
clMF: A Fine-Grained and Portable Alternating Least

Squares Algorithm for Parallel Matrix Factorization

Jing Chena,∗, Jianbin Fanga,∗, Weifeng Liub,∗, Tao Tanga, Canqun Yanga

aCollege of Computer, National University of Defense Technology, Changsha, China
bDepartment of Computer Science, Norwegian University of Science and Technology,

Norway

Abstract

Alternating least squares (ALS) has been proved to be an effective solver
for matrix factorization in recommender systems. To speed up factorizing
performance, various parallel ALS solvers have been proposed to leverage
modern multi-cores and many-cores. Existing implementations are limited
in either speed or portability. In this paper, we present an efficient and
portable ALS solver (clMF) for recommender systems. On one hand, we
diagnose the baseline implementation and observe that it lacks of the aware-
ness of the hierarchical thread organization on modern hardware. To achieve
high performance, we apply the thread batching technique, the fine-grained
tiling technique and three architecture-specific optimizations. On the other
hand, we implement the ALS solver in OpenCL so that it can run on various
platforms (CPUs, GPUs and MICs). Based on the architectural specifics, we
select a suitable code variant for each platform to efficiently map it to the un-
derlying hardware. The experimental results show that our implementation
performs 2.8×–15.7× faster on an Intel 16-core CPU, 23.9×–87.9× faster on
an NVIDIA K20C GPU and 34.6×–97.1× faster on an AMD Fury X GPU
than the baseline implementation. On the K20C GPU, our implementation
also outperforms cuMF over different latent features ranging from 10 to 100
with various real-world recommendation datasets.

Keywords: Matrix factorization, Alternating least squares, Performance

∗Corresponding author
Email addresses: jingchen95@yeah.net (Jing Chen), j.fang@nudt.edu.cn

(Jianbin Fang), weifeng.liu@ntnu.no (Weifeng Liu)

Preprint submitted to Elsevier April 25, 2018

1. Introduction

In a recommender system, we aim to build a model by training with ob-
served incomplete rating data (i.e., a user’s preference over all items) and
then predict his/her preference over items not rated [1]. Among the rec-
ommendation approaches, matrix factorization (MF) was empirically shown
to be a better solution than the traditional nearest-neighbour approaches
in the Netflix Prize competition [2]. Since then, there has been much work
dedicated to the design of fast and scalable methods for large-scale matrix
factorization problems [3, 1, 4, 5, 6, 7].

Among the matrix factorization techniques, alternating least squares (ALS)
has been proved to be an effective one [1]. Compared to stochastic gradient
descent (SGD) [8, 9], the ALS algorithm is not only inherently parallel, but
can incorporate implicit ratings [1]. Nevertheless, the ALS algorithm involves
parallel sparse matrix manipulation [10] which is challenging to achieve high
performance due to imbalanced workload [11, 12, 13], random memory ac-
cess [14, 15], unpredictable amount of computations [16] and task depen-
dency [17, 18, 19]. This particularly holds when parallelizing and optimizing
ALS on modern multi-cores and many-cores [20]. To address the issue, re-
searchers have investigated various solutions. Rodrigues et al. present a
CUDA-based ALS implementation on GPU, which is claimed to run faster
than the implementation on a multi-core CPU [21]. Tan et al. provide a
CUDA-based matrix factorization library (cuMF), which uses various tech-
niques to maximize the performance on one or multiple GPUs [22]. Gates
et al. formulate ALS as a mix of cache-optimized algorithm-specific kernels
and batched Cholesky factorization, and accelerate it on GPUs and multi-
threaded CPUs [23].

In spite of the common efforts, these solutions are still very limited in
speed and portability. In terms of speed, we observe that the CUDA im-
plementation on a K20C GPU runs much slower than the OpenMP version
on a 16-core CPU (Figure 1). We argue that this is possibly because the
parallel ALS code has been mapped to the massive cores in an inappropri-
ate manner. Thus, converting the code into a right form is highly required
according to the architectural specifics. In terms of portability, the available
implementations are often limited to vendor-specific platforms. Running the
ALS code on emerging hardware often needs from-scratch code engineering.
The motivating observations are further detailed in Section 2.4.

In this paper, we present an efficient and portable ALS solver (clMF1).

1clMF is a name short for “an ALS solver for matrix factorization in OpenCL”, which
corresponds to cuMF (“an ALS solver for matrix factorization in CUDA”). The source code

2

On one hand, we diagnose the baseline implementation and observe that it is
unaware of the hierarchical thread organization on modern multi-cores and
many-cores. This leads to an inefficient and unbalanced use of hardware re-
sources: unbalanced thread use and scattered memory access. Thus, we apply
the thread batching technique, the fine-grained tiling technique and three
architecture-specific optimizations to mine the hardware potentials. On the
other hand, we implement the ALS solver in OpenCL so that it can run on
CPUs, GPUs and MICs. Based on the architectural specifics, we select a
suitable code variant for each platform to efficiently map it to the underly-
ing hardware. The experimental results show that our implementation per-
forms 2.8×–15.7× faster on an Intel 16-core CPU, 23.9×–87.9× faster on an
NVIDIA K20C GPU and 34.6×–97.1× faster on an AMD Fury X GPU than
the baseline implementation. Our implementation also outperforms cuMF for
six real-world recommender datasets (Netflix, Movielens 10M, Movielens
20M, YahooMusic R1, YahooMusic R4, and Delicious).

To summarize, we make the following contributions.

• We present an efficient and portable ALS recommender system by ap-
plying the thread batching parallelization technique, the fine-grained
tiling technique and the architecture-specific optimizations.

• We implement the recommender system with OpenCL and customize
code variants for different architectures. The portable implementation
facilitates us to enable/disable an optimization in an easy manner.

• We evaluate the ALS solver on four modern multi-/many-core platforms
(CPU, GPU and MIC) and six recommender real-world datasets, and
demonstrate that our ALS solver is efficient and portable.

The remainder of this paper is organized as follows. Section 2 describes
the background of matrix factorization and the ALS algorithm, and the
motivation. We present our approach in Section 3 and evaluate it in Sec-
tion 5. Section 4 introduces the experimental platforms and the recommender
datasets. Section 6 lists the related work, and Section 7 concludes our work.

2. Background

In this section, we describe the matrix factorization problem and the ALS
algorithm. Then we analyze ALS in terms of time and space complexity, and
introduce the motivation of our work with three observations.

of the clMF implementation is online available: https://github.com/jingchen95/clMF.

3

2.1. Problem Definition

The input of matrix factorization is a relation matrix between users and
items, R(m × n), where m denotes the number of users and n denotes the
number of items. Due to the sparsity of R, matrix factorization maps both
users and items to a joint factor space of dimensionality f , a.k.a. latent
feature, so that predicting unknown ratings can be estimated by the inner
products of two vectors, xu of matrix X(m× f) and yi of matrix Y (n× f),

rui = xuyi
T , (1)

where xu denotes the extent of user’s interest on items. Similarly, yi denotes
the extent to which the item owns these factors, and rui denotes an entry
of the rating matrix R. The key of the problem is to obtain xu and yi so
that R ≈ XY T . The basic idea for matrix factorization is to minimize the
regularized squared error on the observed ratings to learn the factors,

L(X, Y) =
∑
u,i∈Ω

(rui − xTuyi)2 + λ(|xu|2 + |yi|2), (2)

where Ω are the known nonzero ratings of R, and xTu are the uth row vectors
of the matrix X, yi are ith column vectors of matrix Y , the constant λ is the
regularized coefficient to avoid over-fitting. Therefore, the key to solve this
problem is to find approaches of getting the matrices X and Y .

2.2. The ALS Algorithm

Alternating least squares (ALS) is an efficient matrix factorization tech-
nique for recommender systems. Because Function 2 is not convex, the min-
imization principle of alternating least squares is to keep one fixed while cal-
culating the other : we fix the Y matrix to calculate the X matrix so as to
get vectors xu, and vice versa. In this way, the problem becomes a quadratic
function. The procedure iterates until it converges. First, we minimize the
equation over X while fixing Y , and the function becomes

L(X) =
∑
i∈Ωu

(rui − xTuyi)2 + λ|xu|2 (3)

By calculating the partial derivative of xu in Function 3 and letting the
partial derivative equal zero, we can obtain

xu = (Y TY + λI)−1Y T ru, (4)

where I is the unit matrix ranked f , and ru is the uth rows of R. In the
same way, we can obtain yi

4

Algorithm 1 The ALS algorithm

1: procedure ALS(R, f , λ; X, Y)
2: X ← 0, Y ← random initial guess
3: repeat
4: for row u← 1,m do
5: xu ← (Y TY + λI)−1Y T ru by solving the linear system
6: (Y TY + λI)xu = Y T ru
7: end for
8: for column i← 1, n do
9: yi ← (XTX + λI)−1XT ri by solving the linear system

10: (XTX + λI)yi = XT ri
11: end for
12: until reaching the maximum iterations
13: end procedure

yi = (XTX + λI)−1XT ri. (5)

The ALS algorithm is shown in Algorithm 1. We initialize Y with small
random numbers instead of zeros when starting to update theX matrix. Note
that xu or yi can be obtained by solving linear systems (Lines 6 and 10). The
algorithm iterates until it reaches the maximum specified cycles or error rate.

