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Abstract

Dynamic response of a floating circular collar-type fish farm, without and with
well-boat presence, in current, regular and irregular waves is analyzed. A modern
design well boat and a realistic fish farm (with single cage) are considered. The
latter comprises a floating collar, an elastic sinker tube, a flexible-closed net cage
and a complex mooring system. The main purpose is to determine the operational
conditions for the isolated fish farm and for the well boat-fish farm system. This
study involves theoretical development, numerical investigations and analysis of
experiments on a realistic fish-farm model (not carried out in this research).

A time-domain numerical solver for the fish farm is developed with the different
components modeled with the state-of-the-art theoretical and numerical formula-
tions. For instance, the motions of the floating collar and the sinker tube are
described by a curved beam equation with consideration of axial stiffness and cur-
vature effects. In terms of the net cage, the net twines are modeled as linear elastic
trusses. The hydrodynamic loads on the net cage are estimated by the screen-
load model, which accounts for hydrodynamic net-shadow and Reynolds number
effects. Proper strategies are suggested to deal with the coupling between the dif-
ferent components and a solution algorithm, with a criterion to prevent unphysical
negative net tensions, is proposed. The modeling of the different components is
validated by comparing against documented experiments, involving simplifications
of the various components.

The validated numerical tool is used to analyze a realistic aquaculture fish-farm
system (with single cage). The mooring loads obtained from the numerical simu-
lations are compared against available experimental data. Satisfactory agreement
is demonstrated both in regular and irregular waves. A sensitivity analysis is also
performed to identify important parameters influencing the mooring loads, show-
ing which net cage related parameters are crucial. The operational limits of the
fish farm are determined through systematic simulations in regular waves and cur-
rent, indicating that the net volume reduction is the main constraint preventing
the studied fish farm operating in more exposed regions.

Theoretical models of a well boat operating at a fish farm in current and in
long-crested irregular waves and current are also introduced. The transverse vis-
cous loads on the boat are estimated based on the cross-flow principle and the
corresponding drag coefficients are evaluated based on an empirical approach ac-
counting for Reynolds number, rigid free-surface condition, three-dimensional flow
at ship ends, Keulegan-Carpenter number and the ratio between current velocity
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ii Abstract

and a characteristic wave velocity. The proposed estimation strategy is validated
by available experimental results. The coupling between the well boat and fish
farm is carefully modeled. The numerical modeling of the slow-drift motions of
the well boat, in particular the slow-drift sway motion, is outlined and verified by
comparing the mean value and standard deviation of the motion from time-domain
and frequency-domain solutions. The importance of different slow-drift damping
terms is also discussed.

A physical investigation of the coupled system in long-crested irregular waves
and current is then performed. The most critical scenario with the well boat placed
at the weather side of the fish farm is analyzed in detail. From the simulations, the
well-boat presence will significantly increase the maximum anchor loads and the
maximum floating-collar stress, which are two important variables for the struc-
tural integrity of the fish farm. In particular, an increment of more than 300% is
observed for both variables in moderate exposure sea states. A sensitivity study
is also performed to figure out important parameters influencing the two variables
and the possibility to increase the computational efficiency by simplifying the mod-
eling. The results highlight that the netting has a small influence on the maximum
floating-collar stress when current is present. Systematic simulations are also per-
formed to determine the operational conditions of the coupled system. Numerical
results show that the maximum stress in the floating collar can be close to the yield
stress when the system operates in moderate exposure sea states, thus it should be
of major concern.

The applicability of using equivalent regular waves to represent irregular waves
is also discussed in terms of the mooring loads. For the isolated fish farm, the
mooring loads in equivalent regular waves are of similar magnitude, but generally
more conservative than those in irregular waves.
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Nomenclature

General Rules

• Only the most used symbols are listed in the following sections

• Meaning of symbols are given when introduced in the thesis

• Sometimes the same symbol is used to indicate different quantities

• Vectors are represented by bold symbols

Abbreviations

2D Two-dimensional

3D Three-dimensional

CFD Computational Fluid Dynamics

COG Center of gravity

FEM Finite Element Method

HBEM High-order Boundary Element Method

HDPE High-density polyethylene

JONSWAP Joint North Sea Wave Project

WAMIT Linear frequency-domain potential-flow solver

Bold Symbols

a Acceleration vector

F Force vector

n Normal vector

u, U Velocity vector

x Position vector

Greek and Mathematical Symbols

αc Current angle

αw Incident wave angle

β Radial angle along the floating collar

∆t Time step

γ Flow reduction coefficient; spectrum peakedness
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viii Nomenclature

λ Wave length

ν Kinematic viscosity of water

ω Circular wave frequency

ωe Frequency of encounter

Φ Error function

ρ Mass density of water

σ Standard deviation; stress∑
Summation

θ Angle between the normal of the net panel and local inflow

ε Phase angle defined in degrees

ϕ0 Incident wave potential

ζ Instantaneous incident-wave elevation

ζa Wave amplitude of incident waves

ηk Displacement (k = 1, 2, ...6 represents surge, sway, heave, roll, pitch
and yaw, respectively

Roman Letters

(xf , yf , zf ) Motions of the floating collar

B̄SD22 Mean wave-drift damping in sway

F̄2 Mean wave load in sway

an Generalized coordinate of vertical cos(nβ) mode

a
(n)
11 Sectional horizontal added mass coefficient of mode n

a
(n)
33 Sectional vertical added mass coefficient of mode n

BD Eddy-making damping

bn Generalized coordinate of vertical sin(nβ) mode

b
(n)
11 Sectional horizontal damping coefficient of mode n

Be22 Equivalent linear damping coefficient

BSD22 Slow-drift damping in sway

BWD
22 Wave-drift damping in sway

b
(n)
33 Sectional vertical damping coefficient of mode n

CD Drag force coefficient

CF Frictional coefficient

cf Radius of the cross section of the tube

CM Mass coefficients

cn Generalized coordinate of radial cos(nβ) mode

C22 Restoring coefficient in sway



Nomenclature ix

CX Quadratic damping coefficient in surge

D Diameter of the net cage; draft of the well boat

df Diameter of the cross section of the tube

dn Generalized coordinate of radial sin(nβ) mode

dw Net-twine diameter

EIH Structural bending stiffness in horizontal direction of the floating
collar

EIV Structural bending stiffness in vertical direction of the floating collar

FSV2 Slow-drift excitation force in sway

FD Drag force

fp Frequency of spectral peak in [HZ]

g Acceleration of gravity

H Wave height of incident regular wave

Hs Significant wave height of incident irregular wave

k Wave number

kc Contact stiffness

k
(n)
11 Sectional horizontal retardation function of mode n

k
(n)
33 Sectional vertical retardation function of mode n

l, L length

NH Number of trusses in horizontal direction

Nh Number of horizontal structural modes

NV Number of trusses in vertical direction

Nv Number of vertical structural modes

OBxByBzB An Earth-fixed Cartesian coordinate system with origin in position
OB

OExEyEzE An Earth-fixed Cartesian coordinate system with origin in position
OE

OFxF yF zF An Earth-fixed Cartesian coordinate system with origin in position
OF

p Center-to-center distance between the two tubes of the floating collar

S(f) Wave spectrum

T Wave period of incident regular waves

t Time

Tp Peak wave period of incident irregular waves; pre-tension

Tn Natural period

UM Velocity amplitude of incident oscillatory flow



x Nomenclature

V Net-cage volume

vf Local horizontal (radial) elastic deformation of the floating collar

wf Local vertical elastic deformation of the floating collar

ws Mass per meter of the sinker tube

KC Keulegan-Carpenter number

Rn Reynolds number

Sn Solidity ratio

Super-scripts

n Mode n; time instant n

(1) First-order motion

(2) Slow-drift motion

Sub-scripts

r horizontal modes of the floating collar

z Vertical modes of the floating collar

0 Nominal value
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Chapter 1

Introduction

1.1 Background and motivation

According to the Food and Agriculture Organization of the United Nations (FAO),
the world’s population is expected to increase with 2 billion, reaching up to 9.73
billion by 2050 (FAO, 2017). This raises a challenge of how we can meet the growing
demand of food while still guarantee sustainable development of natural resources.
The total bio production measured in calories is equally divided between land and
water (Field et al., 1998). However, only about 2% of the food production used for
human consumption comes from water, while at the same time, the land and water
resources available to grow more food on land is becoming scarce (FAO, 2006).
So increasing food production from the sea may be a better alternative to further
land development. Owing to the excess fishing pressure, about 31 percent of ma-
rine fish stocks were estimated to be either overexploited (28 percent) or depleted
(3 percent) (FAO, 2010). So current over-exploitation in wild fisheries means that
fisheries cannot provide a sustainable solution. According to FAO (2016), output
from aquaculture has become the major source of fish for human consumption and
is expected to overtake total output from captured fisheries by 2021. Land-based
aquaculture and marine-based aquaculture are the two basic concepts of aquacul-
ture and the fish farming is the most common form of aquaculture. Expansion
of land-based aquaculture and coastal aquaculture faces constraints because of an
increasing lack of suitable land and water sites and possible conflicts with other
users. For these reasons, it is believed that the expansion of aquaculture into
deeper and less sheltered marine waters is a high priority and should be facilitated
through research, development and appropriate regulatory management (Lovatelli
et al., 2013). Offshore aquaculture takes place in the exposed areas where fish-farm
structures are subjected to strong wind, waves and current. The equipment and
servicing vessels also need to operate and survive in severe sea conditions. In or-
der to guarantee the reliability and integrity of the fish farm structures and safe
servicing vessel operations at the fish farm, more research needs to be performed.
This is the main motivation for the present work.
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2 Introduction

1.1.1 Norwegian aquaculture nowadays

The development of commercial aquaculture in Norway began around 1970, since
that time aquaculture has developed into a major industry in coastal areas (FAO,
2005). In 2016, the produced salmon from the industry reached a value of more
than 60 billion NOK, see Figure 1.1. The industry has a goal that within 2050
the production volume of the industry shall reach a value of 5 million tons, which
represents a 5-fold increase in production volumes than nowadays (Trude et al.,
2012). A prerequisite is that the industry is able to manage the environmental
challenges and able to procure sufficient food for the fish.
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Figure 1.1: Product value (in Billion NOK) of salmon in Norway from 1996 to 2016
(Norwegian Directorate of Fisheries, 2017).

There exit also multiple challenges for the Norwegian fish-farm industry nowa-
days. One of the big problems has been the rise of sea lice. It has become in-
creasingly serious as the sea lice have become more resistant to chemicals used to
treat them. Escaped fish is another concern. Damages and collapses of floating
fish farms have led to escape of fish and thereby major economic losses, as well
as pollution, with risk for the surrounding ecosystem and wild fish. Damages can
be caused by operational failures, breaking of mooring lines, anchor pull out, con-
tacts between chains or ropes with the net or collisions with ships. In addition,
due to limited nearshore area and increasing impact to the local eco-system, the
Norwegian aquaculture industry is trying to move the fish farms from nearshore to
more exposed sea regions where waves and current are stronger. This will greatly
increase the probability of structural failure, consequently fish escape. All these
challenges call for more investigations and novel designs.

1.1.2 Fish-farm concepts

There exists a variety of fish-farm concepts and these concepts can be classified in
different ways. For example, Loverich and Gace (1997) classified sea cages into four
types based on the structural means used to hold the shape of the cage, i.e. gravity
cages, anchor-tension cages, semi-rigid cages and rigid cages. Ryan (2004) proposed
one more type, named tension-leg cages, and mentioned other cage designs that
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are difficult to categorize. Detailed examples of different fish-farm types are also
provided. Table 1.1 illustrates cage types likely to be used in different sites shown
in Figure 1.2.

Table 1.1: Cage types likely to be found in sites of Classes 1-4 (Ryan, 2004).

Class Site Description Cage Type Used

1
Sheltered
Inshore Site

Surface Gravity

2
Semi-Exposed
Inshore Site

Surface Gravity

3
Exposed
Offshore Site

Surface Gravity,
Anchor Tension

4
Open Ocean
Offshore Site

Surface Gravity,
Surface Rigid,
Anchor Tension,
Submerged Gravity,
Submerged Rigid

Figure 1.2: The site classification scheme (Ryan, 2004).

The gravity cages are by far the most widely used concepts in the fish farming
industry both in Norway and abroad, thus are explained in detail here. They rely
on the force of gravity to maintain net volume, by providing a surface buoyancy
system and an underwater weighting system for the net. An intrinsic characteristic
of the gravity cage in conventional configuration is its susceptibility to net deformity
and volume loss in currents and wave action, which is a result of a lack of support
structure for the net (Ryan, 2004). There exits different materials and geometries of
the buoyancy system. The most commonly used in Norway are the circular plastic
floaters and the interconnected hinged steel floaters, as shown in Figure 1.3. The
cage with circular plastic floaters will be the research focus of the present thesis,
thus a detailed description of the cage is given below.



4 Introduction

Figure 1.3: Left: circular plastic cage (www.akvagroup.com). Right: hinged square
steel cages (www.egersundnet.no).

Cage with circular plastic floater

Figure 1.4 shows the sketch of a typical fish cage with circular plastic floater used
in Norway, including all the main components, i.e. a floating collar, a net cage, a
sinker tube and a mooring system.

Floating collar

Mooring lines

Net cage

Sinker tube

Dead fish removal system

Supporting chains

Brackets 

Bird net

Service vessels

Figure 1.4: Sketch of a typical fish cage with circular plastic floater
(www.aqualine.no).

The floating collar provides buoyancy for the whole system and is common
with two nearly semi-submerged concentric circular tubes. The two tubes are held
together by steel brackets and the high-density polyethylene (HDPE) is widely
used as their main material. The usage of the net is to protect the fish from
predators and provide a suitable habitat. The most common materials for nets
and ropes are nylon or polyamide (PA), polyester (PES), polypropylene (PP) and
high-performance polyethylene (Dyneema or Spectra). The net is highly flexible,
so it will experience deformation when subjected to external loads from waves and
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current. A bottom weight ring (sinker tube) is often attached to the cage bottom to
ensure sufficient volume of the net cage. In reality, there exist multiple cages at real
sites with cages arranged in mooring grid in single or double rows, see the upper
plot in Figure 1.5. The mooring system normally used by the HDPE circular cages
is a square-shaped grid system held on the seabed with an array of mooring lines.
The mooring system is divided in two main groups of components, the mooring
lines and the grid system; see the lower plot in Figure 1.5. The mooring lines
include the anchors, ground chains, ropes and related shackles, and buoys. The
grid system includes the frame ropes, mooring buoys, connector rings or plates,
bridles, and related shackles (FAO, 2015). Similar material as that for the nets is
used for the ropes in the mooring system.

Figure 1.5: Upper: cage and mooring arrangement at real fish-farm sites
(www.akvagroup.com). Lower: sketch of grid system and mooring lines in a fram-
ing module of six cages (FAO, 2015).
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Novel fish-farm concepts

To meet the challenges faced by the Norwegian fish-farm industry (see Section 1.1.1),
new fish-farm designs are emerging. Closed fish-cage concepts are proposed to
have a better control over the water quality, and especially to avoid the problem of
salmon lice. The closed cages can be divided into flexible cages, semi-flexible cages
and rigid cages. New open cage fish-farm concepts are also under development to
operate in more exposed sea regions or even in open sea, by combining the best
of existing technology and solutions from the Norwegian fish farming industry and
the offshore oil and gas sector. Two examples are given here, i.e. the rigid semi-
submersible fish farm developed by the Ocean Farming AS and the vessel-shaped
fish farm proposed by the Nordlaks Company, see Figure 1.6.

Figure 1.6: Left: rigid semi-submersible fish farm (www.km.kongsberg.com).
Right: vessel-shaped fish farm (www.nskshipdesign.com).

1.1.3 Challenges for operating fish farms in more exposed
regions

The expansion of near shore aquaculture is getting more difficult due to the shrink-
ing of available sheltered near-shore place and increasingly environmental impacts.
In addition, the size of the fish farms is expected to increase and sufficient water
exchange inside the net is essential to guarantee the welfare of the fish. Therefore,
more fish farms will operate at more exposed sea regions where waves and current
are more energetic. An idea about wave and current conditions at different ex-
posure sites can be found in Table 1.2. Operating fish farms in strong waves and
current enlarges the risk of structural failure and consequently fish escape, which
is a major issue for fish farms. A detailed discussion about the challenges faced by
the floating-collar fish farms with circular fish cages is given below.

Waves and current loads affect the various components of a floating-collar fish
farm in different ways. The floating collar will tend to follow long waves and will
deform considerably or even collapse in very severe sea states. Since the floating
collar provides buoyancy for the whole system, its failure will endanger the integrity
of the complete fish-farm system. The net cage will deform significantly in strong
current and thereby lead to a strong reduction of the net cage volume. The latter
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Table 1.2: Environmental classification given in terms of significant wave height
Hs, peak period Tp and current velocity U∞ according to Norwegian Standard
NS9415 (2009). It is assumed irregular waves for each wave class. If regular wave
is considered, the standard says that the corresponding wave height H can be
assumed to be 1.9 times the significant wave height.

Wave Hs(m) Tp(s) Exposure Current U∞(m/s) Exposure
A 0.0 - 0.5 0.0 - 2.0 Small a 0.0 - 0.3 Small
B 0.5 - 1.0 1.6 - 3.2 Moderate b 0.3 - 0.5 Moderate
C 1.0 - 2.0 2.5 - 5.1 Heavy c 0.5 - 1.0 Heavy
D 2.0 - 3.0 4.0 - 6.7 High d 1.0 - 1.5 High
E >3.0 5.3 - 18.0 Extreme e >1.5 Extreme

is important to guarantee the fish welfare. The netting may consequently get in
contact with the weight rope or with the chains supporting a bottom weight ring
with the possibility of damaging the netting. A not properly designed bottom
weight ring may considerably deform in severe weather conditions and damage the
net. Large snap loads due to the relative motion between the floating collar and
the net/mooring lines can occur. Mooring lines may break due to high waves and
current loads on the fish farm. In order to guarantee the robustness of the fish
farms, it is necessary to check the survival conditions of them and the possibilities
to use them in exposed regions. To achieve this goal, a reliable prediction of the
hydrodynamic forces and motions of each part of the fish-farm system under waves
and current is necessary.

Figure 1.7: Sketch of a well boat operating at a fish farm (www.tu.no).

Apart from the challenges from the fish farm perspective, operating fish farms
in exposed areas will also increase the probability of service-vessel, in particular
well-boat, routine operations in severe weather conditions. A well boat is a fishing
vessel with a well or tank for the storage and transport of live fish, and is essential to
ensure the fish welfare. A typical well-boat operation can be categorized into three
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phases: approaching, loading/offloading and leaving. During the loading/offloading
phase, the well boat is moored directly to the fish farm, see Figure 1.7. Large
relative motion between the well boat and the floating collar makes it difficult to
perform loading/offloading operations in severe sea states. Also, the well boat has
comparable size of the fish farm, connecting the well boat directly to the net cage
can significantly increase the mooring loads and the floating collar deformations
and thus endanger the structural integrity of the fish farm. Therefore, there is also
a need to have a detailed investigation of the influence of the well boat on the fish
farm and identify the operational conditions for performing such loading/offloading
operation.

1.2 Previous studies

In the present work, the focus is on the floating-collar fish farm with circular open
cages. Many documented investigations have been done to examine the responses
of this system from structural and hydrodynamic perspective by model tests and
numerical simulations. A detailed review of most recent studies on the topic can be
found in Shen et al. (2018) and Faltinsen and Shen (2018) and is outlined below.

1.2.1 The floating collar

Kristiansen and Faltinsen (2009) presented model test results in two-dimensional
(2D) flow conditions of a semi-submerged floater without netting in regular waves
and validated a CIP-based finite difference method that solved Navier-Stokes equa-
tions for laminar flow with a one-fluid representation of air and water. The Compu-
tational Fluid Dynamics (CFD) calculations illustrated that overtopping of waves
and flow separation can matter.

Li et al. (2016, 2018) studied experimentally and theoretically vertical accelera-
tions of a moored floating elastic torus without netting in regular waves of different
steepnesses and periods in deep water. Wavelengths of practical interest are of
the order of the torus diameter but long relative to the cross-sectional diameter.
An Euler beam model with additional curvature and axial tension effects was ap-
plied for vertical torus deformations. Three-dimensional (3D) flow, hydroelasticity
and strong hydrodynamic frequency dependency matter. Strip theory is normally
adopted to model the hydrodynamic loads on the floating collar, for example in
Huang et al. (2006), Dong et al. (2010), but this may lead to a poor approximation
of generalized added mass, damping and wave excitation loads, in particular for ver-
tical loads. The experimental vertical accelerations showed increasing importance
of nonlinearities and higher harmonics with increasing wave steepness. Wave over-
topping occurred in the steepest waves. A linear frequency-domain potential-flow
method gave satisfactory predictions of the first harmonic component of vertical
accelerations. This was true both using state-of-the art boundary element meth-
ods as well as the low-frequency linear slender-body theory by Li and Faltinsen
(2012). The second-harmonic acceleration component can partly be explained by
a second-order theory for low wave steepnesses, i.e. higher-order effects affect the
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second-harmonic acceleration component even at low wave steepness. The experi-
ments showed that the third and fourth harmonic acceleration components matter
and cannot be explained by a perturbation method with the wave steepness as a
small parameter. Ideally, we need a fully nonlinear 3D CFD method that accounts
for hydroelasticity to capture the features highlighted by the experiments.

1.2.2 The net cage

The fact that the netting may have 10 million meshes limits the use of CFD and
complete structural modeling. Kristiansen and Faltinsen (2012) proposed an ex-
perimentally based screen type of force model for the viscous hydrodynamic load
on nets in ambient current. The model divides the net into a number of flat net
panels, or screens. The knots are neglected, and circular twine cross-sections are
assumed. The force components on a panel are functions of the solidity ratio, the
inflow angle and the Reynolds number. The solidity ratio is for a plane netting the
ratio of the area of the shadow projected by wire (twine) meshes on a plane par-
allel to the screen to the total area contained within the frame of the screen. The
relevant Reynolds number is that based on the physical twine diameter. Shield-
ing effects by the twines are implicitly accounted for. A uniform turbulent wake
is assumed inside the cage based on the theoretical formula proposed by Løland
(1991) for cross-flow past a plane net. The fact that some of the incident flow goes
around the net cage is neglected. The latter effect gets increased importance with
increasing solidity ratio. Kristiansen and Faltinsen (2012) used the dynamic truss
model by Marichal (2003) to describe the net structure. Number of trusses and
their arrangement follow from convergence studies. It is unnecessary to represent
the net cage with a fine numerical mesh. The net shape is solved in a time step-
ping procedure that involves solving a linear system of equations for the unknown
tensions at each time step. It means that the problem in current only is solved as
an initial value problem instead of iterating to find the steady net configuration.
Satisfactory agreement between experimental and numerical prediction of drag and
lift on circular bottomless net cages in steady current as function of the solidity
ratio of the net and of the current velocity is documented. The latter is not true for
large current velocities when Morison’s equation is applied, which is normally used
to estimate the net cage hydrodynamic load (e.g. Xu et al. 2013, Shainee et al.
2014). The reason is associated with large net deformation and shielding effects of
twines.

Kristiansen and Faltinsen (2015) investigated the mooring loads on an aqua-
culture net cage in current and waves by model tests and numerical simulations.
Their net model was generalized to combined waves and current and by applying
the wake model inside the cage only to the steady flow. The net cage is bottomless,
flexible and circular. It is attached to a circular, elastic floater at the top and has
16 sinker weights at the bottom. The system is nearly linearly moored with four
crowfeet mooring lines. The mean loads in general dominate over the dynamic
part of the loads in combined current and waves, and they significantly increase
in long and steep waves, relative to current only. Numerical calculations showed
that a rigid floater significantly alters the loads in the mooring lines compared to a



10 Introduction

realistic, elastic floater. The theoretical model for the wave matters. The mooring
loads are rather insensitive to frequency dependent added mass/damping and to
nonlinear Froude-Kriloff and hydrostatic restoring loads on the floater.

