).

Method NN FT ST DCG
2D sub-descriptor of Hybrid [27], [17] 0.995 0.979 1.000 0.997
3D sub-descriptor of Hybrid [27], [17] 1.000 0.983 0.999 0.999

Hybrid [27], [17] 0.980 0.968 0.999 0.994
PANORAMA [27], [18] 0.985 0.973 1.000 0.992

Shape Distribution [27], [16] 0.921 0.889 0.972 0.956
Spin Images [27], [9] 1.000 0.871 0.941 0.972

Proposed Method 1.000 0.998 1.000 1.000 
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Fig. 8 Precision-recall diagrams for the USurrey dataset with full sequences.

In order to cancel the 1-1 correspondence between the frames of the actions of
the USurrey dataset, an additional experiment has been performed. Specifically, cor-
responding sequences have been truncated by a random number of frames (up to
50) from the starting frame. Thus, part of each action is missing, so the sequences
are temporally misaligned even though they may belong to same class. In Table 3,
the retrieval results using the four scalar metrics are given and the corresponding
precision-recall diagrams are shown in Fig. 9. The retrieval results of the other meth-
ods are related to the optimal values presented in [27]. Again, the proposed method
almost always performs best and the reduction in retrieval performance is low com-
pared to the corresponding results using the full sequences of the same dataset.

4.3 Ablation study

The proposed descriptor for a 3D mesh sequence, given in Eq. 13, is composed of
a set of sub-descriptors for each salient point. In this section, an ablation study that
reflects the contribution of each of the proposed sub-descriptors is presented.



Unsupervised Human Action Retrieval using Salient Points in 3D Mesh Sequences 17

Table 3 Experimental retrieval results on the USurrey dataset with truncated sequences (scalar metrics).

Method NN FT ST DCG
2D sub-descriptor of Hybrid [27], [17] 0.997 0.924 0.983 0.986
3D sub-descriptor of Hybrid [27], [17] 0.946 0.894 0.991 0.973

Hybrid [27], [17] 0.982 0.883 0.973 0.973
PANORAMA [27], [18] 0.946 0.902 0.994 0.973

Shape Distribution [27], [16] 0.890 0.797 0.903 0.926
Spin Images [27], [9] 0.993 0.771 0.870 0.937

Proposed Method 1.000 0.962 0.987 0.994
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Fig. 9 Precision-recall diagrams for the USurrey dataset with truncated sequences.

The ablation study was realized by following a leave-one-out method on the full
set of sub-descriptors for several rounds. At the end of each round we determine the
least important sub-descriptor which is not further considered at the next round. The
least important sub-descriptor is the one which, if left out, has the minimal effect on
retrieval performance degradation. Initially, each time one sub-descriptor is omitted
and the retrieval performance using the remaining sub-descriptors given in Eq. 13, is
evaluated. As the number of sub-descriptors is 7, the number of initial experiments
is also 7, where each experiment comprises the 6 remaining sub-descriptors. By this
way, a set of 7 evaluations of retrieval performance is extracted. Finding the part of
the descriptor of Eq. 13 with the maximum retrieval performance, we determine the
single sub-descriptor which is the most useless in this step of the ablation study. This
sub-descriptor is omitted and in the second step of the ablation algorithm the number
of experiments is 6 as each experiment consists of 5 (out of 6) sub-descriptors. This
process is repeated until only the two most useful sub-descriptors finally remain.

In order to measure the retrieval performance, precision-recall diagrams are used.
In Fig. 10 - 12 the precision-recall diagrams resulting from the ablation study are



18 Christos Veinidis et al.

shown. In successive precision - recall diagrams the sub-descriptor having the worst
influence on the total retrieval results, is ignored. The legend on the right of each
figure shows the sub-descriptor which is ignored each time. The enumeration of sub-
descriptors is compatible with the enumeration in Eq. 14 and 15, i.e. Subr is the
rth sub-descriptor of Eq. 14, r = 1, 2, ..., 6, while Sub7 represents DS

2 , defined in
Eq. 15. It is obvious that in all cases the sub-descriptor which provides the major
gain is Sub2, i.e. the sub-descriptor which is related to the magnitude of the overall
dynamics vector. As shown in Fig. 11, the retrieval performance is almost ideal in all
steps of the ablation study. In the other two cases, the least significant sub-descriptor
is Sub1, i.e. the sub-descriptor related to the magnitude of the velocity vector, as it is
the first sub-descriptor which is ignored.

