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Problem Description
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Summary

The empirical interpolation method is an interpolation scheme with problem de-
pendent basis functions and interpolation nodes developed for parameter depen-
dent functions. It was developed in connection with the reduced basis framework
for fast evaluation of output from parametrized partial differential equations,
but the procedure may be applicable to a variety of problems.

Here, the theoretical background and implementation of the method is pre-
sented. We give examples to verify exponential convergence for analytic prob-
lems, and we also investigate the case where the parametric dependence has
limited regularity.

Applications such as fast quadrature for parameter dependent functions and
rapid solution of nonlinear differential equations are presented.

Finally, empirical interpolation is combined with the reduced basis method-
ology to efficiently solve an optimization problem. This is modeled as a Laplace
equation with mixed boundary conditions, and parameter dependent deforma-
tion of the computational domain.

An online/offline computational procedure, along with a posteriori error
estimates and an efficient greedy sampling strategy is discussed and applied to
solve the optimization problem very rapidly.
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Chapter 1

Introduction

The reduced basis (RB) methodology is an efficient procedure for evaluating
output functionals, such as e.g. average temperature or pressure, dependent on
the solution of a parametrized partial differential equation (µ-PDE). Its use can
be particularly advantageous in (i) the ”many queries” context, i.e. we want to
evaluate the output for a large number of parameter values, or (ii) the ”real-
time” context, i.e. the value of the parameter is not known until the solution is
needed [1].

The specific kind of parameter dependence can vary. Some examples include
viscosity [2], frequency [3], stochastic input [4] and geometry [5], as will be the
case in this work. However, for all examples, we require that the solution of the
PDE varies smoothly with a parameter µ over some parameter space D ⊂ Rd.

If we have this smooth parametric dependence, we expect that a set of
solutions sampled at well-chosen parameter values will contain much information
about the solution for an arbitrary µ ∈ D. We can thus define this set of
solutions as a discrete approximation space XN . Given a new parameter µ ∈ D
we can then, via a Galerkin procedure, find the best approximation to the
corresponding solution as a linear combination of the elements of XN . This is
the principle behind the reduced basis method.

The ability to compute this solution quickly depends on our problem being
affine in the parameter. To solve non-affine problems an affine approximation
was developed. Based on many of the same principles, the ”empirical interpola-
tion” (EI) method was introduced in [6] and expanded on in [7, 8, 9, 10]. Later,
the method was studied outside the RB framework [11], a work we will continue
in this report.

Both the reduced basis and empirical interpolation methods are realizations
of the online/offline computational concept. This we now explain in greater
detail.

1.1 The online/offline concept

The decomposition of a problem into a, frequently computationally expensive,
generic part, and a more rapid specific part is a common technique in numerics.
A method which applies this concept is often called an online/offline procedure.

A simple example is the LU-decomposition. If we know that the solution
is required for several values of the right-hand side, we need only do the full

1



2 CHAPTER 1. INTRODUCTION

Gaussian elimination for the first value. However, for all subsequent evaluations
we are left with a simple, triangular system.

Assume that the LU-decomposition is applied to a system of N equations.
The offline complexity is O(N 3) from the Gaussian elimination. Online, only
O(N 2) operations are required. In this case we still have N dependence in the
online stage. What if we were able to reduce the number of equations in the
online stage to N � N ? Even if Gaussian elimination was used for the online
calculations, the complexity would only be O(N3) and thus independent of N .

The reduced basis method is another realizations of the online/offline con-
cept, where the goal is to achieve N independence in the online stage. We want
to maximize the amount of work done offline. Then, for a new parameter value,
we do an inexpensive online evaluation to obtain the solution. Compared to
LU-decomposition, the reduced basis method is obviously more complicated.
Different values of the parameter will alter not only the right-hand side, but the
entire system of equations.

Empirical interpolation was, as mentioned, introduced to achieve an N in-
dependent RB online stage. However, the EI method is in itself based on an
online/offline procedure where the interpolation points and basis functions are
computed offline. Online, we quickly compute parameter dependent basis coef-
ficients and assemble the interpolant.

What allows us to achieve the online/offline decomposition is that if we
have smooth parameter dependence in our problem, a linear combination of
precomputed solutions will give an accurate approximation for an arbitrary
new parameter value. Of course, the precomputed, or ”snapshot”, solutions
must be sampled at ”clever” points in the parameter space D. For empirical
interpolation and the reduced basis method, this will be implemented through
a greedy sampling strategy. However, this approach is only one way of realizing
the online/offline concept.

1.2 Brief outline of the report

The contents of this report can be split into two major parts. The first part,
Chapters 3,4 and 5, is devoted to empirical interpolation, and the application
of this method. The second part, Chapters 6,7 and 8 deals with the solution
of parametrized partial differential equations. However, first we introduce some
preliminary mathematical definitions and results in Chapter 2.

Chapter 3 contains the derivation and theoretical discussion of the empirical
interpolation method. We also present a number of numerical examples both
to verify error estimates and investigate whether additional hypotheses can be
made.

A simple application of empirical interpolation in connection with numerical
quadrature is presented in Chapter 4. We compare this to standard quadrature
procedures for both one-dimensional and multi-dimensional problems.

In Chapter 5 the empirical interpolation method is used in combination with
a Runge-Kutta metod, which to our knowledge has never before been atempted,
to efficiently solve nonlinear, parameter dependent differential equations.

An optimization problem modeled as a parametrized partial differential
equation is introduced in Chapter 6. For this problem, empirical interpola-
tion alone is not enough to achieve an efficient online/offline decomposition.
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This problem is first solved using a conventional approach in Chapter 7, the
spectral approximation method. However, if the solution is required for a large
number of parameters, this method will be to slow.

Finally, in Chapter 8 we present the reduced basis methodology in detail.
Error estimates and efficient implementation is discussed. Also, we solve the
optimization problem and demonstrate significant improvement in performance
over the conventional method.

1.3 Notation

We end the introduction with a few remarks regarding notation. Vectors will
usually be denoted by an underline, e.g. b ∈ Rn, however we do not use underline
for vector elements. That is, the i’th element of b will be denoted by bi.

The above convention has an important exception. In the case of multi-
dimensional parameters we use boldface, usually µ ∈ D ⊂ Rd as is common in
the litterature. For scalar parameters we use µ.

Matrices will be denoted by capital letters, but without underline. However,
we will frequently have subscripted matrices e.g. BM . Matrix element i, j of
BM will be denoted by (BM )ij .

Explicit parametric dependence of a function f(x) is referred to as f(x;µ).
Similarly for matrices and vectors we use e.g. A = A(µ). The explicit depen-
dence will sometimes be omitted where convenient, but when this is done the
parametric dependence is obvious.
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Chapter 2

Preliminaries

Before the main topics are introduced we need to describe a few mathematical
definitions and techniques. This includes derivation and basic properties of
the weak formulation of a partial differential equation, Gauss-Lobatto Legendre
quadrature and standard polynomial approximation and interpolation.

2.1 Sobolev and Hilbert spaces

Fundamental to the development of Galerkin based methods is the concept
of function spaces. Although this report will not contain much Sobolev- and
Hilbert-space theory, a few basic definitions and results are necessary. First,
let Hm(Ω) denote the space of functions, defined on a domain Ω, for which
all derivatives up to order m are square integrable, see (2.1). In this notation
L2(Ω) = H0(Ω).

L2(Ω) = {v|
∫

Ω

v2 dΩ <∞},

H1(Ω) = {v|
∫

Ω

(v2 + |∇v|2) dΩ <∞},
(2.1)

with the associated inner products

∀v, w ∈ L2(Ω), (v, w)L2(Ω) =
∫

Ω

vw dΩ,

∀v, w ∈ H1(Ω), (v, w)H1(Ω) =
∫

Ω

(vw +∇v · ∇w) dΩ.
(2.2)

Now define the norm of an element v ∈ Hm(Ω) as ‖v‖Hm(Ω) = (v, v)1/2
Hm(Ω). This

is often called the natural, or induced, norm. A Hilbert-space is by definition
complete in its induced norm, a property which is important for theoretical
analysis. However, we will not discuss this, and the interested reader is referred
to [12, 13, 14]. We also define the energy norm as

9v9 = (a(v, v))1/2. (2.3)

Here a(·, ·) is a symmetric positive definite bilinear form we introduce in the
next section. This norm will be involved in several of our following arguments.

We are now ready to express the weak form of a partial differential equation.

5
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2.2 Weak formulation

Consider a two-dimensional Poisson problem with mixed boundary conditions

−∇2u = f in Ω,
u = 0 on ΓD,

∂u

∂n
= g on ΓN ,

(2.4)

where ΓD ∪ ΓN = ∂Ω. This is the standard differential, or strong, formula-
tion. The spectral approximation, along with other finite element based solu-
tion strategies, relies on the weak formulation. This can be derived from (2.4)
by performing the following steps:

Define the function space Xe = {v|v ∈ H1(Ω), v = 0 on ΓD}. Multiply (2.4)
by a test function v ∈ Xe and integrate∫

Ω

(−∇2u)v dΩ =
∫

Ω

fv dΩ.

By applying the divergence theorem we get

−
∫
∂Ω

(∇u · n)v ds+
∫

Ω

∇u · ∇v dΩ =
∫

Ω

fv dΩ.

Also, we get from the boundary conditions

���
���

���:
0

−
∫

ΓD

(∇u · n)v ds−
∫

ΓN

gv ds+
∫

Ω

∇u · ∇v dΩ =
∫

Ω

fv dΩ,

where the first term disappears due to v being zero on the boundary (remember
v ∈ Xe). The weak formulation now reads:

Find u ∈ Xe such that∫
Ω

∇u · ∇v dΩ︸ ︷︷ ︸
a(u,v)

=
∫

Ω

fv dΩ +
∫

ΓN

gv ds︸ ︷︷ ︸
l(v)

, ∀ v ∈ Xe, (2.5)

or the more abstract version, find u ∈ Xe such that a(u, v) = l(v) for all v ∈ Xe.
Here a(u, v) is the bilinear form used to define the energy norm in the previous
section.

For different PDEs and boundary conditions (e.g. inhomogeneous Dirich-
let or Robin), we may get different definitions of Xe, a(w, v) and l(v). The
procedure is however the same.

It is now usual to ensure that (2.5) indeed admits a unique solution. If
we assume a(·, ·) to be coercive i.e. a(v, v) ≥ α‖v‖2H1(Ω) for all v ∈ Xe, and
bounded, |a(w, v)| ≤ β‖w‖H1(Ω)‖v‖H1(Ω) for all w, v ∈ Xe, the existence of a
unique solution follows by the Lax-Milgram theorem [15]. Here α and β (often
called the coercivity and boundedness constants) are positive. We also need
boundedness for the right-hand side, hence there are some requirements on the
smoothness of f and g.

For the Poisson problem with Dirichlet boundary conditions (the following
is valid also if only parts of the boundary is Dirichlet), establishing coercivity
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and boundedness, or continuity, is straight-forward and relies on the Cauchy-
Schwarz and Friedrich inequalities. In the case of mixed boundary conditions,
i.e. Dirichlet and Neumann, as is the case here, we also need the trace theorem.
For details confer [15].

If our PDE is parameter dependent, it is common to introduce the parametric
weak form. This is usually done by defining a parameter vector µ in some
parameter space D and denoting the weak problem as:

Given µ ∈ D find u(µ) ∈ Xe such that

a(u(µ), v;µ) = l(v;µ), ∀v ∈ Xe.

The precise form of parameter dependence for a(·, ·;µ) and l(·;µ) will of
course be determined by each specific problem.

2.3 Affine parameter dependence

The linear form l(·;µ) and bilinear form a(·, ·;µ) are said to admit affine pa-
rameter dependence [1] if we can write

l(v;µ) =
Ql∑
q=1

Θq
l (µ)lq(v), ∀v ∈ Xe, ∀µ ∈ D, (2.6)

and

a(w, v;µ) =
Qa∑
q=1

Θq
a(µ)aq(w, v), ∀w, v ∈ Xe, ∀µ ∈ D. (2.7)

Where Θq
l and Θq

a are parameter dependent constants, lq(v) and aq(w, v) are
parameter independent linear and bilinear forms, and Ql and Qa are (preferably
small) integers.

A simple example of a bilinear form, with a single parameter, admitting this
expansion is the Helmholtz operator which on weak form can be written

a(w, v;µ) =
∫

Ω

(∇w)T∇v dΩ︸ ︷︷ ︸
a1(w,v)

+µ
∫

Ω

wv dΩ︸ ︷︷ ︸
a2(w,v)

.

We can express this as Θ1
a(µ)︸ ︷︷ ︸
=1

a1(w, v) + Θ2
a(µ)︸ ︷︷ ︸
=µ

a2(w, v).

This property allows us to compute all parameter independent terms sepa-
rately as an offline procedure. When given a new parameter value, only a fast
online stage is needed to compute the full linear or bilinear form.

This property will be essential in the development of a fast online/offline
reduced basis procedure and is the main motivation for introducing empirical
interpolation in that context.

2.4 Gauss-Lobatto Legendre quadrature

Assume we want to evaluate the integral

I =
∫ 1

−1

g(x) dx
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for some given function g(x). Using Gauss-Lobatto Legendre quadrature to
approximate this expression gives us

I ≈
N∑
α=0

ραg(ξα). (2.8)

Here we have 2N + 2 degrees of freedom, ρα and ξα, α = 0, . . . ,N , where ρα
is the quadrature weight corresponding to the function evaluation in node ξα.
Notice that we are free to choose where we evaluate g. By choosing ξα to be
the root of the N th Legendre polynomial, LN , and

ρα =
∫ 1

−1

N∏
β=0
β 6=α

ξ − ξβ
ξα − ξβ dξ,

it can be shown [16] that we are able to integrate exactly a polynomial of degree
2N + 1 or less. However the ”Lobatto” in Gauss-Lobatto Legendre fixes ξ0 and
ξN to the endpoints −1 and 1 respectively. This leaves us with 2N degrees of
freedom. If we now let ξα, α = 1, . . . ,N − 1 be the roots of L′N we are able to
integrate exactly a polynomial of degree 2N − 1 or less. If we define Pq(−1, 1)
to be the space of all polynomials of degree q or less on (−1, 1), we have more
formally that for all g ∈ P2N−1(−1, 1),

I =
∫ 1

−1

g(x) dx =
N∑
α=0

ραg(ξα).

The approximation (2.8) is readily extended to the multi-dimensional case.
For two dimensions let g = g(ξ, η) in Ω̂ = (−1, 1)2. The approximation rule
becomes ∫

Ω̂

g(ξ, η) dΩ̂ ≈
N∑
α=0

N∑
β=0

ραρβ g(ξα, ξβ), (2.9)

where we use the same weights and points as for the one-dimensional case. A
detailed description of the computation of the GLL points and weights can be
found in e.g. [17]. The approximation is still exact when g is a polynomial of
degree 2N − 1 or less in each variable respectively.

2.5 Polynomial approximation and interpolation

The Weierstrass Approximation Theorem [18] states that any continuous func-
tion f on an interval [a, b] can be approximated arbitrarily close by a polynomial.
In addition, polynomials are easy both to store and evaluate on a computer. This
has made polynomials a preferred option for approximation and interpolation.
However, the theorem does not give any information regarding what type of
polynomial should be used or how we should find it.

As we are dealing with computers, we need a finite set of polynomials. In
principle, we could always use the set of mononomials PmonoN = {1, x, x2, . . . , xN }
as a basis for the space of polynomials of degree less than or equal to N . This
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choice will unfortunately often lead to poor numerical qualities due to the in-
creasing degree of colinearity in the basis elements. There exists a number of
different orthogonal polynomials based on different inner products.

In this section we will focus on the Legendre polynomials and Lagrange
interpolation through the GLL points introduced in Section 2.4. Given a set of
interpolation nodes {x0, . . . , xn} the i’th Lagrange interpolation polynomial is
defined as follows

`ni (x) ∈ Pn,
`ni (xj) = δij , 0 ≤ i, j ≤ n.

The example `53(x), with GLL interpolation nodes, is given in Figure 2.1. We
see that the interpolation polynomial is 1 at the corresponding node (x3), and
0 at all the others.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

l 35 (x
)

Figure 2.1: Lagrange interpolation polynomial `53(x). We see that `53(x3) = 1,
but that it is zero at the other nodes.

Of particular importance is an error estimate for this type of interpolation
when the underlying function f has a certain regularity. The following result
was first derived in [19] and further developed in [20]. Let the function f be
defined on the interval [−1, 1]. Denote the interpolant of f through N + 1 GLL
points in this interval by IN [f ] . We then have

Theorem 2.1 For any f ∈ Hσ(Ω) the interpolation error satisfies

‖f − IN [f ]‖Hk(Ω) ≤ CN k−σ‖f‖Hσ(Ω. (2.10)

This implies that the convergence will depend on the regularity of f in addition
to the number of interpolation nodes. We also get exponential convergence in
the case of analytic f , i.e. σ →∞.
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The interpolant in (2.10) can be expressed using Lagrange interpolation
polynomials as

IN [f ](x) =
N∑
i=0

f(ξi)`Ni (x).

Note the similarity to the affine parameter dependence in (2.6). We have here
separated the function into a linear combination of f independent, and conse-
quently also parameter independent, polynomials with coefficients determined
by the function value at each interpolation node. The set of basis functions and
interpolation nodes is thus completely detached from the problem. This makes
them easy to compute and analyze. However, as we shall see in the next chapter,
there are ways of determining superior, problem dependent basis functions and
interpolation nodes. This procedure will be connected even closer to the affine
parameter dependence in Section 2.3.
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Chapter 3

Empirical Interpolation (EI)

The polynomial interpolant presented in the previous section was constructed
using predefined basis functions and interpolation points. This allows easy im-
plementation and predictable error behavior. However, with this approach the
level of adaptability is low. Also, the only information extracted from the un-
derlying interpolated function is the nodal values.

