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Abstract

Simulations of the nuclear magnetic resonance relaxation method is an impor-
tant part of a digital laboratory developed by Numerical Rocks. The laboratory
is used to model petrophysical properties and simulating fluid flow in the pore
scale of reservoir rocks.

The nuclear magnetic resonance relaxation method can be simulated on a
computer using a method involving random walkers. This computer simula-
tion can be parallelized to reduce computational time. The aim of this study
has been to examine how overlapping boundaries affects speed-up and commu-
nication in a parallel simulation of random walkers. Several parallel algorithms
have been proposed and implemented.

It was found that an overlapping partitioning of the problem is recom-
mended, and that communication decreases exponentially with increasing over-
lap. However, increased overlap resulted only in a small negative impact on
memory usage and speed-up.
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Chapter 1

Introduction

Oil companies around the world are constantly performing oil and gas explo-
rations, trying to find new oil fields to develop. One oil field can be populated
with one or more strategically placed oil wells. The cost of a single well can
be tens of millions of dollars for certain fields, it is therefore important to do
proper investigations before launching development.

When the evaluation of quality of a potential oil well is carried out, several
parameters are considered. Based on these parameters an estimate of the cost
for development and production can be made. Based on these figures and the
expected amount of extracted oil and gas an estimate of profit can be made.
If these estimates are favourable an eventual development of the well can be-
gin. One of the important factors in this evaluation process is the permeability
of the reservoir. If the permeability is large enough the well is said to be ex-
ploitable. The percentage of oil in a reservoir that can be extracted increases
with increasing permeability.

Usually the measurement of permeability is carried out in a conventional
laboratory. In the laboratory, samples of sandstone taken from a potential well
can be analysed. Permeability is a measure of the ease with which a fluid
can pass through the pore spaces of a sandstone formation. Permeability can
either be determined by empirical experiments or be estimated by the Nuclear
Magnetic Resonance (NMR) relaxation method [1]. The empirical methods
requires very high pressure to be applied to the sample for a long period of time.
This renders the experiments impractical and expensive, and NMR relaxation
is usually the preferred method when determining permeability of sandstone.

Numerical Rocks is a Norwegian based company trying to provide technol-
ogy for fast and reliable prediction of reservoir rock properties without use of
traditional laboratory testing. They develop a digital laboratory where digital
(numerical) rock models can be analyzed. The digital rocks can for instance
be acquired by Micro-CT scanning of a sample from the reservoir, or the model
can be created from a thin rock section using Numerical Rocks e-Core tech-
nology. One of the experiments that can be carried out on this digital rock is
simulations of the NMR relaxation method. The heart of this method is ran-
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2 Chapter 1. Introduction

dom walkers [2], and a fast implementation of the random walk algorithm is
essential to the overall performance of the simulation.

This report will examine the possibility to harvest the powers of several
computers through parallel computing to speed up the random walk algorithm.

The report is sectioned in six chapters and two appendices. Chapter 1 is
the introduction. The second chapter goes through the foundations and ter-
minology used. The fields of random walks and parallel computing will be
presented. Following in the next chapter is the problem formulation. Both the
details of the digital rock model and a mathematical description of the random
walkers used are given. The fourth chapter proposes various algorithms for
the random walk method; both serial and parallel algorithms are given. Chap-
ter 5 addresses implementations of the algorithms and performance testing of
these programs. Finally, in the sixth chapter, a conclusion is made. The two
appendices contains program code and testing results.



Chapter 2

Theory

2.1 Random Walks

2.1.1 History

The term random walk was first used in 1905 by the British statistician Karl
Pearson when he posted a question in Nature. There he presented a model for
mosquito infestation in a forest. The model described mosquito movements as
displacements of length a at fixed time steps, but at a random angle. Given
this model Pearson wondered what the mosquito distribution would be after n

steps [3]. Lord Rayleigh had already solved a similar, but more general problem
25 yeas earlier and posted a solution to Pearson’s problem just one week later.

A few yeas earlier, in 1900 the French mathematician Luis Bachelier pub-
lished his doctor thesis The Theory of Speculation [4]. This is considered to be
the first paper to use advanced mathematics in the study of finance. Bachelier
discussed the use of Brownian motion to evaluate stock options. The ideas of
Bachelier did not gain recognition until 73 years later when Burton Malkiel re-
leased his book A Random Walk Down Wall Street [5] and revived Bacheliers
ideas. This book is now regarded a classic in theoretical finance.

The year 1905 was also the year when Albert Einstein published his paper
On the movement of small particles suspended in a stationary liquid demanded

by the molecular-kinetic theory of heat [6]. This was in a time with uncertainty
concerning whether matter where continuum or discrete particles. By studying
the Brownian motion of a dust particle i a microscope Einstein argued that
atoms could be counted.

As history shows, the field of random walks is broad and applications of
random walks can be seen in many scientific disciplines. It is reasonable to
say that the scientific area of random walks was developed on the brink of the
twentieth century. Now, a century later, random walks can be seen in a broad
range of applications.

3



4 Chapter 2. Theory

2.1.2 Applications

In thermodynamics, random walks can be used to model the propagation of
heat. This can be done since the heat equation (also called diffusion equation)
and the probability density function for Brownian motion is the same, and
random walks is merely a discretized Brownian motion.

Random walks is often used to model different gambling problems. The
gambler’s ruin [7] problem is a simple example of this.

In polymer physics the formation of an ideal chain (the simplest model to
describe a polymer) can be viewed as a random walk [8].

The decay of radiation from molecules in a sample analyzed by the nu-
clear magnetic resonance relaxation method can be simulated using random
walks [9].

2.1.3 Random Walker

The particles participating in a random walk model are called random walkers,
or simply walkers. A walker is associated with a location p in a space S and
two random variables X and Y that are described by the probability density
functions f (x) and g(y). The function g(y) gives the probability density for
the time interval between each step of the walker. The probability density of the
walkers displacement at each step is given by the function f (x). Both functions
may depend on the position of the walker p or time t, or both.

p ∈ S

X ∼ f (x) = f (x ; p, t)

Y ∼ g(y) = g(y; p, t) y > 0

(2.1)

For instance, a detailed model of the movement of a mosquito in a forest will
depend on both p and t. Mosquitoes are more active during night, hence
g(y) should depend on t and favour smaller Y during night time. In addi-
tion, mosquitoes will most likely not fly hundreds of meters out on open water.
Therefore, if a huge lake is located in the forest, f (x) should depend on p and
give X values that tend to guide the mosquitoes on shore. On the other hand
we have Einsteins experiment, with a random walker (dust particle) in a homo-
geneous and time independent environment (air). Such problems have f (x)

and g(y) that are both independent of p and t.
The locations of a random walker at any step can be given as a recursive

function, with p0 being the starting location of the walker and pn being the lo-
cation of the walker after n steps. This is described by (2.2) and it is illustrated
in Figure 2.1.

p0 ∈ S

pn = pn−1 + X ∈ S n> 0

X ∼ f (x ; pn−1, t)

(2.2)
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S

b
p

(a) Location of the walker at time t .

S

b

b
p+ X

(b) Location of the walker at time t + Y .

Figure 2.1: The movement of a random walker in a space S is governed by two ran-
dom variables X and Y . The time for the next step is given by Y , and the walker
displacement for that step is given by X .

The functions f (x) and g(y), and the space S depends on the problem at
hand. The simplest possible random walk model describes a walker released at
the origin of the one dimensional integer line Z. The walker is only allowed to
take unit steps left or right with equal probability and at intervals of unit time.
This discrete model is given by the following system of equations:

S = Z

x0 = 0

X ∼ f (x) =

(

1
2

if x = ±1

0 else

Y = 1

(2.3)

A walker governed by (2.3) is shown in Figure 2.2.

-3 -2 -1 0 1 2 3

1
2

b

1
2

bbb

Figure 2.2: A one dimensional random walker located at the origin of the integer line.
When the walker take its next step it will either go to -1 or 1, with equal probability.

2.1.4 Random Environment

The classical random walk problems, like the ones studied around year 1900
and the one given in (2.3), all consider particles in a fairly homogeneous media.
However many problems involve highly irregular or chaotic media. Such media
are called random environments [10].
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For instance in polymer physics the structure of a polymer can be vastly
affected by random impurities [11], and the ideal chain model is no longer
valid.

Another random environment is the pore network of a sand stone. Diffusion
in such a media may be modeled as random walks in a random environment.
This is the kind of environment we will consider in the following chapters.

2.1.5 Mortality

A mortal walker is a walker that can cease to exist (or stop to walk) given
some condition. A walker can for instance be assigned a death rate. This can
be achieved by letting the walkers be killed with probability λ at each time
step [12]. A second variation is to let the walker die when some predefined
condition is met. For instance will the gambler in gambler’s ruin stop to gamble
when (or if) he looses all his money. If the gambler’s fortune is viewed as a
random walker on the positive half of the integer line, then the walker will die
when it reaches the origin for the first time. This corresponds to the situation
that the gambler has no more money to gamble with.

2.2 Random Numbers

The heart of all random walk methods is the generation of random steps. A
basis for this process is the generation of one or more random numbers. These
numbers can in turn be used to determine the time interval between steps, and
the length and direction of steps. Random walks usually consists of a large
amount of steps, and even the smallest bias in number generation may add up
to significantly alter the final result. It is therefore important that the numbers
used in a random walk method are truly random, or at least that they are
random enough to not affect the results of the method.

When simulating random walks by the use of computers a huge amount of
random numbers is needed. There are two different approaches for obtaining
these numbers. The first approach is to get the numbers from some external
source. The second one is to let the computer generate the numbers using an
algorithm.

When using an external source true random numbers1 can be found and
used in the random walk. However, the process of finding these numbers is
slow and expensive, and an algorithm generating random numbers is usually
preferred.

1True random numbers can only be found by using a non-deterministic source to produce ran-
domness. It is common to find truly random numbers by taking samples from a physical process
that appear random at macroscopic scale. Examples of such processes are cosmic background
noise or merely the toss of a fair coin.
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When an algorithm creating random numbers is run by a computer a huge
amount of numbers can be found at almost no cost. However, due to the de-
terministic nature of algorithms true random numbers can not be found, only
pseudo-random numbers can be generated. Sooner or later the algorithm is
going to repeat it selves, starting over again on the number sequence it has
already generated. Hence it is important to choose a random number genera-
tor that produces a sufficient amount of random numbers, given the number of
steps that the walkers will take.

2.3 Parallelization

2.3.1 Introduction

Ever since the appearance of the first computers, increased computing power
has been the main driving force for further development of computer technol-
ogy. Before the dawn of computers a scientist could perform approximately 102

calculations in an hour. Even early computers could do tens of thousands (104)
of calculations. Once this immense computational power was available previ-
ously unsolvable problems could be solved.

Before 1952 only the 12 smallest Mersenne primes2 were known, and the
12th one being 2127 − 1 was discovered almost a century earlier by François
Édouard Anatole Lucas. In 1952 five new and larger numbers were found by
Raphael M. Robinson in under one year, by the use of a computer program.
The largest one he found was 22281 − 1†. Identifying and verifying the validity
of those numbers would not have been possible without the aid of computers.

However, there will always appear new problems that require more com-
putational power to be solved, or problems that can be solved more accurately
if more computational power where available. This is the driving force behind
the never ending strive in computer development. Intel Corporation co-founder
Gordon E. Moore stated in 1965 that the number of transistors that can be
inexpensively placed on an integrated circuit is increasing exponentially, dou-
bling approximately every couple of years [13]. This has later been known as
“Moore’s Law” as the trend he observed have continued since then. History has
also shown that the doubling happens even faster than every two years, and
every 18th month is now usually used when referring to the “law”. Most com-
puter resources, like processing speed and memory capacity follows Moore’s
Law quite closely [14], and hence the computational power of a computer fol-
lows this law.

While “Moore’s Law” states that evolution of computers in fact happens ex-
tremely rapidly, people always tend to want more. According to Moore you

2A Mersenne number is a number of the form 2n − 1 and a Mersenne prime is a Mersenne
number that also is a prime number.

