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Assessing the Maturity of SDN Controllers with
Software Reliability Growth Models

Petra Vizarreta, Kishor Trivedi, Bjarne Helvik, Poul Heegaard, Andreas Blenk, Wolfgang Kellerer, and Carmen
Mas Machuca

Abstract—In Software Defined Networking (SDN) critical con-
trol plane functions are offloaded to a software entity known as
the SDN controller. Today’s SDN controllers are complex soft-
ware systems, owing to heterogeneity of networks and forwarding
devices they support, and are inherently prone to bugs. Our
previous work showed that Software Reliability Growth Models
(SRGM) can model the stochastic nature of bug manifestation
process of the ONOS open source controller. In this article
we focus on different applications of our SRGM framework
crucial for an efficient management of SDN-based networks.
We provide guidelines for network operators to decide when
the controller software is mature enough to be deployed in
operational environment, based on the reliability requirements
of network applications, and quantify the marginal benefits of
the prolonged testing phase on the software quality. We show how
the accuracy of software reliability prediction in the early phase
of the software lifecycle can be improved by extrapolating the
behaviour of previous controller software releases, demonstrated
in the example of twelve ONOS releases. We also propose
software maturity metrics, that can be used by operators to
discriminate between the competing SDN controller designs, i.e.
ONOS and OpenDaylight, when software reliability is a major
concern.

Index Terms—Software Defined Networking, software matu-
rity, software reliability prediction, Software Reliability Growth
Models.

I. INTRODUCTION

A. Motivation and problem definition

Software Defined Networking (SDN) is an architectural
concept of decoupling control and data plane, by outsourcing
all control plane decisions of forwarding devices to a logically
centralized software entity known as the SDN controller. The
SDN controller assumes the role of the network operating sys-
tem, providing an integrated interface towards the forwarding
devices, switches and routers, which significantly simplifies
the network management and augments its programmability
[1]. The controller monitors the state of the network by
gathering the statistics from forwarding devices, makes the
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global routing decisions, and reacts on the events, such as
link congestion or switch failure. In order to fulfil the long
list of tasks, today’s production-grade controllers, ONOS [2]
and OpenDaylight [3], have grown to be rather complex
pieces of software, consisting of more than a million lines of
code. Such a large and complex1 software inevitably contains
bugs, that may disrupt the network operation and corrupt its
performance, when triggered. Recent study on the hazards in
SDN-based Google network infrastructure [4] reported that
software bugs contributed to more than 33% of the high
impact failures documented in post-mortem reports, which
they attribute mainly to a high velocity of network evolution
and the need to keep up with the growing user traffic and
demand for new features and services. Another large-scale
study by Microsoft [5] on root causes of customer-impacting
incidents in their production networks reports similar results,
and shows that software bugs contributed to 36% of critical
outages, being major problem, way ahead of hardware failures
and human errors.

Despite the magnitude and ubiquity of software failures,
there is a lack of the tools to quantify software maturity,
and predict the risk of the software related outages in SDN.
The performance reports and benchmarks on SDN controllers
are still limited to scalability and latency related metrics,
such as flow burst install throughput or flow reroute latency.
The reliability of the controller software, which is still a big
concern and a major obstacle for the wide spread adoption of
SDN in commercial telecom and industrial networks [6], is
addressed only by a limited number of studies [7]–[9].

B. Theoretical background and problem solution

Software reliability growth modelling is a statistical frame-
work, used to estimate the reliability of the software com-
ponents in their operational phase, based on the bug mani-
festation reports from the testing phase. During the testing
and early operational phase of the software lifecycle the
faults are detected and removed, which eventually leads to
reliability growth. The core idea behind SRGM is to describe
the fault detection and fault resolution as stochastic processes,
whose parameters can be estimated from the empirical data,
i.e. the history of the previous bug manifestations. Once
the best stochastic model to describe the data is found and
parametrized, it can be used to estimate reliability metrics,
such as residual bug content, failure intensity or expected
time until the next failure, and conditional software reliability.

1As a reference, the latest Linux kernel has around 20 million lines of code.
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Moreover, SRGM enable the operators to estimate how reli-
ability metrics change over time, as the software matures. In
essence, the software reliability metrics captures the relation-
ship between the testing effort and the software quality, which
is highly relevant for the developers and operators customizing
the existing open source solutions. With SRGM the risk of the
software outages in a given period of time can be predicted
with the high accuracy, providing useful guideline for the
operators of SDN networks to take the calculated risk and
chose the best software adoption time, based on the reliability
requirements of their network applications. The pertinence
of SRGMs was already recognized by Network Function
Virtualization (NFV) community, which has already included
in the guidelines for the assessment end-to-end reliability [10].

C. Our contribution

Our study aims to provide a framework to assess the
maturity of SDN controllers, from the perspective of software
developers and network operators. We extend our previous
work [9], which focused on applicability of SRGM and
software reliability of ONOS open source controller. In this
article we explore different applications of our framework
crucial for an efficient management of SDN-networks. The
workflow steps: data collection, model selection, evaluation
of reliability and management KPIs, are illustrated in Fig. 1,
highlighting our main contributions:

1) Data collection: We gather the empirical data, i.e. cu-
mulative number of detected and resolved bugs, from
public issue trackers and provide a high level statistics
that can be deduced from such data, e.g. distributions of
time between failures and time to resolve a bug.

2) Model selection: We find the best SRGM to describe the
stochastic behaviour of bug detection and bug resolution
processs in SDN controllers. We show that the bug
detection process can be described with the class of
S-shaped SRGMs, and further propose new class of
models for fault correction process, as well as their
corresponding fitting technique.

3) Evaluation of reliability and management KPIs: We
show how the software reliability metrics can be used
to assess the quality of the controller software over
time, and provide the guidelines for the optimal software
release and adoption time. We further propose two novel
applications relevant for the SDN community: i) early
prediction of software reliability based on the previous
releases and ii) software maturity metrics as a compar-
ison criteria between alternative software solutions.