The fluid-structure interaction for the net cage is gaining increasingly more
attention. Zhao et al. (2013), Bi et al. (2014) and recently Yao et al. (2016) stud-
ied the flow inside and around a fish cage in current by solving the Navier-Stokes
equation. The net was taken as a porous medium. Both rigid and flexible cages
were investigated. Their studies showed that numerical results would overestimate
the hydrodynamic loads on the cage when compared with the experimental data if
the effect of fluid-structure interaction is not considered. Although it maybe ques-
tionable to consider the net cage as porous medium (most common practice), their
work is valuable to show us the effect of considering the fluid-structure interaction.

In addition, Bardestani and Faltinsen (2013) studied experimentally and the-
oretically snap loads in the netting in two-dimensional conditions in waves; the
reason was independent relative vertical motions of the floater and sinker tube.
Reasonable agreement between theory and experiments was documented. They
pointed out that the net experienced cyclic snap loads in higher wave amplitudes
and periods which could also happen for full-scale offshore fish farms and should
be of concern for the net design.

1.2.3 Influence of fish on the mooring loads

He et al. (2018) studied experimentally the influence of fish in a net cage on mooring
loads. Model tests in scale 1:25 were performed with more than 800 salmon of length
16cm inside a net cage in waves and current. The salmon occupied approximately
2.5% of the net cage volume at rest, which is representative for a full-scale condition.
If the fish touched the netting in current, there was more than 10% increase in the
mooring loads. Numerical calculations were made by changing the solidity ratio
in the contact area between the fish and the net in such way that the numerical
net configuration agreed with the experimental one. Good agreement between
numerical and experimental values were obtained consequently. If the fish did not
touch the netting, the loading influence was the order of 3%. An important question
is if the fish behavior is representative for a full-scale scenario. If the fish do not
touch the netting, an estimate of the net loading can be made as follows. The fact
that the fish displaces the water causes a flow and can be analyzed for a single fish
by slender-body potential-flow theory; a first-order approximation of the far-field
behavior can be obtained by summing up the individual contribution from each fish
in terms of source distributions without considering the hydrodynamic interaction
between the fishes. The latter procedure combined with the effect of local ambient
flow and realistic fish speeds, enables to assess the importance of corresponding
net loading by using the screen-force model by Kristiansen and Faltinsen (2012).
However, there are in addition a viscous wake due to the fishes and a flow caused
by fish propulsion, which need to be quantified. The waves could cause the fish
to go to the bottom of the net cage resulting in a non-negligible experimentally
documented increase in mooring loads.
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1.2.4 Well-boat influence on a fish farm

Little research has been done for the scenario when a well boat operates at the
fish farm. In particular, to the author’ knowledge no experimental study has been
carried out so far. Jia et al. (2012) investigated numerically the hydrodynamic
coupling between a well boat and a rigid torus using a linear potential-flow solver
in the frequency domain. The well boat was placed at the weather side of the
torus and beam-sea regular waves were considered. They showed that the wave
excitation forces of the torus were more affected by the well boat in shorter waves
(wave period T ≤ 6s). The detailed influence of the well boat on the fish farm was
not considered. The effect of the well boat is seldom considered in the design of
fish farms.

1.3 Outline of the present thesis

This thesis focuses on the operational limits of floating-collar fish farms in waves
and current, and examines well-boat presence. The performed research is docu-
mented in seven chapters, organized as follows.

Chapter 1: presents the background and motivation of the present thesis, gives
an overview on previous studies of the floating-collar fish farm, outlines the the-
sis structure and summarizes the main research contributions and physical findings.

Chapter 2: introduces the theoretical model for each individual component of
a realistic floating-collar fish farm (with single cage). The structural model and
hydrodynamic-load model for the different components are provided. The coupling
of the equations of motion for the different components and the time-evolution
strategy for the complete system are explained.

Chapter 3: presents the assessment of the numerical modeling adopted for the
different fish-farm components by comparing against experimental data available
in literature. A sensitivity analysis is also performed to examine the influence of
using alternative numerical models.

Chapter 4: presents a numerical and experimental investigation on mooring loads
of a realistic floating-collar fish farm (with single cage) in waves and current. Both
regular and long-crested irregular waves are examined. Numerical sensitivity anal-
ysis is also performed to identify important parameters influencing the mooring
loads. Survival conditions of the fish farm are also determined.

Chapter 5: introduces numerical modeling of a well boat operating at a fish farm
in current only and in combined long-crested irregular waves and current. The
transverse viscous loads on the boat are obtained by using the cross-flow principle
and the cross-sectional drag coefficients are estimated empirically and validated
against available experiments. The strategy used for the well boat-fish farm cou-
pling is also explained. Theory for predicting the slow-drift motions of the well
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boat in irregular waves is outlined.

Chapter 6: presents the numerical results of a well boat operating at a fish farm
in current only and in long-crested irregular waves and current. The modeling of
the slow-drift motions of the well boat is verified and the influence of the well boat
on the fish farm is quantified. The operational conditions of the well boat when
operating at the fish farm are also determined.

Chapter 7: presents general conclusions of this study and suggestions for further
work.

1.4 Main contributions

The main scientific contribution of the present work is summarized in the following.

An efficient and reliable time-domain numerical solver is developed to predict
the response of a realistic floater-collar fish farm (with single cage), with and with-
out well-boat presence, in current, regular and irregular waves. The operational
conditions for the isolated fish farm and for the well boat-fish farm system are deter-
mined through systematic simulations. The developed numerical solver makes the
statistical analysis of the fish farm (e.g. mooring loads and floating-collar stress),
without and with well-boat presence, possible. Contributions that are more de-
tailed are outlined below separately for the fish farm only and for the coupled well
boat-fish farm system from the theoretical and physical perspectives.

1.4.1 Fish-farm system

Theoretical contribution

• The theoretical model proposed by Li et al. (2016) for predicting the vertical re-
sponse of an isolated-elastic floating torus with symmetric loading is generalized
to solve the motions (in horizontal and vertical directions) of a floating collar
with two concentric tubes in generic environmental conditions.

• The structural and hydrodynamic-load model for a simplified bottomless net
cage in regular waves and current from Kristiansen and Faltinsen (2012, 2015) is
generalized to study more realistic closed fish cage in both regular and irregular
sea states. A simplified method is proposed (and validated) to model the flow
around the net cage in current by using Lagally’s theorem.

• The complete set-up of the mooring system, which comprises ropes, chains and
cylindrical buoys, is properly modeled.

• A new coupling strategy, based on an explicit solution algorithm, is proposed
to increase computational efficiency and to make the developed solver easily
applicable for other open cage fish-farm concepts. A convergence criterion is
suggested to avoid unrealistic truss tensions in the simulations.
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Physical findings

• For the anchor loads: the flow reduction in the rear part of the net cage is the
most important phenomenon; modeling the flow around the net cage will improve
the numerical prediction; modeling the floating collar as a rigid body, neglecting
the axial stiffness and using zero frequency instead of the frequency-dependent
added mass will lead to small error. Using the sinker tube or equivalent discrete
sinker weights will yield similar mooring loads, but with larger net-cage volume
reduction for the latter case.

• The dominant limit of operating the fish farm in more exposed areas is the net
volume reduction. The maximum floating-collar stress and mooring loads are
moderate, even in extreme sea states.

• Mooring loads in equivalent regular waves are of similar magnitude, but generally
more conservative than those in irregular waves.

1.4.2 Coupled well boat-fish farm system

Theoretical contribution

• The transverse viscous loads on the boat in current only and in oscillatory flow
and current are evaluated by the cross-flow principle and a systematic procedure,
combining the use of available empirical formulas, was proposed to estimate
the corresponding cross-sectional drag coefficients. The Reynolds number, rigid
free-surface condition, three-dimensional flow at ship ends, Keulegan-Carpenter
number and the ratio between current velocity and a characteristic wave velocity
were accounted for. The approach was successfully validated by experiments
available in literature.

• A direct method and an indirect method are proposed to deal with the contact
between the well boat and the fish farm. When both are applicable, they provide
consistent predictions. As the indirect method is more versatile and easy to
implement, it is used in the investigations documented in the thesis.

• The well-boat shading effect on the net inflow is approximated by assuming that
the mean velocity distribution behind the boat follows a plane mixing layer flow
with curved shear layer.

Physical findings

• The well-boat presence significantly increases the floating collar horizontal de-
formations and anchor loads.

• The maximum floating-collar stress due to the horizontal deformations occurs at
the region where contact happens.

• The maximum anchor load will not exceed the anchor-line breaking limit even in
high exposure sea conditions. The maximum floating-collar stress could be close
to its yield stress when the system operates in moderate exposure sea states.

• The technique to use equivalent regular waves is not applicable for well boat-
fish farm system. In particular, unrealistic (too high) mean-drift loads occur in
regular waves.
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Chapter 2

Numerical modeling of a
marine fish farm

In this chapter, theoretical models for different components of a realistic floating-
collar fish farm are introduced. The fish farm typically comprises a floating collar
with two concentric circular floating tubes, a cylindrical flexible net cage with
a conical bottom, an elastic sinker tube and a complex mooring system. The
structural model and hydrodynamic-load model for the different components are
provided. For the floating collar, the motions are solved based on a generalized
curved Euler-Bernoulli beam equation that accounts for axial tension and curvature
effects. The hydrodynamic loads for both the rigid and elastic modes are modeled
within linear potential-flow theory. Curved beam equations are also applied to the
sinker tube and the hydrodynamic loads are calculated by a modified Morison’s
equation, based on the cross-flow principle and by neglecting the longitudinal forces.
In terms of the net cage, the net twines are modeled as linear elastic trusses and the
hydrodynamic, viscous loads acting on the net cage are estimated by the screen
load model. The mooring lines are treated in a similar way as the net and are
modeled as elastic trusses. The hydrodynamic forces on the mooring lines are also
estimated by the modified Morison’s equation, similarly as done for the sinker tube.
Finally, the coupling strategy for the different components and how the complete
system is evolved in time domain are explained.

2.1 General configuration and definitions of coor-
dinate systems

The main arrangement of a typical floating collar fish-farm system is shown in Fig-
ure 2.1, including two concentric floating tubes in a torus configuration, an elastic
sinker tube, a cylindrical net cage with a conical bottom and a mooring system
comprising bridle lines, mooring frame lines, mooring buoys, coupling plates, chains
connecting the coupling plates to the buoys and the anchor lines attaching the sys-
tem to the seabed. Two different inertial and Earth-fixed coordinate systems are

15
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also defined in the figure. One is the Cartesian right-handed coordinate system
OExEyEzE with the vertical zE-axis positive upwards through the center of the
floating collar in calm water. The other is the Cartesian right-handed coordinate
system OFxF yF zF with origin OF in the plane of undisturbed free surface zE= 0
and the vertical zF -axis positive upwards through the center of the floating collar
while the horizontal xF -axis points towards the wave direction. The incident wave
angle αw and current angle αc are defined in the figure and αw=0o means that the
waves propagate in the positive xE direction. The coordinate systems OFxF yF zF
and OExEyEzE coincide with each other when αw=0o.
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Figure 2.1: Configurations of the fish-farm system with definitions of two coordinate
systems. Upper: top view. The floating collar is duplicated in the right part of the
sketch to define current direction αc and wave direction αw. βE is the radial angle
along the floating collar, defined in the reference frame OExEyEzE . Lower: side
view.

2.2 The floating collar

In this section, the numerical modeling of the floating collar, including the struc-
tural model and hydrodynamic-load model, will be introduced. The floating collar
of a gravity-type fish-cage system typically comprises two floating tubes, which are
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Figure 2.2: Left: zoomed top view of the floating collar and the coordinate systems
shown in Figure 2.1. β is the radial angle defined with respect to the reference
frame OFxF yF zF and R is the mean value of the center line radius of the two
tubes. Right: cross-section cut of the floating collar. p is the center-to-center
distance between the two tubes and df = 2cf is the tube cross-sectional diameter.

placed with a center-to-center distance p, as shown in Figure 2.2. The motions of
the floating collar with two concentric tubes are solved by generalizing the method
proposed by Li et al. (2016) for predicting the motion of an isolated-elastic floating
torus, based on a generalized Euler-Bernoulli beam equation that accounts for axial
tension and curvature effects. In their study, linear hydrodynamic potential flow
of incompressible water was assumed and waves were considered to be along the
positive xE-axis and consequently only modes symmetric about the xE-axis could
be excited.

In the present study, we will consider more general environmental conditions and
both symmetric and asymmetric modes can be excited. To simplify the calculation
of the wave excitation forces for different modes of the floating collar, the motions
of the floating collar are defined and solved in the coordinate system OFxF yF zF ,
with positive xF -axis pointing towards the wave direction. In this way, the incident
wave angle with respect to xF -axis is always zero, so the wave excitation forces
for modes that are asymmetric about the xF -axis is zero. For modes that are
symmetric about the xF -axis, the wave excitation forces can always be expressed
by the values with zero incident wave angle, regardless of the actual incident wave
direction in the coordinate system OExEyEzE . This is valid only when the floating
collar is circular, as in our case.

It is assumed that the floating collar is circular and half-submerged when at
rest and its motions, (xf , yf , zf ), are assumed to be a combination of rigid-body
motions as well as elastic perturbations around the original circular shape in lateral
(radial) and vertical directions. They are expressed by the following Fourier series
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xf (β, t) = c1(t) + vf (β, t) cosβ,

yf (β, t) = d1(t) + vf (β, t) sinβ,

zf (β, t) = a0(t) + wf (β, t)

(2.1)

at time t and location identified by the radial angle β along the tube, with β = 0o

corresponding to the xF -axis, as defined in Figure 2.2. Here, the coefficients c1, d1

and a0 represent surge, sway and heave rigid motions, while

wf (β, t) =

∞∑
n=1

[an (t) cos (nβ) + bn (t) sin (nβ)]

vf (β, t) =

∞∑
n=2

[cn (t) cos (nβ) + dn (t) sin (nβ)]

(2.2)

are the local vertical (not including heave) and the lateral (radial) elastic deforma-
tions, respectively. The terms an cos (nβ) and bn sin (nβ) denote the vertical modes
that are symmetric and anti-symmetric about the xF -axis, respectively. Detailed
mode shapes are shown in Appendix A. a1 cosβ and b1 sinβ are the vertical motion
due to pitch and roll, respectively. an cosnβ and bn sinnβ, with n ≥ 2, are purely
vertical elastic modes. The coefficients cn and dn (n ≥ 2) are connected with the
horizontal elastic radial mode n. A further transformation is needed if we want to
have the motions in the coordinate system OExEyEzE .

2.2.1 Curved beam equation

The vertical (wf ) and radial (vf ) structural response is assumed to obey the fol-
lowing beam equations
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(2.3)

where m2D = 2mf [kg/m] is the mass per unit length for the two-tube system
with mf the mass per unit length for one tube, R is the mean value of the center
line radius of the two-tube system, t the time variable, s the curvilinear coordinate
along the floating collar, ∂/∂s = R−1∂/∂β the differentiation along the curvilinear
coordinate of the floating collar. EIV and EIH are the structural bending stiffness
in vertical and radial direction, respectively. EIV = 2EIf with EIf the bending
stiffness for one tube. EIH for the floating collar with two tubes is expected to
be much larger than EIV and is calculated as EIH = 2E(If + Afp

2/4) with E
the Young’s modulus of the tubes’ material (high-density polyethylene), If the
area moment of the cross section for one tube in the horizontal plane, Af the
cross-sectional area of one tube and p the center-to-center distance between the
two tubes (see Figure 2.2). Tax is the axial tension along the floating collar and is
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estimated by a two-dimensional Finite Element Method (FEM) code, as explained
later in the text. fz and fr are the vertical and radial forces per unit length of the
floater, given by the sum of the contributions from wave excitation forces (f excit),
added mass and damping forces (fadded mass + damping), restoring forces (f restoring),
forces from net cage (fnetcage), mooring lines (fmoorings) and drag force (fdrag) on
the tubes, i.e.

fz = f excit
z + fadded mass + damping

z + f restoring
z + fmoorings

z + fnetcage
z + fdrag

z

fr = f excit
r + fadded mass + damping

r + f restoring
r + fmoorings

r + fnetcage
r + fdrag

r

(2.4)

Note that the restoring forces for the horizontal modes (f restoring
r ) and the drag

forces for the vertical modes (fdrag
z ) are zero. The wave excitation forces (including

Froude-Kriloff forces and diffraction forces) and the added mass and damping forces
on the floating collar are evaluated by the linear frequency-domain potential-flow
solver WAMIT (Lee and Newman, 2013), using a High-order Boundary Element
Method (HBEM). The possible forces from mooring lines and net cage will be
introduced in Section 2.4 and Section 2.5. The evaluation of the drag forces for the
horizontal modes is shown in Section 2.2.3.

The equations of motion for surge (c1), sway (d1) and heave (a0) are treated
separately, as rigid body modes. For example, assuming steady-state oscillations
with the excitation frequency ω, for the heave motion we solve

(M +A33) ä0 +B33ȧ0 = F3 (t) (2.5)

where M = 2πRm2D is the total structural mass of the floating collar, A33 and
B33 are the frequency dependent added mass and damping coefficients in heave
and F3 is the corresponding hydrodynamic force, including wave excitation force,
restoring force and net cage and mooring forces integrated along the floater.

In order to decouple the different cos(nβ) and sin (nβ) modes for both vertical
and horizontal modes, Equations (2.2) are inserted into Equations (2.3), and the
latter are multiplied successively by cos (mβ) ,m = 1, ... and sin (mβ) ,m = 2, ...
and integrated from β = 0 to 2π, respectively. The equations of motion for each
mode coefficient an(t), bn(t), cn(t) and dn(t) are then obtained. Next we will show
in detail how to estimate the different modes in vertical direction (see Section 2.2.2)
and in radial direction (see Section 2.2.3).

2.2.2 Equations of vertical motions

In this section, we will show the procedure to obtain the motion equations for the
modes in vertical direction. The focus is on the cos(nβ) modes. First wf given
by Eq. (2.2) is substituted in the corresponding Eq. (2.3) and the latter is multiplied
successively by cos (mβ) ,m = 1, 2, etc. Then, integrating along the center line of
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the torus, Eq. (2.3) for the vertical structural response becomes

∫ 2π

0


∞∑
n=1

[
m2Dän + ρgbwan + EIV

R4

(
n4 − n2

)
an
]

cos (nβ)

+
∞∑
n=1

[
m2D b̈n + ρgbwbn + EIV

R4

(
n4 − n2

)
bn

]
sin (nβ)

 cos (mβ)R dβ

=

∫ 2π

0

(
fadded mass + damping
z + f excit

z + fother
z

)
cos (mβ)R dβ

(2.6)
In Eq. (2.6), the restoring force for vertical response is caused by the change of
buoyancy due to the motion wf and expressed as ρgbwwf , within linear theory.
Here ρ is the mass density of water, g is the gravitational acceleration. For a half
submerged floating collar with two tubes, bw = 4cf with cf = df/2 the cross-
sectional radius of the tube. fother

z consists of forces from net cage and mooring

lines and also the axial stiffness due to the term ∂
∂s

(
Tax

∂wf
∂s

)
in the left-hand side

of Eq. (2.3). The equations for the different modes can then be decoupled, using
the property of orthogonal functions shown in Eq. (2.7)∫ 2π

0

cos (nβ) cos (mβ) dβ

{
= 0, m 6= n

= π, m = n = 1, 2, ...∫ 2π

0

sin (nβ) cos (mβ) dβ = 0

(2.7)

The equations of motion for the vertical cos(mβ) modes read(
m2D + a

(m)
33

)
äm + b

(m)
33 ȧm +

[
ρgbw +

EIV
R4

(
m4 −m2

)]
am

= f excit
z,m + fother

z,m , m = 1, 2, ...

(2.8)

where a
(m)
33 and b

(m)
33 are the 2D vertical added mass and damping coefficients for

mode m, and f excit
z,m is the corresponding 2D generalized wave excitation force. One

should note that subscript ”33” in the hydrodynamic coefficients denotes vertical

direction, while the involved mode is given by the superscript ”(m)”. a
(m)
33 , b

(m)
33

and f excit
z,m are calculated by the linear potential-flow solver WAMIT. fother

z,m is the

generalized fother
z force for mode m and given by

fother
z,m =

1

π

∫ 2π

0

fother
z cos (mβ) dβ (2.9)

Detailed explanation of the different terms in fother
z,m will be given later.

If transient effect needs to be captured, for instance in irregular waves, then the
hydrodynamic radiation loads for different modes should be expressed in terms of
convolution integrals with retardation functions. The motion equations Eq. (2.8)
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for the vertical cos(mβ) modes then need to be rewritten as

[
m2D + a

(m)
33 (∞)

]
äm +

t∫
0

k
(m)
33 (τ) ȧm (t− τ) dτ

+

[
ρgbw +

EIV
R4

(
m4 −m2

)]
an = f excit

z,m + fother
z,m , m = 1, 2, ...

(2.10)

where a
(m)
33 (∞) and k

(m)
33 are the 2D vertical added mass coefficient at infinity

frequency and retardation function for mode m, respectively. k
(m)
33 can be estimated

as

k
(m)
33 (t) =

2

π

∞∫
0

b
(m)
33 (ω) cos(ωt) dω (2.11)

Forces from mooring lines and net cage

For the loads from the mooring lines and the net cage, the generalized force reads

1

πR

∫ 2π

0

Nβ∑
i=1

Ti,3δ (β − βi) cos (nβ) dβ =
1

πR

Nβ∑
i=1

Ti,3 cos (nβi) (2.12)

Here Ti,3 is the vertical component of force from the mooring lines and the net cage.
δ is the Dirac delta function. βi describes angular positions where the mooring lines
and the net cage are attached to the floating collar and Nβ is the number of the
connection positions.

Axial stiffness

The axial tension Tax acting on the two-tube system is estimated by a two dimen-
sional Finite Element Method (FEM) code. This allows us to deal with general
mooring line and net cage set-up and to account for time-varying axial tension.
This means that the two-tube system is split in NE elements and Tax is assumed
to be constant within each element. The chosen NE depends on the mooring-line
arrangement and on the mesh resolution for the net cage. The axial-stiffness terms
in the beam equation Eq. (2.3) do not decouple as the other terms do due to orthog-
onality shown in Eq. (2.7). For the vertical cos(nβ) modes, the term representing
the axial stiffness in Eq. (2.9) is given as

1

π

∫ 2π

0

∂

∂s

(
Tax

∂wf
∂s

)
cos (mβ) dβ =

∞∑
n=1

(pmnan + qmnbn) (2.13)
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where

pmn =
n2

πR2

NE∑
i=1

Tax,i

βi∫
βi−1

cos (nβ) cos (mβ) dβ

qmn =
n2

πR2

NE∑
i=1

Tax,i

βi∫
βi−1

sin (nβ) cos (mβ) dβ

(2.14)

T iax is the axial tension for element i of the FEM analysis and is assumed to be
constant, so that the axial tension is piecewise constant along the floating collar.
The integration terms in Eq. (2.14) are given analytically, see Appendix B. The
term associated with the axial tension Tax will provide coupling effect between
different modes.

We have introduced the modeling of the cos(mβ) modes in vertical direction,
similar procedure can be followed to find solutions for the sin(mβ) modes and
therefore will not be provided here. One should note that the wave excitation forces
for all sin(mβ) modes are zero, as we solve the motion equations in the OFxF yF zF
coordinate system (see Figure 2.2). Once the vertical motions of different modes
are obtained, then the total vertical motion zf for a given point on the floating
collar can be readily obtained by superposing the vertical motion of each mode
according to Eq. (2.1).

2.2.3 Equations of radial motions

The motion equations for the radial modes can be obtained in a similar way as
that for the vertical modes, except that there are no restoring terms while there are
additional drag-force related terms in the motion equations. So detailed derivations
will not be provided. In the following we will mainly address the modeling of the
drag force on the floating collar.

Drag on the floating collar

Viscous load on the floating collar is moderate compared with the total force on the
system, so it is not necessary to estimate the load by accurate yet time consuming
method, as done by Kristiansen (2010) for a horizontal cylinder in waves using an
advanced Computational Fluid Dynamics (CFD) method. Here we apply the drag
term in the Morison’s equation to model the drag force per unit length on a tube
in the horizontal plane, given by

fdrag
r (β, t) = 0.5ρCfDdrur |ur| (2.15)

where CfD is the drag coefficient and dr (β, t) = min (ζ − zf + cf , 2cf ) is the relative
submergence, with ζ the instantaneous incident-wave elevation at the center of
the tube’s cross section, while the radiation and diffraction waves are neglected.
ur(β, t) = Urel · nf is the local, relative cross-flow velocity at the center line of the
tube with Urel the instantaneous, relative velocity vector between the undisturbed



2.3. The sinker tube 23

inflow and the floating collar and nf = (cosβ, sinβ, 0) the two-dimensional (in the
horizontal plane) unit normal vector of the tube when undeformed (circular shape).

