
May 2009
Lars Peter Lindqvist, MATH

Master of Science in Mathematics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Mathematical Sciences

Counting and Coloring with Symmetry
A presentation of Polya's Enumeration Theorem with Applications

Amanda Noel Bjørge





Abstract

This master’s thesis explores the area of combinatorics concerned with counting math-
ematical objects with regards to symmetry. Two main theorems in this field are Burn-
side’s Lemma and Pólya’s Enumeration Theorem1. Both theorems yield a formula
that count mathematical objects with regard to a group of symmetries. Burnside’s
Lemma utilizes the concept of orbits to count mathematical objects with regard to
symmetry. As a result of the Burnside Lemma’s reliance on orbits, implementation
of the lemma can be computationally heavy. In comparison, Pólya’s Enumeration
Theorem’s use of the cycle index of a group eases the computational burden. In ad-
dition, Pólya’s Enumeration Theorem allows for the introduction of weights allowing
the reader to tackle more complicated problems.

Building from basic definitions taken from abstract algebra a presentation of the
theory leading up to Pólya’s Enumeration Theorem is given, complete with proofs.
Examples are given throughout to illustrate these concepts. Applications of this
theory are present in the enumeration of graphs and chemical compounds.

1Pólya’s Enumeration Theorem is also known as Redfield–Pólya’s Theorem.
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1 Introduction

Pólya’s Enumeration Theorem, also known as Redfield–Pólya’s Theorem, is a pow-
erful generalization of Burnside’s Lemma which takes symmetry into account when
counting mathematical objects. Burnside’s Lemma, while powerful in its own right,
can require a significant amount of computation. Pólya’s Enumeration Theorem min-
imizes the computations needed by the use of the cycle index and explores the idea
of weights which enables the reader to pursue more complex problems.

Though the theorem was first discovered and published by John Howard Redfield
in 1927, it was not accordingly recognized by the mathematical community until it
was proven by a Hungarian mathematician by the name of George Pólya in 1937.2 In
his paper Pólya also demonstrated several of the theorem’s applications, in particular
those corresponding to the enumeration of chemical compounds. With the help of
basic group theory we will present and prove major propositions and lemmas needed
to illustrate properties necessary to the proofs of Burnside’s Lemma and Pólya’s
Enumeration Theorem.

Taking the basic definition of a group and its properties from abstract algebra as
a foundation, we will define a permutation and describe its properties.[3] After which
we will introduce the 4 main permutation groups used in correspondence with Pólya’s
Enumeration Theorem, the symmetric, cyclic, dihedral and alternating groups. These
groups will later be used to discount symmetries when counting mathematical objects.

We will then introduce the concept of a coloring and develop a method of counting
permutations with regards to symmetry aiming to answer the question: How many
ways can you color the beads of a n beaded necklace black and white when you dis-
count rotational symmetries? To do this we must first introduce 3 sets: the Invariant
set, Stabilizer and Orbit. These 3 sets are crucial tools used to present and prove
Burnside’s Lemma and therefore answer our posed question. Burnside’s Lemma and
proof are then presented, resulting in the following formula that counts the number
of given objects with regard to symmetry

1
|G|

∑
σ∈G

|Inv(σ)| . (6)

We will introduce cycle index of a group G, ZG, developed by Pólya to minimize
the computations needed to compute the number of distinct colorings of an object
with regards to symmetry. Formulas for the cycle index of the 4 main permutations
groups will also be given. The concept of weights will then be introduced and applied
to the Burnside’s Lemma before presenting Pólya’s Enumeration Theorem, resulting
in the following

ZG(
m∑

i=1

ωci
,

m∑
i=1

ω2
ci

, . . . ,
m∑

i=1

ωn
ci

). (22)

Throughout the paper simple examples are used to illustrate the concepts intro-
duced. Following the proof of Pólya’s Enumeration Theorem is a series of non-trivial
examples and applications of the theorem. Included are more complicated versions
of the beaded necklace problem, the symmetries of a cube, as well as applications for
graphs, trees and chemical compounds. Mathematica has been used to produce the
computations found in the examples.

2Pólya’s proof the theorem and its applications were published in a paper entitled Kombina-
torische Anzahlbestimmungen für Gruppen, Graphen und Chemische Verbindungen. The paper was
originally written in German and later translated into English by Ronald C. Read in 1987.[7]
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2 Permutation groups

A permutation is a sequence of elements appearing in a specific order. For example,
there are 6 possible permutations of the set A = {a, b, c}, given below.

abc acb bac

bca cab cba

Let us use group theory to redefine this concept.

2.1 Permutations and their properties

Before introducing the key terms used in Burnside’s Lemma and later in Pólya’s Enu-
meration Theorem we need the following basic definitions from group theory.

Definition 2.1 A group consists of a set G with a binary operator · defined on G
such that the following properties are satisfied:

Closure If a, b ∈ G then a · b ∈ G.
Associativity If a, b, c ∈ G then a · (b · c) = (a · b) · c.
Identity There exists ι ∈ G such that ι · a = a · ι = a for all a ∈ G.
Inverse For all a ∈ G there exists b ∈ G such that a · b = b · a = ι.

b is called the inverse of a.

For example, the set of real numbers under addition is a group. A group G is abelian
if in addition or multiplication to the above it also satisfies the following condition:

Commutativity For all a, b ∈ G, a · b = b · a.
In general, groups are not abelian as will be demonstrated by the permutation

groups presented in section 2.2.2

Definition 2.2 A function f : X → Y is called injective if for all x, y ∈ X
f(x) = f(y) implies that x = y.
Note that this definition is equivalent to the following statement: a function f , as
above, is injective if for x 6= y then f(x) 6= f(y).

Definition 2.3 A function f : X → Y is called surjective if it maps to all values of
Y .
In other words, for every y ∈ Y there exists x ∈ X such that f(x) = y. A function
that is both injective and surjective is called bijective.

Using the group theoretical terminology given above we can define the notion of
a permutation and its properties.

Definition 2.4 Given a set N of n elements a permutation σ of N is a bijective
function σ : N → N . The identity permutation, that maps each element in N to
itself will be denoted by ι.

Example 2.1: Let N = {1, 2, 3, 4, 5, 6} and define a permutation σ such that

σ(1) = 4 σ(2) = 3 σ(3) = 5 σ(4) = 1 σ(5) = 2 σ(6) = 6,

hence

1 → 4 → 1, 2 → 3 → 5 → 2, 6 → 6.

2



2.1 Permutations and their properties 3

We will denote such a permutation in cyclic notation as (14)(235)(6). Where the
cycle (14) denotes that 1 → 4 → 1. This permutation has 3 cycles, (14) of length 2,
(235) of length 3 and (6) of length 1. Note that the cycle (235) is equivalent to (523)
and (352) as all cycles send 2 → 3 → 5 → 2. Therefore (14)(235)(6) and (14)(523)(6)
represent the same permutation. For the purposes of this paper, we will denote el-
ements as integers 1, 2, . . . n and will write each cycle beginning with the smallest
element contained in the cycle.3

Let us define multiplication between two permutations σ and τ by the following
example. Let σ = (1234) and τ = (1342) then

στ = (1234)(1342).

We begin by reading the permutation right to left. The first permutation σ, sends
1 → 2. The second permutation, τ then sends 2 → 1, therefore στ sends 1 → 1
resulting in the cycle of length 1.

= (1).

Since στ sent 1 → 1 resulting in a cycle of length one, we then begin a new cycle with
the smallest remaining element, 2. We see that σ sends 2 → 3 and τ sends 3 → 4,
therefore στ sends 2 → 4, now we have a new cycle beginning with

= (1)(24.

Since this did not result in an identity we continue with element 4. The permutation
σ sends 4 → 1 and τ sends 1 → 3, therefore στ sends 4 → 3 and we have

= (1)(243.

Lastly, σ sends 3 → 4 and τ sends 4 → 2, therefore στ sends 3 → 2 ending the cycle

= (1)(243).

Let G be a group of permutations of the set N = {1, 2, 3, 4}. Note that G is
generally non-abelian. Define σ = (123)(4) and τ = (12)(34). Then

σ · τ = (1)(243)
τ · σ = (134)(2)

hence σ · τ 6= τ · σ.
Two permutations are disjoint if their cycles are disjoint. Two cycles are disjoint

if they have no common elements. For example the two permutations given in the
example above σ = (123)(4) and τ = (12)(34) are not disjoint, hence they do not
commute, as demonstrated above. However, if two permutations are disjoint they
will commute. Note that every permutation can be uniquely written as the product
of disjoint cycles, disregarding cycle order.[2] This is obvious from example 2.1.

Proposition 2.1 Every permutation σ can be expressed as a product of cycles of
length 2 called transpositions.4

3Note that we will also denote elements as a1, a2, . . . an and will write each cycle beginning with
the element corresponding to the smallest index.

4Note that this product is not necessarily disjoint.[2]



4 2 PERMUTATION GROUPS

Proof. By definition we know that every permutation can be expressed as the product
of cycles. Hence, we need only prove that any cycle can be expressed as the product
of transpositions. Consider the cycle σ = (a1a2a3 . . . an) of n elements. We claim
that this cycle can be expressed as the following product of transpositions:

τ = (a1a2)(a1a3) . . . (a1an).

Consider element ai. For 1 < i < n, ai is invariant under the first i−2 transpositions of
τ . The i−1th transposition sends ai → a1 and the ith transposition sends a1 → ai+1,
and since ai+1 appears in no other cycle ai → ai+1. This leaves two cases, i = 1 or
n. For i = 1, the first transposition sends a1 → a2 and is invariant under all other
transpositions as a2 appears in no other cycle. For i = n, an is invariant under all
but the last transposition where it sends an → a1 as desired. Hence σ = τ .

Proposition 2.2 Every permutation σ, decomposes into either a strictly even (or
odd) number of transpositions. The permutation is then called even (or odd).[2]

even : (12345) = (12)(13)(14)(15) odd : (1234) = (12)(13)(14)

Proof. Consider the formal symbol

∆n = (2− 1)(3− 2)(3− 1)(4− 3)(4− 2)(4− 1) . . . (n− 1),

where we do not perform the subtraction. It is obvious that ∆n > 0. We claim that
multiplying ∆n by any single transposition is equivalent to multiplying it by −1. For
(ab)∆n consider the following cases:

For c > a, b

(ab)(c− a)(c− b) = (c− b)(c− a) = (c− a)(c− b).

For c < a, b

(ab)(a− c)(b− c) = (b− c)(a− c) = (a− c)(b− c).

For a < c < b (similarly for b < c < a)

(ab)(c− a)(b− c) = (c− b)(a− c) = (−1)2(c− a)(b− c) = (c− a)(b− c).