†As of September 22, 2008, 44 Mersenne Primes are known, the largest one being 232582657−1
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need to wait for more then eleven (211/2 < 50) years if you need a computer
that is 50 times a fast as the one you are using today. However, there is an
alternative approach to the problem of computational speed. A construction
company can not exchange their workers for workers that is 50 times more
efficient, no matter how long they wait. So, what do they do? They hire more
workers. The same can be done to increase the computational force, several
computers can be told to cooperate on the same task. This is the essence of
parallel computing, if you buy 50 computers you do not have to wait eleven
years for the faster one. Unfortunately, just like on the construction site where
50 men need more supervision than one man, computers need special guid-
ance if they are going to collaborate. The serial programs and algorithms that
work on a single computer needs to be made parallel in a way such that each
computer knows what part of the problem to work on.

In addition to the increased calculation power available through paralleliza-
tion, there is a second and just as important advantage. The memory available
to a parallel program is linearly dependent on the number of computers run-
ning the program. A lot of problems involve amounts of data that is larger than
what a single computer can cope with. By distributing the data among com-
puters so that each just holds a part of the problem in memory, they can handle
problems of larger size than each could on their own.

2.3.2 Terminology

To avoid confusion the various terms used in this report when describing par-
allel computing, and the relation between these terms will be presented here.

Serial Computer A serial computer is a computer that is only capable of per-
form one task at a time. Serial computers can appear to do tasks simul-
taneously by rapidly alternating between them. This technique is called
multitasking. However, multitasking has the drawback that each task is
performed slower because it is frequently paused. Most older3 personal
computers are serial computers.

Parallel Computer A parallel computer is a computer that is capable of per-
forming more than one task simultaneously without multitasking. They
are categorized by how many simultaneous tasks they can perform. Mod-
ern personal computers can usually perform two to four tasks at the same
time. Several serial or parallel computers can be connected together to
construct a bigger parallel computer. Such parallel computers are often
called clusters or supercomputers. Large clusters can perform thousands4

of simultaneous tasks.

3The production of parallel personal computers started around year 2006.
4As of September 22, 2008 the worlds most powerful supercomputer can perform approxi-

mately hundred thousand simultaneous tasks (http://www.top500.org).

http://www.top500.org
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Computer When the term computer is used without further specifications it
refers to a single physical computer, in contrast to a cluster. The individ-
ual computers that make up a cluster are called nodes.

Processor All computers contain at least one central processing unit (CPU).
The CPU consists of one or more cores. It is the number of cores in a
computer that limits the number of tasks that can be performed simulta-
neously. One core can carry out only one task at a time. When the term
processor is used, it refers to the number of cores in the system, not the
number of central processing units.

Process A process is the execution of program code on one processor. One
processor can only run one process at a time, and one process can only
be run by one processor at a time. Most programs are implemented to use
just one process, and such programs will not be able to take advantage
of parallel computers.

Serial Program A serial program is a program that spawn only one process.

Parallel Program A parallel program is a program that can spawn several pro-
cesses. If the parallel program is started on a parallel computer the pro-
cesses can run simultaneously. However if the parallel program is started
on a serial computer the processes will be multitasked. Whenever the
term process is used in relation to a parallel program, it is assumed that
there is enough processors available to avoid multitasking. Most paral-
lel programs, including the ones implemented in Chapter 5, ensures that
the number of processes spawn matches the number of processors in the
system it is run on.

2.3.3 Performance and speed-up

When evaluating a serial program we are interested in the estimated running
time given a particular problem size n. Depending on the particular algorithm
implemented, this might be a constant number or it might be an (exponential)
function of n. The running time of a serial program is denoted TS(n).

Similarly, the running time of a parallel program depends on the problem
size n, but in addition it depends on the number of processes p collaborating on
the task. This function is called TP(n, p). The total running time of a parallel
program is measured as the time from initialization of the program until all

processes are finished.
Once more we return to the construction workers. If we say that one worker

can build a car shed in two weeks (75 hours), then fifty workers can build fifty
car sheds in two weeks. However, no one would expect fifty workers to build
one car shed in 90 minutes. Paint would have to dry, people would have to
wait for each others to move and some tasks may have to wait until others
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are finished. They can for instance not start on the roof or walls before the
framework is finished.

The same principles apply to parallel computing, if you have p processors
you can at best hope for the program to run p times faster. That happens
however only on simple and rare occasions, and usually a lower speed-up is
achieved. The speed-up of a parallel program can be expressed as

S(n, p) =
TS(n)

TP(n, p)
≤ p (2.4)

and the efficiency of a parallel program can be stated as

E(n, p) =
S(n, p)

p
(2.5)

To see why the speed-up S(n, p) is not always equal to p, and is in fact most
likely less than p, we can have a closer look at TP (p, n). The time consumed
when running a parallel program can be divided in three categories: calculation
time, time spent on I/O5 and time spent on communication between processes.
This can be expressed by

TP (n, p) = TP,calc.(n, p) + TP,I/O(n, p) + TP,comm.(n, p) (2.6)

The parallel program has to do the same total amount of calculations as the
serial program. It also might have to do some additional calculations to figure
out what part of the problem each process is responsible for.

TP,calc.(n, p) ≥
1

p
TS,calc.(n) (2.7)

The same argument applies to time spent on I/O, a certain amount of data has
to be read. At minimum each process needs to read a 1/p-part of the data.

TP,I/O(n, p) ≥
1

p
TS,I/O(n) (2.8)

The serial program obviously does not need to spend time on communication,
since it is working by itself. However, processes in most parallel programs will

have to communicate with each other to divide work, share information and
synchronize tasks that depend on each other.

TP,comm.(n, p) ≥
1

p
TS,comm.(n) = 0 (2.9)

5I/O or input/output refers to the communication between a program and the outer world,
i.e. human interaction with the program or hard drive access
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Combining the previous equations gives a lower bound for TP(n, p). However,
the equality will only hold for trivial situations.

TP(n, p) ≥
1

p

�

TS,calc.(n)+ TS,I/O(n) + TS,comm.(n)
�

=
1

p
TS(n) (2.10)

By inserting (2.10) into (2.4) it can be verified that p is the maximum at-
tainable speed-up. Unfortunately a slow-down (S(n, p) < 1) is also possible if
housekeeping tasks are excessive.

0< S(n, p) ≤ p (2.11)

If a speed-up larger than p is achieved, the serial implementation is most likely
not optimal.

An alternative analysis of the parallel computational time TP (n, p) can be
performed by dividing TS(n) in two fractions. The first fraction is the part of
TS(n) that is perfectly parallelizable, this part is of size r. The remainder is
of size 1− r and is the part of TS(n) that is strictly serial. This part can not
be parallelized, meaning that the running time of that part of the problem is
constant, and independent of the number of processors available.

TP(n, p) =
1

p
rTS + (1− r)TS (2.12)

Equation (2.12) can be used to compute the speed-up S(n, p):

S(n, p) =
TS

p−1rTS + (1− r)TS

=
1

1− r + rp−1 (2.13)

By noting that rp−1 never becomes negative an upper bound for speed-up can
be found:

S(n, p)<
1

1− r
(2.14)

This equation is named Amdahl’s Law [15] and it states that any given problem
has an upper limit for speed-up, independent of p, if it contains a serial part
(r < 1). For instance if ten percent of a problem has to be done serially then
r = 0.9 and the maximum speed-up possible is S(n, p) = 10, no matter how
many processes that are assigned to a task.

A common misinterpretation of Amdahl’s Law is that massive parallelism
is impossible. Fortunately that is not entirely true. The fraction of a problem
1− r that is strictly serial is usually inversely dependent on the problem size
n. Amdahl simply states that for a fixed problem size there is an upper bound
to S(n, p), but in most real applications the reason for increasing p is to solve
larger problems, i.e. larger n. The larger n will in turn result in an increased
r and higher theoretical speed-up limit. However, it certainly is beneficial to
have problems with high r even for small n.

When developing a parallel program it is important to keep in mind that
both (2.11) and (2.14) limits the theoretical speed-up attainable.





Chapter 3

Problem

3.1 Overview

The sandstone permeability in an oil well is of great interest to oil compa-
nies. A well with low permeability is generally less profitable than a well with
high permeability. One method used to measure permeability of sandstone is
the Nuclear Magnetic Resonance (NMR) Relaxation method [16]. The NMR
method is usually carried out in a laboratory. However, a popular alternative is
to simulate the NMR process using computers [17].

To do NMR simulation digital sandstone models are required. A sandstone
model consists of discrete sites located in a three dimensional cube. Each site
is either solid or liquid. A cut plane from a digitalized sandstone sample of
size N3 = 6003 is shown in Figure 3.1.

Figure 3.1: A two dimensional cut plane from a sandstone model of size 6003. The
yellow areas are solids, and the white areas in between the solids contain liquids. A
small part of the sandstone is magnified and shown to the right to reveal the detailed
structure of the discrete model.

13



14 Chapter 3. Problem

By placing random walkers evenly spaced in the voids of the sandstone,
NMR can be simulated. The walkers then move at random, and when a walker
hit a wall it is either bounced back into the void with probability 1− λ or it
dies. In a physical context, the walkers correspond to atoms in the liquids
filling the sandstone voids. The nuclei of these atoms are, during the NMR
process, placed in a precessing state by an applied magnetic field. The number
of atoms in a sample precessing can be found by measuring radiation. Due
to diffusion, precessing atoms will move around and occasionally hit the solid
walls of the voids. During these collisions there is a certain chance λ that atoms
will cease to precess, and the total radiation from the sample will decrease. By
recording the decreasing radiation from a given sample geologists can deter-
mine the permeability of the sandstone. It is the diffusion of precessing atoms
that are simulated using random walkers, and dying walkers corresponds to
atom nuclei ceasing to precess.

The random walkers used in our model can move in the six directions along
the axes of Z3. The step length and the time interval between steps are fixed.
Choice of direction however, is random and one of the six possible directions for
movement is chosen with equal probability at each step. There is no correlation
between steps. A walker with these properties is shown in Figure 3.2.

Z

X Y

(a) The walker can move in six direc-
tions. It can move along the three axes
of Z3, in both directions. Each direction
is equally likely.

(b) A walker moving in a three dimen-
sional, discrete and homogeneous box.
The walkers were released at the center
of the box.

Figure 3.2: A three dimensional random walker.

The resolution of the digital sandstone model is far more coarse-grained
than atomic scale. Hence, each cell of the model will in reality contain lots of
atoms. However, the digital model will only contain at maximum ∼ 1 walkers
in each cell. Collisions among walkers will therefore be disregarded in NMR
simulations.

A sandstone sample is in reality just a small piece of a far larger system. It
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is therefore natural to use periodic border conditions in the model.

3.2 Formal definition

The model we are looking at in this report can be described as a three-dimensional
lattice A of size N3. This is where the walkers shall move, and A is given by

A= {(i, j, k) : 0≤ i, j, k < N , i, j, k ∈ N} (3.1)

The lattice A is periodic in all three dimensions. This implies that walkers
leaving the model on one side will re-enter on the opposite side:

Ai, j,k = Ai+lN , j+mN ,k+nN ∀ l, m, n ∈ Z (3.2)

The lattice sites of A can be divided into two groups. The site in the model that
make up the voids of the sandstone are the sites that are accessible to walkers.
These sites belongs to the first group, Aa. Sites in the solid part of the sandstone
model belongs to Ai. These are the sites inaccessible to walkers. Each site in
the model belongs to exactly one of the two sets. These properties can be
summarized by the following equation:

Aa ⊆ A

Ai ⊆ A

Aa ∩ Ai = ∅

Aa ∪ Ai = A

(3.3)

Given this partitioning a walker moving to a site in Ai will return to Aa with
probability 1−λ and die with probability λ.

Walkers should initially be evenly spaced in Aa. This is fulfilled by placing
one walker at each site in Aa. Walkers are named by their starting position. A
walker starting at Ai jk is named wi jk. The position of a walker after a given
number of steps is given by the recursive function pn

p0(wi jk) = (i, j, k)

pn+1(wi jk) = pn(wi jk) + X
(3.4)

where X is a random variable. Every walker should move to one of its six
neighbouring sites in A at each time step. It is assumed that there is no drift
or rotation, hence each of the six directions should be chosen by equal chance,
with a probability of 1

6
. The random variable X determines the sequence of

steps and is then given by:

X ∼ f (x) =

(

1
6

if x ∈ {(±1,0,0), (0,±1,0), (0,0,±1)}

0 else
(3.5)
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More than one walker can occupy the same coordinate point without interfer-
ence between the walkers. If the site a walker moves to is in Ai the walker dies
with probability λ. If the walker survives it is placed back to its last location in
Aa. Walkers moving to a site in Aa simply continues its journey the next time
step.