The next step is to find the drag coefficients CfD for different cross-sections,
which is not straightforward. The cross-sections of the floating collar will expe-
rience different inflow because the waves and current are not in general aligned
with the cross-section. For the floating collar with two tubes, a given cross-section
with cross-flow is made by two circular cylinders in tandem arrangement. The
flow interaction is important as the downstream cylinder is located in the wake of
the upstream cylinder. According to the results from Zdravkovich (1985) for two
fully submerged circular cylinders in current, drag coefficients for the upstream
and downstream cylinders are strongly dependent on the Reynolds number Rn =
U∞df/ν (with U∞ = current velocity and ν the kinematic viscosity of the water)
and on the distance between the two cylinders. Drag coefficient can even be neg-
ative for the downstream cylinder when the two cylinders are placed close enough
(center-to-center distance p < 4df , with df the cross-sectional diameter of each
tube). In the presence of incident waves, over-topping of the floating collar may
occur when it is exposed to steep waves and this will affect the actual drag co-
efficient of the cross-section. Moreover, CfD depends on the Keulegan-Carpenter
number KC=UMT/df (with UM = velocity amplitude of incident oscillatory flow
and T = oscillatory period) and on the relative current number, i.e. the ratio
between the wave particle amplitude and current velocity in the case of combined
waves and current. It it is not practical to account for all these variations of CfD
and therefore constant drag coefficients for the two cylinders in steady flow will be
used in the analysis and a sensitivity analysis will be performed to have an estimate
of the error associated with this simplification.

2.3 The sinker tube

The motions of the sinker tube are solved in a similar way as those for the floating
collar, i.e. curved beam equations are also applied to the sinker tube. The corre-
sponding hydrodynamic loads are calculated by a modified Morison’s equation and
detailed explanation is given below.

2.3.1 Forces on the sinker tube

The radial fr and vertical fz forces per unit length on the sinker tube are calculated
by a modified Morison’s equation for a submerged cylinder. By modified Morison’s
equation is meant that the local body velocities and accelerations are accounted
for. In particular, in this case it reads

fr = 0.5ρCsDdsur
√
u2
r + u2

z + CsMρπ
d2
s

4
r̈w − (CsM − 1)ρπ

d2
s

4
v̈s

fz = 0.5ρCsDdsuz
√
u2
r + u2

z + CsMρπ
d2
s

4
z̈w − (CsM − 1)ρπ

d2
s

4
z̈s

(2.16)
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Here ds is the cross-sectional diameter of the sinker tube; ur and uz are, respec-
tively, the local, radial and vertical relative cross-flow velocity between the sinker
tube and the ambient flow, evaluated at the center axis of the sinker tube; v̈s and z̈s
are, respectively, the radial and vertical accelerations of the sinker tube; r̈w and z̈w
are, respectively, the radial and vertical undisturbed wave particle accelerations at
the center axis of the sinker tube; CsD and CsM are, respectively, the cross-sectional
drag and mass coefficients. When the effect of the netting is neglected, the main
parameters affecting CsD and CsM for a smooth cylinder in infinite fluid are the
Keulegan-Karpenter number KC=UMT/ds (with UM = velocity amplitude of the
oscillatory flow at the center of the sinker tube’s cross section), Reynolds number
Rn = UMds/ν and the relative current number. Typically the sinker tube operates
at small KC number due to the fact that it is placed far below the free surface, so
the corresponding UM is small. Here we approximately set CsM = 2, which is con-
sistent with low values of KC number. A constant CsD = 1 is assumed, neglecting
the influence of oscillatory ambient flow and Reynolds number. A sensitivity anal-
ysis will be performed to examine the influence of this simplification. The possible
occurrence of vortex induced motions (VIM) of the sinker tube is not considered.

2.4 The net cage

In this section we describe the structure model for the net cage and the hydro-
dynamic model for the viscous load on the net cage. The net structure is highly
flexible and can easily deform when subjected to waves and current, so a time-
stepping procedure is needed to find its instantaneous configuration. The fact that
the netting may have 10 million meshes limits the use of Computational Fluid Dy-
namics (CFD) and complete structural modeling. Therefore simplified modelings
for the net structure and its hydrodynamic loads are needed and introduced in
Section 2.4.1 and in Section 2.4.2, respectively.

2.4.1 Truss model

The structural model of the net cage from Kristiansen and Faltinsen (2012, 2015),
originally presented by Marichal (2003), is adopted in the present work. The main
particular of this truss model is that a linear system of equations for the truss
tensions is solved at each time step. The advantage of solving the problem in this
way is that better convergence behavior is expected compared with formulations
solving the truss tension explicitly. The latter is based on known elongation of the
truss at each time step. More detailed explanation of the truss model adopted in
the present study is provided below.

A Raschel type knotless netting with square meshes and negligible bending stiff-
ness is considered. This type of netting material is used widely in the aquaculture
industry. Negligible bending stiffness means that we can model the net twines as
elastic trusses which contain only axial tensions. Due to the large number of meshes
in a physical net structure, it is not practical to model each individual twine, so
instead equivalent trusses are used by keeping the same solidity ratio as the original
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netting, see Figure 2.3. Here the solidity ratio Sn is defined as the ratio between
the area of the solid part of a net screen and the total area of the screen. This
means that the equivalent trusses have different size compared with the original
net twines. Next, we will show how to obtain the system of equations for these
truss tensions.

jx
ix

Net twine

Truss k

Figure 2.3: Division of a planar net into an equivalent truss model. The solid
black circles denote the numerical nodes of the net. The shaded colored areas
represent four net panels surrounding a given node and are used to estimate the
hydrodynamic forces acting on the node. The red lines represent the equivalent
trusses with two end nodes.

Equation of motion for a node

According to Newton’s second law, the equation of motion for a node i (see Fig-
ure 2.3) can be written as

miai =
∑

Fi (2.17)

where mi is the local mass of the net represented by the node, the vector ai
represents the acceleration vector of the node and

∑
Fi is the sum of all forces

acting on the part of the net represented by the node. We write

∑
Fi =

NT∑
m=1

Tmsm +

Np∑
m=1

(FHm + Fam) (2.18)
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Here NT and Np are the number of trusses connected with the node and the number
of panels surrounding the node, respectively. Tm is the tension in one of the trusses
connected to the node i and sm is the corresponding unit vector tangentially to
the truss. For instance, for the truss k in Figure 2.3, sk = (xj − xi) /lk and points
from the node i to the node j. Here lk is the length of the truss k. FHm is
the hydrodynamic force, including drag force and lift force, on one of the panels
around the node i, while Fam is the corresponding added mass force of the net

twines represented by the panel. As a first approximation,
Np∑
m=1

Fam ≈ −miai,

assuming that: (1) the flow around a submerged net twine resembles that around
a circular cylinder; (2) the net weight of the net twine is zero, i.e. the mass of the
net twine is equal to the weight of the water displaced. Similar motion equation
can be obtained for node j, as well as for any other node of the modeled net.

Kinematic constraint of the twine

For the truss k in Figure 2.3 with end nodes i and j, the kinematic constraint for
the truss length ln+1

k at time instant n+ 1 is written as(
ln+1
k

)2
=
∣∣xn+1
j − xn+1

i

∣∣2, n ≥ 0 (2.19)

where xn+1
j and xn+1

i are the coordinates, respectively, for end nodes i and j. |x| =√
x2 + y2 + z2 with x = (x, y, z) as Earth-fixed, Cartesian coordinates. Initially,

the length of the truss is l0k . If the net is assumed inelastic, then lnk = l0k for all
time steps. Here, the elasticity of the net is considered by incorporating the change
of the truss length.

Linear system of equations for truss tensions

At any time instant, the kinematic constraint in Eq. (2.19) is required to be fulfilled.
The node position x and velocity u are stepped forward in time by using a first
order time-marching scheme:

xn+1 = xn + ∆tun+1

un+1 = un + ∆tan
(2.20)

∆t is the time step size. Inserting Eq. (2.20) into Eq. (2.19), we obtain the following
equation (

ln+1
k

)2
=
∣∣α + β∆t+ γ∆t2

∣∣2 (2.21)

where the vectors α, β and γ are defined as

α = xnj − xni

β = unj − uni

γ = anj − ani

(2.22)
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Eq. (2.21) is nonlinear in terms of ∆t. Upon neglecting high order terms of O(∆t)
3

and using the relationship (lnk )
2

= |α|2, we have(
ln+1
k

)2 − (lnk )
2

= ∆t2|β|2 + 2∆tα · (β + ∆tγ) (2.23)

Assuming small change of the truss length between the two neighboring time in-
stants, i.e., ln+1

k ≈ lnk , the terms on the left-hand side of Eq. (2.23) can be further
approximated as(

ln+1
k − lnk

) (
ln+1
k + lnk

)
≈ 2lnk

(
ln+1
k − lnk

)
= 2lnk l

0
k

(
εnk − εn−1

k

)
(2.24)

Here the strain εnk =
(
ln+1
k − l0k

)
/l0k is defined as the elongation of the truss rela-

tive to its initial length. Using the tension-strain relationship for the truss k and
assuming a linear behavior of the material, we have

εnk − εn−1
k = κ

(
Tnk − Tn−1

k

)
= κ∆Tnk (2.25)

Here κ is the elasticity coefficient and ∆Tnk is the increment of the truss tension
within the time step ∆t. By substituting Eq. (2.25) and Eq. (2.24) into Eq. (2.23),
we can rewrite Eq. (2.23) as

α

lnk
· γ = −|β|

2

2lnk
− α

lnk
· β

∆t
+
κl0k∆Tnk

∆t2
(2.26)

Inserting Eq. (2.22) into Eq. (2.26) and using the fact that snk = α/lnk is the
tangential unit vector, we obtain

snk ·
(
anj − ani

)
− κl0k

(∆t)
2T

n
k

= − 1

2lnk

∣∣unj − uni
∣∣2 − 1

∆t
snk ·

(
unj − uni

)
− κl0k

(∆t)
2T

n−1
k

(2.27)

The accelerations on the left-hand side are substituted by forces according to
Eq. (2.17) and Eq. (2.18). The hydrodynamic loads on the nodes are pre-calculated
and known, then the truss tensions are the only unknown variables. Each truss
provides an equation, then we can obtain a linear equations system for unknown
tensions when applying Eq. (2.27) for all trusses. Once the unknown truss tensions
are solved, then the accelerations can be readily obtained from Eq. (2.17) and the
net cage can be evolved in time according to Eq. (2.20).

For nodes of the net cage that are located at the floating collar and at the sinker
tube, the above introduced procedure is not applicable and are treated separately.
Detailed explanation is given in Section 2.6.

2.4.2 Hydrodynamic model

The experimentally based screen type of force model proposed by Kristiansen and
Faltinsen (2012, 2015) is used to estimate the hydrodynamic, viscous loads acting
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on the net cage for both cases in current only and in combined waves and current.
The screen force model was originally developed for steady flow. However, due to
the high KC numbers based on the twine diameter, the flow in waves can be seen
as quasi-steady, thus the force model is believed to be also applicable in waves.
Kristiansen and Faltinsen (2012) demonstrated that the screen-type force model
gave clear improvements in predicting the drag and lift forces on the net cages in
current with respect to the estimates by a Morison type of force model, especially
when the net cage is subjected to large deformations. A brief outline of the basic
parts of the theory is given here for clarity purpose.

LF NF


DF

TF
relU

Figure 2.4: Drag (FD) and lift (FL) forces on a net panel. FN and FT denote
the corresponding normal and tangential components. The angle θ is the angle
between the normal of the panel and direction of local inflow with velocity Urel.

The model divides the net into a number of flat net panels, or screens, see
Figure 2.3. The knots are neglected, and circular twine cross-sections are assumed.
Each net panel is assumed to experience a viscous normal force FN due to a pressure
drop proportional to the square of the local, relative flow velocity (defined below),
and a tangential force FT due to the flow deflection by the net twines when going
through the net. Here ”deflected” means that the flow deviates from its original
path. The net-panel force can be, alternatively, decomposed into a drag force FD
and a lift force FL, as shown in Figure 2.4. The non-dimensional force coefficients
corresponding to the different force terms shown in Figure 2.3 are defined as

CN =
FN

0.5ρA|Urel|2
, CT =

FT

0.5ρA|Urel|2

CD =
FD

0.5ρA|Urel|2
, CL =

FL

0.5ρA|Urel|2
(2.28)

where A is the net-panel area and Urel is the instantaneous, relative flow velocity
and taken as

Urel = γU∞ + uw − ui (2.29)

with U∞ the ambient current velocity, uw the incident-wave particle velocity at
the position of the node and ui the velocity of the node. γ is a flow reduction
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coefficient. In particular, γ = 1 for the front part of the net, while γ = r < 1
for the rear half so to account for the shading effect of the net front part. The
shading effect for the oscillatory flow is difficult to be incorporated, so as a first
approximation, it is assumed that only the steady part of the flow, i.e. the current,
is reduced by r.

The force coefficients in Eq. (2.28) are not independent and it follows that

CD = CN cos θ + CT sin θ

CL = CN sin θ − CT cos θ
(2.30)

The examined force coefficients are assumed to be functions of Sn, Rn and θ, where
Sn is the solidity ratio of the net panel, Rn is the Reynolds number and θ is the
angle between the panel normal vector and the relative, local flow velocity, as
shown in Figure 2.4. Detailed dependency of the force coefficients to these three
parameters is explained below. The definition of the Reynolds number involved
here will be discussed later.

Assuming that the cross-flow principle can be applied (see e.g. Faltinsen, 1990),
the normal force coefficient CN is assumed to obey the following formulation when
0 ≤ θ ≤ π/4

CN (θ) = Ccirc.cyl
D

Sn (1− Sn)

2(1− Sn)
2 cos2θ (0 ≤ θ ≤ π/4) (2.31)

The dependency on Sn is consistent with the experimental data from Blevins (2003)
and assumed to be valid for Sn<0.5. The realistic range of Sn for clean nets
is between 0.2-0.3, so Eq. (2.31) is applicable. Ccirc.cyl

D is the Reynolds number
dependent drag coefficient of a circular cylinder and, using the experimental data
from Goldstein (1965), can be written as

Ccir.cyl
D =− 78.46675 + 254.73873

(
logRn

10

)
− 327.8864

(
logRn

10

)2

+ 223.64577
(

logRn
10

)3

− 87.92234
(

logRn
10

)4

+ 20.00769
(

logRn
10

)5

− 2.44894
(

logRn
10

)6

+ 0.12479
(

logRn
10

)7

(2.32)

This formula is applicable for 103/2 ≤ Rn ≤ 104. A plot based on Eq. (2.32) is
provided in Figure 2.5.

For Rn< 103/2, the drag coefficient for a circular cylinder from White (2006) is
used, i.e.

Ccir.cyl
D = 1 +

10

Rn2/3
(2.33)

The Rn formulas (2.32) and (2.33) are relevant for the present application as
the expected range of Rn in practice is Rn < 2000 - 3000. In terms of the tangential
force coefficient, the following formula proposed by Schubauer et al. (1950) is used
and given as

CT (θ)

θ
=

4CN (θ)

8 + CN (θ)
(0 ≤ θ ≤ π/4) (2.34)
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Figure 2.5: The drag coefficient for a smooth circular cylinder as function of
Reynolds number.

Once CN (θ) and CT (θ) are known from Eq. (2.31) and Eq. (2.34), respectively, the
drag CD(θ) and lift CL(θ) coefficients on the panel for 0 ≤ θ ≤ π/4 can be obtained
from Eq. (2.30). Next we will show briefly how to generalize the model to include
scenarios with π/4 ≤ θ ≤ π/2, more detailed explanation can be found Kristiansen
and Faltinsen (2012). It is assumed that CD and CL may formally be represented
by the following Fourier series,

CD(θ) = cd

∞∑
n=1

a2n−1 cos (2n− 1) θ

CL(θ) = cl

∞∑
n=1

b2n sin (2nθ)

(2.35)

where cd = CD(0) and cl = CL(π/4). CD(0) and CL(π/4) can be calculated by
Eq. (2.30) combined with Eq. (2.31) and Eq. (2.34). As a first approximation, only
the first term in each series is considered, namely

CD (θ) = cd cos θ

CL (θ) = cl sin 2θ
(2.36)

with a1 = b2 = 1. The dependency on θ in Eq. (2.36) is consistent with that
derived by Løland (1991) based on the experimental data from Rudi et al. (1988).
The approximation is reasonable for net with low solidity ratio, e.g., Sn<0.25-
0.3. For net with high solidity ratio, higher harmonic components may need to
be included, but the corresponding Fourier coefficients are not straightforward to
be determined. For a typical aquaculture fish cage, the solidity ratio is within the
applicable region of Eq. (2.36), so the formula will be adopted in the present work.
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Reynolds number definition

The relevant Rn should be defined with respect to the physical twine diameter dw.
Kristiansen and Faltinsen (2015) proposed the expression

Rn = (γU∞ + uwa)dw/(1− Sn)ν (2.37)

where uwa is the velocity amplitude of an incident-wave particle at the initial
position of the net node, i.e. node position in calm water. The coefficient 1/(1−Sn)
accounts for the fact that the flow is accelerated at the net twines, due to mass
conservation. As mentioned in Eq. (2.29), γ is a flow reduction coefficient and for
the rear part of the net the steady flow is reduced by r, with r evaluated by the
following formula suggested by Løland (1991)

r = 1− 0.46cd (2.38)

The Reynolds number in Eq. (2.37) is defined by the characteristic free stream
velocity, including the velocity amplitude from incident waves. However, the def-
inition may be difficult to implement in irregular sea scenario. So in the present
work the Reynolds number is defined as

Rn = |Urel| dw/(1− Sn)ν (2.39)

using the instantaneous relative velocity instead, as defined in Eq. (2.29).

2.5 The mooring system

The complete set-up of the mooring system is shown in Figure 2.1, which typically
comprises ropes and chains, with buoys to support all mooring lines. The buoys
are floating circular cylinders. Ropes and chains are treated in a similar way as
the net and are modeled as elastic trusses with correct diameter, weight and stiff-
ness. The hydrodynamic forces on the mooring lines are estimated by a modified
Morison’s equation based on the cross-flow principle and by neglecting the longi-
tudinal forces. In this case, the modified Morison’s equation accounts for the local
transverse body velocities and accelerations. The motion of each buoy is solved
in an inertial coordinate system OBxByBzB , see Figure 2.6, with the origin of the
coordinate system OB in the plane of undisturbed free surface zE= 0 and the ver-
tical zB-axis pointing upwards through the center of the buoy in calm water while
the horizontal xB-axis points towards the wave direction (also positive xF -axis).
Because the considered wavelengths are long relative to the buoy diameter, long
wave approximation is adopted. It is assumed that there are no coupling terms
between the translational and rotational motions as pressure loads are dominant.
As an example, the equation for surge motion is

MB η̈1,B = F excit
1,B + F added mass

1,B + F drag
1,B + Fmoorings

1,B (2.40)

where MB is the buoy mass, while F excit
1,B , F added mass

1,B , F drag
1,B and Fmoorings

1,B are,
respectively, wave potential-flow excitation force including Froude-Kriloff force and
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diffraction force, the added mass force, the viscous force and the external force
from the chain under the buoy, exerted in the surge direction. The excitation
force, added mass force and viscous force are estimated by the modified Morison’s
equation and the corresponding drag coefficient CBD and mass coefficient CBM are
assumed to be constant for simplicity and equal to CBD = 1 and CBM = 2.0, even
though the coefficients are also influenced by flow parameters such as the Keulegan-
Carpenter number, Reynolds number and the ratio between the current velocity
and the amplitude of the relative unsteady longitudinal velocity. To assess the
importance of accurate values for these two coefficients, a sensitivity analysis will
be performed by varying CBD and CBM . Similar equations can be derived for other
degrees of freedom and are omitted here.

Bx

Bz

BO

Figure 2.6: Sketch of the buoy system. An Earth-fixed coordinate system
OBxByBzB is also defined.

2.6 The coupling strategy

In this section, the coupling between the different components of the fish farm,
including the floating collar, the sinker tube, the net cage and the mooring lines,
is addressed. The essence of the problem is to deal with the acceleration terms
in the left-hand side of Eq. (2.27) for nodes located at the floating collar and the
sinker tube (named boundary nodes). Here two coupling strategies are adopted,
named explicit coupling and implicit coupling, respectively. The implicit coupling
strategy is an extension to a realistic fish-farm system of the formulation originally
proposed by Kristiansen and Faltinsen (2015) to deal with the coupling between the
floater and the net cage for a simplified fish-farm. The explicit coupling strategy is
proposed in the present work to reduce the complexity of numerical implementation



2.6. The coupling strategy 33

and also to make the developed solver easily applicable for other fish-farm concepts.
Detailed explanations of the two strategies are given below.

2.6.1 Implicit coupling

In the implicit coupling, when solving the motions of the floating collar and the
sinker tube, the loads from the net cage and the mooring lines are unknown, so
for the boundary nodes, the acceleration term in the left-hand side of Eq. (2.27) is
also connected with unknown truss tensions. This means that the complete system
needs to be solved simultaneously. To better explain this coupling strategy, it is
assumed that the inflow is in the positive xE-axis (see Figure 2.2), which implies
that only modes symmetric about the xE-axis, i.e., cos(nβ), are excited. For a node
located at the floating collar with position βi, the part of the vertical acceleration
due to the unknown tensions from the net cage and mooring lines is given by

∆z̈βi,T =

∞∑
n=1

 1

πR

Nβ∑
j

Tj,3 cos (nβj)

cos (nβi)

m+ a
(n)
33

+
1

M +A33

Nβ∑
j

Tj,3

=

Nβ∑
j

Tj,3

[
1

πR

∞∑
n=1

cos (nβj) cos (nβi)

m+ a
(n)
33

+
1

M +A33

] (2.41)

From the equation, we can see that the unknown part of the vertical acceleration
∆z̈βi,T can be expressed in terms of the truss tensions in the connect-lines from the
mooring lines and the net cage. Combining this with the known part of the vertical
acceleration, we can have the total vertical acceleration z̈βi for the boundary node.
Similar expressions can be obtained for the accelerations in the horizontal plane. By
substituting the obtained acceleration vector into the corresponding acceleration
term in the left-hand side of Eq. (2.27), we can include the floating-collar motion
and the sinker tube motion in the linear equations system for the truss tensions.
In this way, the complete fish-farm system is solved simultaneously and relatively
better convergence behavior of the developed numerical solver is expected with
respect to using the explicit coupling strategy.

2.6.2 Explicit coupling

In the explicit coupling, when solving the motion equations of the floating collar
and the sinker tube, the truss tensions in the mooring lines and the net cage are
known with values from previous time step. This implies that the accelerations
for nodes located at the floating collar and the sinker tube are pre-calculated and
used to substitute the corresponding acceleration term in the left-hand side of
Eq. (2.27). Thereafter loads in the mooring lines and in the net twines can be
obtained by solving a linear system of equations for the unknown truss tensions
and the complete fish-farm system can be evolved in a time-stepping procedure
accordingly.

The advantage of using this explicit coupling strategy is that we do not need to
solve the complete fish-farm system simultaneously. The net cage and the mooring
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lines can be solved separately from the rest components, as long as correct bound-
ary conditions (accelerations) are provided. While for the floating collar and the
sinker tube, they can be modeled independently, as long as correct external truss
tensions are given. Using this strategy, the developed code for the net cage can be
easily transferred to other fish-farm concepts, i.e. not limited to the floating-collar
fish-farm system. The disadvantage of using such coupling strategy is that numer-
ical simulation may more easily break down due to the occurrence of unphysical
negative twine tensions when exposed to very severe sea states. One possible solu-
tion is to check the obtained truss tensions at each time step and if negative truss
tensions occur, then one should set the truss tensions to zero for those trusses with
negative tensions. Then the simulation goes back in time of one step and rerun the
calculation for the rest trusses. This is left for further development.