2.3. Algorithm Analysis

The algorithm consists of three steps when factorizing the rating matrix.
When solving each user xu of X, the three steps are (S1) Y TY + λI, (S2)
Y T ru, and (S3) solving the linear system (Line 6 of Algorithm 1). When
solving each item yi of Y , these three steps are (S1) XTX + λI, (S2) XT ri,
and (S3) solving the linear system (Line 10 of Algorithm 1). A baseline
implementation of the ALS algorithm is shown in Algorithm 2, and the three
steps are located on Lines 6–7, Lines 8–15, and Lines 16–17, respectively.

As for S1, calculating Y TY requires nnzi × f × (f + 1)/2 multiply-add
operations for a row ofR, where nnzi denotes the number of nonzero entries in
the current row. Therefore, the total computing cost is nnz×f×(f+1), where
nnz denotes the total number of non-zero elements in R. In terms of memory
footprint, we need a matrix smat sized of f × f (Line 6 of Algorithm 2) to
store the results of Y TY in global memory when updating a row. Thus, the
total memory footprint for m rows is m× f × f .

Calculating S2 requires nnzi × f multiply-add operations when updating
the ith row of X. Thus, the total computing cost of S2 is nnz × f × 2. This

5

step needs a vector svec sized of f (Line 12 of Algorithm 2) to store the
results of Y T ru, and thus the total memory footprint for m rows is m× f .

For matrix factorization, cholesky decomposition, LU decomposition and
conjugate gradient method (CG) are three means to solve the linear system of
dense matrix. Cholesky and LU decomposition are direct methods solved by
the highly optimized BLAS/LAPACK library, while CG solve a linear system
in an iterative fashion. In this paper, we exploit the cholesky decomposition
method to solve smat · xu = svec (S3). The time complexity of cholesky
decomposition is O(f 3) for updating a row ofR. To summarize, we notice that
S1 is the most time-consuming step, which is confirmed by our experimental
results.

2.4. Motivation

When running parallel ALS implementations SAC [21] and cuMF [22] on
multi-cores and many-cores, we have the following three observations.

Observation 1: ALS on CPUs runs faster than on GPUs.
Thanks to a larger memory bandwidth and more hardware cores, using

GPUs can often bring a much better performance than using a traditional
multi-core CPU. This particularly holds for the data-intensive codes such as
the ALS solver. However, we observe that this is not necessary the case in
the context. Figure 1 compares the performance of ALS on a 16-core CPU
and on a K20C GPU. We see that the ALS implementation (in [21]) runs,
on average, 11.87× faster on the CPU than on the GPU. This unsatisfactory
performance of the current implementation leads us to restructure the algo-
rithm and customize optimizations according to the architectural specifics.

Observation 2: Unbalanced resource utilization of state-of-the-art ac-
celerators leads to degraded factorizing performance.

Modern GPUs contain rich memory resources (global memory, texture
memory, shared memory, and registers) and thread resources (each multi-
processor can run thousands of threads). How to take advantage of these
resources in a balanced manner (neither too many nor not too few) is criti-
cal to the overall performance. In cuMF, a thread block is used to update a
row (Y TY) or a column (XTX) [22]. The entire task of calculating a smat

(S1) is partitioned into multiple tiles, each sized of 10× 10. Then cuMF lets
each thread work on such a data tile. Instead of using a loop to iterate a
10× 10 data tile, it fully unrolls the loop and allocates 100 registers to store
the temporary results of smat. Taking f = 10 for example, cuMF uses only
one thread to calculate the temporary results of Y TY . On one hand, this
approach leaves many threads to be idle and cannot make the best of thread
resources per warp. On the other hand, the completely unrolled loop con-
sumes too many registers and may reduce the number of active warps [24].

6

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

M
V10

M
V20

N
TFX

YM
R
1

YM
R
4

D
ELI

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
,l
o
g
 s

c
a
le

]

OpenMP CUDA

Figure 1: Performance comparison of an OpenMP implementation on a 16-core CPU
versus a CUDA implementation on a K20C GPU with six datasets.

These result in poor performance in particular when f is small (i.e., f < 70),
and lead us to exploit the hardware resources in a balanced manner.

Observation 3: The current implementation cannot run on the copro-
cessors such as Intel Xeon Phi or AMD GPUs.

Nowadays platforms often incorporate specialized processing capabilities
(e.g., GPUs, MICs, FPGAs and DSPs) to handle particular tasks. Adding
the specialized units gains performance or energy efficiency. However, using
such platforms is challenging. In particular, programmers have to use vendor-
specific programming interface to exploit the diversity. This is the same for
the ALS recommender systems, i.e., the OpenMP version of ALS can run only
on traditional multi-/many-cores, while the CUDA version is constrained to
NVIDIA GPUs. The current implementation cannot be offloaded to run on
Intel Xeon Phi and/or AMD GPUs. Porting it, which requires restructuring
the code from scratch, is time-consuming and error-prone. Thus, a portable
recommender system is required. Further, a simple code rewriting in portable
programming interfaces such as OpenCL will again lead to a poor hardware
utilization. Speed and portability need to be taken into account as a whole.

3. Design and Implementation

In this section, we give the baseline design of ALS and then present
our approach (clMF). We customize the optimization techniques for different
architectures and explain how to select an appropriate code variant in detail.

7

Algorithm 2 The Baseline ALS algorithm (updating X).

1: procedure Update X over Y(R, X, Y , f , λ; X)
2: for u← 1,m do . Foreach row
3: xu ← GetBaseAddr(X,u, f)
4: omegaSize← CountNonZeros(R, u)
5: if omegaSize > 0 then
6: smat← Y TY . smat: sub-matrix
7: smat← smat+ λI
8: for c← 0, f do
9: for idx← row ptr[u], row ptr[u+ 1] do

10: idx2← colMajored sparse id[idx]
11: idx3← col idx[idx]× f + c
12: svec[c]← svec[c] +R[idx2]× Y [idx3]
13: . svec: sub-vector
14: end for
15: end for
16: LLT ← smat . with Cholesky
17: solve LLTx = svec for x
18: end if
19: end for
20: end procedure

3.1. Baseline Design

In [21], Rodrigues et al. present an ALS solver in CUDA and OpenMP,
which is taken as our baseline implementation. Algorithm 2 illustrates the
algorithm skeleton. Since updating X is similar to updating Y , we only show
the former part. Lines 6–7 calculate (Y TY + λI) and smat (a matrix sized
of f × f) is introduced to store the temporary results. Lines 8–15 evaluate
Y T ru which is stored temporally in a vector svec sized of f . The baseline
implementation employs the Cholesky method to factorize smat shown in
Line 16 and evaluates the current row (xu) in Line 17. For the baseline
design, each thread updates a row xu or a column yi. In total, we have m
(or n) tasks and at most m (or n) threads can run concurrently.

Notation. To save memory space, we use the compressed sparse row
(CSR) form to store the sparse rating matrix R. Three data structures are
introduced to represent the original matrix. A value array stores the nonzero
elements of R in a row-major manner, and its size equals the number of
nonzero elements. A col idx array stores the column index of each nonzero
element in R, and its size also equals the number of nonzero elements. A
row ptr array stores the index of each row’s first nonzero element in value,
and the difference between two continuous elements in row ptr represents

8

Figure 2: An example of the compressed sparse row storage (CSR) format. R has 5 rating
scores out of 16 elements and three data structures are used in the representation.

the number of nonzeros in the current row. Thus, the size of row ptr is the
number of rows plus 1. Figure 2 illustrates the structure of CSR. The data
structures (value, col idx, row ptr) are introduced to represent R (See
Lines 8–15 of Algorithm 2). Note that we use the compressed sparse column
(CSC) format when updating yi. This representation is similar to that of
CSR, except that it stores the nonzero entries in a column-major manner.

3.2. ALS Parallelization on Modern Hardware

As shown in Algorithm 2, the baseline implementation uses one thread to
update a row of X or a column of Y . This straightforward implementation
can provide sufficient parallelism to utilize the massive hardware threads on
GPUs, MICs or multi-core CPUs. Nevertheless, the baseline implementation
is unaware of the hierarchical thread organization (i.e., the two-level paral-
lelism) of modern hardware architectures, which results in two major issues:
unbalanced thread use and scattered memory access [25].