As shown above, these three cases result in no sign change. Lastly, for a < b (similarly
for b < a)

(ab)(b− a) = (a− b) = −(b− a).

Hence

(ab)∆n = −∆n.

Proposition 2.1 states that every permutation can be expressed as the product of
transpositions thus σ∆n = ∆n or−∆n. Therefore every permutation can be expressed
as only the product of an even (or odd) number of transpositions.



2.2 Examples of permutation groups 5

Let us look at an example to clarify this proof.

Example 2.2: Consider the even permutation σ = (123) = (12)(13) then

σ∆n = (12)(13)∆n

= (12)(−∆n)
= ∆n.

Assume that σ could be expressed as the product of an odd number of transpositions,
then

σ∆n = t1t2t3∆n

= t1t2(−∆n)
= t1∆n

= −∆n.

This however, contradicts our previous findings that σ∆n = ∆n or −∆n. Hence σ
can only be expressed as the product of an even number of transpositions.
Note that though a permutation has a unique disjoint cyclic notation, the decompo-
sition of a permutation into transpositions is not unique. For example,

(123) = (12)(13) = (13)(23),

are both decompositions of the permutation (123) into transpositions.

2.2 Examples of permutation groups

Define Sn to be the group of all permutations of the set N = {1, 2, . . . n}. Sn is
called the symmetric group of n elements and |Sn| = n!. For example S3 =
{ι, (123), (132), (12)(3), (13)(2), (1)(23)}. A group H is a subgroup of G if H ⊆ G
and H satisfies the above group properties with the same binary operation as G.
Below we will give some examples of permutation groups, all of which are subgroups
of Sn.

Cyclic group

Given a permutation σ ∈ Sn and i ∈ N, define σi to be σ composed with itself i
times.5 Then 〈σ〉 = {σi|i ≥ 0} is a subgroup of Sn generated by σ and is called
the cyclic group generated by σ on Sn. The cyclic group Cn is the subgroup of Sn

generated by (123. . . n).

Cn = 〈(123 . . . n)〉

5Note that σ0σn = ι.



6 2 PERMUTATION GROUPS

Note that |Cn| = n.

Example 2.3: C5 = 〈(12345)〉 = {ι, (12345), (13524), (14253), (15432)}

(12345)1 = (12345)

(12345)2 = (13524)

(12345)3 = (14253)

(12345)4 = (15432)

(12345)0 = (12345)5 = (1)(2)(3)(4)(5) = ι

The permutations in any cyclic group Cn can also be viewed as rotations. From our
above example of C5 we can compare the permutations to the rotation of the vertexes
of a pentagon. Note that all rotations are considered to be clockwise. If the vertexes
of the original pentagon are labeled as in figure 1, then a rotation of 72 degrees would
result in the permutation (12345) as shown in (b).

(a) Original (b) (12345)

Figure 1: Example of a permutation from C5

Dihedral Group

The Dihedral Group Dn is the group of permutations of a regular n-sided polygon
including rotations and reflections. Note that Cn ⊂ Dn, and that all reflections can be
found by taking each rotation σ ∈ Cn and reflecting along the vertical (or horizontal)
axis. Note that |Dn| = 2n.

Example 2.4: D5 = {ι, (12345), (13524), (14253), (15432), (13)(2)(45),
(15)(24)(3), (12)(35)(4), (14)(23)(5), (1)(25)(34)}

(12345)1 = (12345) reflected ⇒ (15)(24)(3)

(12345)2 = (13524) reflected ⇒ (14)(23)(5)

(12345)3 = (14253) reflected ⇒ (13)(2)(45)

(12345)4 = (15432) reflected ⇒ (12)(35)(4)

(12345)5 = (1)(2)(3)(4)(5) = ι reflected ⇒ (1)(25)(34)

Illustrated in figure 2.
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(a) Original (b) (12345) (c) (15)(24)(3)

Figure 2: Example of permutations from D5

Alternating Group

The Alternating Group An is a subgroup of Sn containing all even permutations,
|An| = n!

2 for n ≥ 4.

A4 = {ι, (123)(4), (132)(4), (124)(3), (142)(3), (134)(2), (143)(2),
(1)(234), (1)(243), (12)(34), (13)(24), (14)(23)}

The group An is abelian for n ≤ 3 and simple for n = 3 and n ≥ 5. A simple group
is a non trivial group, i.e. containing more than one element, whose only normal
subgroup is the trivial group.



3 Burnside’s Lemma

We now need to develop a method of counting permutations with regards to symmetry.
Consider a necklace consisting of n beads. How many distinct ways can you color the
beads of a n bead necklace black and white when you discount rotational symmetries?
For n = 4, there are 6 possible colorings.

Figure 3: Possible 4 bead necklaces excluding rotational symmetries given by C4

3.1 Equivalence relations

Let N be the set of n beads we are to color, C be the set of colors, in this case black
and white, and G be our permutation group. Define a coloring k : N → C to be a
map that assigns each bead a color, and let K be the set of colorings. How do we
determine the number of non-equivalent colorings? The Burnside’s Lemma gives a
formula to solve this problem. First we need to understand the concept of equivalence
relations.

Definition 3.1 Let A be a set and ∼ a binary relation on A. We call ∼ an equiva-
lence relation if and only if for all a, b, c ∈ A the following conditions are satisfied:

Reflexivity a ∼ a
Symmetry If a ∼ b then b ∼ a
Transitivity If a ∼ b and b ∼ c then a ∼ c

The equivalence class of a under ∼ is the set [a] = {b ∈ A|a ∼ b}.

Let us define an equivalence relation ∼ such that for k1, k2 ∈ K, k1 ∼ k2 if there
exists σ ∈ G such that σ∗(k1) = k2. Here σ∗ denotes that the permutation is being
applied to coloring of the set N.

σ∗ = σ ◦ k(i)

= k ◦ σ−1(i) ∀i ∈ N

Example 3.1: Let the following be a coloring of our above 4 bead necklace.

k(1) = white, k(2) = white, k(3) = black, k(4) = black

Such a coloring will be denoted wwbb. Consider the following permutation σ = (1234),
representing a 90 degree clockwise rotation, where the beads are labeled clockwise
beginning with the top left bead representing element 1. What is σ∗(k)? For 1 ∈ N
we have

σ ◦ k(1) = k ◦ σ−1(1) = k(4) = black.

As illustrated in figure 4.

8



3.2 Definitions 9

(a) k (b) σ∗(k)

Figure 4: Illustration of applying a permutation σ to a coloring k

Using our 4 bead necklace as an example and the above equivalence relation, we
have 6 equivalence classes, hence the 6 possible colorings, shown in figure 5.

Figure 5: Equivalence classes resulting from permutation group C4

3.2 Definitions

Before we present the Burnside’s Lemma we need the following definitions. We will
continue with the above example of the 4 bead necklace to illustrate the following
definitions, where N = {1, 2, 3, 4}, C = {black, white},K is the group of colorings
k : N → C and will use G = {ι, (12), (34), (12)(34)} as our permutation group.6

Definition 3.2 The invariant set of σ in K denoted Inv(σ), is the set of elements
of which the coloring k is invariant under the induced map σ∗.

Inv(σ) = {k ∈ K|σ∗(k) = k} (1)

Example 3.2: Below are the four Invariant sets corresponding to the four permutations
in G.

Inv(ι) = K

Inv((12)(34)) ={bbbb, bbww,wwbb, wwww}
Inv((12)) ={bbbb, bbwb, bbbw, bbww

wwbb, wwwb,wwbw,wwww}
Inv((34)) ={bbbb, wbbb, bwbb, wwbb

bbww,wbww, bwww,wwww}

Here the coloring bwbb corresponds to coloring the first, third and fourth beads black
6Note that the permutation (12) is equal to the permutation (12)(3)(4), here the cycles of length

1 that send an element i ∈ N to itself are excluded for notational purposes.



10 3 BURNSIDE’S LEMMA

Figure 6: Illustration of the coloring bwbb

and the second white as seen in figure 6. From the figure it is obvious that bwbb is
invariant under the permutation (34) since elements 3 and 4 are both colored black.

Definition 3.3 The stabilizer of k in G denoted Stk, is the set of permutations
σ ∈ G for which the coloring k is fixed.

Stk = {σ ∈ G|σ∗(k) = k} (2)

Example 3.3: Below are the stabilizer sets for each coloring in K.

Stbbbb = Stwwww = Stbbww = Stwwbb = {ι, (12), (34), (12)(34)}
Stbbbw = Stbbwb = Stwwbw = Stwwwb = {ι, (12)}
Stbwbb = Stwbbb = Stbwww = Stwbww = {ι, (34)}
Stbwbw = Stwbwb = Stbwwb = Stwbbw = {ι}

Here the coloring bwbb is left unchanged by two permutations: ι, (34).

Definition 3.4 The orbit of k under G denoted Ok, the set of all colorings to which
k is sent by some permutation σ ∈ G.

Ok = {σ(k)|σ ∈ G} (3)

Example 3.4: Below are the orbits corresponding to each coloring in K.

Obbbb = {bbbb} Obbbw = Obbwb = {bbbw, bbwb}
Owwww = {wwww} Obwbb = Owbbb = {bwbb, wbbb}
Obbww = {bbww} Owwwb = Owwbw = {wwwb,wwbw}
Owwbb = {wwbb} Owbww = Obwww = {wbww, bwww}

Obwbw = Owbwb = Owbbw = Obwwb = {bwbw,wbbw, bwwb,wbwb}

Note that since G is a group, if a ∈ Ob then b ∈ Oa. This is a result of the inverse
group condition. If there exists a permutation σ ∈ G such that a → b then there must
exist σ−1 = τ ∈ G such that b → a. From this we get the following proposition.

Proposition 3.1 For all G ⊆ Sn then any two orbits under G, Oa and Ob are either
disjoint or equal.[2]

Proof. We will proceed with a proof by contradiction. Assume that c ∈ Oa and
c ∈ Ob, hence they are not disjoint. Also assume that x ∈ Ob but x /∈ Oa. We will
show that Oa must contain x. First, since a ∈ Ob there exists σ ∈ G such that σ
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sends a → b and by the inverse condition of a group there must also exist σ−1 that
sends b → a. Similarly, there must also exist τ, τ−1 ∈ G which send x → b and b → x
respectively. Then στ−1 sends a → x and τσ−1 sends x → a. Hence by definition of
an orbit x ∈ Oa, contradiction. Thus any two orbits are either disjoint or equal.