Now, imagine we are given a function f(x;µ), possibly with spatial singu-
larities, which depend smoothly on a parameter µ over some space D. For each
parameter value we have a different GLL interpolant based on the spatial ap-
pearance of the function. These have to be constructed separately and we do
not exploit the parametric dependence.

The empirical interpolation method uses a different approach. Instead of
predefined basis functions, we use f sampled at different points in D. That is,
our interpolation space becomes XM = span{f(x;µEI1 ), . . . , f(x;µEIM )}. As the
parametric dependence is smooth, we expect a linear combination of the basis
elements to give a good approximation to f(x;µ) for any value of the parameter.

To create the interpolant, we also require that f(x;µ) is matched in M
spatial interpolation points. The details on how we build up this interpolation
space will be the topic of the next sections, but first we motivate why this
approach is advantageous.

3.1 Motivation

Consider the simple one-dimensional linear form

l(v;µ) =
∫ b

a

f(x;µ)v(x) dx. (3.1)

We here restrict ourselves to the case of a single scalar parameter µ ∈ D ⊂ R,
however in later sections we go back to multiple parameters. For a general func-
tion f(x;µ), l does not admit an affine expansion as in (2.6), and we are unable
to exploit the efficient online/offline strategy. To evaluate this integral using a
standard GLL quadrature formula with N points, requires O(N ) operations for
each new parameter because no offline computation is possible.

13
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The EI approach is to approximate f as

f(x;µ) ≈ fM (x;µ) =
M∑
i=1

ϕi(µ)qi(x). (3.2)

Here, ϕi(µ) are parameter dependent coefficients, and qi(x) are the parameter
independent functions that, as will be demonstrated, span our EI space. It is
important to note that the number of terms in the EI expansion have to be
much smaller than the number of GLL points, or M � N , if this approach is
to have any significant effect on performance. However, as will be thoroughly
demonstrated in the following sections, this will usually be the case.

The expansion (3.2) clearly admits affine parameter dependence. If we now
replace f by fM in (3.1) we get

l(v;µ) ≈
∫ b

a

fM (x;µ)v(x) dx

=
M∑
i=1

ϕi(µ)
∫ b

a

qi(x)v(v) dx.
(3.3)

Our functional l is now replaced by an affine approximation where, if we compare
(3.3) with (2.6), Ql = M , Θi

l = ϕi and li(v) =
∫ b
a
qi(x)v(x) dx.

We are now able to exploit the potential gains from the online/offline com-
putational strategy. All the parameter independent integrals can be solved very
accurately offline, in principle using any numerical integration method. The
online stage only consists of finding the coefficients ϕi(µ) and adding all the
terms. We will demonstrate that finding the coefficients can be done in O(M2)
operations, and the sum is only O(M). The EI method has thus achieved an
online stage indeed independent of the offline complexity, O(N ).

In the following section we explain in detail how to derive the basis func-
tions qi, . . . , qM . Also, the procedure for finding the coefficients ϕi, . . . , ϕM is
given. This involves the set of interpolation points TM = {t1, . . . , tM} which
we remember were the GLL points in the case of polynomial interpolation. For
EI this will no longer be true, and the interpolation points will, as the basis
functions, be problem dependent.

3.2 Interpolation procedure

The EI algorithm is remarkably simple. It relies on a greedy selection process,
both in the choice of basis functions and interpolation points. In a greedy
algorithm, the next step is determined by some local optimality criterion based
on the current situation. This may in some cases lead to a globally optimal
algorithm, but in most cases, as for the EI method, this is not generally true.
For a more thorough explanation of the concept of greedy algorithms, see e.g.
[21].

We now present the empirical interpolation algorithm, given as Algorithm
3.1. This is followed by a detailed explanation of each step. We now denote the
empirical interpolant of f through the M points of TM by IM [f ]. Note that TM
contains interpolation points in the spatial domain Ω. The algorithm will also
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Algorithm 3.1 Empirical Interpolation

µEI1 ← arg max
µ∈Ξt

‖f(·;µ)‖L∞(Ω)

ξ1(·)← f(·;µEI1 )

t1 ← arg max
x∈Ω
|ξ1(x)|

q1(·)← ξ1(·)/ξ1(t1)

B1 ← q1(t1)

for m = 2, . . . ,M ≤Mmax do

µEIM ← arg max
µ∈Ξt

‖f(·;µ)− IM−1[f ](·)‖L∞(Ω)

ξm(·)← f(·;µEIM )

tm ← arg max
x∈Ω
|ξm(x)− Im−1[ξm](x)|

qm(·)← ξm(·)− Im−1[ξm](·)
ξm(tm)− Im−1[ξm](tm)

(Bm)ij ← qj(ti), 1 ≤ i, j ≤ m
end for

produce a sequence of points in the parameter space µEI1 , . . . ,µEIM . These will
however only be stored implicitly in the EI basis functions.

In the initial stage of the EI algorithm we choose the parameter value which
maximizes our function over D. In general, D contains infinitely many points,
hence for actual computation we use a subset of D of size M. If the maximum
number of EI terms allowed isMmax, it is important that we chooseM�Mmax.
This subset will be denoted by Ξt ⊂ D. Here, t is short for ”training”. Specif-
ically, Ξt contains the parameters we use to prepare, or ”train”, the empirical
interpolant to deal with any new parameter µ ∈ D. The use is here analogous
to the use of training samples in statistical classification [22, 23].

The identification of the initial basis function is thus performed in the two
steps

µEI1 = arg max
µ∈Ξt

‖f(·;µ)‖L∞(Ω),

ξ1(·) = f(·,µEI1 ).

This choice is in accordance with our greedy strategy if we define the ”zero-
interpolant” I0[f ] ≡ 0, but the algorithm will work for any initial parameter
choice. Here, the L∞-norm is approximated by its discrete version. To do this
we sample the function on a very fine grid and compute the maximum value for
each of the parameters in our training set.

Our second greedy choice is in the determination of the first interpolation
node

t1 = arg max
x∈Ω
|ξ1(x)|.

The choice of the initial interpolation node is arbitrary. This approach will
however be consistent with the selection criterion for the interpolation nodes
to follow. In addition, we perform a normalization step, q1(·) = ξ1(·)/ξ1(t1),
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for better numerical stability. The initial (one element) interpolation matrix
(BM )11 is now given as (BM )11 = q1(t1). At this stage it is possible to form the
first interpolant as the only function colinear with q1 that coincides with f at
t1.

I1[f ](·;µ) = f(t1;µ)q1(·).
This conludes the initial step.

We now repeat this procedure until a desired accuracy in the approximation
is achieved, or we reach the predefined limit Mmax. How we may limit the
required number of interpolation nodes through the use of a posteriori error
estimates is discussed in Section 3.3.

Continuing the algorithm, we choose the next basis element to be the func-
tion which maximizes the difference between f and our current interpolant
IM−1[f ]. Again, this is a two step procedure

µEIM = arg max
µ∈Ξt

‖f(·;µ)− IM−1[f ](·;µ)‖L∞(Ω),

ξM (·) = f(·,µEIM ).

That is, the next basis function is the function which the current interpolant is
least suitable to approximate.

At this stage we need to compute the interpolant, IM−1[f ], for each param-
eter µ ∈ Ξt. This can be achieved through simple matrix operations in the
following manner. Each new basis function qi is represented by a high order
polynomial interpolant based on the GLL points x0, . . . , xP . Here it is impor-
tant that the polynomial interpolation error is small compared to the EI error.
In this way, we can store all our current basis functions as column vectors in a
large matrix QM−1 ∈ R(P+1)×M where P � M is the order of our polynomial
interpolant.

The discrete representations of the empirical interpolant can now be ex-
pressed as IM−1 = QM−1y. Here IM−1,i = IM−1[f ](xi), i = 0, . . . , P . The
coefficient vector y ∈ RM−1 is determined by solving the system

M−1∑
j=1

(BM−1)ijyj = f(ti), i = 1, . . . ,M − 1,

or in matrix notation BM−1y = f
M−1

, for all µ ∈ Ξt. Again we approximate
the continuous infinity norm by its discrete version. That is, we find

max
0≤i≤P

|f(xi)− IM−1[f ](xi)|.

The next interpolation node is given as

tM = arg max
x∈Ω
|ξM (x)− IM−1[ξM ](x)|.

Here, the position where the largest error occurs is added to the set of interpola-
tion nodes. As the interpolant by definition is equal to the underlying function
at the interpolation nodes, the error at tM is removed. We can now compute
the new normalized basis function

qM (·) =
ξM (·)− IM−1[ξM ](·)

ξM (tM )− IM−1[ξM ](tM )
.
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All that remains now is to store the values of BM .
Finally the interpolant is given as

IM [f ](x;µ) =
M∑
j=1

ϕj(µ)qj(x),

where, for a new µ ∈ D, we find the parameter dependent coefficients ϕj(µ) by
solving

M∑
i=1

(BM )ijϕj(µ) = f(ti,µ), i = 1, . . . ,M.

It can be shown that this procedure indeed produces a valid interpola-
tion scheme given by the basis functions q1, . . . , qM and interpolation nodes
t1, . . . , tM [11].

Algorithm 3.1 produces a sequence of hierarchical interpolation spaces X1 ⊂
X2 ⊂, . . . , XM where Xi = span{ξ1, . . . , ξi} = span{q1, . . . , qi}. This is a desir-
able property. Consider for instance a situation where we are forced to limit the
number of basis elements to M̃ < M . For the EI method, the optimal choice
of elements is simply given as the q1, . . . , qM̃ . For other non-hierarchical inter-
polation spaces, e.g. the polynomial interpolation from Section 2.5, this is not
the case. With the polynomial approach, we would need to recompute the GLL
points, and thus the Lagrangian polynomials, to determine the optimal subset.

As the focus of this work is parameter dependent problems, we have pre-
sented the EI algorithm within this framework. The use of EI is however not
limited to this case. One could consider functions in a general space U . In this
case the next basis function would be given by

ξm = arg max
u∈U
‖u− Im−1[f ]‖L∞(Ω).

In principle U can be infinite dimensional, but for actual computation, we need
to search a space of finite dimension. Using this formulation, the parameter de-
pendent case can be expressed by U = {f(·;µ),µ ∈ D}, or the finite dimensional
version U = {f(·;µ),µ ∈ Ξt}.

Another example is to let U be the set of some predefined basis functions. We
then use Algorithm 3.1 to compute interpolation points and a ”good” ordering
of the basis functions for a given region. In this case, we do not approximate
any underlying function, but derive a generic interpolation scheme adapted to
e.g. a special geometry. Several examples of this procedure, using a basis of
mononomials and Legendre polynomials are given in [11].

3.3 Error analysis

If we now introduce the Lagrangian functions to construct the interpolation
operator IM we can write the interpolant of f as

IM [f(·)] =
M∑
i=1

f(ti)`Mi (·).

Here, `Mj (·) =
∑M
j=1 qj(·)(BM )−1

ji . The Lagrangian functions are a nodal basis
for XM , i.e. `Mi (xj) = δij .
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In the following error analysis we make use of the Lebesgue constant defined
as ΛM = supx∈Ω

∑M
j=1 |`Mj (x)|. For the EI method, an upper bound for ΛM

is given by 2M − 1 [11]. This is however a very pessimistic estimate, and in
practice the observed behavior is usually far better.

A classical result in approximation theory, also known as Lebesgue’s lemma
[11], gives the following bound for the interpolation error

Lemma 3.1 Assume X is a Banach space, and XM ⊂ X, dim(XM ) = M . For
any f ∈ X, the interpolation error satisfies

‖f − IM [f ]‖X ≤ (1 + ΛM ) inf
gM∈XM

‖f − gM‖X . (3.4)

Here the projection error, infgM∈XM ‖f − gM‖X , is the best possible approxi-
mation of f in the approximation space XM .

For the EI method, Lemma 3.1 can be made considerably more precise if a
few conditions are fulfilled. It can in fact be shown that the upper bound for
the interpolation error from the greedy algorithm is given by

Theorem 3.2 Assume U ⊂ X ⊂ L∞(Ω) and the existence of a (possibly un-
known) sequence of finite dimensional spaces

Z1 ⊂ Z2 ⊂ . . . ⊂ ZM ⊂ span(U), dim(ZM ) = M,

such that there exists c > 0 and α > log(4) with

∀ f ∈ U , inf
gM∈ZM

‖f − gM‖X ≤ ce−αM .

Then
‖f − IM [f ]‖L∞Ω ≤ ce−(α−log(4))M . (3.5)

Proof : We refer to [11] for the proof of Theorem 3.2.
This theorem has some immediate implications. First of all, if there exists

a finite dimensional space allowing for an exponential approximation, the EI
method will achieve an exponential rate of convergence. Also, if the spaces Zi
are not predetermined, the greedy algorithm provides us with such a sequence
through the EI space XM .

A third and final advantage of the greedy algorithm is that it allows easy
access to an a posteriori error estimate as we know that for any µ ∈ D, the
arg max definition of ξM in Algorithm 3.1 ensures that

‖f − IM [f ]‖L∞(Ω) ≤ ‖ξM+1 − I[ξM+1]‖L∞(Ω). (3.6)

This implies that we always know the maximum error for the previous interpo-
lation space. This can be used to end Algorithm 3.1 at a predefined tolerance
level and thus avoid computing all Mmax stages.
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3.4 Numerical examples

As the EI method is a fairly recent development, and the amount of available
material on the characteristic properties of the method is limited, we choose to
perform a large number of numerical tests.

We will look at examples both where the parametric dependence is analytic,
but also less favorable cases where we have limited regularity in the parameter.

To test the quality of the EI method we will compare it to polynomial inter-
polation through the GLL points. This is done by creating a test set Qtest of
100 random µ-values drawn uniformly from the parameter domain D for each
example. We then compute the maximum L2-error of the interpolant over all
µ ∈ Qtest,

eM = max
µ∈Qtest

‖f(·;µ)− IM [f ](·;µ)‖L2(Ω), (3.7)

by GLL quadrature on a very fine grid.

3.4.1 Analytic in the parameter

Theorem 3.2 tells us that under reasonable assumptions the EI procedure achieves
an exponential rate of convergence. In this section we present numerical results
which verify this behaviour.

Example 1

Our first example is a classical function in interpolation history, and it is the
function for which Runge demonstrated that interpolation based on equidistant
points will diverge [24].

f(x;µ) =
1

1 + µx2
, in Ω. (3.8)

Here Ω = (−1, 1) and D = {µ, 1 ≤ µ ≤ 25}. The results for the first 25
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Figure 3.1: f(x;µ) = 1/(1 + µx2) for µ = 1, µ = 13 and µ = 25.

interpolation points are given in Table 3.1. As we see in Figure 3.2 both the
GLL and EI interpolation points give an exponential convergence rate, however
the EI method is superior and achieves machine precision with only 20 points.
The expected divergence of equidistant interpolation is also demonstrated. In
the remaining examples we will only compare empirical and GLL interpolation.
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Table 3.1: Example 1. Maximum L2-error over a test sample of 100 random
parameter values drawn uniformly from (1, 25). The table displays the error
for empirical (eEI), GLL (eGLL) and equidistant (eEQ) interpolation for the 25
first interpolation points.

M eEI eGLL eEQ
5 6.222548e-4 2.070369e-1 2.534919e-1
10 1.712094e-7 5.012065e-2 8.361379e-2
15 6.248218e-12 7.640074e-3 4.194300e-1
20 7.647633e-16 2.186516e-3 3.092732e-1
25 7.610228e-16 3.362375e-4 2.342458

To understand why the EI method performs this much better than standard
polynomial interpolation, we take a closer look at the error behavior of the
different methods. Remember that we compute the maximum error over a test
sample of 100 random parameter values. For M sufficiently large the maximum
error for the equidistant and GLL interpolation always occurs for the largest µ
in our test sample, i.e. the random parameter closest to 25.
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Figure 3.2: Maximum L2-error over a test sample of 100 random parameter
values for f(x;µ) = 1/(1 + µx2). Both the GLL and empirical interpolation
converge at an exponential rate, but the EI method is far superior. As expected,
the interpolation based on equidistant points diverges.

This is not surprising. For the equidistant points, µ = 25 gives the largest
Runge-oscillations. Also, for large µ our function develops a spike at x = 0 (see
Figure 3.1). This is where the density of GLL points is lowest, and we thus fail
to pick up the sharp gradients created by this spike.
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For the EI method however, the error is not dominated by a single, or a
few, ”bad” parameter values independent of the number of interpolation nodes.
This is a result of the greedy algorithm always choosing the parameter value
responsible for the largest error as the next function to be included in our
interpolation space. As this space is expanded, the ”trouble areas” will move
around in the parameter space. We can also relate this to the assumption of
smooth parameter dependence. We expect that a basis function for a given
µ-value will also reduce the error in a neighborhood of this µ. The result, as is
clearly demonstrated in this test, is much faster convergence.
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Figure 3.3: The first 6 EI basis functions for f(x;µ) = 1/(1 + µx2).

In Figure 3.3 we have included the first 6 basis functions generated by the
EI method for the test function in (3.8). Another interesting feature of the EI
method is that all the basis functions, as the underlying f we are approximating,
are symmetric around x = 0. This is not the case for the Lagrange interpolation
polynomials based on the GLL points. An advantage of symmetric basis func-
tions for the interpolation of f is e.g. that if we use only negative (or positive)
interpolation nodes, the symmetry will ensure that the interpolant also coin-
cides with f at the mirrored positive (or negative) nodes. This is in fact what
happens here. In Figure 3.4 we see the spatial distribution of the interpolation
nodes. Notice that all the nodes are negative. Also, the points are clustered
towards zero, where the changes in f are greatest. This is a good example of
the adaptive ability of the EI method. We could of course achieve something
similar with standard polynomial interpolation by distributing the GLL points
only on half the interval, in this case [-1,0], and then use the symmetry of f to
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expand the interpolant to the positive half of Ω as well.
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Figure 3.4: The first 25 EI nodes for f(x;µ) = 1/(1+µx2). Due to symmetry,
all the values are negative. Large variations in the basis functions give clustering
towards x = 0.

