
May 2009
Kristian Gjøsteen, MATH

Master of Science in Mathematics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Mathematical Sciences

Finding Small Roots of Polynomial
Equations Using Lattice Basis
Reduction

Ingeborg Sletta

Preface

With this thesis I end my 6 year stay here at NTNU. It have been some exciting and
challenging years where I have learned a lot. Socially I had some very nice years thanks
to the class of LUR 2003.

Writing this thesis have been a challenging task that have required a lot of work
alone. I have therefore appreciated my fellow students a lot for very meaningful breaks
in the hall. I would specially like to thank Johan, Yvonne and Benedikte for LaTeX help
and motivation.

I would like to thank my supervisor Kristian Gjøsteen for introducing me to this
exciting field of mathematics, and for great guidance and help with this project.

I am grateful for my good friends who have been a great motivation and comfort
during these years. I would like to thank my parents, grandparents, my sister and
brother for being supportive and for giving me perspective and help. And I would like
to thank Jørgen for great support and help during these last two years.

Trondheim, May 29, 2009

Ingeborg Sletta

i

ii

Abstract

In 1996 Don Coppersmith used the Lenstra, Lenstra and Lovász (LLL) algorithm to find
small integer roots of polynomials. It was used on univariate modular equations and
bivariate polynomial equations, and he proved that the method would find small roots,
if they existed, in polynomial time.

In this thesis we look at the LLL-algorithm and how this can be used to solve uni-
variate modular equations and bivariate polynomial equations. We talk briefly about
cryptography and public-key cryptosystems, and we will present some theory about lat-
tices. We will look in detail at Coppersmith’s method and show how it can be used to
attack RSA encryption with a low exponent.

We will also look at improvements of this method done later by Howgrave-Graham
which simplifies the univariate case. In the end we give a small univariate example where
we apply both Coppersmith’s and Howgrave-Graham’s method.

iii

iv

Contents

1 Introduction 1

2 Theory of lattices 3
2.1 Lattices . 3
2.2 Shortest Vector Problem and Closest Vector Problem 6
2.3 The LLL-algorithm . 6
2.4 Properties of the LLL-algorithm . 8

3 Cryptography 11
3.1 Knapsack cryptosystem . 11
3.2 Finding roots . 12
3.3 RSA cryptosystem . 12

4 Finding small roots of polynomial equations 15
4.1 Coppersmith - the univariate case . 16

4.1.1 Building the matrix M in the univariate case 17
4.1.2 Analysis of the determinant of M 19
4.1.3 Finding the solution x0 . 21

4.2 Coppersmith - the bivariate case . 23
4.2.1 Building the matrix M1 in the bivariate case 24
4.2.2 Analysis of the determinant . 26
4.2.3 Finding the solution (x0, y0) . 31

4.3 Howgrave-Graham - the univariate case 31
4.3.1 Building the matrix M5 . 32
4.3.2 Finding the solution x0 . 33

5 An example 35
5.1 Coppersmith’s method . 35
5.2 Howgrave-Graham’s method . 38

v

vi CONTENTS

Chapter 1

Introduction

The aim of this thesis is to understand the method described by Coppersmith on how to
find small roots of polynomial equations using lattice basis reduction. We will use Cop-
persmith’s article [2] and go in detail in the univariate and the bivariate case. Howgrave-
Graham [5] has improved the univariate case and we will look into his method as well.

In 1982 Lenstra, Lenstra and Lovász developed the LLL-algorithm [6], which is an
approximation to the shortest vector problem. This algorithm takes a lattice basis as
input and converts it into a basis with short vectors that are nearly orthogonal and
sorted by length. This has become an important algorithm with many applications. We
will look at the algorithm and the properties of the basis returned by the algorithm.

In 1996 Coppersmith described how to use the LLL-algorithm on lattice bases to be
able to find small roots of polynomials. Coppersmith makes a matrix that will span a
lattice, and this matrix consists among other things of the coefficients to our polynomial.
After the matrix get the appropriate form we use the LLL-algorithm on it to get a LLL-
reduced basis. We use this basis to create a new polynomial, that we can solve and that
have the same small roots as the original polynomial. This can be used to attack RSA
cryptosystems with a low exponent.

Howgrave-Graham improved Coppersmiths univariate case by making a more direct
approach. The matrix in this method is on a better form in the first place, so it demands
less computations. We use the LLL-algorithm in this case too, but we look at the
first vector in the LLL-reduced basis instead of the last one as in Coppersmiths case.
Howgrave-Graham proved that his and Coppersmith’s algorithm are equivalent, but
Howgrave-Graham’s may be preferred for computational efficiency.

We start in Chapter 2 with some general theory about lattices and then we go through
the LLL-algorithm and its properties. In Chapter 3 we look at the RSA cryptosystem
with the aim to motivate the reader on how Coppersmith’s method can be used to
attack such systems. In Chapter 4 we go through the method of finding small roots
of polynomial equations as done by Coppersmith, and then Howgrave-Graham. In the
last chapter we show an example where we apply both Coppersmith’s and Howgrave-
Graham’s method.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Theory of lattices

2.1 Lattices

A lattice in space is a set of points with a periodic structure. One example of a lattice
is to take a 2-dimensional plane and cover it with squares, rectangels or parallelograms.
We then place a point in every vertex, and all these points give us a lattice. We can reach
every point in the lattice with linear combinations of the green vectors in Figure 2.1, so
we call these vectors a basis for the lattice. Another basis is the two purple arrows, but
presumably the green vectors are a better basis than the purple ones. A lattice will have
several bases, and our aim in this chapter is to find a convenient basis for our lattice.

Figure 2.1: A 2-dimensional space covered with parallelograms, every vertex have a point
and all these points give a lattice.

Definition 2.1. Let n and m be positive integers. A subset L of the m-dimensional real
vector space Rm is called a lattice if there exists a finite set of vectors {bi} ⊆ Rm such
that

L =

{
n∑
i=1

aibi | ai ∈ Z, 1 ≤ i ≤ n

}
.

3

4 CHAPTER 2. THEORY OF LATTICES

We say that such a set {b1, ...,bn} is a basis if it spans L and is Z-linearly independent.
We call n the rank of L, and m the dimension.

The lattice is a full-rank lattice if n = m. Given a n×m matrix B we can define

L = L(B) = {xB|x ∈ Zn} .

If we have a basis b1, . . . ,bn for L then we have a n×m matrix for L(B) = L,

B =

 b1
...

bn

 ,

where the bi’s are written as row vectors. The rank of the lattice is n which also is the
rank of the matrix B. The B matrix consists of the lattice basis as rows, and since the
basis vectors are linearly independent the row rank is n and so is the rank of the matrix.

Theorem 2.1. Let L be a finitely generated lattice over Z. Then all bases of L have the
same number of elements.

Proof. Let n < m and let b1, . . . ,bn and b′1, . . . ,b
′
m be two bases for L. We write

bi = a1ib′1 + · · ·+ amib′m, 1 ≤ i ≤ n

b′i = c1jb1 + · · ·+ cnjbn, 1 ≤ j ≤ m

Then

bi =
n∑
k=1

m∑
j=1

ckjajibk

=
n∑
k=1

bk
m∑
j=1

ckjaji, 1 ≤ i ≤ n

thus because the bi’s are linearly independent

n∑
k=1

bk

 m∑
j=1

ckjaji − λki

 = 0

where

λki =
{

0 i 6= k
1 i = k

.

Let A = (aji) be a m× n matrix and C = (ckj) be a n×m matrix. This yields

CA =

 c11 · · · c1m
...

...
cn1 · · · cnm


 a11 · · · a1n

...
...

am1 · · · amn

 = In

2.1. LATTICES 5

where In is a n × n identity matrix. Similarly AC = Im. Let A′ =
(
A 0

)
and

C ′ =
(
C
0

)
be n × n augmented matrices, where each of the 0 blocks is a matrix of

appropriate size. Then

A′C ′ = In, C ′A′ =
(
In 0
0 0

)
.

This implies det(A′C ′) = 1 and det(C ′A′) = 0. But A′ and C ′ are m×m matrices over
the commutative ring Z, so det(A′C ′) = det(C ′A′) which yields a contradiction. Hence
n ≥ m. By symmetry we get m ≥ n. This proves that m = n.

Proposition 2.1. Let b1,b2, . . . ,bn and b′1,b
′
2, . . . ,b

′
n be two bases for the same lattice.

Then
det
(
(b1b2 . . .bn)T

)
= ±det

(
(b′1b

′
2 . . .b

′
n)T
)

Proof. Let b1,b2, . . . ,bn and b′1,b
′
2, . . . ,b

′
n be two bases for the same lattice. From the

proof of Theorem 2.1 we have that

bi =
n∑
j=1

aijb′j

and

b′j =
n∑
i=1

cjibi

where {aij , cji} ∈ Z. We write this as matrices:
b1

b2
...

bn

 =

 a11 · · · a1n
...

...
an1 · · · ann




b′1
b′2
...

b′n



=

 a11 · · · a1n
...

...
an1 · · · ann


 c11 · · · c1n

...
...

cn1 · · · cnn




b1

b2
...

bn

 .

Both (aij) and (cji) are invertible matrices with integer elements, so their determinants
are invertible integers as well. The only invertible integers are ±1, so det((cji)) and
det((aij)) are ±1. We have the desired equality

det
(
(b1b2 . . .bn)T

)
= det ((aij)) det

(
(b′1b

′
2 . . .b

′
n)T
)

= ±det
(
(b′1b

′
2 . . .b

′
n)T
)
.