2.7 Flow chart of the numerical solver

The flow chart of the developed time-domain program for a fish-farm system is
shown in Figure 2.7. This algorithm is applicable both for implicit and explicit
coupling. The first step is to input the designated environment conditions and
parameters for the different components of the fish-farm system, as well as the
desired spatial discretization, the initial time step ∆t0 and the ending time of the
simulation. In the present simulations, ∆t0 is set T/200, with T the incident wave
period in regular waves or the peak wave period in irregular waves. Both current,
regular and irregular waves can be incorporated and just parts of the fish-farm
system, i.e. not necessarily including all components, can be examined. Then
an automesh subprogram is called to create net nodes, trusses, screen elements
together with their connectivity relationship. At this stage the time simulation
starts. At a generic time instant (a) the external loads on different components are
calculated and distributed to the corresponding nodes, forming a linear equations
system for truss tensions, which (b) is solved by a direct sparse solver. Next, (c)
the physical soundness of the solution is checked by comparing the drag force on
the net with a realistic upper-limit value for the examined conditions. Such value
is set as ten times the maximum drag force acting on a solid cylinder with the same
dimensions as the net cage under the same environment condition. The drag force
on the net is evaluated by the sum of the horizontal components of the tensions in
the top-layer trusses, i.e. those connected with the floating collar. In this way, we
can check whether unrealistic truss tensions have occurred. If this is the case, they
are avoided in the following way.

Two methods are proposed. In the first strategy, if the net drag is larger than
the prescribed upper-limit value, the solution goes back in time of one step and
the value of the time step is reduced as ∆t/5, with ∆t the previous time step.
Then the calculations in steps (a)-(c) are performed with the new time-step value.
In the second strategy, if the soundness criterion is not satisfied at a certain time
instant, the simulation is restarted from the beginning with a time step ∆t0/2

N

with N the number of times that the simulation has been restarted. The aim is to
achieve a solution where the soundness criterion is always satisfied. Normally the
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first method is more computational time efficient, however sometimes it may break
down in very severe sea states due to accumulated errors, so it still requires more
investigation. To be on a safe side, the second method is adopted in the present
study, as shown in Figure 2.7.

If the check in step (c) returns a drag force less than the upper-limit value, (d)
the configuration of the fish-farm system is updated using the first-order method
in Eq. (2.20). Steps (a)-(d) are repeated until the ending time of the simulation is
reached.

Start

                                                   Input

(1) Environmental  conditions (current, regular, irregular waves)

(2) Fish-farm data (floater,  net cage,  sinker tube,  mooring system)

(3) Spatial discretization, initial time step and ending time

(a) Calculating external forces on each individual 

component 

Automesh subprogram

Forming elements and 

connectivity 

relationship 

(b) Forming a system of  tension equations and solving by direct sparse 

solver

Restart

t = 0

∆t = ∆t/2
(c) Total drag force on the net  <  maximum value

    (d) Updating the system by first-order method

end

t≥tmaxt = t+∆t

No

Yes

No

Yes

tmax:  time duration

∆t:  time step

Figure 2.7: Flow chart for numerical simulation.
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2.8 Conclusions and following work

The numerical modeling for the different components of a realistic marine fish farm
has been introduced. The system comprises a floating collar with two concentric
tubes, a flexible net cage and a sinker tube attached directly to the net, moored
by a complex mooring system with anchor lines, bridle lines and frame lines. The
curved beam equations with consideration of axial stiffness and curvature effects
were adopted for solving the motions of the floating collar and the sinker tube.
The net cage was modeled by a truss model and the hydrodynamic forces on the
cage were predicted by a screen model which accounts for hydrodynamic shadow
and Reynolds number effect. For the mooring lines, ropes and chains were treated
in a similar way as the net twines and were modeled as elastic trusses with correct
diameter, weight and stiffness. The hydrodynamic forces on the mooring lines were
estimated by a modified Morison’s equation based on the cross-flow principle and
by neglecting the longitudinal forces. In the end, two strategies were proposed to
deal with the coupling between the different components and the flow chart of the
developed numerical solver was provided.

Before using the proposed model to analyze a realistic fish farm, we need to vali-
date the developed numerical tool. This will be done in the following chapter where
the numerical modelings of the different fish-farm components and of a simplified
fish-farm system are validated with experimental data available in literature.



Chapter 3

Assessment studies of the
fish-farm modeling

In this chapter, the modeling adopted for the different fish-farm components is
assessed. This is done by comparing against established experiments available in
literature. These studies will involve simplifications of the various components, so
to reproduce the reference results and also to assess, through a sensitivity analysis,
their reliability as alternative models. First, the vertical accelerations induced by
regular waves on an isolated floater are considered. The collar is simplified as a
single circular floating torus, behaving as flexible or as nearly rigid. Then, the
viscous hydrodynamic loads caused by a steady current on a net cage are studied.
The net cage is simplified as a rigid-circular cage, a flexible-bottomless circular
cage and a deformable, closed net cage. In the first scenario the cage is isolated,
while in the others it is attached to a rigid floater and the sinker tube is represented
by discrete sinker weights. Finally, the mooring loads for a simplified fish farm in
current only and in combined waves and current are examined. The system consists
of a single, elastic floater, a flexible-circular-bottomless net cage and sink weights,
moored nearly horizontally with mooring lines. Eventually, a detailed sensitivity
analysis of the mooring loads to the different modeling parameters is presented.

3.1 The floating collar

In this section, the modeling of the floating collar is validated with available ex-
perimental data. It is common to investigate a floating collar with single torus
rather than two concentric tubes in model tests, so here we will study the response
of a single torus. The modeling of a single torus is similar with that shown in
Section 2.2 for a floating collar with two tubes, except that relevant parameters
used in the numerical model are for one tube. The experimental data from Li et al.
(2014) and Li et al. (2016) are considered, where model tests for a semi-submerged
elastic circular torus and for a semi-submerged rigid circular torus in regular deep-
water waves were performed. In these studies, the torus was in isolated conditions,

37
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i.e. without a net cage, and the focus was on the induced vertical accelerations, as
well as on the importance of hydroelasticity in the wave-body interaction. A list
of relevant parameters and dimensions used in the model tests and corresponding
full-scale values are given in Table 3.1. The water depth used in the model tests was
1.5 m, ensuring deep water conditions for the examined waves. Detailed discussions
for the elastic floater and for the almost rigid floater are shown in Section 3.1.1
and Section 3.1.2, respectively.

Table 3.1: Main dimensions used in the experiments by Li et al. (2014) and Li et al.
(2016). Model scale 1 : 25 was adopted. Both model-scale and full-scale values are
given. E: Elastic; R: Almost rigid.

Description Parameter Model scale Full scale

Torus diameter D = 2R 1.5 m 37.5 m

Cross-sectional diameter of torus (E) df = 2cf 38 mm 0.95 m

Cross-sectional diameter of torus (R) df = 2cf 36 mm 0.90 m

Torus mass per unit length (E) mf 0.602 kg/m 376.0 kg/m

Torus mass per unit length (R) mf 0.607 kg/m 379.6 kg/m

Torus bending stiffness (E) EIf 0.464 Nm2 4.53×106 Nm2

Torus bending stiffness (R) EIf 23.74 Nm2 2.32×108 Nm2

Spring stiffness ks 17 N/m 10.63 kN/m

3.1.1 A floating elastic torus in regular waves

6.45m

4.39m 4.39m

Front Aft Center line

2.0m
D=1.5m
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Ey
E
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Elastic floater Mooring lines

Wave Probe
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Figure 3.1: Experimental set-up (top view) of the elastic torus model used by Li
et al. (2014). Incident regular waves propagate in the positive xE-axis.

The experimental set-up of the elastic torus model used by Li et al. (2014) is
illustrated in Figure 3.1. The elastic torus model was attached to the stationary
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carriage in the middle of the tank by means of four identical nearly horizontal
mooring lines, at the front, aft, left and right. Each of them was connected to the
torus at three locations, resulting in 12 attachment points uniformly distributed
along the floater with an interval of 30 degrees. Springs with stiffness ks = 17 N/m
were used to connect the torus to the carriage. The pre-tension was Tp = 5 N.
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Figure 3.2: Steady-state amplitudes of non-dimensional first-harmonic acceleration

z̈
(ω)
a R/gζa for an elastic torus versus non-dimensional wave number kcf . Filled

symbols: experimental results from Li et al. (2014) in regular waves with two wave
steepness H/λ = 1/120 and 1/60. Solid line: numerical results for an elastic torus.
Dashed line: numerical results considering a rigid torus.

A comparison of non-dimensional linear vertical acceleration amplitude in front
(βE = π) and aft (βE = 0) positions of the elastic floating torus from numerical
simulations with the corresponding experimental data is shown in Figure 3.2 as a
function of non-dimensional wave number kcf . Regular waves with frequency ω,
amplitude ζa and two wave steepness H/λ= 1/120 and 1/60 are examined in the
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experiments. Here, H = 2ζa is the wave height and λ = 2π/k is the wave length.
The numerical solutions are obtained in frequency domain according to Eq. (2.8),
neglecting the influence of mooring lines. As the incident waves propagate in the
positive xE-axis, only modes that are symmetric about the xE-axis, i.e. cos(nβ)
modes, can be excited. In total, twelve modes are used and negligible effect is
observed with increasing number of modes. The hydrodynamic coefficients and
wave excitation forces for different modes are calculated by the linear potential-flow
frequency-domain solver WAMIT, using High-order Boundary Element Method
(HBEM). The axial tensions along the floating collar, connected with the axial
stiffness, are estimated by a two-dimensional Finite Element Method (2D FEM)
and the resulting distribution is shown in Figure 3.3. Axial tension distribution
according to a simplified method proposed by Kristiansen and Faltinsen (2015) is
also given for comparison. Nice agreement between the two methods is achieved.
In terms of the applicability of the two approaches, the FEM approach can be
used to deal with general mooring-line arrangement and sea conditions while the
simplified method is limited to cases with symmetric loading and specific mooring-
line arrangement, for instance the set-up examined here.
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Figure 3.3: Axial tensions along the torus shown in Figure 3.1. Black line: by a
simplified method from Kristiansen and Faltinsen (2015), assuming that the axial
tension is piecewise constant in each segment meshed by mooring line connection
points. Dashed line: by 2D FEM with 12 elements. Dash-dotted line: by 2D FEM
with 24 elements.

From Figure 3.2, we can see that the numerical results in general agree reason-
ably well with the experimental data. Larger difference is observed in higher wave
frequency, especially for the aft position. One possible reason is that the struc-
tural damping of the floating collar is not included in the numerical model, as the
damping level is not straightforward to be determined. Including the structural
damping will reduce the vertical acceleration in high frequency and improved nu-
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merical results are expected. Also, it is difficult to have an accurate measurement
of the bending stiffness of the floating collar in the model tests, especially for the
present case with low bending stiffness. Increasing the bending stiffness will also
improve the numerical results in higher wave frequencies. Numerical simulations in
time-domain including retardation functions (see Equation 2.10) with mooring lines
were also performed (not shown here) and small difference is observed compared
with the corresponding frequency-domain results. Numerical results considering a
rigid floater are also provided in Figure 3.2, showing that the elastic modes matter
especially in short waves.

The obtained numerical results are consistent with those from Li et al. (2014),
based on the same structural model, but with the hydrodynamic loads given by
a low-frequency slender-body theory and the axial tensions estimated by the sim-
plified method. This denotes that the numerical model for the floating collar is
correctly implemented in the present study.

3.1.2 A floating nearly rigid torus in regular waves
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Figure 3.4: Experimental set-up of the almost rigid torus model used by Li et al.
(2016).

To examine the influence of the torus flexibility on the structure behavior in
waves, Li et al. (2016) studied experimentally also an almost rigid torus in waves.
The set-up is the same as that of the elastic model, except the way of connecting
the mooring lines to the torus, see Figure 3.4. The rigid torus model was also
attached to the stationary carriage in the middle of the tank by means of four
identical nearly horizontal mooring lines, at front, aft, left and right and they were
connected to the torus through 4 attachment points with an equal interval of 90
degrees.

Similar as in Figure 3.4, Figure 3.5 presents a comparison of the vertical ac-
celerations in the front and aft positions of the almost rigid torus between the
numerical results and the experimental data. Numerically, two simulation scenar-
ios were examined, one with a rigid torus and one with a nearly rigid torus, i.e.
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including flexible modes in the solution strategy. Only the first-harmonic accelera-
tion term from the model tests is included. From the figure, the numerical results
including flexible modes differ from those for a rigid torus, and agree nicely with
the experimental data. The obtained numerical results are consistent with those
from Li et al. (2016) using a similar numerical model. Although the torus is almost
rigid, modeling it as a rigid body will lead to erroneous results.
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Figure 3.5: Steady-state amplitudes of non-dimensional first-harmonic acceleration

z̈
(ω)
a R/gζa for a nearly rigid torus versus non-dimensional wave number kcf . Filled

symbols: experimental results from Li et al. (2016) in regular waves with two wave
steepness H/λ = 1/120 and 1/60. Solid line: numerical results for a nearly rigid
torus. Dashed line: numerical results considering a rigid torus.

From Figure 3.2 and Figure 3.5, the floater will experience larger vertical accel-
erations for the real flexible torus than the almost rigid torus. This indicates that
the elasticity of the floater should be carefully modeled, as the vertical acceleration
on the floater is important when it comes to the coupling/connection with the net
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cage and mooring lines.

3.2 The net cage

In this section, we want to validate the modeling of the net cage by available
experimental data. Detailed comparison of the drag force between numerical and
experimental results on a rigid-circular net cage, on a flexible-bottomless net cage
and on a flexible-closed net cage are shown in Section 3.2.1, Section 3.2.2 and
Section 3.2.3, respectively.

3.2.1 Rigid-cylindrical net cage

Drag force on a rigid, cylindrical net cage in current only is investigated at first.
By studying a rigid net cage, we can easily check the accuracy and reliability
of the hydrodynamic model for the net cage. The experimental data from Zhan
et al. (2006) are considered. The corresponding experimental set up is shown in
Figure 3.6. The diameter and height of the net cage are 0.414 m and 0.7 m,
respectively. Two different solidity ratios Sn=0.128 and 0.223 are examined. The
corresponding twine diameters are 0.8 mm and 1.45 mm, respectively. Water depth
in the experiments was chosen to guarantee uniform incoming flow for the net cage.

414  mm

700 mm

Figure 3.6: Experimental set-up of a rigid net cage model used by Zhan et al.
(2006).

A comparison of viscous loads on the cage from the present numerical simula-
tions with the experimental data from Zhan et al. (2006) is shown in Figure 3.7.
The figure shows that the screen-type hydrodynamic-load model (solid lines) tends
to slightly over-predict the viscous loads on the cage for both solidity ratios. One
possible reason leading to the overestimation is that the inflow modification in the
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front side of the net cage due to the presence of the cage is not considered in the
simulations. This involves a partial flow around the cage and a reduction of the flux
through the net. A simplified approach is introduced in the following to account
for this effect. The method was originally proposed by Kristiansen and Faltinsen
(2012) for a rigid net cage, but their results suggest that the approach could be
not correctly implemented. Here, we will follow a similar procedure to the one
mentioned by them, but to be used for both rigid and flexible net cages. Detailed
explanation of the method is given below.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

Sn=0.128

Experiment

Numerical-No Lagally

Numerical-Lagally

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

Sn=0.223

Experiment

Numerical-No Lagally

Numerical-Lagally

Figure 3.7: Drag forces on a rigid net cage in current from experiments (filled
symbols) by Zhan et al. (2006) and from numerical results using the standard
formulation (solid lines) and including corrections from Lagally’s theorem (dashed
lines). Left: solidity ratio Sn=0.128. Right: solidity ratio Sn=0.223.

Flow around the net cage

The method to model the flow around the net cage is introduced here. Several
researchers have investigated the flow around and inside a net panel or a three-
dimensional cage by Computational Fluid Dynamics (CFD) method. The cage is
treated as a porous medium and the disturbance of the net cage to the inflow is
represented by a source term in the Navier-Stokes equation, e.g. by Bi et al. (2014)
and Yao et al. (2016). However, it is not practical to implement the CFD method
if we consider a realistic fish-farm system. Here, we will briefly introduce how we
can apply the Lagally’s theorem to have a rough estimation of this effect.

It is assumed that the flow is uniform in the vertical direction of the net cage,
so the cage can be represented by a two-dimensional source uniformly distributed
in vertical direction along the central axis of the cage, see the left plot in Figure
3.8. The source strength is determined by assuming that the source will generate
the same drag force as that experienced by the cage. According to the Lagally’s
theorem, the drag force on a two-dimensional source with source strength q in
infinite fluid is F2D = ρqU∞ with U∞ the inflow velocity. F2D is determined
as F2D = FD/L, with FD the total, three-dimensional drag force experienced by
the cage and L the draft of the cage. The source strength q is obtained by first
calculating the drag FD without source presence, then setting q = FD/ρU∞L. The
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U

n

Figure 3.8: Illustration of the solution strategy applying the Lagally’s theorem.
Left: three-dimensional net cage. Right: cross-sectional cut of the net cage with
a source placed at the center. n is the cage normal vector pointing outwards and
U∞ is the inflow velocity.

velocity induced by the source is

u =
q

2πR
n (3.1)

with R the radius of the cage, n the normal vector of the cage, as shown in the
right plot of Figure 3.8. Only the flow in the front of the net cage is modified
and the modified inflow is U = U∞ + u. Then the new drag force FD and new
source strength q are obtained, and iterations are performed until convergence. It
is difficult to determine the position of the source if the net cage is deformed by the
interaction with current, so for simplicity the induced velocity is predicted based on
the initial geometry but with instantaneous drag force, which is reasonable when
the net experiences moderate deformation.

Numerical results of the drag force on the stiff cage considering the flow around
the cage are also shown Figure 3.7. The figure documents that better agreement
is achieved if Lagally’s theorem is applied to model the flow around the net cage.
There may also exist other error sources leading to the overestimation of the drag
force, but the effect considered seems to provide a promising explanation.

3.2.2 Flexible-bottomless net cage

Here we investigate the drag forces on a flexible-cylindrical-bottomless net cage in
current using the experimental data from Kristiansen (2013) as reference. The net
cage is attached to a rigid floater and is moored horizontally by two mooring lines
in the front and aft positions. The set-up is similar to the one shown in Figure 3.4,
but in the present case only front-aft connections to the mooring lines are used.
The diameter and height of the net cage are D = 1.5 m and L = 1.3 m, respectively.
The solidity ratio of the net is Sn = 0.32. The twine diameter is approximately dw
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= 6 mm. The net cage is bottomless, with 16 bottom weights attached to it. The
submerged weight of each sinker is 68g (in air 75g).
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Figure 3.9: Comparison of drag force on a flexible-bottomless net cage in current.
Filled symbols: experimental data from Kristiansen (2013). Lines: numerical sim-
ulations with NH × NV = 24 × 8 (solid line), with NH × NV = 32 × 12 (dashed
line) and with NH ×NV = 48× 18 (dash-dotted line).
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Figure 3.10: Steady-state shapes of a flexible bottomless net cage with different
mesh resolutions (side view). From top to bottom: NH × NV = 24 × 8, 32 × 12
and 48× 18. From left to right: U∞ = 0.04, 0.08, 0.16 and 0.32 m/s.

A convergence study was performed and three different meshes were tested. The
considered current is in the positive xE-axis. The drag forces on the net cage from
the convergence study are presented in Figure 3.9, together with the experimental
data from Kristiansen (2013). Steady shapes of the net cage with different mesh
resolutions in four current velocities are presented in Figure 3.10. From Figure 3.9,
we can see that a relatively coarse mesh resolution with NH×NV = 24×8 is enough



3.2. The net cage 47

to reach convergence. Here NH and NV represent the number of trusses used in
the simulation in horizontal and vertical direction, respectively. Note that for this
mesh, 8 sinker weights instead of 16 sinker weights are used, but the total weight is
kept the same. The motivation to use 8 sinker weights is to ensure that the sinker
weights are evenly distributed. Numerical results tend to slightly overestimate the
drag force on the cage, but can well follow the trend of the experimental results.
This is similar with the comparison for the rigid net cage in Section 3.2.1. Model
tests with floater only (without net cage) were also performed by Kristiansen (2013)
and showed that the contribution of the floater to the total drag is negligible.
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Figure 3.11: The effect of applying Lagally’s theorem to model the flow around the
net cage. Mesh resolution: NH ×NV = 24× 8.

The inflow modification due to the presence of the cage matter instead. In
fact, applying the Lagally’s theorem to model the flow around the net cage will
improve the numerical results, see Figure 3.11. The chosen mesh resolution is
NH × NV = 24 × 8. In higher current velocities (U∞ >0.2 m/s), the net cage
will experience larger deformations, then the assumption used when applying the
Lagally’s theorem, i.e. that the net cage remains circular and the current is uniform
in the vertical direction, is no longer valid. So it becomes questionable using the
Lagally’s method for high current velocities even if it gives better results according
to the examined case. On the other hand, relevant full-scale current velocity at
real fish-farm sites will be smaller than 1.0 m/s, corresponding to 0.2 m/s in model
scale, so the proposed simplified model of the flow around the net cage still has a
practical value.

3.2.3 Flexible-closed net cage

In this part, we investigate the drag forces on a more realistic flexible-closed net
cage in current only using the experimental data from He et al. (2015) as reference.
The experimental set-up is the same as that used in Section 3.2.2, i.e. the net
cage is attached to a rigid floater and is moored horizontally by two mooring lines,
except that the net cage is closed with a cylindrical part and a conical part, and
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an additional sinker weight is attached to the bottom of the cage. The sketch of
the closed net cage is shown in Figure 3.12.

1.5 m 

1.24 m

0.77 m 

0.417 m 

75 g

16×75g

Figure 3.12: Sketch of the closed net cage used by He et al. (2015). The floater
and mooring lines are not shown.
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Figure 3.13: Drag forces on a circular, deformable, closed net cage. Filled square
symbols: experimental results. Lines: numerical simulations with NH × NV =
16 × (4 + 6) (solid line), with NH × NV = 24 × (8 + 6) (dashed line) and with
NH ×NV = 32× (12 + 6) (dash-dotted line).

A comparison of the drag forces on the cage in current only of the present
numerical simulations with the experimental data from He et al. (2015) is shown in
Figure 3.13. The current is in the positive xE-axis. Numerical results with three
different mesh resolutions are given. The figure shows that a relatively coarse
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mesh is enough to reach convergence and numerical results tend to slightly over-
predict the drag forces. The steady-state shapes of the net cage from the numerical
simulations with NH ×NV = 24 × (8 + 6) in four current velocities are presented
in Figure 3.14. NV comprises two parts, respectively, meshes for cylindrical and
for conical part.

The effect of flow around the cage is also investigated by using the Lagally’s
theorem and improved numerical results are obtained, see Figure 3.15. One should
note that only the cylindrical part of the cage is considered when applying the
Lagally’s theorem. The main reason is that the shape of the conical part is not
consistent with the definition of problem for use of the Lagally’s theorem. Also,
its contribution to the total viscous load on the net cage is moderate, i.e. about
15%-20%, so the related error due to the flow modification is expected to be small.
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Figure 3.14: Steady-state shapes of a closed net cage (side view) with mesh res-
olution NH × NV = 24 × (8 + 6). From left to right: U∞ = 0, 0.04, 0.12, 0.20
m/s.
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Figure 3.15: Drag forces on a circular, deformable, closed net cage. The effect of
applying Lagally’s theorem to model the flow around the closed net cage. Mesh
NH ×NV = 24× (8 + 6) is used in the analysis.
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3.2.4 Comments regarding net-cage modeling

In conclusion, the adopted screen-type force model for the net cage can provide
a reliable estimation of the viscous current loads on the cage. Numerical results
generally slightly over-estimate the viscous loads on the cage. One of the possible
reasons is that the flow around the net cage is not considered, i.e. the incoming
flow is assumed to be not affected by the presence of the cage. Applying Lagally’s
theorem to model the flow around the cage will improve numerical results, however
we can not rule out other possible reasons of the over-estimations.

3.3 A simplified fish-farm system

In this section, a more complex fish-farm system presented by Kristiansen and
Faltinsen (2015) is investigated. The system is simplified compared with a realistic
aquaculture fish farm, yet contains all the main components, including a single
elastic floater, a flexible-circular-bottomless net cage and sinker weights, moored
horizontally with four crow feet mooring lines. The front and aft mooring lines were
connected to linear springs (not the two side mooring lines). The arrangement of
the mooring lines is the same as that shown in Figure 3.1.