Example 2

Our second example is the simple function given as

f(x;µ) = (1 + x)µ, in Ω, (3.9)

where Ω = (−1, 1) and D = {µ, 1 ≤ µ ≤ 4}. In Figure 3.5 we visualized (3.9) for

−1 0 1
0

1

2
f(x;1)

−1 0 1
0

1

2

f(x;1.25)

−1 0 1
0

8

16

f(x;4)

Figure 3.5: f(x;µ) = (1 + x)µ for µ = 1, µ = 1.25 and µ = 4.

three different values of µ. The underlying function is analytic in the parame-
ter, hence we can expect exponential convergence with the EI method. Notice
however that the function will develop a singularity in high order derivatives
for fractional µ as x approaches −1. This implies that standard Lagrange inter-
polation based on the GLL points will only achieve algebraic convergence. The
numerical results for this test are collected in Table 3.2.

Again, the EI method clearly demonstrates the best performance. The pre-
dicted exponential and algebraic convergence of the EI and GLL interpolation
procedures are seen in Figure 3.6. Again, a closer inspection of which parame-
ters is causing the largest errors reveals that for the EI method, this varies as
the number of basis functions is increased. For the polynomial interpolation, it
is the small fractional values of µ (µ between 1 and 1.25) that are responsible,
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Table 3.2: Example 2. Maximum L2-error over a test sample of 100 random
parameter values drawn uniformly from (1, 4). The table displays the error
for empirical (eEI) and GLL (eGLL) interpolation for the 25 first interpolation
points.

M eEI eGLL
5 2.418822e-1 4.336085e+1
10 3.177144e-3 1.350756e-1
15 5.324423e-5 8.820572e-2
20 9.518261e-7 6.530006e-2
25 6.308292e-10 5.174448e-2
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Figure 3.6: Maximum L2-error over a test sample of 100 random parameter
samples for f(x;µ) = (1 + x)µ. Due to discontinuity in higher derivatives, GLL
interpolation only achieves algebraic convergence. EI still converges exponen-
tially as the parameter dependence is analytic.
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Figure 3.7: The first 6 EI basis functions for f(x;µ) = (1 + x)µ.

as expected. For these values, f will have the lowest regularity and hence also
the worst rate of convergence.

Figure 3.7 shows the first 6 EI basis functions for the f in (3.9). We no
longer have a symmetric function to interpolate, hence the basis functions are
not symmetric. We do however observe that the basis functions adapt to the
discontinuity in x = −1. In particular, q5 and q6 both have sharp gradients at
this point to deal with this problem.

Example 3

So far our examples have been of relatively ”low spatial frequency”. By this
we mean that the functions have had a modest degree of oscillation. A direct
consequence of Shannon’s sampling theorem is that the quality of an interpolant
is limited by the number of interpolation points we use per period of the under-
lying function [25]. Through our final example of this section we will investigate
the properties of the EI method when faced with a function of potentially high
frequency. To simplify the notation Ω is now shifted to (−π, π). The function
we will interpolate is

f(x, µ) = cos(µx), in Ω. (3.10)

Here, we will look at µ such that 0 ≤ µ ≤ 4. Hence, f will vary from the
constant f(x, 0) = 1 to 4 full cosine periods when µ = 4.

We need some minimal number of interpolation nodes in order to have any
hope of representing our underlying function. This is visible in Figure 3.8 where
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Table 3.3: Example 3. Maximum L2-error over a test sample of 100 random
parameter values drawn uniformly from (0, 4). The table displays the error
for empirical (eEI) and GLL (eGLL) interpolation for the 40 first interpolation
points.

M eEI eGLL
5 2.968654e-1 1.538479
10 7.367640e-8 1.210420
20 1.054075e-15 1.167325e-3
30 1.101046e-15 1.686058e-9
40 1.187735e-15 2.157651e-14

the error behavior is presented. Before we reach 5 nodes, none of the methods
make any progress in reducing the error. However, whilst the GLL interpolation
remains ineffective until the number of nodes is about 15, the convergence of the
EI method is better. At 15 nodes the function is almost perfectly represented.
For µ = 4 this implies only 4-5 nodes on average for each period.

Even though the GLL interpolation also converges quickly when the num-
ber of interpolation nodes is sufficient to resolve the periodic function, the EI
method’s use of adaptive basis functions again results in much faster conver-
gence.

An obvious drawback with the ”global” GLL approach used here is that the
distribution of points will be clustered towards the ends of the interval. Thus, in
the center points will be scarce. A GLL distribution within each period would
have been more efficient, but this would require us to calculate this distribution
for each new value of the parameter µ (or the frequency).

When we look at the EI basis functions we get a better understanding of why
this method performs well with a very limited number of interpolation nodes
per period. We see that already with the first 4 q′s we are able to represent the
highest frequency, cos(4x) which is given by q1(x)− 2q4(x).

For this example we can envision a simple application. Assume you are a
scientist listening for a signal. You know the signal will have the form of a
cosine, and the frequency is within some band D, but otherwise unknown. If
you have e.g. 10 sensors at your disposal, what is the optimal placement of
these sensors if you want be able to reconstruct the signal for any µ ∈ D. The
EI method will not give you the optimal placement, but if you choose the first
10 EI nodes you can expect the error to be very small (< 10−7) according to
the numerical experiments.

Confident of the performance of the EI method, we now move on to the case
where the underlying function is no longer analytic in the parameter.

3.4.2 Limited regularity in the parameter

The numerical examples presented so far have all had analytic dependence in
the parameter ensuring exponential convergence. Now we will investigate the
properties of the EI method when this is not the case. To do this we can
approximate a simple, one-dimensional function where the regularity is easily



26 CHAPTER 3. EMPIRICAL INTERPOLATION (EI)

0 5 10 15 20 25 30 35 40
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

M

m
ax

. e
rr

or

 

 
EI
GLL

Figure 3.8: Maximum L2-error over a test sample of 100 random parameter
samples for f(x;µ) = cos(µx) and 0 ≤ µ ≤ 4. As we compute the maximum
error, we need quite a few points to capture the oscillation for large µ. Again,
the EI method outperforms the polynomial approach.
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Figure 3.9: The first 6 EI basis functions for f(x;µ) = cos(µx).
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controllable. Here we choose our target function, defined over Ω = (−1, 1) as

fn(x, µ) = |x− µ|n, in Ω, (3.11)

where n ≥ 1 is an integer and the parameter domain D = {µ,−1 ≤ µ ≤ 1}.
First note that for n even, fn will be equal to the polynomial (x − µ)n. In
this case, the EI method will be exact for M > n because fn ∈ Xn+1. As fn
is clearly a polynomial of degree n we must realize that q1, . . . , qn+1 span the
same space. But as each of the qi’s is also by construction a polynomial of
degree n, and dim(Xn+1) = n + 1, this is obvious. Hence, the function we are
interpolating is a member of our approximation space and the projection error
is zero. This property is also verified numerically in Figure 3.10.
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Figure 3.10: Maximum L2-error over a test sample of 100 random parameter
samples for fn = |x− µ|n, n even. The error drops to zero as M = n+ 1 as the
approximation space XM will then contain fn.

However, for n odd, we will demonstrate that fn ∈ Hn+1/2−ε(Ω) for an
arbitrarily small ε > 0. First, let us start with the following result

Lemma 3.3 Assume the function v on Ω = (−1, 1) is such that vx ∈ L2(−1, 1).
Then v ∈ H1(−1, 1).

Proof : Consider the function ṽ = v− v(−1). Now by the fundamental theorem
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of calculus and the Cauchy-Schwarz inequality we get

ṽ(x) = v(−1) +
∫ x

−1

vt dt− v(−1) =
∫ x

−1

1 · vt dt

≤
(∫ x

−1

12 dt
) 1

2
(∫ x

−1

v2
t dt
) 1

2

≤
(∫ 1

−1

dt
) 1

2
(∫ 1

−1

v2
t dt
) 1

2

=
√

2 |v|H1(−1,1).

The assumption vx ∈ L2(−1, 1) ensures that |v|H1(−1,1) is bounded. Also,∫ 1

−1

ṽ2 dx ≤ 4|v|2H1(−1,1) <∞.

As v is only a constant away from ṽ, we finally get

‖v‖2H1(−1,1) =
∫ 1

−1

(v2 + v2
x) dx <∞,

and as claimed v ∈ H1(−1, 1).
It immediately follows that

Corollary 3.4 Assume the function v on Ω = (−1, 1) is such that vx ∈ Hσ(−1, 1),
σ ≥ 0 (σ = 0 is L2(−1, 1)). Then v ∈ Hσ+1(−1, 1).

Now, it can be shown (see Appendix A) that |x| ∈ H 3
2−ε. Hence, by using

Corollary 3.4 n times, the regularity of fn from (3.11) is given as

fn(x, µ) = |x− µ|n ∈
{
H∞(−1, 1), n even
H

2n+1
2 −ε(−1, 1), n odd

For the remainder of this example we will look at odd n. Now that we have
established what space fn belongs to, we may use the result from Section 2.5 to
get the a priori error estimate for GLL polynomial interpolation

‖fn(·;µ)− IGLLM [fn](·;µ)‖L2(Ω) < cM−
2n+1

2 ‖fn‖Hn+1/2−ε(Ω). (3.12)

There also exist several results in the literature for approximation and interpo-
lation of functions of the type |x|λ. In [26] it is demonstrated that the error in
polynomial interpolation of this function is bounded by

‖|x|λ − IGLLM [|x|λ]‖Lp(Ω) < c̃M−(λ+1/p), (3.13)

which for λ = n and p = 2 is in accordance with (3.12).
From (3.11) it is obvious that the regularity in the parameter µ is the same

as in the variable x. An interesting question is now: Will the EI method demon-
strate a similar algebraic convergence depending on the parametric regularity?
To investigate this we here present numerical results which compare the empir-
ical and polynomial interpolation for the three cases n = 1, n = 3 and n = 5.
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Table 3.4: Maximum L2-error over a test sample of 100 random parameter
values drawn uniformly from (−1, 1) for fn(x;µ). eiEI and eiGLL denote the
error for n = i. We see that the error is very similar for the two methods.

M e1
EI e1

GLL e3
EI e3

GLL e5
EI e5

GLL

1 1.381 9.967e-1 1.969 9.923e-1 3.039 2.153
2 8.165e-1 8.165e-1 3.920e-1 3.099 7.116e-1 1.596e+1
4 2.864e-1 1.559e-1 5.976e-2 1.084e-1 7.729e-2 8.849e-1
8 1.006e-1 5.164e-2 4.246e-3 3.665e-3 1.210e-3 1.647e-3
16 3.471e-2 1.937e-2 3.354e-4 2.532e-4 1.018e-5 1.864e-5
32 1.238e-2 6.311e-3 3.107e-5 2.066e-5 2.857e-7 3.423e-7
64 2.867e-3 2.373e-3 2.413e-6 1.764e-6 4.928e-9 7.080e-9
128 1.121e-3 9.010e-4 1.753e-7 1.550e-7 9.778e-11 1.523e-10
256 4.187e-4 2.969e-4 9.945e-9 1.386e-8 1.574e-12 1.705e-11
512 9.244e-5 1.053e-4 1.073e-9 1.229e-9 4.767e-14 4.837e-12

Table 3.5: Estimated algebraic convergence rate (eM ∼ M−s) for the EI
method from the last 5 data points in Table 3.4 (M = 32, . . . , 512).

n s
1 1.6905
3 3.7538
5 5.6642
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Figure 3.11: Maximum L2-error for the EI method over a test sample of 100
random parameter samples for fn = |x−µ|n, n odd. We now only have algebraic
convergence. The dotted line is the corresponding GLL interpolation error with
the same number of interpolation nodes.
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Table 3.6: Estimated Lebesgue constants for fn, n = 1, 3, 5.

M Λ1
M Λ3

M Λ5
M

1 1.0000 1.0000 1.0000
2 1.0000 1.0000 1.0000
4 1.0001 1.2782 1.1309
8 1.0014 2.0993 2.5693
16 1.0027 2.2926 3.3534
32 1.0150 2.4709 4.8136
64 1.0294 2.5238 3.7505
128 1.0583 2.8011 4.0686
256 1.1536 3.0913 4.7062
512 1.3556 2.9498 4.8083

The evaluation of the interpolants is the same as in Section 3.4.1. After the
interpolants are created, we find the maximum error over a new test set of 100
random parameter values µ ∈ D.

The results presented in Table 3.4 and Figure 3.11 show that the empirical
and GLL interpolation is remarkably similar for this problem. We indeed ob-
serve an algebraic convergence rate. In table 3.5 the estimated rates are given.
The a priori estimates of (3.12) and (3.13) seem to give quite sharp estimates
of the actual error behavior also for the EI method.

To understand why we get this rate of convergence, we must return to the
error analysis of Section 3.3. Although the conditions for Theorem 3.2 are no
longer fulfilled, we may still use the general result in Lemma 3.1. We know that
the projection error will follow (3.12) and the interpolation is thus bounded by

‖fn(·;µ)− IEIM [fn](·;µ)‖L2(Ω) ≤ c(1 + ΛM )M−(n+ 1
2 )‖fn(·;µ)‖L2(Ω)

= c̄ΛMM−(n+ 1
2 )

(3.14)

for some constants c and c̄.
As the Lebesgue constant, ΛM , depends on the choice of interpolation nodes,

it will be different for each problem when we use the EI method. Because of
this it is difficult to give precise a priori error estimates for the case where
the parametric regularity is limited. We can however compute the Lebesgue
constants for our three cases (n = 1, n = 3 and n = 5) after the interpolation
procedure is completed.

If we do this for our example, we see in Table 3.6 that the Lebesgue constant
is hardly increasing at all, and we can approximate ΛM by a constant. This
implies that the dominating error term is the projection error and we get an
asymptotic error rate given by eM ∼M−(n+ 1

2 ).

3.4.3 Multiple dimensions

In the one-dimensional setting, interpolation, and polynomial interpolation in
particular, is quite well documented. There exists many results for the best
points and basis functions under different optimality conditions. In multiple
dimensions however, the situation is more open. Some of the results from the
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scalar case can be generalized, but it is typically much harder to find optimal
points as the number of dimensions increase.

Even though the EI method is in no way claimed to be optimal, it does
present a simple and automatic algorithm for determining interpolation nodes
and basis functions in higher dimensions. Also, if the conditions of Theorem 3.2
are valid, we still achieve exponential convergence.

As will become apparent in later chapters, the potential gain of a decoupling
into an offline parameter independent part, and an online parameter dependent
part grows with each added dimension.

The multidimensional procedure is in principle no different from the one-
dimensional case. However, the offline complexity will grow very fast for each
added dimension as the number of different parameter combinations in our
training set will be Nx1 · Nx2 · . . . · Nxd in d dimensions.

However, the online cost to calculate the parameter dependent coefficients
will still be only O(M2). It should be pointed out that for multiple dimensions
we usually require a larger number of terms in our EI expansion to get an
adequate representation of the underlying function.

Example 1

First we present the two dimensional example

f(x;µ) =
1√

(x1 − µ1)2 + (x2 − µ2)2
, in Ω. (3.15)

We have Ω = (0, 1)2 and D = (−1,−0.01)2. For our test set, Ξt, we use a
uniform distribution of 50 points in each spatial direction which gives a total
number of 502 = 2500 parameter values. Each of the EI basis functions are
represented using tensor product GLL interpolants of 75× 75 points.

A comparison of the convergence of EI and GLL interpolation is presented
in Figure 3.12. Clearly, the EI method is superior to the GLL approach. The M
given in the horizontal axis is the total number of interpolation points. As the
GLL interpolant is based on a tensor product distribution of points, the error
is computed for 1 to 7 points in each spatial direction.

The EI method is not restricted by this tensor product form, and the points
can be concentrated in areas where the function is irregular. This behavior is
demonstrated in Figure 3.13. The parameter values and interpolation nodes
selected by the greedy algorithm is clustered at the corners µ = (−0.01,−0.01)
and x = (0, 0). It can be demonstrated that our example will develop a bound-
ary layer in this region [7]. Where the EI method adapts to this, GLL interpo-
lation will waste resources by covering areas of Ω where only a few points are
necessary.

Example 2

Our second example is

g(x;µ) =
1 + π2

4 (µ2 − µ1 − (µ1 + µ2)x2)2 sin2(π2 (x1 + 1))
1 + (µ1 + µ2) cos(π2 (x1 + 1))

, in Ω. (3.16)

At first sight this might seem like a strange function, but we choose it because
it reappears in Section 8.3.4. For this example we have Ω = (−1, 1)2 and D =
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Figure 3.12: EI and GLL error for the two dimensional example in (3.15).
The EI method is clearly superior.

(−0.4, 0.4)2. The number of training samples are the same as in the previous
example, i.e. 2500 samples, and again the EI basis functions are represented
using tensor product GLL interpolants with 75 points in each spatial direction.

Again, the empirical interpolant converges quickly, as seen in Figure 3.14.
Also, the selected parameter values and interpolation points is interesting. In
addition to selecting parameters at the boundary, we also observe a tendency
to pick values where µ1 ≈ µ2. These are the parameter values resulting in the
greatest spatial variation of g.

The choice of interpolation nodes are distributed in three distinct lines at
x2 = −1, x2 = 0 and x2 = 1. This may be connected to where g achieves
its maximum and minimum values. This is more thoroughly discussed in the
second part of Section 8.3.5.
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Figure 3.13: Parameter samples (left) and interpolation nodes (right) selected
by the greedy algorithm for the function in (3.15). The spatial points are clearly
consentrated at the boundary layer at µ = (−0.01,−0.01) and x = (0, 0).
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Figure 3.14: EI and GLL error for the two dimensional example in (3.16).
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Figure 3.15: Parameter samples (top) and interpolation nodes (bottom) se-
lected by the greedy algorithm for the function in (3.16). The parameters are
concentrated around the edges, but many samples are also placed where µ1 and
µ2 are approximately equal. The spatial points are distributed in three distinct
lines.
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Chapter 4

Quadrature using Empirical
Interpolation

A simple application of the interpolant obtained with the EI method is numer-
ical computation of integrals. We will call this type of numerical integration
Empirical Interpolation Quadrature (EIQ).