6 CHAPTER 2. THEORY OF LATTICES

Let |·| denote the absolute value, (,) define the ordinary inner product on Rn and let
‖·‖ define the ordinary Euclidean norm. We let the dot product of two vectors x and y
be denoted by x · y.

Definition 2.2. The determinant det(L) of a full rank lattice L(B) with basis b1, . . . ,bn
is

det(L) = |detB| , where B =

 b1
...

bn

 ,

and the bi’s are written as row vectors.

We can now conclude that the determinant of the lattice is a positive real number
that does not depend on the choice of the basis. It is positive since we take the absolute
value.

2.2 Shortest Vector Problem and Closest Vector Problem

There are two central problems when studying a lattice, that is how to find the shortest
vector in the lattice and how to find the closest vector to a point not in the lattice. These
problems are called the Shortest Vector Problem (SVP) and the Closest Vector Problem
(CVP) and are two fundamental hard lattice problems. By a short vector we mean a
vector with small norm, so if a vector x is shorter than a vector y, then ‖x‖ < ‖y‖. The
SVP and CVP are defined as follows, where x ∈ L and x0 /∈ L:

SV P (L) = {x | x 6= 0, ∀y ∈ L : ‖x‖ ≤ ‖y‖}

CV P (L,x0) = {x | ∀y ∈ L : ‖x− x0‖ ≤ ‖y − x0‖}.

To solve SVP and CVP we want a basis whose basis elements are short and almost
orthogonal. The next section give an algorithm that can find such a basis.

2.3 The LLL-algorithm

The Lenstra, Lenstra and Lovász algorithm, usually named the LLL-algorithm, is an
approximation to the shortest vector problem. This algorithm was developed by A. K.
Lenstra, H.W. Lenstra and L. Lovász in 1982 [6].

The algorithm consists of a reduction step and a swap step. In the reduction step the
basis is reduced by the basis vectors with lower basis index. After all the vectors have
been reduced, they get swapped. We would like to have the shortest element first and
the longest at the end, but we do not always need strict ordering. A δ decides how strict
the ordering is going to be, and δ is in the interval (1

4 , 1), where 1 would have given the
strict order.

The Gram-Schmidt orthogonalization process makes an inner product space basis
orthogonal.

2.3. THE LLL-ALGORITHM 7

Definition 2.3. Given n linearly independent vectors b1, . . . ,bn ∈ Rn, the Gram-
Schmidt orthogonalization of b1, . . . ,bn is defined by

b̃i = bi −
i−1∑
j=1

µi,jb̃j where µi,j =
(bi, b̃j)
(b̃j , b̃j)

.

We denote the Gram-Schmidt basis of b1, . . . ,bn by b̃1, . . . , b̃n .

The Gram-Schmidt of a basis element bi has shorter or equal length compared to bi,
namely that ‖b̃i‖ ≤ ‖bi‖.

Definition 2.4. A basis B = {b1, ...,bn} ∈ Rn is a δ-LLL-Reduced Basis if the following
holds:

1. For all 1 ≤ j < i ≤ n we have |µi,j | ≤ 1
2 .

2. For all 1 ≤ i < n we have δ
∥∥∥b̃i∥∥∥2

≤
∥∥∥µi+1,ib̃i + b̃i+1

∥∥∥2
.

The LLL-algorithm transforms an arbitrary basis into a δ-LLL-reduced one. The
input to the algorithm is a lattice basis {b1, ...,bn} ∈ Zn. The output is a δ-LLL-
reduced basis for the lattice. The algorithm is given in Figure 2.2, where d·c means
nearest integer.

Start: compute b̃1, ..., b̃n
Reduction step:

for i = 2 to n do
for j = i− 1 to 1 do

bi ← bi − ci,jbj where ci,j =
⌈

(bi,b̃j)

(b̃j ,b̃j)

⌋
Swap step:

if ∃i s.t. δ
∥∥∥b̃i∥∥∥2

>
∥∥∥µi+1,ib̃i + b̃i+1

∥∥∥2
then

bi ↔ bi+1 for the smallest i
go to start

Output b1, ...,bn

Figure 2.2: LLL-algorithm

We want to show that the algorithm gives us a reduced basis every time. We define
the potential of the lattice basis, a function mapping a lattice basis to a positive number.

Definition 2.5. Let B = {b1, . . . ,bn} be a lattice basis. The potential of B, denoted by
DB is defined as

DB =
n∏
i=1

∥∥∥b̃i∥∥∥n−i+1
=

n∏
i=1

∥∥∥b̃1

∥∥∥∥∥∥b̃2

∥∥∥ · · · ∥∥∥b̃i∥∥∥ =
n∏
i=1

DB,i,

where DB,i = |det(Li)| and Li is defined as the lattice spanned by b1, . . . ,bi.

8 CHAPTER 2. THEORY OF LATTICES

If we can show that the initial value of DB is not too large, and that it decays quickly,
then the algorithm terminates and gives us a basis with shorter or equal basis elements
than the initial basis. We can find the maximal value of DB replacing all the basis
elements bi with the largest value among them. Thus DB is bounded from above by
(maxi ‖bi‖)n(n−1)/2.

During the reduction step in the algorithm the Gram-Schmidt basis does not change
and hence the DB does not change since it only relies on the Gram-Schmidt basis. We
now look at the swap step, and assume that bk is swapped by bk+1. The Gram-Schmidt
basis does not change up to k, it will change when i = k and i = k+ 1. When i > k+ 1
the Gram-Schmidt basis remains the same. This means that the DB,i only changes when
i = k, or i = k+ 1. Let D′B,i denote the new value of DB,i after the swap, and let L′i be
the new lattice. We look at the ratio between the two potentials

D′B,i
DB,i

=
det(L′i)
det(Li)

=
det(L(b1,b2, . . . ,bi−1,bi+1))

det(L(b1,b2, . . . ,bi))

=

(∏i−1
j=1

∥∥∥b̃j∥∥∥)∥∥∥µi+1,ib̃i+1

∥∥∥∏i
j=1 b̃j

=

∥∥∥µi+1,ib̃i+1

∥∥∥∥∥∥b̃i∥∥∥
<
√
δ

where the last inequality comes from the swap step. In each iteration the potential DB

decreases by a multiplicative factor
√
δ. It is possible to show that DB has a lower

bound. The potential is then bounded from below, from above and it decreases for each
iteration in the algorithm. The algorithm terminates every time, hence the number of
iterations are finite.

2.4 Properties of the LLL-algorithm

A lattice L can have many different bases, but we want to find the basis with shortest
elements. The problem is that there are no known efficient algorithms that can find such
a basis in reasonable time, except for in dimension 2 and 3. The LLL-algorithm takes
in an arbitrary basis for the lattice and makes it into a lattice basis with short vectors
that are nearly orthogonal and sorted by length. This is a δ-LLL-reduced basis for the
lattice and such bases have certain properties as stated in [6].

Proposition 2.2. Let {b1, . . . ,bn} be a δ-LLL-reduced basis for a lattice L in Rn, and
let b̃1, . . . , b̃n be the Gram-Schmidt basis. Then we have

2.4. PROPERTIES OF THE LLL-ALGORITHM 9

‖bj‖2 ≤ 2i−1 ‖b̃i‖2 for 1 ≤ j ≤ i ≤ n

‖b̃1‖ ≤ det(L)1/n2(n−1)/4.

Observe that b1 is a short element in the lattice. The first equation in Proposition
2.2 give ‖b1‖2 ≤ 2n−1 ‖b̃n‖2. From this and the second equation of Proposition 2.2 it
follows that the last basis element bn satisfies∥∥∥b̃n∥∥∥ ≥ det(L)1/n2(n−1)/4. (2.1)

We do not necessarily find the shortest vector in the lattice, but we find a short one, so
it is an approximation to the shortest vector problem. To solve SVP and CVP for any
dimension is still hard.

Definition 2.6. A hyperplane in a n-dimensional space is the set of all y = (y0, . . . , yn)
in the space which satisfies the equation

a0y0 + · · ·+ anyn = 0,

where not all ai are zero.

A hyperplane in a vector space is a vector subspace whose dimension is one less than
the dimension of the whole vector space. We now look at some lemmas from Coppersmith
[2], where b1,b2, . . . ,bn−1 is a δ-LLL-reduced basis.

Lemma 2.1. If a lattice element s satisfies ‖s‖ < det(L)1/n2(n−1)/4 then s lies in a
hyperplane spanned by b1,b2, . . . ,bn−1.

Proof. A lattice element s can be expressed as s =
∑n

i=1 aibi, where ai are integers. The
norm of s is,

‖s‖ = ‖a1b1 + a2b2 + · · ·+ anbn‖ ≥ ‖anbn‖ = |an| ‖bn‖ ≥ |an| ‖b̃n‖ .

From (2.1) we have ‖b̃n‖ ≥ det(L)1/n2(n−1)/4 and we have that ‖s‖ < det(L)1/n2(n−1)/4

from Proposition 2.2. This gives us that s is shorter than the shortest orthogonal basis
element, then ‖s‖ < ‖b̃n‖. Thus we get that an must be zero and s must have dimension
n− 1 and therefore s lies in the hyperplane spanned by b1,b2, . . . ,bn−1.

In the further discussion we are not necessarily looking for the shortest nonzero vector
in the lattice but for a relatively short one, and Lemma 2.1 confines all such short vectors
to a hyperplane. In Lemma 2.2 we generalize this from a hyperplane to a subspace of
smaller dimension.

