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ABSTRACT

Seismic attribute computation is one of the most active
research and engineering topics in the computational geo-
physics world. Although numerous algorithms for seismic
attribute computation have been developed, relatively little
work has been done on scientifically characterizing their
quality and accuracy. Seismic attribute characterization ef-
fort is largely qualitative and subjective. We have developed
a robust and reliable scientific process for functionally com-
paring similar attributes. Structural seismic attributes are ad-
dressed, including discontinuity, dip angle, dip azimuth, and
curvature. To establish a common software platform, and
collection of data sets for efficient fully automatic evalu-
ation, a stand-alone flexible online web service is designed.
It is based on a C#-MATLAB implementation, and it is
called A3Mark. The publicly available web service enables
the automatic evaluation of individual categories of seismic
attributes using customized quality metrics. It can be easily
extended to include new algorithms. Several new synthetic
data sets covering various structural measurements are also
created, including noise, with ground truth, and they are
made publicly available through the web service. Finally,
a comparative evaluation of some current seismic attribute
algorithms is given with quantitative and qualitative results.

INTRODUCTION AND BACKGROUND

Seismic attributes are quantities, such as measurements, charac-
teristics, or properties, extracted or derived from seismic data. They
are analyzed to enhance information that might be hidden or
found to be subtle in a traditional seismic image, leading to a better

geologic or geophysical interpretation of the data, ultimately in-
creasing the success rate by more optimal well positioning.
Seismic attributes were introduced in the early 1970s. Since then,

many new seismic attributes have been derived and computed, follow-
ing major advances in computer technology such as digital recording
and modern visualization techniques (Chopra and Marfurt, 2005).
Nowadays, different (or even the same) software platforms provide
different calculations for a single seismic attribute, e.g., volumetric
dip, discontinuity, and curvature. In the Petrel E&P software platform,
for example, the chaos, variance, amplitude contrast, and residual con-
sistent dip attributes can all be used for discontinuity calculation. With
the dramatically increasing number of seismic attributes in the oil in-
dustry, one can relate to the decision-making paradox, as first identified
by Triantaphyllou and Mann (1989). This stems from the observation
that there are plentiful seismic attributes (Chopra and Marfurt, 2008),
each claiming to be the “best,” while implementing intrinsically the
same functionality (Barnes, 2006). Furthermore, these attributes may
often yield very different results when fed with exactly the same input
data. In other words, what is clearly lacking in the highly competitive
world of seismic attributes is not the attributes themselves, but a robust
and reliable scientific process to compare functionally similar attributes.
Some experts use informal methods such as writing blogs (Hall,

2016) or giving lectures (Behzad, 2016) to explain the details of the
seismic attributes, and to provide corresponding suggestions, based
on their professional experience. However, the confusion for geo-
scientists in selecting the appropriate seismic attribute still remains.
Gunther and Marfurt (2016) compare five different methods for
volumetric dip computation. They begin by describing key details
of five dip computation methods, and then they apply them to a 3D
seismic survey acquired offshore New Zealand and examine the re-
sult with a human interpreter for differences in resolution, artifacts,
and sensitivity to noise. Although going in the right direction, this
approach remains qualitative and subjective.
There are some works (Clawson et al., 2003; Hart and Chen,

2004; Verma et al., 2015) that take the first steps toward the ana-

Manuscript received by the Editor 9 January 2017; revised manuscript received 6 June 2017; published ahead of production 11 September 2017; published
online 01 December 2017.

1Norwegian University of Science and Technology, Department of Computer Science, Trondheim, Norway. E-mail: liyuan.xing@ntnu.no; theotheo@idi.ntnu.
no.

2Schlumberger AS, Schlumberger Information Solutions, Stavanger, Norway. E-mail: vaarre@slb.com; nsalman@slb.com.
3Norwegian University of Science and Technology, Department of Geoscience and Petroleum, Trondheim, Norway. E-mail: egil.tjaland@ntnu.no.
© 2018 Society of Exploration Geophysicists. All rights reserved.