4.1 Quadrature procedure

Assume we want to evaluate the integral∫
Ω

f(x;µ) dΩ, (4.1)

for a large number of different parameter values. Given the empirical interpola-
tion matrix BM , nodes zM and basis functions q1, . . . , qM , the approximation of
the integral (4.1) is simple. First notice that as our interpolant, by construction,
is expressed as an affine parameter dependent expansion, we can write∫

Ω

f(x;µ) dΩ ≈
∫

Ω

fM (x;µ) dΩ =
M∑
i=1

ϕi(µ)
∫

Ω

qi(x) dΩ.

Now, each of the parameter independent integrals
∫

Ω
qi(x) dΩ is computed and

stored as elements in a vector Ψ ∈ RM . For a new parameter µ we only need
to solve the lower triangular system

M∑
j=1

(BM )ijϕj(µ) = f(zi;µ), i = 1, . . . ,M.

We then compute the sum
M∑
i=1

ϕi(µ)Ψi (4.2)

to obtain our integral approximation.
So far we have used high order GLL interpolants to represent our EI basis

functions. This makes the evaluation of the offline, parameter independent

37
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integrals simple using standard GLL quadrature as described in Section 2.4.
Note however, that the offline integrals may in principle be evaluated using any
type of numerical integration method given that it is sufficiently accurate.

Also, as the output of the offline stage is only a single number for each term
in the EI expansion, the online computation will be very fast. In the next section
we discuss both the offline and online computational complexity in detail.

4.2 Computational complexity

As the EI method relies on decomposing the problem into a parameter indepen-
dent offline stage and a parameter dependent online stage, we give a detailed
presentation of the computational complexity for both stages.

As a part of the offline discussion we also give the computational complexity
of performing the greedy algorithm. For later applications the analysis will not
be as complete as the algorithm will be very similar in these cases.

We also study the storage requirement for both stages and compare the EI
method to other alternative numerical integration schemes.

4.2.1 Offline complexity

The offline computational complexity will of course depend both on the way
we represent our EI basis functions (and thus implicitly on the way the greedy
algorithm is implemented) and on the choice of numerical integration scheme
for the offline integrals.

We will look at the case where the basis functions are represented using high
order GLL polynomial interpolants usingN+1 points. With this approach, each
of the basis functions q1, . . . , qM is represented by vectors q

1
, . . . , q

M
containing

the value of the function at all the GLL points. This is stored as a matrix
QM = [q

1
, . . . , q

M
] ∈ R(N+1)×M and we thus get a storage requirement of

O(NM).
Using this representation we can easily evaluate all the parameter inde-

pendent integrals with high accuracy using GLL quadrature. This is done by
calculating

Ψi =
N∑
α=0

ρα(QM )αi, i = 1, . . . ,M.

The offline integration is thus performed in O(NM) operations.
We now turn to the actual computation of the EI basis functions and inter-

polation points. The dominating term in Algorithm 3.1 is clearly

µm(x) = arg max
µ∈D
‖f(·;µ)− Im−1[f ](·;µ)‖L∞(Ω.

As mentioned, in the actual implementation we use a discrete approximation
Ξt ⊂ D. Recall that the size of Ξt isM. For each µ ∈ Ξt we have to compute the
interpolant and the corresponding error. The interpolant is found by solving an
M ×M lower triangular system and then computing the matrix vector product
of Qm and this solution. The error is approximated by the maximum error of
all the GLL points. Hence the total complexity of this step is O(NMm). If we
add up all M steps we get the total complexity O(NMM2).
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The offline cost is clearly substantial, but as will become apparent in the next
section, if we are willing to invest the resources to do this work, the potential
savings when faced with a new parameter are great.

4.2.2 Online complexity

As mentioned in Section 4.1 the online evaluation of the EI quadrature will
be very fast. As we have stored all the parameter independent integrals, the
solution is obtained in two steps. First by solving a lower triangular system of
equations, which is done in O(M2) operations. Second, we compute the sum
in (4.2) which is only O(M) operations. The total number of floating point
operations is thus O(M2).

In addition to fast evaluation, for the online stage we only need to store the
vectors Ψ, ϕ(µ) and f and the interpolation matrix BM . This gives a total of
3M + 1

2M(M + 1) = O(M2) double precision numbers.

4.3 Error analysis

We denote the EI quadrature error by eNM . This error will contain two compo-
nents (if we disregard rounding error). The first is the error from approximating
f by the empirical interpolant fM . The second is the quadrature error from
evaluation of the offline integrals.

The first we have already introduced as eM . If we now denote the offline
quadrature errors by eNi , i = 1, . . . ,M we get

eNM =

∣∣∣∣∣
∫

Ω

f(x;µ) dΩ−
M∑
i=1

ϕi(µ)
N−1∑
α=0

ραqi(ξα)

∣∣∣∣∣
=

∣∣∣∣∣
∫

Ω

f(x;µ) dΩ−
M∑
i=1

ϕi(µ)
(∫

Ω

qi(x) dΩ− eNi
)∣∣∣∣∣

=

∣∣∣∣∣
∫

Ω

f(x;µ) dΩ−
∫

Ω

fM (x;µ) dΩ +
M∑
i=1

ϕi(µ)eNi

∣∣∣∣∣
≤
∣∣∣∣∣
∫

Ω

eM dΩ + eN
M∑
i=1

ϕi(µ)

∣∣∣∣∣
≤ c1eM + |c2(µ)|eN .

Here we have introduced eN = maxi(eNi ), c1 = |Ω| and c2(µ) =
∑M
i=1 ϕi(µ).

As expected, the total error contains one term from the interpolation error and
one term from the offline quadrature error.

We can now state the following about the EI quadrature error

Theorem 4.1 Assume f(x;µ) ∈ Hσ(Ω) satisfies the conditions of Theorem
3.2. Then there exists constants c̃1, c̃2(µ) and α̃ such that the error in the
empirical interpolation quadrature procedure is bounded by

eNM ≤ c̃1 exp{−α̃M}+ c̃2(µ)N−σ. (4.3)
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Proof : This follows directly from Theorem 3.2 and Theorem 2.1.
This shows that we should seek a balance where none of the terms are com-

pletely dominant. If either N or M is to big we waste computational power
without achieving any significant reduction in error. Also, if the function we
are integrating is analytic both in the variable x and the parameter µ the EI
quadrature achieves exponential convergence both in M and N .

Even though we run the risk of doing a little too much work we should
however be conservative when choosing N . This is because it will only affect
the offline stage, and the reliability of the EI results is dependent on sufficient
offline accuracy. Choosing N large also ensures exponential convergence in M
even when the function has limited regularity in x.

4.4 Numerical examples

We present three numerical examples of varying complexity to demonstrate
when the EIQ approach can be preferable.

4.4.1 Simple engineering application

The EI quadrature can also be applied to engineering challenges. We here
present a very simple, one dimensional example, which of course could be solved
in a much easier fashion. However, for the sake of demonstration we will use
the EIQ approach.

Consider the following problem. Imagine you are an engineer designing a
roof. The architect demands the roof to have the shape of a trigonometric
function. Also, the project manager is trying to minimize cost. Assume that
the amount of reinforcement required is proportional to the length of the roof
and inverse proportional to the square-root of the height. In addition, the cost
of the material used for the reinforcement depends linearly on the amount.

If we let the height of the roof, i.e. the amplitude of our trigonometric
function be our parameter µ the mathematical definition of the problem becomes

min
µ∈D

C(µ) =
P√
µ

∫ L

0

√
1 + µ2 cos2(t) dt. (4.4)

Here, P is the cost per unit reinforcement material, and L the length of the
building. In our numerical experiments we let L = π and D = {µ, 1 ≤ µ ≤ 5}.
The value of P does not influence the problem and can be set equal to 1.

To solve (4.4) we first create an affine parameter dependent expansion of the
integration kernel using the greedy algorithm. We then continue by evaluating
the offline, parameter independent integrals. To solve the minimization problem
we create a very fine uniformly distributed grid over D using 10000 values.
Finally, we can quickly (about 0.3 seconds)1 compute the integral for each of
these values to find the minimum.

The evaluated cost function is given in Figure 4.1. We see that the optimal
value is µopt = 1.5325 which gives cost of Copt = 2.3354.

In this example, the kernel function is analytic also in the variable. Thus
we will get very good results with GLL quadrature as well. An estimate for

1As we are mainly interested in relative improvements of computational speed in this work,
we do not give any spesific hardware information regarding timing results.
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Table 4.1: Maximum quadrature error for the simple engineering problem.
The ”exact” integrals are computed using built-in quadrature procedures in
MATLABTM with a tolerance of 10−14. It is thus no point in including more
than 20 EI nodes.

M eEI eGLL
2 6.214595e-02 3.355060
4 1.132111e-03 5.197304e-1
6 3.491698e-06 1.255407e-1
8 1.856523e-07 4.415687e-2
10 2.766356e-10 1.798382e-2
15 1.509903e-14 2.599176e-3
20 8.881784e-15 4.478141e-4
30 - 1.836354e-5
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Figure 4.1: Cost function C(µ) computed over a very fine grid. The minimum
(∗) is Copt = 2.3354 for µopt = 1.5325.
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the maximum quadrature error as a function of interpolation nodes is given in
Table 4.1. Immediately it looks as if the EI quadrature again outperforms the
GLL quadrature. However, it is important to notice that for a new parameter
the amount of online work for M nodes is O(M2) for EI quadrature, but only
O(M) for GLL quadrature. If we compare the error for M EI points and M2

GLL points, which would result in roughly the same amount of work, the error
results are more similar.

4.4.2 Moments of the β-distribution

Let us now look at a typical parameter dependent function; a probability den-
sity function (pdf). A possible application of the EI quadrature procedure is the
computation of statistical moments. For a one dimensional, continuous proba-
bility distribution p(x;µ) the n’th moment is defined as the the expected value
of Xn where X ∼ p(x;µ). This is computed as

E(Xn) =
∫ ∞
−∞

xnp(x;µ) dx. (4.5)

We will here use EI quadrature to approximate the first moment, or mean,
of the β-distribution. The same approach can also be applied to the second
moment. If we know these quantities we can also easily compute the variance
V ar(X) = E(X2)− (E(X))2.

Following standard notation, the parameter µ = (α, β)T . A stochastic vari-
able X ∼ beta(α, β) if

p(x;α, β) =

{
xα−1(1−x)β−1

B(α,β) , x ∈ (0, 1)

0, otherwise
(4.6)

where the parameters α, β > 0 and the beta function B is defined as

B(u, v) =
∫ 1

0

wu−1(1− w)v−1 dw.

The exact expression for the mean is known and given as

E(X) =
α

α+ β
.

This enables us to easily evaluate the EIQ error.
In our first numerical test, where we only investigate the error caused by

the EI expansion, we use N = 1000. This is chosen very high as p will develop
a singularity in higher derivatives similar to Example 2 in Section 3.4.1. Our
parameter sample space is D = (1, 4)2. We discretize D using a uniformly spaced
grid of size M = 2002.

Recall from section 4.2.1 that the offline complexity isO(NMM2), hence the
required work will in this case be substantial. The error for the EI quadrature
and GLL quadrature as a function of the number of interpolation nodes M
is given in Table 4.2. The EIQ converges much faster than the conventional
quadrature.

Let us now change the problem. Assume we want to approximate the mean
for a large number of new parameters with a maximum error tolerance of 10−6.
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Table 4.2: Maximum quadrature error for the mean of a β-distribution over
1000 random (α, β) pairs.

M eEI eGLL
5 4.093635e-02 1.803959e-01
10 3.084039e-03 3.206775e-02
20 2.377752e-05 1.222629e-02
30 7.814867e-06 6.231308e-03
40 1.968040e-07 3.708694e-03
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Figure 4.2: Maximum quadrature error for the mean of a β-distribution over
1000 random (α, β) pairs.
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With the EI method, this would require M = 22 EI nodes. To achieve a similar
tolerance using GLL quadrature would require approximately 2500 points. This
number is estimated from the convergence rate in Figure 4.2.

If we need the mean for say 100 new parameter values, this is achieved in
about 0.012 seconds using EI quadrature. The same results obtained by GLL
quadrature requires approximately 0.15 seconds. Hence, for this example the
EI quadrature is roughly 12-13 times faster than GLL quadrature when we only
consider online computations.

4.4.3 Weighing a pyramid

To demonstrate the increased effect of the EI method as the number of dimen-
sions grow, we conclude this chapter with a three-dimensional example.

Consider a square-based pyramid with the following weight distribution

d(x, y, z;µ) =
e−µ(x2+y2)

1 + z
. (4.7)

We have parametrically dependent exponential increase, or decrease, in the
density in the radial direction and linear decrease in the vertical direction. We
look at parameters in the region D = [−1, 1]. The spatial domain is given by the
base (x, y) ∈ [−1, 1]2 and apex in (x, y, z) = (0, 0, 2). A graphical presentation
of the weight distribution and pyramid for µ = 1 is given in Figure 4.3.

Figure 4.3: Example of pyramid with the density function given in (4.7). The
density is increasing from dark to bright. Here µ = 1.

Assume now that we are interested in the total mass of the pyramid for the
entire parametric domain. Given the density, the mass m(µ), can be calculated
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as

m(µ) =
∫∫∫

Ω

d(x, y, z;µ) dΩ

=
∫ 2

0

∫ 1− z2

−1+ z
2

∫ 1− z2

−1+ z
2

e−µ(x2+y2)

1 + z
dxdy dz.

(4.8)

The straight-forward approach to evaluate (4.8) is to discretize the parameter
domain and compute the approximate mass for each parameter value using
three-dimensional GLL quadrature. If we for simplicity assume the same number
of GLL points in each vertical layer, this approximation becomes

m(µ) ≈ mN (µ) =
N∑
α=0

N∑
β=0

N∑
γ=0

ραρβργ

(
2− ξα

2

)2

d(ξα, ξβ , ξγ ;µ). (4.9)

Here we have to take into consideration the decreasing cross-section of the pyra-
mid as the height increases. The complexity for (4.9) is O(N 3) for each param-
eter.

We have a density that is very smooth in the parameter, and we thus expect
rapid convergence with the EI method. For this example it is sufficient with
only 13 EI snapshots to achieve machine precision accuracy. If we use a spatial
grid of 35 GLL points in each direction, and discretize D using 1000 uniformly
distributed points the online EI procedure is computed for all the parameter
values in under 0.05 seconds. The brute force GLL approach requires almost
6.9 seconds. The EI method is thus approximately 140 times faster. This is a
dramatic speedup.

For more complex density functions and domains we would expect even
better results. GLL quadrature requires knowledge of d in N 3 points. The EI
quadrature however, uses only M points, even in three-dimensions. A more
complex density would thus favor the EI quadrature.
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Chapter 5

Nonlinear problems

To complete our investigation of the properties of the empirical interpolation
method we apply it to the solution of nonlinear problems. We present two
examples later in the chapter, but first we make some remarks regarding the
greedy algorithm in this type of setting.

5.1 Greedy algorithm for nonlinear problems

In principle, no modification of Algorithm 3.1 is needed for nonlinear applica-
tions. However, where we in our previous examples only required a function
evaluation to obtain f , we now need to solve a nonlinear problem, e.g. a non-
linear differential equation. The amount of offline work is thus even greater in
this setting, especially as we want the offline solutions to be very accurate.

In previous versions of the algorithm [6], where the next basis element was
determined by maximizing the projection error, this offline cost became pro-
hibitively large. This was first solved by substituting the infinity norm with the
L2 norm [7]. A better solution, which is also the approach we have adopted, is
to use the interpolation error instead of the projection error [11]. This enables
us to compute the error relatively quickly, even though we have to solve the
nonlinear system for each of the parameters in our discrete training sample.

5.2 Numerical examples

We here present two examples where the EI algorithm is applied to nonlinear
problems. First, a simple one dimensional initial-value problem. Second, we
introduce EI in a setting where a large number of evaluations is necessary,
namely in combination with the shooting method [16].

5.2.1 Simple initial value problem

Consider the simple, nonlinear initial-value problem (IVP) given by

y′(x) = (µ− 2x)y2, y(x0) = y0. (5.1)

Given the initial condition y(x0) = y0 this can be solved easily using a number
of numerical techniques. However, assume that we a priori only know a range

47
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for the parameter, i.e. a ≤ µ ≤ b for some constants a and b. Also, we are
interested in the solution up to some point xN > x0.

We can use the empirical interpolation technique to express the solution as
an affine parameter dependent expansion. This will enable us to quickly find an
approximation of y(x) for a given parameter value µ. To see this, note that

y(x;µ) ≈ yM (x;µ) =
M∑
i=1

ϕi(µ)qi(x).

Again, the parameter independent values qi(xM ), i = 1, . . . ,M can be com-
puted offline. The coefficients ϕi(µ) are still given as

M∑
j=1

(BM )jiϕj(µ) = y(xi;µ), i = 1, . . . ,M.

In our previous examples the right-hand side was simply a function which
we could easily evaluate in O(1) operations for a given µ. Now, the situation is
quite different. We need the solution to the original problem in each of the EI
nodes. Computing the entire solution is not an option as this is what we are
trying to avoid. We can however use a Runge-Kutta (RK) scheme to obtain the
solution only in the EI nodes. This will introduce additional error, but if the
tolerance requirements are not to strict it may still be a favorable option.

It is straightforward to demonstrate that the solution of (5.1) for the initial
condition y(0) = 1 is

y(x;µ) =
1

x2 − µx+ 1
. (5.2)

For our numerical tests, we look at x in the interval (0, 5) and parameters
µ ∈ D = (0, 1). With this D we avoid singularities due to the denominator
being zero. This would for instance happen for µ = 2 at x = 1.