Lemma 3.1 Given a set of elements N = {1, 2, 3 . . . n}, a set of colors C, and a
subgroup G of Sn, then [5]

|G| = |Stk| |Ok| . (4)

Proof. First, since Ok does not contain permutations, let us define a permutation
group P such that |P | = |Ok| for any fixed k. Given Ok = {k1, k2, k3 . . .} define
P = {ρ1, ρ2, ρ3 . . .} such that pj sends k → kj for all j. Then |P | = |Ok|. Note that
there exists such permutations by definition of an orbit, however, the choices for each
ρj are not necessarily unique.
Claim: Every permutation σ ∈ G can be expressed uniquely as the product of a
permutation from Stk and P .
Given σ ∈ G it must send k to kj ∈ Ok for some j. By construction, ρj also sends
k → kj . Hence,

σρ−1
j sends k → k.

Therefore, by the definition of a stabilizer (def. 3.3), there exists τ ∈ Stk such that

σρ−1
j = τ.

Then

σ = τρj .

Hence every permutation σ ∈ G can be expressed as the product of a permutation
from Stk and P . Now we must show uniqueness. Assume that

τxρi = τyρj . (5)

By construction ρi sends k → ki and ρj sends k → kj , and by definition both τx and
τy send k → k, then (5) implies ki = kj . Which implies that i = j and hence ρi = ρj .
Therefore τx = τy and the product is unique. Hence we have

|G| = |Stk| |P |
= |Stk| |Ok| .

Example 3.5: Let us take our 4 bead necklace from above. N = {1, 2, 3, 4} and
G = {ι, (12), (34), (12)(34)} with |G| = 4. From examples 3.3 and 3.4 we have:

Stbbbb = {ι, (12), (34), (12)(34)} Stbbbw = {ι, (12)}
Obbbb = {bbbb} Obbbw = {bbbw, bbwb}

Hence

|Stbbbb| = 4, |Obbbb| = 1 ⇒ |Stbbbb| |Obbbb| = 4 · 1 = 4 = |G|
|Stbbbw| = 2, |Obbbw| = 2 ⇒ |Stbbbw| |Obbwb| = 2 · 2 = 4 = |G| .
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3.3 Burnside’s Lemma

We now have all the tools needed to present the Burnside’s Lemma.
Theorem 3.1 (Burnside’s Lemma) Given a group of elements N and a permu-
tation group G that acts on N , then the number of distinct orbits, which we will call
patterns, is given by

1
|G|

∑
σ∈G

|Inv(σ)| . (6)

Before giving the proof, we want to illustrate this Theorem by an example.
Example 3.6: Continuing with our 4 bead necklace and permutation group
G = {ι, (12), (34), (12)(34)} we have the following sets:

Inv(ι) = K

Inv((12)(34)) ={bbbb, bbww,wwbb, wwww}
Inv((12)) ={bbbb, bbwb, bbbw, bbww

wwbb, wwwb,wwbw,wwww}
Inv((34)) ={bbbb, wbbb, bwbb, wwbb

bbww,wbww, bwww,wwww}

Using Burnside’s Lemma we find

1
|G|

∑
σ∈G

|Inv(σ)| = 1
4

[16 + 4 + 8 + 8]

= 9.

Hence we have 9 patterns as shown above in example 3.4.

Proof. We claim that the number of distinct orbits is

∑
k∈K

1
|Ok|

. (∗)

Define Okm
= {k1, k2, . . . , km} then |Okm

| = m. Theorem 2.1 then gives Ok1 = Ok2 =
· · · = Okm

. Since these orbits are equal, we want to count them as one pattern, (∗)
then gives us

1
|Ok1 |

+
1

|Ok2 |
+ · · ·+ 1

|Okm
|

=
1
m

+
1
m

+ · · ·+ 1
m

= 1.

Hence the total sum will yield 1 for each pattern.[8] Let us define

χk =

{
1 if σ∗(k) = k

0 if σ∗(k) 6= k
.
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Then we have,

1
|G|

∑
σ∈G

|Inv(σ)| = 1
|G|

∑
σ∈G

∑
k∈K

χk

=
1
|G|

∑
k∈K

∑
σ∈G

χk

=
1
|G|

∑
k∈k

|Stk| (by def. 3.3)

=
∑
k∈k

1
|Stk| |Ok|

|Stk| (by lem. 3.1)

=
∑
k∈k

1
|Ok|

.

Let us apply the Burnside’s Lemma to our question posed at the beginning of
this section. How many n beaded necklaces are there when you discount rotational
symmetries?

Example 3.7: For n = 4 there were 6 necklaces as shown above in figure 3. Let
N = {1, 2, 3, 4} and G = C4 = {ι, (1234), (13)(24), (1432)} to count the rotational
symmetries. Then Burnside’s Lemma gives

1
|G|

∑
σ∈G

|Inv(σ)|

=
1
4

[|Inv(ι)|+ |Inv((1234))|+ |Inv((13)(24))|+ |Inv((1432))|]

=
1
4

[16 + 2 + 4 + 2]

= 6,

yielding 6 patterns, shown as equivalence classes in figure 5 above. Let us note that
a pattern can be represented by a single coloring in its equivalence class. For ex-
ample the coloring bbbw can represent the pattern given by the equivalence class
{bbbw, bbwb, bwbb, wbbb}.

It is obvious that Inv(ι) = K for all N and G. Also, any permutation σ consisting
of i cycles x1, x2 . . . , xi will be invariant under any coloring that colors all elements
contained in a cycle xj the same color. Taking the above example the permutation
(1234) is only invariant under 2 colorings: bbbb and wwww. Similarly for (13)(24) if
you treat the first and third bead as one bead, and the second and fourth bead as one
bead, then you have 22 = 4 colorings that are invariant, as shown in example 3.2.

Example 3.8: Let us take a more complicated example. Let n = 7 then there are
27 = 128 possible colorings of a 7 bead necklace. How many patterns are possible
after excluding rotational and reflectional symmetries? Let N = {1, 2, 3, 4, 5, 6, 7} and
G = D7 = {ι, (1234567), (1357246), (1473625), (1526374), (1642753), (1765432),
(1)(27)(36)(45), (13)(2)(47)(67), (15)(24)(3)(67), (17)(26)(35)(4), (12)(37)(46)(5),
(14)(23)(57)(6), (16)(25)(34)(7)} to count the rotational and reflectional symmetries.
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Then Burnside’s Lemma and the above comment gives us:

1
|G|

∑
σ∈G

|Inv(σ)| = 1
14

∑
σ∈D7

|Inv(σ)|

=
1
14

[128 + 6 · 2 + 7 · 16]

= 18.

As shown in figure 7.

Figure 7: Possible 7 bead necklaces excluding the permutations given by D7



4 Cycle Index

In order to compute the number of patterns using the Burnside’s Lemma we must
first compute the size of Inv(σ) for all σ ∈ G. As |N | increases so does the difficulty
in computing Inv(σ) for each σ ∈ G. Luckily there is a simple method to compute
the size of Inv(σ).

4.1 Cycle Index

We know that given n elements to be colored m possible colors, the total number of
possible colorings is mn.7 As stated above, in order to ensure that a coloring k is
invariant under σ, k must color all elements of each cycle in σ the same color. If we
treat each cycle of σ as a single element to be colored, then we can ensure all elements
in the cycle will be colored the same color. Therefore if σ consists of i disjoint cycles,
then |Inv(σ)| = mi where m is the number of possible colors.[5] Let us illustrate
this further by using permutations from the previous example 3.8 with the 7 bead
necklace, 2 possible colors and G = D7.

|Inv(ι)| = 27 = 128

|Inv((1234567))| = 21 = 2

|Inv((1)(27)(36)(45))| = 24 = 16

Given a permutation σ ∈ G let yl(σ) denote the number of cycles of length l contained
in σ, and let x = (x1, x2, . . . , xn), where xl represents a cycle of length l. Then the
cycle index of G is defined by8

ZG(x) =
1
|G|

∑
σ∈G

n∏
l=1

x
yl(σ)
l . (7)

Hence the permutation σ = (123)(4)(56)(78) would have the cycle index x1x
2
2x3 since

σ contains 1 cycle of lengths 1 and 3, and 2 cycles of length 2. Then the cycle index
from example 3.8 is

ZD7(x1, x2, x3, x4, x5, x6, x7) =
1
14

[
x7

1 + 7x1
1x

3
2 + 6x7

]
.

Let us apply this to the Burnside’s Lemma. The Burnside’s Lemma tells us that
the number of ways to color n elements using m colors while discounting the sym-
metries given by G is ZG(m,m, . . . , m). Using our original example of the 4 bead
necklace and G = C4 we have

ZC4(x1, x2, x3, x4) =
1
4

[
x4

1 + x2
2 + 2x4

]
.

By substituting m for each xj we can compute the number of distinct necklaces using
m colors.

ZC4(m,m, m,m) =
1
4

[
m4 + m2 + 2m

]
7For each element there exists m possible colors to choose from, hence, the total number of

possible colorings is m · m · . . . m = mn.
8The cycle index is denoted by the letter Z alluding to Pólya’s usage of the German word Zyk-

lenzeiger meaning cycle index.

15
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For m = 2 as in our example we get 6 distinct necklaces, which corresponds to our
previous example. Once the cycle index is computed, it is easy to then increase the
number of possible colors, drastically reducing the amount of computations required.

ZC4(3, 3, 3, 3) = 24
ZC4(4, 4, 4, 4) = 70

4.2 Cycle Index for specific permutation groups

While the cycle index is a helpful tool, we still need to know the type of each per-
mutation. Therefore we still need to write out the permutations before we are able
to calculate the cycle index. This can be difficult when the group size increases. For
example, |S4| = 4! = 24 which is not unreasonable to write out, however, one dimen-
sion higher |S5| = 5! = 120. Luckily there are formulas to compute the cycle index for
certain groups.9 Below we will calculate the formulas for the 4 major permutations
groups given in section 2.2.2.

Let us begin with the symmetric group Sn. Pólya denoted the cycle index in terms
of the possible partitions of the set N . A set A = {A1, A2, . . . , Aj} of non empty sets
is a partition of N if the union of all Aj is equal to N and if any two sets Ai, Aj ∈ A
are disjoint. We will denote the partitions of N by the vector y = (y1, y2, . . . , yn),
where yl denotes the number of partitions, or cycles, of length l. Then

|N | =
n∑

l=1

lyl.

For example, let σ = (123)(45)(6) then |N | = 6 and we have the following

|N | =
n∑

l=1

lyl

= 1 · 1 + 2 · 1 + 3 · 1 + 4 · 0 + 5 · 0 + 6 · 0
= 6.