3.2.1. Basic Parallelization Technique

Modern many-core architectures organize threads in a hierarchical fash-
ion. On GPUs, a warp of threads are organized to run on a SIMT core.
When the threads within a warp diverge, they are serialized. Meanwhile,
the threads from different warps can run concurrently. On CPUs or MICs,
a group of fine-grained threads are expected to be packed to run on a SIMD
core. To mine the hardware potentials, the threads on either a SIMT core
or SIMD core have to follow the same execution path. For a typical rec-
ommender dataset, the number of nonzeros varies over rows (or columns).
When two neighboring threads updating two continuous rows (or columns),
it is likely that the thread on the longer row takes more time while the other
thread stays idle. The problem becomes severe when the length of rows (or
columns) is significantly uneven, resulting in unbalanced thread use.

In terms of memory accesses, the threads within a GPU warp prefer
accessing data elements near each other to guarantee coalesced memory ac-
cesses. On CPUs (or MICs), the memory accessing requests are performed

9

Figure 3: The illustration of the basic parallelization strategy, where f=4, nnzi=3. The
size of the matrix sY is 4×3. sY T is the transpose of the matrix sY .

in a cacheline granularity. Nonetheless, the baseline implementation accesses
the global memory space in an inefficient manner. Specifically, each thread
calculates a matrix (smat sized of f × f) and a vector (svec sized of f).
Thus, the distance between two accesses of neighboring threads is at least
(f + 1)× f . This scattered memory accesses lead to a poor bandwidth use.

To address the issues, we apply the thread batching technique and use a
SIMT/SIMD core to update a row or a column of R. For S1 of Algorithm 2,
we exploit a 1D thread configuration and let each thread work on calculating
a row of smat. To fully exploit the register file, we allocate a register array
(sized of f) for each thread to store the temporary results. Once finished, the
temporary results are written into the corresponding rows of smat. Figure 3
illustrates the basic parallelization technique on the thread usage, where
there are 3 non-zeros and f = 4. We move the corresponding columns of
Y according to the column indices of these non-zeros into shared memory
sY . Each thread deals with the computing task of a row in sY with all the
columns of sY T , e.g., thread 0 calculates the multiply-add product of the first
row of sY with all the columns of sY T (Figure 3). Compared with S1, S2
computes the multiplication of a matrix sY sized of f × nnz with a vector v
sized of nnz. In the same way, we exploit a 1D grid of threads configuration
and allocate one register for each thread. This allocated register stores the
temporary result of each row in matrix sY with the vector v. In addition, a
thread block is applied to factorize a smat matrix (i.e., solving S3). In this
way, the thread batching technique can not only avoid unbalanced thread use
but batch the data accessing requirements. Meanwhile, it is applicable not
only on CPUs, but also on GPUs and MICs.

10

Figure 4: The fine-grained tiling strategy used in clMF when calculating Y TY . In the
figure, we assume f=100, nnz=4, nnz batch=2, bx = by = 2, tx = ty = 25, and tz = 1.

3.2.2. Fine-Grained Tiling Technique

The aforementioned technique is equally used to update X or Y in cuMF.
Nevertheless, we observe that their approach leaves many threads to be idle
and cannot make the best of thread resources per warp [24]. Also, cuMF

completely unrolls the loop with 100 registers, which consumes too many
resources and may reduce the number of concurrent warps. These result in
poor performance particularly when f is small (i.e., f < 70), and lead us to
exploit the hardware resources in a balanced manner.

Based on the basic technique, we further partition smat into multiple tiles,
each updated by a thread block, to increase the data parallelism. Specifically,
we use a 3D grid (instead of a 1D grid in basic parallelization technique) of
thread blocks: (bx, by, bz), in which bz corresponds to the batch size of rows
(or columns) in the R matrix. At the same time, we divide smat into bx× by
tiles, each of which is solved by one thread block. Thus, there are a total of
bx×by thread blocks to update a row (or a column). Due to the independence
of the data tiles, these bx× by thread blocks can run concurrently. Further,
we use a 3D grid of threads per block to calculate each data tile: (tx, ty,
tz). Such a thread organization can achieve coalesced memory accesses when
loading the corresponding columns of Y into shared memory.

Figure 4 illustrates an example of the fine-grained tiling technique used
in updating a specific row. Here we introduce another parameter nnz batch
to denote the number of column vectors that are moved from global memory
to shared memory per time. By doing so, we aim to avoid allocating a too
large on-chip buffer and increase the number of active warps. We set f=100,
nnzi=4 (i.e., the number of non-zeros in the current row), and nnz batch=2.
As for the thread configuration, we set bx=by=2, tx=ty=25. Thus, there are

11

1 float sum[f*f]={0};

2 for (int i = lx; i < f; i+=ws){

3 for (int j = i; j < f; j++) {

4 for (int z = 0; z < omegaSize; z++){

5 int d = col_idx[row_ptr + z] * f;

6 sum[i*f+j] += Y[d + i] * Y[d + j];

7 }

8 smat[(j*f)+i] = sum[i*f+j];

9 smat[(i*f)+j] = sum[i*f+j];

10 }

11 }

(a) Original code.

1 float sum0=0,sum1=0,sum2=0,sum3=0,sum4 =0;

2 for (int z = 0; z < omegaSize; z++){

3 int d = col_idx[row_ptr + z] * f;

4 if(0<=lx<f) sum0 += Y[d + lx] * Y[d + 0];

5 if(1<=lx<f) sum1 += Y[d + lx] * Y[d + 1];

6 if(2<=lx<f) sum2 += Y[d + lx] * Y[d + 2];

7 if(3<=lx<f) sum3 += Y[d + lx] * Y[d + 3];

8 if(4<=lx<f) sum4 += Y[d + lx] * Y[d + 4];

9 ...

10 }

11 // updating the smat matrix

(b) Unrolling the code.

Figure 5: An example of unrolling the code to calculate Y TY . lx is the local work-item
index, ws is the work-group size, f denotes the latent factor, omegaSize is the number
of non-zero entries of the current row, smat is the allocated matrix to store temporary
results, col idx and row ptr are the structures introduced in Figure 2. This example is
the case when f = 5.

a total of 4 thread blocks, each with 625 threads. Accordingly, we partition
the 100× 100 smat into four tiles (each sized of 50× 50), which are handled
by these four thread blocks, respectively. For a specific data tile, we use a
thread block (tx × ty × tz) to deal with the computing task in an iterative
manner. As shown in Figure 4, we first move the corresponding columns of
Y sized of 2 × 50 into shared memory sY and sY T , and use a thread block
(25× 25× 1) to calculate the dark gray tile. To store the temporary results,
we allocate a four-element register array (SUM) for each thread. A total of
four iterations are required to span all the data elements of the current tile.
Once it is done, we will move the following column vectors (2× 50) from Y
into sY and sY T , and do the same to aggregate the temporary results. In
the end, we write SUM back into the global memory space (smat).

This fine-graining tiling technique can use the hardware resource (e.g.,
registers and shared memory) in a balanced manner, but it requires us to
select right values for the parameters (tx, ty, tz, bx, by, bz, nnz batch). The
empirical selecting procedure is detailed in Section 5.5. Note that this tiling
technique is applied in only S1 of the ALS algorithm, while we keep using
the thread batching technique (mentioned in Section 3.2.1) for S2 and S3.

3.3. Architecture-Specific Optimizations

CPUs, GPUs and MICs share a lot in common, but they differ in many
details. To exploit such details, we need to customize optimizations ac-
cording to the architectural differences. In this section, we investigate the
architecture-oriented optimization techniques.

3.3.1. Using Registers

The recent GPUs feature a large amount of registers with a very small
accessing latency. For example, each SM of K20C has 256 KB registers and

12

this architecture increases the maximum number of registers addressable per
thread from 63 to 255. Factorizing a rating matrix is a typical bandwidth-
limited kernel. Thus, an efficient utilization of these registers can improve
the kernel performance. When calculating Y TY (Line 6 of Algorithm 2),
the original code uses a private array (sum[f × f]) to store the temporary
results before updating smat (Figure 5). Despite that the structure is pri-
vate to a thread, register spilling occurs with a large f . We observe that
allocating a f × f buffer per thread is not required. In fact, a buffer sized
of f for each thread is sufficient if we use the basic parallelization strat-
egy. The restructured code is shown in Figure 5(b). In cuMF, they allocate
100 registers for each threads, which probably consumes too many regis-
ters and reduces the number of active warps [24]. In contrast, clMF needs
(tile size/tx) × (tile size/ty) registers to store the temporary results (Fig-
ure 4). This parameterized code enables us to use the register resource in a
more balanced manner.