O15

GEOPHYSICS, VOL. 83, NO. 1 (JANUARY-FEBRUARY 2018); P. O15–O24, 10 FIGS., 4 TABLES.
10.1190/GEO2017-0013.1

D
ow

nl
oa

de
d 

02
/1

2/
19

 to
 1

29
.2

41
.1

91
.2

30
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://crossmark.crossref.org/dialog/?doi=10.1190%2Fgeo2017-0013.1&domain=pdf&date_stamp=2017-12-01


lytical validation of attribute algorithms using synthetic seismic
data. Hart and Chen (2004) use simple 1D convolutional models
constructed from well control to validate the subsequent interpre-
tation of seismic attribute anomalies. In Verma et al. (2015), 2D
synthetic common-shot gathers are computed, processed, and mi-
grated to quantify the response of coherence, curvature, and acous-
tic impedance through four case studies. Coherence, P-impedance,
and other attributes computed from 3D convolution models (Claw-
son et al., 2003) were used to determine which attributes may help
in the seismic prediction for improved hydrocarbon reserve estima-
tion. Although these synthetic seismic data sets are sophisticated,
they still contain only a few individually isolated complex configu-
rations. Because these configurations, such as petrophysical proper-
ties, are all twisted together, it is hard to automatically separate the
effect of an individual configuration, and thus validation remains
qualitative and subjective.
In contrast, an objective approach should automatically evaluate

attributes and algorithms quantitatively, but this is rather challeng-
ing. Generally speaking, an objective approach uses various quality
metrics to assess if a technique fits better to the ground truth or
reference data than another. Furthermore, in the field of computer
vision, web services are built to share data, host participants’ results,
and compare these results using objective metrics with the aim of
setting a standard through benchmarking of the algorithms. These
objective approaches are widely used, for example, in stereo recon-
struction (Scharstein and Szeliski, 2001; Seitz et al., 2006; Stretcha
et al., 2008) and image quality assessment (Ponomarenko et al.
2009), but not in the world of seismic attributes.
A3Mark attempts to bridge this gap by objectively comparing

seismic attributes and thus guiding consumer choices. Toward this
end, we build a publicly available web service that hosts several
synthetic data sets that are generated for this purpose. These data
sets cover a wide range of structural features under various noise
conditions, such as discontinuity, dip angle, dip azimuth, and cur-
vature, and they have the associated ground truths. These structural
seismic attributes are important in the accurate calculation of many
geometric attributes and to some structure-oriented filters, and they
are key components in the emerging seismic geochronology analy-
sis software. The web service includes mechanisms for uploading
and automatically evaluating the user submitted seismic attribute
cubes and for presenting the results of the metrics numerically and
visually. In particular, the evaluation methodology is supported by
customized quality metrics in the server backend. The web service

is available at A3Mark.idi.ntnu.no. So far, there are comparative test
results from several software platforms.

DATA SETS WITH GROUND TRUTH

Real seismic data are often complicated because of complex
geology and noise, and they are therefore not ideal for evaluation
purpose. On the one hand, the interpreted data such as faults cannot
be regarded as ground truth, because the interpreters often have dif-
ferent, and sometimes even incoherent, interpretation of the same
data set. The real geologic ground truth of the subsurface is difficult
to obtain; one needs to compare the geologic or physical models
with other available information, such as aerial photographs, test
borings, well logs, geologic maps, and field observations. On the
other hand, even the complicated real data may not cover all the
values for one attribute, such as dip angle, dip azimuth, and curva-
ture, in a single data set. Synthetic data can to some extent avoid the
aforementioned issues and offer more control over the data, and this
is the type of data adopted for the proposed benchmark.

Synthetic data sets

To generate our synthetic data sets, we proceed in two steps: first
to create a base 3D seismic cube and second to create associated
tailored cubes covering various structural measurements and noise.
For the first step, a base 3D seismic cube is created algorithmically

(see Figure 1a) composed of three spectral components (15, 25, and
40 Hz) emulating a perfect sphere, and hence containing all possible
dip angles [0°, 90°], dip azimuths [0°, 360°], and a wide range of the
curvature values [−0.25, 0.25]. The bin size is 12.5 m × 25.0 m ×
4.0 ms; the reason behind the difference in the XYT dimensions
is that it makes it possible to test whether a dip algorithm honors the
actual bin size (known as the XYZ space), or simply assumes that all
dimensions are equally spaced (known as the IJK space). The latter is
not desirable.
Moreover, we implement a parameterized linear antialias filter for

high frequencies, which offers control over the amount of aliasing in
the synthetic data. In particular, this antialias filter is applied to
cover steep dips (see Figure 1b). The “ripple pattern” shown in Fig-
ure 1b is a rendering effect only, due to the pixel renderer (shader) in
the viewer. The base seismic cube is useful for testing their algo-
rithms’ robustness against borderline aliasing situations at steep
dips as well as for testing the vertical resolution of various tools.