The numerical forward integration of our IVP (5.1) is done with the implicit
midpoint method (IMM) as this is stable also for nonlinear problems [27]. This
method determines the next step yn+1 ≈ y(xn+1) for the problem y′(x) = g(x, y)
by

yn+1 = yn + hk1,

k1 = g(xn +
h

2
, yn +

h

2
k1),

(5.3)

where h is the step length. We thus need to solve a nonlinear equation at each
iteration to find k1. The forward integration, (5.3), is done offline on a fine
grid with N = 250 points to compute the basis elements qi, i = 1, . . . ,M and
interpolation matrix BM .

Online, we use IMM to obtain the solution in the EI nodes and compute the
coefficients ϕi(µ). As the number of forward RK steps is only M this will be
much faster than solving the entire system of N steps.

If we are interested in the solution on the entire interval, we will still have
N dependence as the basis functions are represented using N -dimensional vec-
tors. However, if we are only interested in the value at the endpoint, xN = 5,
this only requires O(M) operations, and we achieve a significant reduction in
computational effort.
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Figure 5.1: Maximum interpolation error for the nonlinear IVP y′(x) = (µ−
2x)y2, y(0) = 1.

Table 5.1: Maximum error in the endpoint x = 5 over a test set of 100 random
parameter values. We achive offline solution accuracy (< 10−5) with only 6 EI
points.

M eM
1 9.9674e-3
2 6.8572e-4
3 2.8019e-4
4 4.9481e-5
5 4.3953e-5
6 9.9520e-6
7 1.0878e-5
8 9.2305e-6
9 9.3303e-6
10 6.7700e-6
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The maximum interpolation error for the first 14 EI samples is shown in
Figure 5.1. Again, the convergence is exponential. The maximum endpoint
error for a test set of 100 random parameter values is given in Table 5.1. If we
compare the results for the endpoint error with the interpolation error from the
EI procedure, we see that the convergence is very rapid. We reach the EI error
(10−5) with only 6 samples. As this is the tolerance for the offline solution of
the IVP we can not expect a smaller error in the EI approximation.

We see that for this example, the error will be dominated by the offline error
at only M = 10 EI iterations. If we solve (5.1) for 100 new parameter values,
using 10 terms in our EI expansion, this is achieved in about 9 seconds. Solving
the full system for all 100 parameters for comparison takes about 271 seconds.
This implies that the online EI calculation is roughly 30 times faster than the
brute force approach. Also, the loss in accuracy is minimal.

In Figure 5.2 we see that for only 10 EI samples we cannot distinguish the EI
approximation from exact solution for the case µ = 0.5. However, if we include
too many samples, the final samples will not really contribute to reducing the
error, but may cause some instability in the results.
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Figure 5.2: Comparison beteween EI approximation and exact solution for
the IVP in (5.1) for µ = 0.5. With only 10 EI samples the two functions are
practically indistiguishable.

5.2.2 The Empirical Shooting Method (ESM)

A common, and often effective, method used for solving boundary-value prob-
lems (BVPs) is the shooting method [16, 28, 29]. This works by transforming
the BVP into an initial value problem which is much easier to handle. We
here give the general procedure and apply it to a small example. Consider the
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Table 5.2: Initial endpoint values computed for the IVP (5.7). The values
indicate solutions (y(1;µ) = 1) in the intervals (−40,−30) and (−10,−1).

µ -1 -10 -20 -30 -40
y(1;µ) 59.4134 -2.4008 -4.8370 -1.4668 2.8610

nonlinear second-order BVP

y′′(x) = g(x, y, y′), a ≤ x ≤ b, y(a) = ya, y(b) = yb. (5.4)

The idea behind the shooting method (SM) is to approximate the solution
of (5.4) by a sequence of IVPs such that

y′′(x;µ) = g(x, y, y′), a ≤ x ≤ b, y(a) = ya, y′(a) = µk. (5.5)

The parameters µk are chosen such that limk→∞ y(b;µk) = y(b). The name of
the method thus relates to the analogy of shooting at a stationary target. The
barrel has a fixed initial height, but we are allowed to change the trajectory by
adjusting the initial firing angle.

For nonlinear problems there are a number of ways to compute this sequence
of parameters, and the choice of a good method will be problem dependent.
However, what is certain is that we need to solve the IVP (5.5) for a large
number of parameters.

Let us now look at an example. Consider the second-order nonlinear BVP

y′′(x) =
3
2
y2, 0 ≤ x ≤ 1, y(0) = 4, y(1) = 1. (5.6)

Equation (5.6) can be transformed into a first-order IVP in two variables given
by (

u′

v′

)
=
(

v
3
2u

)
, u(0) = 4, v(0) = µ. (5.7)

Here we have introduced the new variables u = y and v = y′. Again the forward
integration is easily performed using any desired RK method.

From the differential equation we see that the curvature is always positive.
As the boundary-value at x = 1 is lower than the boundary-value at x = 0, the
firing angle µ have to be negative. A few initial ”shots” give the values in Table
5.2. For µ < −40 we get increasing end-values. This indicates parameter values
in the intervals (−10,−1) and (−40,−30).

To avoid two separate EI expansions we choose the parameter space D =
(−40,−1). We use an offline resolution of N = 1500 points in the RK solutions.
In Figure 5.3 we see that we still have rapid exponential convergence.

To obtain rough estimates of the correct initial parameters we compute the
solution of (5.7) for µ = −40,−39, . . . ,−1. We can then use Newton’s method,
with the closest integer solution as initial guess, to obtain accurate solutions.
That is, we compute the sequence of parameters by

µk+1 = µk − y(1;µk)− y(1)
y′(1;µk)

.
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Figure 5.3: Maximum interpolation error for the nonlinear IVP y′′(x) = 3
2y

2,
y(0) = 4, y′(0) = µ.

If we introduce u and v from (5.7) and y(1)=1 this can be written as

µk+1 = µk − u(1;µk)− 1
v(1;µk)

.

From Figure 5.4 we get the starting values µ1
0 = −36 and µ2

0 = −8. The second
value, µ2

0 = −8, is actually one of the solutions. We thus only need to perform
the iterative procedure for the first initial value.

When we are sufficiently close to the solution, the Newton iteration scheme
converges very fast. This however, requires exact knowledge of the function and
its derivative. In this case we only have approximate values as we compute the
u and v on a relatively coarse grid. With 1200 iterations the error is almost
down to 10−8 as seen in Table 5.3.

The fast online evaluation with the EI method enables us to perform this
iteration in less than 0.66 seconds. Using the RK solution of the full system for
each Newton iteration is much slower and is completed in roughly 38.4 seconds.
Even if we include the offline EI time of about 18.3 seconds, the ESM method
is faster. That the ESM approach is about twice as fast is expected. We do
15 iterations over a test set of 40 values. This involves the RK solution of 600
full systems, that is half of the number required in the Newton iteration. The
solution to the initial BVP in (5.4) is thus computed twice as fast with ESM
as the with the standard shooting method with the tolerance requirement of
10−8.
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Figure 5.4: Value at endpoint, y(1;µ), for IVP (5.7) calculated for µ =
−40, . . . ,−1. The closest integer solutions are µ1

0 = −36 and µ2
0 = −8.

Table 5.3: Endpoint error for the Newton iteration.

Iterations Endpoint error
100 1.009e-2
200 2.877e-3
300 8.202e-4
400 2.338e-4
500 6.667e-5
600 1.901e-5
700 5.418e-6
800 1.545e-6
900 4.404e-7
1000 1.256e-7
1100 3.579e-8
1200 1.020e-8
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Chapter 6

An optimization problem

So far we have successfully applied the empirical interpolation method to achieve
both efficient numerical quadrature and solution to nonlinear differential equa-
tions. The rapid evaluation was made possible by the online/offline compu-
tational strategy where the majority of the work is performed in a parameter
independent preprocessing stage. In addition, the construction of a triangular
interpolation matrix allowed us to perform the online stage in O(M2) operations
independent of the offline complexity.

EI is however not the only method which takes advantage of the online/offline
approach. In the remainder of this report, our main focus will be on another of
these methods, the reduced basis (RB) approximation technique. In many ways
it is the predecessor of empirical interpolation as it was the inability of the RB
method to handle non-affine problems which motivated the development of this
interpolation scheme.

To present the RB method we shift our attention to partial differential equa-
tions, more specifically the Laplace equation. We also introduce parameter
dependence, and an output related to the solution of the Laplace problem.

(−1,−1)

(1,1)

Ω

b

a

-1F

F

x

y

Γ1

Γ2

Γ4
Γ̂4

Γ̂2

Γ̂3Γ3

Ω̂

η

Γ̂1
ξ

Figure 6.1: Problem setup for the optimal flow problem. The parameters a
and b can be changed independently. For the undeformed case (- - -) Ω is simply
(0, 1)2.

Imagine the following situation: Given an amount of material, e.g. to build
a ”pipe” in two dimensions, what shape of the pipe will minimize resistance, or
pressure drop from, the inlet to the outlet for a given flow through Γ3? This
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problem can be modeled as the solution of the Laplace equation in Ω with Γ3

as the inlet, and Γ1 as the outlet (see Figure 6.1). We also get an output of
interest as the mean value of u over Γ3. The intuitive solution is that the minimal
resistance occurs for the undeformed pipe, but nevertheless it may serve as a
model problem for our numerical analysis.

We are interested in the pressure drop per unit length in the x-direction. For
easier comparison between solutions, the length of Ω in the x-direction is thus
always equal to 1. To test different pipe configurations we introduce variation
on the upper and lower boundary, here interpreted as the pipe walls. We let
each of the walls independently admit a deformation corresponding to a half
cosine, where the degree of deformation is given by two amplitude parameters,
a and b. Here we get a parameter dependent partial differential equation, or
µ-PDE. In our case the parameter vector µ = (a, b)T .

Now, suppose we want to determine the optimal parameter values giving the
lowest possible pressure drop. For this problem we would expect a high degree
of regularity. An efficient method for solving the problem, given a single value
of the parameter µ, is the spectral method, which we introduce in Chapter 7.

Again, one possible strategy for the optimization problem would be to con-
struct an EI basis space for the solution offline. Then, for a new parameter we
assemble the interpolant to obtain the solution. This approach has one major
problem. We need the solution to the underlying problem to compute the EI
coefficients, as we have already discussed in the previous chapter. For those
examples, which were solved using RK methods, we solved this by using only
the EI interpolation points in the solution. With the spectral method, this is
not possible, and we need a different approach.

In the next chapter, we present the reduced basis approximation framework
which is tailored for this context. The solutions corresponding to a large number
of different parameters need to be evaluated in a short amount of time. We can
thus afford a computationally expensive offline stage if the online stage is very
fast.

The RB approach is very similar to the EI method, but also different. Both
methods build up an approximation space containing ”snapshot” solutions, but
instead of interpolation coefficients we find parameter dependent coefficients
via a Galerkin procedure. We thus do not need the solution to compute the
approximation, as is required for the interpolation strategy.



Chapter 7

The Spectral Method (SM)

For the problem presented in the previous chapter we expect a smooth solution.
We could of course solve the problem, for a given set of parameters, with a
standard low-order finite element approximation. However, when the solution
admits a high degree of regularity, this may be exploited.

Here we present an approach where the rate of convergence will in fact
depend on the regularity of the underlying exact solution: the spectral method
[30, 31, 32]. To illustrate this method, we formulate and discretize a mixed
boundary condition Poisson problem. In addition, we solve this problem on
a deformed geometry, as this is what we will need to handle the optimization
problem from Chapter 6.

An efficient solution of a deformed Poisson problem with the spectral method
involves a number of different elements such as grid-generation, a specialized fast
algorithm for the undeformed problem, an iterative solution procedure, in our
case the conjugate gradient algorithm (CG) with preconditioning and a global
numbering scheme for the unknowns. We will not discuss all these issues in
detail, and for a complete and thorough presentation the reader is referred to
[33].

7.1 The Poisson problem in a general domain

The abstract weak formulation of the Poisson problem with mixed boundary
conditions is still: Find u in Xe such that

a(u, v) = l(v), ∀v ∈ Xe, (7.1)

where a(·, ·) and l(·) are as defined in Section 2.2. However, for the actual
computation of the linear and bilinear forms we want to use GLL quadrature.
This is defined over the square Ω̂ = (−1, 1)2. We thus need to perform a
transformation of our problem from the physical domain Ω to a reference domain
Ω̂, as depicted in Figure 7.1. The mapping between Ω̂ and Ω we will denote by
F , and its inverse by F−1.

First note that generally F can be defined by the relations

x = x(ξ, η),
y = y(ξ, η).
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(−1,−1)

(1,1)

-1F
x

y

F

Ω

Ω̂

ξ

η

Figure 7.1: Illustration of a deformed domain Ω. We use the reference domain
Ω̂ = (−1, 1)2 with F mapping Ω̂ onto Ω.

We will discuss a method of realizing these relations in Section 7.3.1, but for
the moment assume them to be known. Let us now define the Jacobian matrix
J as

J =

(
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

)
. (7.2)

Using J we can express the differentials dx and dy in terms of the reference
differentials dξ and dη. (

dx
dy

)
= J

(
dξ
dη

)
.

To simplify our expressions we introduce the common notation ∂v
∂x = vx so that

∇v =
(
vx
vy

)
. Also, if we denote det(J) by J , we can define the geometry matrix

G =
1
J 2

(
y2
η + x2

η −yξyη − xξxη
−yξyη − xξxη y2

ξ + x2
ξ

)
. (7.3)

This is a symmetric positive definite (SPD) 2× 2 matrix [33]. Using (7.2) and
(7.3) the weak form given in (7.1) becomes: Find u ∈ Xe such that∫

Ω̂

(∇̂v̂)T G̃∇̂ûdξdη =
∫

Ω̂

f̂ v̂J dξdη +
∫

Γ̂3

ĝv̂J S dη, ∀v ∈ Xe (7.4)

for G̃ = JG and J S = ∂y
∂η

∣∣
Γ3

.

7.2 Discretization and algebraic equations

The discretization procedure for the spectral method is very similar to standard
finite element discretizations. We will only give a brief discussion of the com-
putations and present the final result. We will approximate the solution as a
high-order polynomial on the reference domain, i.e. the discrete space XP is
defined as

XP = {v ∈ Xe, v̂ ∈ PP(Ω̂)}. (7.5)

Here, PP denotes the space of polynomials of degree P or less in two variables.
Note that dependent on the mapping F , v will in general not be a polynomial
on the physical domain Ω.



7.3. SOLUTION PROCEDURE 61

Introducing the discrete solution uP gives us the discrete form of (7.4) given
as: Find uP ∈ XP such that∫

Ω̂

(∇̂v̂)T G̃∇̂ûP dξdη =
∫

Ω̂

f̂ v̂J dξdη +
∫

Γ̂3

ĝv̂J S dη, ∀v ∈ XP . (7.6)

We now use GLL quadrature to approximate these integrals and choose the
test functions v ∈ XP as the product of two Lagrange interpolation polynomials,
ensuring a nodal basis, or v̂(ξ, η) = `i(ξ)`j(η) for i = 1, . . . ,P, j = 0, . . . ,P. This
gives us the approximation for the bilinear form a(·, ·) and the right-hand side
l(·) as

aP(uP , v) =
P∑
α=0

P∑
β=0

ραρβ

(
Dαiδβj
δαiDβj

)T
︸ ︷︷ ︸

(∇̂v̂)T

(
g̃11 g̃12

g̃21 g̃22

)
︸ ︷︷ ︸

G̃

αβ

(
uP,ξ
uP,η

)
︸ ︷︷ ︸
∇̂ûP

(ξα,ξβ)
(7.7)

and

l(v)P =
P∑
α=0

P∑
β=0

ραρβfαβvαβJαβ +
P∑
α=0

ραgαvαJ Sα

= (ρiρjJij)fij + ρigiJ Si , ∀ i, j.
(7.8)

Expression (7.7) could, using global representation of our unknowns, be
written as a matrix-vector product A2Du, with A2D ∈ R(P−1)P×(P−1)P and
u ∈ R(P−1)P , which represents the action of the discrete two-dimensional
Laplace operator upon uP . Performing this matrix-vector product in the stan-
dard way would have a computational complexity of O(P4), but using the above
expression along with a local data representation, we are able to achieve the
same result in O(P3) operations. We will return to this in Section 7.3.2 where
we analyze the complexity of solving this system using the conjugate gradient
algorithm.

As XP ⊂ Xe we know, by Galerkin orthogonality [15], that the approxima-
tion uP will be the best possible approximation of u in XP , measured in the
energy norm. Combining this with the coercivity and continuity of a(·, ·) we
can derive what is known as Céa’s lemma [31]

‖u− uP‖H1(Ω) ≤ β

α
inf
v∈XP

‖u− v‖H1(Ω). (7.9)

If we now choose v to be a high-order interpolant of u, and use the error estimate
from Section 2.5, the a priori error estimate for eP = u− uP becomes

‖eP‖H1(Ω) ≤ cP1−σ‖eP‖Hσ(Ω, (7.10)

for u ∈ Hσ(Ω), where c is a constant. It can in fact be shown [34] that for u
analytic, i.e. σ →∞, we get exponential convergence.

7.3 Solution procedure

The solution of the deformed Poisson problem is somewhat involved. However,
the procedure is completed in two major steps. Computing the mapping F and
solving the resulting algebraic equations using CG.
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7.3.1 Grid genereation – The Gordon-Hall algorithm

In 1973 William Gordon and Charles Hall presented a simple, yet effective, way
of generating a grid for a general domain [35]. Here we will only give a short
description of the key aspects of the algorithm and demonstrate the different
steps using a small graphical example.

The Gordon–Hall algorithm is actually a way of distributing the grid-points
in the interior of the computational domain. The boundaries must be given
by the user. First we need to distribute our boundary nodes along each edge,
including the corners. The idea is now to match the edges in pairs by drawing
straight lines between corresponding nodes and finally subtracting a matching
of the four corners. This procedure is much easier to present graphically which
we do in Figure 7.2.

+ =−

Figure 7.2: Visualization of the Gordon–Hall steps. The final grid is created
by connecting the remaining intersections.