The simulations should continue until all walkers are dead, and the number
of walkers still alive at each time step, should be recorded.



Chapter 4

Algorithms

4.1 Introduction

Various algorithms for the random walk problem stated in Chapter 3 will be
proposed in this section. Relevant code describing the algorithms will be given,
using a pseudo language. A sample algorithm demonstrating the structure of
the pseudo code used is shown in Algorithm 1.

1: procedure PROCEDURENAME(ar g1 , ar g2, · · · )
2: for i terator assi gnments do

3: if condition1 then ⊲ This is a comment
4: var1← var2 + var3 ⊲ The arrow (←) means assignment
5: else if condition2 then

6: var1← PROCEDURECALL(ar guments)

7: else

8: var1← NULL

9: return return_value

Algorithm 1: Sample pseudo code. The code can consist of procedures with return
values, procedure calls and control flow keywords.

The pseudo code may use verbose statements to describe an action, for
instance in line 5 in Algorithm 2 the word record is used to indicate that we
store the value steps, but we are not concerned with the details of how this is
done.

A lattice A is provided by an ASCII text file and needs to be read from disc by
the programs. At the end of execution results should be written to a single text
file. However, the reading and writing of files are implementation dependent
and the time spent on those tasks does not contribute significantly to the overall
running time. I/O will therefore not be covered in this section.

The algorithms presented in the remainder of this section will somehow be
provided with a three dimensional array A. It might be given as a procedure

17
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argument or the algorithm may ask for it when needed. The algorithms release
one walker in every site in Aa and terminates when all the walkers are dead.

4.1.1 Implementation language and libraries

All actual algorithm implementations are coded using the C++ programming
language [18] and the parallel implementations use Message Passing Interface
(MPI)1 for communication [15]. Performance of these implementations will be
evaluated in Chapter 5.

4.2 Serial Algorithm

An algorithm solving the stated random walk problem in a serial manner is
proposed in Algorithm 2. The algorithm iterates through each point in A and
checks if that point is accessible to a walker. If it is accessible, a walker is
released and the number of steps taken by the walker before it enters Ai and
dies is recorded. When a walker released at one point is dead, the algorithm
chooses a new point and releases a walker there. This process continues until
there is no more points to release walkers from and the algorithm halts.

1: procedure MAIN(A)
2: for x in A do

3: if x ∈ Aa then

4: steps← DOWALK(A, x)

5: record steps

6:

7: procedure DOWALK(A, x)
8: steps← 0
9: repeat

10: steps← steps + 1
11: xnex t ← x +RANDOMSTEP()

12: if xnex t ∈ Aa then

13: x ← xnex t

14: until walker dies

15: return steps

Algorithm 2: Random Walk, Serial version. If the walker enters Ai and does not die
the displacement is rejected, but it still counts as a step.

Algorithm 2 will be used as a reference algorithm when we later evaluate
the speed-up of the parallel algorithms of this chapter.

1The official MPI (Message Passing Interface) standards documents can be found at
http://www.mpi-forum.org/

http://www.mpi-forum.org/
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4.3 Parallel Algorithm

When describing a parallel algorithm a few problems arise that are not present
in serial algorithms. It is no longer sufficient with an algorithm that just in-
structs a single process. The algorithm needs to instruct a group of processes.
It may even have to give each process customized instructions. This could be
solved by writing one algorithm for each process, and for situations with just
a few processes that approach could be feasible. However, when the number
of processes grow large such an approach would be tedious. A second com-
plication is the desire to be able to reuse an algorithm later and possibly with
a different number of processes. That would be impossible with a one-to-one
mapping between algorithm and process.

An common solution is to make one algorithm able to instruct several pro-
cesses. This can be done by using conditional statements in the algorithm. An
example algorithm using this approach is shown in Algorithm 3.

1: id ← PARALLELSTART() ⊲ Process gets an unique id ∈ [0, p)

2:

3: if id = 0 then ⊲ Processes can then do com-
4: DOSOMEWORK( ) ⊲ pletely different work . . .
5: else if id = 1 then

6: DOSOMEOTHERWORK( )
7: ⊲ . . . or they can do the same
8: my_data← FINDMYPROBLEMSHARE(id) ⊲ work, but work on different
9: DOWORK(my_data) ⊲ data depending on their id

10:

11: SEND(valout , (id + 1)) ⊲ Communication with neighbours
12: valin← RECEIVE(id − 1)
13:

14: PARALLELEND( ) ⊲ Wait until all other process are finished

Algorithm 3: Concepts of parallelization. The variable named p is the total number
of processes executing the algorithm. The procedure FINDPROBLEMSHARE(id) returns
a unique part of the problem to each process, and it ensures that the entire problem
gets assigned to some process. How such a procedure can be implemented in a real
application depends on the problem at hand.

The idea behind this approach is that each process executes the same algo-
rithm as the others. However, the first thing that happens in the algorithm is the
assignment of an unique id to each process, as shown in line 1 in Algorithm 3.
Throughout the rest of the algorithm the process id is used to decide what work
to do in each process. It is possible to assign specific tasks to specific processes,
as shown in line 3, or different processes can work on different parts of a large
problem as shown in line 8. The id can also be used to communicate with other
processes. In line 11 all processes send a value to the process with higher id
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and receive a value from the one with lower id. This particular communication
technique is called ring communication, since it can be visualized as if all pro-
cesses are organized in a ring and only communicating with the ones on their
left and right hand side. Numerous other communication schemes can also be
constructed using the process id’s. In an actual ring communication implemen-
tation the process with id = p − 1 needs to send its value to the process with
id = 0, since there is no process p. However, this is omitted in the algorithm to
increase readability.

4.3.1 Implementation Factors

When parallelizing an algorithm several design decisions must be made. The
first one is what to parallelize. One can either parallelize just work, or work
and memory. The algorithmic design process can be simplified significantly if
the problem does not require much memory and all processes can store the
entire data set needed. Communication in such algorithms can usually be kept
at a minimum. Unfortunately the random walk problem requires the three
dimensional environment lattcie A to be stored and only small models would
fit in the memory of a single computer. With the exception of Algorithm 4 in
section 4.4 all algorithms presented will be data-parallel.

The second decision is how to divide the workload and distribute data.
Given that the lattice A is three dimensional and cubic, there is three partition
schemes that are natural to consider. The simplest one is a one dimensional
layered partitioning as shown in Figure 4.1(a). The second option is a two di-
mensional partitioning, as shown in Figure 4.1(b). A third option is the three
dimensional cubic partitioning, which is shown in Figure 4.1(c). Both the lay-
ered and the cubic approach have its advantages. In the layered approach each
process has just two neighbours to communicate with, while processes in a 2D-
or cubic partitioning has several. On the other hand, the surface-to-volume ra-
tio is smallest in the cubic approach, resulting in less need for communication.
Whenever a walker passes the surface of a process space it has to be transferred
to a neighbouring process. This is the root of communication, and the smaller
the surface of a process space is, the less communication is needed.

The one dimensional partitioning is not going to be used in any algorithms
due to its very bad surface-to-volume ratio. The two dimensional partitioning is
not going to be used due to its relatively bad surface-to-volume ratio in addition
to processes having several neighbours. While the cubic partitioning requires
the most advanced communication schemes, it is still chosen due to its superior
surface-to-volume ratio. This is especially true when p grow large, as shown in
Figure 4.2.

A third concern is what to do if some processes are assigned significantly
more work than others. Given the nature of a random environment this is not
an unlikely scenario, and in the extreme case one process might be assigned
just points from Aa while an other only gets points from Ai. Naturally, the latter
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(a) Layered (1D) partitioning (b) 2D partitioning (c) Cubic (3D) partitioning

Figure 4.1: Three alternatives for partitioning of the lattice A among eight processes.

0 10 20 30 40 50 60 70 80 90 100
0

25

50

75

100

p

S

V
1D

2D

3D

Figure 4.2: Surface-to-volume ( S

V
) ratio for the partitioning of a unit cube, using the

three partition schemes shown in Figure 4.1 with different number of processes p.



22 Chapter 4. Algorithms

process will not have any work to do at all and its calculation power will be
wasted unless the algorithm can adapt to the situation and reassign work. This
is the problem of load balancing and it will not be considered in this report.

4.4 Simple Parallel Version

This simplest possible parallel algorithm for the random walk problem is pre-
sented in Algorithm 4. The algorithm is parallel in work, but not in data,
meaning that each of the p processes will only calculate the route of a fraction
of the walkers, but all processes stores the entire walker environment lattice
A in memory. The environment is partitioned in p cubic volumes, and each
process is responsible for the walkers released in one of these cubes. This parti-
tioning is shown in Figure 4.3. Since each process stores the entire environment
A in memory, there will be no need to transfer walkers to other processes, even
if a walker walks outside of its starting cube. Hence there will be no communi-
cation.

Figure 4.3: A cubical partition of work between 27 processes. The box shows the part
of A where one particular process will be releasing walkers. Since all processes have
access to the entire lattice A, they can continue to track walkers even when the walkers
leave the box they were released in.

The choice of partitioning method is in fact irrelevant since no communica-
tion is needed. The cubic partitioning scheme is merely used here to demon-
strate how it can be used, in a simplest possible context. Any partitioning
method that assign an equal number of release points to each process could in
fact be used in this algorithm.

Because of the cubic partitioning it is assumed in the algorithm that the
number of processes p is a cubic number. It is also required that A, which is of
size N3, can be partitioned equally between the processes.
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p = d3

d ∈ N

N

d
∈ N

(4.1)

1: procedure MAIN(A)
2: id ← PARALLELSTART()

3: i, j, k← GETGRIDPOSITION(id , 3)
4: for x in Ai jk do

5: if x ∈ Aa then

6: steps← DOWALK(A, x) ⊲ See Algorithm 2, line 7
7: record steps

Algorithm 4: Work-parallel random walk algorithm, with all data known to all pro-
cesses. The procedure GETGRIDPOSITION(id, dim) is used to align all processes to a
dim-dimensional grid as shown in Figure 4.3. The return values i, j, k ∈ [0, d) are
unique to each process. Ai jk is a part of A, defined by regarding A as a block matrix of
size d × d × d.

The changes from Algorithm 2 to Algorithm 4 are small and not in the
hot spot2 of the algorithm. An implementation of Algorithm 4 is therefore
expected to achieve a speed-up close to p, for all but the smallest problem
sizes3. However, the implementation will not be very scalable, since every
single process working on the problem needs to store all of A. Adding more
processes will only reduce computation time, it will not increase the maximum
problem size manageable.

The memory usage per process of a program implementing Algorithm 4 is

MSPV = C ·N3 (4.2)

where C is a constant containing implementation details related to the storage
of A.

4.5 Fully Parallel Version

While the algorithm in section 4.4 is parallel, it is not scalable. In this section an
algorithm parallel in both work and memory will be presented. This algorithm
will be fully scalable. The partitioning of the lattice A remains the same as in

2A hot spot is an area of the algorithm where the program implementing the algorithm will
spend much of its time. Typical hot spots are the deepest nested loops of a program.

3If parallel programs are given to small problems to work on, will the time doing computa-
tions usually be less than the time doing housekeeping tasks. This is true even if there is no
communication in the program.
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Figure 4.3. And like before, each process is responsible for releasing walkers in
one of the sub cubes of A. However each process does no longer store the entire
lattice A, they only stores the part of A where they will be releasing walkers.
This implies that the memory usage per process of a program implementing
this algorithm will be

MF PV (p) =
MSPV

p
(4.3)

where p is the number of processes and MSPV is the memory usage per process
of Algorithm 4.

Once a walker steps outside the domain of a process, the responsibility for
that walker is transferred to the process responsible for the domain the walker
enters. When a walker reaches the border of a domain, two things need to be
done. First the responsible process needs to figure out which process the walker
is heading for. Secondly it transfers relevant information to this neighbouring
process. This information consists of walker position and the number of steps
already taken by the walker. When the walker is sent away, the origin process
forgets all about it and starts to process the next walker waiting in line. An
algorithm describing the scheme outlined above is presented in Algorithm 5.