Lemma 2.2. If a lattice element s satisfies ‖s‖ < ‖b̃i‖ for all i= k+1,. . . ,n, then s lies
in a hyperplane spanned by b1,b2, . . . ,bk.

10 CHAPTER 2. THEORY OF LATTICES

Chapter 3

Cryptography

Cryptography is about communication when there are possible enemies around. The goal
with cryptography is to enable two persons, which we call Alice and Bob, to communicate
over an insecure channel in such a way that an opponent, Oscar, cannot understand
what is being said. We call the information that Alice wants to send Bob a plaintext.
In advance Alice and Bob has secretly chosen a key K. This key then gives rise to an
encryption rule eK and a decryption rule dK . Alice encrypts the plaintext before she
sends it over the insecure channel, and when Bob receives it he decrypts the message
and gets the plaintext and the information Alice wanted to give him.

We call cryptosystems where eK and dK are the same, or where dK can easily be
derived from eK , symmetric-key cryptosystems. In public-key cryptosystems on the other
hand, the encryption rule eK is a public key, and it is computationally infeasible to de-
termine dK given eK . The public-key cryptography was first put forward in the open
literature by Diffie and Hellman in 1976. The theory was in reality developed years ear-
lier. The security in public-key cryptography rests in different computational problems,
but it can never provide unconditional security.

3.1 Knapsack cryptosystem

The knapsack encryption is a public key encryption scheme using a trap door function.
The required trap door is obtained from the ancient knapsack puzzle: given the total
weight of a knapsack and the weight of individual objects, which objects are in the bag?
This problem can be quite difficult to solve.

Public key systems based on the knapsack problem are generally suspected to be
weaker than RSA, and some versions have already been broken. The Merkle-Hellman
knapsack encryption is based on the knapsack problem and was the first concrete realiza-
tion of a public-key encryption scheme. It is therefore important for historical reasons.
Many variations have been proposed, but most of them have been demonstrated to be
insecure, including the original.

The ancient knapsack problem is a subset sum problem, which is given by the follow-
ing: given a set of positive integers {a1, a2, . . . , an} and a positive integer s, determine

11

12 CHAPTER 3. CRYPTOGRAPHY

whether or not there is a subset of the ai that sum to s. It can also be asked to actually
find a subset of the ai which sum to s, provided that such a subset exists.

The subset sum problem can be reduced to the problem of finding a short vector in
the lattice. The LLL-algorithm can then be used to find such a short vector. This is the
most powerful general attack known on the knapsack encryption schemes.

3.2 Finding roots

We want to look at finding roots of different types of polynomials. Finding roots of
a single variable polynomial with integer coefficients is easy. But finding roots to a
polynomial in a single variable modulo a natural number which is not a prime

p(x) ≡ 0 (mod n),

is hard for large n. Finding such roots is as difficult as factoring a number n, which is
believed to be very hard for high n. If n is a prime number then it is not difficult to find
the roots of the modular polynomial.

Another hard problem is to find integer roots to a polynomial in several variables

p(x, y) = 0.

As we will see later Coppersmith is able to solve such problems, if we restrict these cases
to the problems where there exist small enough solutions to the polynomials. These
special cases can be solved using a lattice basis reduction technique as we will see in the
following chapter.

3.3 RSA cryptosystem

The RSA cryptosystem was published by Rivest, Shamir and Adleman in 1977. For
the first time in open literature. RSA is a public-key cryptosystem and its security
is based on the difficulty of factoring large integers. In the RSA cryptosystem we use
computations in Zn, where n is the product of two distinct primes p and q,

n = pq.

The Euler φ-function for n is φ(n) = (p− 1)(q − 1). The encryption and decryption are
inverse operations since

ab ≡ 1 (mod φ(n)).

If we denote the plaintext x we get the following encryption and decryption formula

eK(x) = xb (mod n) = y

dK(y) = ya (mod n) = x.

If RSA is to be secure, it is necessary that n = pq is large enough so that factoring it
will be computationally infeasible.

3.3. RSA CRYPTOSYSTEM 13

Example 3.1. Example of stereotyped message in RSA
In this example most of the message is fixed or “stereotyped”, we call this part of the

message F . An example of this F can be: “Todays password is...”. Let the plaintext m
consist of two pieces, x and F . The first piece F is known and is the fixed part of the
message. The second unknown piece x is the secret password, and the length of x is less
than one-third the length of N . We use RSA encryption with an exponent of 3, so the
ciphertext c is given by

c = m3 = (F + x)3 (mod N).

We try to write this as a polynomial with x as the unknown, and we assume that we
know F , c and N . We then get

p(x) = (F + x)3 − c (mod N).

We want to find x0 so that

p(x0) = (F + x)3 − c = 0 (mod N).

If we can solve this polynomial for x0, then we will have recovered the secret message x.
It is obvious that we can recover x if F = 0. We will show how to recover x for F 6= 0

in the following chapter.

14 CHAPTER 3. CRYPTOGRAPHY

Chapter 4

Finding small roots of polynomial
equations using lattice basis
reduction

In [1] and [2] Coppersmith describes how lattice reduction can be used to find small roots
of polynomial equations. It can be univariate modular equations, p(x) ≡ 0 (mod N),
or bivariate polynomials, p(x, y) = 0. In both these cases the outline is the same, but
the bivariate case becomes more technical. Coppersmith makes a matrix that consists
of the coefficients to the polynomial we want to find the roots of, the modulus N in the
univariate case and some other factors. The rows of this matrix spans a lattice and we
find a sublattice of this lattice. We use a lattice basis reduction technique on vectors
in the sublattice, and find a hyperplane. This hyperplane contains all the short lattice
elements. The equation of this hyperplane translates to a linear relation and then to
a polynomial equation c(x0) = 0 or to c(x0, y0) = 0 over Z, where x0 or (x0, y0) are
a small root. In the univariate case we solve directly for x0. In the bivariate case we
combine p(x0, y0) and c(x0, y0) and solve. Coppersmith proved that at least one root
can be found in polynomial time if we have a bound on the root we want to find.

Howgrave-Graham simplified Coppersmith’s algorithm for the univariate case by
making a more direct approach. In the entries of the matrix consisting of the coefficients
of p(x) in Coppersmith’s case, Howgrave-Graham now uses entries that are multiples of
p(x) and N instead.

A simplification of the bivariate case was later proposed by Coron [3], but asymptot-
ically its complexity was worse than Coppersmith’s method. But in [4] a new algorithm
for the bivariate integer case was put forward by Coron, this time with the same com-
plexity as in Coppersmith’s method. We will not go into Coron’s algorithm here, but
look at the other three methods.

We restrict the problem of finding roots of the two polynomial equations described
for the cases where there exist a solution small enough. We can solve these special cases
using a lattice basis reduction technique.

The idea is that we get a polynomial equation for example from RSA encryption, see

15

16 CHAPTER 4. FINDING SMALL ROOTS OF POLYNOMIAL EQUATIONS

Example 3.1, and we want to find small roots of this polynomial. We make a matrix that
spans a lattice, and this matrix will among other things consist of the coefficients of the
polynomial we want to solve. We then make a vector that consists of x0, which we do
not know but is representing our small root. The vector and the matrix is constructed
in such a way that multiplied together they will make a short vector that is contained
in the lattice. Then we can use the LLL-algorithm to find short vectors, and if a small
solution did exist in the first place, we will now be able to find it.

4.1 Coppersmith - the univariate case

We will go through Coppersmith’s method for solving univariate polynomials modulo
a composite integer as seen in [2]. We want to find small integer roots x0 of a monic
integer polynomial with degree δ in one variable

p(x) = a0 + a1x+ a2x
2 + · · ·+ aδ−1x

δ−1 + xδ,

where |x0| < X and the ai’s are coefficients. We get the following modular equation

p(x0) ≡ 0 (mod N),

where N is a large composite integer of unknown factorization. We select an integer

h ≥ max
(
δ − 1 + εδ

εδ2
,
7
δ

)
,

where ε > 0. Using the first condition, h ≥
(
δ−1+εδ
εδ2

)
, we get that

h− 1
hδ − 1

≥ 1
δ
− ε. (4.1)

The second condition ensures that hδ ≥ 7. Both these conditions will be useful when
evaluating the determinant in Subsection 4.1.2. Let n = hδ. For each pair of integers
(i, j) satisfying 0 ≤ i < δ and 1 ≤ j < h, we define the polynomial

qij(x) ≡ xip(x)j .

For the solution x0 we have that p(x0) = y0N for an integer y0, so

qij(x0) = xi0p(x0)j

= xi0y
j
0N

j

≡ 0 (mod N j).

4.1. COPPERSMITH - THE UNIVARIATE CASE 17

4.1.1 Building the matrix M in the univariate case

Coppersmith’s method consists of making a matrix where the rows of this matrix spans
a lattice. The matrix M of size (2hδ − δ)× (2hδ − δ) is upper triangular and is defined
to be

M =
(
A C
0 D

)
,

where we have divided M into 4 blocks. The upper left (hδ) × (hδ) block A is a diagonal
matrix where the g’th entry on the diagonal is X−g

hδ where g starts from zero and goes
to hδ− 1, 0 ≤ g < hδ. The upper right block C is a matrix of size (hδ)× (hδ− δ), where
the rows are indexed by g, and the columns by γ(i, j). The γ-function takes in values i
and j where 0 ≤ i < δ and 1 ≤ j < h, and

γ(i, j) = hδ + i+ (j − 1)δ.