We will use this approach to generate a representation of our mapping F
taking us from reference to physical variables. To do this we distribute GLL
points along each edge according to a chordial distribution. Another alternative
would be to distribute the points according to the arch length. When the GLL
points are distributed, we can create high-order interpolant approximations to
each edge. These interpolants are what we use for computations.

We have used the same order for interpolating F and computing uP . This
is called an isoparametric representation of the geometry [15].

This algorithm may fail to return a unique one-to-one mapping if the defor-
mation becomes too severe, e.g. if one of the internal angles approaches 180°.
Generally it is not common to use a single domain to represent the geometry,
but we can still use a spectral discretization within each subdomain. This is
known as the spectral element method [36], and it has been demonstrated that
the a priori error estimates from Section 7.2 are also valid for this method [37].

7.3.2 Iterative solution with Conjugate Gradients

Since our discrete Laplace operator given in (7.7) is symmetric and positive
definite, we can solve the system of equations using CG. The standard imple-
mentation of this algorithm is dominated by a matrix-vector product [38, 39, 40].

If we were to explicitly form the two-dimensional, discrete Laplace opera-
tor A2D, this operation would require O(P4) operations as mentioned earlier.
However, all that is really needed in the algorithm is the ability to evaluate this
product. Consider now a function A : RP×(P+1) → RP×(P+1) such that A(W )
contains the same information as A2Dw, for all w ∈ RP(P+1), only we use a local
instead of a global numbering. If we exploit this local numbering and use one-
dimensional matrix-matrix products, the evaluation of A(w) can be performed
in O(P3) operations using a tensor product sum-factorization technique [41].
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Another advantage of this approach is the reduction in memory requirement
from O(P4) to O(P2). If we denote the number of CG iterations by nit we get
a total computational complexity of O(nitP3) for P(P + 1) unknowns.

It is also possible to reduce the number of iterations by preconditioning.
For the undeformed, rectangular case we can construct a tailored algorithm
with the same complexity as one iteration of the CG iteration. This is based on
tensor product representation of A2D and the solution of a generalized eigenvalue
problem [32]. The solution to the undeformed problem can then be used as a
preconditioner for the deformed solution.

7.4 Numerical example

We now solve the parametric PDE introduced in Chapter 6 for a set of param-
eters picked at random from the parameter domain D. With this example, the
rapid convergence of the Spectral Method for a problem with high regularity is
verified.

For this problem, we have f(x, y) = 0. The right-hand side, (7.8), will thus
only contain the term from the Neumann boundary condition. We choose g such
that the flow through Γ3 is equal for all values of µ. This implies g = 1/|Γ3|.

Figure 7.3 show the spectral solution for µ = (−0.311, 0.098) with a polyno-
mial degree of P = 25.
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Figure 7.3: Spectral solution of optimization PDE with µ = (−0.311, 0.098).
The polynomial degree is P = 25.

In addition, the convergence is given in Figure 7.4. For the L2-error and
H1-error we have approximately

‖u− uP‖L2(Ω) ∼ P−6,

‖u− uP‖H1(Ω) ∼ P−5.
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If we compare this to the error estimate given in Section 7.2, this indicates that
the exact solution u is an element of H6(Ω), and the convergence is very fast.
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Figure 7.4: Convergence of the Spectral Method for µ = (−0.311, 0.098).

In the previous section, we demonstrated that the complexity was O(nitP3)
for nit CG iterations for this example. For a small number of parameter values,
computing the spectral approximation for each value is a feasible option. Imag-
ine now that we need the solution for a hundred, or even a thousand times as
many values. And in each case we require a strict tolerance level to be met.

This will be the case if we are to solve the actual optimization problem of
finding the optimal values for a and b which minimize the pressure drop. Faced
with such a problem, computing the full spectral approximation for each choice
of a and b will be very time consuming.

For this we will use the reduced basis methodology, mentioned in Chapter
6. In the next chapter we present this approach in detail, and finally use the
framework to solve the optimization problem with a rapid online computational
procedure.



Chapter 8

Reduced Basis approximations

The problem posed in Chapter 6, along with many other problems, belongs
to the class of so-called parametrized partial differential equations, or µ-PDEs
for short. Typically, the problem will be dependent on a parameter vector
µ ∈ D ⊂ Rp, and there is a corresponding output of interest s(µ). Here, D
is the space of possible parameter values. Of course, the solution will also be
parameter dependent, hence we write u(x, y) = u(x, y;µ). This again implies
that if we want the solution for many parameter values, we must solve the
problem equally many times. For a large real-world simulation, this may not be
a feasible option, and we thus need a different approach.

The parametric dependence of the solution is often quite regular. Hence
we expect that a set of solutions for parameters sampled at a few carefully
chosen points in the parameter domain D, will give a good representation of the
solution for an arbitrary new parameter value. This is indeed the motivation
for the reduced basis methodology, where for a new parameter the problem
is reduced to finding the optimal linear combination of previously computed
solutions.

Obviously, this is not suited for a single query setting as it requires the
solution to several full-scale problems. However, if we are in the many queries
context on an optimization problem, or in any other situation depending on fast
evaluation for a large number of new parameters, we will see that the additional
initial work is well justified.

8.1 Important concepts

Here we introduce some of the concepts needed to describe and understand the
reduced basis framework.

8.1.1 Truth solution

As we shall see, our reduced basis approximation space will be built up by so
called truth solutions. Now, each truth solution will in turn be a member of a
high order approximation space. Here we denote this space by XN ⊂ Xe, where
N = dim(XN ), and Xe is the exact solution space to the continuous problem
introduced in Section 2.2. Note that XN = XP from the previous chapter. The
actual derivation of these solutions can be based upon a number of different

65
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approximation techniques [1], such as finite element/volume, spectral element
or pure spectral, as will be used here.

It is now important that N is chosen large enough. We need to ensure
that the error in going from Xe to XN is smaller than the RB error, and also
that we achieve the desired accuracy in our output. As a consequence of this,
it is essential to develop a computational procedure where the solution for a
new parameter µ can be obtained independent of N . We will return to this
online/offline strategy in Section 8.3.4.

8.1.2 Parameter independent inner products and norms

Associated with our exact solution space Xe we may use the usual energy inner
product and induced norm given as

(((w, v)))µ = a(w, v;µ), ∀w, v ∈ Xe, (8.1)

9w9µ ≡
√
a(w,w;µ), ∀w ∈ Xe. (8.2)

These are obviously parameter dependent. Also note that due to the coercivity
and continuity of a(·, ·;µ) these expressions are well-defined.

For our reduced basis approximation however, we need a parameter inde-
pendent inner product and norm, e.g. to orthogonalize our RB basis, a point
we will return to later on. To this end, we choose an inner product and norm
associated with a specific parameter value µ̄.

(((w, v)))µ̄ = a(w, v; µ̄), ∀w, v ∈ Xe, (8.3)

9w9µ̄ ≡
√
a(w,w; µ̄), ∀w ∈ Xe. (8.4)

As XN ⊂ Xe, our discrete truth approximation space inherits the norm
from the exact space,

‖w‖XN = ‖w‖Xe = 9w9µ̄, ∀w ∈ XN .

The particular choice of µ̄ will not influence the RB solution. However it
will have impact on the sharpness of the a posteriori error estimate which we
return to in Section 8.2.3.

For the optimization problem presented in Chapter 6 a reasonable choice is
for µ̄ to be the parameters giving an undeformed, i.e. rectangular, computa-
tional domain. This implies that µ̄ = (0, 0)T .

We also define the coercivity constant

α(µ) = inf
w∈XN

a(w,w;µ)
a(w,w; µ̄)

, (8.5)

for all µ ∈ D and the continuity constant

β(µ) = sup
w∈XN

sup
v∈XN

a(w, v;µ)
a(w, v; µ̄)

, (8.6)

for all µ ∈ D in the parametric case.
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8.2 The Reduced Basis Methodology

The reduced basis methodology is built up by three basic ingredients:

1. Derivation and solution of an algebraic set of equations.

2. Efficient selection of snapshot parameters.

3. Rigorous and sharp error estimates.

We here present the general procedure for completing each of these steps. In
Section 8.4 we give a more detailed description for a concrete problem, the
two-dimensional Laplace equation on deformed geometry.

Intuitively it would seem more reasonable to perform step 2 before step 1.
However, as will become apparent in the following sections, we need to compute
the RB solution for a large number of parameters each time we expand our
parameter space.

8.2.1 Derivation of algebraic equations

We present the methodology of the Lagrange Reduced Basis recipe [1]. Let
Nmax be the maximum dimension of our RB space XN . Now introduce a set of
parameters

µn ∈ D, n = 1, . . . , Nmax.

Each of these is associated with a RB sample. The set of the N first parameter
samples we denote by

SN = {µ1, . . . ,µN}, 1 ≤ N ≤ Nmax.
The idea is now to calculate the truth approximation, or snapshot, for each of the
corresponding parameter values in SN , uN (µ1), . . . , uN (µN ). These snapshots
we again use to build our RB approximation space XN . Assuming linearly
independent snapshots, XN is given as

XN = span{uN (µ1), . . . , uN (µN )}.
From here on we will for convenience denote uN (µj) simply by uj . Notice the
hierarchical property X1 ⊂ X2 ⊂, . . . ,⊂ XN . By construction, we also have
XN ⊂ XN ⊂ Xe.

Numerically it is preferable to work with an orthogonal basis. To achieve
this we introduce the orthogonal basis vectors ζ1, . . . , ζN which we obtain from
u1, . . . , uN through a modified Gram Schmidt (MGS) procedure. The basis
elements are here orthogonalized with respect to the µ̄ inner product given in
(8.3). We can now represent the approximation uN ∈ XN as

uN (µ) =
N∑
n=1

uNn(µ)ζn.

The unknown coefficients uNn(µ), n = 1, . . . , N are found using a Galerkin
procedure. Hence our reduced problem becomes: Given a new parameter value
µ ∈ D, find uN (µ) ∈ XN such that

a(uN (µ), v;µ) = l(v;µ), ∀ v ∈ XN , (8.7)
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and evaluate the output given as a linear output functional lo.

sN (µ) = lo(uN (µ);µ). (8.8)

That is, we find the best linear combination – in the energy norm – spanned by
the previously computed snapshot solutions to satisfy the new parameter µ.

To arrive at a system of algebraic equations, we need to realize the condition
”∀ v ∈ XN”. As usual, we do this by successively choosing v to be the basis
functions ζp, p = 1, . . . , N . Again by bilinearity of a(·, ·;µ) and linearity of
l(·;µ), this gives us the N conditions

N∑
m=1

uNna(ζn, ζp;µ) = l(ζn;µ), p = 1, . . . , N, (8.9)

and the output is evaluated as

sN (µ) =
N∑
n=1

uNnl
o(ζn;µ). (8.10)

If the output functional lo(·;µ) = l(·;µ) the output is said to be compliant [1].
How we solve this system will depend both on the dimension N and the

representation of unknowns and basis functions. Also it is of great importance
how we evaluate a(·, ·;µ), l(·;µ) and lo(·;µ). We will return to these issues in
Sections 8.3.2 and 8.3.4.

8.2.2 Parameter sampling

In Section 8.2.1 we assumed the set of RB parameters SN = {µ1, . . . ,µN} to
be known. In general, this will not be the case, and we need some procedure to
select the µ’s.

Of course, one way is to simply pick new parameters at random. This ap-
proach is easy to realize and very quick. However, the quality of our approxima-
tion space, XN , is hard to predict. Also, we take no advantage of the properties
of our underlying problem in the parameter selection.

A second possibility is to manually determine the samples. For a small num-
ber of parameter values this is feasible, but if N ∼ O(10) or larger, this process
becomes tedious. It also requires extensive knowledge of the characteristics of
our problem to pick good parameters.

Finding the optimal choice of parameters is difficult. We will, as in the
EI algorithm, use a greedy approach which finds the locally optimal parameter
choice at each step. As our parameter domain D contains infinitely many points
we will again settle for a finite ”training” sample Ξt ⊂ D. We assume this subset
to be rich enough to give a good description of how u(µ) behaves over D.

The goal of the greedy algorithm is to find the parameter which maximizes
the current error in the output over Ξt. That is

µN = arg max
µ∈Ξt

|sN (µ)− sN (µ)|.

However, computing the error in the output would require the solution u(µ) for
all µ ∈ Ξt. Assume that we are able to compute an estimate for the output
error,

∆out
N (µ) ≥ |sN (µ)− sN (µ)|, (8.11)
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much cheaper (that is, independent of N ). This is known as the a posteriori er-
ror estimate [1] and will be discussed in the next section. The greedy parameter
selection algorithm is given in Algorithm 8.1. Note that the orthogonalization
step is performed as a part of the algorithm to ensure numerical stability. The

Algorithm 8.1 Greedy parameter selection

Given inital parameter µ1, compute uN (µ1).

S1 ← {µ1}
Compute ζ1, X1 ← span{ζ1}.
for 2 ≤ N ≤ Nmax do

µN ← arg max
µ∈Ξt

∆out
N (µ).

Compute uN (µN ).

SN ← SN−1 ∪ {µN}.
Compute ζN , XN ← XN−1 ∪ span{ζN}.

end for

greedy algorithm is automatic and can also be decoupled into a computation-
ally expensive, parameter independent offline stage and a fast online parameter
dependent stage. How this is achieved will depend on the particular problem
and can be far from trivial. This decoupling will be the topic of Section 8.3.4,
but now we take a closer look on the error estimate ∆N (µ).

8.2.3 A posteriori error estimator

As mentioned in the previous section, the development of an efficient a posteriori
error estimator is essential for the greedy algorithm to work. To obtain the upper
bound for the output error in (8.11) we first find an upper bound for the error
in the field-variable u(µ), ∆N (µ). If we assume the output to be compliant, the
output error bound will then be ∆out

N (µ) = ∆2
N (µ).

To develop this bound we need what is known as the error residual relation-
ship [1]. Namely that the error eN (µ) ≡ uN (µ)− uN (µ) satisfies

a(eN , v;µ) = rN (u;µ), ∀ v ∈ XN . (8.12)

Here the residual r(v;µ) is defined as

r(v;µ) ≡ l(v;µ)− a(uN (µ), v;µ), ∀ v ∈ XN , (8.13)

and is an element in the dual space of XN , (XN )′.
Now, by the Riesz representation theorem [12], we know that there exists a

unique function êN (µ) ∈ XN such that

(êN (µ), v)XN = r(v;µ), ∀ v ∈ XN . (8.14)

In addition

‖r(·;µ)‖(XN )′ ≡ sup
v∈XN

r(v;µ)
‖v‖XN

= ‖êN (µ)‖XN . (8.15)
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This dual norm relation is central to the online/offline decoupling of our error
estimator.

We can now present the error bounds for the energy norm and output as

∆N (µ) ≡ ‖êN (µ)‖XN√
αLB(µ)

, (8.16)

∆out
N (µ) ≡ ‖ê

N (µ)‖2
XN

αLB(µ) . (8.17)

Recall that ∆out
N (µ) = ∆2

N (µ) which follows from compliance. Here we have
introduced αLB(µ), a lower bound on the coercivity constant. This bound has
to satisfy

αLB(µ) ≤ α(µ) = inf
v∈XN

a(v, v;µ)
a(v, v; µ̄)

. (8.18)

Deriving an explicit expression for αLB(µ) can be challenging and is highly
problem dependent. For the error estimates (8.16) and (8.17) to be effective, we
need the ability to evaluate αLB(µ) independent of N . The simplest case we
have for parametrically coercive problems, i.e. all Θq(µ) and aq(·, ·) are strictly
positive. Here the lower bound is given as [1]

αLB(µ) ≡ min
q=1,...,Qa

Θq(µ)
Θq(µ̄)

.

For general coercive and non-coercive problems, this approach will not work.
Advanced methods based on a greedy offline stage and online solution of a
linear program have been developed [42, 43], but for special problems it is also
possible to ”manually” compute the lower bound as we demonstrate in Section
8.3.3.

8.3 Application to deformed geometries

For our reduced basis example we will look at the two-dimensional Laplace
equation. The derivation of the weak form will thus be very similar to the more
general Poisson problem presented in Chapter 7. We will have the same exact
solution space Xe defined in Section 2.2. Also, the linear and bilinear forms
are equal, with f = 0. However, we have now introduced an output of interest
evaluated through the output functional lo(·;µ).

In the next section we present the weak formulation, along with details
regarding the Neumann boundary conditions and output evaluation.

8.3.1 Weak formulation

In Section 2.2 we derived the weak form of the homogeneous Dirichlet Poisson
problem. This was continued in Section 7.1 where we introduced the reference
domain Ω̂ and the mapping F . If we now include the output evaluation the
weak form is: Given µ ∈ D, find u(µ) ∈ Xe such that

a(u, v;µ) = l(v;µ), ∀ v ∈ Xe, (8.19)

and evaluate the output of interest

s(µ) = lo(u;µ). (8.20)
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From (7.4) we have

a(u, v;µ) =
∫

Ω̂

(∇̂v̂)T G̃(µ)∇̂ûdξdη, (8.21)

and
l(v;µ) =

∫
Γ̂3

ĝv̂J S(µ) dη. (8.22)

In principle g may be a function g(x, y). However, in our case Γ3 will be a
straight, vertical line and we choose g such that the flow Q through this border
remains fixed and equal to 1. More formally

1 ≡ Q =
∫

Γ3

g dy,

which gives us g = 1/|Γ3|.
A closer look at the output, given by the mean value of u over Γ3, reveals

that
s = lo(u) =

1
|Γ3|

∫
Γ3

udy =
1

g|Γ3|
∫

Γ3

gudy = l(u).

We thus have a compliant problem.
From (8.21) and (8.22) it is clear that the parametric dependence is implicit

in the geometric factors. However, if we insert J S = ∂y
∂η

∣∣
Γ3

= |Γ3|
2 we get

l(v;µ) =
∫

Γ̂3

v̂ dη, ∀ v ∈ Xe. (8.23)

Hence our linear form is in fact independent of the parameter.