Define d(y) to be the number of permutations σ ∈ Sn that have the cycle decompo-
sition denoted by y. Then

d(y) =
n!∏n

l=1 lylyl!
. (8)

Let us take S3 = {ι, (123), (132), (1)(23), (12)(3), (13)(2)} as an example. Here are
the 3 unique partitions y = (y1, y2, y3) given by10

(3, 0, 0) (1, 1, 0) (0, 0, 1).

Then

d((3, 0, 0)) =
3!

133!
= 1

d((1, 1, 0)) =
3!

(111!)(211!)
= 3

d((0, 0, 1)) =
3!

311!
= 2.

9These formulas have been taken from [1] and [4].
10Note that (1, 1, 0) corresponds to σ ∈ S3 that contain 1 cycle of length 1 and 1 cycle of length

2, such as (1)(23).
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The cycle index of Sn is given by

ZSn =
1
n!

∑
d(y)

n∏
l=1

xyl

l , (9)

where xl represents a cycle of length l.

Example 4.1:

ZS3 =
1
3!

∑
d(y)

3∏
l=1

xyl

l

=
1
6
[1x3

1 + 3x1
1x

1
2 + 2x1

3]

=
1
6
[x3

1 + 3x1x2 + 2x3].

Note that the cycle index of Sn satisfies the following recurrence relation:

ZSn =
1
n

n∑
i=1

xiZSn−i . (10)

Example 4.2: Let us compute the cycle index of S4. Using (9) we get

ZS4 =
1
4!

∑
d(y)

4∏
l=1

xyl

l

=
1
24

[x4
1 + 6x2

1x3 + x2
2 + 8x1x3 + 6x4].

Now let us compare this using the recurrence relation (10)

ZS4 =
1
4

4∑
i=1

xiZSn−i

=
1
4

[
x1

(
1
6
(x3

1 + 3x1x2 + 2x3)
)

+ x2

(
1
2
(x2

1 + x2)
)

+ x3 (x1) + x4(1)
]

=
1
4

[
1
6

(
x4

1 + 3x2
1x2 + 2x1x3

)
+

1
2

(
x2

1x2 + x2
2

)
+ x1x3 + x4

]
=

1
24

[
x4

1 + 3x2
1x2 + 2x1x3 + 3x2

1x2 + 3x2
2 + 6x1x3 + 6x4

]
=

1
24

[
x4

1 + 6x2
1x3 + x2

2 + 8x1x3 + 6x4

]
.

Hence both formulas give the same cycle index for Sn.

The cycle index of Cn is given by

ZCn =
1
n

∑
l|n

ϕ(l)xn/l
l , (11)

where ϕ is the Euler function given by

ϕ(n) = #{d|1 ≤ d ≤ n, gcd(d, n) = 1}. (12)
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Example 4.3: Let us use this formula to compute the cycle index of C4.

ZC4 =
1
4

∑
l|4

ϕ(l)x4/l
l

=
1
4

[
ϕ(1)x4/1

1 + ϕ(2)x4/2
2 + ϕ(4)x4/4

4

]
=

1
4

[
x4

1 + x2
2 + 2x4

]
.

Which corresponds with our previous computation.

The cycle index of Dn is given by

ZDn
=

1
2
ZCn

+


1
2x1x

(n−1)
2

2 n odd
1
4

(
x

n
2
2 + x2

1x
(n−2)

2
2

)
n even

. (13)

Example 4.4: Let us illustrate this formula by computing the cycle index of both D4

and D5.

ZD4 =
1
2
ZC4 +

1
4

(
x

n
2
2 + x2

1x
(n−2)

2
2

)
=

1
2

(
1
4
(x4

1 + x2
2 + 2x4)

)
+

1
4

(
x

4
2
2 + x2

1x
(4−2)

2
2

)
=

1
8
(x4

1 + x2
2 + 2x4) +

1
4
(x2

2 + x2
1x2)

=
1
8

[
x4

1 + 2x2
1x2 + 3x2

2 + 2x4

]
.

ZD5 =
1
2
ZC5 +

1
2
x1x

(5−1)
2

2

=
1
2

(
1
5
(x5

1 + 4x5)
)

+
1
2
x1x

2
2

=
1
10

[
x5

1 + 5x1x
2
2 + 4x5

]
.

The cycle index of An is given by

ZAn
= ZSn

+ ZSn
(x1,−x2, x3,−x4, . . .). (14)

Example 4.5: Let us use this formula to compute the cycle index of A3 = {ι, (123),
(132)}.

ZA3 =
1
6
[x3

1 + 3x1x2 + 2x3] +
1
6
[x3

1 − 3x1x2 + 2x3]

=
1
3
[x3

1 + 2x3].



5 Pólya’s Enumeration Theorem

With the Burnside’s Lemma we are able to calculate how many patterns there are
given the choice of m colors. What if we want to have further restrictions? For
example what if we want to know the number of possible necklaces with a specific
number of beads of each color? How many 6 bead necklaces are possible with 1 white
bead, 3 gray beads and 2 black beads? To solve such problems, we need to introduce
weights.

5.1 Weights

Given a set of colors C we want to associate a weight ωc for all c ∈ C. Then we
will define the weight of a coloring k ∈ K to be the product of the weights of the
colored elements.

ω(k) =
∏
i∈N

ωk(i) (15)

Example 5.1: Let us use our 4 bead necklace to illustrate this with C = {white, black}.
Let k = wwbb where

k(1) = white, k(2) = white, k(3) = black, k(4) = black,

and let the colors have the following weights

ωwhite = W ωblack = B.

Then the weight of the coloring k is as follows

ω(k) =
∏
i∈N

ωk(i)

= ωk(1)ωk(2)ωk(3)ωk(4)

= ωwhiteωwhiteωblackωblack

= W 2B2.

Note that all possible colorings of N by C is

[ωc1 + ωc2 + · · ·+ ωcm
]n ,

where |N | = n and |C| = m. If ωc = 1 for all c ∈ C then the number of possible
colorings of N by C is

[1 + 1 + · · ·+ 1]n = mn,

which corresponds to our previous thinking on the number of ways to color n objects
with m colors.

Proposition 5.1 If two colorings k1, k2 ∈ K, are contained in the same orbit Ok

then ω(k1) = ω(k2).

19
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Proof. If k1, k2 ∈ Ok then there exists some permutation σ ∈ G such that k1 = σ∗(k2).
Then

ω(k1) =
∏
i∈N

ωk1(i)

=
∏
i∈N

ωσ∗(k2(i))

=
∏
i∈N

ωk2(σ−1(i))
11

=
∏
i∈N

ωk2(i)

= ω(k2).

From this proposition, we can define the weight of an orbit to be the common
weight of its elements.

ω(Ok) = ω(k). (16)

Lemma 5.1 Let C = {c1, c2, . . . , cm} be a set of m colors. Assume that a set of
elements N , is the disjoint union of sets N1, ....Nl. Define K̃ ⊆ K such that for all
k ∈ K̃, if i, j ∈ Nl for some l then k(i) = k(j). Then the pattern index of K̃ is given
by

[ω|N1|
c1

+ ω|N1|
c2

+ · · ·+ ω|N1|
cm

] · [ω|N2|
c1

+ ω|N2|
c2

+ · · ·+ ω|N2|
cm

]

· · · [ω|Nl|
c1

+ ω|Nl|
c2

+ · · ·+ ω|Nl|
cm

].
(17)

Proof. By multiplying (17) out we will get a sum of colorings k of the form

w|N1|
ca

w|N2|
cb

. . . w|Nl|
cl

,

where k colors all elements of N1 ca and all elements of N2 cb and so on. Thus (17)
gives the sum of the weights of colorings k that color all elements of Nl the same color
for all l.

5.2 Pattern Index

Given a set of patterns P we will define the pattern index of P to be the following

Ind(P ) =
∑
k∈P

ω(k). (18)

Example 5.2: Let P be the 6 patterns given by the 4 bead necklace problem, and let
the following colorings represent their pattern:

{wwww, wwwb, wwbb, wbwb,wbbb, bbbb}.

11This is true since all products will run through all i ∈ N . Since the permutation will only alter
the order in which it is done, it will not affect the product and thus we can remove the permutation.
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Then (18) gives

Ind(P ) =
∑
k∈P

ω(k)

= [ω(wwww) + ω(wwwb) + ω(wwbb) + ω(wbwb)
+ ω(wbbb) + ω(bbbb)]

= W 4 + W 3B + W 2B2 + W 2B2 + WB3 + B4

= W 4 + W 3B + 2W 2B2 + WB3 + B4.

Here we can see that the coefficients denote the number of patterns with the repre-
sented color. For example, W 4 denotes that there is only one coloring with 4 beads
colored white, and 2W 2B2 denotes that there are two colorings with 2 beads colored
black and 2 beads colored white included in the set of patterns P , as seen in figure
3.[1]

5.3 Weighted Burnside’s Lemma

Theorem 5.1 (Weighted Burnside’s Lemma) Given a set of elements N , colors
C and a subgroup G ⊆ Sn of permutations, let ω̄(σ) denote the sum of weights of all
k that σ∗ leaves fixed.

ω̄(σ) =
∑

k∈Inv(σ)

ω(k) (19)

Then the pattern index is given by

1
|G|

∑
σ∈G

ω̄(σ). (20)

Note that if all weights are equal to one we have the original Burnside’s Lemma.

Proof. First, note that the right hand side of (19) sums the weight of each coloring k
left fixed by each σ ∈ G. Hence, w(k) is added to the sum |Stk| times. From lemma
3.1 we have

|Stk| =
|G|
|Ok|

.

Then by substitution (20) gives

1
|G|

∑
σ∈G

ω̄(σ) =
1
|G|

∑
k∈K

|G|
|Ok|

ω(k)

=
[
ω(k1)
|Ok1 |

+
ω(k2)
|Ok2 |

+ · · ·
]

. (∗)

Now we must show that (∗) is the sum of the weights of patterns. Given Okm
=

{k1, k2, . . . , km}, |Okm
| = m then

ω(k1)
|Ok1 |

+
ω(k2)
|Ok2 |

+ · · ·+ ω(km)
|Okm

|
=

ω(Okm
)

m
+

ω(Okm
)

m
+ · · ·+ ω(Okm

)
m

= ω(Okm
).