The γ-function will give values in the following interval hδ ≤ γ(i, j) < 2hδ − δ. The
element in C at the entry (g, γ(i, j)) is the coefficient of xg in the polynomial qij(x). The
lower left (hδ−δ)×(hδ−δ) block is a zero matrix, and the lower right (hδ−δ)×(hδ−δ)
block D is a diagonal matrix where the value on the diagonal in column number γ(i, j)
is N j .

We construct a vector r whose elements consist of powers of the desired integer
solution x0 and the integer y0,

r(x0) = r =
(

1, x0, x
2
0, . . . , x

hδ−1
0 ,−y0,−x0y0, . . . ,−xδ−1

0 y0,−y2
0, x0y

2
0, . . . ,−xδ−1

0 yh−1
0

)
where the first hδ entries are of the form

rg = xg0

for 0 ≤ g < hδ. The rest of the hδ − δ entries can be written as

rγ(i,j) = −xi0y
j
0

for hδ ≤ γ(i, j) < 2hδ − δ. We can write r as

r = (rg, rγ(i,j)).

We emphasize that we still do not know x0 or y0, but we know that they exist by
assumption.

This r vector is constructed in such a way that multiplied with the matrix M we get
a vector s with 0’s in the last entries,

s(x0) = s =

(
1√
hδ
,

(x0
X)
√
hδ
,
(x0
X)2
√
hδ

, . . . ,
(x0
X)hδ−1

√
hδ

, 0, . . . , 0

)
,

18 CHAPTER 4. FINDING SMALL ROOTS OF POLYNOMIAL EQUATIONS

where
s = rM.

The first hδ elements of the s vector is given by

sg =
(x0
X)g
√
hδ

,

and the right-hand elements become zero because

sγ(i,j) = qij(x0)− xi0y
j
0N

j = 0.

This s vector is an element in the lattice and spanned by the rows of M , which is a basis
for the lattice.

We evaluate the norm of the s vector,

‖s‖ =

hδ−1∑
g=0

s2g

1/2

<

hδ−1∑
g=0

(
1√
hδ

)2
1/2

= 1, (4.2)

and get that it is less than 1. Thus s is a short vector.
Since the last hδ− δ elements of s is zero we can concentrate on the sublattice M̂ of

M consisting of vectors with 0 as right-hand elements. To find this M̂ we observe that
p(x) and qij(x) are monic polynomials, so certain rows in the upper right block of M
will form an upper triangular matrix with 1 on the diagonal. For an example see Figure
5.1, where the 1’s are highlighted in red. Thus we can multiply M with integer matrices
with determinants of ±1 and end up with a matrix M̃ of the form

M ∼ M̃ =
(
M̂ 0
A′ I

)
.

We can write this as
M̃ = H1M,

or
M = H−1

1 M̃,

where

H−1
1 =

 µ11 · · · µ1,2hδ−δ
...

...
µ2hδ−δ,1 · · · µ2hδ−δ,2hδ−δ

 .

For an example of M̃ , see Figure 5.2 where the 1’s in the identity block are highlighted
in red again. We denote the rows of M̃ by mi,

M̃ =



m1

m2
...

mn
...

m2hδ−δ


.

4.1. COPPERSMITH - THE UNIVARIATE CASE 19

The upper-left (hδ) × (hδ) block of M̃ is M̂ and this is the sublattice we want. It is
hδ-dimensional, and s is a relatively short element in this sublattice. We use the LLL-
algorithm on the rows of M̂ to find a LLL-reduced basis for L(M̂). We have a matrix
B2 where the rows are the LLL-reduced basis

B2 = H2M̂,

which is the same as

M̂ = H−1
2 B2

where the entries in H−1
2 are hij ,

H−1
2 =

 h11 · · · h1,hδ
...

...
hhδ,1 · · · hhδ,hδ

 .

The matrix M̂ can be written as

M̂ =


m1

m2
...

mn

 ,

where the rows are the first hδ rows of M̃ , but shortened. We have removed the hδ − δ
zeros at the end of the row vectors, so the rows are now on the form (mi1, . . . ,mi,hδ). We
can write these row vectors as a linear combination of the LLL-reduced basis b1, . . .bn,

mi =
hδ∑
j=1

hijbj . (4.3)

We know that s is short and lies in the lattice spanned by the rows of M̂ , so we can
write s as an linear combination of the rows of M̂ ,

s =
hδ∑
i=1

αimi. (4.4)

4.1.2 Analysis of the determinant of M

To be able to confine the s vector to a hyperplane we need to show that the norm of
s is less than det(L)1/n2(n−1)/4 as in Lemma 2.1 for a lattice L. We need to combine
the norm of the s vector with the determinant of the lattice. M is upper triangular and

20 CHAPTER 4. FINDING SMALL ROOTS OF POLYNOMIAL EQUATIONS

because of this, the determinant of M is a multiple of the entries on the diagonal

det(M) =
1√
hδ

1√
hδX

· · · 1√
hδXhδ

N · · ·N j

=
hδ−1∏
g=0

1
Xg
√
hδ

2hδ−δ∏
γ(i,j)=hδ

N j

=
N

hδ(h−1)
2 X

−(hδ)(hδ−1)
2

√
hδ

hδ

= [N
h−1

2 X
−(hδ−1)

2 (hδ)−
1
2]hδ

= [Nh−1X−(hδ−1)(hδ)−1]
hδ
2 . (4.5)

The determinant of M equals the determinant of M̂ in absolute value,

|det(M)| = |det(M̂)| |det(I)| = |det(M̂)| . (4.6)

Since s lies in the sublattice spanned by M̂ , we need to use Lemma 2.1 on the smaller
matrix M̂ . First we need to show that

‖s‖ < det(M̂)1/n2−(n−1)/4.

By (4.2) this will hold if
1 < det(M̂)1/n2−(n−1)/4.

We know that hδ ≥ 7, which gives us hδ < 2
hδ−1

2 . This we can use to get a new limit of
the determinant of M̂ combined with (4.5) and (4.6),

det(M̂) > [Nh−1X−(hδ−1)2
−(hδ−1)

2]
hδ
2 .

We choose X to be X ≤ 1
2N

1
δ
−ε, rewrite and get

det(M̂) > [Nh−1−(hδ−1)(1
δ
−ε)2

(hδ−1)
2]

hδ
2 .

By using the condition h− 1 ≥ (hδ − 1)(1
δ − ε) from (4.1) we get the expression

det(M̂) ≥ 2
(hδ)(hδ−1)

4 ,

which is the same as
det(M̂)

1
hδ 2−

hδ−1
4 > 1.

Since n = hδ we get
det(M̂)1/n2−(n−1)/4 > 1. (4.7)

This shows that, by choosing

X ≤ 1
2
N

1
δ
−ε

we have
‖s‖ < 1 ≤ det(M̂)1/n2−(n−1)/4.

We can now use Lemma 2.1 on M̂ and we get that the lattice element s lies in the
hyperplane spanned by b1,b2, . . . ,bn−1.

4.1. COPPERSMITH - THE UNIVARIATE CASE 21

4.1.3 Finding the solution x0

We have applied the LLL-algorithm on the rows of the matrix M̂ of size hδ × hδ, and
got a basis b1,b2, . . . ,bn which satisfies (2.1)∥∥∥b̃n∥∥∥ ≥ det(M̂)1/n2(n−1)/4,

and together with (4.7) we get ∥∥∥b̃n∥∥∥ ≥ 1.

From Lemma 2.1 we have that any vector in the lattice generated by the rows of M̂ with
length less than 1 must lie in a hyperplane spanned by b1,b2, . . . ,bn−1.

We can write s as a linear combination of the LLL-reduced basis,

s =
hδ∑
j=1

ρjbj . (4.8)

But we know that s is a short vector and by Lemma 2.1 we have that

ρhδ = 0.

We can also write s as a linear combination of the rows of M̂ as we did in (4.4) and we
combine this with (4.3),

s =
hδ∑
i=1

αimi

=
hδ∑
i=1

αi

hδ∑
j=1

hijbj

=
hδ∑
j=1

bj
hδ∑
i=1

αihij .

From (4.8) we get that

ρj =
hδ∑
i=1

αihij ,

and

ρhδ =
hδ∑
i=1

αihi,hδ = 0.

We know the value of hi,hδ since it is the last column in H−1
2 .

22 CHAPTER 4. FINDING SMALL ROOTS OF POLYNOMIAL EQUATIONS

We now look at the polynomial vectors r(x) and s(x), they are define as before but
now we have the variable x instead of x0. The r(x) vector is

r(x) =
(

1, x, x2, . . . , xhδ−1,−y,−xy, . . . ,−xδ−1y,−y2, xy2, . . . ,−xδ−1yh−1
)

which is the same as

r(x) =

(
1, x, . . . , xhδ−1,−p(x)

N
,−xp(x)

N
, . . . ,−xδ−1 p(x)

N
,−
(
p(x)
N

)2

, . . . ,−xδ−1

(
p(x)
N

)h−1
)
.

Let s(x) be the s vector shortened, that is we have removed the zeros in the end and the
variable is x instead of x0,

s(x) =

(
1√
hδ
,

(xX)
√
hδ
,
(xX)2
√
hδ
, . . . ,

(xX)hδ−1

√
hδ

)
.