3.3.2. Using the Scratch-pad Memory

Compared with the off-chip memory, the scratch-pad memory, which is
termed local memory in OpenCL, is a high-speed memory unit located on-
chip. Staging data with scratch-pads can enhance performance by (1) data
reusing, and/or (2) increasing the data moving bandwidth between the off-
chip memory space and the on-chip memory space [26, 27, 28].

As shown in Algorithm 2 (Lines 8–15), calculating Y T ru needs to load
data from R (i.e., the value array) and Y . Specifically, updating svec of
the row ru requires the columns of Y identified by the non-zero elements in
ru. Due to the sparsity of R, the data columns are often not contiguous.
Thus, staging the data columns is necessary. Figure 6 shows that we allocate
a local memory buffer (3 × 5) to cache the required data columns of Y . At
the same time, updating svec requires all the non-zero entries of the current
row. Loading them into the scratch-pad will improve data sharing for the
threads within a workgroup. Figure 6 shows how a local memory vector is
allocated to store all the non-zero entries of ru.

3.3.3. Using Vector Units

Both the traditional multi-core CPUs and Intel MIC have vector cores.
Merely relying on compilers is difficult to fully use the vector units and
explicit vectorization is often required [29]. OpenCL provides vector data
types to exploit the vector cores, e.g., float16 is a vector containing 16
scalar data elements typed of float. The arithmetic operators can perform
the corresponding operations in an element-wise manner. We use vload to
fill vectors while using vstore to write results to memory.

13

Figure 6: Using local memory to stage the R and Y matrix. R is sized of 7× 8, and Y is
sized of 3× 8 when f = 7.

3.4. Code Variant Selection

Code variants represent alternative implementations of a computation.
Each code variant has the same interface, and is functionally equivalent to
the other variants but may employ fundamentally different algorithms or
implementation strategies [30, 31]. Based on the thread batching version, we
will yield eight versions of code variants by individually applying different
optimization techniques or combining them. To achieve high performance,
it is necessary to select the most appropriate implementation for a specific
execution context (target architecture and input dataset) [32, 33].

In this context, we use an empirical approach to select a right code vari-
ant. In total, we provide eight code variants of the ALS solver by combin-
ing different optimizations. Evaluating different code variants and various
datasets shows the optimization has an ‘unpredictable’ impact on the fac-
torization performance (Figure 9). For example, due to the missing scratch-
pad on CPU/MIC, using local memory cannot theoretically bring a perfor-
mance increase on CPU/MIC. But our evaluation results show that using
local memory gives a performance boost on these two architectures. This
‘unpredictable’ performance motivates us to use a machine-learning based
approach to select a code variant in future [34].

4. Experimental Setup

In this section, we first introduce the hardware and software configura-
tions used in the context, and then describe the details of the real-world
datasets used to evaluate our implementation.

14

Table 1: Datasets

Abbr. m n nnz sparsity avg. nnz/row avg. nnz/col
Movielens10M MV10 71567 65133 8000044 0.0017 111.78 122.83
Movielens20M MV20 138493 27278 20000263 0.0053 144.41 733.20
NetFlix NTFX 480189 17770 99072112 0.0116 206.32 5575.25
YahooMusic R1 YMR1 1948882 98212 115248575 0.0006 59.14 1173.47
YahooMusic R4 YMR4 7642 11916 211231 0.0023 27.64 17.73
Delicious DELI 107253 65000 487131 0.00007 4.54 7.49

4.1. Platform Configurations

We use four multi-/many-core platforms in the experiment: Intel Xeon
CPU, NVIDIA Tesla K20C GPU, AMD Fury X GPU and Intel MIC, where
the GPU and the MIC are connected to the CPU with different PCIe slots.
The Intel CPU is a dual-socket Intel Xeon E5-2670, each with 8 cores running
at 2.60 GHz. NVIDIA GPU is a Tesla K20C, which contains 13 streaming
multiprocessors (SM), and 192 CUDA cores on each SM. The AMD Fury X
GPU (based on GCN Fiji) features 4096 radeon cores. This GPU also has
high-bandwidth memory (4 GB) with a 4096-bit memory interface. The Intel
Many Integrated Cores (MIC) is Intel Xeon Phi 31SP, with 57 cores and 6
GB GDDR global memory.

Our ALS solver is implemented in OpenCL (v1.2) and is then installed on
the experimental platforms. The OpenCL implementations for the three de-
vices are from their vendors respectively. The host CPU runs Redhat Linux
(v7.0) and uses GCC (v4.9.2), while the MIC coprocessor runs a customized
uOS (v2.6.38.8). Intel MPSS (v3.6) is used as the driver and the communi-
cation backbone between the host and the coprocessor. The Intel OpenCL
SDK for both CPU and MIC is of version 14.1 x64 4.5.0.8. Also, we use
NVIDIA CUDA (v7.5) to run the cuMF code and the baseline code on GPU.
The driver version of the AMD GPU is v15.12.

4.2. Input Datasets

We use six real-world recommender datasets (Movielens 10M, Movielens
20M2, YahooMusic R1, YahooMusic R43, Netflix4 and Delicious5) to mea-
sure the factorization performance. The entry format of each dataset is

2http://files.grouplens.org/datasets/movielens/
3http://webscope.sandbox.yahoo.com
4http://www.select.cs.cmu.edu/code/graphlab/datasets/
5http://grouplens.org/datasets/hetrec-2011/

15

(userID, itemID, rating). We preprocess each dataset according to this for-
mat. The details of the six datasets are shown in Table 1, where m is the
number of users, n is the number of items, and nnz is the number of non-
zero entries in the dataset. The sparsity of a rating matrix is calculated by
nnz/(m× n). In the context, λ = 0.1 unless otherwise specified.

5. Performance Results

In this section, we first show how clMF performs by comparing with the
state-of-the-art implementations. Then we evaluate the performance impact
of the optimization techniques and how we apply optimizations. We also
compare the performance results across four many-core platforms. Finally,
we empirically tune the parameters to obtain the best performance for clMF.

5.1. Comparing with State-of-the-Art

We compare the performance of our clMF implementation with two state-
of-the-art implementations: SAC [21] and cuMF [22].

Comparing with SAC. As for SAC, one GPU thread is used to update a row of
the X matrix, where all the temporary data of Y TY is allocated dynamically
in the kernel function. But when f becomes large, there is insufficient global
memory space remained for dynamic allocation and thus the kernel failed to
run. In this case, this implementation does not scale over the latent feature.
Thus, we focus on comparing clMF and SAC when f = 10, which is shown
in Figure 7. We see that clMF performs significantly better than SAC on
all datasets, with a speedup ranging from 23.9× to 87.9× on K20C, from
34.63× to 97.1× on Fury X and from 2.8× to 15.7× on CPU. Also, we notice
that clMF runs particularly fast on the small datasets such as Yahoomusic

R4 and Delicious. This significant performance improvement comes from
the usage of the appropriate parallelization technique and the architecture-
specific optimizations (Section 5.2).

Comparing with cuMF. Figure 8 shows the performance comparison between
clMF and cuMF on the GPU. We observe that, clMF performs better than
cuMF for most datasets. In particular, clMF always runs faster than cuMF

for the small-scale datasets. cuMF scales linearly as f changes from 10 to 60
and 70 to 90 on all datasets. This is because cuMF partitions a f × f matrix
into multiple 10 × 10 data tiles, but it uses only one thread to update a
tile and uses distinct threads within a warp to work on different tiles. To
update a row (or a column) of X (or Y), they need a total of f/2 threads.
Accordingly, cuMF allocates 100 registers per thread to stage the temporary
results. Therefore, the number of active threads increases slightly and the

16

2
-7

2
-5

2
-3

2
-1

2
1

2
3

2
5

MV10 MV20 YHR4 YHR1 NTFX DELI

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
,

lo
g

 s
c
a

le
]

SAC-GPU1
SAC-GPU2

clMF-GPU1
clMF-GPU2

(a) GPU

2
-7

2
-5

2
-3

2
-1

2
1

2
3

MV10 MV20 YHR4 YHR1 NTFX DELI

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
,

lo
g

 s
c
a

le
]

SAC-CPU clMF-CPU

(b) CPU

Figure 7: A performance comparison of clMF versus SAC implementation, where GPU1
denotes K20C and GPU2 denotes Fury X. SAC implementation uses the thread config-
uration of 8192 × 32, while clMF exploits (1,1,16384) thread blocks and (5,5,1) threads,
where f = 10 and iteration=1.

performance gap between different f ranging from 10 to 60 and from 70 to
90 is not very dramatic. In other words, cuMF leaves many threads to be idle,
which can be avoided by our fine-grained tiling technique. This is why clMF

outperforms cuMF when the latent factor is small. Also, we observe that when
f=70, cuMF sees a sharp rise in the execution time. The reason is that the
warp size is 32, but cuMF exploits 35 threads, which is right larger than the
warp size. This results in unbalanced thread use in GPU architecture and
degraded performance. Due to the customized kernel in cuMF when f=100,
the execution time of cuMF is less than clMF on the three large datasets.