For the second step, three tailored data sets
covering various structural measurements are
generated. Data set 1 includes one normal fault
(fault 1) and one reverse fault (fault 2), running
parallel to the crossline axis, as shown in Fig-
ure 2a. Another fault, fault 3 that intersects fault
1 and fault 2, and it is parallel to the inline axis is
added in data set 2, as shown in Figure 2b. Inter-
secting faults add more challenges for geometric
attributes. Data set 3 has one more fault, fault 4,
which is not parallel to any of the axes, but in-
tersects faults 1, 2, and 3, as illustrated in Fig-
ure 2c; this further increases the complexity.
Furthermore, each data set contains a unique

type of noise. Three levels of noise are incorpo-
rated: noise free (Figure 3a), 5 dB random noise
(Figure 3b), and 5 dB coherent noise (Figure 3c).Figure 1. Base 3D seismic cube: (a) without antialias filter and (b) with antialias filter.

O16 Xing et al.
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In particular, random noise is added by a random scalar drawn from
the standard normal distribution. Coherent noise is obtained by spa-
tially shifting a scaled copy of the original seismic trace, which
mimics multiples.

Ground truths

Because the synthetic data are created from a physical model, we
know the correct answer for many different structural measurements,
including discontinuity, dip angle, dip azimuth, and curvature. All
these analytical (i.e., not measured or approximated) properties are
stored as separate cubes, and they serve as the “ground truth,” when
validating structural attribute algorithms. For each of our three data
sets, four new cubes in the XYZ space (not in the IJK space) are
computed analytically and stored as the ground truths. Specifically,
an implicit time-to-depth conversion from the XYT space to the XYZ
space is done by using a default conversion velocity of 2000 m∕s,
which is quite a realistic value. The ground truths are defined as
follows:

• Discontinuity: The discontinuities are labeled by discrete
values, in which one is discontinuity, and zero is nondiscon-

tinuity; these are shown in red and gray, respectively, in dis-
continuity inline 40 and 116 of Figure 2.

• Dip angle: 3D tangent plane dip angle (continuous values in
the range [0°, 90°]; see Figure 4a). With the default conver-
sion velocity, a slope of x ms/m is translated to x m/m dip
(remember, TWT is the two-way time, so the distance trav-
eled is twice the actual depth), and the angle is hence equal to
atan(x).

• Dip azimuth: 3D tangent plane azimuth angle relative to true
geographical north (continuous values in the range [0°, 360°];
see Figure 4b).

• Curvature k1: There are several curvature measures applicable
to seismic interpretation (Roberts, 2001) that are applied
purely qualitatively in practice, such as the most-positive
and most-negative curvatures. However, qualitative estimates
have no “correct” answer, and they are thus difficult to evalu-
ate. However, the industry is moving toward workflows
in which quantitative results matter, e.g., if one intends to in-
corporate rock physics/geomechanics. Therefore, principal
curvature defined here as 1/radius in m is chosen (continuous
values in the range [−0.25, 0.25]; see Figure 4c).

Figure 2. Seismic cubes for various structural measurements: (a) data set 1, discontinuity inlines 40 and 116, seismic crossline 151; (b) data set
2, discontinuity inline 40, seismic crossline 1 and 151; and (c) data set 3, discontinuity inline 40, seismic crossline 1 and 151.

Figure 3. Seismic cubes for various noise types on data set 1: (a) noise free signal, (b) additive random noise at 5 dB, and (c) additive coherent
noise at 5 dB.

Seismic attribute benchmarking O17
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EVALUATION METHODOLOGY

To evaluate the performance of a seismic attribute, we need a
quantitative way to estimate its quality. We compute quality mea-
sures with respect to the four aforementioned ground truth seismic
cubes, i.e., to their discrete or continuous values. We compute their
variations, in 2D and 3D, as well as in different dip ranges: [0°, 90°]
and [0°, 45°]. Precise explanations will be given below.