We define a vector of length hδ

σl =

(
0, . . . , 0,

(1
X)l−1

√
hδ

, 0, . . . , 0

)
,

where there are zeros except at the (l − 1)th element in the vector. We can write σl as
a linear combination of the rows of M̂ , since σl ∈ L(M̂)

σl =
hδ∑
i=1

µlimi.

We can now write s(x) as

s(x) =
hδ∑
l=1

σlx
l−1

=
hδ∑
l=1

xl−1
hδ∑
i=1

µlimi

=
hδ∑
i=1

mi

hδ∑
l=1

xl−1µli,

where

αi(x) =
hδ∑
l=1

xl−1µli.

4.2. COPPERSMITH - THE BIVARIATE CASE 23

From before we have that

ρj =
hδ∑
i=1

αi(x)hij

=
hδ∑
i=1

(
hδ∑
l=1

xl−1µli

)
hij .

If s(x) is going to be a short vector, then ρhδ must be zero. We get the following equation,

ρhδ =
hδ∑
i=1

(
hδ∑
l=1

xl−1µli

)
hi,hδ = 0.

We can solve this equation for x, since we know the other variables. We find hi,hδ in the
last column of H−1

2 , µli is in the matrix H−1
1 . We have the following equation we can

solve for x0,

c(x0) =
hδ∑
i=1

(
hδ∑
l=0

xl−1
0 µli

)
hi,hδ = 0.

This equation holds over the integers as well as modulo N and is easy to solve. This
yields the desired solution x0.

Written in terms of our matrices we can find our new polynomial in this way,

c(x) =
[
r(x)H−1

1

]
sh
· ((H−1

2)hδ)T ,

where [·]sh denote the vector shortened, and ((H−1
2)hδ)T is the last column in H−1

2

transposed.

4.2 Coppersmith - the bivariate case

Finding small integer solutions to a polynomial equation in two variables are similar to
the modular case with one variable. The basic outline is the same but this case is more
technical. We will in the bivariate case get a matrix that is not square, which makes the
approach harder.

We have a polynomial equation in two variables over the integers (not modulo N)
with coefficients aij

p(x, y) =
δ∑
j=0

δ∑
i=0

aijx
iyj = 0

for which we want to find small integer solutions (x0, y0). The solution is bounded by X
and Y , where x0 < |X| and y0 < |Y |. We assume that p(x, y) has δ as maximum degree
in each variable separately and that p(x, y) is irreducible over the integers, which means
that the coefficients are relatively prime as a set.

24 CHAPTER 4. FINDING SMALL ROOTS OF POLYNOMIAL EQUATIONS

We select an integer k > 2
3ε , for some ε > 0. For all pairs of (i, j) where 0 ≤ i < k

and 0 ≤ j < k we have the polynomial

qij(x, y) = xiyjp(x, y).

We see that if (x0, y0) is a root of p(x, y) then it is also a root of qij(x, y).

4.2.1 Building the matrix M1 in the bivariate case

We have created several polynomials qij(x, y) = xiyjp(x, y), which all have (x0, y0) as
a root. We build a matrix M1 which represent a lattice from the coefficients of these
polynomials together with the bounds X and Y . This matrix is not square as before
but rectangular, so we have a k-dimensional lattice in Zn where k < n. This is not a
problem for lattice basis reduction routines.

The matrix M1 is a (k+ δ)2× ((k+ δ)2 + k2). It has (k+ δ)2 rows which are indexed
by

γ(g, h) = (k + δ)g + h

with 0 ≤ g, h < k+ δ and where γ(g, h) gives values between 0 and (k+ δ)2− 1. M1 has
(k + δ)2 + k2 columns, where the first (k + δ)2 columns are indexed by γ(g, h) and the
last k2 columns are indexed by

β(i, j) = (k + δ)2 + ki+ j

for 0 ≤ i, j < k. The β-function gives values from (k + δ)2 to (k + δ)2 + k2 − 1.
M1 consists of two blocks, D1 and A1,

M1 =
(
D1 A1

)
.

The block D1 is diagonal of size (k + δ)2 × (k + δ)2, where the (γ(g, h), γ(g, h)) entry
on the diagonal of D1 is X−gY −h. The matrix is shown in Figure 4.1 where the blank
spaces are zeros.

The (γ(g, h), β(i, j)) entry of A1 is the coefficient of xgyh in the polynomial qij(x, y).
The block A1 has size (k+δ)2×k2 and can be seen in Figure 4.2. The A1 matrix consists
again of k blocks that are similar. They are called E and are shown in Figure 4.3.

The columns of E, as seen in Figure 4.3, are all shifted versions of one vector v. In
the k columns in E the vectors gets shifted one row down for each column. The same
E occurs again in A1 in column (k + 1), but now the block is shifted δ + 1 rows down.
The E block occurs k times in A1, and for each time it gets moved δ + 1 rows down.

We multiply M1 with integer matrices with determinants ±1 to produce a matrix
M2

M1 ∼M2 =
(
M̂2 0
C2 I

)
where the identity matrix is k2 × k2 and the zero matrix is (2kδ+ δ2)× k2. This can be
done because the greatest common divisor of the coefficients of p is 1(p is irreducible).

4.2. COPPERSMITH - THE BIVARIATE CASE 25

D1 =



1
X−0Y −1

X−0Y −2

. . .
X−0Y −(k+δ−1)

X−1Y −0

X−1Y −1

. . .
X−1Y −(k+δ−1)

X−2Y −0

. . .
X−(k+δ−1)Y −(k+δ−1)


Figure 4.1: The diagonal matrix D1.

The top (2kδ + δ2) rows of M2 forms a sublattice of the original lattice and we call this
sublattice M̂2. We do lattice basis reduction on these top (2kδ+ δ2) rows of M2, and we
call the matrix consisting of these new rows M3. We construct a vector r with length
(k + δ)2 where the γ(g, h) entry is xg0y

h
0 ,

r =
(
x0

0y
0
0, x

0
0y

1
0, . . . , x

0
0y
k+δ−1
0 , x1

0y
0
0, x

1
0y

1
0, x

1
0y

2
0, . . . , x

k+δ−1
0 yk+δ−1

0

)
.

The row vector s of length (k + δ)2 + k2 is given by s = rM1.

s =
((x0

X

)0 (y0

Y

)1
, . . . ,

(x0

X

)k+δ−1 (y0

Y

)k+δ−1
, q01(x0, y0), . . . , qk−1,k−1(x0, y0)

)
Each of the first (k + δ)2 entries are given by

sγ(g,h) =
(x0

X

)g (y0

Y

)h
and the k2 right-hand side entries are zero,

sβ(i,j) = qij(x0, y0) = 0.

Since x0 < |X| and y0 < |Y | the left-hand side elements satisfies∣∣sγ(g,h)∣∣ < 1

and the length of the vector is
‖s‖ < k + δ.

We know that s is generated by the rows of M3 since s has zeros on its right hand
side. To show that s is a ”relatively short” vector in the lattice, we can confine it to a
hyperplane by Lemma 2.1. To be able to do so we need to evaluate the determinant of
the matrix M1.

26 CHAPTER 4. FINDING SMALL ROOTS OF POLYNOMIAL EQUATIONS

Figure 4.2: The matrix A1 of size (k+ δ)2×k2, where the E block is given in Figure 4.3.

4.2.2 Analysis of the determinant

Let M4 be the matrix obtained from M1 by multiplying the γ(g, h) row by XgY h and
multiplying the β(i, j) column by X−iY −j . M4 can then be written as

M4 = ∆1M1∆2, (4.9)

where ∆1 is a (k+δ)2×(k+δ)2 diagonal matrix and ∆2 is a ((k+δ)2+k2)×((k+δ)2+k2)
diagonal matrix. We use the notation diag(·) to express a diagonal matrix where the
diagonal elements are listed in the parenthesis. We have

∆1 = diag
(

1, Y 1, Y 2, . . . , Y k−δ−1, X1Y 0, X1Y 1, X1Y 2, . . . , X1Y k+δ−1,

X2Y 0, . . . , Xk+δ−1Y k+δ−1
)

∆2 = diag
(

1, 1, . . . , 1, X0Y 0, X0Y −1, . . . , X0Y −(k−1), X−1Y 0, . . . , X−(k−1)Y −(k−1)
)

where the number of 1’s in the beginning of ∆2 are (k + δ)2. We get another diagonal
matrix ∆3 of size (k + δ)2 × (k + δ)2 by removing k2 1’s on the diagonal of ∆2.

∆3 = diag
(

1, . . . , 1, X0Y 0, X0Y −1, . . . , X0Y −(k−1), X−1Y 0, . . . , X−(k−1)Y −(k−1)
)
.

M4 consists of two blocks, the left block is the identity matrix and the right-hand block
is A4 as shown in Figure 4.4 where the blocks are given in Figure 4.5.

M4 =
(
I A4

)
A4 consists again of k blocks, they are identical as seen in Figure 4.5. The blocks are

shifted δ + 1 rows down from the previous block, in the same manner as for the A1

matrix. Each column in block F represents the coefficients of a polynomial

xiyjp(xX, yY) = xiyj p̆(x, y)

4.2. COPPERSMITH - THE BIVARIATE CASE 27

E =



a00 0 · · · 0

a01 a00
...

... a01
. . .

... a00

a0δ a01

0 a0δ
...

... 0

0
... a0δ

a10 0 0

a11 a10
...