5.2. Evaluating Optimizations

Figure 9 shows how our ALS solver performs on the NVIDIA GPU, the
AMD GPU, the Intel MIC, and the Intel Xeon E5 CPU when using our op-
timization techniques. Starting with using thread batching, we incrementally
apply the optimizations of registers, local memory and vectors. On K20C,
we observe that using registers and local memory can significantly improve
the factorizing performance (by up to 2.6×). Meanwhile, using local memory
on Fury X brings the most significant performance improvement (by up to
12.58×), compared with the ALS implementation with the basic batching
technique. We also observe that further applying the register optimization
degrades the overall factorization performance on the AMD GPU.

On MIC and CPU, using local memory brings a performance increase for
Movielens 10M, Netflix, YahooMusic R1, and YahooMusic R4. The perfor-
mance boost is up to 1.4× for MIC and 1.6× for CPU. Furthermore, using
registers and local memory simultaneously degrades the overall performance

17

2
-3

2
-2

2
-1

2
0

2
1

2
2

10 20 30 40 50 60 70 80 90 100

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
,
lo

g
 s

c
a
le

]

Latent features

NTFXclMF
NTFXcuMF

MV20clMF
MV20cuMF

YHR1clMF
YHR1cuMF

(a) Large datasets

2
-8

2
-7

2
-6

2
-5

2
-4

2
-3

2
-2

2
-1

10 20 30 40 50 60 70 80 90 100

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
,
lo

g
 s

c
a
le

]

Latent features

MV10clMF
MV10cuMF

YHR4clMF
YHR4cuMF

DELIclMF
DELIcuMF

(b) Small datasets

Figure 8: A performance comparison of clMF and cuMF over different latent feature size
and various datasets with one iteration on K20C. The datasets are devided into two groups:
the left figure contains large datasets (Netflix, Yahoomusic R1, Movielens 20M) while the
right figure uses small datasets (Movielens 10M, Yahoomusic R4, Delicious). cuMF uses
batch size thread blocks each with f/2 threads when f ∈ [10, 90], whereas each thread
block has 64 threads when f=100. The thread configurations of clMF are listed in Table 2.

remarkably. Therefore, it is not recommended to combine these two opti-
mization techniques on MIC or CPU. We also notice a slight performance
improvement by explicitly vectorizing the ALS code. As can be seen in Fig-
ure 9, the performance impact on the CPU resembles that on MIC because
of the architectural similarities.

5.3. Applying Optimizations

Algorithm 2 shows that our implementation consists of three steps when
factorizing the rating matrix: (S1) Y TY +λI (Lines 6–7), (S2) Y T ru (Lines 8–
15), and (S3) solving the linear system (Lines 16–17). When applying the
optimization techniques, we give a priority to the most time-consuming step.
Figure 10 shows an illustrative example on how we apply the optimization
techniques in a step-by-step manner. Figure 10(a) shows the execution time
percent of S1–S3, while Figure 10(b) is the number when applying thread
batching on all the three steps. Although the percentage changes very slightly,
the execution time of each step is reduced significantly. After applying the
optimization, we notice that S1 takes up around 70% of the total execution
time and thus becomes the tuning hotspot.

As indicated in Section 3.3, local memory and registers are used to reduce
the Y TY time from 26 seconds to 6 seconds. Then the time consumption is
shown in Figure 10(c). We see that S2 becomes the most time-consuming
step. When calculating Y T ru, local memory is used to stage the columns of
Y . After that, Figure 10(d) shows that S1 dominates the factorization once

18

 0

 2

 4

 6

 8

 10

 12

GPU1 GPU2 MIC CPU

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

thread batching
+local memory

+local memory + register
+vector

(a) Movielens 10M

 0

 20

 40

 60

 80

 100

 120

GPU1 GPU2 MIC CPU

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

thread batching
+local memory

+local memory + register
+vector

(b) Netflix

 0

 20

 40

 60

 80

 100

 120

 140

GPU1 GPU2 MIC CPU

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

thread batching
+local memory

+local memory + register
+vector

(c) YahooMusic R1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

GPU1 GPU2 MIC CPU

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

thread batching
+local memory

+local memory + register
+vector

(d) YahooMusic R4

Figure 9: A performance comparison of the ALS solver on different architectures and
datasets, where GPU1 denotes NVIDIA GPU and GPU2 denotes AMD GPU. We set
f = 10 and use 8192 thread blocks. We exploit 32 and 64 threads per block on K20C and
Fury X respectively.

again and becomes the new tuning spot. Besides, we can optimize S3 with the
Cholesky method so that the overall running time (S1+S2+S3) is reduced
to 12 seconds from 15 seconds. To summarize, we apply the optimization
techniques and tune the ALS performance in a hotspot-guided manner.

5.4. Comparing Different Architectures

Figure 11 compares how clMF performs on various architectures and
datasets. Note that the most suitable code variants and the best thread
configurations are used for each hardware when measuring the performance
results. We see that the AMD GPU performs the best, the NVIDIA GPU
runs the second, the 16-core CPU runs the third and then MIC follows.
Specifically, clMF achieves a speedup of up to 3.4× on the NVIDIA GPU
and up to 7.6× on the AMD GPU, compared with the performance on
the E5-2670 CPU. To summarize, we argue that GPUs are the promising

19

65.14% S1

18.90% S2

15.96% S3

(a) Baseline

68.01% S1

19.33% S2

12.66% S3

(b) Thread batching

32.40% S1

43.54% S2

24.06% S3

(c) Optimizing S1

40.80% S1

32.39% S2

26.81% S3

(d) Optimizing S2

Figure 10: Applying the optimization techniques in a step-by-step manner. The data is
measured with the Netflix data on the K20C GPU.

platform for the ALS workload when taking both performance and power
consumption into account. In the future, we will further investigate the per-
formance gap between platforms and push the factorizing performance to the
hardware limit (in particular on newer Intel Xeon Phi processors with on-
package high bandwidth memory [35, 36], newer GPUs on warp-level [37, 38],
CTA-level [39] and cache-level [40], and other emergent accelerators such as
Matrix-2000 [41]).

5.5. Tuning Knobs for clMF

Selecting suitable parameters is key to achieve high performance for clMF.
In this section, we empirically evaluate how thread configurations have an
impact on the overall performance when using the basic parallelization tech-
nique (Section 3.2.1) and the fine-grained tiling technnique (Section 3.2.2).

Case 1. Figure 12 shows the performance changes when using the basic par-
allelization technique on four datasets. Since we use a 1D grid, there is only
one tuning knob (i.e., the number of threads per block) in this case. On the
GPU, the execution time reaches its minimum when the block size equals 16
or 32, whereas the execution time increases when the block size is 8 or 64.

20

2
-7

2
-5

2
-3

2
-1

2
1

MV10 MV20 YHR4 YHR1 NTFX DELI

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
,l
o
g
 s

c
a
le

]

K20C
Fury X

MIC
CPU

Figure 11: A performance comparison of our ALS solver on various architectures (NVIDIA
GPU K20C, AMD GPU Fury X, Intel MIC and CPU) and datasets with f = 10.

We set f to be 10 in the experiment and thus two iterations are required
to calculate smat or svec. On the other hand, warp is the smallest unit
of execution on the device and each warp contains 32 threads on the K20C
GPU. Thus, the threads within each warp are under-utilized when the block
size is 8. When the block size is 16 or 32, only one iteration is required to
calculate smat or svec and the warp utilization is better than the case when
the block size is 8. At the same time, the block size (16 or 32) is still smaller
than the warp size and thus the execution time remains. Further increasing
the block size (e.g., 64 threads per block) results in idle warps, leading to a
performance drop. Therefore, it is recommended that the block size be the
minimum integer number larger than the latent factor.

Different from GPU, the execution time on the CPU stabilizes over the
size of thread block for Movielens 10M, Netflix, and YahooMusic R4. To
be more specific, the smaller the block size is, the better the factorization
performance. We believe this is due to a better utilization of local mem-
ory. On MIC, we see that the thread block size has a significant impact
on the execution time. The best block size varies for different datasets. For
YahooMusic R4, using a block sized of 8 gives the best performance, whereas,
for YahooMusic R1, 16 is better.