The rest of the article is organized as follows. Section II pro-
vides an overview of the related work on software reliability
growth modelling. A theoretical background of SRGM frame-
work is presented in Section III. In Section IV the gathering,
processing and analysis of the bug reports is discussed. The
model selection is discussed in Section V, while Section VI
presents the applications of software reliability prediction for
network management community. We conclude the paper with
a summary and an outlook for the future work.

II. RELATED WORK

Software reliability growth modelling has been widely used
to estimate and predict the reliability of the software, and
in the past, many different models have been proposed. A
good overview of different classes of reliability growth mod-
els, together with their inherent assumptions and input data
requirements, can be found in [11]. In this section we present
the most relevant models, methods and tools for the fitting of
model parameters, as well as the applications of the software
reliability assessment.

Bug detection: The applicability of SRGMs for the model-
ing, analysis and evaluation of software reliability of open
source products was demonstrated in several case studies.
Zhou et al. [12] showed that the Weibull distribution can
describe well the bug manifestation rate for eight unnamed
software projects. Rahmani et al. [13] confirmed this result
by analyzing the bug reports for several popular big open
source projects, such as Apache HTTP server, Eclipse IDE and
Mozilla Firefox. Rossi et al. [14] studied failure occurrence
pattern across different releases of Mozilla Firefox, OpenSuse
and OpenOffice.org. All studied releases showed the learning
curve pattern, where the fault detection rate is slow at the
beginning until the community gets familiar with the product,
then it increases rapidly until only very few faults, whose
discovery is difficult, remain in the code. This effect is
captured well with S-shaped models. Syed et al. [15] and
Ullah et al. [16] studied the difference between the closed
and open source software with the inconclusive results. In this
work we compare eight most widely used SRGMs for the fault
detection process [17]–[24] in terms of their ability to describe
the empirical data.

Bug removal: The majority of the SRGM models assume
that once the bug is detected, it is corrected immediately, that
the debugging as always successful and without introduction
of new faults. A number of studies have modelled different
aspects of imperfect debugging [25]–[30]. Wu et al. [25]
described the fault resolution as a delayed fault detection
process, Pham et al. modelled the introduction of the new
faults [26], while Huang et al. [27] also include the changes
in debugging effort. Kapur et al. [28] generalized this result
and proposed unified approach to model the fault resolution
process, when both fault detection and fault removal are Non-
Homogeneous Poison Processes. Gokhale et al. [29] applied
the Non-Homogeneous Continuous Time Markov Chains (NH-
CTMC) to model the impact of arbitrary debugging policy,
while the study by Okamura and Dohi [30] modelled the time
dependency between the fault detection and fault correction
processes as a correlation. Comprehensive models have a large
number of parameters that have to be estimated, while the
number of data samples in the historical reports is often
very limited (as in the case with ONOS SDN controller),
which increases the risk of overfitting the data, as well as the
sensitivity of parameter fitting to the noise in the data. In order
to balance between the model accuracy and generalizability,
we propose a simpler class of models, based on the framework
presented in [28], together with their corresponding fitting
procedure.
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DATA COLLECTION MODEL SELECTION RELIABILITY KPIS MANAGEMENT KPIS

Analysis of empirical data
gathered from public bug
repositories:

(a) detected bugs
(b) resolved bugs

(a) Bug detection:
compare the most widely
used NHPP models

(b) Bug resolution: new
class of bi-variate NHPP
models*

(c) Parameter fitting:
regularized LSE*

(a) Residual bug content

(b) Expected time to
detect and resolve a bug

(c) Conditional software
reliability

(a) Optimal software
adoption and release time

(b) Early prediction of
software reliability*

(c) Maturity comparison
of alternative software
solutions*;

Fig. 1: Assessment of software maturity with Software Reliability Growth Models (SRGM) consists of four steps: (i) data
collection, (ii) model selection, (iii) evaluation of reliability KPIs and (iv) evaluation of management KPIs. The process
enhancements and novelty proposed in this article are marked with (*).

Model parameter fitting: The common statistical inference
techniques to estimate the parameters of SRGM are Maximum
Likelihood Estimation (MLE) and Least Square Estimation
(LSE), while historically Method of Moments (MoM), graph-
ical and simulation based approaches were used [11]. While
MLE is convinient for estimating the confidence intervals, LSE
is faster and easier apply to the regularized models described
in the following section. Fitting of the model parameters to the
empirical data is done either with proprietary general purpose
statistical packages, such as SPSS, or specialized tools, such
as CASRE [31], SREPT [32] and CARATS [33], just to name
the few. In order to account for the newly proposed models,
and enhancements in the parameter fitting procedure we have
developed our own tool based on the libraries provided by the
Python scientific package [34].

Applications of software reliability assessment: Software
reliability metrics, such as expected bug detection rate, can be
used as a driver to balance the cost of testing and the cost of
fixing the bugs during the warranty period, and determine the
optimal software release time, which is known as the optimal
software release problem. Since the first study by Okumoto
and Goel [35], many researches have analyzed the optimal
software release problem under different constraints [36]–[42].
Koch et al. [36] provide a cost-benefit analysis for releasing the
software after the scheduled deadline, while Yamada et al. [37]
propose optimal software release policies minimizing the total
expected cost, under minimum reliability requirements. The
authors in [39] considered the optimization of the test-effort
allocation to different software modules under the constrained
budget for the testing expenditures, while Huang et al. [41]
analyzed the impact of different test effort allocation strategies.
Kimura et al. [40] considered different software maintenance
models, i.e. warranty policies. Lai et al. [42] extend the cost
model to capture the additional effort of documentation and
distribution of the software patches. In this article, we describe
two novel use cases, namely i) early prediction of software
reliability based on the previous software releases and ii)
software maturity metrics as a comparison criteria between
the alternative software solutions.

III. SOFTWARE RELIABILITY GROWTH MODELS

During the testing and early operational phase of the soft-
ware lifecycle the faults are detected and removed, which
eventually leads to reliability growth. In the past, many
SRGM models have been proposed to estimate and predict
the software reliability growth. We focus on a particular class
of models that describe the fault detection and fault resolution
process as Non-Homogeneous Poisson Process (NHPP), due
to their widespread use in the literature.