Hence (∗) will count each distinct orbit weight once, and thus sum the weight of
patterns.
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5.4 Pólya’s Enumeration Theorem

We want an easier way to compute the pattern index. Currently we need to know
the representative colorings of each pattern in order to calculate the pattern index.
Pólya found that one could use the cycle index to compute the pattern index. Given
a permutation σ ∈ G, if xl appears in the cycle index then there exists a cycle of
length l. If a coloring k is invariant under σ then all l elements in the cycle xl must
be colored the same color. Hence all l elements are colored cj ∈ C for some j. Pólya
found that this can be represented by the formal sum

ωl
c1

+ ωl
c2

+ · · ·+ ωl
cm

. (21)

If we then substitute (21) for xl for every cycle of length l in the cycle index (7) then
we will compute the pattern index.[5]

Theorem 5.2 (Pólya’s Enumeration Theorem) Given a set N of n elements, C
of m colors and a group G ⊆ Sn that acts on N . Let ZG(x) be the cycle index of G,
then the pattern index of nonequivalent colorings of N under G using the colors of C
is

ZG(
m∑

i=1

ωci ,

m∑
i=1

ω2
ci

, . . . ,

m∑
i=1

ωn
ci

). (22)

Example 5.3: Let us take our 4 bead necklace with the set of colors C = {white, black}
and our permutation group G = C4. Let ωwhite = W and ωblack = B. Then we know
the cycle index is

ZC4(x1, x2, x3, x4) =
1
4
[x4

1 + x2
2 + 2x4].

Pólya’s Enumeration Theorem then gives the pattern index as

ZC4(W + B,W 2 + B2,W 3 + B3,W 4 + B4)

=
1
4

[
(W + B)4 + (W 2 + B2)2 + 2(W 4 + B4)

]
=

1
4
[W 4 + 4W 3B + 6W 2B2 + 4WB3 + B4 + W 4 + 2W 2B2

+ B4 + 2W 4 + 2B4]

=
1
4

[
4W 4 + 4W 3B + 8W 2B2 + 4WB3 + 4B4

]
= W 4 + W 3B + 2W 2B2 + WB3 + B4,

which corresponds to the pattern index computed in example 5.2 and show in figure 3.

Proof. Let N be a set of n elements, C be a set of m colors, and let K be the set of
colorings that map k : N → C. Define G to be the group of permutations σ that act
on N . We have shown that the Weighted Burnside’s Lemma (thm. 5.1) is equivalent
to the pattern inventory as given in

1
|G|

∑
σ∈G

ω̄(σ). (20)
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Recall that we defined ω̄(σ) to denote the sum of weights of all k that σ∗ leaves fixed
(19). Given a permutation σ ∈ G, assume that it is composed of the following disjoint
cycles x1, x2, . . . , xp. Then any coloring k ∈ Inv(σ) must color all elements in a given
cycle the same color. In other words, given i, j ∈ xp then k(i) = k(j). Thus the
pattern index, or the sum of the weights of the set of colorings left invariant by σ∗,
given by Lemma 5.1 is

[ω|x1|
c1

+ ω|x1|
c2

+ · · ·+ ω|x1|
cm

] · [ω|x2|
c1

+ ω|x2|
c2

+ · · ·+ ω|x2|
cm

]

· · · [ω|xp|
c1

+ ω|xp|
c2

+ · · ·+ ω|xp|
cm

].
(23)

Hence, (23) gives ω̄(σ) where each term of (23) is of the form

wl
c1

+ wl
c2

+ · · ·+ wl
cm

=
m∑

i=1

wl
ci

, (24)

where l = |xp|. Therefore the term
∑m

i=1 wl
ci

occurs once for every cycle of length l
σ contains. Let us denote the number of cycles of length l that σ contains by yl.[8]
Then we can write ω̄(σ) as [

m∑
i=1

w1
ci

]y1
[

m∑
i=1

w2
ci

]y2

. . . (25)

Substituting (25) for ω̄(σ) in (20) we have

ZG(
m∑

i=1

ωci
,

m∑
i=1

ω2
ci

, . . . ,
m∑

i=1

ωn
ci

).



6 Examples

We will now present five common example types used to illustrate Pólya’s Enumera-
tion Theorem: beaded necklaces, cubes, chemical compounds, trees and graphs.

6.1 Beaded necklace

The n bead necklace is perhaps the most used example to illustrate both Burnside’s
Lemma and Pólya’s Enumeration Theorem. Here we will present more complex ver-
sions of the beaded necklace problem.

Example 6.1: We can now answer the question posed at the beginning of the previous
section. How many 6 beaded necklaces are there with 1 white bead, 3 gray beads and
1 black bead discounting rotational symmetries? Let G = C6 and the color weights
be as follows:

ωwhite = W, ωgray = G, ωblack = B,

then Pólya’s Theorem gives

ZC6(W + G + B,W 2 + G2 + B2, . . . ,W 6 + G6 + B6)

=
1
6
[(W + G + B)6 + (W 2 + G2 + B2)3 + 2(W 3 + G3 + B3)2

+ 2(W 6 + G6 + B6)]

=
1
6
[6B6 + 6B5G + 18B4G2 + 24B3G3 + 18B2G4 + 6BG5 + 6G6

+ 6B5W + 30B4GW + 60B3G2W + 60B2G3W + 30BG4W + 6G5W

+ 18B4W 2 + 60B3GW 2 + 96B2G2W 2 + 60BG3W 2 + 18G4W 2

+ 24B3W 3 + 60B2GW 3 + 60BG2W 3 + 24G3W 3 + 18B2W 4

+ 30BGW 4 + 18G2W 4 + 6BW 5 + 6GW 5 + 6W 6]

= B6 + B5G + 3B4G2 + 4B3G3 + 3B2G4 + BG5 + G6 + B5W

+ 5B4GW + 10B3G2W + 10B2G3W + 5BG4W + G5W + 3B4W 2

+ 10B3GW 2 + 16B2G2W 2 + 10BG3W 2 + 3G4W 2 + 4B3W 3

+ 10B2GW 3 + 10BG2W 3 + 4G3W 3 + 3B2W 4 + 5BGW 4 + 3G2W 4

+ BW 5 + GW 5 + W 6.

Hence the number of 6 beaded necklaces with 1 white, 3 gray and 2 black beads is
the coefficient of B2G3W , which is 10 as highlighted above.

What if we also want to discount reflectional symmetries? Let G = D6 with the

24
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color weights as above, then Pólya’s Theorem gives

ZD6(W + G + B,W 2 + G2 + B2, . . . ,W 6 + G6 + B6)

=
1
12

[(W + G + B)6 + 3(W + G + B)2(W 2 + G2 + B2)2

+ 4(W 2 + G2 + B2)3 + 2(W 3 + G3 + B3)2 + 2(W 6 + G6 + B6)]

=
1
12

[12B6 + 12B5G + 36B4G2 + 36B3G3 + 36B2G4 + 12BG5

+ 12G6 + 12B5W + 36B4GW + 72B3G2W + 72B2G3W + 36BG4W

+ 12G5W + 36B4W 2 + 72B3GW 2 + 132B2G2W 2 + 72BG3W 2

+ 36G4W 2 + 36B3W 3 + 72B2GW 3 + 72BG2W 3 + 36G3W 3

+ 36B2W 4 + 36BGW 4 + 36G2W 4 + 12BW 5 + 12GW 5 + 12W 6]

= B6 + B5G + 3B4G2 + 3B3G3 + 3B2G4 + BG5 + G6

+ B5W + 3B4GW + 6B3G2W + 6B2G3W + 3BG4W + G5W

+ 3B4W 2 + 6B3GW 2 + 11B2G2W 2 + 6BG3W 2 + 3G4W 2 + 3B3W 3

+ 6B2GW 3 + 6BG2W 3 + 3G3W 3 + 3B2W 4 + 3BGW 4 + 3G2W 4

+ BW 5 + GW 5 + W 6.

As highlighted above, the number of 6 beaded necklaces with 1 white, 3 gray and 2
black beads decreases to 6, as the number of permutations increase.

Note that by using Pólya’s Theorem to compute the pattern index we have not
only solved our original problem, but all 6 beaded necklace problems with 3 colors.
By using the pattern index given in ZD6 we are able to see that there are 3 distinct
necklaces composed of 3 gray and 3 white beads. Also if we set all weights equal to
1, then we have the total number of distinct necklaces, 92.

Now let us take a more complicated example. How many ways are there to display
a set of n bead necklaces? In such a situation, we have m necklaces each of which
are comprised of n beads. To answer this question we need to define the composition
of permutation groups.[1] Let G and H be permutation groups that act on M =
{j1, . . . , jm} and N = {i1, . . . , in} respectively. Then the composition G[H] acts on
the set M × N . Given a permutation σ ∈ G and a sequence of m permutations
τ1, . . . , τm ∈ H there exists a permutation [σ; τ1, . . . , τm] ∈ G[H] such that for every
pair (il, jk) ∈ M ×N

[σ; τ1, . . . , τm](il, jk) = (σ(il), τl(jk)). (26)

From this it is clear that such a permutation will first permute the m necklaces by
σ ∈ G and afterward permute the beads in each individual necklace by τl ∈ H. The
cycle index of G[H] is given by

ZG[H](x1, . . . , xmn)
= ZG(ZH(x1, . . . , xn), ZH(x2, . . . , x2n), . . . , ZH(xm, . . . , xmn)).

(27)

Example 6.2: How many ways are there to display 2 necklaces each of which has 4
beads that can be colored white or black? Let M be the set of 2 necklaces and N be
the set of 4 beads contained in each necklace. We will define C4 to be the permutation
group acting on N to discount rotation symmetries of each necklace. As we only care
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which 2 necklaces are being displayed and not the order in which they are displayed
we will define S2 to be the permutation group acting on M . We have

ZS2 =
1
2

[
x2

1 + x2

]
ZC4 =

1
4

[
x4

1 + x2
2 + 2x4

]
.

Now we can compute the total number of possible necklaces. First we compute the
number of 4 beaded necklaces of 2 possible colors ZC4(2, 2, 2, 2) = 6. Then(27) gives

ZS2(6, 6) =
1
2
(62 + 6) = 21.

We can also weight each color, ω(white) = W,ω(black) = B and compute the number
of ways to display 2 necklaces with a specific combination of black and white beads.
For example, 6 black beads and 2 white beads. Then (27) gives

ZS2[C4](W + B, . . . , W 8 + B8)

= ZS2(ZC4(W + B, . . . , W 4 + B4), ZC4(W
2, B2, . . . ,W 8, B8))

=
1
2
[
(

1
4
((W + B)4 + (W 2 + B2)2 + 2(W 4 + B4))

)2

+
1
4
((W 2 + B2)4 + (W 4 + B4)2 + 2(W 8 + B8))]

= B8 + B7W + 3B6W2 + 3B5W 3 + 5B4W 4 + 3B3W 5 + 3B2W 6

+ BW 7 + W 8.