Basic quality metrics

A first metric arises out of regarding seismic attribute computation
as a retrieval problem. In pattern recognition and information retrieval
with binary classification, precision (also called positive predictive
value) is the fraction of retrieved instances that are relevant, whereas
recall (also known as sensitivity) is the fraction of relevant instances
that are retrieved, as illustrated in Figure 5. Precision and recall are
therefore based on a measure of relevance.
Seismic attribute computation can be assumed as a retrieval proc-

ess with respect to the ground truth data. Precision and recall are
then used to measure the retrieval effectiveness, based on the rel-
evance between a calculated seismic attribute and
its ground truth, as follows:

precision ¼ tp∕Numsa; recall ¼ tp∕Numgt;

(1)

tp ¼
Xi¼Numsa

i¼1

absðvalisa − valigtÞ ≤ D; (2)

where tp is the number of true positives of a spe-
cific seismic attribute. The terms Numsa and
Numgt are the total numbers of specific seismic
attributes and ground truths, respectively. In the
discrete discontinuity case, Num is the number of
voxels in which discontinuity equals to one,
whereas in other continuous cases, Num is the
whole volume. The function i is the index for
those attributes counted in Numsa, and valisa
and valigt are the ith values in seismic attributes

and ground truths, respectively. The function D is the threshold for
relevance measurement, which is different for each ground truth cat-
egory. For continuous categories, D is 20% of the ground truth
range. For discrete categories, D is zero. If the submitted seismic
attribute for discontinuity is continuous, i.e., not discrete as its
ground truth, it is first discretized by an attribute value in the
top 20%.
A second metric is root-mean-square error (rms error), a fre-

quently used measure of the differences between values predicted
by a model or an estimator and the values actually observed. As
defined in equation 3, the rms error of a seismic attribute measures
the square root of the average of squared errors between the pre-
dicted values from specific seismic attribute and the observed values
by ground truths:

rms error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi¼Numsa

i¼1

ðvalisa − valigtÞ2∕Numsa

vuut ; (3)

Figure 4. Ground truths on data set 1: (a) dip angle, crossline 151; (b) dip azimuth, time −1800; and (c) curvature k1, inline 76.

Figure 5. Illustration of precision and recall; image by Walber (2014).
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Moreover, rms error variations, rms error distance, and rms error
discontinuity are especially designed for the discrete and continu-
ous categories, respectively. The definitions are

rms error distance

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi¼Numsa

i¼1

ððvalisa − valigtÞ × DistanceigtÞ2∕Numsa

vuut ; (4)

Distance
i�range1
gt ¼ sigmfð0.5;10Þ; if valigtDiscontinuity ¼¼ 1;

(5)

rms error discontinuity ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi¼Num 0

sa

i¼1

ðvalisa − valigtÞ2∕Num 0
sa

vuut ;

(6)

Num 0
sa ¼ Numsa −

Xi¼Numgt

i¼1

Discontinuityigt ¼¼ 1; (7)

Discontinuity
i�range 2
gt ¼ 1; if valigt Discontinuity ¼¼ 1; (8)

where rms error distance is the rms error weighted by the nonlinear
sigmoidal distance sigmf in equation 5. In particular, i� range 1

considers neighbors within range 1; range 1 ¼ 30 is set empirically;
see Figure 6a. A sigmf instance in 3D is shown in Figure 6c, which
is applied on the discontinuity ground truth shown in Figure 6b.
Thus, the discontinuities extracted by the seismic attributes are
treated differently depending on the distance to the ground truth
discontinuities.
rms error discontinuity is the rms error between the attribute val-

ues and the ground truth without including the discontinuities area
defined in equation 8. Specifically, i� range 2 means neighbors

within range 2, and range 2 ¼ 5 is empirically set. This is because
most structural attributes, except discontinuity attributes, are unde-
fined at or very near discontinuities, because derivatives are unde-
fined at discontinuities.
When calculating the difference between the seismic attributes

valisa and the ground truths valigt in formulas 2, 3, and 6, a special
case that needs to be considered is the dip azimuth, because it is cyclic
angular data, meaning that 0° equals to 360°. There are different con-
ventions for specifying a direction, e.g., [−180°, þ180°] and [0°,
360°]. The difference between the angles is wrapped on the interval
[0, 180°] without considering the direction. So if absðvalisa − valigtÞ is
greater than 180, the difference is replaced by 360-absðvalisa − valigtÞ.
The precision and recall values are in the range [0, 1], the larger

the better. An rms error-related quality metrics are in the range
[0, inf), the smaller the better.