Concerning the selection of the centroid of magnitude of velocity vector as the
critical point for pre-alignment, the intuition behind this selection is that the cen-
troid is a point that describes reliably the whole movement of human body. In this
case, all the 6 cases, one for each salient point, have been tested as the critical points
for the desired pre-alignment. The above experiments have been performed for both
the datasets used (also, for the two different versions of the USurrey dataset). The
precision-recall diagrams using the other salient points in this criterion, are shown
in Fig. 13 - 15. In the cases of the DUTH dataset and the USurrey dataset with full
sequences, there are not significant variations in retrieval performance, while in the
case of the USurrey dataset with truncated sequences the selection of the centroid is
important.

4.4 Discussion

The proposed method achieves almost ideal retrieval results on the artificial dataset
of USurrey and compares favorably to the state-of-the-art on the new artificial DUTH
dataset that is being made publicly available as part of this paper for the benefit of the
research community.

The majority of the actions included in the DUTH dataset belong to two main
categories: variations of the general class “jumping” and variations of the general
class “walking”. In Fig. 16 the relevant confusion matrix for the actions of the DUTH
dataset is shown.

Most retrieval misses occur among actions which belong to the same general
class (i.e. among the classes “jumping”-“jumping Forward”-“jumping-Turn” and the
classes “hop on left foot”-“walking-90 degrees turn left”-“walking-90 degrees turn
right”-“walking”). In particular, the majority of retrieval misses occurs for actions
which are related to the general class “walking”. This is rather expected as intra-class
variations are likely to be smaller than inter-class variations and fortunately these
misses are few as per the performance figures.

Many retrieval false negatives occur between the actions “walking-90 degrees
turn left” and “walking-90 degrees turn right”. These actions differ only in the direc-
tion of motion of the model. Part of the proposed descriptor is based on the velocity
and dynamics vectors and the vector of pairwise differences; the phase of these vec-
tors incorporates information about the motion direction, coupling the parts of the



Unsupervised Human Action Retrieval using Salient Points in 3D Mesh Sequences 19
 

 

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R
E

C
A

L
L

PRECISION

DUTH DATASET

-Sub1

-Sub2

-Sub3

-Sub4

-Sub5

-Sub6

-Sub7

 

 

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R
E

C
A

L
L

PRECISION

DUTH DATASET

-Sub2

-Sub3

-Sub4

-Sub5

-Sub6

-Sub7

 

 

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R
E

C
A

L
L

PRECISION

DUTH DATASET

-Sub2

-Sub3

-Sub4

-Sub5

-Sub6

 

 

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R
E

C
A

L
L

PRECISION

DUTH DATASET

-Sub2

-Sub4

-Sub5

-Sub6

 

 

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R
E

C
A

L
L

PRECISION

DUTH DATASET

-Sub2

-Sub5

-Sub6

 

 

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R
E

C
A

L
L

PRECISION

DUTH DATASET

-Sub2

-Sub5

Fig. 10 Ablation study related to the sub-descriptors for the DUTH dataset.

proposed descriptor which are based on the amplitudes of velocity and dynamics
vectors. Additionally, the amplitude of the vectors which describe the relative motion
between the salient points is identical in these action classes.

Some other misses are related to the action “hop on left foot” which are wrongly
paired with the action “walking”. In this case, the main differences between the two
action classes are observable on only some of the salient points.
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Fig. 11 Ablation study related to the sub-descriptors for the USurrey dataset with full sequences.