8.3.2 Reduced Basis model

Notice that the snapshots used for creating the RB approximation space are not
the solutions on the physical domain, but that the uj ’s of Section 8.2.1 are here
in fact ûN (µj). This gives us the reduced basis approximation space

XN = span{ûN (µ1), . . . , ûN (µN )} = span{ζ1, . . . , ζN}
where, as previously mentioned, we orthogonalize our space through a MGS
procedure for better numerical stability.

If we now proceed as in Section 8.2.1 and let uN (µ) =
∑N
m=1 uNmζ

m and
choose our test-functions accordingly, we get the same equations as in (8.9)
which we represent in matrix form as

AN (µ)u(µ) = lN (µ).

Due to compliance, the output from (8.10) is now easily evaluated as

sN (µ) = (u(µ))T lN (µ).

Here, if we recall (8.9), each element of the reduced basis matrix, solution and
right-hand side is given as

AN (µ)mn = a(ζm, ζn;µ), 1 ≤ m,n ≤ N,
u(µ) = (uN1, . . . , uNN )T ,

lN (µ)m = l(ζm;µ), 1 ≤ m ≤ N.
(8.24)

This technique seems simple enough, but there are still a few issues to resolve:
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1. How is AN (µ) and lN (µ) generated (efficiently)?

2. How do we solve the RB system when AN (µ) and lN (µ) have been ob-
tained?

These questions we address in Section 8.3.4

8.3.3 A priori error analysis

To develop error bounds for the Reduced Basis approximation we need to
demonstrate that the parameter dependent bilinear form a(v, w,µ) is still coer-
cive and continuous. As G̃ is symmetric we may write a(w, v;µ) as

a(w, v;µ) =
∫

Ω̂

(∇̂ŵ)T G̃∇̂v̂ dξdη

=
∫

Ω̂

(∇̂ŵ)TQΛQT ∇̂v̂ dξdη,

where Q and Λ are 2 × 2 matrices containing the eigenvectors and eigenvalues
of G̃. Upper and lower bounds for a can now be constructed by considering the
maximum and minimum eigenvalues.

a(w, v;µ) ≤
∫

Ω̂

λmax(ξ, η;µ)(∇̂ŵ)T QTQ︸ ︷︷ ︸
=I

∇̂v̂ dξdη

≤ λ+(µ)
∫

Ω̂

(∇̂ŵ)T ∇̂v̂ dξdη

= λ+(µ)a(w, v; µ̄).

(8.25)

Here we have used the parameter independent bilinear form a(w, v; µ̄) intro-
duced in Section 8.1.2 which corresponded to an undeformed domain. In addi-
tion we have defined λ+(µ) as

λ+(µ) = max
(ξ,η)∈Ω̂

λmax(ξ, η;µ).

Similarly we have for the lower bound

a(w, v;µ) ≥ λ−(µ)a(w, v; µ̄), (8.26)

with
λ−(µ) = min

(ξ,η)∈Ω̂
λmin(ξ, η;µ).

We can use λ+(µ) and λ−(µ) as bounds for the parametric continuity and
coercivity constants defined in Section 8.1.2. In other words we have λ+(µ) =
βUB(µ) ≥ β(µ) and λ−(µ) = αLB(µ) ≤ α(µ).

Finding λ+(µ) and λ−(µ) is not trivial and can in general not be com-
puted independent of N . However, for special cases this is possible, as will be
demonstrated later. The bounds developed above will also be important in the
online/offline computation of the a posteriori error estimator.

Existence and uniqueness now follows from the arguments of section 2.2. We
also have the a priori results collected in Theorem 8.1.
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Theorem 8.1 For µ ∈ D and uN (µ), sN (µ) satisfying (8.7) and (8.8) the
following results hold

9uN (µ)− uN (µ)9µ̄ ≤ βUB(µ)
αLB(µ)

9 uN (µ)− v 9µ̄ . (8.27)

And
|sN (µ)− sN (µ)| ≤ βUB(µ) 9 uN (µ)− v 92

µ̄ . (8.28)

Proof : The first statement, (8.27), follows from the Galerkin orthogonality
principle and Céa’s lemma (7.9), as a concequence of (8.25) and (8.26). The
output error follows from compliance and the continuity of the bilinear form.

It should be pointed out that the RB error is bounded only relative to the
truth approximation. However, by the triangle inequality we have

‖u− uN‖ = ‖u− uN + uN − uN ‖ ≤ ‖uN − uN‖+ ‖u− uN ‖.

The final term, the error in the truth approximation, we assume to be negligible.
Now we present the approach for an efficient online/offline decoupling in the

construction and solution of our Reduced Basis problem (8.7)–(8.8).

8.3.4 Online/offline decoupling using EI

To achieve an efficient online/offline decoupling of the RB problem we need
affine expressions for the bilinear form a(·, ·;µ) and linear functional l(·;µ).
Under these assumpions, the assembly of AN (µ) and lN (µ) in (8.24) can be
computed as

AN (µ)mn = a(ζm, ζn;µ) =
Qa∑
q=1

Θq
a(µ)aq(ζm, ζn), for m,n = 1, . . . , N, (8.29)

and

lN (µ)n = l(ζn;µ) =
Ql∑
q=1

Θq
l (µ)lq(ζn), for n = 1, . . . , N. (8.30)

Now the decomposition is clear. Offline we compute the parameter indepen-
dent bilinear forms aq(ζm, ζn) and parameter independent linear functionals
lq(ζn) for all basis functions. The results are stored as Qa N ×N matrices and
Ql vectors of length N . In the online stage we are only left with the summa-
tions (8.29) and (8.30). The online complexity for constructing the linear set of
equations is thus O(QaN2 +QlN), which is independent of N . As we expect N
to be small, we can use a direct solver for AN (µ)uN (µ) = lN (µ) giving a total
online complexity of O(N3 +QaN

2 +QlN).
If we look at the linear form given in (8.23) we see that the right-hand side

satisfies (8.30) with Ql = 1, Θ1
l (µ) = 1 and l1(w) = 1

2

∫
Γ3
ŵ dη. The bilinear

form is not so obvious and requires some work.
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First note that if we dissolve the matrix notation and exploit the symmetry
of G̃ we can write

a(w, v;µ) =
∫

Ω̂

(∇̂v̂)T G̃∇̂ŵ dξdη

=
∫

Ω̂

g̃11(ξ, η;µ)
∂v̂

∂ξ

∂ŵ

∂ξ
dξdη

+
∫

Ω̂

g̃12(ξ, η;µ)
(
∂v̂

∂ξ

∂ŵ

∂η
+
∂v̂

∂η

∂ŵ

∂ξ

)
dξdη

+
∫

Ω̂

g̃22(ξ, η;µ)
∂v̂

∂η

∂ŵ

∂η
dξdη.

(8.31)

The geometric coefficient functions are given by (a detailed derivation can
be found in [33])

g̃11(ξ, η;µ) =
1
J (x2

η + y2
η),

g̃12(ξ, η;µ) =
−1
J (xξxη + yξyη),

g̃22(ξ, η;µ) =
1
J (x2

ξ + y2
ξ ).

Here, J = xξyη − xηyξ is the Jacobian determinant introduced in Chapter 7.
Also, we need the mapping F from the physical domain Ω to the reference do-
main Ω̂, which we denote by x(ξ, η;µ) and y(ξ, η;µ). This mapping is obtained
by the Gordon-Hall algorithm as described earlier.

If we combine the expressions for the geometric coefficient functions with
the decomposition of the bilinear form in (8.31), we see that we have three,
potentially non-affine, bilinear forms. The obvious solution is to use empirical
interpolation on the g̃’s. The resulting approximate bilinear forms will thus be
affine by construction, and they can be computed independet of eachother. This
is however not as straight-forward as it seems.

One of the advantages of the Gordon-Hall approach is that we can quickly
find the mapping F for all the points in our grid using matrix-matrix multipli-
cation. The problem is that we are not interested in all the grid points. We
only want the points corresponding to the interpolation nodes given by the EI
algorithm. Otherwise the online calculation of the EI coefficients would depend
on the total number of points, N .

For many problems the physical boundaries will only be given as a set of
points. The boundary is then usually represented using some form of interpola-
tion or approximation. Assuming isoparametric representation of the geometry,
a complete online/offline decoupling will not be possible using the Gordon-Hall
algorithm. However, if explicit expressions for the boundaries are available (and
differentiable), as they are for our problem, we can find explicit expressions also
for x(ξ, η;µ) and y(ξ, η;µ) and thus for g̃11, g̃12 and g̃22.

The trigonometric deformation for the optimal parameter problem in Chap-
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ter 6 results in the following parametric description of the edges Γ1, . . . ,Γ4

Γ1 :
(
x1(η)
y1(η)

)
=
(

1
1
2 (1− a− b)(η + 1) + b

)
,

Γ2 :
(
x2(ξ)
y2(ξ)

)
=
(

1
2 (ξ + 1)

1 + a cos(π2 (ξ + 1))

)
,

Γ3 :
(
x3(η)
y3(η)

)
=
(

0
1
2 (1 + a+ b)(η + 1)− b

)
,

Γ4 :
(
x4(ξ)
y4(ξ)

)
=
(

1
2 (ξ + 1)

−b cos(π2 (ξ + 1))

)
.

From these we obtain (details of the calculation is given in Appendix B)

g̃11(ξ, η;µ) = 1 + (a+ b) cos
(π

2
(ξ + 1)

)
, (8.32)

g̃12(ξ, η;µ) =
π

2
(a− b+ (a+ b)η) sin

(π
2

(ξ + 1)
)
, (8.33)

g̃22(ξ, η;µ) =
1 + π2

4 (b− a− (a+ b)η)2 sin2(π2 (ξ + 1))
1 + (a+ b) cos(π2 (ξ + 1))

. (8.34)

We see that g̃11 and g̃12 admit affine decompositions. Also, g̃22 can be recognized
as the second example of Section 3.4.2. We thus know that it can be efficiently
approximated by the EI method.

Introducing the EI expansion of g̃22,

g̃22,M (ξ, η;µ) =
M∑
m=1

ϕm(µ)qm(ξ, η),

we present the complete online/offline procedure for evaluating a(w, v;µ). The
parameter dependent coefficients are given as

Θ1
a(µ) = 1,

Θ2
a(µ) = a+ b,

Θ3
a(µ) = a− b,

Θm
a,EI(µ) = ϕm(µ), m = 1, . . . ,M.

(8.35)

In addition we get a total of Qa = 3 +M parameter independent bilinear forms
to evaluate.

a1(w, v) =
∫

Ω̂

∂v̂

∂ξ

∂ŵ

∂ξ
dξdη,

a2(w, v) =
∫

Ω̂

(
cos(

π

2
(ξ + 1))

∂v̂

∂ξ

∂ŵ

∂ξ

+
π

2
η sin(

π

2
(ξ + 1))

(
∂v̂

∂ξ

∂ŵ

∂η
+
∂v̂

∂η

∂ŵ

∂ξ

))
dξdη,

a3(w, v) =
∫

Ω̂

π

2
η sin(

π

2
(ξ + 1))

(
∂v̂

∂ξ

∂ŵ

∂η
+
∂v̂

∂η

∂ŵ

∂ξ

)
dξdη,

amEI(w, v) =
∫

Ω̂

qm(ξ, η)
∂v̂

∂η

∂ŵ

∂η
dξdη, m = 1, . . . ,M.

(8.36)
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This completes the online/offline decomposition of the RB equations. With
Qf = 1 and Qa = 3 + M the total online complexity is O(N3 + MN2 + M2),
where the final term, M2, is required for calculating the M EI coefficients.

The first ingredient of our RB approach, construction and solution of the
algebraic equations, is now complete. For the second and third ingredients we
also need an efficient online procedure for evaluating the error estimate ∆N (µ).
This follows in the next section.

8.3.5 Computational procedure for the error estimate

Recall the definition of ∆N (µ),

∆N (µ) =
‖ê(µ)‖XN
αLB(µ)

.

We thus need efficient procedures for computing both the dual residual norm
‖ê(µ)‖XN and the lower bound on the coercivity constant αLB(µ).

Dual residual norm

In Section 8.2.3 we introduced the dual residual representation ê(µ). This will
now be used to develop an online/offline procedure of the a posteriori error
estimate.

First note that by affine parameter dependence we can expand the residual
as

r(v;µ) =
1
2
l1(v)−

Qa∑
q=1

N∑
n=1

Θq
a(µ)uNn(µ)aq(ζn, v), ∀ v ∈ XN . (8.37)

Note that as we have introduced an EI expansion of one of the geometric factors,
this is really an approximate residual. However we will assume the EI error to be
small and adopt the notation of [1]. Now defineQN ≡ Qf+QaN = 1+(3+M)N .
It will prove convenient to write (8.37) as

r(v;µ) =
QN∑
n=1

ENn(µ)hNn(v), ∀ v ∈ XN . (8.38)

Here we have introduced EN (µ) ∈ RQN and hN (v) ∈ RQN as

EN (µ) =
(

1
2 ,

uN1(µ), (a+ b)uN1(µ), . . . , ϕM (µ)uN1(µ),
uN2(µ), (a+ b)uN2(µ), . . . , ϕM (µ)uN2(µ),

...

uNN (µ), (a+ b)uNN (µ), . . . , ϕM (µ)uNN (µ)
)T

(8.39)
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and

hN (v) =
(
l1(v),

− a1(ζ1, v),−a2(ζ1, v), . . . ,−aMEI(ζ1, v),

− a1(ζ2, v),−a2(ζ2, v), . . . ,−aMEI(ζ2, v),
...

− a1(ζN , v),−a2(ζN , v), . . . ,−aMEI(ζN , v)
)T
.

(8.40)

If we combine (8.14) and (8.38) it follows that

ê(µ) =
QN∑
n=1

ENnĝNn,

where
(ĝNn, v)XN = hNn(v), ∀ v ∈ XN .

This implies that we can compute ‖ê(µ)‖2XN as

‖ê(µ)‖2XN =
QN∑
n=1

QN∑
m=1

ENn(µ)ENm(µ)(ĝNn, ĝNm)XN . (8.41)

The final inner products are parameter independent and can thus be calculated
offline. Now define GN ∈ RQN×QN as

(GN )mn = (ĝNm, ĝNn)XN = (HT
N (A2D(µ̄))−1HN )mn, (8.42)

where HN ∈ RN×QN is given by

(HN )in = hNn(φi), i = 1, . . . ,N , n = 1, . . . , QN

and XN = span{φ1, . . . , φN }. Recall that these basis functions are constructed
by multiplying two one-dimensional Lagrangian polynomials.

The online/offline procedure for ‖ê(µ)‖XN is thus as follows. Offline com-
pute GN from (8.42), online assemble EN and compute the sum (8.41). The
online complexity is O(Q2

N ) = O(M2N2).
Note that for the actual implementation of (8.42) we do not explicitly con-

struct A2D(µ) as this is of dimension N×N . Instead the system A2D(µ)Y = H
is solved comlumn wise using CG and the fast operator evaluation from Section
7.3.2 resulting in an offline complexity of O(QNnitN 3/2+Q2

NN ). The first term
is due to the calculation of Y and the second to the multiplication HT

NY .

Coercivity lower bound

In Section 8.3.3 we demonstrated that the lower bound for the coercivity con-
stant is given by

αLB(µ) = λ−(µ) = min
(ξ,η)∈Ω̂

λmin(ξ, η;µ),
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but no procedure for calculating λ−(µ) was given. To do this, we again exploit
the exact expressions for the geometric coefficients g̃11, g̃12 and g̃22 given in
(8.32)-(8.34). For a general 2 × 2 matrix A, it is easily demonstrated that the
eigenvalues of A are given by

λ(A) =
1
2

(
tr(A)±

√
tr2(A)− 4 det (A)

)
. (8.43)

For G̃ we can simplify this expression considerably. A closer look at the
determinant of G̃ reveals that

det (G̃) = g̃11g̃22 − g̃2
12

=
1
J 2

(
(x2
η + y2

η)(x2
ξ + y2

ξ )− (xξxη + yξyη)2
)

=
1
J 2

(xξyη − xηyξ)2︸ ︷︷ ︸
=J 2

= 1.

We know that det (G̃) = λ1λ2. This implies that λmin = 1/λmax, hence we only
need to find λmax. In addition, G̃ is SPD and real. The eigenvalues thus have
to be positive, and the square-root in (8.43) cannot be negative. This means
that λmax is given by

λmax(G̃) =
1
2

(
tr(G̃) +

√
tr2(G̃)− 4

)
,

but by the same argument, λmax is maximized when tr(G̃) is maximized. It is
thus sufficient to find the maximizer of the trace.

Introducing the variable t = π
2 (ξ + 1), the explicit expression for tr(G̃) is

tr(G̃) = 1 + (a+ b) cos(t) +
1 + π2

4 (b− a− (a+ b)η)2 sin2(t)
1 + (a+ b) cos(t)

.

We immediately see that we must have η = ±1. Finding the optimal value
for t, and thus ξ, requires some work, but it is also possible to calculate this
analytically (see Appendix C). The extreme values of tr(G̃)|η=±1 are given by a
quadratic equation in cos(t), which degenerates to a linear equation in the case
a+ b = 0. In addition, we also need to check the endpoints ξ = ±1.

In total, we get eight possible locations for the maximum (or seven if a+b =
0), all of which can be computed in O(1) operations. Hence, the online cost for
computing the lower bound αLB(µ) = λ−(µ) = 1/λ+(µ) is independent of N
(and even N and M).

The online/offline computation of ∆N (µ) is now clear and can be incorpo-
rated into the greedy parameter selection algorithm.

8.4 Optimization problem results

We here present the numerical results obtained for the optimization problem
stated in Chapter 6. Details regarding the truth approximation, greedy param-
eter selection, RB error and finally the optimal parameter choice is given.
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8.4.1 Spectral approximation

To obtain the high accuracy snapshots for building our RB solution space, we
use the spectral method for deformed geometries presented in Chapter 7. Based
on the observed performance of this technique, a polynomial degree of P = 30
in each spatial direction is sufficient to ensure negligible errors from the truth
approximation. This actually gives us P+1 degrees of freedom in the y-direction
and P in the x-direction, i.e. a total of N = (P + 1)P = 930 unknowns.