Variations of basic metrics

All already mentioned, basic metrics come in 3D and 2D varieties.
In the 3D case, the quality measures are computed over the entire
seismic cube, whereas in the 2D case, they are first computed on
every inline, crossline, and time section of the cube, followed by
a mean operation.
A caveat of the above metrics is that they do not discriminate be-

tween attributes at different dip angle ranges. However, in practice, it
is computationally expensive to image dips beyond 45° because it
requires compute-intensive migration algorithms to properly image
those steeply dipping structures. Hence, this option is often skipped.
Therefore, more quality metrics (called *_LowDip), which account
only for the dip angle in the range [0°, 45°], are developed.
Thus, for the discrete categories (e.g., discontinuity), the metrics

are 3D versions precision 3D, recall 3D, rms error distance 3D, and
their 2D versions precision 2D, recall 2D, rms error distance 2D, as
well as LowDip versions precesion 3D_LowDip, recall 3D_Low-
Dip, rms error distance 3D_LowDip, precision 2D_LowDip, recall
2D_LowDip, and rms error distance 2D_LowDip.
For the continuous categories (e.g., dip angle, dip azimuth, cur-

vature), the metrics include 3D versions recall 3D, rms error 3D,
rms error discontinuity 3D, and their 2D versions rms error 2D,
rms error discontinuity 2D, as well as LowDip versions recall
3D_LowDip, rms error 3D_LowDip, rms error discontinuity
3D_LowDip, rms error 2D_LowDip, and rms error discontinuity
2D_LowDip.

Figure 6. Illustration of nonlinear sigmoidal distance: (a) sigmf in one dimension, (b) discontinuity ground truth in 3D, and (c) sigmf instance
in 3D applied on the discontinuity ground truth.
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The web service: A3Mark

A3Mark offers the following main functionality:

• training and test data sets available for download
• online submission script for uploading seismic attribute cubes
• online evaluation tools for uploaded seismic attributes.

Data sets

Three tailored data sets are generated with different structural
complexities, as described in the “Synthetic data sets” section. The
simplest structural data set, with fault 1 and fault 2 and three noise
levels, is the training data set. The other two data sets, with fault 3
and fault 4 and the associated noisy versions, are the test data sets.

Submission

Users can submit and evaluate their seismic attribute cubes on the
training data set an indefinite number of times. They can see how
their attributes compare against other published attributes, per
ground truth category, and decide whether to publish their results
or not. Results can be published multiple times on the same training
data set; these are shown in a temporary table on the submission
page, but only the latest results are present in the permanent table
in the evaluation page.
Users’ results on test data sets can be uploaded and published

once they have gone through the training data set, and the relevant
results are published. To prevent fitting to the test data sets, results
can only be uploaded once, and cannot be viewed until after they are
published.
Additional information per attribute such as reference and param-

eters can be provided so long as the user has published at least one
result for that attribute.

Evaluation

Once a user chooses to publish his/her results, these appear on the
evaluation page, as numerical metrics and images. The metrics re-
present the quantitative results that are calculated on the back end
right after the seismic attribute cube is uploaded. The images are the
qualitative snapshots of the uploaded seismic cube and the corre-

sponding ground truth, from two different view angles. Detailed
information on the attribute computation is also shown, e.g., refer-
ence, parameters, user, and experience.

RESULTS AND DISCUSSION

Several seismic attributes from several E&P software platforms are
uploaded to our web service to gain a sense of how their relative per-
formance vary against the four ground truth categories. The results
from these attributes are reported in numerical metrics and images.
In particular, the average numeric results for a specific category of
seismic attribute on all data sets are shown in the following tables,
and the images from a specific viewing angle on a noise-free training
data set are illustrated in the following figure parts. These metrics are
compared with the images (observed seismic attribute quality) and
appear to be consistent.

Discontinuity

The following attributes are uploaded in A3Mark for discontinuity;
their results appear in Table 1 and Figure 7:

• Petrel: amplitude contrast, chaos, variance, residual consis-
tent dip

• OpendTect: fault similarity, instantaneous amplitude.