Hence, of the 21 possible arrangements of 2 necklaces each with 4 beads, there are 3
with a total combination of 6 black beads and 2 white beads, as shown in figure 8.

Figure 8: Possible arrangements of 2 necklaces with a total of 6 black and 2 white
beads

6.2 Cube

Let us now consider the rotational symmetries of the cube. There are 3 areas of the
cube that we can color, the faces, vertices and line segments. There are 3 types of
rotations to consider as illustrated in figure 9. There are 9 rotations about the x, y or
z axes, 8 rotations by fixing opposite corners and rotating about the symmetry line
created, 6 rotations by rotating about the symmetry line created by fixing opposite
midpoints, and the identity.
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(a) Axis rotation (b) Corner rotation

(c) Midpoint rotation

Figure 9: Types of rotations of the cube
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First consider the faces of a cube labels as in figure 10. Then the 24 cube rotations

Figure 10: Faces of the cube

in terms of the faces are given as follows:

Axis rotations:

(1234)(5)(6) (1432)(5)(6) (13)(24)(5)(6)
(1536)(2)(4) (1635)(2)(4) (13)(2)(4)(56)
(1)(2546)(3) (1)(2645)(3) (1)(24)(3)(56)

Corner rotations:

(145)(263) (154)(236) (152)(364) (125)(346)
(146)(253) (164)(235) (126)(345) (162)(354)

Midpoint rotations:

(14)(23)(56) (12)(34)(56) (13)(25)(46)
(13)(26)(45) (16)(24)(35) (15)(24)(36)

Identity:

ι = (1)(2)(3)(4)(5)(6)

We will denote this group of rotations by GF . The cycle index is then given by
ZGF

= x6
1 + 3x2

1x
2
2 + 6x2

1x4 + 6x3
2 + 8x2

3. Given a set of colors C, we can now use
Pólya’s Enumeration Theorem to compute the pattern index of the faces of the cube.

Example 6.3: Let C = {white, black} with the usual weights associated to the colors,
then Pólya’s Enumeration Theorem gives

ZGF
(W + B, . . . , W 6 + W 6)

=
1
24

[(W + B)6 + 3(W + B)2(W 2 + B2)2 + 6(W + B)2(W 4 + B4)

+ 6(W 2 + B2)3 + 8(W 3 + B3)2]

=
1
24

[24B6 + 24B5W + 48B4W 2 + 48B3W 3 + 48B2W 4 + 24BW 5

+ 24W 6]

= B6 + B5W + 2B4W 2 + 2B3W 3 + 2B2W 4 + BW 5 + W 6.



6.2 Cube 29

Figure 11: Vertices of the cube

Now let us consider the vertices of a cube as labeled in figure 11. Then the 24
cube rotations in terms of the vertices are given as follows:

Axis rotations:

(1234)(5678) (1432)(5876) (13)(24)(57)(68)
(1485)(2376) (1584)(2673) (18)(27)(36)(45)
(1562)(3487) (1265)(3784) (16)(25)(38)(47)

Corner rotations:

(1)(254)(368)(7) (1)(245)(386)(7)
(163)(2)(457)(8) (136)(2)(475)(8)
(168)(274)(3)(5) (186)(247)(3)(5)
(183)(257)(4)(6) (138)(275)(4)(6)

Midpoint rotations:

(15)(28)(37)(46) (17)(26)(35)(48)
(17)(23)(46)(58) (14)(28)(35)(67)
(17)(28)(34)(56) (12)(35)(46)(78)

Identity:

ι = (1)(2)(3)(4)(5)(6)(7)(8)

We will denote this group of rotations by GV . The cycle index is then given by
ZGV

= x8
1 + 8x2

1x
2
3 + 9x4

2 + 6x2
4. Given a set of colors C, we can now use Pólya’s

Enumeration Theorem to compute the pattern index of the vertices of the cube.

Example 6.4: Let C = {white, black} with the usual weights associated to the colors,
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then Pólya’s Enumeration Theorem gives

ZGV
(W + B, . . . , W 8 + W 8)

=
1
24

[(W + B)8 + 8(W + B)2(W 3 + B3)2 + 9(W 2 + B2)4

+ 6(W 4 + B4)2]

=
1
24

[24B8 + 24B7W + 72B6W 2 + 72B5W 3 + 168B4W 4

+ 72B3W 5 + 72B2W 6 + 24BW 7 + 24W 8]

= B8 + B7W + 3B6W 2 + 3B5W 3 + 7B4W 4 + 3B3W 5

+ 3B2W 6 + BW 7 + W 8.

Lastly let us consider the line segments of a cube as labeled in figure 12. Then

Figure 12: Line segments of the cube

the 24 cube rotations in terms of the line segments are given as follows:

Axis rotations:

(1234)(5678)(9 10 11 12) (1432)(5876)(9 12 11 10)
(13)(24)(57)(68)(9 11)(10 12)

(184 12)(263 10)(57 11 9) (1 12 48)(2 10 36)(59 11 7)
(14)(23)(5 11)(6 10)(79)(8 12)

(1925)(374 11)(68 12 10) (1526)(3 11 47)(6 10 12 8)
(12)(34)(59)(6 12)(7 11)(8 10)

Corner rotations:

(185)(2 12 7)(3 10 11)(469) (158)(27 12)(3 11 10)(496)
(17 10)(256)(398)(4 11 12) (1 10 7)(265)(389)(4 12 11)
(1 12 9)(28 11)(367)(4 10 5) (19 12)(2 11 8)(376)(45 10)
(16 11)(2 10 9)(3 12 5)(487) (1 11 6)(29 10)(35 12)(478)
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Midpoint rotations:

(1)(24)(3)(5 12)(6 11)(7 10)(89)
(13)(2)(4)(5 10)(69)(7 12)(8 11)
(1 11)(27)(35)(49)(6)(8 10)(12)
(17)(2 11)(39)(45)(6 12)(8)(10)
(1 10)(2 12)(38)(46)(5 11)(7)(9)
(16)(28)(3 12)(4 10)(5)(79)(11)

Identity:

ι = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)

We will denote this group of rotations by GS . The cycle index is then given by
ZGS

= x12
1 +6x2

1x
5
2 +3x6

2 +8x4
3 +6x3

4. Given a set of colors C, we can now use Pólya’s
Enumeration Theorem to compute the pattern index of the line segments of the cube.

Example 6.5: Let C = {white, black} with the usual weights associated to the colors,
then Pólya’s Enumeration Theorem gives

ZGS
(W + B, . . . , W 12 + W 12)

=
1
24

[(W + B)12 + 6(W + B)2(W 2 + B2)5 + 3(W 2 + B2)6

+ 8(W 3 + B3)4 + 6(W 4 + B4)3]

=
1
24

[24B12 + 24B11W + 120B10W 2 + 312B9W 3 + 648B8W 4

+ 912B7W 5 + 1152B6W 6 + 912B5W 7 + 648B4W 8

+ 312B3W 9 + 120B2W 10 + 24BW 11 + 24W 12]

= B12 + B11W + 5B10W 2 + 13B9W 3 + 27B8W 4 + 38B7W 5

+ 48B6W 6 + 38B5W 7 + 27B4W 8 + 13B3W 9

+ 5B2W 10 + BW 11 + W 12.

6.3 Chemical Compounds

In chemistry, Pólya’s Enumeration Theorem can be used to find isomers of a given
molecule. Two molecules are said to be isomers if they are composed of the same
number and types of atoms, but have different structure.[5] Let us illustrate this with
C5H12. Figure 13 shows two chemical isomers that correspond to the hydrocarbon
C5H12.
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(a) (b)

Figure 13: Chemical isomers corresponding to the hydrocarbon C5H12

Example 6.6: Cyclobutane is a hydrocarbon constructed of 4 carbon atoms arranged
cyclically with 2 hydrogen atoms attached to each carbon, as illustrated in figure 14.

Figure 14: Cyclobutane structure

How many isomers may be obtained by replacing 2 hydrogen atoms with nitrogen?
Let the 8 bonds to the carbon atoms be our elements in N = {1, 2, 3, 4, 5, 6, 7, 8} and
let C = {hydrogen, nitrogen} with the weights
ω(hydrogen) = H,ω(nitrogen) = N . We can graphically visualize Cyclobutane as
a cube, where the 4 cyclically arranged carbon atoms are at the center of the cube
and each hydrogen atom represents a vertex of the cube, therefore GV will be used to
discount reflectional and rotational symmetry. Then Pólya’s Enumeration Theorem
gives

ZGV
(H + N, . . . ,H8 + N8)

= H8 + H7N + 3H6N2 + 3H5N3 + 7H4N4 + 3H3N5

+ 3H2N6 + HN7 + N8.

Hence there are 3 possible isomers with 6 hydrogens and 2 nitrogens as highlighted
above. Note that we have already computed this result in example 6.4, the only dif-
ference is we are now using chemical elements in place of colors.

Example 6.7: Continuing with this cyclobutane, how many isomers can be obtained
by replacing 2 hydrogens with nitrogen and 3 with oxygen? Now we have three colors
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C = {hydrogen, nitrogen, oxygen} with weights ω(hydrogen) = H,ω(nitrogen) =
N,ω(oxygen) = 0. Pólya’s Enumeration Theorem gives

ZGV
(H + N + O, . . . , H8 + N8 + O8)

=
1
24

[(H + N + O)8 + 8(H + N + O)2(H3 + N3 + O3)2+

9(H2 + N2 + O2)4 + 6(H4 + N4 + O4)2]

=
1
24

[24H8 + 24H7N + 72H6N2 + 72H5N3 + 168H4N4 + 72H3N5

+ 72H2N6 + 24HN7 + 24N8 + 24H7O + 72H6NO + 168H5N2O

+ 312H4N3O + 312H3N4O + 168H2N5O + 72HN6O + 24N7O

+ 72H6O2 + 168H5NO2 + 528H4N2O2 + 576H3N3O2

+ 528H2N4O2 + 168HN5O2 + 72N6O2 + 72H5O3

+ 312H4NO3 + 576H3N2O3 + 576H2N3O3 + 312HN4O3

+ 72N5O3 + 168H4O4 + 312H3NO4 + 528H2N2O4

+ 312HN3O4 + 168N4O4 + 72H3O5 + 168H2NO5 + 168HN2O5

+ 72N3O5 + 72H2O6 + 72HNO6 + 72N2O6 + 24HO7 + 24NO7

+ 24O8]

= H8 + H7N + 3H6N2 + 3H5N3 + 7H4N4 + 3H3N5 + 3H2N6

+ HN7 + N8 + H7O + 3H6NO + 7H5N2O + 13H4N3O

+ 13H3N4O + 7H2N5O + 3HN6O + N7O + 3H6O2

+ 7H5NO2 + 22H4N2O2 + 24H3N3O2 + 22H2N4O2

+ 7HN5O2 + 3N6O2 + 3H5O3 + 13H4NO3 + 24H3N2O3

+ 24H2N3O3 + 13HN4O3 + 3N5O3 + 7H4O4 + 13H3NO4

+ 22H2N2O4 + 13HN3O4 + 7N4O4 + 3H3O5 + 7H2NO5

+ 7HN2O5 + 3N3O5 + 3H2O6 + 3HNO6 + 3N2O6

+ HO7 + NO7 + O8.