8.4.2 Parameter domain and samples

For the RB solution of the optimization problem, we will consider deformations
in the range D = {(a, b),−0.4 ≤ a, b ≤ 0.4} ⊂ R2. For the discrete surrogate
Ξt we use a uniformly distributed grid of 25 points in each parameter, giving a
total of 625 different combinations.

The parameters are chosen using the greedy approach given in Algorithm 8.1
with the initial parameter µ1 = (0, 0)T . The first 25 values are shown in Figure
8.1. Clearly the algorithm has a tendency to pick parameter values along the
boundary of D. This is however not surprising. For smooth two-dimensional
problems, the Gauss-Lobatto points are also more densely distributed along the
boundary, albeit not as extreme as observed here.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

a

b

Figure 8.1: The first 25 RB parameter samples chosen by the greedy sampling
strategy. The initial sample is the undeformed domain (a, b) = (0, 0). The
majority of samples are on the boundary of D.

The first 5 geometries are shown in Figure 8.2. These correspond to the
initial, undeformed case and the four corners of D. This behavior is common
when using the greedy parameter selection strategy. The initial samples will try
to ”cover” as much of D as possible.



80 CHAPTER 8. REDUCED BASIS APPROXIMATIONS

(2)(1) (3) (4) (5)

Figure 8.2: The first 5 snapshot geometries used in the construction of the
RB approximation space. The geometries correspond to the initial undeformed
case and each of the four corners of D.

Again, this is reasonable considering the smooth parameter dependence.
When a RB parameter is chosen, we also expect the approximation to be good
in a neighborhood of this parameter value.

8.4.3 Reduced basis solution and error

For a problem of this type we expect rapid convergence in the RB solution as we
increase the number of basis functions [1]. However, as EI is used to approximate
one of the geometric factors, an additional error is introduced. Thus if we keep
the number of interpolation nodes, M , fixed there is no point in increasing the
size of the RB space beyond a certain value as the total error will be dominated
by the EI error.
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Figure 8.3: Maximum error estimate for the RB solution for different values
of M . We have exponential convergence in N , but when the accuracy in the
interpolation is reached, the EI error becomes dominant.

This behavior is clearly demonstrated in Figure 8.3 which shows the maxi-
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mum error estimate,
∆max
N = max

µ∈Ξt
∆N (µ), (8.44)

as a function of N for different values of M . We observe exponential convergence
in N , but at a certain point the error stays fixed. If we compare the results to
the EI error from Section 3.4.3, Figure 3.14, we see that the value of the error
estimate is in agreement with the EI error for a given M .

In this kind of situation it is important to have an a posteriori error estimate
which takes into account both the RB and EI error. Otherwise we could risk
ending up in a situation where we waste resources by choosing either N or M
to large or even fail to achieve a predefined required tolerance because the EI
error is not taken into consideration.

8.4.4 Optimal flow parameters

To determine the optimal choice of a and b we compute the output, via our RB
solution, for a grid with 33 points in each direction. Thus we need to compute
the output for a total of 332 = 1089 different values of the parameters.

If we require a maximum error in the output of 10−4, we see from Figure
8.3 that N = 19 RB samples will be sufficient (remember that the output error
is less than the field variable error squared. A field variable error of 10−2 will
thus suffice). The number of EI samples used is M = 15.

The entire online computation for all 1089 parameter choices is completed in
on average 0.21 seconds. For comparison, the evaluation of a ”truth” solution for
a single parameter value takes on average 0.20 seconds. The online evaluation is
thus approximately 1000 times faster than a brute force approach. And this is
only for a simple two-dimensional problem, where fast algorithms are available
also for the solution of the full PDE.

In Figure 8.4 we show a contour plot of the output as a function of a and b. As
expected, the minimal pressure drop occurs when a = b = 0. It is also clear from
Figure 8.5 that the assumption of smooth parameter dependence is justified.
This was also established through the exponential convergence demonstrated in
Section 8.4.3.
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Figure 8.4: Contour plot for the optimal parameter choice. We see that
(a, b) = (0, 0) gives the lowest value.
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Figure 8.5: Surface plot for the optimal parameter choice. The parametric
dependence is very smooth, as expected.



Chapter 9

Conclusions

The results in this report fall into two main categories. In the first part we in-
vestigated the properties of the empirical interpolation procedure as an isolated
method. The second part connected empirical interpolation to the reduced basis
framework to achieve an efficient online/offline decomposition for a non-affine
problem.

In Section 3.4.1 we verified exponential convergence for functions with an-
alytic parameter dependence. Also, we obtained results similar to standard
polynomial interpolation for functions with limited regularity in the parameter
in Section 3.4.2. The latter results were explained by very moderate increase in
the Lebesgue constant, even for large values of M .

Chapters 4 and 5 were devoted to applications of the empirical interpolation
procedure. Without loss of accuracy, we demonstrated significant computa-
tional gains for the EI quadrature, especially in higher dimensions. This follows
from the O(M2) complexity for calculating the EI coefficients, regardless of the
dimension of the underlying problem.

Empirical interpolation was also used as a tool in the solution of nonlinear
diferential equations. The standard EI method requires the solution at the
interpolation nodes to compute the parameter dependent coeffients. For this
type of problem that information is not readily available. We approximated
the solution only in the interpolation points using a Runge-Kutta method, thus
obtaining approximate EI coefficients. The additional error can be difficult to
control, and the approach should be used with care. However for our examples
the results were promising, and the basic idea is definately worthy of further
research.

The second part of the report is, as mentioned, devoted to efficient solution
of a non-affine problem. This involved the evaluation of an ouput functional
to a parameter dependent partial differential equation. Using a conventional
approach such as the spectral method to compute the output for a large number
of parameter values would be very time consuming.

As a more feasible alternative, we introduced the reduced basis methodology
in Chapter 8. Online/offline decoupling of the RB equations was discussed, and
we were able to achieve complete independence of the truth solution complexity
in the online stage. This was made possible by introducing EI to approximate
the only non-affine geometric factor.

We also achieved an online/offline decomposition of the a posteriori error
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estimator by computing a coercivity lower bound based on exact calculation of
the eigenvalues of the geometry matrix. This was incorporated into a greedy
algorithm to automatically increase the number of basis elements in our RB
approximation space XN .

Using the error estimate we solved the optimization problem to a predefined
required accuracy. The solution was obtained roughly 1000 times faster than
would have been the case with a brute force conventional method, thus provid-
ing a good example of the power of the reduced basis method under the right
circumstances.

The empirical interpolation method is a fairly new development, and the
amount of literature on the subject is very limited. However, it is definitely
an interesting method, and it has potential use in a wide range of applications
such as image processing and compression, visualization, animation and inverse
problems. More research is needed, both theoretical and practical, especially
for the case with limited parametric regularity.

Also, our use of EI to approximate geometric factors was done on a simple
deformation. A more general procedure would be preferable, as in most cases
the analytic expressions for the elements of G̃ will not be readily available.
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PhD thesis, École Polytechnique Fédérale de Lausanne, 2005.

[11] Yvon Maday, Ngoc Cuong Nguyen, Anthony T. Patera, and George S.
H. Pau. A general multipurpose interpolation procedure: the magic points.
Communication on pure and applied analysis, 8(1), 2009.

[12] Nicholas Young. An Introduction to Hilbert spaces. Cambridge University
Press, 1988.

[13] Erwin Kreyzig. Introductory Functional Analysis with applications. Wiley,
1989.

[14] Luc Tartar. An Introduction to Sobolev Spaces and Interpolation Spaces.
Springer, 2007. Lecture Notes of the Unione Matematica Italiana 3.

[15] Dietrich Braess. Finite elements, Theory, fast solvers, and applications in
solid mechanics, Third Edition. Cambridge University Press, 2007.

[16] Richard L. Burden and J. Douglas Faires. Numerical Analysis, 8th Edition.
Thomson, Brooks/Cole, 2005.

[17] Alfio Quarteroni and Alberto Vialli. Numerical Approximation of Partial
Differential Equations. Springer-Verlag, 1994.
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Appendix A

Regularity of f (x) = |x|

We will here demonstrate that for x ∈ Ω = [−1, 1], f(x) = |x| ∈ H 3
2−ε(Ω). To

this end, consider an even expansion of f(x) outside Ω as depicted in Figure
A.1. To simplify the notation we will also assume a transformation of variables
such that Ω→ [−π, π].

−6 −3 0 3 6
0

1

2

3

4

Figure A.1: Even expansion of |x|.

Now, f is clearly integrable on [−π, π], hence we may express f as a Fourier
series. In general

f(x) =
∞∑

k=−∞

âkeikx,

where âk are complex numbers. By Parceval’s identity [12] we can thus express
the L2-norm of f as

‖f‖2L2(Ω) =
∫ π

−π
f2 dx =

∞∑
k=−∞

|âk|2.

Similarly we get, by taking the derivative,

|f |2H1(Ω) =
∑
k

|ikâk|2 = k2|âk|2,
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and the full H1-norm becomes

‖f‖2H1(Ω) =
∑
k

(1 + k2)|âk|2.

By continuing this procedure we can write the Hσ-norm in terms of the Fourier
coefficients as

‖f‖2Hσ(Ω) =
∞∑

k=−∞

σ∑
l=0

k2l|âk|2.

This leads to the regularity of f being given by f ∈ Hσ(Ω) where σ is the
maximal number satisfying (only the leading order of k will be important)∑

k

k2σ|âk|2 <∞. (A.1)

Now let us use (A.1) to determine the regularity of f(x) = |x|. To do this we
need to find the Fourier coefficients. As f is a real and even function we get

f(x) =
∑
k

ak cos kx,

where the ak’s are determined by

ak =
∫ π

−π
f(x) cos kx dx = 2

∫ π

0

x cos kxdx

=
2
k�
���

�:0
[x sin kx]π0 −

2
k

∫ π

0

sin kx dx

=
2
k2

[cos kx]π0 =
2
k2

(1− (−1)k).

The condition thus essentially becomes∑
k

k2σ|ak|2 =
∑
k

k2σ−4 <∞.

For some sufficiently large k? we have∑
k

k2σ−4 <∞⇔
∫ ∞
k?

k2σ−4 dk <∞

or
σ <

3
2
.

Hence, it follows that
f ∈ H 3

2−ε(Ω).



Appendix B

Derivation of geometric factors

Consider a two-dimensional Poisson problem defined on some general domain Ω.
When solving such a problem numerically, it is common to do all calculations
on a reference domain Ω̂ = (−1, 1)2, and transfer the results back to Ω via some
mapping F . In general, this mapping is represented by two functions x(ξ, η)
and y(ξ, η), where (x, y) are the physical variables, and (ξ, η) are the reference
variables. This mapping can be constructed with the Gordon-Hall algorithm
[35].

When we transform the weak Laplace operator to reference variables,∫
Ω

(∇v)T∇udΩ =
∫

Ω̂

(∇̂v̂)T G̃∇̂ûdξdη,

we use a geometry matrix G̃ given by

G̃ =
1
J
(

y2
η + x2

η −yξyη − xξxη
−yξyη − xξxη y2

ξ + x2
ξ

)
.

Here, J is the Jacobian determinant defined as

J = xξyη − xηyξ.

Obviously, G̃ is symmetric. To see how we derive exact expressions for the
geometric coefficient functions g̃11, g̃12 and g̃22 we must take a closer look at
the Gordon-Hall algorithm. We will here assume a geometry with four edges.

The Gordon-Hall mapping F , is constructed via three ”sub-mappings”. Two
which connects the boundaries (left-right and top-bottom) and one which con-
nects the four corners. Each of these are constructed using the linear shape
functions

φ0(r) =
1− r

2
,

φ1(r) =
1 + r

2
,

(B.1)

for −1 ≤ r ≤ 1.
In a addition we need a representation of the boundaries. We denote these

representations, one for each edge, by γ1, . . . , γ4 where γ1 = (x(ξ,−1), y(ξ,−1))T
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and so on. The three sub-mappings mentioned above can now be constructed
as

Fξ(ξ, η) ≡ φ0(ξ)γ4(η) + φ1(ξ)γ2(η),
Fη(ξ, η) ≡ φ0(η)γ1(ξ) + φ1(η)γ3(ξ),

Fξη(ξ, η) ≡ φ0(ξ)φ0(η)γ1(−1) + φ0(ξ)φ1(η)γ3(−1) +
φ1(ξ)φ0(η)γ1(1) + φ1(ξ)φ1(η)γ3(1),

with the final mapping F ≡ Fξ + Fη −Fξη.
To compute the Jacobian and geometry matrix G̃, we need the partial deriva-

tives ∂x
∂ξ , ∂x

∂η , ∂y
∂ξ and ∂y

∂η . We only compute ∂x
∂ξ in detail as the others are very

similar. In the following calculations γxi denotes the x-component of γi.

∂x

∂ξ
=

∂

∂ξ

(Fξ,x + Fη,x −Fξη,x)
=
∂φ0

∂ξ
γx4 (η) +

∂φ1

∂ξ
γx2 (η) + φ0(η)

∂γx1
∂ξ

+ φ1(η)
∂γx3
∂ξ

− γx1 (−1)
∂φ0

∂ξ
φ0(η)− γx3 (−1)

∂φ0

∂ξ
φ1(η)

− γx1 (1)
∂φ1

∂ξ
φ0(η)− γx3 (1)

∂φ1

∂ξ
φ1(η)

=
1
2

(
γx2 (η)− γx4 (η)

)
+ φ0(η)

∂γx1
∂ξ

+ φ1(η)
∂γx3
∂ξ

− 1
2

(
γx1 (1)φ0(η) + γx3 (1)φ1(η)− γx1 (−1)φ0(η)− γx3 (−1)φ1(η)

)
.

If we do this also for the other partial derivatives, we can compute J and the
elements of G̃ without difficulty. This procedure requires explicit, differentiable
expressions for γ1, . . . , γ4.



Appendix C

Exact eigenvalues for the
geometry matrix

Transforming the weak Laplace operator from physical to reference variables
results in a geometry matrix G̃ given by

G̃ =
1
J
(

y2
η + x2

η −yξyη − xξxη
−yξyη − xξxη y2

ξ + x2
ξ

)
.

In addition, the assumption

J = xξyη − xηyξ > 0

is made. Here, x = x(ξ, η) and y = y(ξ, η) denote the functions taking us from
reference variables (ξ, η) to physical variables (x, y). These will also depend on
a parameter µ. Hence we get G̃ = G̃(ξ, η;µ).

We are interested in the minimal eigenvalue of the geometry matrix G̃ with
respect to the spatial variables ξ and η, λ−(µ). This we may find as we have
exact expressions for all the elements of G̃ given by

g̃11(ξ, η;µ) = 1 + (a+ b) cos
(π

2
(ξ + 1)

)
,

g̃12(ξ, η;µ) =
π

2
(a− b+ (a+ b)η) sin

(π
2

(ξ + 1)
)
,

g̃22(ξ, η;µ) =
1 + π2

4 (b− a− (a+ b)η)2 sin2(π2 (ξ + 1))
1 + (a+ b) cos(π2 (ξ + 1))

.

For a general 2× 2 matrix A the eigenvalues are given by

λ(A) =
1
2

(
tr(A)±

√
tr2(A)− 4 det (A)

)
.

If we let our matrix be G̃ it is easily demonstrated that det (G̃) = 1. In addition,
G̃ is SPD and real. From this we can deduce that λ−(µ) = 1/λ+(µ) and the
maximum eigenvalue must be

λ+(µ) = max
ξ,η

{
1
2

(
tr(G̃(ξ, η;µ)) +

√
tr2(G̃(ξ, η;µ))− 4

)}
. (C.1)
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To find the maximizer of (C.1) it is clearly sufficient to find the maximizer of
tr(G̃) as these will coincide.

In our case, tr(G̃) becomes

tr(G̃) = 1 + (a+ b) cos(t) +
1 + π2

4 (b− a− (a+ b)η)2 sin2(t)
1 + (a+ b) cos(t)

.

For convenience, we have introduced t = π
2 (ξ + 1). We see that a maximum

must occur at either η = −1 or η = 1. For t it is not as obvious, and we must
check both the endpoints (ξ = ±1) and the extreme values. Hence we need to
solve

0 =
∂

∂t
tr(G̃)

∣∣∣
η=−1

=

(
−(a+ b) +

π2

2 (2b)2 cos(t)
1 + (a+ b) cos(t)

+
(1 + π2

4 (2b)2 sin2(t))(a+ b)
(1 + (a+ b) cos(t))2

)
sin(t)

and

0 =
∂

∂t
tr(G̃)

∣∣∣
η=1

=

(
−(a+ b) +

π2

2 (2a)2 cos(t)
1 + (a+ b) cos(t)

+
(1 + π2

4 (2a)2 sin2(t))(a+ b)
(1 + (a+ b) cos(t))2

)
sin(t).

Here, sin(t) will be zero only at the endpoints, which we have to check for
maxima anyway. If we use the relation

sin2(t) + cos2(t) = 1,

and simplify we get the following second order equation in cos(t) (we only show
η = −1)

((a+ b)2 − (πb)2)(a+ b)︸ ︷︷ ︸
α−

cos2(t) + 2((a+ b)2 − (πb)2)︸ ︷︷ ︸
β−

cos(t)− (a+ b)(πb)2︸ ︷︷ ︸
−γ−

= 0

with

cos(t) =
1

2γ−

(
−β− ±

√
β2
− − 4α−γ−

)
. (C.2)

In the degenerate case a+ b = 0 (and a, b 6= 0) the equation reduces to

2(πb)2 cos(t) = 0⇒ cos(t) = 0⇒ ξ = 0.

The number of potential maxima, and corresponding minima, is thus 8 (or
7 for a + b = 0). For each value of η (±1) we have 4 possibilities for ξ, two
endpoints and the two solutions of (C.2).
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