A. Fault detection process as NHPP

We assume that the initial bug content, i.e. number of
introduced bugs present in the software before the start of the
testing phase, is a random variable N0 following the Poisson
distribution with the mean a:

P (N0 = n) =
an

n!
e−a (1)

The probability of detecting a single bug by the time t
follows an arbitrary distribution Fd(t). Assuming the bug
detection times are independent and identically distributed
random variables, the number of detected bugs by the time
t is:

P (Nd(t) = k|N0 = n) =

(
n

k

)
Fd(t)

k(1− Fd(t))n−k (2)

The probability of observing exactly k faults by the time t
is then described with the equation.

P (Nd(t) = k) =

∞∑
n=k

P (Nd(t) = k|N0 = n)P (N0 = n)

=
[aFd(t)]

k

k!
e−aFd(t)

(3)

The process is fully described with the mean value function
m(t), which represents the expected number of detected faults
by the time t:

E[Nd(t)] = m(t) = aFd(t) (4)
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From the mean value function of the fault detection process
many reliability features of the software can be estimated. The
instantaneous bug manifestation, i.e. bug detection rate is:

λ(t) =
dm(t)

d t
= a fd(t) (5)

Assuming that the number of initially introduced faults in
the software is finite limt→∞m(t) = a, the expected number
of the undetected faults in the software, i.e. the residual bug
content, is defined as:

r(t) = E[a−Nd(t)] = a−m(t) (6)

The conditional software reliability is defined as the prob-
ability of detecting a new fault in the time interval (t, t+ x]:

R(x|t) = e−
∫ t+x
t

λ(x) dx = em(t)−m(x+t) (7)

The expected cost of the software consists of the cost
of testing ct(t) in the pre-release phase, and the cost of
removing the fault cw(t) in the operational phase during the
warranty period Tw of the software lifecycle. Assuming that
the software is released after T time units of testing, the total
cost of software maintenance is:

C(T ) =

∫ T

t=0

ct(t)dt+

∫ T+Tm

t=T

cw(t)λ(t)dt (8)

We compare eight most widely used NHPP models for mod-
elling of the fault detection process: Musa-Logarithmic, Goel-
Okumoto Exponential, Generalized Goel-Okumoto, Inflection
S-shaped, Delayed S-Shaped, Yamada-Exponential, Gompertz
and Logistic, whose mean value function and failure intensity
are given in the Table I.

B. Fault resolution process

The fault resolution process consists of two phases, fault
detection and fault correction. If we assume that the fault
detection and fault correction are independent, the resulting
fault resolution process can be written as [25]:

fr(t) =

∫ t

x=0

fd(t− x)fc(x)dx = [fd ∗ fc](t) (9)

where fd(t) and fc(t) represent densities of the fault detection
and fault correction process, respectively. The mean value
function of the resulting fault resolution process is then defined
as:

mr(t) = aFr(t) = a

∫ t

τ=0

[fd ∗ fc](τ)dτ (10)

Equation Eq. (10) can be used to generate different SRGMs
from arbitrary distributions for the fault resolution process.
However, the proposed models so far have been limited to
the combinations for which this integral has a closed form
solution, e.g. when both fault detection and correction are
Goel-Okumoto processes [25], [28].

mgo−go
r (t) = a

[
1− b1e

−b2t − b2e−b1t

b1 − b2

]
(11)

By replacing the integral in Eq. (10) with its Piecewise
Constant Approximation (PCA), we can obtain a numerical
approximation for an arbitrary combination of NHPP models,
which can be used for the fitting of the fault report data.

Fr(t) = lim
∆x→0

n=t/∆x∑
i=0

[fd ∗ fc](i∆x)∆x (12)

In this article, we compare the four combinations of Gener-
alized Goel-Okumoto and Inflection S-shaped models for fault
resolution process, which were preselected due to their perfor-
mance. We use combined Goel-Okumoto Eq.(11) from [28] as
a reference.

C. Fitting of the model parameters

The LSE method, which minimizes the squared distance
between the observed and expected data, is used for the fitting
of the model parameters. Unconstrained problems in model
selection phase (Section V), are solved using Levenberg-
Marquardt (LM) algorithm. In Section VI-B we provide the
bounds on the model parameters, based on the observed
parameter trends in the previous releases. The regularized
model is solved using the Trusted Region Reflective (TRF)
algorithm. Implementation of both methods is provided by
Python scientific computing package [34].

Three Goodness of Fit (GoF) measures are used to evaluate
the suitability of the models: Mean Square Error (MSE),
Theil’s statistics (TS) and coefficient of determination (R2).
MSE is used as to select the best model for individual releases,
while TS is more suitable to compare the goodness of fit
across different software releases. R2 is used to measure which
portion of variance in data can be explained by the model. The
three GoF metrics are defined as follows:

MSE =
1

k

k∑
i=1

(m(ti)−mest(ti))
2 (13)

TABLE I: Fault detection process as Non-Homogeneous Poisson Process (NHPP)

Model Abbreviation Shape Mean value function Failure intensity

Musa-Okumoto logarithmic [17] MUSA(Log) Concave mmo(t) = a ln(1 + bt) λlog(t) =
ab

1+bt

Goel-Okumoto exponential [18] GO(Exp) Concave mgo(t) = a(1− e−bt) λgo(t) = abe−bt

Generalized Goel-Okumoto [11] GGO S-shaped mggo(t) = a(1− e−btc ) λggo(t) = abctc−1e−bt
c

Ohba’s inflection S-shaped [19] ISS S-shaped miss(t) = a 1−e−bt

1+φe−bt λiss(t) = abe−bt 1+φ
(1+φe−bt)2

Yamada delayed S-shaped [20] DSS S-shaped mdss(t) = a(1− (1 + bt)e−bt) λdss(t) = ab2te−bt

Yamada exponential [21] YEX Concave myex(t) = a(1− e−r(1−e−bt)) λyex(t) = abre−bte−r(1−e
−bt)

Gompertz [24] GOMP S-shaped mgomp(t) = akb
t

λgomp(t) = a ln b ln k bt kb
t

Logistic [11], [20], [23] LOGIST S-shaped mlogist(t) =
a

1+ke−bt λlogist(t) =
abke−bt

(1+ke−bt)2
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TS =

√√√√∑k
i=1 (m(ti)−mest(ti))

2∑k
i=1m(ti)2

∗ 100% (14)

R2 = 1−
∑k
i=1 (m(ti)−mest(ti))

2∑k
i=1 (m(ti)−m)

2
(15)

m =
1

k

k∑
i=1

m(ti)

where m(ti) represent the observed data, and mest(ti) the
data estimated by the model, at time instance ti of the i-th
bug report.