Due to the partitioning of the storage of lattice A between processes, far
larger models can be analyzed using the improved algorithm presented here.
By doubling number of processes, the maximum problem size doubles. In fact,
the maximum manageable problem size will be p times that of Algorithm 4.
Unfortunately this comes at a cost. Whenever a walker leaves a process addi-
tional work needs to be carried out to transfer walker information to the correct
neighbour. It is therefore expected that the speed-up of Algorithm 5 is less than
the speed-up of Algorithm 4.

4.6 Parallel Version With Overlapping Boundaries

If we focus on a walker located at the edge of one of the cubes in Algorithm 5
some interesting properties can be observed. Recall that each walker moves at
random. Hence the walker close to the surface of the box will be likely to cross
the surface, and thereby sent to the neighbour process. Once transferred to the
neighbour the walker is still close to the surface and it may very well cross it
again at the very next step or just a few steps later. Then, the walker needs
to be transferred back to the original process again. Even though the cubic
partitioning scheme minimized the surface-to-volume ratio, a large portion of
the walkers are located near the cube surface. It is therefore inevitable that a
large portion of walkers will jump forth and back between processes, creating
large amounts of communication.

An algorithm that tries to overcome the problem of jumping walkers is pre-
sented in this section. The problem stated above is a result of the location of the
entering point of walkers transferred from other processes. When the walker
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1: procedure MAIN( )
2: id ← PARALLELSTART()

3: i, j, k← GETGRIDPOSITION(id , 3)
4: Ai jk← GETSUBPROBLEM(i, j, k)

5: for x in Ai jk do

6: if x ∈ Aa then

7: steps← DOWALK(Ai jk, x)

8: if steps > 0 then ⊲ Check if walker has died or left
9: record steps

10: PROCESSINCOMMINGWALKERS(Ai jk )

11: while there is walkers left in A do ⊲ Wait for all walkers
12: PROCESSINCOMMINGWALKERS(Ai jk )

13:

14: procedure PROCESSINCOMMINGWALKERS(Ai jk )
15: while x , steps← RECEIVEWALKER() do

16: steps← DOWALK(Ai jk, x , steps)

17: if steps > 0 then ⊲ Check if walker has died or left
18: record steps

19:

20: procedure DOWALK(Ai jk , x , steps = 0) ⊲ steps defaults to 0 if not given
21: repeat

22: steps← steps + 1
23: xnex t ← x +RANDOMSTEP()

24: if xnex t /∈ Ai jk then

25: SENDWALKER(xnex t , steps) ⊲ Send walker to neighbour process
26: return 0
27: if xnex t ∈ Aa then

28: x ← xnex t

29: until walker dies or has left

30: return steps

Algorithm 5: A work- and data-parallel algorithm. A call to the procedure
GETSUBPROBLEM(i, j, k) returns a three dimensional matrix Ai jk. This matrix contains
the part of A corresponding to a cubic partitioning of A among p processes. Unlike in
Algorithm 4 each process only stores this small part of A, allowing larger problems to
be solved. The DOWALK() procedure is altered so that it stops either when a walker
dies or when the walker leaves Ai jk. This procedure is also altered to take a third and
optional argument called steps. Using this argument walks can be continued from a
given step. The procedure PROCESSINCOMMINGWALKERS() looks for walkers entering
Ai jk and lets them continue their walk in Ai jk with previously taken steps remembered.
This procedure continues processing walkers until there is no more walker waiting to
enter Ai jk. The last while loop in MAIN() ensures that the algorithm does not end until
all walkers are dead.
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is released by its new process it is just one step away from re-entering the old
process. By introducing a buffer area between all processes, where any of the
two can control the walker, communication will be reduced. This buffer can
be constructed by extending the space assigned to each process by a fraction
in all directions, as illustrated in Figure 4.4. Each process will still just release
walkers in the same points as before, not in the entire extended space. Even the
walkers earlier located at the edge of the process spaces will now be located
some distance from the new edge. All walkers will therefore have to move
at least some fixed non-zero distance before reaching areas not controlled by
their parent processes. When a walker finally reaches the border of the process
space, it will be transferred to the neighbour process, just as before. The en-
tering point however, will no longer be on the edge of the new process space.
The walker does now have to cross the entire buffer once more to return to
its origin process. This will significantly reduce the need for communication
between processes.

The drawback of this approach, is increased memory usage. The amount of
additional memory needed depends on the size of the buffer, but it will by far
be smaller than the memory usage of Algorithm 4. The exact memory usage
per process for a program implementing this algorithm is given by

MPVOB(p, o) =

 

3

r

MSPV

p
+ 2 ·C · o

!3

(4.4)

where p is the number of processes, o is the thickness of the space extension
measured in lattices, MSPV is the memory usage of Algorithm 4. The constant
C contains implementation details related to the storage of A, this is the same
constant as in equation (4.2). This equation behaves like MSPV p−1 for small
o. Hence, the memory usage per process is close to that of Algorithm 5, and
significantly less than that of Algorithm 4.

An algorithm describing the scheme outlined above is presented in Algo-
rithm 6. Even though the algorithm does not seem much more complicated
than Algorithm 5, the implementation of this algorithm will be more cumber-
some due to the fact that two, four or even up to eight processes might store
the same data. The extrema will happen in corners of the cubes, where eight
process spaces meet. They will all overlap once the spaces are extended.

The speed-up of Algorithm 6 is expected to be in between the speed-up
of Algorithm 5 and Algorithm 4. This is due to the fact that Algorithm 6 will
generate less communication than Algorithm 5, but not as little as zero which
is the case for Algorithm 4.
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(a) The box located in the center of A, ex-
tended in all directions.

(b) The extended box might grow out of A.
This part is then mapped to the opposite side
of A due to the periodic border conditions.

(c) The part of A which is contained in both
the boxes above. Walkers in this volume
might be controlled by either of the two pro-
cesses responsible for these two boxes.

Figure 4.4: Partitioning of the lattice A with overlapping boundaries. Compared to the
box in Figure 4.3 the boxes here are expanded in all directions.
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1: procedure MAIN(over lap)
2: id ← PARALLELSTART()

3: i, j, k← GETGRIDPOSITION(id , 3)
4: Ai jko← GETOVERLAPPINGSUBPROBLEM(i, j, k, over lap)

5: for x in Ai jk do

6: if x ∈ Aa then

7: steps← DOWALK(Ai jko, x)

8: if steps > 0 then ⊲ Check if walker has died or left
9: record steps

10: PROCESSINCOMMINGWALKERS(Ai jko)

11: while there is walkers left in A do ⊲Wait for all walkers
12: PROCESSINCOMMINGWALKERS(Ai jko)

13:

14: procedure PROCESSINCOMMINGWALKERS(Ai jko)
15: while x , steps← RECEIVEWALKER() do

16: steps← DOWALK(Ai jko, x , steps)

17: if steps > 0 then ⊲ Check if walker has died or left
18: record steps

19:

20: procedure DOWALK(Ai jko, x , steps = 0)
21: repeat

22: steps← steps + 1
23: xnex t ← x +RANDOMSTEP()

24: if xnex t /∈ Ai jko then

25: SENDWALKER(xnex t , steps) ⊲ Send walker to neighbour process
26: return 0
27: if xnex t ∈ Aa then

28: x ← xnex t

29: until walker dies or has left

30: return steps

Algorithm 6: Work- and data-parallel algorithm, with overlapping process bound-
aries. This algorithm is very similar to Algorithm 5. The main difference can be
found in line 4 where the procedure GETOVERLAPPINGSUBPROBLEM() is called instead
of GETSUBPROBLEM(). This procedure returns a matrix Ai jko which is similar to Ai jk,
except that it also contains the points surrounding Ai jk. The number of extra points
included in Ai jko is given by the procedure argument overlap. These extra points con-
structs the buffers between the processes. Throughout the algorithm the new extended
matrix Ai jko is used in place of Ai jk. The only exception to this is in line 5 where Ai jk is
still used. Here Ai jk is used since processes should not release walkers in the buffer.



Chapter 5

Implementation and Results

5.1 Implementing the Algorithms

All algorithms presented in the previous chapter have been implemented as
computer programs. The implementations are written in the C++ program-
ming language [18], and they are listed in Appendix A. The relation between
algorithms in Chapter 4 and the code listings in Appendix A is shown in Ta-
ble 5.1.

Table 5.1: Correlation between sections describing the algorithms and the appendix
listing the source code implementations.

Section Appendix

4.2 Serial Algorithm A.1
4.4 Simple Parallel Version A.2
4.5 Fully Parallel Version A.3
4.6 Parallel Version With Overlapping Boundaries A.4

5.2 Testing of the Programs

5.2.1 Testing Data

The various implementations in Table 5.1 have been tested with four or five
different data sets. The data sets are all three dimensional discrete sandstone
models, containing 803, 1603, 3003, 6003 or 10003 data points arranged in a
cubic grid. A cut plane of the second largest model is shown in Figure 3.1.

5.2.2 Testing Computers

The programs have been tested with two different hardware configurations.
These configurations will in the following sections be labeled as SUN and IBM.

29
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SUN The first setup used was a Sun-Fire-V490 server. This is a computer with
four dual-thread UltraSPARC IV CPUs. This computer can run MPI jobs
with up to eight simultaneous processes.

IBM The second setup used was a IBM P5 P575+ cluster with eight dual-core
Power5+ CPUs per node. This computer can run MPI jobs with up to 864
simultaneous processes.

5.2.3 Testing Routines

The programs have been tested for total running time and for total amount of
communication produced.

The running time is measured as the time from the start of the random
walk, until all walkers are dead. The time used reading model data from file
and initialization of MPI is not included. These steps are very dependent on im-
plementation and platform. On some systems all processes can do I/O. Other
systems may be restricted to one process doing all the I/O, and then that pro-
cess is responsible for distribution of the data among the other processes. In
a real world application the data may also already be loaded into memory by
an earlier step in the computational pipeline. Hence the time consumed during
I/O is disregarded.

Communication is measured as the total number of walkers leaving the
processes throughout the entire execution of the program. This number can
later be used to tell the rate at which the walkers leave the processes.

All timing simulations have been done at least three times consecutively
to eliminate false results due to caching of data and other errors related to
optimization done by the operating system. The two last results of the three
simulations have been kept. If the two results differed significantly the test was
executed again, now with five consecutively runs, where the last four was kept
for later use. The results presented in this chapter are the mean values of the
accepted runs.

5.3 Testing Results

5.3.1 Speed-up

When executing program A.4, which is the program with overlapping bound-
aries, the size of the overlap has been set to 10 points. This has been done for
all the speed-up tests.

Results from the SUN computer

The timing results from the SUN computer are presented in Table 5.2 and the
corresponding speed-ups are given in Table 5.3. Program A.4 and program A.2
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have been executed using the full computer capacity of eight processes. The
memory requirements for the data set containing 10003 grid points exceeded
the memory capacity of the computer. Hence the tests are only conducted with
the four smallest data sets.

Table 5.2: The number of seconds used by the random walk implementations when
executed on the SUN machine. The tests have been executed for different data set
sizes using eight processes for the parallel programs.

Problem size

Program 803 1603 3003 6003

A.1 6 81 358 5021
A.2 1 16 71 719
A.4 1 9 43 745

Table 5.3: The speed-up achieved on the SUN machine when using eight processes in
the parallel programs. The numbers are calculated from the entries of Table 5.2.

Problem size

Program 803 1603 3003 6003

A.1 1.0 1.0 1.0 1.0
A.2 6.0 5.1 5.0 7.0
A.4 6.0 9.0 8.3 6.7

The running times for the smallest data set are so short that the two parallel
programs appear similar. However, it is evident that parallel programs give a
significant speedup compared to the serial version. A speed-up of five or higher
is in fact seen in all tests. The speed-up of program A.2 is close to eight for the
largest problem size. This is expected, as mentioned in section 4.4.

For the two medium sized problem sets an interesting effect can be seen
in the results from program A.4. The speed-up for these two tests are larger
than the number of processes used. This is most likely due to cache memory
optimization [19]. The memory usage of each process executing program A.4
is considerably less than the memory usage of processes storing the entire prob-
lem in memory. Hence, a larger portion of process data will fit in cache, the
cache will need to be updated less frequently and the memory bandwidth will
have a smaller impact on execution speed.