Hence there are 24 possible isomers with 3 hydrogens, 2 nitrogens, and 3 oxygens as
highlighted above.

We can take this example further by asking how many isomers are there with a
specific number of hydrogens.[6]

Example 6.8: Let us find the number of isomers in example 6.7 with 3 hydrogens.
Let us set the weights as follows: ω(hydrogen) = H,ω(nitrogen) = 1, ω(oxygen) = 1.
Pólya’s Enumeration Theorem gives

ZGV
(H + 2, . . . ,H8 + 2)

=
1
24

[(H + 2)8 + 8(H + 2)2(H3 + 2)2 + 9(H2 + 2)4 + 6(H4 + 2)2]

=
1
24

[552 + 1152H + 2112H2 + 1920H3 + 1488H4 + 480H5

+ 216H6 + 48H7 + 24H8]

= 23 + 48H + 88H2 + 80H3 + 62H4 + 20H5 + 9H6 + 2H7 + H8.
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Hence there are 80 different isomers containing 3 hydrogens. From this we can also
see that there are 23 isomers that contain no hydrogens at all.

Here is a similar example taken from Pólya.[7] In this example Pólya discusses 3
permutation groups that can be associated to a basic chemical compound: stereofor-
mula, structural formula and the extended group of the stereoformula. The structural
formula takes into account spatial interpretation or rotations. Structural formula is
associated to the topological interpretations. The extended group of the stereofor-
mula that accounts for rotations and reflections. We will denote these permutations
groups as R, T and RR respectively.

Example 6.9: Consider the chemical compound cyclopropane (C3H6), illustrated in
figure 15. Let us first find the cycle index to the stereoformula permutation group R.

Figure 15: Cyclopropane

There are 6 permutations, 2 rotations of the triangular base of carbon atoms, 3 rota-
tions that rotate by switching any pair of carbon atoms, and 1 identity permutation.
Hence the cycle index of R is

ZR =
1
6
[x6

1 + 3x3
2 + 2x2

3]. (28)

Secondly let us find the cycle index associated with the structural formula permutation
group T . Above we discovered that we could permute the carbon atoms 6 ways. Once
such a permutation has been chosen, the remaining hydrogen atoms of the compound
can be permuted in 23 = 8 ways. Therefore there are a total of 6·8 = 48 permutations.
These permutations can be associated to those of an octahedron, and thus the cycle
index of T is12

ZT =
1
48

[
x6

1 + 3x4
1x2 + 9x2

1x
2
2 + 7x3

2 + 8x2
3 + 6x2

1x4 + 6x2x4 + 8x6
]
. (29)

Lastly, let us find the cycle index associated with the extended permutation group of
the stereoformula RR. Here we consider both the rotational and reflectional permu-
tations and hence RR consists of 12 permutations with the following cycle index

ZRR =
1
12

[
x6

1 + 4x3
2 + 2x2

3 + 3x2
1x

2
2 + 2x6

]
. (30)

Note that the permutation groups have the following relation R ⊂ RR ⊂ T . Now
we are able to find the number of stereoisomers (isomeric molecules with the same
molecular formula but which differ in three dimensional orientation), stereoisomers
taking reflections into account, and structure isomers. Hence we are able to find

12Note that this cycle index can be seen as the composition of S2 and S3. Where S3 permutes the
3 carbon atoms corresponding to the 3 diagonals of the octahedron and S2 permutes the 2 hydrogen
atoms bonded to each carbon atom corresponding to the endpoints of an octahedral diagonal.[7]
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the number of different isomeric substitutes of cyclopropane of the form C3XiYjZl

where X, Y and Z are different independent radicals and i + j + l = 6. Let ω(X) =
X, ω(Y ) = Y, ω(Z) = Z.
Then the stereoisomers are give by

ZR((X+Y + Z), . . . , (X6 + Y 6 + Z6))

=
1
6

[
(X + Y + Z)6 + 3(X2 + Y 2 + Z2)3 + 2(X3 + Y 3 + Z3)2

]
=

1
6
[6X6 + 6X5Y + 24X4Y 2 + 24X3Y 3 + 24X2Y 4 + 6XY 5 + 6Y 6

+ 6X5Z + 30X4Y Z + 60X3Y 2Z + 60X2Y 3Z + 30XY 4Z + 6Y 5Z

+ 24X4Z2 + 60X3Y Z2 + 108X2Y 2Z2 + 60XY 3Z2 + 24Y 4Z2

+ 24X3Z3 + 60X2Y Z3 + 60XY 2Z3 + 24Y 3Z3 + 24X2Z4

+ 30XY Z4 + 24Y 2Z4 + 6XZ5 + 6Y Z5 + 6Z6]

= X6 + X5Y + 4X4Y 2 + 4X3Y 3 + 4X2Y 4 + XY 5 + Y 6 + X5Z

+ 5X4Y Z + 10X3Y 2Z + 10X2Y 3Z + 5XY 4Z + Y 5Z + 4X4Z2

+ 10X3Y Z2 + 18X2Y 2Z2 + 10XY 3Z2 + 4Y 4Z2 + 4X3Z3

+ 10X2Y Z3 + 10XY 2Z3 + 4Y 3Z3 + 4X2Z4 + 5XY Z4 + 4Y 2Z4

+ XZ5 + Y Z5 + Z6.

The stereoisomers taking reflections into account are given by

ZRR((X + Y + Z), . . . , (X6 + Y 6 + Z6))

=
1
12

[(X + Y + Z)6 + 4(X2 + Y 2 + Z2)3 + 2(X3 + Y 3 + Z3)2

+ 3(X + Y + Z)2(X2 + Y 2 + Z2)2 + 2(X6 + Y 6 + Z6)]

=
1
12

[12X6 + 12X5Y + 36X4Y 2 + 36X3Y 3 + 36X2Y 4

+ 12XY 5 + 12Y 6 + 12X5Z + 36X4Y Z + 72X3Y 2Z + 72X2Y 3Z

+ 36XY 4Z + 12Y 5Z + 36X4Z2 + 72X3Y Z2 + 132X2Y 2Z2

+ 72XY 3Z2 + 36Y 4Z2 + 36X3Z3 + 72X2Y Z3 + 72XY 2Z3

+ 36Y 3Z3 + 36X2Z4 + 36XY Z4 + 36Y 2Z4 + 12XZ5

+ 12Y Z5 + 12Z6]

= X6 + X5Y + 3X4Y 2 + 3X3Y 3 + 3X2Y 4 + XY 5 + Y 6 + X5Z

+ 3X4Y Z + 6X3Y 2Z + 6X2Y 3Z + 3XY 4Z + Y 5Z + 3X4Z2

+ 6X3Y Z2 + 11X2Y 2Z2 + 6XY 3Z2 + 3Y 4Z2 + 3X3Z3

+ 6X2Y Z3 + 6XY 2Z3 + 3Y 3Z3 + 3X2Z4 + 3XY Z4 + 3Y 2Z4

+ XZ5 + Y Z5 + Z6.
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The structure isomers are given by

ZT ((X + Y + Z), . . . , (X6 + Y 6 + Z6))

=
1
48

[(X + Y + Z)6 + 3(X + Y + Z)4(X2 + Y 2 + Z2)

+ 9(X + Y + Z)2(X2 + Y 2 + Z2)2 + 7(X2 + Y 2 + Z2)3

+ 8(X3 + Y 3 + Z3)2 + 6(X + Y + Z)2(X4 + Y 4 + Z4)

+ 6(X2 + Y 2 + Z2)(X4 + Y 4 + Z4) + 8(X6 + Y 6 + Z6)]

=
1
48

[48X6 + 48X5Y + 96X4Y 2 + 96X3Y 3 + 96X2Y 4 + 48XY 5 + 48Y 6

+ 48X5Z + 96X4Y Z + 144X3Y 2Z + 144X2Y 3Z + 96XY 4Z + 48Y 5Z

+ 96X4Z2 + 144X3Y Z2 + 240X2Y 2Z2 + 144XY 3Z2 + 96Y 4Z2

+ 96X3Z3 + 144X2Y Z3 + 144XY 2Z3 + 96Y 3Z3 + 96X2Z4 + 96XY Z4

+ 96Y 2Z4 + 48XZ5 + 48Y Z5 + 48Z6]

= X6 + X5Y + 2X4Y 2 + 2X3Y 3 + 2X2Y 4 + XY 5 + Y 6 + X5Z

+ 2X4Y Z + 3X3Y 2Z + 3X2Y 3Z + 2XY 4Z + Y 5Z + 2X4Z2

+ 3X3Y Z2 + 5X2Y 2Z2 + 3XY 3Z2 + 2Y 4Z2 + 2X3Z3 + 3X2Y Z3

+ 3XY 2Z3 + 2Y 3Z3 + 2X2Z4 + 2XY Z4 + 2Y 2Z4 + XZ5 + Y Z5 + Z6.

Let us now take an example from Aigner.[1]

Example 6.10: An alcohol is an organic compound in which a hydroxyl group OH is
bound to a carbon atom C. We want to determine the generating function A(x) =∑

n≥0 anxn where an is the number of alcohols with n carbon atoms. We have a0 = 1,
and for n ≥ 1 let the carbon atom attached to the hydroxyl group be the root of
the alcohol. Then there are three subalcohols attached to the root, which can be
arbitrarily permuted. Hence the permutation group used is S3 on N = {1, 2, 3}.

Figure 16: Alcohol structure

Let C be the set of alcohols with weight ω(A) = xn if A contains n carbon atoms.
Note that C is an infinite set, but this poses no difficulties. Any alcohol will therefore
correspond to a map k : N → C, and the different alcohols will correspond to the
patterns under S3. The cycle index for S3 is

ZS3(x1, x2, x3) =
1
6

[
x3

1 + 3x1x2 + 2x3

]
.

and
∑

A∈C ω(A)k = A(xk). Taking the root into account, Pólya’s Enumeration The-
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orem gives

A(x) = 1 +
x

6
[
A(x)3 + 3A(x)A(x2) + 2A(x3)

]
.