According to the metrics in Table 1, chaos outperforms (bold
italic cells) in six metrics (4 3D/2D + 2 LowDip) and variance
in four metrics (1 3D/2D + 3 LowDip). Amplitude contrast under-
performs (bold cells) in six metrics (4 3D/2D + 2 LowDip) and fault
similarity in four metrics (0 3D/2D + 4 LowDip). Others (residual
consistent dip and instantaneous amplitude) have mid-level perfor-
mance. In particular, the maximum precision of 3D/2D is 0.0999
(for the variance attribute), and the minimum precision of 3D/2D
is 0.0085 (for the amplitude contrast attribute). Precision is consis-
tently rather low, whereas recall is relatively high and with signifi-
cant variation among the attributes. Specifically, the maximum
recall of 3D/2D is 0.8771 for the chaos attribute, and the minimum
recall of 3D/2D is 0.0809 for the amplitude contrast attribute. Over-
all, this means that there exists many false positives when most of
the true positives are extracted. As for rms error distance, the maxi-
mum and minimum of 3D are 0.3976 and 0.1817, and those of 2D

Table 1. Discontinuity attributes and their metrics averaged over all data sets. Metric values are given for 3D and 2D versions
in separate columns and their corresponding LowDip subversions also in separate columns.

Attributes Metrics

precision precision recall recall

rms error
distance

rms error
distance

3D LowDip 2D LowDip 3D LowDip 2D LowDip 3D LowDip 2D LowDip

Amplitude contrast 0.0085 0.2839 0.0196 0.3929 0.0809 0.0082 0.1020 0.0113 0.2841 0.0111 0.3703 0.0101

Chaos 0.0870 0.1339 0.0870 0.1544 0.8771 0.8862 0.8735 0.9056 0.1880 0.0638 0.2815 0.2073

Variance 0.0554 0.4523 0.0999 0.4840 0.5541 0.4621 0.5758 0.4987 0.2494 0.0077 0.3443 0.0173

Residual consistent dip 0.0313 0.1408 0.0487 0.1808 0.6524 0.5367 0.6886 0.5734 0.3976 0.0995 0.5500 0.2251

Fault similarity 0.0311 0.0470 0.0279 0.0763 0.3225 0.4934 0.2761 0.4649 0.1817 0.1128 0.3036 0.3226

Instantaneous amplitude 0.0369 0.0796 0.0397 0.1207 0.3739 0.4745 0.3435 0.4504 0.2132 0.0943 0.3403 0.2380

O20 Xing et al.
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are 0.5500 and 0.2815. In other words, those false positives have
average distance to ground truths approximately from 7 to 9 voxels
in 3D and from 8 to 10 pixels in 2D.
A similar conclusion can be drawn from Figure 7. Chaos (Fig-

ure 7c) and variance (Figure 7d) appear to be closest to the ground
truth (Figure 7a), although chaos has some false positives in the
red bowknot (discontinuity in this case) in the low dip angle region
(<45°) and variance in the high dip angle region (>45°), refer to the
dip angle region in Figure 8a. The amplitude contrast (Figure 7b)
extracts no true positives, but there are many false positives in the
high dip angle region. Fault similarity (Figure 7f) extracts some true
positives but many false positives at the low dip angle region. The
true positives of residual consistent dip (Figure 7e) and instantane-
ous amplitude (Figure 7g) include almost all the relevant elements
(discontinuity) in the ground truth. However, there are many false
positives, in particular, the false positives of residual consistent dip
are mainly at the high dip angle region, whereas those of instanta-
neous amplitude are mainly at the middle dip angle region (≈ 45°).
If we exclude the regions of high dip angle, performance improves

significantly, especially for those attributes that have false positives
mainly at a high dip angle, such as amplitude contrast, variance, and
residual consistent dip, as verified by the LowDip metrics in Table 1.