The effect of cache optimization becomes smaller when the model size
increases. The performance of program A.2 is slightly better than the per-
formance of program A.4 for the largest problem size. This is expected, as
mentioned in section 4.6, and it is also likely to hold for larger problem sizes.
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However, the memory usage of program A.2 is 6.6 times larger than that of
program A.4 as given by equation 4.4. Hence, program A.4 should still be the
preferred choice for problems of this or large size.

Results from the IBM computer

The timing results from tests executed on the IBM computer using eight pro-
cesses are presented in Table 5.4 and the corresponding speed-ups are given in
Table 5.5.

Table 5.4: The number of seconds used by the random walk implementations when
executed on the IBM machine. The tests have been executed for different data set sizes
using eight processes for the parallel programs.

Problem size

Program 803 1603 3003 6003 10003

A.1 1 23 95 1596 2800
A.2 1 12 50 1008 1518
A.4 1 9 42 1021 1382

Table 5.5: The speed-up achieved on the IBM machine when using eight processes in
the parallel programs. The numbers are calculated from the entries of Table 5.4.

Problem size

Program 803 1603 3003 6003 10003

A.1 1.0 1.0 1.0 1.0 1.0
A.2 1.0 1.9 1.9 1.6 1.8
A.4 1.0 2.6 2.3 1.6 2.0

From the tests of the serial program A.1 it is clear that the performance
of the IBM computer is greater than the performance of SUN. The running
times for the smallest data set are all to short to draw any conclusions about
speed-up. Unfortunately and unexpectedly only small speed-ups are seen also
for the larger problem sets. None of the tests show speed-ups even close to
eight, as one would expect. This behaviour is likely to be caused by an un-
fortunate combination of communication implementation in the programs and
hardware configuration. However, time constrains have not allowed sufficient
investigation to locate the source of the error.

Due to the inexplicable results further test with larger amount of processes
have not been conducted.
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5.3.2 Communication

Special tests of program A.4 have been carried out to measure what impact
the overlap thickness has on communication. When the program has been
executed the number of walkers leaving the processes has been recorded. This
experiment has been done for overlap thickness in the range from 0 to 40, and
for data sets of size 803, 1603, 3003 and 6003. The tests have been repeated
with 8, 64, and 125 processes. The data material from these tests is quite
comprehensive and it is listed in section B.1 in Appendix B. Semi-logarithmic
plots of the data is shown in Figure 5.1, Figure 5.2 and Figure 5.3.
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Figure 5.1: Number of walkers W sent between processes for different lattice sizes
and different overlaps. The lattice A is partitioned between eight processes.

The plots show lines that are straight or close to straight for all data sets and
for all process numbers. This implies that communication between processes
decreases exponentially with increasing overlap thickness.

By looking at some entries in the tables the effect of this exponential re-
lation can be clearly seen. Table B.2 shows the data from the test with 64
processes. The memory usage per process for the largest data set is given by

M0 =
(C ·600)3

64
(5.1)

if there is no overlap. C is a constant depending on data representation in
the implementation, and it will be canceled out in the following equations. By
increasing the overlap to 10 the memory usage for each process is given by
(4.4) and equals

M10 =
�

3
p

M0 + 2 ·C ·10
�3
≈ 1.46M0 (5.2)
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Figure 5.2: Number of walkers W sent between processes for different lattice sizes
and different overlaps. The lattice A is partitioned between 64 processes.
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Figure 5.3: Number of walkers W sent between processes for different lattice sizes
and different overlaps. The lattice A is partitioned between 125 processes.
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That is an increased memory usage to only 1.5 of the original amount. At the
same time the communication decreases significantly, from 10590048 trans-
ferred walkers to 1047001 transferred walkers. This equals a drop in com-
munication to less than 1/10 of the original communication. If one allows a
memory increase to 3M0 the communication decreases to 1/410 of the original
communication. Even if one allows an increase in memory to 3M0 there is still
only need for 1/21 of the total model to be stored in each process. It is clear
that communication decreases far more rapidly than memory is increasing.

By inspection of the tables in section B.1 in Appendix B it is evident that
for large models it is possible to entirely eliminate communication. This can
be done by increasing the overlap sufficiently, and still only a fraction of the
model would have to be stored in each process.





Chapter 6

Conclusion

In this project several parallel algorithms for the random walk method have
been proposed. The parallel algorithms were designed to minimize communi-
cation between processes executing implementations of the algorithm, while
keeping memory usage close to the theoretical minimum. This was done by
dividing the model data evenly among processes, and in addition each process
was given access to all data in a layer “close” to itselves. The amount of addi-
tional data added to a process was measured in terms of the thickness of the
data extension layer. A serial algorithm for the random walk problem have also
been given. This serial algorithm has been used as a reference when evaluating
the parallel algorithms.

All algorithms have been implemented as C++ programs, and the parallel
programs have been benchmarked against the serial program. The results from
these tests indicates that the parallel programs achieve speed-ups close to the
theoretical maximum. Complications occured when testing the programs on a
larger system and thus further tests were not carried out.

Communication needs for the parallel algorithms were also examined. The
amount of communication between processes was recorded for a large range of
problem sizes and varying thickness of the data extension layer. The commu-
nication was found to decrease exponentially with increasing layer thickness,
independent of the number of processes involved in the program execution.
The increased memory usage due to the extra data stored in each process was
modest for small overlaps.

The possibility to completely remove communication from the parallel pro-
grams was also discussed, and this can be accomplished by making the overlap
sufficiently large. Communication will then either be zero, or it will be below
some predefined tolerance level and one can discard the few walkers trying to
leave. Implementation of the parallel algorithms can be simplified significantly
by elimination of communication. The total running time of a program will
also decrease if communication can be eliminated.

Continued studies of problems related to parallelization of the random walk
model could consist of making a more robust prototype of the parallel program

37
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and run tests for a larger number of processes than done in this report. A second
interesting problem to be explored further is the properties of communication
free programs. The thickness of a layer needed to eliminate communication
will depend on the pore structure of the model. A model with large pores
will need a larger overlap to stop all walkers from leaving. Development of a
relation between these two properties could be done in a continued study.



Appendix A

Code

The following sections list the program implementations of the algorithms pro-
posed in Chapter 4. The programming language used is C++.

A.1 Serial

001: #include <cstdlib>
002: #include <ctime>
003: #include <iostream>
004: #include <fstream>
005: #include <string>
006:
007: #define MORTALITY 0.1
008:
009: using namespace std;
010:
011: unsigned short int *read_model(const char* file_name,
012: int *dx, int *dy, int *dz)
013: {
014: ifstream fs(file_name);
015: string s;
016: int dim;
017:
018: // Skip two lines
019: getline(fs, s);
020: getline(fs, s);
021:
022: // Read model dimension
023: fs >> *dx;
024: fs >> *dy;
025: fs >> *dz;
026: dim = *dx * *dy * *dz;
027:
028: // Skip two lines
029: getline(fs, s);
030: getline(fs, s);
031:
032: // Allocate three dimensional array
033: unsigned short int *A = new unsigned short int[*dx * *dy * *dz];
034:
035: // Read model
036: int v;
037: for(int z=0; z<*dz; z++)

39
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038: for(int y=0; y<*dy; y++)
039: for(int x=0; x<*dx; x++)
040: {
041: fs >> v;
042: A[z * *dy * *dx + y * *dx + x] = (unsigned short int)v;
043: }
044:
045: return A;
046: }
047:
048: int random_walk(unsigned short int *A,
049: unsigned int x, unsigned int y, unsigned int z,
050: int dx, int dy, int dz)
051: {
052: int steps = 0, dir, axis;
053: bool died = false;
054:
055: // Release one walkers if (x,y,z) is a non-solid point
056: // and follow the walker until it dies
057: if(!A[z*dy*dx+y*dx+x])
058: while(!died)
059: {
060: dir = (rand() % 2) * 2 - 1;
061: axis = rand() % 3;
062: switch(axis)
063: {
064: case 0:
065: x = (x + dir) % dx;
066: break;
067: case 1:
068: y = (y + dir) % dy;
069: break;
070: case 2:
071: z = (z + dir) % dz;
072: break;
073: }
074: // Check if walker hits wall
075: if(A[z*dy*dx+y*dx+x])
076: {
077: // Check if walker dies
078: if(rand() < RAND_MAX * MORTALITY)
079: died = true;
080: else // If the walker dont die it is bounced back,
081: switch(axis) // return it to previous location
082: {
083: case 0:
084: x = (x + dx - dir) % dx;
085: break;
086: case 1:
087: y = (y + dy - dir) % dy;
088: break;
089: case 2:
090: z = (z + dz - dir) % dz;
091: break;
092: }
093: }
094: else
095: steps++;
096: }
097: return steps;
098: }
099:
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100: int main(int argc, const char* argv[])
101: {
102: time_t start_t, stop_t;
103:
104: // Place a seed for the random function
105: srand(time(0));
106:
107: // Read the model into an array
108: if(argc < 2)
109: {
110: cerr << "Usage: " << argv[0] << " model" << endl;
111: return(-1);
112: }
113:
114: // Read model data from file
115: // and print the time used
116: time(&start_t);
117: int dx, dy, dz;
118: unsigned short int *A = read_model(argv[1], &dx, &dy, &dz);
119: printf("Problem size:\t%dx%dx%d\n", dx, dy, dz);
120: time(&stop_t);
121:
122: printf("I/O time:\t%f\n", difftime(stop_t, start_t));
123:
124: // Time the total random walk duration
125: time(&start_t);
126: for(int z=0; z<dz; z++)
127: for(int y=0; y<dy; y++)
128: for(int x=0; x<dx; x++)
129: random_walk(A, x, y, z, dx, dy, dz);
130: time(&stop_t);
131:
132: printf("Walk time:\t%f\n", difftime(stop_t, start_t));
133:
134: return(0);
135: }