IV. EMPIRICAL DATA SET: ONOS CONTROLLER

The analysis of the software reliability described in the
previous section requires complete and uncensored bug re-
ports, which are publicly available only for the open source
controllers. At present, there are only two production-grade
open source SDN controller platforms, ONOS [2] and Open-
Daylight [3], both of them supported by the Linux foundation.
In this article we focus mainly on the releases of ONOS
controller, because of its focus on high-availability, steady
feature development through three month release cycles, and
the level of detail provided by its issue tracking system. In the
Section VI-C we show that the presented SRGM framework
can be applied to OpenDaylight platform as well, and compare
the maturity of the two SDN controllers.

A. The scope of ONOS controller

The focus of ONOS, i.e. Open Network Operating Sys-
tem, since its inception has been on providing scalability,
high availability and carrier-grade performance fulfilling the
requirements of large operator networks [43]. The project is
supported by the key partners from the telecom and data center
operators and network equipment vendors, such as AT&T,
Google, Ericsson, Cisco, just to name a few. Overall, more
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Fig. 2: Number of detected and resolved faults for all releases
over time: The official dates of ONOS releases are indicted
with the vertical line in the figure.

than 300 developers from more than 60 organizations have
contributed to its code base. The code is written mostly in
Java and contains at the present 743,531 lines of code2.

B. Release management

New ONOS releases are distributed every quarter, which
provides a steady feature development through incremental
upgrades of the code base. The three-month release lifecycle
starts with the release planning meeting, followed by three
months of code development and integration on the master
branch. Two weeks before the official release date feature
integration is stopped and only bug fixes are allowed. The
support, including security patches and fix for the critical
defects, is provided for the six months after the official release
date. Thirteen releases (named in the alphabetical order by
the birds) have been distributed since December 2014, when
ONOS code was opened to the public.

C. Issue tracker

The issues associated to every release are reported in the
publicly available Jira tracking system3. For the purpose of
our analysis we are interested in the issues labelled as ”Bugs”
rather than new feature requests or enhancements. Such bug
repositories represent a valuable source of information, as they
contain the detailed fault reports from the live deployments
in both lab and operational environments. The bug reports
contain the information details such as affected versions, bug
description and short summary, priority, date of the report
creation, date of its resolution (if applicable). The cumulative
number of detected and resolved faults reported over time are
shown in Fig. 2. It can be observed from the figure that there
is a steady increase in the number of bugs, with the jumps
being noticeable around the official release dates.

2Source:https://www.openhub.net/p/onos
3Data retrieved on February 1, 2018 from ONOS issue tracker:

https://jira.onosproject.org/
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Fig. 4: Distribution of the times between the successive bug
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between the two latest stable releases with the previous ten
releases.

Analysis of the software maturity presented in the previous
section assumes that the only changes in the code are due
to the bug fixes, and hence, we separate the bugs reports
based on the ”affected release version” field. The number of
the bugs reported for every release, grouped by the priority,
are presented in Fig. 3. Note that due to the time overlap
between the support periods some of the fault reports affected
more than one release. In the analysis of software maturity,
”minor” and ”trivial” bugs (e.g. loading of the GUI too slow)
are ignored, as they do not have an impact on the critical
controller operations and often remain unresolved.

D. Data statistics

The latest release, Magpie (Onos v.1.12) was distributed
recently and does not have enough samples, i.e. bug reports,
for the statistical analysis. Hence, we focus on Kingsfisher
(Onos v.1.10), the most recent release whose support cycle
has ended, and Loon (Onos v.1.11), and refer to them as the
two latest stable releases. We have compared the distributions
of the times between bugs (TTF) and the times to resolve the
bug (TTR) for Kingsfisher and Loon with the previous ONOS
releases, as presented in Fig. 4. The median TTF around 48 h,
or two only two days, is consistent for all three data sets. The
median TTR showed higher variation, between 168 h to 180 h,
or around a week.

Both TTF and TTR show the characteristics of long tail
distributions, which makes it difficult for the software manage-
ment team to estimate, e.g., the effect of the extended testing
effort on the improvement of the software quality. The SRGM
models, presented in the Section III, add the time dimension
to these distributions, and can estimate the parameters, such
as the expected number of bugs to be detected in a given time
period, with much higher precision.

V. MODEL SELECTION

The next step after the data collection is to find the best
fitting SRGM model to describe the data. In this section we

present the best fitting models for the bug detection and bug
resolution processes, and discuss their Goodness of Fit (GoF)
metrics to determine how well can the models explain the
empirical data.

A. Fault detection process

We compare the most widely used SRGM models for the
bug detection process presented in the Table I. The empirical
data, i.e. the cumulative number of detected bugs, and the
estimations of the two best fitting models are presented in
Fig. 5. The models are ranked based on the MSE, as it was
the optimization criteria of the parameter fitting procedure
(Section III-C), which is also indicated in the figure. Time-
axis indicates the relative time (in hours )since the beginning
of the testing phase.

The analysis has shown that all 3-parameter S-shaped
models, i.e. Generalized Goel-Okumoto, Inflection S-Shaped,
Gompertz and logistic, fit the data well. Since the difference
in MSE between the these models is rather small, we show
the estimated number of bugs for the two best fitting models.
The best fitting model in the most of the cases is Gompertz (5
out of 12 releases), followed by Logistic (4) and Generalized
Goel-Okumoto (3). Inflection S-shaped model also shows very
good GoF results, being the second best fit for most of the
releases (9 out of 12 releases).