In particular, there is much improvement in precision and rms error
distance. For examples, the precision of variance reaches 0.4840, am-
plitude contrast arrives at 0.3929, and residual consistent dip be-
comes 0.1808, all from less than 0.1 in 3D/2D. Most of the rms
error distance values are less than 0.1 (≈ 5 voxels∕pixels) in LowDip
compared with a residual consistent dip of 0.3976 in 3D and 0.5500
in 2D, amplitude contrast of 0.2841 in 3D and 0.3703 in 2D, as
well as variance of 0.2494 in 3D and 0.3443 in 2D. Meanwhile,
the performance changes in recall are approximately 0.1, among
which amplitude contrast, variance, and residual consistent dip de-
crease, whereas others increase. These observations indicate the reli-
ability of the proposed metrics.

Dip angle

Two attributes are uploaded in A3Mark for dip angle and their
results appear in Table 2 and Figure 8:

• Petrel: consistent dip, local structural dip. Both are converted
from IJK to XYZ because ground truth is in the XYZ space.

The 3D/2D metrics in Table 2 show that consistent dip is better
than the local structural dip in recall, but not rms error or rms error

Figure 7. Discontinuity attributes on noise-free training data set and related ground truth. Ground truth: (a) discontinuity. Attributes: (b) amplitude
contrast, (c) chaos, (d) variance, (e) residual consistent dip, (f) fault similarity, and (g) instantaneous amplitude.
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discontinuity. Specifically, the recall of consistent dip is greater than
the local structural dip by approximately 0.32. The rms error and
rms error discontinuity of consistent dip are above 14, whereas that
of local structural dip is approximately eight. This is because con-
sistent dip has many outliers at approximately 90°, as shown in Fig-
ure 8b, when compared with the ground truth in Figure 8a and the
local structural dip in Figure 8c. Therefore, without including the
outliers in the high dip angle region, all the LowDip metrics of con-
sistent dip outperform that of local structural dip. In particular, the
recall of the consistent dip remains greater than the local consistent
dip by approximately 0.3. Although the rms error and rms error
discontinuity of consistent dip becomes approximately four, which
is better than the local structural dip value of greater than 5.

Dip azimuth

Table 3 and Figure 9 give the results for the dip azimuth from the
following two attributes:

• Petrel: consistent dip azimuth, local structural azimuth. Both
are converted from IJK to XYZ because ground truth is in the
XYZ space.

Table 3 shows that 3D/2D metrics of consistent dip azimuth are
much better than local structural azimuth in recall, but slightly better
in rms error and rms error discontinuity. Specifically, consistent dip
azimuth is greater than local structural azimuth by approximately
0.44 in recall, whereas it is smaller by approximately three in

Figure 8. Dip angle attributes on noise free training data set and related ground truth. Ground truth: (a) dip angle. Attributes: (b) consistent dip
and (c) local structural dip.

Table 2. Dip angle attributes and their metrics averaged over all data sets. Metric values are given for 3D and 2D versions in
separate columns and their corresponding LowDip subversions also in separate columns. In the case of recall for continuous
categories, the values are the same for 3D and 2D versions.

Attributes Metrics

recall rms error rms error
rms error

discontinuity
rms error

discontinuity

3D LowDip 3D LowDip 2D LowDip 3D LowDip 2D LowDip

Consistent dip 0.4984 0.6382 19.2649 4.1535 15.0059 4.1068 19.2291 3.7730 14.4338 3.1330

Local structural dip 0.1787 0.3488 8.1654 5.3779 7.8223 6.5384 8.1009 5.3191 7.7580 5.4314

Table 3. Dip azimuth attributes and their metrics averaged over all data sets. Metric values are given for 3D and 2D versions in
separate columns and their corresponding LowDip subversions also in separate columns. In the case of recall for continuous
categories, the values are the same for 3D and 2D versions.

Attributes Metrics

recall rms error rms error
rms error

discontinuity
rms error

discontinuity

3D LowDip 3D LowDip 2D LowDip 3D LowDip 2D LowDip

Consistent dip azimuth 0.7164 0.8700 15.7835 4.1670 11.2497 4.7243 15.5727 1.8328 10.5203 1.6199

Local structural azimuth 0.2772 0.3747 16.8037 9.1200 14.6162 10.4066 15.2005 6.8599 13.2706 7.0120
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rms error and rms error discontinuity of 2D and
almost the same in rms error and rms error dis-
continuity of 3D. As shown in Figure 9b and 9c,
they are quite similar to each other and close to
ground truth in Figure 9a, except some clear dip
azimuth outliers at approximately 90° dip angle
in the former. If the high dip angle region is ex-
cluded, all the LowDip metrics of consistent dip
azimuth are much better than that of local struc-
tural azimuth, as listed in Table 3. Correspond-
ingly, consistent dip azimuth remains larger
than local structural azimuth by approximately
0.5 in recall, whereas smaller by approximately
five in rms error and rms error discontinuity of
3D/2D.