Table 3.2: Main parameters and dimensions used in the model tests by Kristiansen
and Faltinsen (2015). Model scale 1 : 25 was adopted. Both model-scale and
full-scale values are given.

Description Parameter Model scale Full scale

Floater diameter D = 2R 1.5 m 37.5 m

Cross-sectional diameter of floater df 30 mm 0.75 m

Floater mass per unit length mf 0.127 kg/m 79.4 kg/m

Floater bending stiffness EIf 0.136 Nm2 1.33×106 Nm2

Net cage diameter D = 2R 1.5 m 37.5 m

Net depth L 1.3 m 32.5 m

Net solidity ratio Sn 0.26 0.26

Diameter of net twines dw 0.6 mm -

Length of net twines lw 6 mm -

Mass of bottom weights in air Mbw 16×75 g 16×1172 kg

Spring stiffness (front and aft) ks 44 N/m 27.5 kN/m

Pre-tension Tp 14 N 218.7 kN/m

A list of relevant parameters and dimensions are given in Table 3.2. Both
model-scale and full-scale values are provided. The examined inflow (waves and/or
current) is in the positive xE-axis and the water depth in the model tests en-
sured deep water conditions. Numerical results for the system in current only and
in combined waves and current are presented in Section 3.3.1 and Section 3.3.2,
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respectively. The experimentally obtained mooring loads from Kristiansen and
Faltinsen (2015) are used to validate the developed numerical code. A sensitivity
analysis is also performed in Section 3.3.3 to examine the importance of different
parameters for the mooring loads.

3.3.1 Current only

Figure 3.16 presents the net-cage drag force FTD estimated as difference between
front and aft mooring-line tensions from the present numerical simulations and
from the experimental data by Kristiansen and Faltinsen (2015) for the fish-farm
system in current only. Two scenarios are examined: with and without spring in
the front mooring line. From the figure, numerical predictions agree well with the
experimental data for both cases, in particular, the trends are well captured.

The obtained numerical results are similar with those from Kristiansen and
Faltinsen (2015) in small to medium current velocities (U∞ < 0.2 m/s), but slightly
larger in higher current velocity. A possible reason is that in Kristiansen and
Faltinsen (2015) the vertical positions of the sinker weights in calm water are not
fixed and depend on the mesh resolution of the net cage, i.e. depend on the size of
the bottom layer trusses in the simulations. This may cause error in larger current
velocities.
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Figure 3.16: The drag force deduced from the front and aft mooring lines in current
only. Filled symbols: experimental data from Kristiansen and Faltinsen (2015).
Triangular and circular symbols denote experiments with and without a spring in
the front mooring line, respectively. Open symbols: the corresponding numerical
results. Mesh resolution: NH ×NV = 24× 8.

Examples of time series of mooring-line tensions in the front and aft mooring
lines are also provided in Figure 3.17 for current velocity U∞ = 0.1 m/s. Without
spring in the front mooring line, the drag force on the net cage FD is almost equal
to FTD , i.e. practically balanced by the front and aft mooring lines. With spring,
FD is almost unchanged while FTD becomes smaller (see Figure 3.16), so the net
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cage drifts in the current direction and the side mooring lines will contribute to
the final equilibrium position. Snapshots of the steady shapes of the system (with
spring in the front mooring) in four different current velocities are presented in
Figure 3.18. The floater, net cage, moorings and sinker weights are shown in the
figure.
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Figure 3.17: Examples of time series of the front and aft mooring line tension
from the present numerical simulations. Current velocity U∞ = 0.1 m/s. The pre-
tension is subtracted. Solid line: tension in the front mooring line. Dashed line:
tension in the aft mooring line.
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Figure 3.18: Snapshots from the present numerical simulations for cases with
springs in the front and aft mooring lines. Mesh: NH × NV = 24 × 8. Upper
row: without perspective (side view). Lower row: with perspective. From left to
right: U∞ = 0.04, 0.08, 0.16 and 0.32 m/s.



3.3. A simplified fish-farm system 53

3.3.2 Combined waves and current

In this section, we present results for the fish-farm system in waves only and in
combined waves and current. The set-up with linear springs in the front and aft
mooring lines is adopted. The focus is on the tension in the front mooring line.

Examples of time series of tension in the front mooring line from numerical
simulations are shown in Figure 3.19 for cases in waves only and in combined
waves and current. Wave period T = 1.6 s, wave steepness H/λ = 1/15 and two
current velocities U∞ = 0 m/s (waves only) and 0.1 m/s (combined wave and
current) are examined. For the case with current, the fish farm is investigated first
in current only, then, after about 50 s, the waves effect is included. This leads to
a fictitious transient phase with increase of the mean mooring force until a steady-
state condition is reached, see Figure 3.19. From the figure, the total mooring load
in combined waves and current is much larger than that in waves only.
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Figure 3.19: Examples of time series of the front mooring-line tension from the
present numerical simulations. The pre-tension is subtracted. Upper blue line: T
= 1.6 s, H/λ = 1/15 and U∞ = 0.1 m/s. Lower red line: T = 1.6 s, H/λ = 1/15
and U∞ = 0 m/s.

Snapshots from the numerical simulations are shown in Figure 3.20 and Fig-
ure 3.21 for cases without and with current, respectively. The linear wave profile is
included in the top row. The mesh of the cage is exponentially refined in vertical
direction to better resolve the wave kinematics. The floater basically follows the
wave due to relatively long wavelength of the incident wave (the wavelength-to-
floating collar diameter ratio is λ/D ≈ 2.7), as shown in the figures. Moreover, as
expected, the net cage is substantially more deformed when current is present.
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Figure 3.20: Snapshots for different time instants from the present numerical sim-
ulation with NH × NV = 24 × 8. Current velocity U∞ = 0 m/s, wave period T
= 1.6 s and wave steepness H/λ = 1/15. Upper row: without perspective (side
view). Lower row: with perspective. The left snapshot shows the initial shape in
calm water.
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Figure 3.21: Snapshots for different time instants from the present numerical sim-
ulation with NH × NV = 24 × 8. U∞ = 0.1 m/s, T = 1.6 s and H/λ = 1/15.
Upper row: without perspective (side view). Lower row: with perspective. The
left snapshot shows the steady shape in current only.

Systematic comparison of loads (both mean and total values) in the front moor-
ing line from numerical simulations with the experimental data from Kristiansen
and Faltinsen (2015) is shown in Figure 3.22, with fair agreement of the results.
This serves as a validation of the numerical model. Here the mean force is taken
as the mean value of the mooring load from the last 10 wave periods in the sim-
ulations and the total force is given as the sum of the mean force and the force
amplitude, with the force amplitude equals

√
2 times the standard deviation of the

force time-series within the considered time interval. This is consistent with the
data analysis of the experiments.
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Figure 3.22: Comparison of mean and total forces in the front mooring line. The
pre-tension is subtracted. Solid symbols: experimental data from Kristiansen and
Faltinsen (2015). Solid lines: numerical results.

Table 3.3: Environmental matrix used in the simulations, showing current velocity,
wave steepness and wave period ranges. For each examined wave range, an interval
∆T = 0.05 s is used.

Current U∞ [m/s]
Wave steepness H/λ

1/60 1/30 1/15

0.0 0.5-1.6 s 0.5-1.6 s 0.5-1.6 s
0.1 - 0.5-1.6 s 0.5-1.6 s
0.2 - 0.5-1.6 s 0.5-1.6 s

The examined environmental matrix is shown in Table 3.3. The simulations
tend to overestimate the mooring loads for cases in combined waves and current.
In terms of the total mooring loads, discrepancies up to 27% are observed for some
cases with U∞ = 0.1 m/s and H/λ = 1/15, but apart for them the difference is
in general rather small. Better agreement is observed for cases with smaller wave
steepness. In particular, for cases in waves only with H/λ = 1/60, the numerical
solver can have a good prediction of both the mean and total force. One possible
reason for the large discrepancies in higher sea states is that the developed model
is based on linear wave theory. For instance the wave particle velocity, which is
important for evaluating the viscous loads on the cage, is assumed constant above
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the mean free surface (zE = 0) and equals to the value at zE = 0, and the wave
excitation loads of the floater are calculated by linear potential-flow solver, so the
numerical model is expected to hold better for waves with smaller wave steepness.

The simplified fish-farm system was also studied numerically by Kristiansen and
Faltinsen (2015) based on a similar numerical model (not shown here). Compared
with their results, the present numerical results are slightly larger for cases in
combined waves and current, but the general trend is consistent. As explained for
cases in current only, the most possible reason causing the difference is that the
mesh strategy for the net cage in the present work is different from that used by
Kristiansen and Faltinsen (2015). This would suggest that present results should be
more reasonable, though they are slightly less close than Kristiansen and Faltinsen
(2015) solution to the experiments in the high-current region. There are also other
differences in the numerical modeling between the two numerical solutions, for
instance, in the model by Kristiansen and Faltinsen (2015), the hydrodynamic loads
for the floating collar were based on a low-frequency slender-body theory from Li
and Faltinsen (2012) and the axial tensions were estimated by the simplified method
introduced before, but their influences are expected to be small.

3.3.3 Parameter analysis

In this section, a detailed sensitivity analysis is performed to identify important
parameters influencing the total force in the front mooring line. These parameters
need to be properly modeled. Regular waves in Table 3.3 with H/λ = 1/30 and two
current velocities U∞ = 0 m/s and 0.1 m/s are chosen. The different parameters
examined are shown in Table 3.4. In order to quantify the significance of them and
try to identify the important ones, we present condensed results in Figure 3.23.
In the figure, each bar represents the percentage difference of the total mooring
load with respect to the nominal value, averaged over all the examined wave peri-
ods. ”Nominal” denotes that basis values of different parameters are used in the
simulations. More detailed discussions are presented below.
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Figure 3.23: Each bar represents the percentage difference of the total load in the
front mooring line with respect to the nominal value, averaged over all the examined
wave periods. The numbers on the horizontal axis refer to variation numbers as
given in Table 3.4. Left: U∞ = 0 m/s. Right: U∞ = 0.1 m/s.



3.3. A simplified fish-farm system 57

T
ab

le
3.

4:
P

ar
am

et
er

s
th

at
ar

e
va

ri
ed

in
th

e
se

n
si

ti
v
it

y
an

al
y
si

s.
a
n 3
3
(0

)
an

d
a
n 1
1
(0

)
d

en
o
te

ze
ro

fr
eq

u
en

cy
a
d

d
ed

m
a
ss

co
effi

ci
en

ts
u

se
d

fo
r

th
e

m
o
d

e
n

in
ve

rt
ic

al
an

d
h

or
iz

on
ta

l
d

ir
ec

ti
o
n

of
th

e
fl

oa
ti

n
g

co
ll

a
r,

re
sp

ec
ti

v
el

y
(N

o
.

3
).

N
o
m

in
a
l

n
u

m
b

er
o
f

ve
rt

ic
a
l

an
d

ra
d

ia
l

st
ru

ct
u

ra
l

m
o
d

es
fo

r
th

e
fl

oa
ti

n
g

co
ll

ar
ar

e
N
v

=
N
h

=
8

(N
o.

5)
.

T
h

e
m

es
h

u
se

d
in

th
e

n
o
m

in
a
l

si
m

u
la

ti
o
n

s
is

N
H
×
N
V

=
24
×

8.
P

ar
am

et
er

s
th

at
le

a
d

to
m

or
e

th
a
n

5%
d

iff
er

en
ce

fr
om

th
e

n
o
m

in
a
l

va
lu

e
a
re

m
a
rk

ed
b
y

”
×

”
in

th
e

ri
g
h
t

tw
o

co
lu

m
n

s.
P

ar
am

et
er

s
n

ot
in

v
es

ti
ga

te
d

ar
e

m
ar

ke
d

b
y

”-
”
.

N
o
.

E
x
p

la
n

at
io

n
>

5
%

W
av

e
W

av
es

a
n

d
cu

rr
en

t

F
lo

a
te

r
1

C
f D

=
0

F
lo

at
er

D
ra

g
2

T
a
x

=
0

A
x
ia

l
st

iff
n

es
s

×
3

a
n 3
3
(0

),
a
n 1
1
(0

)
F

lo
at

er
ad

d
ed

m
a
ss

×
4

f
F
ro

u
d
e

K
ri

lo
ff

+
f

re
st

o
ri

n
g

N
on

li
n

ea
r

m
o
d

el
×

5
N
h
=

1,
N
v
=

2
R

ig
id

b
o
d

y
×

N
e
t

6
N
H

=
32

,
N
V

=
12

M
es

h
re

so
lu

ti
on

×
7

N
H

=
48

,
N
V

=
18

M
es

h
re

so
lu

ti
on

×
8

R
n

R
ey

n
ol

d
s

n
u

m
b

er
d
efi

n
it

io
n

9
r=

0
R

ed
u

ct
io

n
fa

ct
or

-
×

10
f

a
d
d
e
d

m
a
ss

n
e
t−

tw
in

e
N

et
-t

w
in

e
ad

d
ed

m
as

s
M

o
o
ri

n
g
s

11
k
s

=
40

N
/m

S
p

ri
n

g
st

iff
n

es
s

×
12

T
p

=
10

N
P

re
-t

en
si

o
n

×



58 Assessment studies of the fish-farm modeling

First, we analyze some parameters related with the modeling of the floater.

Drag on the floater: The drag force on the floater in the horizontal plane is
estimated by the drag term in Morison’s equation, see Eq. (2.15). In terms of drag
coefficient, in case of no over-topping, the free surface acts like a splitter plate
and for a circular cylinder with splitter plate a representative value for the drag
coefficient in steady flow is CfD = 0.6 - 0.8. The actual CfD depends on several
parameters, as explained in Section 2.2.3 and it is not practical to account for all
these influences. A constant CfD =0.6 is used in the nominal simulations. Neglect-

ing the drag load on the floater, i.e. CfD = 0, will increase the total mooring load
in waves only and reduce the value in combined waves and current. However, the
influence for both cases is small (<4%). In combined waves and current, neglecting
the drag force on the floating collar will increase the amplitude of the mooring load
but will reduce the mean value, resulting in a reduction of the total value.

Axial stiffness: The different structural modes of the floater are coupled due to
the axial terms in the beam equation, see Eq. (2.13). Neglecting the axial stiffness,
i.e. axial tension Tax = 0, will increase the total mooring load and have more effect
when current is present, with an increase of about 7%.

Floater added mass: The sectional non-dimensional added mass and damping
coefficients for the first four modes of the floater in horizontal and vertical direction,
calculated by the linear potential-flow solver WAMIT are shown in Figure 3.24 and
Figure 3.25, respectively. The added mass and damping coefficients for vertical
modes, estimated by the low-frequency slender-body theory (LST) proposed by Li
(2017) are also shown in Figure 3.24 and good agreement between low-frequency
slender theory and WAMIT is observed for the shown wave frequency (kcf < 0.25).
Increasing difference is expected with increasing wave frequency. The oscillatory
behavior indicated by the figure is due to hydrodynamic interaction on the scale of
the floater radius, which can not be captured when two-dimensional strip theory
is adopted. Similar discussions for the vertical modes were given by Li (2017).
They are repeated here for completeness in understanding the important physical
mechanisms.

For the hydrodynamic coefficients in horizontal plane, the damping coefficients
are almost zero for small wave frequency (kcf < 0.15) and the corresponding added
mass coefficients are almost constant and equal to the value for zero frequency, as
shown in Figure 3.25.

Using zero frequency instead of the frequency-dependent added mass for both
the horizontal and vertical modes will increase the total mooring load by about
8.5% when U∞ = 0 m/s, but has a negligible influence when U∞ = 0.1 m/s .
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low-frequency slender-body theory (LST) from Li (2017).
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Nonlinear Froude-Kriloff and restoring forces: In the nominal simulations, lin-
ear wave excitation and radiation loads, including Froude-Kriloff and restoring
forces, are considered. Here, we try to incorporate nonlinear Froude-Kriloff and
restoring forces while still keeping the linear diffraction and added-mass and damp-
ing forces. The Froude-Kriloff force is connected with the dynamic pressure of the
incident waves as the body was not there. Since the considered wavelength is long
compared with the cross-sectional diameter of the floater, long wavelength approx-
imation is assumed valid, then the nonlinear Froude-Kriloff and hydrostatic force
are given by

fnonlin.FK
r = ρAsubr̈w

fnonlin.FK + nonlin.rest
z = ρAsubz̈w + ρg

(
Asub − 0.5πc2f

) (3.2)

where r̈w and z̈w are the radial and vertical undisturbed wave particle accelera-
tions at the geometrical center of the submerged floater. Asub is the instantaneous
submerged area (see shaded area in Figure 3.26), which is found considering the
local vertical displacement of the floater zf and the local undisturbed incident-wave
elevation ζ.



fz

Figure 3.26: Sketch for calculating the submerged cross-sectional area of a circular
section. ζ is incident-wave elevation and zf is vertical displacement of the section.

Considering nonlinear Froude-Kriloff and restoring forces will significantly in-
crease the total mooring load in waves only, by about 16.6%, but has a negligible
influence in combined waves and current. The main reason is that the load on the
floater is small compared with that on the cage with the presence of current.

Rigid floater: In Section 3.1, numerical results show that considering a rigid
instead of an elastic floater will lead to erroneous vertical accelerations along the
floater. Here we want to quantify this influence on the mooring load.

From Figure 3.23, modeling the floater as a rigid body will reduce the total
mooring loads, in particular for cases in combined waves and current, with an av-
erage reduction of about 20%. The reason is that side mooring lines will provide
more contribution to balance the load on the net cage when the floater is rigid
compared to the case with an elastic floater. However, one must note that this
may not be the case for a realistic fish farm with much smaller pre-tension and
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different mooring line arrangement.

Next, we discuss some more parameters connected with the modeling of the net
cage and of the mooring lines.

Mesh resolution: More refined mesh will increase the total mooring load by
about 7% - 10% when U∞ = 0 m/s, but with much smaller effect when U∞ = 0.1
m/s. We are more interested in the case with current, so a relatively coarse mesh
with NH ×NV = 24× 8 is enough.

Reynolds number definition: In the nominal simulations, when calculating the
drag coefficient for the screen, the relevant Reynolds number is defined according to
Eq. (2.39) by the instantaneous relative velocity instead of by the characteristic free-
stream velocity including the velocity amplitude from incident waves, see Eq. (2.37).

Numerical results indicate that using the two different definitions will yield sim-
ilar total mooring load.

Reduction factor: Due to the shading effect of the front net cage, the inflow
(steady part) is reduced for the rear part net. Neglecting this effect will increase
the total mooring load by about 13% for the examined current velocity.

Net-twine added mass: In the nominal simulations, when evaluating the added-
mass force fadded mass

net−twine for the net twines in Eq. (2.18), the added mass of the net
twine is assumed equal to the mass of the water displaced by the twine, i.e. sec-
tional added mass = ρπd2

w/4. Increasing the net added mass by 100% will have a
negligible influence on the total mooring load.

Moorings: Reducing the spring stiffness in the front and aft mooring lines by
10% will reduce the total mooring load by about 7% and 3 % while changing the
pre-tension from 14 N to 10 N will lead to an increase of the total mooring load by
4.4% and 6.3%, for cases without and with current, respectively.

3.3.4 Explicit versus implicit coupling for the fish-farm sys-
tem

Both the explicit and implicit coupling strategies proposed in Section 2.6 are
adopted to deal with the coupling between the different components of the simpli-
fied fish-farm system described in Section 3.3. The results shown in the figures are
associated with the implicit coupling but they are practically the same as those
from the explicit strategy. The two coupling approaches showed instead quite dif-
ferent costs in terms of computational time, as explained in the following. When
using them, the matrix of the equations system for truss tensions is sparse and the
corresponding sparse patterns are shown in Figure 3.27. A renumbering technique,
i.e. reverse Cuthill–McKee algorithm (RCM, see Cuthill and McKee, 1969), is used
to reduce the bandwidth of the equation systems for the two strategies.
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From the figure, the number of nonzero values in the matrix is significantly
reduced when using the explicit coupling strategy and less computational time is
needed than for the implicit coupling strategy when the same time-step is used.
However, for some cases with higher wave steepness, much smaller time step is
needed to reach convergence when using the explicit coupling strategy and greater
CPU time is expected than for the implicit method. Because severe and extreme
conditions are of interest to draw the operational limits of a fish-farm system, to
ensure a better robustness of the solver in the analysis reported in the rest of the
thesis, the implicit coupling strategy will be adopted.

A direct sparse matrix solver is used to solve the equations system and a time
step in the range of T/200 is found enough to reach convergence for all the simulated
cases in Section 3.3. In particular, for a simulation in regular waves with wave
period T = 1 s and wave steepness H/λ = 1 /30, it takes about 1-2 minutes
computational time on a 3 GHZ one-core laptop for the simulation lasting for
instance 50 s, as physical time. The considered mesh is NH ×NV = 24× 8.
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Figure 3.27: Sparse pattern of the equation system for unknown truss tensions with
NH × NV = 24 × 8. Left: using the explicit coupling strategy. Right: using the
implicit coupling strategy.

Figure 3.28 presents the computational time needed versus number of unknown
truss tensions for a given simulation time lasting 50 s, with the same wave condition
introduced above. Both the results using the implicit coupling and the explicit
coupling are provided. The same time step is used in the simulations. The four
symbols in the figure correspond to mesh resolutions NH ×NV = 24× 8, 32× 12,
48 × 18 and 64 × 24, respectively. The figure shows that the developed solver is
quite efficient using both coupling strategies. Also, the explicit approach is more
efficient than the implicit approach, with a reduction of the computation time by
about 30% - 40%. The former is expected to be even more efficient compared with
the latter for the case with more complex fish-farm set up. This denotes that the
explicit approach is promising in reducing the computational time, thus deserves
more research, although it is not used in the rest of the present thesis.
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Figure 3.28: Computational time in minute versus number of unknown truss ten-
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3.4 Conclusions and following work

In this chapter, the modeling of each individual component of a fish farm has been
validated with available experimental data. First, the modeling of a single isolated
torus was examined and nice agreement was observed between the experimental and
numerical results of the vertical accelerations along the torus. Numerical results
also showed that the elasticity of the torus is important, even if the torus is almost
rigid. For the net cage, the screen-type force model could provide a good estimation
of the viscous current loads on the cage. A slightly over-estimation tendency was
observed and an improved prediction is possible if the effect of the flow around the
net cage is considered.

A simplified fish-farm system featuring all the main components of a realistic
aquaculture fish farm in current only, waves only and combined waves and current
was also investigated. The developed numerical solver could have a good prediction
of the mooring load in current only. In combined waves and current, nice agreement
of the load in the front mooring line was achieved between the numerical and
experimental results for cases with smaller wave steepness. Larger discrepancies
(over-estimation) were observed for some cases with higher wave steepness, but the
general agreement was still reasonable.

A sensitivity analysis was also performed to identify the influences of the dif-
ferent parameters on the total load in the front mooring line. When current is
present, the most important two parameters are the floater elasticity and the flow
reduction factor for the rear part of the net cage.

The different validation studies indicate that the proposed numerical model
with simplified fish-farm system is reliable and correctly implemented. Although
this includes all the necessary components, it is still far from reality in terms of the



64 Assessment studies of the fish-farm modeling

floating collar, the net cage, the sinker tube and also the mooring lines arrange-
ment. To provide more practical guidance for fish-farm operations, the developed
numerical tool will be used to analyze a realistic fish-farm system as described in
Chapter 2 (with single cage) in current only, and in regular and irregular waves in
the following chapter.



Chapter 4

Numerical and experimental
investigations on mooring
loads of a marine fish farm in
waves and current

In this chapter, a realistic aquaculture fish-farm system in both regular and irregu-
lar waves is investigated by numerical simulations and model tests. The considered
fish farm comprises a floating collar with two concentric tubes, a flexible net cage
including a cylindrical part and a conical part with a center point weight at the
bottom, and a sinker tube attached directly to the net. The system is moored with
a complex mooring system with bridle lines, frame lines and anchor lines, sup-
ported by buoys. The main purpose is to validate the developed numerical tool for
a realistic fish farm and then to use this tool to investigate the survival conditions
of the system.