Then by comparing coefficients we have the following formula for an, n ≥ 1.

an =
1
6

 ∑
i+j+k=n−1

aiajak + 3
∑

i+2j=n−1

aiaj + 2an−1
3

 . (31)

Note that the values of a1, . . . an−1 are needed to compute the value of an using this
formula. The first values of which are

n 0 1 2 3 4 5 6 7 8
an 1 1 1 2 4 8 17 39 89 .

Hence there are 8 alcohols with 5 carbon atoms as shown in figure 17, where only the
hydroxyl group (OH) and carbon atoms (C) are given.

Figure 17: Eight possible alcohols for n = 5

6.4 Trees

In graph theory a tree is a connected graph without any cycles in which any two
vertices are connected by a single path. Pólya’s Enumeration Theorem can also be
applied to count the number of rooted trees with p points. This method is similar to
example 6.10. Now we want to determine the generating function

T (x) =
∞∑

p=1

Tpx
p,

where Tp is the number of rooted trees with p points. The method used here is
recursive. Given a root with degree n the n subtrees can be permuted Sn ways,
thereafter each subtree can be permuted. First we must find the generating function
which enumerates rooted trees in which the root has degree n. Thereafter we must
find the generating function of the latter n secondary rooted trees corresponding to
the degree of the root. This correspondence is illustrated for n = 4 in figure 18.

Let C be the set of trees with weight ω(T ) = xn if T contains n points. By
applying Pólya’s Enumeration Theorem we have ZSn

(T (x)) as the function counting
series where the coefficient of xp corresponds to the number of rooted trees of order
p+1 whose roots have degree n. Taking the root into account corrects the weights so
that the coefficient of xp in xZSn(T (x)) is the number of trees with p points. Summing
over all possible values of n gives us

T (x) = x
∞∑

n=0

ZSn(T (x)).
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(a) (b)

Figure 18: Four rooted trees and the corresponding tree with root of degree 4

The number of rooted trees with p points has been determined for p ≤ 39. The
following table giving the number of rooted trees with p points is taken from Harary.[4]

Number of rooted trees
p Tp p Tp

1 1 14 32 973
2 1 15 87 811
3 2 16 235 381
4 4 17 634 847
5 9 18 1 721 159
6 20 19 4 688 676
7 48 20 12 826 228
8 115 21 35 221 832
9 286 22 97 055 181
10 719 23 268 282 855
11 1 842 24 743 724 984
12 4 766 25 2 067 174 645
13 12 486 26 5 759 636 510

The rooted trees of 4 or less points are shown in figure 19.

Figure 19: Rooted trees of 4 or less points

6.5 Graphs

Pólya’s Enumeration Theorem can already be used to count the coloring of the vertices
of any polygon as seen in the beaded necklace examples. Here we will first use Pólya’s
Enumeration Theorem to discover the number of graphs with p points and q lines,
and after the number of bipartite graphs Km,n where m 6= n.

(p, q) Graphs

A (p, q) graph is a graph consisting of p points and q lines. We need to derive a formula
for the cycle index of (p, q) graphs and then apply Pólya’s Enumeration Theorem to
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determine the counting polynomial

qp(x) =
(p
2)∑

q=0

gp,qx
q, (32)

where gp,q is the number of (p, q) graphs. Let N = {1, . . . , p} be the set of p points
and Sp denote the permutation group acting on N . Then we will denote the set of
all 2-subsets of N , or lines, by N (2). Let C = {0, 1} and let K be the set of colorings
k : N (2) → C where i, j ∈ N are connected if and only if k{i, j} = 1. Then two
colorings k1, k2 are equivalent, k1 ∼ k2, if and only if there exists σ ∈ Sp such that
k1{i, j} = k2{σ(i), σ(j)} for all i, j ∈ N . Let S

(2)
p denote the pair group of Sp, which

is the permutation group induced by Sp that acts on N (2). Then every σ ∈ Sp induces
a permutation σ′ that acts on N(2),

σ′({i, j}) = {σ(i), σ(j)}. (33)

Then the polynomial gp(x) is given by the following formula taken from Harary [4]

gp(x) = Z
S

(2)
p

(1 + x, . . . , 1 + xp), (34)

where

Z
S

(2)
p

=
1
p!

∑
(j)

p!∏
kjkjk!

∏
k

s
kj2k+1
2k+1

∏
k

(xkxk−1
2k )j

2kx
k

(
jk
2

)
k

∏
r<t

s
(r,t)jrjt

[r,t] . (35)

Let us illustrate this with an example.

Example 6.11: Take the graph of 4 points where the permutation group is S4 with
cycle index PS4 = 1

24 [x4
1 +6x2

1x2 +8x1x3 +3x2
2 +6x4]. Here we have 5 types of permu-

tations x4
1, x

2
1x2, x1x3, x

2
2, x4 that will induce permutations in S

(2)
4 . Let us choose a

representative of each type of permutation from S4 and see what type of permutation
they induce in S

(2)
4 .

(a) N (b) N(2)

Figure 20: Labeling of N and N (2)

Let the following permutations be our representatives of the above types: ι =
(1)(2)(3)(4), σ1 = (1)(23)(4), σ2 = (123)(4), σ3 = (12)(34), σ4 = (1234). Then (33)
gives the following.

ι′({1, 2}) = {1, 2} ι′({2, 3}) = {2, 3} ι′({3, 4}) = {3, 4}
ι′({1, 4}) = {1, 4} ι′({1, 3}) = {1, 3} ι′({2, 4}) = {2, 4}
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Then (1)(2)(3)(4) ∈ S4 → ({1, 2})({2, 3})({3, 4})({1, 4})({1, 3})({2, 4}) ∈ S
(2)
4 and

hence, x4
1 → x6

1.

σ′1({1, 2}) = {1, 3} σ′1({2, 3}) = {2, 3} σ′1({3, 4}) = {2, 4}
σ′1({1, 4}) = {1, 4} σ′1({1, 3}) = {1, 2} σ′1({2, 4}) = {3, 4}

Then (1)(23)(4) ∈ S4 → ({1, 2}{1, 3})({2, 3})({3, 4}{2, 4})({1, 4}) ∈ S
(2)
4 and hence,

x2
1x2 → x2

1x
2
2.

σ′2({1, 2}) = {2, 3} σ′2({2, 3}) = {1, 3} σ′2({3, 4}) = {1, 4}
σ′2({1, 4}) = {2, 4} σ′2({1, 3}) = {1, 2} σ′2({2, 4}) = {3, 4}

Then (123)(4) ∈ S4 → ({1, 2}{2, 3}{1, 3})({3, 4}{1, 4}{2, 4}) ∈ S
(2)
4 and hence,

x1x3 → x2
3.

σ′3({1, 2}) = {1, 2} σ′3({2, 3}) = {1, 4} σ′3({3, 4}) = {3, 4}
σ′3({1, 4}) = {2, 3} σ′3({1, 3}) = {2, 4} σ′3({2, 4}) = {1, 3}

Then (12)(34) ∈ S4 → ({1, 2})({2, 3}{1, 4})({3, 4})({1, 3}{2, 4}) ∈ S
(2)
4 and hence,

x2
2 → x2

1x
2
2.

σ′4({1, 2}) = {2, 3} σ′4({2, 3}) = {3, 4} σ′4({3, 4}) = {1, 4}
σ′4({1, 4}) = {1, 2} σ′4({1, 3}) = {2, 4} σ′4({2, 4}) = {1, 3}

Then (1234) ∈ S4 → ({1, 2}{2, 3}{3, 4}{1, 4})({1, 3}{2, 4}) ∈ S
(2)
4 and hence,

x4 → x4x2.

Therefore the cycle index of S
(2)
4 is given by

Z
(2)
S4

=
1
24

[
x6

1 + 6x2
1x

2
2 + 3x2

1x
2
2 + 8x2

3 + 6x4x2

]
=

1
24

[
x6

1 + 9x2
1x

2
2 + 8x2

3 + 6x2x4

]
.

Now we are able to determine g4(x) by (34), illustrated by figure 21.

g4(x) = ZS4(1 + x, 1 + x2, 1 + x3, 1 + x4)

=
1
24

[
(1 + x)6 + 9(1 + x)2(1 + x2)2 + 8(1 + x3)2 + 6(1 + x2)(1 + x4)

]
=

1
24

[
24 + 24x + 48x2 + 72x3 + 48x4 + 24x5 + 24x6

]
= 1 + x + 2x2 + 3x3 + 2x4 + x5 + x6.
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Figure 21: Possible (4,q) graphs

Bipartite Graphs

A bipartite graph Bm,n is a graph whose vertices can be divided into 2 distinct
subsets M,N such that no 2 points in one set are connected. To compute the number
of bipartite graphs we need the concept of a product of permutation groups.

Given two disjoint sets N and M where |N | = n, |M | = m and permutation groups
G, H acting on N and M respectively, then there is a natural product G×H acting
on N ×M . Let σ ∈ G and τ ∈ H, then we define the product to be the following

(σ, τ)(i, j) = (σ(i), τ(j)) (36)

where i ∈ N and j ∈ M . Then the cycle index of G×H is

ZG×H(x1, . . . xmn) =
1

|G||H|
∑
(σ,τ)

m,n∏
k,l=1

x
gcd(k,l)yl(σ)yk(τ)
lcm(k,l) , (37)

taken from Aigner[1].
It is obvious that given Bm,n where m 6= n, the permutation group Sm acts on the

set M of m points and Sn acts on the set N of n points. Then by the above Sm ×Sn

acts on Bm,n. Let C = {0, 1} and let K denote the group of colorings k : M×N → C
where (i, j) ∈ M × N are connected if k(i, j) = 1. Then the number of bipartite
graphs of the form Bm,n are given by

ZSm×Sn(1 + x, . . . , 1 + xmn),

for m 6= n.

Example 6.12: Let us compute the number of bipartite graphs of the form B2,3
13.

Then (37) gives

ZS2×S3(x1, . . . , x6) =
1
12

[
x6

1 + 3x2
1x

2
2 + 4x3

2 + 2x2
3 + 2x6

]
,

hence the number of bipartite graphs is

ZS2×S3(1 + x, . . . , 1 + x6)

=
1
12

[(1 + x)6 + 3(1 + x)2(1 + x2)2 + 4(1 + x2)3 + 2(1 + x3)2

+ 2(1 + x6)]

=
1
12

[
12 + 12x + 36x2 + 36x3 + 36x4 + 12x5 + 12x6

]
= 1 + x + 3x2 + 3x3 + 3x4 + x5 + x6.

13This example can be found in both Aigner [1] and Harary [4].
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Figure 22: The bipartite graphs of the form B2,3
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