The three GoF metrics for all the models and the releases
are compared in Fig. 6. All GoF indicators show consistent
results: the best model to describe the number of detected
faults across all releases are 3-parameter S-shaped models,
showing very good scores in each metric. The concave models,
i.e. Musa-Logaritmic, Goel-Okumoto Exponential and Yamada
Exponential, could not explain the data, except for the three
releases (Avocet, Falcon and Loon) that experience more
concave trend. Delay S-shaped shows slightly worse results,
compared to the other S-shaped models. This effect is probably
due to the fact that this model has only two parameters to tune,
one less than the other S-shaped models.

B. Fault resolution process

Arbitrary combination of NHPP models can be used for
fitting of the cumulative number of resolved bugs applying
the Eq.(10). Here we present the combinations of S-shaped
models: Generalized Goel-Okumoto (GGO) and Inflection S-
shaped (ISS). The models are abbreviated as a combination of
the initials of detection and resolution NHPP processes. For the
sake of comparison we also include the reference model from
[28] where both fault detection and resolution are modeled
as Goel-Okumoto processes, which is the most widely used
model due to the analytical tractability of the distributions for
the combined process.

The best fitting model for four representative releases,
Avocet, Blackbird, Junco and Loon, are shown in Fig. 7. It
can be seen that although the proposed models for the fault
resolution process could describe the data for some of the
releases, the actual data shows higher deviation from the fitted
model, then in the previous case. In the first two cases (Fig.
7a and Fig. 7b) the models have shown a very good fit to
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Fig. 5: Comparison of the two best fitting models for bug detection process for all ONOS releases. For most of the releases the
best fitting model is Gompertz (5 out of 12 releases), followed by Logistic (4) and Generalized Goel-Okumoto (3). Inflection
S-shaped model also shows very good GoF fit, being the second best for most of the releases (9).
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Fig. 6: All GoF indicators show consistent results (the darker means better): the best model to describe the number of detected
faults across all releases are 3-parameter S-shaped models: Gompertz, Logistic, Generalized Goel-Okumoto and Inflection
S-shaped. Two-parameter S-shaped model (Delay S-shaped) shows slightly worse performance, while concave models Musa-
Logaritmic, Goel-Okumoto Exponential and Yamada Exponential could not explain the data.

the data. The best fitting models are ISS-ISS and ISS-GGO,
respectively.

The two other releases have experienced sudden trend
changes around the official release date. In the case of Junco
(Fig. 7c) two sudden increases can be detected: the fist one
happens around its official release and the second one shortly

before the distribution of the subsequent release. Similar
behaviour can be observed in several other releases (Golden-
eye, Hummingbird, Ibis). Such sudden trend changes due to
external signals cannot be captured by the simple combination
of NHPP models. The trend shifts due to the changes in the
debugging effort shortly before the new upcoming release can
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Fig. 7: Comparison of the best fitting models for fault reso-
lution process: the proposed models could describe the data
for some of the releases, although the actual data shows
higher deviation from the fitted model due to the sudden
trend changes that require more complex model and more
information about debugging effort.

be modelled by introducing the (time) change points in the
underlying NHPP models, as described in [44]. This approach
requires, the time change points to be provided either manually
or defined as additional unknown parameters of the model. In
the first approach the generalizability of the model is poor,
while in the second approach the estimation of the parameters
in the small data sets might be noisy (fitting the model with
five or more parameters to dataset with less than 30 examples).

In the case of Loon (Fig. 7d), the trend after the official
release is changed, indicating the change in the debugging
strategy. Similar behaviour can be observed in (Cardinal,
Drake, Emu, Falcon). It has to be noted that in the open source
software, such as ONOS, all the users are at the same time
the testers, as anybody can report the bug in the public issue
tracker. However, only a limited group of people will work on
actually fixing the bugs. When this discrepancy between the
”test” and ”debug” team is too large, or when there is a sudden
change in the size of debugging effort, the time scales have to
be adjusted accordingly. The models, such as [45], can capture
the changes in the test effort, but have the same problem of
the accuracy of the parameter fitting on comparatively small
data sets.

The same pattern can be observed also in the Fig. 8,
where the MSE metrics of the five proposed models for all
releases are compared. We observe that ISS-GGO and GGO-
ISS outperformed the reference GO-GO model, for all the
releases, where fitting was possible.
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Fig. 8: Comparison of MSE of SRGM models for the fault
resolution process: ISS-GGO and GGO-ISS outperformed the
reference GO-GO model, for all the releases, for which the
fitting was possible.

VI. APPLICABILITY OF SOFTWARE MATURITY
ASSESSMENT

In this section we present the software maturity assessment
for the three software management problems. First we show
how to estimate the optimal software release and software
adoption time, based on the reliability and cost criteria, which
is a typical use case of SRGM found in the literature [36]–
[42]. Then we present two novel use cases, relevant for the
SDN community. We show how SRGM parameters can be
used for (i) an early estimation of software reliability, and
(ii) as criteria to discriminate between alternative controller
platforms, e.g. ONOS and OpenDaylight, when reliability has
the highest priority.

A. Optimal software release and software adoption time

SDN controllers comprise all the functionalities of the
network operating system, and require constant updates to
keep up with the velocity of the evolution of the user re-
quirements [4]. In this section we discuss how SRGM can be
used to to estimate the quality of the controller software to
determine the optimal software release and software adoption
time, based on the software reliability and the cost.

1) Software reliability criteria: Software reliability, defined
in the literature as the probability of failure-free software
operation for a specified period of time in a specified envi-
ronment, is an important indicator of software quality. Once
the best model to describe the fault report data is selected
and the parameters are estimated, it can be used to predict
several software reliability parameters: residual bug content,
instantaneous fault intensity, conditional software reliability
and expected cost, as defined in Section III-A by Eq.(5)-(7).