Case 2. When using the fine-grained tiling technique, we have seven tuning
knobs: three on the thread block configuration (tx, ty, tz), three on the num-
ber of thread blocks (bx, by, bz) and one on the size of a batch (nnz batch).
Selecting a right nnz batch depends on the size of the on-chip shared mem-
ory. Figure 13 shows how the factorizing performance changes with tuning

21

 0

 1

 2

 3

 4

 5

 6

 7

8 16 32 64 128

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

#threads per group

GPU
CPU
MIC

(a) Movielens 10M

 0

 5

 10

 15

 20

 25

 30

 35

8 16 32 64 128

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

#threads per group

GPU
CPU
MIC

(b) Netflix

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

8 16 32 64 128

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

#threads per group

GPU
CPU
MIC

(c) YahooMusic R1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

8 16 32 64 128

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

#threads per group

GPU
CPU
MIC

(d) YahooMusic R4

Figure 12: The performance changes over the thread block configuration. We use the
thread configuration of 8192× 32 and 5 iterations, while f = 10. We use thread batching
+ local memory + registers on the GPU while we only use thread batching + local memory
on the CPU/MIC.

2
-3

2
-1

2
1

2
3

(2,2,5,5)

(2,2,10,10)

(2,2,25,25)

(4,4,5,5)

(4,4,25,25)

(5,5,5,5)

(5,5,10,10)

(5,5,20,20)

E
x
e

c
u

ti
o

n
 T

im
e

 [
s
,

lo
g

 s
c
a

le
]

NTFX YHR1 MV20 MV10 DELI

(a) K20C

2
-5

2
-3

2
-1

2
1

(2,2,5,5)

(2,2,10,10)

(4,4,5,5)

(5,5,5,5)

(5,5,10,10)

E
x
e

c
u

ti
o

n
 T

im
e

 [
s
,

lo
g

 s
c
a

le
]

NTFX YHR1 MV20 MV10 DELI

(b) Fury X

Figure 13: How the performance changes over the various tuning knobs on the various
dataset, where f=100, bz=16384, tz=1, and the number of iterations in clMF is 1. The
format of the X labels is (bx, by, tx, ty) and we exploit the same thread configuration for
clMF on K20C and Fury X.

22

Table 2: Tuning knobs for K20C

f=10 f=20 f=30 f=40 f=50 f=60 f=70 f=80 f=90 f=100
bx 1 2 2 2 2 2 2 2 2 2
by 1 2 2 2 2 2 2 2 2 2
bz 16384 16384 16384 16384 16384 16384 16384 16384 16384 16384

tx 5 10 15 10 25 15 7 20 15 25
ty 5 10 15 10 25 15 7 20 15 25
tz 1 1 1 1 1 1 1 1 1 1

nnz batch 30 30 30 30 30 30 30 30 30 30

knobs on the two GPUs. We observe that the performance changes are dra-
matic over different thread configurations, i.e., the execution time of Netflix
dataset is of 5.0× and 3.2× difference between the worst and the best con-
figuration on K20C and Fury X, respectively. Particularly, we find that the
configuration of (bx=2, by=2, bz=16384, tx=25, ty=25, tz=1) is the best
configuration for all the datasets on K20C. Note that clMF can not run on
Fury X when the number of threads per dimention exceeds 16. Thus, we only
have five thread configurations on the AMD GPU (Figure 13(b)). We observe
that the configuration of (bx=5, by=5, bz=16384, tx=10, ty=10, tz=1) on
Fury X performs the best on most of the datasets. The superior performance
comes from the fact that it makes use of the hierarchical resources (e.g.,
registers and local memory) of modern accelerators in a balanced manner.

In this context, we empirically search the tuning space for the best con-
figuration. On K20C, we use 4 thread blocks to update a row (or a column)
of X (or Y) when f ∈ [20, 100], while we use 25 thread blocks to update
a row (or a column) of X (or Y) for the same f on Fury X. Moreover, we
only use 1 thread block to do the same thing when f=10. Through a large
number of experiments, we observe that in most cases, clMF can achieve the
best performance when tx (or ty) is the greatest common divisor of the tile
size. For instance, when f=100, we use 4 thread blocks to update a row of X
on K20C and therefore, the tile size is 50×50. The greatest common divisor
of 50 is 25, so in this case we use a thread configuration of 25×25 to work on
a tile. On Fury X, 25 thread blocks are used to update a row or a column.
Thus, the tile size is 20×20 and we use a thread block sized of 10×10 to
compute a tile, which is the greatest common divisor of tile size. The tuning
knobs for K20C used in Section 5.1 are listed in Table 2.

23

6. Related Work

In this section, we discuss the matrix factorization algorithms for recom-
mender systems and their implementations on multi-cores, many-cores and
distributed platforms. As stated in [1], matrix factorization is regarded as
the most successful realization of latent factor models in recommender sys-
tems. When factorizing a rating matrix, ALS (altering least squares), SGD
(stochastic gradient descent) and CCD (cyclic coordinate decent) are the
three most commonly used techniques.

The ALS solver. GraphLab implements ALS by distributing matrix on
multiple machines while the matrix is large, which results in heavy cross-node
traffic and pretty high network bandwidth [42]. Spark MLlib leverages par-
tial matrix replication to parallelize ALS [43]. CuMF, a CUDA-based matrix
factorization library, implements memory-optimized ALS to solve very large-
scale MF by using a variety set of techniques to maximize the performance
on either single or multiple GPUs. These techniques include smart access
of sparse data leveraging GPU memory hierarchy, using data parallelism in
conjunction with model parallelism, minimizing the communication overhead
between computing units, and utilizing a novel topology-aware parallel re-
duction scheme [22]. Gates et al. formulate ALS as a mix of cache-optimized
algorithm-specific kernels and batched Cholesky factorization [44], and accel-
erate it on GPUs and multi-threaded CPUs [23]. Zhou et al. introduce a new
parallel algorithm ALS-WR (weighted regulation) for large-scale problems by
using parallel Matlab on a linux cluster [3].

The CCD solver. Yu et al. propose a scalable and efficient method
CCD++ which has a different update sequence from the basic CCD and
updates rank-one factors one by one. The algorithm has two versions of par-
allelization on different machines: one version for multi-core shared memory
systems and the other for distributed systems [2]. Recently Nisa et al. im-
prove the CCD++ method on GPUs with loop fusion and tiling [45]. Yang
et al. present an efficient and portable CDMF solver on modern multi-core
and many-cores [46]. In particular, they balance the factorization loads by
re-organizing the non-zero entries of rating matrices.

The SGD solver. Paine et al. present an asynchronous SGD to speed
up the neural network training on GPUs [47]. In [48, 49], the authors propose
a delayed update scheme and a bootstrap aggregation scheme to speed up
SGD. HogWild uses a lock-free approach to parallelize SGD, which is shown
to be more efficient than the delayed update scheme [50]. DSGD (Distribute
SGD) partitions the ratings matrix into several blocks and updates a set of
independent blocks concurrently [8]. Kaleem et al. show that the paral-
lel SGD can run efficiently on GPU, and their implementation on GPU is

24

comparable to a 14-thread CPU implementation [51]. Jinoh et al. propose
MLGF-MF, which is robust to skewed matrices and runs efficiently on block-
storage devices (e.g., SSD disks) as well as shared-memory platforms. The
implementation leverages multi-level grid file to partition the rating matrix
and minimizes the cost of scheduling parallel SGD updates on the parti-
tioned regions [52]. CuMF SGD, a CUDA-enabled SGD solution for large-scale
matrix factorization problems, uses two workload scheduling schemes (batch-
Hogwild! and wavefront-update) and a partitioning scheme to utilize multiple
GPUs. At the same time, the authors address the well-known convergence
issue when parallelizing SGD [53]. Factorbird uses a parameter server in
order to scale models that exceed the memory of an individual machine, and
employs a lock-free Hogwild!-style learning with a special partitioning scheme
to drastically reduce conflicting updates [54]. Sallinen et al. explore serveral
modern parallelization methods of SGD on a shared memory system [55]. In
particular, they present a scalable, communication-avoiding implementation
of SGD and demonstrate near-linear scalability on a system with 14 cores.