First, a description of the model tests conducted in Marintek (Nygaard, 2013)
for a fish farm with realistic set-up is given. Then, theories for generating both
regular and irregular waves are introduced. Detailed information for evaluating the
hydrodynamic loads on the floating collar is also provided. After that, numerical
results are compared with the experimental data for a realistic fish-farm system in
current only, regular-waves only, combined regular-waves and current and irregular
seas, along with a numerical sensitivity study to identify important parameters
influencing the mooring loads. At last systematic simulations for fish farms with
different set-ups are performed and the limitations of moving the conventional fish
farm to more exposed regions are discussed. Parts of the results in this chapter are
documented in Shen et al. (2018) and Faltinsen and Shen (2018).

Dr. Arne Fredheim and Mr. Ivar Nygaard from SINTEF Ocean AS are ac-
knowledged for providing the experimental data for this in-depth analysis.
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4.1 Experiments

The model experiments for a realistic fish farm carried out at the Ocean Basin Labo-
ratory of MARINTEK by Nygaard (2013) are considered as reference. All measure-
ments reported hereinafter, relate to full-scale values, unless otherwise specifically
indicated.

4.1.1 Model test set up

The physical model used in the experiments featured all the main components pre-
sented in a full-scale sea cage system (with single cage) commonly used in Norway,
which included two concentric floating tubes, an elastic sinker tube, a cylindrical
net cage with a conical bottom, mooring system comprising bridle lines, mooring
frame lines, mooring buoys, coupling plates, chains connecting the coupling plates
to the buoys and the anchor lines attaching the system to the bottom of the basin,
see Figure 4.1. A model test scale of 1:16 was adopted and Froude scaling with
geometric similarity except for the net twines was assumed. For the net twines, ge-
ometric similarity cannot be applied, as the net twine diameter and net E-module
are too small to be realized in model scale if using geometric similarity. So nylon
net twines were used in the model tests.

According to the screen model proposed by Kristiansen and Faltinsen (2012),
the solidity ratio and the Reynolds number of the twines are two important pa-
rameters to estimate the drag force on the cage. Correct solidity ratio was used in
the model test while the Reynolds number of the twine in model-scale cage (Rn =
100 - 300) is smaller than that in a full-scale cage (Rn = 500 - 1000). In terms of
the drag coefficient CD of the twine, it is larger in model scale (CD ≈ 1.25-1.35)
than in full scale (CD ≈ 1.0-1.1). CD is estimated with the same formula as for
the drag coefficient for a smooth circular cylinder, see Eq. (2.32). To represent a
more realistic full-scale value, we should use as large twine diameter as possible
in the model tests to keep the twine Reynolds number as high as possible. Two
linear springs were inserted in the front two anchor lines where the forces were
measured, as shown in the upper part of Figure 4.1. The sinker tube was attached
directly to the net in this study, without vertical chains between the floating collar
and the sinker tube to avoid chafing between the chain and the net cage. A list of
relevant parameters and dimensions of the model-scale and corresponding full-scale
values are given in Table 4.1 and Table 4.2. Photos illustrating the general set-up
of different components are presented in Figure 4.2.

The instrumentation of the model consisted of a total of 8 linear accelerometers,
14 force measurement devices, three wave gauges (one at the axis origin was used
only for wave calibration, not in the model tests). Axial forces were measured in
one bridle pair (bridle line-1 and bridle line-2) on the windward side of the floating
collar, in the two front two anchor lines (anchor line-1 and anchor line-2), under
two buoys (buoy-1 and buoy-2) in the 7 m long chain between the buoy and the
coupling plate, and in ropes connecting the sinker tube and the net in positions
with β = 0, π/2, 4π/5, π, where β is defined in Figure 4.1. The positions of the
majority of the instruments are shown in Figure 4.1.
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Figure 4.1: Experimental set-up (full-scale). Upper: top view. Lower: side view.
Two springs were inserted in the front two anchor lines. The Cartesian coordinate
system OExEyEzE is located at the center of the floating collar in calm conditions.

Figure 4.2: Photos of the physical set-up. Left: general set-up including the floating
collar, the net cage, the sinker tube and the mooring system. Middle left: detail
of the two concentric floating tubes which are combined by 40 brackets. Middle
right: details of the sinker tube and the net cage. Right: photography showing the
buoy, the coupling plate and the mooring lines.

4.1.2 The models

The floating collar consisted of two floating tubes with outer cross-sectional di-
ameter df = 2cf = 450 mm. Selected SDR (SDR = ratio between the floater
cross-sectional diameter and the wall thickness of the plastic tube) was 17.6, i.e.
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Table 4.1: Parameters of the floating collar, net cage and sinker tube in the model
tests. Both model-scale (MS) and full-scale (FS) values are given. Since ’ordinary’
nylon ropes were used for the net cage in the model tests, the corresponding full-
scale E-module (Enet) is larger than that used in full-scale cages. The parameters
marked with ∗ are not presented in Nygaard (2013) and are taken from a similar
experiment.

Description Symbol Model scale Full scale Unit
Floating collar
Number of tubes - 2 2 -
Diameter inner tube (center) Df1 3.125 50 m
Diameter outer tube (center) Df2 3.2375 51.8 m
Distance between tubes p 56.25 900 mm
Tube section diameter df 28.125 450 mm
Tube bending stiffness EIf 0.72 7.72× 105 Nm2

Tube mass mf 0.124 32.54 kg/m
Net cage
Diameter Dc 3.125 50 m
Depth of vertical net hu 0.9375 15 m
Depth of cone net hl 0.625 10 m
Net twine diameter∗ dw 0.975 3.25 mm
Net mesh-bar length∗ lw 7.5 14.3 mm
Net E-module∗ Enet 5× 108 8.2× 109 N/m2

Net solidity Sn 0.26 0.26 -
Center point weight Wc 0.048 200 kg
Sinker tube
Tube diameter Ds 3.2375 51.8 m
Tube section diameter ds 17.5 280 mm
Tube depth hs 1.0625 17 m
Tube bending stiffness EIs 0.195 2.0× 105 Nm2

Mass per meter in water ws 0.095/0.191 25/50 kg/m

the wall thickness of the plastic tube was 25.6 mm. Floating tubes were modeled
with correct outer diameter, horizontal circumference, buoyancy and bending stiff-
ness. The diameter of the center line of the inner tube was Df1 = 50 m. The
outer tube was positioned with a pipe diameter distance (center-to-center distance
p = 0.9 m), leading to the center line diameter is equal to Df2 = 51.8 m. The
tubes were held together by 40 brackets. The specific fluidity of each of the tubes
was 0.2, i.e. the dry weight in relation to the buoyancy of fully submerged pipe,
leading to the mass per unit length of the tube to be mf = 32.54 kg/m. Bending
stiffness of the tubes was Froude scaled in the model tests to have correct elastic
natural frequencies for both horizontal and vertical modes. The bending stiffness
(full scale) of each of the tube was EIf = 7.715× 105 Nm2.

A sinker tube with center line diameter Ds = 51.8 m, cross-sectional diameter
ds = 2cs = 280 mm and bending stiffness EIs = 2.0× 105 Nm2 was chosen. Two
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Table 4.2: Parameters of the mooring system in the model test. The springs were
inserted in the lower end close to the anchor in the front two mooring lines, as
shown in Figure 4.1. The stiffness of the anchor lines without spring was 2180
N/m, the inserted spring stiffness ks = 520 N/m, the total line stiffness became
about 420 N/m, consistently with the specified value. All values given above are
in model scale. The full-scale stiffness of the bridle lines and frame lines are larger
than those used in commercial full-scale cages, since ’ordinary’ ropes were used in
the experiments. All ropes were almost without weight in water and were intended
to provide just geometry contribution. The parameters marked with ∗ are not
presented in Nygaard (2013) and are taken from a similar experiment.

Description Model scale Full scale Unit

Bridle lines
Position on cage (bridle-1) 117 117 degrees
Position on cage (bridle-2) 162 162 degrees
Bridle rope diameter∗ 2.5 40 mm
Bridle chain diameter∗ 1.4 22.4 mm
Bridle chain length ∗ 0.342 5.47 m
Bridle chain mass ∗ 0.033 8.66 kg/m
Bridle stiffness ∗ 1.85 486.1 kN/m
Frame lines
Mooring frame length 6.25 100 m
Mooring frame depth 0.5 8 m
Frame rope diameter∗ 3.2 51.2 mm
Frame stiffness∗ 3.92 1.03× 103 kN/m
Anchor lines
Anchor line length 8.344 133.5 m
Anchor rope length∗ 6.47 103.5 m
Anchor rope diameter∗ 3.2 51.2 mm
Anchor chain length∗ 1.88 30 m
Anchor chain diameter∗ 2 32 mm
Anchor chain mass∗ 0.061 16.0 kg/m
Anchor line stiffness (no spring) 2.18 572.0 kN/m
Anchor line stiffness (with spring) 0.42 110.2 kN/m
Buoy system
Number of buoys (1 at each corner) 4 4 -
Buoy diameter ∗ 0.0965 1.55 m
Buoy length∗ 0.146 2.34 m
Buoy mass∗ 0.035 146.9 kg
Buoy Chain length 0.4375 7 m
Buoy chain mass∗ 0.033 8.66 kg/m
Buoy chain diameter∗ 1.4 22.4 mm
Coupling plate mass 0.013 55 kg
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different submerged masses were adopted with ws = 25 kg/m and 50 kg/m. A
center point weight with Wc = 200 kg submerged mass was attached to the lower
end of the net, see Figure 4.1.

A cylindrical net cage with a conical bottom was attached to the floating collar
with net-height of the cylindrical part hu = 15 m and conical part hl = 10 m and
with a typical solidity ratio Sn = 0.26. In the lower edge of the cylindrical part 20
ropes were attached to connect the sinker tube.

The anchor system, consisting of a square 100 m × 100 m frame anchoring,
was laid out around the net 8 m deep and was held in place by 4 buoys, one buoy
at each corner. At each spar buoy a chain 7 m long hangs, whose lower end was
attached to a steel plate. From each steel plate two bridle lines were connected to
the floating collar and two anchor lines were connected to the Ocean-Basin bottom.
Bottom depth was set to 52.5 m.

4.1.3 Test conditions

A total of 6 irregular waves (long crested), 4 regular waves and two current only
cases were considered in the experimental study. The test matrix is presented in
Table 4.3. The same test number referred in Nygaard (2013) is adopted here. The
6 irregular waves were generated according to the definition of JONSWAP wave
spectrum with spectrum peakedness γ=2. The duration of all irregular waves was
1.5 hour (full-scale). In terms of the significant wave height Hs and peak wave
period Tp, the generated irregular waves in the model tests have less than 5%
deviation from the corresponding specified values. The actual current speed in
the facility was found to be 0.48 ± 0.031 m/s and 0.72 ± 0.046 m/s when it was
prescribed to be 0.5 m/s and 0.7 m/s, respectively.

4.1.4 Pre-tension

In order to benchmark numerical results with experimental data, we should know
the pre-tension of the system in static configuration. The original report from
the experiments does not present the values of the pre-tensions, instead we obtain
the pre-tensions from the time histories of the mooring loads in static condition.
Results from model tests show that mean pre-tensions (full scale) in anchor line-1
and anchor line-2 are 38.4 kN and 25.3 kN, respectively, which means that the
model has asymmetric pre-tensions.

4.2 Theory and numerical model

In this section, we will first give an introduction of theories for generating both
regular and long-crested irregular waves. Then we will describe in detail the hy-
drodynamic loads experienced by the floating collar.
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Table 4.3: Test matrix showing prototype (full) scale current velocity, the wave
height and wave period (in regular-wave cases) and significant wave height and
peak wave period (in irregular-wave cases). CUR, REG and IRR represent current,
regular and irregular waves. BR represents mass per unit length of the sinker tube.

Test no. Test type Hs(m) Tp(s) Current U∞(m/s) BR
5010 CUR - - 0.5 50 kg/m
5020 CUR - - 0.7 25 kg/m

5030 IRR 1.0 4.0 0.5 50 kg/m
5040 IRR 1.5 4.5 0.5 50 kg/m
5050 IRR 2.0 5.0 0.5 50 kg/m
5060 IRR 2.5 6.0 0.5 50 kg/m
5070 IRR 3.0 7.0 0.5 50 kg/m
5080 IRR 4.0 8.0 0.5 50 kg/m

5150 REG 2.5 6.0 - 50 kg/m
5160 REG 2.5 8.0 - 50 kg/m
5170 REG 2.5 6.0 0.5 50 kg/m
5180 REG 2.5 8.0 0.5 50 kg/m

4.2.1 Wave field

The responses of a fish farm system in both regular and irregular waves are to
be investigated. Linear potential wave theory is adopted to describe the regular
waves. According to Faltinsen (1990), the deep-water wave potential ϕ0 for a wave
propagating along the positive xE-axis is given as

ϕ0 = Re

{
igζa
ω

e−i(kx−ωt)ekz
}

(4.1)

where Re denotes the real part of a complex value, i is the imaginary unit, x and
z are the horizontal and vertical coordinates, respectively, t the time, ζa the wave
amplitude, g the gravitational acceleration, ω the circular frequency and k = ω2/g
the wave number. The corresponding wave elevation according to linear wave
theory is

ζ(x, t) = ζa cos (kx− ωt) (4.2)

Using the amplitude spectrum estimated from the time history of generated regular
wave in the experiment, small contribution from double frequency 2ω component
is observed, but the influence is expected to be small.

For long-crested irregular waves, the surface elevation ζ(x, t) at a position x
and time t is obtained as the superposition of multiple (N) monochromatic waves

ζ (x, t) =

N∑
i=1

Ai cos (kix− ωit+ εi) (4.3)



72
Numerical and experimental investigations on mooring loads of a

marine fish farm in waves and current

where Ai is the amplitude of the wave associated with the circular frequency ωi
and ki = ω2

i /g is the corresponding wave number. εi is the random phase angle for
frequency component i and is uniformly distributed between 0 and 2π. The wave
amplitude Ai is given as

Ai =
√

2S(fi)∆f (4.4)

where S(f) is the wave spectrum, fi = ωi/2π is the wave frequency. ∆f is the
frequency interval. If a constant frequency interval is used, the realization of the
wave elevation with respect to time will not be a real random process. The wave
elevation will have a return period Tr = 1/∆f , which means that the wave pattern
will repeat in time with period Tr. So, small constant ∆f is needed for long time
simulation. The solution to this issue is using also random frequency intervals. We
can obtain random frequency seed f

′

i by

f
′

i = fi + ∆fpi (4.5)

where fi is obtained with constant frequency interval ∆f , pi is a random stochastic
variable evenly distributed between -0.5 and 0.5. In terms of the wave spectrum,
the JONSWAP wave spectrum was used in the experiment and defined as

S (f) = αg2(2π)
−4
f−5 exp (A) γexp(B) (4.6)

where

A = −1.25(f/fp)
−4

B = −(f − fp)2
/
(
2σ2f2

p

)
α = 5.061H2

s f
4
p (1.0− 0.287 ln γ)

(4.7)

Here f is the frequency in [Hz], fp = 1/Tp is the frequency of spectral peak in [Hz],
Hs is the significant wave height and γ is the spectral peakedness. Finally, σ is the
spectral width parameter given as

σ =

{
= 0.07 for f ≤ fp
= 0.09 for f > fp

(4.8)

A sample of the wave spectrum derived from generated irregular waves in the
experiment and that obtained from the JONSWAP wave spectrum with significant
wave height Hs= 4 m, peak wave periods Tp = 8 s and spectrum peakedness γ =
2 is shown in Figure 4.3. The corresponding time history of the waves from the
experiment is shown in Figure 4.4.
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Figure 4.3: Comparison of the wave spectrum from the experiment and from the
JONSWAP wave spectrum with significant wave height Hs= 4 m, peak period Tp
= 8 s and spectrum peakedness γ = 2.
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Figure 4.4: Time history of the irregular waves from the experiment with significant
wave height Hs= 4 m, peak period Tp = 8 s and spectrum peakedness γ = 2.

4.2.2 Hydrodynamic loads for the floating collar

The theoretical model for different components of the fish farm has been introduced
in detail in Chapter 2 and validated in Chapter 3, so it will not be repeated. Here,
just some detailed information regarding the estimation of the hydrodynamic loads
for the floating collar will be provided.
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Added mass and damping coefficients

For the floating collar examined here with two concentric tubes, the hydrody-
namic forces and coefficients are evaluated in a similar way as for a single torus
in Chapter 3, i.e. by the frequency-domain potential-flow solver WAMIT, using
Higher-order Boundary Element Method (HBEM). Since the incident flow is in
the positive xE direction, only modes symmetric with respect to the xE-axis, i.e.
cos(nβ) modes, can be excited. The floating collar is assumed half-submerged when
at rest. As an example, the sectional non-dimensional added mass and damping
coefficients for the first four modes of the floating collar in vertical and horizontal
direction are shown in Figure 4.5 and Figure 4.6, respectively. In Figure 4.5, an-
alytical zero frequency vertical added mass coefficients are also included and are
calculated according to the following expression by Faltinsen (2011)

a
(n)
33 = f + ρ

16c2

π

[
ln

(
8R

c

)
−Kn

]
(4.9)

with

Kn =
1

2
√

2

∫ 2π

0

1− cos (nµ)√
1− cos (µ)

dµ

= 2

(
1 +

1

3
+

1

5
+ ...+

1

2n− 1

)
, n ≥ 1

(4.10)

and

f

ρc2
= 5.74604− 5.76835

(p
c

)
+ 1.55575

(p
c

)2

− 0.21295
(p
c

)3

+ 0.01128
(p
c

)4
(4.11)

for a floating collar with two tubes and 2.0 < p/c < 6.0. Here p is the distance
between the axes of two semi-submerged circular cylinders, each with radius c.
In our case, p/c = p/cf = 4.0, so Eq. (4.9) is applicable. Compared with the
results for a single torus (see Figure 3.24), the non-dimensional added mass and
damping coefficients for two tubes have stronger oscillatory behavior. In terms of
the hydrodynamic coefficients for the examined floating collar in horizontal plane
shown in Figure 4.6, similar behavior is observed as that for a single torus (see
Figure 3.25), i.e. the damping coefficients are almost zero for small wave frequency
and the corresponding added mass coefficients are almost constant and equal to
the values for zero frequency.
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Figure 4.5: Sectional non-dimensional vertical added mass a
(n)
33 /m and damping

b
(n)
33 /mω coefficients of a floating collar with two tubes for the modes number n =

0, 1, 2, 3 versus non-dimensional wave number kcf . m is cross-sectional displaced
water mass (two tubes). Solid line: by WAMIT. Horizontal dashed line: zero
frequency analytical added mass coefficients from Faltinsen (2011).
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Figure 4.6: Sectional non-dimensional horizontal added mass a
(n)
11 /m and damping

b
(n)
11 /mω coefficients of a floating collar with two tubes for the modes number n =

1, 2, 3, 4 by means of WAMIT versus the non-dimensional wave number kcf .
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Retardation functions

For cases in irregular waves or anyway when transient effects occur, they are
considered by including the convolution integrals with retardation functions, see
Eq. (2.10). The formula to calculate the retardation function for a vertical mode
is shown Eq. (2.11). The retardation functions for some representative vertical
and horizontal modes are shown in Figure 4.7 and Figure 4.8, respectively. Their
accuracy is verified by observing that the added mass and damping coefficients
calculated from the retardation functions agree well with those found directly from
WAMIT (not shown here). From the figures, the retardation functions for both the
rigid and elastic modes in vertical and horizontal directions become negligible for
times larger than about 250

√
R/g. We can also see that the retardation functions

for vertical modes decay faster than those for horizontal modes. The behavior of
the retardation functions for the floating collar is different from that for tradi-
tional ocean structures. It is probably connected with the ring shape of the body
and very complex frequency-dependent added mass and damping coefficients with
several peaks and troughs, and to occurrence of negative added mass (Li et al.,
2014).
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Figure 4.7: Sectional non-dimensional vertical retardation functions k
(n)
(33)/ρgc for

the modes number n = 0, 1, 2, 3 as a function of time. The zoomed view shows
the detail of the behavior at small times interval.
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Figure 4.8: Sectional non-dimensional horizontal retardation functions k
(n)
11 /ρgc for

the modes number n = 1, 2, 3, 4 as a function of time. The zoomed view shows
the detail of the behavior at small times interval.

Drag coefficient for the floating collar

As explained in Section 2.2.3, the drag term in Morison’s equation is adopted
to model the drag force on the floating collar in the horizontal plane. The drag
coefficient depends on several parameters, for instance the Reynolds number, the
distance between the two tubes, the Keulegan-Carpenter number (KC) and the
ratio between the wave particle amplitude and current velocities in the case of
combined waves and current. In the present work, constant drag coefficients for
the two cylinders are assumed with CfD,1 = 0.9 and CfD,2 = 0.0, according to
Zdravkovich (1985) for two cylinders in current with relative distance p/df = 2
(used in the model tests), and neglecting the influence of Reynolds number.

4.3 Results with numerical sensitivity analysis

In this section, we present results from the numerical simulations and the experi-
ments for the realistic fish farm system introduced in section 4.1. The main focus
is on the mooring loads in the front two anchor lines and bridle lines. Nominal re-
sults from cases in current only are presented in section 4.3.1. ”Nominal” denotes
that basis values of different parameters are used in the simulations. A detailed
sensitivity analysis is also presented. Nominal results from cases in waves only and
combined waves and current are presented and discussed in section 4.3.2, together
with a sensitivity analysis. Numerical and experimental results for the system in
irregular waves are shown in section 4.3.3. Finally systematic simulations of fish
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farms with different set-ups in different exposure scenarios are performed in section
4.3.4 to identify the operational limits of the conventional fish-farm system.

4.3.1 Current only

In this section, we present the results of the mooring loads in the front two anchor
lines for cases in current only. We will focus on the average value of the loads in the
front two anchor lines (hereafter indicated as anchor load). Numerical results are
compared with the experimental data. Nominal results with a convergence study
are shown at first, then a detailed sensitivity analysis is presented, identifying the
dominant parameters influencing the anchor loads.

Nominal results

A convergence study for cases in current only was performed at first and three dif-
ferent meshes were tested. Steady shapes of the net with different mesh resolutions
are presented in Figure 4.9. Numerical results indicate that the anchor load is not
sensitive to the mesh and a relative coarse mesh is enough to reach convergence.
The mesh NH ×NV = 20 × (8+6) is adopted as the nominal mesh and to be used
in the sensitivity analysis.

Figure 4.9: Steady-state shapes of a realistic fish farm system (mooring system not
shown): convergence study. The weight of the sinker tube is 50 kg/m. From top to
bottom: NH×NV = 20×(4+4), 20×(8+6) and 40×(12+6). NH and NV denote
the number of trusses in the horizontal and vertical directions. NV comprises two
parts: meshes for cylindrical and conical part. From left to right: U∞ = 0.2, 0.4,
0.6, and 0.8 m/s.

A comparison of the anchor line loads between numerical and experimental
results is given in Figure 4.10. Unluckily only two cases were studied in the model
tests, with two different current speed and two different sinker tube weights. More
current scenarios have been simulated numerically. From the figure we can have
the following conclusions: (1) increasing the weight of the sinker tube does not
have significant influence on the anchor load for low current velocities, but has
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more effect for higher current velocities. The main reason is that the projected
area of the net cage in the current direction is important for the anchor load and it
is influenced by sinker tube weight and current velocity U∞; (2) numerical results
slightly over-predict the anchor loads, compared to the experimental data, by about
15% and 7.2 % for the case with current velocity U∞ = 0.5 m/s, sinker tube weight
ws = 50 kg/m and with U∞ = 0.7 m/s, ws = 25 kg/m, respectively. One of the
possible reasons for the over-estimation is that the inflow modifications around
the net cage due to the presence of the net cage are not considered. In fact, it is
assumed that all the water goes through the net cage in nominal simulations.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

Figure 4.10: Average value of the loads in the front two anchor lines. Pre-tension
is subtracted. Filled symbols with error bar: experimental results. In particular,
the red triangular symbol represents the case 5010 with current velocity 0.5 m/s
and sinker tube weight 50 kg/m while the blue square symbol corresponds to the
case 5020 with current velocity 0.7 m/s and sinker tube weight 25 kg/m. Solid line
and dashed line: present simulations with sinker tube weight equals 50 kg/m and
25 kg/m, respectively.