It is notable that all examples of the action “running” are retrieved successfully.
This shows that the combination of the proposed descriptor, which is based on the
total displacement from the model’s initial position and its velocity, in addition to the
DTW-based distance measure, is discriminative with respect to actions which have
different rates. The retrieval results for the action “walking with arms out-balancing”
are ideal, too. The main feature of this action is that the hands of the moving human
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Fig. 12 Ablation study related to the sub-descriptors for the USurrey dataset with truncated sequences.

are outstretched, so the usage of the trajectories of the ends of the corresponding
limbs increases the discrimination power concerning this action.

With regard to the actions which are variations of the general class “jumping”,
most misses are observed on the couples “jumping”-“jumping Forward” and “jump-
ing Forward”-“jumping-Turn”. In the action “jumping” the models perform only ver-
tical movement. In the action “jumping Forward” the models perform both vertical



22 Christos Veinidis et al.

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R
E

C
A

L
L

PRECISION

DUTH DATASET

Head

Hand1

Hand2

Foot1

Foot2

Centroid

Fig. 13 Precision-recall diagrams for the different selections of the salient point for pre-alignment for
DUTH dataset.

and horizontal movement. In the action “jumping-Turn” the models perform both
vertical and horizontal movement and, simultaneously, turn the body. The proposed
descriptor is able to discriminate satisfactorily the aforementioned classes.

In the case of the USurrey dataset, the retrieval results are almost ideal, both when
using the full sequences and when using the truncated sequences, so the correspond-
ing confusion matrices are not presented. Action retrieval using the modified ver-
sion of the USurrey dataset, i.e. using the truncated sequences, is a more challenging
problem, as initial frames are arbitrarily missing thus lacking the 1-1 correspondence
between frames. Additionally, all sequences in the initial version of the dataset have
the same frame number. The main difficulty in the retrieval problem using the modi-
fied (truncated) sequences is the temporal misalignment between the sequences. The
proposed pre-alignment step in the similarity evaluation is based on the maximiza-
tion of sample cross-correlation. This is the crucial step to eliminate the temporal
misalignment between the sequences, leading to excellent retrieval results.

Finally, the k −means based method to produce a final distance matrix aims to
assign to each descriptor a weight proportional to its discriminative power. This is a
novelty in the area of fusing multiple distance matrices that leads to a unique set of
distances between the actions.
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Fig. 14 Precision-recall diagrams for the different selections of the salient point for pre-alignment for
USurrey dataset with full sequences.

5 Conclusions and Future Work

A novel unsupervised method for human action retrieval from 3D mesh sequences is
presented. It is based on the trajectories of 6 salient points of the human body. These
are 5 salient points that correspond to the ends of protrusions of the human body, i.e.
head and limbs, and the centroid of the human body. The centroid of the trajectory is
utilized to incorporate in the proposed descriptor the general features of the various
actions and the trajectories of the 5 salient points are used to incorporate the details
of human motion. The evaluation of the proposed methodology was realized in a
consistent evaluation framework wherein the results prove that a limited number of
representative points of the human body can be used to discriminate a wide variety
of human actions, in a fully unsupervised framework.

Naturally, there are some limitations to the proposed method. Since it is based
on salient points, it is difficult to apply it to datasets with real data where the salient
points may not be reliably identifiable. Such a dataset is provided by the University
of Surrey, i3DPost [26], [4]. The corresponding data are available through [36]. This
dataset contains some meshes where parts of the human body are ’glued’ together,
thus messing up the geodesic paths. Example meshes with this defect contained in
i3DPost with the corresponding geodesic paths between ends of the lower limbs are
shown in Fig. 17. Additionally, in this dataset there are meshes with disconnected
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Fig. 15 Precision-recall diagrams for the different selections of the salient point for pre-alignment for
USurrey dataset with truncated sequences.

parts, as in Fig. 18, or with non desirable bumps, as in Fig. 19. Geodesic-based meth-
ods are unreliable or infeasible in such cases. A potential extension of this work is to
create a new method for salient point detection, that is more robust to the defects of
real data.
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