The software reliability metric for the Kingsfisher release
are presented in Fig. 9. Kingsfisher is the most recent ONOS
release whose support cycle has ended, and its best fitting
model is Logistic. The official release date t0 is indicated with
the vertical line in the figure, and the time is expressed as
the relative time since the start of the testing. Note that only
severe bugs (bugs with major, critical and blocker priority) are
considered.
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Residual bug content represents the number of undetected
faults remaining in the software. It can be seen in Fig. 9a that
the residual bug content was relatively high, as 14 severe bugs
were still remaining in the software on the day of its official
release. Already three months after the official release, this
number has dropped significantly.

Instantaneous fault intensity, or alternately expected time
until the next software failure, can be derived from the param-
eters of the mean value function. The expected fault intensity,
illustrated in Fig 9b, on the day of Kingsfisher’s release was
at the level of 0.0175h−1, or equivalent to approximately 2.38
days between detection of successive severe faults. The fault
intensity is highly relevant for the software developers, as it
can indicate when is the software ready for the release. This
metric could help the developers estimate the efficiency of the
gains of the additional testing effort.

Conditional software reliability represents the probability
of encountering a severe software failure in the time interval
[t, t + x). We observe the interval starting with the software
adoption time t for a duration x, specified by the user. We
show that in order to achieve reliability of R(x|t) = 0.90,
during maintenance interval of x = 3 months, the user should
defer the software adoption more than ∆t ≥ 4 months after
its official release t0, as illustrated in Fig. 9c.
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Fig. 9: An example of the optimal software adoption and
release time based on the reliability criteria: residual bug
content, failure intensity and conditional software reliability.
Vertical lines indicate the date of the official Kingsfisher
release time (t0).

2) Software cost criteria: Software management team
needs to balance the effort spent on the testing in the pre-
release phase, and effort spent on the bug removal of the soft-
ware in the operational phase. Open source SDN controllers,
such as ONOS and OpenDaylight, come with no guarantees
provided on the either performance or reliability. However,
many commercial solutions provided by network vendors, such
as Ericsson and Huawei, are built on top of these controllers.

The software cost model, defined by Eq.(8), generalizes
the most of the cost models proposed in the literature. The
testing cost ct(t) function accounts for the cost of the software
testing team, the cost of the bug removal, the setup and the
maintenance of the testing environment, code documentation,
etc. The cost during the warranty period cw(t) includes the
penalty paid for every severe outage encountered during the
normal operation, the cost of network service interruption, the
cost of the bug removal and the support team and sometimes
also a discounted value of money for the long support periods.
These cost factors must be determined per use case bases.
Here, we consider the constant cost functions ct(t) = Ct and
cw(t) = Cw. The software cost function then becomes:

C(T ) = CtT + Cw[m(T + Tw)−m(T )] (16)

where m(t) is a mean value function of the best fitting model,
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Fig. 10: Optimal software adoption and release time based on
the cost criteria. Software cost as a function of the software
release time (T ) and the maintenance period (Tw), and relative
cost of bug removal in test (Ct) and operational phase (Cw).

Bjarne E.  Helvik
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discussed in the previous section. Optimal software release
time T is obtained by finding the minimum of expected
cost function. For the simpler models, e.g. Goel-Okumoto,
the optimal solution, i.e. the minimum of the cost function
dC(T )

dT = 0, can be found analytically, while in other cases it
has to be found numerically.

In the baseline scenario we assume the relative cost (in
unnamed cost units CU) of Ct : Cw = 1[ CU

h ] : 100[ CU
bug ]

and the warranty period of Tw of 3 months. The impact of
different Ct : Cw and Tw on the software cost is illustrated
in Fig. 10. In some scenarios the cost function has no clear
minimum. In the cases when the cost post-release bug removal
is expected to be low, either due to low penalties (Fig. 10a) or
the very short warranty period (Fig. 10b), the optimal software
release policy is to distribute the software immediately. In the
baseline scenario, a clear minimum for the software release
T can be observed, which is approximately 40 days after the
official software release date (t0 = 2616h), highlighting the
cost-benefits of the extended period .

B. Early prediction of software reliability

In order to estimate the SRGM parameters, a large number
of samples, i.e. bug reports, has to be provided. In case
of ONOS data set, the standard parameter fitting techniques
cannot accurately predict the model parameters before 90%
of all bug reports are available, which happens for ONOS
approximately after six months of testing when it is already
too late for software developers (as the software is already
released) and the SDN-network operators (since new release
is already available). Estimating the SRGM parameters when
only few data samples are available is especially difficult for
S-shaped models, since they change the concavity somewhere
around three months after the start of the testing (See Fig. 5).
However, we have noted that the SRGM parameters show very
small variation across the releases, thanks to the incremental
development strategy of ONOS, as it can be seen in the case
of the Gompertz model in Fig. 11. We leverage this fact to
guide the parameter fitting procedure, and regularize the model
which improves the prediction accuracy in the early phase. The
regularization of the model is implemented by restricting the
parameter search space, as described in the Section III-C.

The trend observed in Fig. 11 shows several interesting
points and hints how the regularization of the search space
could be done. The scale parameter a and the shape parameter
b show small variations between the consecutive releases. The
parameter a varies between 54 and 85; parameter b is in the
range (0.99879, 0.99935). The parameter k for the releases that
have pronounced S-shape in the range (0,0.02), while for the
releases show more concave trend (Avocet, Falcon and Loon)
is higher, in the range of (0.5,0.85).

We have explored several parameter regularization strate-
gies. In our previous work we proposed the strategy based on
the extreme values, where the search space of every parameter
ξ is bounded to [0.9 ξmin, 1.1 ξmax], which represents the
range of previously observed parameters extended by 10%.
Here we consider the strategy based on the mean mξ and the
variance σ2

ξ , where the parameter search space is bounded to
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Fig. 11: Estimated parameters of Gompertz model for all
releases. The parameters show very small variation across
the releases, which allows us to regularize the model for the
subsequent releases.

mξ ± 2σξ. In addition to these two strategies based on the
distributions of the parameters, we have considered a strategy
based on the trend. We consider an exponentially weighted
moving average, defined as:

mi
ξ ← ω ξi + (1− ω)mi−1

ξ (17)

where the average value of the parameter ξ after i releases
mi
ξ is computed as a weighted sum of the estimated parameter

for the i-th release ξi and the previous average value mi−1
ξ .