The SVD solver. Matrix factorization models map both users and items
to a joint latent factor space of dimentionality f , such that user-item inter-
actions can be modeled as inner products in that space. Therefore, the rec-
ommendation problem is how to compute a mapping of items and uses

to factor vectors [1, 56]. In the collaborative filtering domain, singular
value decomposition (SVD) [57, 58] is also a well-established technique of
identifying latent feature factors. However, the conventional SVD is often
unapplicable in matrix factorization of the recommendation field due to the
high percentage of missing entries in the sparse user-item matrix. When
the matrix is incomplete, it is not possible to achieve the factoring task.
Moreover, overfitting would occur if we address the sparse matrix carelessly.
Therefore, we need an approach that can simply ignore the missing ratings
in the sparse matrix, modeling directly the observed ratings. To this end,
researchers have performed intensive research to improve the applicability of
SVD in collaborative filtering. For example, in [59], Chih-chao proposed four
variants of SVD to solve large-scale matrix of collaborative filtering instead of
the conventional SVD, including incomplete incremental learning, complete
incremental learning, complete incremental learning, batch learning with a
momentum, SVD with biases. He observed that complete incremental

learning which updates feature values after scaning a single training score
of R, may be a good choice for collaborative filtering with millions of training
instances. The method minimizes the object function and addresses the neg-
ative gradients for each user and item according to each non-zero elements of
the R matrix per time. Therefore, it has nnz (i.e. total number of non-zero
elements in R) iterations. We focus on using the ALS algorithm in this work

25

and will compare ALS, CCD, SGD, SVD for future work.
The extensions to our previous work [60] are three-fold. We further

propose an efficient fine-grained technique (see Section 3) and demonstate the
performance improvement over state-of-the-art implementations in Section 5.
To further show the portability of clMF, we run all the experiments on a
new many-core architecture (i.e., an AMD GPU) and perform an in-depth
analysis on the performance results (Section 5). We have also used two more
real-world datasets of recommender systems to quantify the performance of
clMF.

To summarize, our work relates closely with [21, 22, 23]. By using the
thread batching technique and the architecture-specific optimizations, clMF
remarkably outperforms SAC on both multi-cores and many-cores [21]. By
introducing a fine-grained tiling technique, our clMF can achieve better per-
formance than cuMF, which is now constrained to the CUDA-compatible
platforms [22]. Gates et al. present a highly optimized CUDA kernel for
recommender systems with implicit ratings [23]. Although borrowing the
idea of the fine-grained tiling technique, we focus on the explicit rating ma-
trices. Above all, our focus is on both speed and portability of recommender
systems on various architectures. The experimental results demonstrate that
our implementation overtakes the cuMF code and the baseline code, and is
performance portable on various architectures.

7. Conclusion

In this paper, we present an efficient and portable ALS solver. On one
hand, we diagnose the baseline implementation and observe that it is lack of
awareness of the hierarchical thread organization on modern hardware. This
leads to inefficient and unbalanced use of hardware resources: unbalanced
thread use and scattered memory access. Thus, we apply the thread batching
technique, the fine-grained tiling technique and three architecture-specific
optimizations. On the other hand, we implement the ALS solver in OpenCL
so that it can run on various platforms (CPUs, GPUs and MICs). Based on
the architectural specifics, we select a suitable code variant for each platform
to efficiently map it to the underlying hardware. The experimental results
show that our implementation performs 2.8×–15.7× faster on a 16-core CPU,
23.9×–87.9× faster an NVIDIA K20C GPU and 34.6×–97.1× faster on an
AMD Fury X GPU than the baseline implementation. Our implementa-
tion also outperforms cuMF for various datasets (Netflix, Movielens 10M,
Movielens 20M, YahooMusic R1, YahooMusic R4, and Delicious).

For future work, we will introduce the machine learning technique to
select an appropriate code variant according to the target architecture and

26

input dataset. Also, we will use more datasets to evaluate our ALS solver
and extend our technique to other matrix factorization solvers such as SGD.

8. Acknowledgments

The authors would like to thank our anonymous reviewers for their in-
valuable comments and suggestions. This research was supported by the Na-
tional Key R&D Program of China under Grant No. 2017YFB0202003, the
National Natural Science Foundation of China under Grant No. 61602501,
and the European Union’s Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie project under Grant No. 752321. For any
correspondence, please contact Jianbin Fang (Email: j.fang@nudt.edu.cn).

References

[1] Y. Koren, R. M. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” IEEE Computer, vol. 42, no. 8, pp. 30–37, 2009.

[2] H. Yu, C. Hsieh, S. Si, and I. S. Dhillon, “Scalable coordinate descent ap-
proaches to parallel matrix factorization for recommender systems,” in 12th
IEEE International Conference on Data Mining, ICDM, 2012, pp. 765–774.

[3] Y. Zhou, D. M. Wilkinson, R. Schreiber, and R. Pan, “Large-scale parallel
collaborative filtering for the netflix prize,” in Algorithmic Aspects in In-
formation and Management, 4th International Conference, AAIM, 2008, pp.
337–348.

[4] G. Takács, I. Pilászy, B. Németh, and D. Tikk, “Scalable collaborative filtering
approaches for large recommender systems,” Journal of Machine Learning
Research, vol. 10, pp. 623–656, 2009.

[5] A. Hernando, J. Bobadilla, and F. Ortega, “A non negative matrix factor-
ization for collaborative filtering recommender systems based on a bayesian
probabilistic model,” Knowl.-Based Syst., vol. 97, pp. 188–202, 2016.

[6] H. Xue, X. Dai, J. Zhang, S. Huang, and J. Chen, “Deep matrix factorization
models for recommender systems,” in Proceedings of the Twenty-Sixth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19-25, 2017, 2017, pp. 3203–3209.

[7] C. G. Bampis, C. Rusu, H. Hajj, and A. C. Bovik, “Robust matrix factor-
ization for collaborative filtering in recommender systems,” in 51st Asilomar
Conference on Signals, Systems, and Computers, ACSSC 2017, Pacific Grove,
CA, USA, October 29 - November 1, 2017, 2017, pp. 415–419.

27

[8] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale matrix
factorization with distributed stochastic gradient descent,” in Proceedings of
the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2011, pp. 69–77.

[9] C. Teflioudi, F. Makari, and R. Gemulla, “Distributed matrix completion,”
in 12th IEEE International Conference on Data Mining, ICDM, 2012, pp.
655–664.

[10] W. Liu, “Parallel and scalable sparse basic linear algebra subprograms,” Ph.D.
dissertation, University of Copenhagen, 2015.

[11] W. Liu and B. Vinter, “CSR5: An efficient storage format for cross-platform
sparse matrix-vector multiplication,” in Proceedings of the 29th ACM Inter-
national Conference on Supercomputing, ICS, 2015, pp. 339–350.

[12] K. Hou, W. Liu, H. Wang, and W.-c. Feng, “Fast segmented sort on gpus,”
in Proceedings of the International Conference on Supercomputing, ser. ICS
’17, 2017, pp. 12:1–12:10.

[13] W. Liu and B. Vinter, “Speculative segmented sum for sparse matrix-vector
multiplication on heterogeneous processors,” Parallel Computing, vol. 49,
no. C, pp. 179–193, Nov. 2015.

[14] H. Wang, W. Liu, K. Hou, and W.-c. Feng, “Parallel transposition of sparse
data structures,” in Proceedings of the 2016 International Conference on Su-
percomputing, ser. ICS ’16, 2016, pp. 33:1–33:13.

[15] X. Chen, P. Li, J. Fang, T. Tang, Z. Wang, and C. Yang, “Efficient and
high-quality sparse graph coloring on gpus,” Concurrency and Computation:
Practice and Experience, vol. 29, no. 10, 2017.

[16] W. Liu and B. Vinter, “A framework for general sparse matrix-matrix mul-
tiplication on GPUs and heterogeneous processors,” Journal of Parallel and
Distributed Computing, vol. 85, pp. 47–61, 2015.

[17] W. Liu, A. Li, J. Hogg, I. S. Duff, and B. Vinter, “A Synchronization-Free
Algorithm for Parallel Sparse Triangular Solves,” in Euro-Par 2016: Par-
allel Processing: 22nd International Conference on Parallel and Distributed
Computing, 2016, pp. 617–630.

[18] W. Liu, A. Li, J. D. Hogg, I. S. Duff, and B. Vinter, “Fast synchronization-
free algorithms for parallel sparse triangular solves with multiple right-hand
sides,” Concurrency and Computation: Practice and Experience, vol. 29,
no. 21, pp. e4244–n/a, 2017.

28

[19] X. Wang, W. Liu, W. Xue, and L. Wu, “swSpTRSV: A fast sparse triangular
solve with sparse level tile layout on sunway architectures,” in Proceedings of
the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’18, 2018, pp. 338–353.

[20] C. Chen, J. Fang, T. Tang, and C. Yang, “LU factorization on heterogeneous
systems: an energy-efficient approach towards high performance,” Computing,
vol. 99, no. 8, pp. 791–811, 2017.

[21] A. V. Rodrigues, A. Jorge, and I. Dutra, “Accelerating recommender systems
using gpus,” in Proceedings of the 30th Annual ACM Symposium on Applied
Computing, 2015, pp. 879–884.

[22] W. Tan, L. Cao, and L. L. Fong, “Faster and cheaper: Parallelizing large-
scale matrix factorization on gpus,” in Proceedings of the 25th ACM Interna-
tional Symposium on High-Performance Parallel and Distributed Computing,
HPDC, 2016, pp. 219–230.