Numerical sensitivity analysis

Due to uncertainties in the experiments and lack in the information required to
complete the mathematical modeling, we performed a sensitivity analysis. The
different parameters examined are shown in Tables 4.4 and 4.5. The parameters
are given separately for different components. Some of them are relevant only for
cases with waves and are not investigated here. In order to quantify the significance
of the different parameters and to try identifying the important ones, we present
condensed results in Figure 4.11 and 4.12. Two sinker tube weights are investigated.
In Figure 4.11, each bar represents the percentage difference of the anchor force
with respect to the nominal value, averaged over all the examined current velocities.
Here the anchor force means the average value of the tensions in the front two
anchor lines. As seen from the figure, each parameter has different impact on the
anchor force.
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Figure 4.11: Each bar represents the percentage difference of the anchor force with
respect to the nominal value, averaged over all the examined current velocities.
The numbers on the horizontal axis refer to variation numbers as given in Tables
4.4 and 4.5. Left: sinker tube with weight 25 kg/m. Right: sinker tube with weight
50 kg/m.
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Figure 4.12: The mean of the absolute value of the condensed data presented in
Figure 4.11.

Parameters with more than 5% difference with respect to nominal values are
marked by ”×” in the third last column in in Tables 4.4 and 4.5 for cases in cur-
rent only, waves only and combined waves and current. In this section, we will just
discuss results for current only cases. The others are explained in section 4.3.2.
Parameters not considered are marked by ”-”. One general observation is that
the anchor force is more sensitive to the modeling of the net cage than to other
components. More detailed discussions are presented in the following.

Floating collar and sinker tube: When the drag forces on the two floating tubes
are neglected, namely the drag coefficients for the two tubes are set as CfD,1=0,

CfD,2 = 0, the anchor force has a 4% reduction which means that the drag on the
floating collar is quite moderate compared with the total drag on the system. So
it is not necessary to model the drag force on the floating collar in a very accurate
and time-consuming way. Modeling the floating collar as a rigid body has a small
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effect on the anchor force. Similar conclusions are obtained for the sinker tube.

Net cage: The flow reduction factor r in the rear part of the net cage due to
the shadowing effect is the most important parameter for the anchor force and the
anchor force will increase up to 22% if the shading effect is neglected.

The inflow modifications due to the presence of the net cage are not consid-
ered in the nominal simulations and could be one of the possible reasons why the
numerical results tend to overestimate the experimental drag forces on the cage.
Applying the Lagally’s theorem to model the flow around the net cage will reduce
the anchor load by about 7.3%, consequently it will improve the numerical results.

The weight of the net in water is assumed to be zero in nominal simulations,
so the weight of the net equals the buoyancy of the net. Archimedes’ principle
is directly applied to estimate the net buoyancy which maybe problematic since
the net is not completely surrounded by water. The weight of the net in water is
slightly larger than zero in reality. Increasing the net weight by 10% in the sensi-
tivity analysis changes the anchor load by about 7%.

Detailed variation of the structural modeling of the net is also considered.
Changing the net depth (cylindrical part) and the net solidity ratio by 10% lead to
a similar deviation from the nominal value between about 5% and 7%. Increasing
the net diameter (conical part) by 10% will lead to larger deviation, about 15%.
This is due to a big increase of the net volume, leading to larger drag force on the
net. The effect of the net elasticity is also investigated. Ordinary ropes were used
in the model test for the net cage, however when scaled up using Froude-scaling,
the elasticity gives higher stiffness than for nets used in commercial full-scale cages.
A model scale Young’s modulus of Enet = 6.25 × 107N/m2 would conform more
to a realistic full-scale value, but could be difficult to realize in a model test set-
up. So two different net elasticities are tried in the sensitivity analysis with Enet =
6.25×107N/m2 and Enet = 5×1010N/m2, which correspond to a realistic full-scale
value and to an almost rigid net. Numerical results show that the net elasticity
has a small effect on the anchor force as long as it is in a reasonable region. The
point weight that attached to the bottom of the net is also varied and very small
deviation is observed.

Mooring system: The pre-tensions in the front two anchor lines are asymmetric
with respect to xE-axis in the model tests, as explained in section 4.1. Asymmetric
pre-tensions are used in nominal simulations and negligible difference is observed if
the average value of the pre-tensions is applied to the two anchor lines. The anchor
load does not seem to be sensitive also to the stiffness of the springs in the anchor
lines, to the weight of the anchor chain and to the drag forces on the buoys.
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4.3.2 Combined waves and current

In this section, we present the numerical results of the mooring loads in the front
two anchor lines and front two bridle lines when the system is exposed to combined
waves and current. Experimental data are used to validate the numerical results.
Similar as in current cases, nominal numerical results are shown at first, then
a detailed sensitivity analysis is conducted, identifying the dominant parameters
influencing the mooring loads.

Nominal results

Figure 4.13: Left column: snapshots for different time-steps from numerical sim-
ulations with NH × NV = 24 × (8 + 6) (wave only). Wave period T = 6 s and
wave height H = 2.5 m. Right column: snapshots for different time-steps from
numerical simulations (combined wave and current). Current velocity U∞ = 0.5
m/s, wave period T = 6 s and wave height H = 2.5 m.

A convergence study has been performed and the mesh NH×NV = 20 × (8+6)
is found to be sufficient to reach convergence and is used in nominal simulations.
Snapshots showing the floating collar, net cage, sinker tube and mooring lines are
given in Figure 4.13 for cases in wave only and in combined wave and current. The
linear incident wave profile is included. Since the considered waves are relatively
long (wave length-to-floating collar diameter ratio λ/D=1.12), the floating tubes
basically follow the waves. Taking a close look at the middle two snapshots in the
left, we can see that the front two bridle lines get slack. This means that the bridle
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Figure 4.14: Mean and total values of the mooring loads in the front two anchor
lines and bridle lines, obtained from experiments. The pre-tension is subtracted.
The positions of the anchor lines and bridle lines are illustrated in Figure 4.1.
Detailed test information of different test numbers is shown in Table 4.3. Test
5010: current only. Test 5150 and 5160: waves only. Test 5170 and 5180: combined
waves and current.

lines may experience snap loads. The latter consequence is not included in the
analysis, but needs to be considered in future work in a similar way as done by
Bardestani and Faltinsen (2013).

Before going to detailed analysis, we first show the mooring loads in the anchor
lines and bridle lines from the model tests, see Figure 4.14. From the figure, we
can have the following conclusions: the loads in the two anchor lines are similar if
the pre-tensions are subtracted; load in the bridle line-2 is about twice that in the
bridle line-1; the forces in the anchor lines and in the bridle line-2 are similar. In
the following analysis, we will focus on the average value of the loads in the front
two anchor loads (anchor load) and the load in the bridle line-2 (bridle load).

Nominal results for the anchor load and bridle load are presented in Figure
4.15 and 4.16 and are compared with the experimental data. Just the total values
are investigated. Two wave steepnesses (H/λ = 1/40 and 1/22) and two current
velocities (U∞=0.0 m/s and 0.5 m/s) are considered. In general, the agreement is
fair for both the anchor load and the bridle load. Two different sinker tube weights
with Ws = 25 kg/m and 50 kg/m are investigated and numerical results indicate
that the sinker tube weight has a small influence on the mooring loads for wave
only cases. For combined waves and current cases, the system with larger sinker
tube weight experiences larger mooring loads due to smaller deformations of the
net cage.
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Figure 4.15: Comparison of the total anchor loads from the model tests (solid
symbols) and present numerical simulations (solid curves) with sinker tube weight
Ws = 50 kg/m. Pre-tension is subtracted. Results are presented versus wave
length-to-diameter ratio λ/D. Here D = (Df1 + Df2)/2 is the mean value of the
center line diameter of the two tubes of the floating collar. Two wave steepnesses are
considered with H/λ = 1/22 and 1/40. Numerical results with sinker tube weight
Ws=25 kg/m are also shown (dashed line). Left: wave only. Right: combined
waves and current, with current velocity U∞ = 0.5 m/s.
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Figure 4.16: Same as in Figure 4.15, but for the bridle line-2.

Numerical sensitivity analysis

A sensitivity analysis is performed for the system in regular waves only and in
combined regular waves and current. The focus is on the total values of the mooring
loads. The parameters examined are shown in Tables 4.4 and 4.5. The majority of
the parameters are the same as for cases in current only, but with some additional
wave related parameters. The condensed results for the anchor load are presented
in Figure 4.17 and 4.18.

In Figure 4.17, each bar represents the percentage difference of the anchor load
with respect to the nominal value, averaged over all the examined wave periods.
In Figure 4.18 each bar represents the mean of the absolute value of the condensed
data presented in Figure 4.17. Parameters that impose more than 5% difference
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Figure 4.17: Each bar represents the percentage difference of the anchor load with
respect to the nominal value, averaged over all the examined wave periods. The
numbers on the horizontal axis refer to variation numbers as given in Tables 4.4
and 4.5. Upper row: sinker tube with weight 25 kg/m. Lower row: sinker tube
with weight 50 kg/m.
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Figure 4.18: The mean of the absolute value of the condensed data presented in
Figure 4.17.

with respect to nominal value for waves only cases and combined waves and current
cases, are marked by ”×” in the last two columns in Tables 4.4 and 4.5. From
Figure 4.17, we can see that modeling the sinker tube as a rigid body has the most
pronounced effect on the anchor load for cases in waves only. This is maybe because
a rigid sinker tube will change the deformation of the net in vertical direction, as a
rigid sinker tube cannot deform accordingly with the floating collar, which follows
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the wave profile. In combined waves and current cases, the flow reduction factor
r in the rear part of the net and the diameter of the net cage (conical part) are
the two important parameters. In terms of the modeling of the floating collar,
simplifications can be made with limited errors, such as modeling the floating
collar as a rigid body, neglecting the axial stiffness due to axial tensions and using
zero frequency instead of the frequency-dependent added mass. Also numerical
results indicate that considering nonlinear Froude Kriloff and restoring forces for
the floating collar is not necessary. In general, the loads on the floating collar are
quite moderate compared with those on the whole system.
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Figure 4.19: Same as in Figure 4.17, but for the bridle load.
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Figure 4.20: The mean of the absolute value of the condensed data presented in
Figure 4.19.

Sensitivity analysis for the bridle load is also conducted and results are shown
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in Figure 4.19 and 4.20. Figure 4.20 clearly shows that modeling the floating collar
as a rigid body has a pronounced effect on the bridle load, this is because rigid
floating collar significantly changes the force distribution along the bridle lines.

4.3.3 Irregular sea

In this section, the fish farm system in irregular waves is investigated. In Figure
4.21, we present the mean and maximum values of the mooring loads in the front
two anchor lines and front two bridle lines from experiments. The pre-tensions are
subtracted. The duration of the irregular waves in the model tests is 1.5 hour.
The corresponding time histories of the mooring loads for the case with significant
wave height Hs= 4 m and peak period Tp = 8 s are shown in Figure 4.22 for
illustration purpose. From Figure 4.21, we can have the following conclusions: the
mean values of the mooring loads for cases with different significant wave heights
and peak wave periods are similar while there is a big difference in the maximum
values; the tension in the bridle line-2 is about twice than that in the bridle line-1;
the mean values of the tensions in the bridle line-2 and in the anchor lines are
similar, but the maximum tension in the bridle line-2 is much larger. We will focus
on the average value of the loads in the front two anchor lines (anchor load) and
the load in the bridle line-2 (bridle load) in the following analysis.
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Figure 4.21: Mean and maximum values of the tensions in the front two anchor
lines and front two bridle lines, obtained from the experiments for the system in
irregular waves. The pre-tension is subtracted. The positions of the anchor lines
and bridle lines are illustrated in Figure 4.1. Detailed test information of different
test numbers is shown in Table 4.3. The significant wave height and peak wave
period increase with increasing test numbers.

Figure 4.23 shows the comparison of the mean, standard deviation and max-
imum values of the anchor loads from the numerical simulations and the exper-
iments. The same wave duration is considered in the simulations as that in the
model tests. From the figure, we can see that general agreement between the nu-
merical (nominal) and experimental results of the mean, standard deviation and
maximum values of the anchor loads is fair and numerical results slightly over-



90
Numerical and experimental investigations on mooring loads of a

marine fish farm in waves and current

0

100

200

B
ri

d
le

-1
 [

k
N

]

0

100

200

B
ri

d
le

-2
 [

k
N

]

0

100

200

A
n
c
h
o
r-

1
 [

k
N

]

0 1000 2000 3000 4000 5000 6000

0

100

200

A
n
c
h
o
r-

2
 [

k
N

]

0

100

200

0

100

200

0

100

200

4150 4200 4250

0

100

200

Figure 4.22: Time histories of the tensions in the front two bridle lines and front
two anchor lines from the experiment with significant wave height Hs= 4 m and
peak period Tp = 8 s. Zoomed views are also given in the right when the tensions
reach the maximum values within the studied time histories.

predict the mean values which is similar as for the cases in current only. It should
be noted that the random phase seeds used in the experiments to generate the
incident irregular waves are different with respect to those used in the simulations.

In the nominal simulations, the hydrodynamic radiation loads for different
modes (both rigid and elastic) of the floating collar are expressed in terms of convo-
lution integrals with retardation functions according to linear potential-flow theory.
Numerical results using zero frequency added mass for different modes and model-
ing the floating collar as a rigid body are also shown in Figure 4.23. The comparison
indicates that the effect of the elasticity of the floating collar on the anchor load
is rather moderate and simplified hydrodynamic model for the floating collar is
enough to reach desired accuracy. One should note that the conclusion given here
is different from that presented in Section 3.3.3 where a simplified fish-farm sys-
tem with horizontal mooring lines was studied. There, the conclusion was that the
elasticity of the floating collar matters for the mooring loads. The seemingly con-
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Figure 4.23: Comparison of mean, standard deviation and maximum values of the
anchor loads from the model tests and present numerical simulations for the fish
farm system in irregular waves. Detailed test information of different test numbers
is shown in Table 4.3. Num0, Num1 and Num2 denote nominal results, results
using zero frequency added mass for different modes of the floating collar and
results considering a rigid floating collar, respectively.

tradictory conclusion is caused by the difference in the mooring-line arrangement.
The simplified mooring system adopted in Section 3.3.3 is similar with the bridle
lines in the complete mooring system studied here. Relevant sensitivity analysis
for the loads in the bridle lines will be given later.

According to the experimental data, the ratio of the maximum anchor load
(estimated as the real maximum value minus the mean value) to the standard
deviation varies from 4.6 to 6.7 according to the experimental data. The drag load
on the net cage has the dominant contribution to the total load, which is expected
to be similar with the case when Morison’s equation is used to estimate the wave
load. So we can have a rough estimation of the probability distribution of the
maximum anchor load based on the statistics characteristics of the Morison-type
forces for random seas. It is assumed that the wave elevation process is a stationary
Gaussian process. Then according to Naess and Moan (2012), in the absence of
current, the distribution of the maximum value for Morison-type force depends
on the relative importance of the drag and inertial forces. If the inertial force is
dominant, then Rayleigh distribution can be used to describe the distribution of
the maximum values. Then the most probable largest value (estimated as the real
maximum value minus the mean value) can be approximately estimated by four
times the standard deviation for a short time description of the wave elevation in
the range from 1/2 hour to 10 hour. The actual ratio, i.e. the ratio between the
most probable largest value and the standard deviation, depends on the duration
of the sea state and the mean wave period. If the drag force is dominant, then
exponential distribution can be adopted and higher most probable largest values
are expected.

For the fish farm system, the distribution of the maximum values of the anchor
load should be a combination of Rayleigh distribution and exponential distribution
and the most probable largest value should be larger than four times the standard
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deviation, which means that the experimental results are reasonable.
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Figure 4.24: Same as in Figure 4.23, but for the bridle line-2.

In Figure 4.24, we present the loads in the bridle line-2 from the numerical
simulations and the experiments. Both the nominal numerical results and results
using zero frequency added mass for different modes and modeling the floating
collar as a rigid body are shown. The figure shows that modeling the floating
collar as a rigid body has a significant influence on the bridle load, as it will change
the force distribution between bridles.
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Figure 4.25: Comparison of the mooring loads (maximum value) obtained from the
experiments and the numerical simulations for case 5080. The first bar represents
the experimental data, the rest are numerical results but with different random
phase seeds to generate the incident irregular waves. Dashed line represents the
most probable maximum value obtained as mean among the maximum values from
numerical simulations. Left: anchor load. Right: bridle load.

Numerical simulations with different random phase seeds (in total 20) to gener-
ate the incident irregular waves are performed and the comparison of the maximum
values of the mooring loads for the numerical and experimental results for case 5080
is given in Figure 4.25. The figure shows that there is a big variation of the max-
imum loads in the anchor line and in the bridle line when different random phase
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seeds are used in the numerical simulations. The maximum anchor loads from nu-
merical predictions vary from 98% to 136% of that from the experiment and the
maximum bridle loads change from 74% to 105% of the experimental data.
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Figure 4.26: Probability distribution for the maximum anchor load with the values
described in Figure 4.25. X denotes the maximum load from different realizations
and F denotes the cumulative distribution function.
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Figure 4.27: Probability distribution for the maximum bridle load with the values
described in Figure 4.25. X denotes the maximum load from different realizations
and F denotes the cumulative distribution function.

The Gumbel and Weibull probability distribution functions are commonly used
to fit the distribution of the maximum values from different independent realiza-
tions. Curve fitting the results, as in Figure 4.26 and Figure 4.27, we can see
that that the Gumbel distribution is more proper to fit the maximum loads in the
mooring lines, especially for the bridle line. We are specifically interested in the
Most Probable Maximum Extreme (MPME) value for a given time duration. If
the probability distribution for the maximum values is known, then the MPME
can be obtained where the probability distribution function reaches the maximum.
Alternatively, as an engineering practice, the MPME is taken as the average value
of the maximum values from at least 10-20 realizations of the same wave spectrum.
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Our results show that MPME estimated by the two methods are similar, with a
difference in the range of 4-8%.

In order to have a better comparison of the most probable maximum value be-
tween numerical and experimental results, more realizations of the same spectrum
in the experiments are needed.

4.3.4 Survival conditions

The aquaculture industry is trying to move the fish farms from nearshore to more
exposed sea regions. However, a question remains to be answered: is it feasible to
use the conventional fish farm concept to operate in exposed area and how exposed
it can operate. In this section, the proposed numerical method is used to examine
the responses of a conventional floating collar fish farm system in different exposure
scenarios and in this respect to determine the survival conditions of the system.

First, we should choose proper criteria to determine the survival conditions.
From the structural perspective, the major components should be strong enough
to withstand the environmental loads in exposed regions. For the mooring system,
the maximum load in the mooring line should not yield its breaking limit. In
terms of the floating collar, it basically follows the waves and may experience large
deformations in severe sea states, so we should guarantee that it will not collapse.
Since the sinker tube is attached directly to the net in the present study, we can
avoid the possible chafing between the vertical chains and the net (dominant cause
for fish escape). Also, the force acting on the sinker tube is quite moderate, so both
the net cage and the sinker tube should not be of a major concern. In addition,
enough net cage volume is required for the welfare of the fish. In summary, from

Table 4.6: Environmental matrix used in the simulations, showing current velocity,
regular wave steepness and wave period ranges. The different combinations of the
sinker tube weight (or discrete sinker weights) and point weight (attached to the
bottom of the net cage) are also shown in the lower table. If discrete sinker weights
instead of the sinker tube are adopted, the discrete sinker weights are chosen to
have the same total submerged weight as that of the sinker tube.

Current U∞ [m/s]
Wave steepness H/λ

1/60 1/30 1/15
0.0 4-10s 4-10s 4-10s
0.3 4-10s 4-10s 4-10s
0.5 4-10s 4-10s 4-10s
0.7 4-10s 4-10s 4-10s
0.1-1.2 - - -

Sinker tube weight (ws) 25 kg/m 50 kg/m 80 kg/m 93 kg/m
Discrete sinker weights (Ws) 203 kg 407 kg 651 kg 757 kg
Center point weight (Wc) 200 kg 500 kg 1000 kg 1500 kg
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the perspective of fish welfare and structural integrity, three criteria are proposed
to determine the survival conditions, i.e. maximum forces in the mooring lines;
maximum stress in the floating collar and maximum reduction of net cage volume.

The simulation matrix is shown in Table 4.6. The different fish farm set-ups
considered are also shown in the table. Detailed information of the wave conditions
and the corresponding wave classes according to the Norwegian Standard are given
in Table 4.7.

Table 4.7: Detailed information of the wave conditions described in Table 4.6. The
corresponding wave class according to the Norwegian Standard (see Table 1.2) for
regular waves is given in the lower table.

T [s] λ [m] λ/D [m]
H/λ = 1/60 1/30 1/15

H[m]
4 25.0 0.50 0.42 0.83 1.66
5 39.0 0.78 0.65 1.30 2.60
6 56.2 1.12 0.94 1.87 3.75
7 76.5 1.53 1.27 2.55 5.10
8 99.9 2.00 1.66 3.33 6.66
9 126.4 2.53 2.10 4.21 8.43
10 156.0 3.12 2.60 5.20 10.40

Wave Exposure H = 1.9Hs

A Small H <1.0 m
B Moderate 1.0 m< H <1.9 m
C Heavy 1.9 m< H <3.8 m
D High 3.8 m< H <5.7 m
E Extreme 5.7 m< H

Current only

First, we present results for cases in current only. The current velocity is chosen
from small exposure to high exposure. The anchor loads and the net cage volume
reductions in different current velocities are shown in Figure 4.28.
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Figure 4.28: Numerical predictions of the mean load in the front two anchor lines
(upper) and the net volume reductions (lower) for cases in current only with dif-
ferent fish farm set-ups, see Table 4.6. Solid line: sinker tube (ws). Dashed line:
discrete sinker weights (Ws). Lower: V0 is the initial volume of the net cage, V
the net volume in steady-state. Horizontal dashed line represents the fish-farm
operational limit in terms of volume reduction.

The net cage volume is estimated by

V = −
∫∫
Sc

n1xdS =−
∫∫
Sc

n2ydS =−
∫∫
Sc

n3zdS (4.12)

where V is the net cage volume, n = (n1, n2, n3) the normal vector of the cage
surface Sc and is pointing outwards. The net volume is taken as the average value
of the volumes estimated numerically with the three formulas in Eq. (4.12). From
the figure we can see that the difference is small in the anchor loads when we use
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the sinker tube or the discrete sinker weights to reduce the net-cage deformation.
However, relatively big difference in the net cage volume reduction is observed
between the two options, especially for medium current velocities. The numerical
results demonstrate that the sinker tube is more suitable to be used to reduce the
net-cage deformation. The maximum cage volume reduction is set to be 60% as a
operational limit for the sake of fish welfare. The figure shows that the fish farm
with sinker tube weight ws = 93 kg/m and center point weight Wc = 1500 kg can
operate in current velocity up to 0.85 m/s, which is in the region of high exposure.

Combined waves and current

The numerical results for the anchor forces for cases in combined waves and current
are given in Figure 4.29. Just the total values are shown. Four current velocities
and three wave steepnesses are considered, covering the range of wave class from
small exposure to extreme exposure.
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Figure 4.29: Mean load in the front two anchor lines for cases in combined regular
waves and current with different fish farm set-ups. Results are presented versus
wave length-to-diameter ratio λ/D. Solid line with symbols: sinker tube. Dashed
line with symbols: discrete sinker weights. From left to right: current velocities
U∞ = 0 m/s, 0.3 m/s, 0.5 m/s, 0.7 m/s. From top to bottom: sinker tube weights
ws = 25 kg/m, 50 kg/m, 80 kg/m and 93 kg/m. Horizontal dashed line represents
the minimum breaking force (polysteel, 3 strand, diameter 52 mm).
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The figure shows that the difference of the anchor force is small when the sinker
tube and the discrete sinker weights are used, respectively, similarly as in the cases
in current only. The minimum breaking force for the considered anchor polysteel
ropes is about 430 kN, which is larger than the maximum force experienced by the
anchor lines, so the anchor loads are not the main concern for the fish farm system
to operate in exposed regions.