A.2 Simple Parallel

001: #include <cstdlib>
002: #include <fstream>
003: #include <string>
004: #include <unistd.h>
005: #include "mpi.h"
006:
007: #define NDIMS 3
008: #define MORTALITY 0.1
009:
010: using namespace std;
011:
012: MPI_Status status;
013: time_t start_t, stop_t;
014:
015: void MPI_Exit(int e)
016: {
017: MPI_Finalize();
018: exit(e);
019: }
020:
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021: unsigned short int *read_model(const char *file_name, int *mod_dim)
022: {
023: // Read model from file
024: //
025: ifstream fs(file_name);
026: string s;
027:
028: // Skip two lines
029: getline(fs, s);
030: getline(fs, s);
031:
032: // Read model dimension
033: fs >> mod_dim[0];
034: fs >> mod_dim[1];
035: fs >> mod_dim[2];
036:
037: int mod_size = mod_dim[0]*mod_dim[1]*mod_dim[2];
038: unsigned short int *A = new unsigned short int[mod_size];
039:
040: // Skip two lines
041: getline(fs, s);
042: getline(fs, s);
043:
044: for(int z=0; z<mod_dim[2]; z++)
045: for(int y=0; y<mod_dim[1]; y++)
046: for(int x=0; x<mod_dim[0]; x++)
047: {
048: fs >> A[z*mod_dim[1]*mod_dim[0]+y*mod_dim[0]+x];
049: }
050:
051: return A;
052: }
053:
054: void time_start(int rank)
055: {
056: // Synchronize processes
057: // and start the timer
058: //
059: MPI_Barrier(MPI_COMM_WORLD);
060: if(rank == 0)
061: {
062: time(&start_t);
063: }
064: }
065:
066: void time_stop(int rank, const string &label)
067: {
068: // Synchronize processes, stop the timer
069: // and print final time and label
070: //
071: MPI_Barrier(MPI_COMM_WORLD);
072: if(rank == 0)
073: {
074: time(&stop_t);
075: printf("%s:\t%f\n", label.c_str(), difftime(stop_t, start_t));
076: }
077: }
078:
079: int random_walk(unsigned short int *A,
080: unsigned int x, unsigned int y, unsigned int z,
081: int dx, int dy, int dz)
082: {
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083: int steps = 0, dir, axis;
084: bool died = false;
085:
086: // Release one walkers if (x,y,z) is a non-solid point
087: // and follow the walker until it dies
088: if(!A[z*dy*dx+y*dx+x])
089: while(!died)
090: {
091: dir = (rand() % 2) * 2 - 1;
092: axis = rand() % 3;
093: switch(axis)
094: {
095: case 0:
096: x = (x + dir) % dx;
097: break;
098: case 1:
099: y = (y + dir) % dy;
100: break;
101: case 2:
102: z = (z + dir) % dz;
103: break;
104: }
105: // Check if walker hits wall
106: if(A[z*dy*dx+y*dx+x])
107: {
108: // Check if walker dies
109: if(rand() < RAND_MAX * MORTALITY)
110: died = true;
111: else // If the walker dont die it is bounced back,
112: switch(axis) // return it to previous location
113: {
114: case 0:
115: x = (x + dx - dir) % dx;
116: break;
117: case 1:
118: y = (y + dy - dir) % dy;
119: break;
120: case 2:
121: z = (z + dz - dir) % dz;
122: break;
123: }
124: }
125: else
126: steps++;
127: }
128: return steps;
129: }
130:
131: int main(int argc, char *argv[])
132: {
133: int rank;
134: int procs;
135:
136: // Size of cube grid
137: int cube_dim[NDIMS] = {0};
138: int cube_wrap[NDIMS] = {1};
139:
140: // Position in cube
141: int cube_pos[NDIMS];
142:
143: // Cube communicator
144: MPI_Comm cube_comm;
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145:
146: // Size of model
147: int mod_dim[NDIMS];
148:
149: // Model
150: unsigned short int *A;
151:
152: // Initialize MPI
153: MPI_Init(&argc, &argv);
154: MPI_Comm_rank(MPI_COMM_WORLD, &rank);
155: MPI_Comm_size(MPI_COMM_WORLD, &procs);
156:
157: // Check if model is provided, if not
158: // exit and write "Usage:" message
159: if(argc < 2)
160: {
161: if(rank == 0)
162: fprintf(stderr, "Usage: %s model\n", argv[0]);
163: MPI_Exit(-1);
164: }
165:
166: // Allign processes to grid
167: MPI_Dims_create(procs, NDIMS, cube_dim);
168: // if(rank == 0)
169: // {
170: // fprintf(stdout, "Processes arranged in grid of size %dx%dx%d\n",
171: // cube_dim[0], cube_dim[1], cube_dim[2]);
172: // }
173: // and create cubic communicator
174: MPI_Cart_create(MPI_COMM_WORLD, NDIMS, cube_dim, cube_wrap, 1, &cube_comm);
175: // and find position in grid
176: MPI_Cart_coords(cube_comm, rank, NDIMS, cube_pos);
177:
178: // Place a seed for the random function
179: srand(time(0)+rank);
180:
181: // Start timing of I/O
182: time_start(rank);
183:
184: // Only P0: Read and distribute model
185: if(rank == 0)
186: {
187: A = read_model(argv[1], mod_dim);
188: }
189:
190: MPI_Bcast(mod_dim, NDIMS, MPI_INT, 0, MPI_COMM_WORLD);
191: int mod_size = mod_dim[0]*mod_dim[1]*mod_dim[2];
192:
193: if(rank != 0)
194: {
195: A = new unsigned short int[mod_size];
196: }
197:
198: // Receive model from P0
199: MPI_Bcast(A, mod_size, MPI_UNSIGNED_SHORT, 0, MPI_COMM_WORLD);
200: if(rank == 0)
201: printf("Problem size:\t%dx%dx%d\n", mod_dim[0], mod_dim[1], mod_dim[2]);
202:
203: // Stop I/O timer, and write time used
204: time_stop(rank, "I/O time");
205:
206: // Time the total random walk duration
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207: time_start(rank);
208:
209: // Do the walking
210: unsigned int x1 = cube_pos[0] * mod_dim[0] / cube_dim[0];
211: unsigned int x2 = (cube_pos[0] + 1) * mod_dim[0] / cube_dim[0];
212: unsigned int y1 = cube_pos[1] * mod_dim[1] / cube_dim[1];
213: unsigned int y2 = (cube_pos[1] + 1) * mod_dim[1] / cube_dim[1];
214: unsigned int z1 = cube_pos[2] * mod_dim[2] / cube_dim[2];
215: unsigned int z2 = (cube_pos[2] + 1) * mod_dim[2] / cube_dim[2];
216: for(unsigned int z=z1; z<z2; z++)
217: for(unsigned int y=y1; y<y2; y++)
218: for(unsigned int x=x1; x<x2; x++)
219: random_walk(A, x, y, z, mod_dim[0], mod_dim[1], mod_dim[2]);
220:
221: // Stop the random walk timer, and print result
222: time_stop(rank, "Walk time");
223:
224: MPI_Exit(0);
225: }

A.3 Fully Parallel

001: #include <cstdlib>
002: #include <fstream>
003: #include <string>
004: #include <unistd.h>
005: #include "mpi.h"
006:
007: #define NDIMS 3
008: #define MORTALITY 0.1
009:
010: using namespace std;
011:
012: void random_walk(signed short int *, int, int, int, int,
013: int *, int *, int, MPI_Comm);
014:
015: MPI_Status status;
016: MPI_Request request;
017: int flag;
018: time_t start_t, stop_t;
019: int problem_size = 0;
020: int leaving = 0;
021:
022: void MPI_Exit(int e)
023: {
024: MPI_Finalize();
025: exit(e);
026: }
027:
028: void process_incomming_walkers(signed short int *A, int *proc_dim,
029: int *cube_dim, int rank, MPI_Comm cube_comm)
030: {
031: // Look for walkers entering the process space
032: // and start a random walk from the entering point
033: //
034: int source;
035: int sourcev[NDIMS] = {0};
036: int w_data[4];
037: MPI_Cart_coords(cube_comm, rank, NDIMS, sourcev);
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038:
039: // Loop until no walkers is found waiting
040: bool finished;
041: do
042: {
043: finished = true;
044: // Look in all six directions
045: for(int axis = 0; axis <= 3; axis++)
046: for(int dir = -1; axis <= 1; axis+=2)
047: {
048: sourcev[axis] += dir;
049: // Find id of process
050: MPI_Cart_rank(cube_comm, sourcev, &source);
051: sourcev[axis] -= dir;
052: // Check if any walkers are waiting
053: MPI_Iprobe(source, 0, cube_comm, &flag, &status);
054: if(flag)
055: {
056: // If walkers are waiting, receive data form
057: // neighbour pocess and let the walker
058: // continue its journy in this process
059: MPI_Irecv(w_data, 4, MPI_INT, source, 0, cube_comm, &request);
060: random_walk(A, w_data[0], w_data[1], w_data[2], w_data[3],
061: proc_dim, cube_dim, rank, cube_comm);
062: finished = false;
063: }
064: }
065: }
066: while(!finished);
067: }
068:
069: void random_walk(signed short int *A, int x, int y, int z, int s,
070: int *proc_dim, int *cube_dim, int rank, MPI_Comm cube_comm)
071: {
072: short int dir, axis;
073: int w_data[4];
074: int destv[NDIMS] = {0};
075: int dest;
076: int dx = proc_dim[0];
077: int dy = proc_dim[1];
078: int dz = proc_dim[2];
079: int xn = x;
080: int yn = y;
081: int zn = z;
082: int steps = s;
083: bool sent = false;
084: bool died = false;
085:
086: // Release one walkers if (x,y,z) is a non-solid point
087: // and follow the walker until it dies or is sent
088: // to an neighbour
089: if(!A[zn*dy*dx+yn*dx+xn])
090: while(!sent and !died)
091: {
092: dir = (rand() % 2) * 2 - 1;
093: steps++;
094: axis = rand() % 3;
095: switch(axis)
096: {
097: case 0:
098: xn = xn + dir;
099: if(xn < 0 || xn >= dx)
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100: sent = true;
101: break;
102: case 1:
103: yn = yn + dir;
104: if(yn < 0 || yn >= dy)
105: sent = true;
106: break;
107: case 2:
108: zn = zn + dir;
109: if(zn < 0 || zn >= dz)
110: sent = true;
111: break;
112: }
113: if(sent) // Send walker to neighbour process
114: {
115: MPI_Cart_coords(cube_comm, rank, NDIMS, destv);
116: destv[axis] = (destv[axis] + cube_dim[axis] + dir) % cube_dim[axis];
117: MPI_Cart_rank(cube_comm, destv, &dest);
118: w_data[0] = (xn + dx) % dx;
119: w_data[1] = (yn + dy) % dy;
120: w_data[2] = (zn + dz) % dz;
121: w_data[3] = steps;
122: process_incomming_walkers(A, proc_dim, cube_dim, rank, cube_comm);
123: MPI_Isend(w_data, 4, MPI_INT, dest, 0, cube_comm, &request);
124: leaving++;
125: process_incomming_walkers(A, proc_dim, cube_dim, rank, cube_comm);
126: }
127: // Check if walker hits wall
128: if(!sent && A[zn*dy*dx+yn*dx+xn])
129: {
130: // Check if walker dies
131: if(rand() < RAND_MAX * MORTALITY)
132: died = true;
133: else // If the walker dont die, return it to previous location
134: switch(axis)
135: {
136: case 0:
137: xn = (xn + dx - dir) % dx;
138: break;
139: case 1:
140: yn = (yn + dy - dir) % dy;
141: break;
142: case 2:
143: zn = (zn + dz - dir) % dz;
144: break;
145: }
146: }
147: }
148: }
149:
150: signed short int *read_model(const char* file_name, int p, int* proc_dim,
151: int* cube_dim, int procs, MPI_Comm cube_comm)
152: {
153: // Read part of model from file
154: //
155: ifstream fs(file_name);
156: string s;
157:
158: // Skip two lines
159: getline(fs, s);
160: getline(fs, s);
161:
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162: // Read model dimension
163: int dx, dy, dz;
164: fs >> dx;
165: fs >> dy;
166: fs >> dz;
167: if(p == 0)
168: printf("Problem size:\t%dx%dx%d\n", dx, dy, dz);
169: problem_size = dx * dy * dz;
170: proc_dim[0] = dx / cube_dim[0];
171: proc_dim[1] = dy / cube_dim[1];
172: proc_dim[2] = dz / cube_dim[2];
173:
174: int proc_size = proc_dim[0]*proc_dim[1]*proc_dim[2];
175: signed short int *A = new signed short int[proc_size];
176:
177: int dest[NDIMS] = {0};
178: signed short int v;
179:
180: // Seek to start of file and skip four lines
181: fs.seekg(0, ios::beg);
182: getline(fs, s);getline(fs, s);getline(fs, s);getline(fs, s);
183: MPI_Cart_coords(cube_comm, p, NDIMS, dest);
184: for(int z=0; z<dz; z++)
185: for(int y=0; y<dy; y++)
186: for(int x=0; x<dx; x++)
187: {
188: fs >> v;
189: // Map data from file to correct location in A
190: if(dest[0]*proc_dim[0] <= x && x < (dest[0]+1)*proc_dim[0]
191: &&
192: dest[1]*proc_dim[1] <= y && y < (dest[1]+1)*proc_dim[1]
193: &&
194: dest[2]*proc_dim[2] <= z && z < (dest[2]+1)*proc_dim[2])
195: {
196: A[(z%proc_dim[2])*proc_dim[1]*proc_dim[0] +
197: (y%proc_dim[1])*proc_dim[0] +
198: (x%proc_dim[0])]
199: = v;
200: }
201: }
202: return A;
203: }
204:
205: void time_start(int rank)
206: {
207: // Synchronize processes
208: // and start the timer
209: //
210: MPI_Barrier(MPI_COMM_WORLD);
211: if(rank == 0)
212: {
213: time(&start_t);
214: }
215: }
216:
217: void time_stop(int rank, const char* label)
218: {
219: // Synchronize processes, stop the timer
220: // and print final time and label
221: //
222: MPI_Barrier(MPI_COMM_WORLD);
223: if(rank == 0)
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224: {
225: time(&stop_t);
226: printf("%s:\t%f\n", label, difftime(stop_t, start_t));
227: }
228: }
229:
230: int main(int argc, char* argv[])
231: {
232: // Read the model into an array
233: int rank;
234: int procs;
235: int cube_dim[NDIMS] = {0};
236: int cube_wrap[NDIMS] = {1};
237: MPI_Comm cube_comm;
238:
239: // Initialize MPI
240: MPI_Init(&argc, &argv);
241: MPI_Comm_rank(MPI_COMM_WORLD, &rank);
242: MPI_Comm_size(MPI_COMM_WORLD, &procs);
243:
244: // Check if model is provided, if not
245: // exit and write "Usage:" message
246: if(argc < 2)
247: {
248: if(rank == 0)
249: fprintf(stderr, "Usage: %s model\n", argv[0]);
250: MPI_Exit(-1);
251: }
252:
253: // Allign processes to grid
254: MPI_Dims_create(procs, NDIMS, cube_dim);
255: // if(rank == 0)
256: // {
257: // fprintf(stdout, "Processes aranged in grid of size %dx%dx%d\n",
258: // cube_dim[0], cube_dim[1], cube_dim[2]);
259: // }
260: // and create cubic communicator
261: MPI_Cart_create(MPI_COMM_WORLD, NDIMS, cube_dim, cube_wrap, 1, &cube_comm);
262:
263: // Place a seed for the random function
264: srand(time(0)+rank);
265:
266: // Size of sub model
267: int proc_dim[NDIMS];
268:
269: signed short int *A;
270:
271: // Start timing of I/O
272: time_start(rank);
273:
274: // Each process: read part of model
275: A = read_model(argv[1], rank, proc_dim, cube_dim, procs, cube_comm);
276:
277: // Stop I/O timer, and write time used
278: time_stop(rank, "I/O time");
279:
280: // Time the total random walk duration
281: time_start(rank);
282:
283: // Do the walking
284: unsigned int dx = proc_dim[0];
285: unsigned int dy = proc_dim[1];
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286: unsigned int dz = proc_dim[2];
287: for(unsigned int z=0; z<dz; z++)
288: for(unsigned int y=0; y<dy; y++)
289: for(unsigned int x=0; x<dx; x++)
290: random_walk(A, x, y, z, 0, proc_dim, cube_dim, rank, cube_comm);
291:
292: // Stop the random walk timer, and print result
293: time_stop(rank, "Walker time");
294:
295: // Sum the number of walkers leaving each process
296: // and print the total to screen
297: int leaving_tot = 0;
298: MPI_Reduce(&leaving, &leaving_tot, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
299: if(rank == 0)
300: {
301: printf("Leaving:\t%d/%d -> %.2f%s\n",
302: leaving_tot, problem_size,
303: 100.0 * leaving_tot / problem_size, "%");
304: }
305: MPI_Exit(0);
306: }