... a11 0

a1δ
... a10

0 a1δ a11
... 0

...

aδδ
... a1δ

0 aδδ 0
... 0

...
... aδδ


Figure 4.3: The block E of size ((δ + 1)(δ + k) + 1)× k in the A1 matrix.

where
p̆(x, y) = p(xX, yY).

If we let g = i+u and h = j+ v, then the entries in M1 and M4 can be written in terms
of the polynomials p(x, y) and p̆(x, y),

(M1)γ(g,h),β(i,j) = auv

(M4)γ(g,h),β(i,j) = auvX
uY v = p̆(x, y).

Coppersmith [2] has a lemma that finds a k2 × k2 matrix of a large determinant, where

W = maxij |aij |XiY j .

Lemma 4.1. There is a k2× k2 submatrix of M4, which we call S, with determinant at
least W k2

2−6k2δ2−2k2
in absolute value,

det(S) ≥
∣∣∣W k2

2−6k2δ2−2k2
∣∣∣ .

If the largest coefficient of p̆ is ă00, ă0δ, ăδ0or ăδδ, then the bound is W k2
.

28 CHAPTER 4. FINDING SMALL ROOTS OF POLYNOMIAL EQUATIONS

Figure 4.4: The matrix A4 of size (k+ δ)2×k2, where the F block is given in Figure 4.5.

Lemma 4.1 finds a k2 × k2 matrix from the right hand block of M4, with large
determinant. Select 2kδ + δ2 columns of the left hand block of M4 to extend this to a
(k+ δ)2× (k+ δ)2 matrix with the same determinant. To make this into a square matrix
we need to fill in with 0’s in the blank spaces. We can rearrange this new matrix and
get a matrix with the k2× k2 submatrix of M4 in the upper left corner with 0’s beneath
to fill up the rows, and with the columns with 1’s to the right. These can be picked
so that we have an identity block, or at least an invertible block. The determinant of
this new matrix will be the determinant of the submatrix times the determinant of the
invertible matrix. So the determinant will be greater than or equal to the determinant
of the k2 × k2 matrix we have in Lemma 4.1.

Let T be a ((k+δ)2 +k2)×(k+δ)2 permutation matrix which selects the appropriate
(k+ δ)2 = (2kδ+ δ2) + k2 columns of M4, so that M4T is a quadratic matrix. From the
Lemma 4.1 and the discussion above we have

det(M4T) ≥
∣∣∣W k2

2−6k2δ2−2k2
∣∣∣

and from (4.9) we get

det(∆1M1∆2T) ≥
∣∣∣W k2

2−6k2δ2−2k2
∣∣∣ .

We choose T such that
∆2T = T∆3

and get
det(∆1M1T∆3) ≥

∣∣∣W k2
2−6k2δ2−2k2

∣∣∣ . (4.10)

We compute the determinants of ∆1, ∆2 and ∆3,

det(∆1) =
k+δ−1∏
h=0

k+δ−1∏
g=0

XgY h = (XY)
k+δ)2(k+δ−1)

2

4.2. COPPERSMITH - THE BIVARIATE CASE 29

F =



p00 0 · · · 0

p01Y p00
...

... p01Y
. . .

p0δY
δ

... p00

0 p0δY
δ p01Y

... 0
...

0
... p0δY

δ

p10X 0 0

p11XY p10X
...

... p11XY 0

p1δXY
δ

... p10X
0 p1δXY

δ p11XY
... 0

...

pδδX
δY δ

... p1δXY
δ

0 pδδX
δY δ 0

... 0
...

... pδδX
δY δ


Figure 4.5: The F block of size ((δ + 1)(δ + k) + 1)× k in the A4 matrix.

and

det(∆2) = det(∆3) =
k−1∏
i=0

k−1∏
j=0

X−iY −j = (XY)
k2(k−1)

2 ,

where ∆2 and ∆3 have the same determinant since they both are diagonal matrices and
the only difference is some 1’s on the diagonal. We multiply the determinants of ∆1 and
∆2 and get

det(∆1) det(∆2) = (XY)[(k+δ)
2(k+δ−1)−k2(k−1)]/2

= (XY)[3k
2δ+k(3δ2−2δ)+(δ3−δ2)]/2. (4.11)

We can rewrite (4.10) to

|det(∆1)| |det(M1T)| |det(∆3)| ≥ |W k2
2−6k2δ2−2k2 |

and

|det(M1T)| ≥ W k2
2−6k2δ2−2k2

det(∆1) det(∆2)
, (4.12)

30 CHAPTER 4. FINDING SMALL ROOTS OF POLYNOMIAL EQUATIONS

where we use that the determinant of ∆2 and ∆3 are the same. We combine (4.11) and
(4.12),

|det(M1T)| ≥W k2
2−6k2δ2−2k2

(XY)−[3k2δ+k(3δ2−2δ)+(δ3−δ2)]/2.

Let this lower bound be called Z.
We take M3 as described before, and extend it with the last rows of M2 so that we

get a matrix of size (k + δ)2 × (k + δ)2 + k2. We call this matrix M ′3. We now get M̂3

as our sublattice.

M1T ∼M ′3T =
(
M̂3 0
C3 I

)
.

M ′3T is obtained from M1T by multiplying with integer matrices with determinant 1,
so the determinants of the two matrices are the same in absolute value. Since the M3T
matrix have a block lower triangular structure, we get that the determinant of the M3T
matrix equals that of M̂3

|det(M1T)| =
∣∣det(M ′3T)

∣∣ =
∣∣∣det(M̂3)

∣∣∣ |det(I)| =
∣∣∣det(M̂3)

∣∣∣ . (4.13)∣∣det(M ′3T)
∣∣ = |det(M1T)| ≥ Z. (4.14)

The row sT in M3T is obtained from s by deleting columns and its Euclidean norm is
bounded by the length of s,

‖sT‖ ≤ ‖s‖ < k + δ. (4.15)

From (4.13) and (4.14) we get

|det(M̂3)| = |det(M3T)| ≥ Z. (4.16)

To apply Lemma 2.1 to M̂3 and sT , with n = 2kδ + δ2 the norm of sT must satisfy

‖sT‖ < det(M̂3)
1
n 2−

n−1
4 .

This requires that (4.15) and (4.16) holds in addition to

k + δ ≤ Z
1
n 2−

n−1
4 ,

which translates to
(k + δ)n ≤ Z × 2−

n(n−1)
4 . (4.17)

We recall that n = 2kδ + δ2 and

Z = W k2
2−6k2δ2−2k2

(XY)−
[3k2δ+k(3δ2−2δ)+(δ3−δ2)]

2 .

After some tedious computations (4.17) can be written as

XY ≤W 2/3δ−ε′214δ/3−o(δ)

where

ε′ ≈ 2
3k

(
1− 2

3δ

)
.

We now assume that XY satisfies this bound. We use the LLL-algorithm on M̂3 , and
we can use Lemma 2.1 to confine the short vectors to a hyperplane, included the sT
vector.

4.3. HOWGRAVE-GRAHAM - THE UNIVARIATE CASE 31

4.2.3 Finding the solution (x0, y0)

We do this exactly in the same way as in the univariate case. But instead of the s vector
we now use the sT vector which is shortened. We will need to find more matrices, but
we will in the end get an equation on the same form, but with two variables instead of
one. We denote the equation as

c(x0, y0) =
k+δ−1∑
g=0

k+δ−1∑
h=0

aghx
g
0y
h
0 = 0.

All the multiples of p(x, y) of sufficiently low degree are already used to define the
sublattice M̂ and c(x, y) is hence not a multiple of p(x, y).

Definition 4.1. Let fa(x) and gc(x) be in Z[x] and let a0, ..., an, c0, ..., cm be elements
in Z. We have two polynomials:

fa(x) = a0 + a1x+ ...+ anx
n,

gc(x) = c0 + c1x+ ...+ cmx
m.

We define the resultant of fa, gc, res(fa, gc), to be the determinant of this (m+n)×(m+n)
matrix 

a0 a1 · · · an
a0 a1 · · · an

· · ·
a0 a1 · · · an

c0 c1 · · · cm
c0 c1 · · · cm

· · ·
c0 c1 · · · cm


where there are m rows with a and c rows of w. The blank spaces are filled with zeros.

We take the resultant of the polynomials p(x, y) and c(x, y)

q(x) = resy(c(x, y), p(x, y)).

Since p(x, y) is an irreducible polynomial the resultant will give a nonconstant integer
polynomial. Since q(x) only depends on x it is easy to compute its roots, which will
include x0. Given x0 we can find y’s by solving p(x0, y) = 0, where y0 will then be one
of the roots. We now have the desired solution (x0, y0).

4.3 Howgrave-Graham - the univariate case

An alternative technique for finding small roots of univariate modular equations was put
forward by Nicholas Howgrave-Graham in [5]. It is related to Coppersmith’s method,
but is more direct. Howgrave-Graham’s method uses polynomials that are multiples of

32 CHAPTER 4. FINDING SMALL ROOTS OF POLYNOMIAL EQUATIONS

p(x) and N , whereas Coppersmith only uses p(x). The matrix in Howgrave-Graham’s
method are smaller than in Coppersmith’s method, and it is lower triangular so it is
easy to find the determinant.

Howgrave-Graham proved that Coppersmith’s algorithm and his algorithm are equiv-
alent, but Howgrave-Graham’s may be preferred for computational efficiency.

As for Coppersmith’s method the purpose is to find the small roots of a monic,
univariate modular equation

p(x) = a0 + a1x+ a2x
2 + · · ·+ aδ−1x

δ−1 + xδ ≡ 0 (mod N).