Here we assume the ω = 0.5, and bound the parameter search
space to mi

ξ ± 2σξ. Note that in cases where the lower bound
is negative, the values are capped to zero, due to the nature of
the model. The parameter search space bounds with different
preparation strategies are compared in Table II.

TABLE II: Gompertz model regularization with parameter
prediction strategies, based on: i) extreme parameter values,
ii) mean and variance and iii) moving average.

ξ [0.9 ξmin, 1.1 ξmax] [mξ ± 2σξ] [miξ ± 2σξ]

a [50.74, 85.15] [41.62, 80.65] [34.21, 73.64]
b [0.9888, 1.0092] [0.9987, 0.9992] [0.9982, 0.9987]
k [8.2 e-7, 0.0933] [0.0, 0.0936] [0.0, 0.0629]

All prediction strategies narrow down the parameter search
space: while the first strategy covers extreme values, the range
for the other two is more narrow. Overall, all prediction strate-
gies showed improvement over the standard fitting techniques,
demonstrating the positive impact of the prior knowledge on
the parameter fitting accuracy. The prediction strategy based
on the trend shows the unstable performance when parameter
experienced the sudden trend changes, as in case of parameter
k for Loon release, illustrated in Fig. 11. It might be possible to
use a different regularization strategy for each parameter. We
leave it for the future work to study the performance of such



11

0 1000 2000 3000 4000 5000 6000

Time [h]

0

10

20

30

40

50

60

N
u

m
b

e
r 

o
f 

b
u

g
s

Loon: GOMP

empirical data

standard (50%)

regularized (50%)

standard (90%)

regularized (90%)

(a) Early prediction of mean value function mgomp(t), when limited number
of samples are available.

1000 1500 2000 2500 3000 3500

16 23 34 37 46 48 48

Time [h]

0

5

10

15

20

25

R
M

S
E

Number of detected bugs

standard

regularized

(b) Evolution of Root Mean Square Error (RMSE) with the number of
training samples.

Fig. 12: Early prediction of software reliability, when only few samples, i.e. bug reports, are available for the fitting of SRGM
parameters. Benefits of regularization can be seen in the evolution of RMSE and mean value function.

hybrid strategies, when more software releases are available
and behavioural patterns of each parameter can be estimated
more precisely.

The benefits of regularization on the early prediction of
software reliability, can be quantified by observing the esti-
mated mean value function mgomp(t) and the evolution of
root mean square error (RMSE), when the limited number of
the samples, i.e. bug reports are fed to the parameter fitting
function. The results for the prediction strategy based on the
observed mean and variance are shown in Fig. 12. The impact
of the error in parameter estimation is illustrated in Fig. 12a.
The error of the estimation with 50% of the available samples
with standard fitting techniques is much larger due to the local
variations of early samples. It can be observed in Fig. 12b that
the regularized model was able to estimate the parameters with
higher accuracy and 20% less samples.

In this section we present the Gompertz model, which has
the best performance across all releases, being the best fit for
five releases, and showing very good results for the other
seven. Moreover, the parameters of Gompertz model have
shown the smallest coefficient of variation (variance/mean).
However, the general conclusions hold as well for the other
three 3-parameter S-shaped models. While studying the impact
of the model selection, we observe that, in general, the
regularization improves the predictive capabilities of SRGM in
the early phase of the software lifecycle for all 3-parameter S-
shaped model, but the magnitude of the improvement depends
on the data set. For Junco release, none of the combinations
of the models and prediction strategies show significant im-
provements with 50% of the samples. This is probably due to
the timing of the burstiness of bug reports at the beginning of
testing (see Fig. 5). Further improvements could be achieved
with smoothing techniques and grouping of the data, e.g, by
reducing the time resolution of the bug reports from hours to
days or weeks. The limitations of SRGM are further discussed
in Section VI-D.

C. Comparison of two SDN controller software solutions:
ONOS vs. OpenDaylight

As SDN is gaining the popularity and picking up the
momentum, a multitude of commercial and open source SDN
controllers have been developed. While the most of the
early open source solutions have remained in the research
community at the level of the prototype, two projects have
been singled out and managed to reach production grade
readiness, ONOS and OpenDaylight. OpenDaylight is much
larger and older project (see Table ??), foreseen from the
beginning to be the Linux of the networks, supporting a
variety of southbound protocols to ensure the smooth transition
from the legacy networks. Majority of the OpenDaylight key
partners are vendors, and the focus at the beginning was on
the the applications in data centers and coexistence with net-
work virtualization technologies, as opposed to ONOS whose
primary focus in early days was fulfilling the requirements
of service providers. Although the difference in the support
of some of the advanced features is still present (e.g. the
OpenDaylight support for the wireless networking), the two
controller platforms are converging and it is not clear for the
network operators which solution to choose. For instance, the
commercial SDN controller platform by Ericsson is based on
OpenDaylight, while Huawei Agile controller solution is based
on ONOS, and AT&T deploys both platforms in its production
networks. In this section we address the problem that a
network operator might face when it has to choose the optimal
SDN controller platform for its network, or alternatively an
open source platform as a code base to build his customized
controller upon, when code maturity is the major concern.