A.4 Fully Parallel With Overlapping Boundaries

001: #include <cstdlib>
002: #include <fstream>
003: #include <string>
004: #include <unistd.h>
005: #include "mpi.h"
006:
007: #define NDIMS 3
008: #define MORTALITY 0.1
009:
010: using namespace std;
011:
012: void random_walk(signed short int *, int, int, int, int,
013: int *, int *, int, MPI_Comm);
014:
015: MPI_Status status;
016: MPI_Request request;
017: int flag;
018: time_t start_t, stop_t;
019:
020: // The size of the overlap
021: int overlap = 0;
022:
023: int problem_size = 0;
024: int leaving = 0;
025:
026: void MPI_Exit(int e)
027: {
028: MPI_Finalize();
029: exit(e);
030: }
031:
032: void process_incomming_walkers(signed short int *A, int *proc_dim,
033: int *cube_dim, int rank, MPI_Comm cube_comm)
034: {
035: // Look for walkers entering the process space
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036: // and start a random walk from the entering point
037: //
038: int source;
039: int sourcev[NDIMS] = {0};
040: int w_data[4];
041: MPI_Cart_coords(cube_comm, rank, NDIMS, sourcev);
042:
043: // Loop until no walkers is found waiting
044: bool finished;
045: do
046: {
047: finished = true;
048: // Look in all six directions
049: for(int axis = 0; axis <= 3; axis++)
050: for(int dir = -1; axis <= 1; axis+=2)
051: {
052: sourcev[axis] += dir;
053: // Find id of process
054: MPI_Cart_rank(cube_comm, sourcev, &source);
055: sourcev[axis] -= dir;
056: // Check if any walkers are waiting
057: MPI_Iprobe(source, 0, cube_comm, &flag, &status);
058: if(flag)
059: {
060: // If walkers are waiting, receive data form
061: // neighbour pocess and let the walker
062: // continue its journy in this process
063: MPI_Irecv(w_data, 4, MPI_INT, source, 0, cube_comm, &request);
064: random_walk(A, w_data[0], w_data[1], w_data[2], w_data[3],
065: proc_dim, cube_dim, rank, cube_comm);
066: finished = false;
067: }
068: }
069: }
070: while(!finished);
071: }
072:
073: void random_walk(signed short int *A, int x, int y, int z, int s,
074: int *proc_dim, int *cube_dim, int rank, MPI_Comm cube_comm)
075: {
076: short int dir, axis;
077: int w_data[4];
078: int destv[NDIMS] = {0};
079: int dest;
080: int dx = proc_dim[0];
081: int dy = proc_dim[1];
082: int dz = proc_dim[2];
083: int xn = x;
084: int yn = y;
085: int zn = z;
086: int steps = s;
087: bool sent = false;
088: bool died = false;
089:
090: // Release one walkers if (x,y,z) is a non-solid point
091: // and follow the walker until it dies or is sent
092: // to an neighbour
093: if(!A[zn*dy*dx+yn*dx+xn])
094: while(!sent and !died)
095: {
096: dir = (rand() % 2) * 2 - 1;
097: steps++;
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098: axis = rand() % 3;
099: switch(axis)
100: {
101: case 0:
102: xn = xn + dir;
103: if(xn < 0 || xn >= dx)
104: sent = true;
105: break;
106: case 1:
107: yn = yn + dir;
108: if(yn < 0 || yn >= dy)
109: sent = true;
110: break;
111: case 2:
112: zn = zn + dir;
113: if(zn < 0 || zn >= dz)
114: sent = true;
115: break;
116: }
117: if(sent) // Send walker to neighbour process
118: {
119: MPI_Cart_coords(cube_comm, rank, NDIMS, destv);
120: destv[axis] = (destv[axis] + cube_dim[axis] + dir)
121: % cube_dim[axis];
122: MPI_Cart_rank(cube_comm, destv, &dest);
123: w_data[0] = (xn + dx + 2 * dir * overlap) % dx;
124: w_data[1] = (yn + dy + 2 * dir * overlap) % dy;
125: w_data[2] = (zn + dz + 2 * dir * overlap) % dz;
126: w_data[3] = steps;
127: process_incomming_walkers(A, proc_dim, cube_dim, rank, cube_comm);
128: MPI_Isend(w_data, 4, MPI_INT, dest, 0, cube_comm, &request);
129: leaving++;
130: process_incomming_walkers(A, proc_dim, cube_dim, rank, cube_comm);
131: }
132: // Check if walker hits wall
133: if(!sent && A[zn*dy*dx+yn*dx+xn])
134: {
135: // Check if walker dies
136: if(rand() < RAND_MAX * MORTALITY)
137: died = true;
138: else // If the walker dont die, return it to previous location
139: switch(axis)
140: {
141: case 0:
142: xn = (xn + dx - dir) % dx;
143: break;
144: case 1:
145: yn = (yn + dy - dir) % dy;
146: break;
147: case 2:
148: zn = (zn + dz - dir) % dz;
149: break;
150: }
151: }
152: }
153: }
154:
155: signed short int *read_model(const char* file_name, int rank, int* proc_dim,
156: int* cube_dim, int procs, MPI_Comm cube_comm)
157: {
158: // Read part of model from file
159: //
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160: ifstream fs(file_name);
161: string s;
162:
163: // Skip two lines
164: getline(fs, s);
165: getline(fs, s);
166:
167: // Read model dimension
168: int dx, dy, dz;
169: fs >> dx;
170: fs >> dy;
171: fs >> dz;
172: if(rank == 0)
173: printf("Problem size:\t%dx%dx%d\n", dx, dy, dz);
174: problem_size = dx * dy * dz;
175: int pdx = dx / cube_dim[0];
176: int pdy = dy / cube_dim[1];
177: int pdz = dz / cube_dim[2];
178: proc_dim[0] = pdx + overlap * 2;
179: proc_dim[1] = pdy + overlap * 2;
180: proc_dim[2] = pdz + overlap * 2;
181:
182: int proc_size = proc_dim[0]*proc_dim[1]*proc_dim[2];
183: signed short int *A = new signed short int[proc_size];
184:
185: int dest[NDIMS] = {0};
186: signed short int v;
187:
188: int p = rank;
189: // Seek to start of file and skip four lines
190: fs.seekg(0, ios::beg);
191: getline(fs, s);getline(fs, s);getline(fs, s);getline(fs, s);
192: MPI_Cart_coords(cube_comm, p, NDIMS, dest);
193: for(int z=0; z<dz; z++)
194: for(int y=0; y<dy; y++)
195: for(int x=0; x<dx; x++)
196: {
197: fs >> v;
198: //
199: // Map data from file to correct location in A,
200: // including the shifting of data due to the overlap
201: //
202: if((((dest[0]*pdx - overlap) <= x
203: &&
204: x < ((dest[0]+1)*pdx + overlap))
205: ||

206: ((dest[0]*pdx + dx - overlap) <= x
207: &&
208: x < ((dest[0]+1)*pdx + dx + overlap))
209: ||

210: ((dest[0]*pdx - dx - overlap) <= x
211: &&
212: x < ((dest[0]+1)*pdx - dx + overlap)))
213: &&
214: (((dest[1]*pdy - overlap) <= y
215: &&
216: y < ((dest[1]+1)*pdy + overlap))
217: ||

218: ((dest[1]*pdy + dy - overlap) <= y
219: &&
220: y < ((dest[1]+1)*pdy + dy + overlap))
221: ||
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222: ((dest[1]*pdy - dy - overlap) <= y
223: &&
224: y < ((dest[1]+1)*pdy - dy + overlap)))
225: &&
226: (((dest[2]*pdz - overlap) <= z
227: &&
228: z < ((dest[2]+1)*pdz + overlap))
229: ||

230: ((dest[2]*pdz + dz - overlap) <= z
231: &&
232: z < ((dest[2]+1)*pdz + dz + overlap))
233: ||