The solution is x0, and δ is the maximal degree for the polynomial. For any polynomial
h(x) and natural number X we have the following upper bound on the absolute size of
h(x)

|h(x)| ≤ |a0|+ |a1x|+ · · ·+ |xδ|
≤ |a0|+ |a1X|+ · · ·+ |Xδ|

for all |x| ≤ X.

4.3.1 Building the matrix M5

Howgrave-Graham uses a different indexation, where 1 ≤ i, j ≤ n, v =
⌊
i−1
δ

⌋
and

u = i− 1− δv. We define a lower triangular (hδ)× (hδ) matrix M5, where h ≥ 2 and X
a natural number. The matrix M5 = (mij) as seen in Figure 4.6 have entries

mij = eijX
j−1,

where eij is the coefficient of xj−1 in

qu,v(x) = N (h−1−v)xu(p(x))v.

We observe that this matrix is smaller than the matrix in Coppersmith’s univariate case.
For all u, v ≥ 0 the polynomial equation

qu,v(x0) = 0 (mod Nh−1)

have a solution x0. The determinant of the matrix M5 will be the entries on the diagonal,

det(M5) = Xhδ(hδ−1)N (hδ(h−1))/2. (4.18)

Notice that we can find the determinant directely, and we do not need to find a sublattice
of M5. We can work directely with M5.

4.3. HOWGRAVE-GRAHAM - THE UNIVARIATE CASE 33

M5 =



Nh−1 0 ··· ... 0

0 Nh−1X 0 ···
...

...
. . . ···

0 ··· 0 Nh−1Xδ−1 0 ···

a0Nh−2 a1Nh−2X ··· Nh−2Xδ 0 ···

0 a0Nh−2X ··· Nh−2Xδ+1

0 0 a0Nh−2X2 ··· Nh−2Xδ+2

...
. . .

0 ··· a0Nh−2Xδ−1 a1Nh−2Xδ ··· Nh−2X2δ−1

a2
0N

h−3 ··· Nh−3X2δ

...
. . .

0 0


Figure 4.6: M5 matrix

4.3.2 Finding the solution x0

Let B5 be the LLL-reduced basis of the rows of M5, and the first row vector of B5 is b1.
We have that

B5 = H5M5,

for a matrix H5 = B5M
−1
5 . The equation in Proposition 2.2 and (4.18) give

‖b1‖ ≤ 2(hδ−1)/4X(hδ−1)/2N (h−1)/2,

which is exactly the same as in Coppersmith’s case. Let b1 = cM for some c∈Zn. We
look at the norm of b1,

‖b1‖ ≥
1√
hδ

hδ∑
j=1

|b1i|

=
1√
hδ

(∣∣∣∣∣
hδ∑
i=1

cimi,1

∣∣∣∣∣+

∣∣∣∣∣
hδ∑
i=1

cimi,2

∣∣∣∣∣+ · · ·+

∣∣∣∣∣
hδ∑
i=1

cimi,hδ

∣∣∣∣∣
)

=
1√
hδ

(∣∣∣∣∣
hδ∑
i=1

ciei,1

∣∣∣∣∣+

∣∣∣∣∣
(

hδ∑
i=1

ciei,2

)
X

∣∣∣∣∣+ · · ·+

∣∣∣∣∣
(

hδ∑
i=1

ciei,hδ

)
Xhδ−1

∣∣∣∣∣
)

≥ 1√
hδ
|h(x)| (4.19)

34 CHAPTER 4. FINDING SMALL ROOTS OF POLYNOMIAL EQUATIONS

for all |x| ≤ X where

h(x) =
hδ∑
i=1

ciei,1 +

(
hδ∑
i=1

ciei,2

)
x+ · · ·+

(
hδ∑
i=1

ciei,hδ

)
xhδ−1

= c1

hδ∑
j=1

e1,jx
j−1 + c2

hδ∑
j=1

e2,jx
j−1 + · · ·+ chδ

hδ∑
j=1

ehδ,jx
j−1. (4.20)

From (4.19) we observe that b1 is almost an upper bound for the polynomial h(x),
for |x| ≤ X. Since each sum in (4.20) is zero modulo Nh−1, we have that

h(x0) ≡ 0 (mod Nh−1).

We combine (4.19) and (4.20) and we can form a polynomial h(x) that satisfies h(x0) ≡ 0
(mod Nh−1) and

|h(x)| ≤
(

2
(hδ−1)

4

√
hδ
)
X

hδ−1
2 N

h−1
2

for all |x| ≤ X. Thus choosing

X =
⌈(

2−
1
2 (hδ)−

1
hδ−1

)
N

h−1
hδ−1

⌉
− 1

shows that we can make a polynomial h(x) such that h(x0) = 0 (mod Nh−1) and |h(x)| <
Nh−1 for all |x| ≤ X. This implies that h(x0) = 0 over the integers, for any x0 that
satisfies |x0| ≤ X and p(x0) = 0 (mod N).

Let us now look at how we can find h(x) by using our matrices. Let the columns of
M5 be mj ,

M5 = (m1 m2 · · · mhδ) .

We create a vector r(x)

r(x) =
(

1,
x

X
,
(x
X

)2
, . . . ,

(x
X

)hδ−1
)
.

The polynomial h(x) is created in such a way that

h(x) = h1M5 · r(x)
= b1 · r(x),

where h1 is the first row in H5, noticing that b1 = h1M5. As shown above this vector
will have x0 as a root. We can now solve this univariate polynomial equation over
the integers. After finding the solutions one can test each solution to see if it satisfies
p(x0) ≡ 0 (mod N).

Chapter 5

An example

Given the polynomial

p(x) = x3 − 4x2 − 3x− 10 (mod 1131)

where
(p(x))2 = x6 − 8x5 + 10x4 + 89x2 + 60x+ 100.

The degree δ is 3, and we choose h to be 3 so the requirement hδ ≥ 7 is fulfilled. Our
aim is to find the small roots of the polynomial equation,

p(x) = x3 − 4x2 − 3x− 10 (mod 1131) = 0

and we set the requirement X = 6, which means that we will find roots |x0| < 6, if there
exist some. In this small example it is easy to see that x = 5 is a root.

5.1 Coppersmith’s method

We will now try to find the small roots of our polynomial using Coppersmith’s method.
We make the matrix as in Coppersmith’s univariate case, and get a 15 × 15 M matrix
as shown in Figure 5.1. We take the determinant of the matrix and get

det(M) =
153841020405122283630137

203018823308689211155302473269248
.

We now want to do row operations on the M matrix, where we can interchange two
rows, and multiply one row and add it to another row. After doing about 50 operations
we get the following matrix M̃ on the desirable form, as shown in Figure 5.2. We take
the determinant of this matrix as well and get

det(M̃) =
153841020405122283630137

203018823308689211155302473269248
,

and we see that the two determinants are the same as expected. The matrix M̃ is block
upper triangular and we can now look at the smaller matrix M̂ which is a sublattice.

35

36 CHAPTER 5. AN EXAMPLE



1
9 0 0 0 0 0 0 0 0 −10 0 0 100 0 0

0 1
54 0 0 0 0 0 0 0 −3 −10 0 60 100 0

0 0 1
629

0 0 0 0 0 0 −4 −3 −10 89 60 100

0 0 0 1
639

0 0 0 0 0 1 −4 −3 4 89 100

0 0 0 0 1
649

0 0 0 0 0 1 −4 10 4 89

0 0 0 0 0 1
659

0 0 0 0 0 1 −8 10 4

0 0 0 0 0 0 1
669

0 0 0 0 0 1 −8 10

0 0 0 0 0 0 0 1
679

0 0 0 0 0 1 −8

0 0 0 0 0 0 0 0 1
689

0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1131 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1131 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1131 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 11312 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 11312 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 11312


Figure 5.1: The M matrix

We see M̂ in Figure 5.3. We use the LLL-algorithm on this matrix and end up with the
matrix B2, as seen in Figure 5.4. The first row is b1, and so on.

We have that M̃ = H1M , and we have computed H−1
1 as seen in Figure 5.5. After

using the LLL-algorithm on M̂ we get the B2 matrix, and since the LLL-algorithm is
just row operations we can write B2 = H2M̂ . The inverse of the H2 matrix is in Figure
5.6.

We have the vector r(x),

r(x) =

(
1, x, . . . , xhδ−1,−p(x)

N
,−xp(x)

N
, . . . ,−xδ−1 p(x)

N
,−
(
p(x)
N

)2

, . . . ,−xδ−1

(
p(x)
N

)h−1
)

which in this example is

r(x) =

(
1, x, x2, . . . , x8,− p(x)

1131
,−x p(x)

1131
,−x2 p(x)

1131
,−
(
p(x)
1131

)2

, x

(
p(x)
1131

)2

, x2

(
p(x)
1131

)2
)

where p(x) is our polynomial.