Comparison of the relevant characteristics, e.g. code size
and fault density, of OpenDaylight and ONOS controller
platforms is presented in Table ??. We compare Carbon (Open-
Daylight v.0.6) and Kingsfisher (ONOS v.1.10) releases, as
both of them were distributed approximately at the same time
(June 5, 2017 and May 25, 2017, respectively) and sufficient
time has elapsed for both controllers to reach the stable
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Fig. 13: Software maturity evolution over time.

phase. We highlight here the major differences between the
two controller platforms, relevant for the analysis of software
maturity. First, the release management cycles of the two
controllers are different: while ONOS distributes the code in
the regular three-month cycles, the lifecycle of OpenDaylight
releases is irregular, on average being six months. Moreover,
the two controllers use different classification schemes for the
importance of the bug reports. ONOS has five well defined
categories, OpenDaylight has six, with majority of the bugs
(68%) belonging to default ”normal” category. Thus, we
include the bugs of all priorities in the fault density figure.
The two controller platforms had a different approach to their
issue tracking systems. While ONOS has been using Jira since
its inception for the documentation and management of its bug
repository, OpenDaylight relied at the very beginning on the
internal mailing list and excel sheets, then used Bugzilla issue
tracker in the first 6 releases, and has recently migrated to Jira.
Although both issue tracking systems offer the same reporting
capabilities, we have found that ONOS bug reports provided
higher level of detail and less ambiguity in its bug reports.
We observe that the fault density, i.e the number of the bugs
detected during the software lifecycle per lines of code, of
the two controllers is close to 0.1 [ bugs

kLOC ], with ONOS having
slightly lower fault density.

TABLE III: OpenDaylight vs. ONOS.

Controller OpenDaylight ONOS
Started February, 2013 December, 2014

Releases 7 13
Active developers 374 168

No. commits 88,102 11,749
Lines of Code (LOC) 3,860,347 743,531

Reported bugs 493 (Carbon) 76 (Kingsfisher)
Fault density [ bugs

kLOC ] 0.128 0.102

Fault density is a static measure of the code quality, which
can be reliably computed only after the software lifecycle is
over and the support has ended. Several methods have been
proposed for an early estimation of fault density, based on
the complexity, programming languages and other software
features, which might not always be available to the public.
On the other hand, SRGM framework treats the software

component as a black box, and provides the estimation of the
software reliability, without requiring the information about
the code internals. The challenge of direct comparison based
on the empirical data between the two releases is illustrated
in Fig. 13a. It can be observed that the direct comparison of
the empirical data is not straightforward (we assume the bug
detection is a realization of the stochastic process), and that on
June 1, 2017, both controllers had detected around half of the
number of bugs. Instead, it is much more accurate to compare
the fitted curves of the two controllers.

In order to compare the reliability and code stability of the
two SDN controllers, we propose software maturity metric.
The software maturity metric is derived from the respective
SRGM as λ(t)/mmax, which provides a measure on how far
from the stable region (i.e. how close to horizontal line) is the
controller software at any given moment. The practical value
of our proposed software maturity metric is illustrated in Fig.
13b and Fig. 13c, where the software maturity after one one
(θ1) and three months (θ2) after the official software release is
indicated. The units are expressed as the percentage of detected
bugs per day, where zero indicates the stable software. We
observe that the maturity of the Kingsfisher improves much
faster θ1 = 0.3693[ %

day ]→ θ2 = 0.0398[ %
day ], compared to the

Carbon θ1 = 0.3029[ %
day ] → θ2 = 0.1983[ %

day ]), thanks to the
shorter release lifecycles of ONOS.

The software maturity metric can be further used to profile
the behaviour of the controller, and quantify the improvement
of the software quality over different software lifecycle phases,
as illustrated in Fig. 14. Comparison of the maturity evolution
over time across different releases can be used to track
the progress of the software development process and the
efficiency of the testing effort on the improvement of software
quality. We recognize the challenges of an early estimation
of mmax, which have to be estimated before the software
lifecycle is over. We can exploit the approach presented in
Section VI-B for an early prediction of model parameters.
Note that in this particular case, more than 50% of the bug
reports were available before the official software release
dates for both controllers, in which case our approach for an
early prediction can estimate the SRGM parameters with the
reasonable accuracy.
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Fig. 14: Software maturity in different phases of the controller lifecycle.

D. Threats to validity

The framework presented in this paper comes with certain
limitations. The first limitation comes from the fault reports,
as the results are only as good as the accuracy of the data sets.
While doing the data mining we noticed few inconsistencies.
SRGM models require the complete uncensored fault reports,
in order to accurately estimate the parameters in the model.
Since we can neither fully guarantee the accuracy nor the
completeness of the reported data in the issue trackers, we
do not emphasize the numerical results, but rather focus on
the general approach to quantify the software reliability.

The second limitation comes from SRGM models. The mod-
els assume independent times between the consecutive fault
reports, which is not entirely true since occasionally several
related bugs were reported at the same time. The models also
assume that every undetected fault contributes the same to the
fault manifestation rate. The time in our study represents the
calendar time. It would be more accurate to consider the actual
test effort in men-hours and CPU time, but this information is
not available large open source projects. Although we cannot
guarantee that any SDN controller software can be modelled
as mixture of simple SRGM models, previous studies have
shown that described models can be successfully applied to
many large open source software products, such as Apache
Web Server, Mozilla Firefox, and Eclipse IDE (see Section II).

VII. CONCLUSION

In this article we presented a framework to estimate and
predict the maturity of SDN controllers, based on Software
Reliability Growth Models (SRGM). SRGM are used to model
the stochastic behaviour of bug manifestation and correction
processes, based on empirical data of previous outages. We
analyzed data provided by the public bug repositories of the
two biggest open source SDN controller platforms, ONOS and
OpenDaylight.

Our study showed that the three-parameter S-shaped models
describe well the stochastic behaviour of the bug detection
process for all software releases included in our study. On the
other hand, the bug correction process, for most new releases,
experienced sudden trend changes that cannot be captured

well with combination of standard three-parameter models. For
the software releases with stable trend, our proposed class of
bivariate models for bug correction process outperformed the
reference model.

We have demonstrated how software reliability metrics,
derived from SRGM, can be used to guide software developers
and network operators to decide when the software is mature
enough to be released and deployed in an operational envi-
ronment. We also proposed two novel applications of SRGM
relevant for developers of SDN controllers and operators
of SDN-based networks. We proposed model regularization
techniques for an early prediction of software reliability
based on the observed trend of model parameters of previous
software releases. We also define a new software maturity
metrics, which can be used as a selection criteria for controller
candidates, e.g. ONOS and OpenDaylight, and measure the
testing progress and software quality.
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