234: ((dest[2]*pdz - dz - overlap) <= z
235: &&
236: z < ((dest[2]+1)*pdz - dz + overlap))))
237: {
238: A[((z + dz - (dest[2]*pdz - overlap)) % dz) * proc_dim[1]
239: * proc_dim[0] +
240: ((y + dy - (dest[1]*pdy - overlap)) % dy) * proc_dim[0] +
241: ((x + dx - (dest[0]*pdx - overlap)) % dx)]
242: = v;
243: }
244: }
245: return A;
246: }
247:
248: void time_start(int rank)
249: {
250: // Synchronize processes
251: // and start the timer
252: //
253: MPI_Barrier(MPI_COMM_WORLD);
254: if(rank == 0)
255: {
256: time(&start_t);
257: }
258: }
259:
260: void time_stop(int rank, const char* label)
261: {
262: // Synchronize processes, stop the timer
263: // and print final time and label
264: //
265: MPI_Barrier(MPI_COMM_WORLD);
266: if(rank == 0)
267: {
268: time(&stop_t);
269: printf("%s:\t%f\n", label, difftime(stop_t, start_t));
270: }
271: }
272:
273: int main(int argc, char* argv[])
274: {
275: // Read the model into an array
276: int rank;
277: int procs;
278: int cube_dim[NDIMS] = {0};
279: int cube_wrap[NDIMS] = {1};
280: MPI_Comm cube_comm;
281:
282: MPI_Init(&argc, &argv);
283: MPI_Comm_rank(MPI_COMM_WORLD, &rank);
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284: MPI_Comm_size(MPI_COMM_WORLD, &procs);
285:
286: // Check if model and overlap is provided,
287: // if not exit and write "Usage:" message
288: if(argc < 3)
289: {
290: if(rank == 0)
291: fprintf(stderr, "Usage: %s model overlap\n", argv[0]);
292: MPI_Exit(-1);
293: }
294:
295: // We need at least two processes,
296: // exit if only one process is started
297: if(procs < 2)
298: {
299: fprintf(stderr, "We need at least two processes\n");
300: MPI_Exit(-1);
301: }
302:
303: // Allign processes to grid
304: MPI_Dims_create(procs, NDIMS, cube_dim);
305: // if(rank == 0)
306: // {
307: // fprintf(stdout, "Processes aranged in grid of size %dx%dx%d\n",
308: // cube_dim[0], cube_dim[1], cube_dim[2]);
309: // }
310: // and create cubic communicator
311: MPI_Cart_create(MPI_COMM_WORLD, NDIMS, cube_dim, cube_wrap, 1, &cube_comm);
312:
313: // Place a seed for the random function
314: srand(time(0)+rank);
315:
316: // Read overlap, given on command line
317: overlap = atoi(argv[2]);
318: if(rank == 0)
319: printf("Overlap:\t%d\n", overlap);
320:
321: // Size of sub model
322: int proc_dim[NDIMS];
323: signed short int *A;
324:
325: // Start timing of I/O
326: time_start(rank);
327:
328: // Each process: read part of model
329: A = read_model(argv[1], rank, proc_dim, cube_dim, procs, cube_comm);
330:
331: // Stop I/O timer, and write time used
332: time_stop(rank, "I/O time");
333:
334: // Time the total random walk duration
335: time_start(rank);
336:
337: // Do the walking
338: unsigned int dx = proc_dim[0];
339: unsigned int dy = proc_dim[1];
340: unsigned int dz = proc_dim[2];
341: for(unsigned int z=overlap; z<dz-overlap; z++)
342: for(unsigned int y=overlap; y<dy-overlap; y++)
343: for(unsigned int x=overlap; x<dx-overlap; x++)
344: random_walk(A, x, y, z, 0, proc_dim, cube_dim, rank, cube_comm);
345:
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346: // Stop the random walk timer, and print result
347: time_stop(rank, "Walker time");
348:
349: // Sum the number of walkers leaving each process
350: // and print the total to screen
351: int leaving_tot = 0;
352: MPI_Reduce(&leaving, &leaving_tot, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
353: if(rank == 0)
354: {
355: printf("Leaving:\t%d/%d -> %.2f%s\n",
356: leaving_tot, problem_size,
357: 100.0 * leaving_tot / problem_size, "%");
358: }
359: MPI_Exit(0);
360: }



Appendix B

Test results

B.1 Communication

The complete tables of results from the communication testing is given in Ta-
ble B.1, Table B.2 and Table B.3. The maximum overlap is limited by the size
of the data set. The overlap has an upper limit given by

overlap <
1

2
3

r

N

p
(B.1)

where N is the problem size and p is the number of processes used. Any overlap
larger than this value would in fact cover the entire data set, and testing has
only been conducted for overlaps smaller than this limit.
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Table B.1: Communication between processes when executing program A.4 on a sys-
tem with eight processes.

Problem size

Overlap 803 (512000) 1603 (4096000) 3003 (27000000) 6003 (216000000)

0 48013 (9.3775%) 77312 (1.8875%) 795978 (2.9481%) 5473463 (2.5340%)
1 25021 (4.8869%) 61265 (1.4957%) 411862 (1.5254%) 3143646 (1.4554%)
2 18170 (3.5488%) 49049 (1.1975%) 306957 (1.1369%) 2456120 (1.1371%)
3 13303 (2.5982%) 39124 (0.9552%) 230573 (0.8540%) 1934149 (0.8954%)
4 9694 (1.8934%) 31155 (0.7606%) 174291 (0.6455%) 1528358 (0.7076%)
5 7036 (1.3742%) 24872 (0.6072%) 132803 (0.4919%) 1216153 (0.5630%)
6 5028 (0.9820%) 20149 (0.4919%) 100624 (0.3727%) 970531 (0.4493%)
7 3636 (0.7102%) 16611 (0.4055%) 77006 (0.2852%) 776844 (0.3597%)
8 2676 (0.5227%) 13889 (0.3391%) 58807 (0.2178%) 624358 (0.2891%)
9 1869 (0.3650%) 11355 (0.2772%) 44403 (0.1645%) 500291 (0.2316%)

10 1446 (0.2824%) 9777 (0.2387%) 34182 (0.1266%) 403108 (0.1866%)
11 1027 (0.2006%) 8281 (0.2022%) 25891 (0.0959%) 325072 (0.1505%)
12 744 (0.1453%) 7332 (0.1790%) 19711 (0.0730%) 262343 (0.1215%)
13 627 (0.1225%) 6036 (0.1474%) 14970 (0.0554%) 211962 (0.0981%)
14 459 (0.0896%) 5300 (0.1294%) 11363 (0.0421%) 171329 (0.0793%)
15 325 (0.0635%) 4671 (0.1140%) 8731 (0.0323%) 138094 (0.0639%)
16 250 (0.0488%) 3994 (0.0975%) 6587 (0.0244%) 113192 (0.0524%)
17 184 (0.0359%) 3692 (0.0901%) 5072 (0.0188%) 91534 (0.0424%)
18 124 (0.0242%) 3317 (0.0810%) 3783 (0.0140%) 74490 (0.0345%)
19 127 (0.0248%) 2830 (0.0691%) 2900 (0.0107%) 61191 (0.0283%)
20 2604 (0.0636%) 2312 (0.0086%) 50086 (0.0232%)
21 2455 (0.0599%) 1732 (0.0064%) 41712 (0.0193%)
22 2163 (0.0528%) 1308 (0.0048%) 34224 (0.0158%)
23 1858 (0.0454%) 978 (0.0036%) 27999 (0.0130%)
24 1700 (0.0415%) 751 (0.0028%) 23281 (0.0108%)
25 1316 (0.0321%) 585 (0.0022%) 19384 (0.0090%)
26 1051 (0.0257%) 453 (0.0017%) 16134 (0.0075%)
27 883 (0.0216%) 355 (0.0013%) 13212 (0.0061%)
28 650 (0.0159%) 308 (0.0011%) 11220 (0.0052%)
29 493 (0.0120%) 208 (0.0008%) 9218 (0.0043%)
30 376 (0.0092%) 154 (0.0006%) 7791 (0.0036%)
31 281 (0.0069%) 130 (0.0005%) 6616 (0.0031%)
32 214 (0.0052%) 94 (0.0003%) 5490 (0.0025%)
33 172 (0.0042%) 68 (0.0003%) 4758 (0.0022%)
34 122 (0.0030%) 51 (0.0002%) 4011 (0.0019%)
35 105 (0.0026%) 44 (0.0002%) 3557 (0.0016%)
36 58 (0.0014%) 28 (0.0001%) 3076 (0.0014%)
37 63 (0.0015%) 33 (0.0001%) 2801 (0.0013%)
38 40 (0.0010%) 31 (0.0001%) 2281 (0.0011%)
39 30 (0.0007%) 9 (0.0000%) 2128 (0.0010%)
40 14 (0.0000%) 1852 (0.0009%)
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Table B.2: Communication between processes when executing program A.4 on a sys-
tem with 64 processes.

Problem size

Overlap 803 (512000) 1603 (4096000) 3003 (27000000) 6003 (216000000)

0 76750 (14.9902%) 154199 (3.7646%) 1465915 (5.4293%) 10590048 (4.9028%)
1 52347 (10.2240%) 122181 (2.9829%) 936832 (3.4697%) 7317830 (3.3879%)
2 40019 (7.8162%) 97999 (2.3926%) 704102 (2.6078%) 5814601 (2.6919%)
3 30436 (5.9445%) 77270 (1.8865%) 534411 (1.9793%) 4636341 (2.1465%)
4 22813 (4.4557%) 61739 (1.5073%) 405402 (1.5015%) 3716090 (1.7204%)
5 16863 (3.2936%) 49689 (1.2131%) 307285 (1.1381%) 2985679 (1.3823%)
6 12595 (2.4600%) 40126 (0.9796%) 234534 (0.8686%) 2405027 (1.1134%)
7 9213 (1.7994%) 33325 (0.8136%) 178889 (0.6626%) 1943981 (0.9000%)
8 6847 (1.3373%) 27526 (0.6720%) 135875 (0.5032%) 1576867 (0.7300%)
9 5210 (1.0176%) 22829 (0.5573%) 103362 (0.3828%) 1282151 (0.5936%)

10 19293 (0.4710%) 78527 (0.2908%) 1047001 (0.4847%)
11 16670 (0.4070%) 59407 (0.2200%) 856175 (0.3964%)
12 14148 (0.3454%) 45033 (0.1668%) 703306 (0.3256%)
13 12115 (0.2958%) 34134 (0.1264%) 579859 (0.2685%)
14 10495 (0.2562%) 26121 (0.0967%) 478462 (0.2215%)
15 9195 (0.2245%) 20072 (0.0743%) 397660 (0.1841%)
16 8149 (0.1990%) 15147 (0.0561%) 331753 (0.1536%)
17 7257 (0.1772%) 11307 (0.0419%) 277483 (0.1285%)
18 6547 (0.1598%) 8687 (0.0322%) 232373 (0.1076%)
19 5682 (0.1387%) 6854 (0.0254%) 196749 (0.0911%)
20 5229 (0.0194%) 166742 (0.0772%)
21 3858 (0.0143%) 141960 (0.0657%)
22 2944 (0.0109%) 121591 (0.0563%)
23 2291 (0.0085%) 104050 (0.0482%)
24 1738 (0.0064%) 89600 (0.0415%)
25 1329 (0.0049%) 77969 (0.0361%)
26 927 (0.0034%) 67545 (0.0313%)
27 762 (0.0028%) 58745 (0.0272%)
28 570 (0.0021%) 50964 (0.0236%)
29 457 (0.0017%) 44292 (0.0205%)
30 309 (0.0011%) 38764 (0.0179%)
31 305 (0.0011%) 33850 (0.0157%)
32 193 (0.0007%) 29658 (0.0137%)
33 160 (0.0006%) 25836 (0.0120%)
34 125 (0.0005%) 23008 (0.0107%)
35 96 (0.0004%) 20389 (0.0094%)
36 87 (0.0003%) 17661 (0.0082%)
37 53 (0.0002%) 15731 (0.0073%)
38 13977 (0.0065%)
39 12256 (0.0057%)
40 10707 (0.0050%)
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Table B.3: Communication between processes when executing program A.4 on a sys-
tem with 125 processes.

Problem size

Overlap 803 (512000) 1603 (4096000) 3003 (27000000) 6003 (216000000)

0 83806 (16.3684%) 492083 (12.0137%) 1801414 (6.6719%) 13159339 (6.0923%)
1 60118 (11.7418%) 415830 (10.1521%) 1207739 (4.4731%) 9415959 (4.3592%)
2 46072 (8.9984%) 348271 (8.5027%) 919241 (3.4046%) 7488474 (3.4669%)
3 35706 (6.9738%) 288824 (7.0514%) 702770 (2.6029%) 5991320 (2.7738%)
4 27567 (5.3842%) 239079 (5.8369%) 535101 (1.9819%) 4802112 (2.2232%)
5 20793 (4.0611%) 199564 (4.8722%) 408751 (1.5139%) 3855379 (1.7849%)
6 15878 (3.1012%) 167198 (4.0820%) 312389 (1.1570%) 3108114 (1.4389%)
7 11992 (2.3422%) 138340 (3.3774%) 238099 (0.8818%) 2513961 (1.1639%)
8 114057 (2.7846%) 181967 (0.6740%) 2032523 (0.9410%)
9 93207 (2.2756%) 138903 (0.5145%) 1652877 (0.7652%)

10 75419 (1.8413%) 105503 (0.3908%)
11 60550 (1.4783%) 81230 (0.3009%)
12 48471 (1.1834%) 62371 (0.2310%)
13 38783 (0.9469%) 47200 (0.1748%)
14 31209 (0.7619%) 36064 (0.1336%)
15 24941 (0.6089%) 27516 (0.1019%)
16 21308 (0.0789%)
17 16202 (0.0600%)
18 12513 (0.0463%)
19 9486 (0.0351%)
20 7197 (0.0267%)
21 5514 (0.0204%)
22 4247 (0.0157%)
23 3295 (0.0122%)
24 2505 (0.0093%)
25 1879 (0.0070%)
26 1520 (0.0056%)
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