[23] M. Gates, H. Anzt, J. Kurzak, and J. Dongarra, “Accelerating collaborative
filtering using concepts from high performance computing,” in IEEE Inter-
national Conference on Big Data, 2015, pp. 667–676.

[24] NVIDIA, “Cuda c programming guide,” 2016.

[25] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating CUDA
graph algorithms at maximum warp,” in Proceedings of the 16th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPOPP, 2011, pp. 267–276.

[26] J. Fang, H. J. Sips, and A. L. Varbanescu, “Aristotle: A performance impact
indicator for the opencl kernels using local memory,” Scientific Programming,
vol. 22, no. 3, pp. 239–257, 2014.

[27] J. Fang, H. J. Sips, P. Jääskeläinen, and A. L. Varbanescu, “Grover: Looking
for performance improvement by disabling local memory usage in opencl ker-
nels,” in 43rd International Conference on Parallel Processing, ICPP 2014,
Minneapolis, MN, USA, September 9-12, 2014, 2014, pp. 162–171.

[28] J. Fang, A. L. Varbanescu, J. Shen, and H. J. Sips, “ELMO: A user-friendly
API to enable local memory in opencl kernels,” in 21st Euromicro Interna-
tional Conference on Parallel, Distributed, and Network-Based Processing,
PDP 2013, Belfast, United Kingdom, February 27 - March 1, 2013, 2013, pp.
375–383.

[29] J. Fang, A. L. Varbanescu, X. Liao, and H. J. Sips, “Evaluating vector data
type usage in opencl kernels,” Concurrency and Computation: Practice and
Experience, vol. 27, no. 17, pp. 4586–4602, 2015.

29

[30] S. Muralidharan, A. Roy, M. W. Hall, M. Garland, and P. Rai, “Architecture-
adaptive code variant tuning,” in Proceedings of the Twenty-First Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS, 2016, pp. 325–338.

[31] L. Chang, H. Kim, and W. W. Hwu, “Dysel: Lightweight dynamic selec-
tion for kernel-based data-parallel programming model,” in Proceedings of
the Twenty-First International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS, 2016, pp. 667–680.

[32] J. Fang, A. L. Varbanescu, and H. J. Sips, “A comprehensive performance
comparison of CUDA and opencl,” in International Conference on Parallel
Processing, ICPP 2011, Taipei, Taiwan, September 13-16, 2011, 2011, pp.
216–225.

[33] J. Fang, “Towards a systematic exploration of the optimization space for
many-core processors,” Ph.D. dissertation, Delft University of Technology,
Netherlands, 2014.

[34] P. Zhang, J. Fang, T. Tang, C. Yang, and Z. Wang, “Auto-tuning streamed
applications on intel xeon phi,” in Proceedings of the 31st IEEE International
Parallel Distributed Processing Symposium, ser. IPDPS ’18, 2018.

[35] A. Li, W. Liu, M. R. B. Kristensen, B. Vinter, H. Wang, K. Hou, A. Mar-
quez, and S. L. Song, “Exploring and analyzing the real impact of modern
on-package memory on hpc scientific kernels,” in Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’17, 2017, pp. 26:1–26:14.

[36] J. Fang, H. J. Sips, L. Zhang, C. Xu, Y. Che, and A. L. Varbanescu, “Test-
driving intel xeon phi,” in ACM/SPEC International Conference on Perfor-
mance Engineering, ICPE’14, Dublin, Ireland, March 22-26, 2014, 2014, pp.
137–148.

[37] A. Li, W. Liu, L. Wang, K. Barker, and S. L. Song, “Warp-consolidation: A
novel execution model for modern gpus,” in Proceedings of the 32nd ACM
International Conference on Supercomputing, ser. ICS ’18, 2018.

[38] M. Fang, J. Fang, W. Zhang, H. Zhou, J. Liao, and Y. Wang, “Benchmarking
the GPU memory at the warp level,” Parallel Computing, vol. 71, pp. 23–41,
2018. [Online]. Available: https://doi.org/10.1016/j.parco.2017.11.003

[39] A. Li, S. L. Song, W. Liu, X. Liu, A. Kumar, and H. Corporaal, “Locality-
aware cta clustering for modern gpus,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ser. ASPLOS ’17, 2017, pp. 297–311.

30

[40] A. Li, G.-J. van den Braak, A. Kumar, and H. Corporaal, “Adaptive and
transparent cache bypassing for gpus,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Anal-
ysis, ser. SC ’15, 2015, pp. 17:1–17:12.

[41] P. Zhang, J. Fang, C. Yang, T. Tang, C. Huang, and Z. Wang, “Mocl: An
efficient opencl implementation for the matrix-2000 architecture,” in Proceed-
ings of ACM International Conference on Computing Frontiers, ser. CF ’18,
2018.

[42] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Heller-
stein, “Distributed graphlab: A framework for machine learning in the cloud,”
PVLDB, vol. 5, no. 8, pp. 716–727, 2012.

[43] X. Meng, J. K. Bradley, B. Yavuz, E. R. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. B. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin,
R. Zadeh, M. Zaharia, and A. Talwalkar, “Mllib: Machine learning in apache
spark,” CoRR, vol. abs/1505.06807, 2015.

[44] J. Kurzak, H. Anzt, M. Gates, and J. Dongarra, “Implementation and tuning
of batched cholesky factorization and solve for NVIDIA GPUs,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 27, no. 7, pp. 2036–2048,
2016.

[45] I. Nisa, A. Sukumaran-Rajam, R. Kunchum, and P. Sadayappan, “Parallel
ccd++ on gpu for matrix factorization,” in Proceedings of the General Purpose
GPUs, 2017, pp. 73–83.

[46] X. Yang, J. Fang, J. Chen, C. Wu, T. Tang, and K. Lu, “High performance
coordinate descent matrix factorization for recommender systems,” in Pro-
ceedings of the Computing Frontiers Conference, 2017, pp. 117–126.

[47] T. Paine, H. Jin, J. Yang, Z. Lin, and T. S. Huang, “GPU asynchronous
stochastic gradient descent to speed up neural network training,” CoRR, vol.
abs/1312.6186, 2013.

[48] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic optimization,”
in Advances in Neural Information Processing Systems 24: 25th Annual Con-
ference on Neural Information Processing Systems, 2011, pp. 873–881.

[49] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized stochastic gra-
dient descent,” in Advances in neural information processing systems, 2010,
pp. 2595–2603.

31

[50] B. Recht, C. Ré, S. J. Wright, and F. Niu, “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,” in Advances in Neural Informa-
tion Processing Systems 24: 25th Annual Conference on Neural Information
Processing Systems, 2011, pp. 693–701.

[51] R. Kaleem, S. Pai, and K. Pingali, “Stochastic gradient descent on gpus,” in
Proceedings of the 8th Workshop on General Purpose Processing using GPUs,
GPGPU@PPoPP, 2015, pp. 81–89.

[52] J. Oh, W. Han, H. Yu, and X. Jiang, “Fast and robust parallel SGD ma-
trix factorization,” in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2015, pp. 865–874.

[53] X. Xie, W. Tan, L. L. Fong, and Y. Liang, “CuMF SGD: Parallelized stochas-
tic gradient descent for matrix factorization on gpus,” in Proceedings of the
26th International Symposium on High-Performance Parallel and Distributed
Computing, ser. HPDC ’17, 2017, pp. 79–92.

[54] S. Schelter, V. Satuluri, and R. Zadeh, “Factorbird - a parameter server ap-
proach to distributed matrix factorization,” CoRR, vol. abs/1411.0602, 2014.

[55] S. Sallinen, N. Satish, M. Smelyanskiy, S. S. Sury, and C. Ré, “High per-
formance parallel stochastic gradient descent in shared memory,” in IEEE
International Parallel and Distributed Processing Symposium, 2016, pp. 873–
882.

[56] L. Wu and A. Stathopoulos, “A preconditioned hybrid svd method for ac-
curately computing singular triplets of large matrices,” SIAM Journal on
Scientific Computing, vol. 37, no. 5, pp. S365–S388, 2015.

[57] G. H. Golub and C. F. Van Loan, Matrix computations. JHU Press, 2012,
vol. 3.

[58] L. Wu, E. Romero, and A. Stathopoulos, “Primme svds: A high-performance
preconditioned svd solver for accurate large-scale computations,” SIAM Jour-
nal on Scientific Computing, vol. 39, no. 5, pp. S248–S271, 2017.

[59] C. chao Ma, “A guide to singular value decomposition for collaborative filter-
ing.” Techreport, 2008.

[60] J. Chen, J. Fang, W. Liu, T. Tang, X. Chen, and C. Yang, “Efficient
and portable ALS matrix factorization for recommender systems,” in 2017
IEEE International Parallel and Distributed Processing Symposium Work-
shops, IPDPS Workshop Parlearning, 2017, pp. 409–418.

32