5.1. COPPERSMITH’S METHOD 37



1
9 0 0 5

972
5

1458
95

34992
245

104976
815

419904
125

78732 0 0 0 0 0 0

0 1
54 0 1

648
11

5832
97

69984
121

104976
2447

2519424
2015

2519424 0 0 0 0 0 0

0 0 1
324

1
486

19
11664

49
34992

163
139968

305
314928

12047
15116544 0 0 0 0 0 0

0 0 0 −377
648 −377

972 − 7163
23328 − 377

1296 −214513
839808 − 92365

419904 0 0 0 0 0 0

0 0 0 0 − 377
3888 − 377

5832 − 4147
69984 − 4147

69984 − 275587
5038848 0 0 0 0 0 0

0 0 0 0 0 − 377
23328 − 377

17496 − 377
15552 − 10933

419904 0 0 0 0 0 0

0 0 0 0 0 0 −142129
46656 −142129

34992 −142129
31104 0 0 0 0 0 0

0 0 0 0 0 0 0 −142129
279936 −142129

209952 0 0 0 0 0 0

0 0 0 0 0 0 0 0 − 142129
1679616 0 0 0 0 0 0

0 0 0 1
1944

1
2916

19
69984

1
3888

569
2519424

245
1259712 1 0 0 0 0 0

0 0 0 0 1
11664

1
17496

11
209952

11
209952

731
15116544 0 1 0 0 0 0

0 0 0 0 0 1
69984

1
52488

1
46656

29
1259712 0 0 1 0 0 0

0 0 0 0 0 0 1
419904

1
314928

1
279936 0 0 0 1 0 0

0 0 0 0 0 0 0 1
2519424

1
1889568 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1
15116544 0 0 0 0 0 1



Figure 5.2: The M̃ matrix.

38 CHAPTER 5. AN EXAMPLE



1
9 0 0 5

972
5

1458
95

34992
245

104976
815

419904
125

78732

0 1
54 0 1

648
11

5832
97

69984
121

104976
2447

2519424
2015

2519424

0 0 1
324

1
486

19
11664

49
34992

163
139968

305
314928

12047
15116544

0 0 0 −377
648 −377

972 − 7163
23328 − 377

1296 −214513
839808 − 92365

419904

0 0 0 0 − 377
3888 − 377

5832 − 4147
69984 − 4147

69984 − 275587
5038848

0 0 0 0 0 − 377
23328 − 377

17496 − 377
15552 − 10933

419904

0 0 0 0 0 0 −142129
46656 −142129

34992 −142129
31104

0 0 0 0 0 0 0 −142129
279936 −142129

209952

0 0 0 0 0 0 0 0 − 142129
1679616


Figure 5.3: M̂ matrix

We compute r(x)H−1
1 to get a new polynomial

r(x)H−1
1 =

(
1, x, x2,− p(x)

1131
,−x p(x)

1131
,−x2 p(x)

1131
,−
(
p(x)
1131

)2

, x

(
p(x)
1131

)2

, x2

(
p(x)
1131

)2

,

0, 0, 0, 0, 0, 0

)
.

We now shorten this vector by removing the last 6 entries with zeros. The vector is now
9 elements long, so it can be multiplied with the last column of H−1

2 matrix in Figure
5.6. We get

[r(x)H−1
1]sh · ((H−1

2)9)T = − 1
11312

(p(x))2 = 0.

Finding the roots of this polynomial is the same as finding the roots of p(x), except that
we do not have a modular equation. We solve and get that x0 = 5 is a root. It is smaller
than the X bound which was 6 in this example, and we got the desired root.

5.2 Howgrave-Graham’s method

We now try to solve the same polynomial equation using Howgrave-Graham’s method.
We make the matrix, as seen in Figure 5.7. This matrix is lower triangular, so we do not
have to do all the computations as we did in Coppersmith’s case to get it on this form.

The determinant of the M5 matrix is

det(M5) = 867572859423777011829071392228792942475362723656892416.

5.2. HOWGRAVE-GRAHAM’S METHOD 39



0 0 1
324

1
486

19
11664

49
34992

163
139968

305
314928

12047
15116544

0 1
54 − 1

324 − 1
1944

1
3888 − 1

69984 − 5
419904

7
2519424

43
15116544

0 0 1
81

2
243

19
2916 − 739

69984 − 197
11664 − 25657

1259712 − 43175
1889568

0 0 − 1
324 − 1

486 − 19
11664

1033
69984

317
15552

29317
1259712 − 224405

3779136

0 0 11
324

11
486 − 461

5832 − 37
2187 − 469

139968 − 19
157464

23233
3779136

1
9 0 − 1

324
1

324
7

3888
23

17496
491

419904
1225

1259712
11953

15116544

0 0 − 11
324 − 11

486 − 209
11664

1279
8748

28367
139968 − 695261

2519424 − 4265
1889568

0 1
27

41
162 − 797

1944
157
3888

313
69984 − 1609

104976
9311

2519424
167177

15116544

0 0 − 1
27 − 2

81 −1207
3888

3517
2592 −160673

139968
55063
419904 − 87773

5038848


Figure 5.4: The B2 matrix

The M5 matrix is LLL-reduced by the LLL-algorithm and we get the B5 matrix, B5 =
H5M5. The first row is b1, and so on. The B5 matrix can be seen in Figure 5.8, and the
H5 matrix in Figure 5.9.

We now have all the information we need to make the new polynomial which have
x0 as a root. We take the dot product of b1 and r(x) which is our constructed vector

r(x) =
(

1,
x

X
,
(x
X

)2
, . . . ,

(x
X

)hδ−1
)
.

In this example it will be

r(x) =
(

1,
x

X
,
(x
X

)2
, . . . ,

(x
X

)5
)
.

We have that h(x) = b1 · r(x), and we get the following polynomial

h(x) = 100 +
360
6
x+

3204
62

x2 +
864
63

x3 +
12960

64
x4 − 62208

65
x5 +

46656
66

x6

= 100 + 60x+ 89x2 + 4x3 + 10x4 − 8x5 + x6.

This polynomial have x0 as a root, and we are able to find the roots, one of which is
x0 = 5.

40 CHAPTER 5. AN EXAMPLE



1 0 0 0 0 0 0 0 0 −10 0 0 100 0 0

0 1 0 0 0 0 0 0 0 −3 −10 0 60 100 0

0 0 1 0 0 0 0 0 0 −4 −3 −10 89 60 100

0 0 0 0 0 0 0 0 0 1 −4 −3 4 89 100

0 0 0 0 0 0 0 0 0 0 1 −4 10 4 89

0 0 0 0 0 0 0 0 0 0 0 1 −8 10 4

0 0 0 0 0 0 0 0 0 0 0 0 1 −8 10

0 0 0 0 0 0 0 0 0 0 0 0 0 1 −8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 1131 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1131 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1131 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 1279161 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1279161 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1279161


Figure 5.5: H−1

1 matrix



1 0 0 0 0 1 0 0 0

1 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

−141 −2 6 0 3 0 0 1 0

−19 0 2 0 1 0 0 0 0

−4 0 1 0 0 0 0 0 0

−477 0 145 14 −3 0 4 0 1

−44 0 15 5 0 0 1 0 0

−3 0 1 1 0 0 0 0 0


Figure 5.6: H−1

2 matrix

5.2. HOWGRAVE-GRAHAM’S METHOD 41



1279161 0 0 0 0 0 0 0 0

0 7674966 0 0 0 0 0 0 0

0 0 7674966 0 0 0 0 0 0

−11310 −20358 −162864 244296 0 0 0 0 0

0 −67860 −122148 −162864 244296 0 0 0 0

0 0 407160 −732888 −5863104 8794656 0 0 0

100 360 3204 864 12960 −62208 46656 0 0

0 600 2160 19224 5184 77760 −373248 279936 0

0 0 3600 12960 115344 31104 466560 −2239488 1679616


Figure 5.7: The M5 matrix



100 360 3204 864 12960 −62208 46656 0 0

−11310 −20358 −162864 244296 0 0 0 0 0

0 −67860 −122148 −162864 244296 0 0 0 0

400 2040 14976 22680 57024 −171072 −186624 279936 0

1279161 0 0 0 0 0 0 0 0

1500 76260 184608 284904 91368 −513216 −699840 −839808 1679616

−41950 −718830 −1124856 −712584 −1334880 909792 1679616 1959552 1679616

−235420 −1884156 2275038 1456488 1435968 1578528 1492992 1679616 1679616

−269950 5319816 1032174 1187784 2818800 1874016 1586304 1399680 1679616


Figure 5.8: The B5 matrix

42 CHAPTER 5. AN EXAMPLE



0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 4 1 0

1 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 15 5 1

0 0 0 5 10 1 146 15 1

0 0 1 22 22 1 134 14 1

0 1 1 25 28 1 128 13 1


Figure 5.9: The H5 matrix

Bibliography

[1] Don Coppersmith. Finding a small root of a univariate modular equation. In EU-
ROCRYPT, pages 155–165, 1996.

[2] Don Coppersmith. Small solutions to polynomial equations, and low exponent rsa
vulnerabilities. J. Cryptology, 10(4):233–260, 1997.

[3] Jean-Sébastien Coron. Finding small roots of bivariate integer polynomial equations
revisited. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT, volume
3027 of Lecture Notes in Computer Science, pages 492–505. Springer, 2004.

[4] Jean-Sébastien Coron. Finding small roots of bivariate integer polynomial equations:
A direct approach. In Alfred Menezes, editor, CRYPTO, volume 4622 of Lecture
Notes in Computer Science, pages 379–394. Springer, 2007.

[5] Nick Howgrave-Graham. Finding small roots of univariate modular equations revis-
ited. In Michael Darnell, editor, IMA Int. Conf., volume 1355 of Lecture Notes in
Computer Science, pages 131–142. Springer, 1997.

[6] A.K Lenstra, H.W Lenstra, and L Lovász. Factoring polynomials with rational
coefficients. Matematische Annalen, 261(4), 1982.

43

	Title Page
	masteroppgave.pdf