Curvature K1

The following attributes are uploaded in
A3Mark for curvature k1; their results are shown
in Table 4 and Figure 10:

• Petrel: consistent curvature, 3D curvature
(impossible to convert from IJK to XYZ)

• OpendTect: curvature gradient.

Figure 9. Dip azimuth attributes on noise-free training data set and related ground truth. Ground truth: (a) dip azimuth. Attributes: (b) con-
sistent dip azimuth and (c) local structural azimuth.

Table 4. Curvature k1 attributes and their metrics averaged over all data sets. Metric values are given for 3D and 2D versions
in separate columns and their corresponding LowDip subversions also in separate columns. In the case of recall for continuous
categories, the values are the same for 3D and 2D versions.

Attributes Metrics

recall rms error rms error
rms error

discontinuity
rms error

discontinuity

3D LowDip 3D LowDip 2D LowDip 3D LowDip 2D LowDip

Consistent curvature 0.9547 0.9884 0.0031 0.0014 0.0027 0.0021 0.0030 0.0010 0.0025 0.0009

3D curvature 0.4052 0.3471 0.4534 0.2083 0.3898 0.2235 0.4174 0.0587 0.3350 0.0724

Curvature gradient 0.0015 0.0017 0.7476 0.6882 0.7469 0.6759 0.7515 0.6780 0.7482 0.6729

Figure 10. Curvature k1 attributes on noise free training data set and related ground
truth. Ground truth: (a) curvature k1. Attributes: (b) consistent curvature, (c) 3D cur-
vature, and (d) curvature gradient.
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When compared with the ground truth in Figure 10a, it is obvious
that the performance order of curvature seismic attributes, from high-
est to lowest, is consistent curvature (Figure 10b), 3D curvature
(Figure 10c), and curvature gradient (Figure 10d). Therefore, all the
3D/2D metrics and LowDip metrics in Table 4 have the same order as
previously mentioned, in which the highest are marked in the bold
italic table cells and the lowest are marked in bold table cells. In par-
ticular, the recall of consistent dip is close to one and rms error and
rms error discontinuity are almost equal to zero. On the contrary, the
recall of the curvature gradient is almost equal to zero and rms error
and rms error discontinuity are approximately 0.7. Moreover, a
slightly better performance in LowDip can be concluded from Table 4
when compared with 3D/2D. As expected, some curvature outliers
approximately 90° dip angle can be observed from Figure 10.

CONCLUSION

Although many algorithms for seismic attribute computation
have been developed, relatively little work has been done on scien-
tifically characterizing their quality and accuracy. The A3Mark web
service addresses this gap by establishing the first publicly available
seismic attributes benchmark, and it is available at A3Mark.idi.
ntnu.no. A3Mark comes with a set of synthetic data sets of different
complexities including discontinuity, dip angle, dip azimuth, and
curvature ground truth as well as a set of quality metrics to auto-
matically evaluate seismic attributes. The experiments reported here
demonstrate the limitations of some existing attributes and show
their sensitivity to key parameters. The results presented are a start-
ing point for comparison of other attributes. The users and devel-
opers of commercial or open-source seismic attributes are invited to
run their algorithms on our web service and report their results for
the benefit of the seismic attribute world. In the near future, we plan
to continue improving A3Mark, for example, on data set and results
presentation. In particular, noise such as steeply dipping noise that
cuts through reflections at all times on marine surveys, will be con-
sidered for inclusion in our synthetic data sets. The quality metric
results with color coding are not intuitive enough to tell at a glance
what is “good” or “bad.” Perhaps one single metric that reflects the
overall performance needs be designed or all quality metrics need
be normalized in the range [0,1].
Moreover, we hope to add more data sets to our web service,

including synthetic salt domes and real seismic data sets. It is also
intended to include more categories of attributes, such as instanta-
neous frequency that is regarded as one of the important physical
attributes, in addition to structural attributes, and their respective
ground truths and quality metrics.
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