Figure 4.30 shows the numerical predictions of the loads in the bridle line-2. In
general, the load in the bridle line-2 is slightly larger than that in the anchor lines.
However the bridle lines are weaker than the anchor lines in reality. Therefore,
special attention should be paid to this during the design. The maximum force in
the bridle line may exceed its breaking limit in high to extreme exposure sea states.
It should be noted that the loads in the bridle lines are strongly dependent on the
arrangement of the bridle lines, so the load distribution between bridle lines may
be totally different from the present set-up if a new mooring system is considered.
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Figure 4.30: Same as that in Figure 4.29, but for the bridle line-2. Horizontal
dashed line represents the minimum breaking force (polysteel, 3 strand, diameter
40 mm).
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Figure 4.31: Comparison of the maximum loads in the anchor line (left) and bridle
line (right) by numerical calculations in irregular waves and equivalent regular
waves. The considered regular wave steepness H/λ = 1/15, current velocity U∞ =
0.7 m/s.

In order to see how irregular waves are represented by regular waves according
to the standard in Table 1.2, we present the maximum values of the anchor loads
and the bridle loads in Figure 4.31 for the system in both irregular and equivalent
regular waves. The figure shows that the maximum mooring loads are similar
for the considered two wave types and results from regular waves are generally
more conservative, which coincides with the conclusion from Berstad and Tronstad
(2005). It should be noted that just one realization is considered for the irregular
sea scenario and actual results in irregular sea are realization dependent.

The results of the net volume reductions for the system in combined waves and
current are also investigated and are not shown here. The general conclusion is that
the cage volume reduction is dominated by the current in mild wave conditions,
however in cases with high wave steepness, current and waves will have similar
contributions.

Finally, we show the numerical predictions of the stress distributions along the
floating collar. The maximum bending stress due to horizontal deformations in a
position x = R cosβ along the floater is given as

σ (β, t) =
M (β, t)

I
rmax =

Ermax

R2

∞∑
n=2

n2bn (t) cosnβ (4.13)

where E is the Young’s modulus, I is the area moment of the cross section in
horizontal plane and rmax = 3cf with cf the cross-sectional radius of the floating
collar which comprises two tubes placed with center-to-center distance 4cf . Similar
expression can be obtained for the stress due to vertical deformations. One should
note that the cross-sectional area moment in the horizontal plane is about ten times
that in the vertical plane. The stress distributions along the floating collar due to
horizontal and vertical deformations are given in Figure 4.32. The figure shows that
the stress due to vertical deformations are small compared with the contribution
from horizontal deformations and the maximum stress occurs at the positions β
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Figure 4.32: Stress distributions along the floating collar for cases with U∞=0.7
m/s, H/λ =1/15 and T=8 s (dashed dot line) and T=10 s (solid line). The stress is
made non-dimensional by the yield stress (high-density polyethylene). Left: stress
due to horizontal deformations. Right: stress due to vertical deformations. Solid
circle symbols represent the positions where bridle lines are attached.

= 1170 and 2430 where bridle lines are attached. The maximum stress along the
floating collar will not exceed the yield stress for the considered sea states.

4.4 Conclusions and following work

We presented a study on a realistic fish farm system with single cage exposed to
current, regular and irregular waves. The system comprises a floating collar with
two concentric tubes, a flexible net cage and a sinker tube attached directly to
the net, moored by a complex mooring system with anchor lines, bridle lines and
frame lines. Loads in the anchor lines and in the bridle lines were investigated
in detail and satisfactory agreement between numerical and experimental results
was demonstrated for the system in both regular and irregular waves. One thing
interesting was that the load in one of the bridle lines was larger than the rest of
the mooring loads for most of the cases.

A systematic sensitivity analysis was performed to identify the dominant factors
when modeling the fish farm in regular waves and current. The main focus is on the
mooring loads. In total 30 parameters from different components were analyzed
separately. The study suggested that the mooring loads in the anchor lines and
in the bridle lines were not sensitive to the majority of the variations. The most
important parameter for the anchor loads is the flow reduction factor in the rear
part of the net cage. Modeling the floating collar as a rigid body has a moderate
effect on the anchor loads, but the bridle loads may differ by more than 20% as
a rigid collar will change the force distribution along bridles. The mooring loads
are not sensitive to the wave load model for the floating collar and hydrodynamic
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forces on the floating collar are quite moderate compared with the total loads on
the system for cases in both regular and irregular waves.

Finally, fish farms with different set-ups in different exposure scenarios were
investigated numerically. The considered wave periods, wave steepness and current
velocities cover the sea states from light exposure to extreme exposure, according
to the Norwegian standard for regular waves. The main target was to figure out
the main constraint for the conventional fish farms to operate in exposed areas and
how exposed they can operate. Three criteria were proposed: maximum net cage
volume reduction, maximum loads in the mooring lines and maximum stress in the
floating collar. Numerical results showed that the net volume reduction was the
dominant limit. The maximum stress in the floating collar was moderate compared
with the yield stress of the floating collar, even for extreme sea states. In terms of
the mooring system, the existing mooring system can be applied in offshore area if
the bridle lines are properly designed.

The studies in survival conditions only examined the most critical scenario
with aligned long crested waves and current. It means that the conclusions may
be a bit conservative. The fish farm system in more general sea states should
also be studied and possibly three-dimensional waves should be accounted for;
this is left for a future work. Their implementation in the present method is
relatively straightforward within the assumption of linear superposition principle.
The influence of the arrangement of the bridle lines on the mooring loads should
also be considered. The numerical solver proposed in this paper is applicable to
any net-based fish farm concept and can be used to analyze fish farms, for instance,
with submersible net cages or square net cages. However, how to account for the
effect of upstream cages on current in case with multiple cages needs to be further
studied.

Up to now we have focused on the study of the fish-farm as isolated. However,
for fish farms operating in more exposed sea areas the probability of well-boat
routine operations to occur in severe weather conditions will also increase. During
the loading/offloading phase, the well boat is moored directly to the fish farm, which
may significantly increase the mooring loads and the floating collar deformations
and thus endanger the structural integrity of the fish farm. So there is a need to
have a detailed investigation of the influence of the well boat on the fish farm and
identify the operational conditions for performing such load/offloading operation,
as shown in the following two chapters.
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Chapter 5

Numerical modeling of a well
boat operating at a fish farm

In this chapter, theoretical models of a well boat operating at a fish farm in current
only and in long-crested irregular waves and current are introduced. A modern
design well boat and a realistic fish-farm set-up (with single cage) including a
floating collar, an elastic sinker tube, a flexible-closed net cage and a complex
mooring system are examined.

For the coupled system in current only, transverse viscous current loads on the
well boat are estimated using the cross-flow principle. The drag coefficients are
obtained empirically by considering cross-sectional details, free surface and three-
dimensional (3D) flow effects. The drag force is experimentally validated. The
strategy used for the well boat-fish farm coupling is also explained, together with
the method to measure the contact force between them.

For the coupled system in long-crested irregular waves and current, the mod-
eling of the motions of the well boat when the well boat operates at the weather
side of the fish farm is explained in detail. The approaches to estimate the slow-
drift excitation force and slow-drift damping (wave-drift damping and eddy-making
damping) are given. The cross-flow principle is assumed valid for evaluating the
transverse viscous loads and the needed cross-sectional drag coefficients are esti-
mated empirically and validated against available experiments. The system cou-
pling with well-boat bow against the inflow is also outlined as it will be examined
for selected cases in the next chapter.

In the following, a description of the numerical set-up of the coupled well boat-
fish farm system is given at first. Then, numerical modeling of the coupled well
boat-fish farm system in current only is briefly introduced. The strategy used
for their coupling is also explained. Finally, the modeling of well-boat motions in
long-crested irregular waves and current is provided. In terms of the fish farm, a
realistic set up and a simplified set up (fish farm represented as a linear spring)
are considered. Parts of the results in this chapter are documented in Shen et al.
(2016), Shen et al. (2018a) and Shen et al. (2018b).
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5.1 Numerical set-up

The main arrangement and dimensions of the coupled fish farm-well boat system
are described in this section.
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Figure 5.1: Configurations of the coupled well boat-fish farm system with defini-
tions of the inertial Earth-Fixed coordinate systems OExEyEzE and OSxSySzS
used in this study. Upper: top view. The floating collar is duplicated in the
right part of the sketch to define current direction αc, wave direction αw and boat
heading angle ψ. Lower: side view. The well boat is not shown.

For the fish farm, similar set-up used in Chapter 4 is adopted here, including
two concentric floating tubes, an elastic sinker tube, a cylindrical net cage with
a conical bottom, a mooring system comprising bridle lines, mooring frame lines,
mooring buoys, coupling plates, chains connecting the coupling plates to the buoys
and the anchor lines attaching the system to the sea bed, see Figure 5.1. The pa-
rameters and dimensions of different components are given in Tables 5.1 and 5.2.
All the values given are in full scale. Some of the parameters are different from
those given in Chapter 4, to represent more realistic values. The parameters used
in Chapter 4 were derived based on the experimental data from Nygaard (2013).
Since ’ordinary’ ropes were used in the experiments, the corresponding full-scale
stiffness of the bridle lines and frame lines are larger than those used in commercial
full-scale cages. So instead, we use realistic full-scale values in this study. Also,
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the stiffness of the front two anchor lines was about 110 kN/m in Nygaard (2013),
as specified value in the experiments, while in the present case the corresponding
value is about 55 kN/m, based on the realistic length, diameter and Young’s mod-
ule for the anchor lines.

Table 5.1: Parameters of the floating collar, net cage and sinker tube. The position
of the center point weight Wc is shown in Figure 5.1.

Description Symbol Value Unit
Floating collar
Number of tubes - 2 -
Diameter inner ring Df1 50 m
Diameter outer ring Df2 51.8 m
Tube section diameter df 450 mm
Tube bending stiffness EIf 7.72× 105 Nm2

Tube mass mf 32.54 kg/m
Net cage
Diameter Dc 50 m
Depth of vertical net hu 15 m
Depth of cone net hl 10 m
Net twine diameter dw 2.7 mm
Net mesh-bar length lw 19.3 mm
Net E-module Enet 5× 108 N/m2

Net solidity ratio Sn 0.26 -
Center point weight Wc 200 kg
Sinker tube
Tube diameter Ds 51.8 m
Tube section diameter ds 280 mm
Tube depth hs 17 m
Tube bending stiffness EIs 2.0× 105 Nm2

Sectional mass in water ws 50 kg/m
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Table 5.2: Parameters of the mooring system. All ropes are almost without weight
in water. All ropes Young’s module Erope = 1.8 GPa and the chain Young’s module
Echain = 105 GPa. Positions where the two bridle lines are attached to the floating
collar are defined in the coordinate system OExEyEzE .

Description Value Unit
Bridle lines
Position (bridle-1) 117 degrees
Position (bridle-2) 162 degrees
Rope diameter 48 mm
Rope length 44.2 m
Chain diameter 19 mm
Chain length 5.47 m
Chain mass 8.66 kg/m
Bridle line stiffness 72.7 kN/m
Anchor lines
Line length 133.5 m
Rope length 103.5 m
Rope diameter 64 mm
Chain length 30 m
Chain diameter 36 mm
Chain mass 28.73 kg/m
Anchor line stiffness 55.1 kN/m
Frame lines
Length 100 m
Depth 8 m
Diameter 64 mm
Frame line stiffness 57.9 kN/m
Buoys system
Number of buoys 4 -
Buoy diameter 1.55 m
Buoy length 2.34 m
Buoy mass 146.9 kg
Chain diameter 19 mm
Chain length 7 m
Chain mass 8.66 kg/m
Coupling plate mass 55 kg

In terms of the well boat, a modern design well boat from Rolls-Royce Marine, is
used in the study. The three-dimensional (3D) numerical panel model employed in
the potential-flow calculations together with the body plan are shown in Figure 5.2.
The principal dimensions are given in Table 5.3.
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Figure 5.2: Submerged geometry of the well boat. Upper: panel model. Lower:
body plan. Numbering of sections is also given with section 1 in the aft part of the
boat.

Table 5.3: Principal dimensions of the well boat.

Length between perpendiculars (L) 70 m
Breadth (B) 15 m
Draft (D) 6.7 m
Displacement volume (∇) 5145 m3

Block coefficient (Cb) 0.75
Mid-ship coefficient (Cm) 0.99
Height of center of gravity (KG) 0.75D
OG = KG−D −0.25D
Roll gyration radius 0.35B
Pitch gyration radius 0.28L
Yaw gyration radius 0.28L
Transverse metacentric height (GM) 1.6 m
Bilge-keel length (lbk) 0.3L
Bilge-keel breadth (bbk) 0.02B

Two different inertial and Earth-fixed coordinate systems are used in the simu-
lations and are defined in Figure 5.1. One is the Cartesian right-handed coordinate
system OExEyEzE with the vertical zE-axis positive upwards through the center
of the floating collar in calm water (also defined in Chapter 4). The other is the
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seakeeping coordinate system OSxSySzS with origin in the undisturbed free sur-
face zE=0. The vertical zS-axis is positive upwards through the center of gravity
(COG) of the boat in the mean-ship configuration and the horizontal xS-axis points
towards the bow. The incident wave angle αw and current angle αc are defined in
the figure. αw = 0o means that the waves propagate in positive xE direction and
αc = 0o denotes that the current direction coincides with the positive xE direction.
The heading angle of the boat ψ is also defined in Figure 5.1 and ψ = 0o means
that the bow of the boat points towards the positive xE-axis.

The well boat can be moored in different positions relative to the fish farm. No
thruster action is considered, which is common practice in order to avoid possible
net suction. Assuming a scenario with main inflow direction along positive xE ,
three relevant well-boat set-ups are given in Figure 5.3. Set-up A: at the weather
side of the floating collar; set-up B: at the leeward side; set-up C: with the well-
boat bow against the inflow. Each set-up has pros and cons. It will be difficult
for the boat to detach from the fish farm with set-up A in severe sea conditions
and this set-up is expected to be the most critical in terms of mooring loads and
floating collar stresses. In sea regions with strong current, the well boat should
avoid connecting to the fish farm with set-up B as there is a risk of the net drifting
into the propeller. The system with set-up C can significantly reduce the external
loads from the boat and therefore is not so critical. Here we will mainly investigate
the coupled system with set-up A, and the results for the system with the other
two set-ups will be just briefly discussed.
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Figure 5.3: Different set-ups with the well boat moored to the fish farm. The inflow
is in the positive xE-direction. Left: set-up A, heading angle of the boat ψ = 90o

(weather side). Middle: set-up B, ψ = 270o (leeward side). Right: set-up C, ψ =
180o (bow against inflow).

5.2 Theoretical and numerical model: in current

In this section, the modeling of the coupled well boat-fish farm system in current
only is presented. A time-domain solution is used to find the steady configuration
and response. Since the theoretical model for different components of the fish farm
has been introduced in Chapter 2, here the main attention is paid to the modeling of
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well-boat loads. An empirical way to estimate the cross-sectional drag coefficients
of the well boat in current is proposed. The way to evaluate the damping coefficient
for roll motion is also presented. In the end, the strategy used for the well boat-fish
farm coupling is explained and the method to measure the contact force between
them is introduced.

5.2.1 The well boat

The transient motions of the well boat are solved in the seakeeping coordinate
system OSxSySzS . Transient linear potential-flow effects as proposed by Cummins
(1962) are included and the motion equations are given by

6∑
k=1

(Mjk +Ajk(∞)) η̈k +

t∫
0

Kjk (τ) · η̇k (t− τ) dτ + Cjkηk


= Fj (t) (j = 1, 2, ..., 6)

(5.1)

where ηk, η̇k and η̈k are the motion, velocity and acceleration for ship rigid mode
k and k = 1, ..., 6 represents surge, sway, heave, roll, pitch and yaw, respec-
tively. Mjk, Ajk (∞) and Cjk are components of the generalized ship mass ma-
trix, infinite-frequency added-mass matrix and the restoring matrix of the boat.
t∫

0

Kjk (τ) · η̇k (t− τ) dτ is the convolution integral connected with the free-surface

memory effects and Kjk (t) is the retardation function connected with rigid modes
j and k. It provides a radiation load in j direction acting on the vessel at the
actual time t as a consequence of an impulse velocity in k direction experienced
by the ship at a previous time instant t− τ . Kjk (t) can be estimated in a similar
way as shown in Eq. (2.11), so it is not repeated here. The transient motions will
decay after a short time in the simulations when only viscous current loads are
considered. Fj (t) is the generalized force in the jth degree of freedom. Due to cou-
pling with the fish farm, apart from the current loads, Fj (t) will also have other
external loads with respect to those of a single ship. These may include contact
forces and connection-line forces. In the following we will mainly pay attention to
the estimation of steady-state viscous current loads, the estimations of the others
are given in section 5.2.2.

The boat interaction with a current, with generic direction relative to the boat,
will lead to viscous loads. In principle, these loads can be affected by the presence
and coupling with the fish farm, but this can be neglected as a first approximation.
Under these assumptions, to estimate the current loads on the boat, dedicated
model tests or Computational Fluid Dynamics (CFD) simulations could be used.
The former involve a cost and will have the issue of Reynolds number scaling;
the latter become more and more popular because less costly but require suitable
validation and can be time consuming for performing converged simulations at
high Reynolds numbers. An argument against CFD is also that the well boat is
a subsystem and numerical tools for the different subsystems must be balanced in



110 Numerical modeling of a well boat operating at a fish farm

complexity. The many meshes of the netting of a fish cage prohibit the use of CFD
and complete structural modelling.

For a more efficient and still physically-sound estimation of current loads, here
we follow the procedure documented by Faltinsen (1990). We assume that the
current loads can be decomposed in transverse and longitudinal loads caused, re-
spectively, by the transverse and by the longitudinal component of the current
velocity with respect to the ship main axis. The transverse loads are mainly con-
nected with flow separation along the vessel as long as the angle between the current
direction and the longitudinal ship direction is not small and can be estimated with
the cross-flow principle. They lead in general to a 3D transverse force and to a
yaw moment. In addition a potential-flow Munk yaw moment is also caused by
the current. The longitudinal force is mainly connected with frictional stresses. In
particular, the 3D transverse (YF ) and longitudinal (XF ) forces can be written as

YF = −0.5ρ

∫
L

[CD (x)VF |VF |D (x)] dx

XF = −0.5ρCFUF |UF |S
(5.2)

Here ρ is the water density, CD(x) is the drag coefficient for cross-flow past an
infinitely long cylinder with uniform cross-section equal to the ship cross-section at
the longitudinal coordinate x, modified by 3D effects due to flow separation around
the ship ends. VF is the transverse current component and D(x) is the sectional
draft. Similarly, CF is the frictional coefficient, UF is the longitudinal current
component and S is the wetted surface area of the ship hull. VF = U∞ sinβc
and UF = U∞ cosβc with βc the angle between the current velocity U∞ and the
positive longitudinal xS-axis. It means that empirical load coefficients, CD and
CF , are needed and they are estimated using available data from the literature.
Information on the applicability and limits of this decomposition approach and
cross-flow principle can be found e.g. in Faltinsen (1990).

Transverse viscous force

Within the cross-flow principle, the 2D transverse viscous current force is a drag
force. In order to have a reliable prediction of it, we need a reliable estimation of
the drag coefficient at the different ship cross-sections. Faltinsen (1990) showed
that cross-flow drag coefficient for ship cross-sections is mainly influenced by the
section geometry (beam-to-draft ratio, bilge radius, bilge keel presence and dimen-
sions), Reynolds number, free-surface and three-dimensional (3D) effects. We will
briefly explain the different parameters in the present context.

Flow regimes: If the cross-section has no sharp corners, the value of the cross-
sectional drag coefficient depends on the flow regime in the boundary layer up-
stream of flow separation (depending on the Reynolds number and surface rough-
ness), i.e. laminar or turbulent boundary layer flow. The two flow regimes are
associated with different locations of the flow separation points, so the correspond-
ing drag coefficient will be different (Aarsnes et al., 1985).
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Three-dimensional (3D) effects: The 3D effects due to the flow around the ship
ends tend to reduce the total drag force compared with pure strip theory approach
because they tend to reduce locally the inflow velocity at the cross-sections towards
the ship ends (Aarsnes et al., 1985).

Free surface: The free surface has a significant influence on the drag coefficient
and can be approximated as an infinitely long splitter plate, as long as the bound-
ary layer effect due to the splitter plate is negligible. It will change the flow pattern
behind the body and cause a reduction of the drag coefficient. More detailed ex-
planation is given by Faltinsen (1990, 2005).

Cross-sectional shape: The effect of the cross-sectional shape upon the drag
coefficient for typical midship sections is mainly due to the bilge radius r, beam-to-
draft ratio B/D and bilge keels. An increase in bilge radius will lead to a reduction
of the drag coefficient. The beam-to-draft ratio will have influence, but only when
B/(2D) < 0.8. The presence of the bilge-keels will make the drag coefficient less
scale dependent when transforming model values to full scale (Faltinsen, 1990,
2005). The reason is that the flow separation points are at the bilge keels and not
determined by the boundary layer flow. The position of the flow-separation points
will significantly influence the drag coefficients.
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Figure 5.4: Drag coefficient CD as a function of aspect ratio B/(2D) for a rectan-
gular two-dimensional cylinder with sharp corners in steady incident flow parallel
to the rectangular side with length B (Nakaguchi et al., 1968). Reynolds number
Rn= 2U∞D/ν = 2 ∼ 6 × 104 with U∞ the inflow velocity and ν the kinematic
viscosity.

The next step is to account for the influences of all the above mentioned param-
eters and give an estimation of the drag coefficient for the different cross-sections.
In terms of the flow regime, the cross-flow for different cross-sections of a full-scale
well boat should be turbulent, so drag coefficients for turbulent flow should be
adopted. We start with the midship section (section 10). For this, the aspect ratio
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B/(2D)=1.12. According to the experimental data from Nakaguchi et al. (1968),
see Figure 5.4, the drag coefficient CD for a rectangular section with B/(2D)=1.12
and bilge radius r=0 in infinite fluid is about 2.0. Faltinsen (1990) documented
that the drag coefficient depends strongly on the bilge radius. As r increases, the
drag coefficient decreases because the vortex shedding becomes less intense and the
dependency can be written as

CD = C1e
−kr/D + C2 (5.3)

where C1 and C2 are constants of similar magnitude. By fitting the experi-
mental data from Delany (1953), Faltinsen (1990) showed that k may be 6 and
CD = 0.8e−6r/D + 1.2 for the case with B/(2D)=1. As similar B/(2D) is consid-
ered for our midship section, the same CD expression is assumed. For the midship
section, r/D= 0.149, then the drag coefficient CD= 1.53.

The free surface will reduce the drag coefficient. In order to have an idea of this
reduction effect, we examined the drag coefficients for different cross-section ge-
ometries with and without free surface (or splitter plate behind) effect, using data
available from the literature. Blevins (2003) showed that the drag coefficient for a
sharp-edged square section reduces from 2.0 to 1.45 (Reynolds number = 5× 104)
due to a splitter plate behind the section, with about 27.5% reduction. The length
of the splitter plate was equal to 20D and can be roughly seen as infinitely long.
Similarly, the drag coefficient for cross-flow past a thin flat plate reduces from 1.9
to 1.38 due to a splitter plate behind, with about 27.3% reduction. The drag coef-
ficient for a circular section with infinity long splitter plate in the middle changes
from 1.1 to 0.8 (Reynolds number = 104), with about 27.3% reduction. It is inter-
esting to see that the free surface exerts similar influence on the drag coefficient for
different cross-sectional shapes. In the present study, we assume the free surface
will reduce the drag coefficient of the midship section by 27.3%, then the drag co-
efficient for the midship section will be CD = 1.53− 1.53 · 0.273 = 1.11. The same
procedure is applied to estimate the drag coefficient for the midship section of the
hull presented in Aarsnes et al. (1985) and nice agreement was achieved with their
numerically predicted value.

In the above analysis, the influence of bilge keels is not considered, which may
have a big importance. According to the experimental results from Mercier and
Huijs (2005), the lateral drag coefficient increases from 0.6 to 0.9 ∼ 1.0 when
bilge keels are included. This means that the bilge keels increase the lateral drag
coefficient by at least 50%. A simple explanation of the influence of bilge keels is
that the flow will be forced to separate at the sharp corner of the bilge keel, which
makes the flow field around the corner resembles that for a sharp-edged rectangular
section, as shown in Figure 5.5. So for the midship section with bilge keels, the drag
coefficient for a rectangular section with r=0 is proposed, which means using CD
= 2 instead of CD = 1.53 as basic drag coefficient. Here we neglect the influence of
the bilge keel breadth. Considering the free surface effect, the drag coefficient for
the midship section becomes CD = 2− 2 · 0.273 = 1.45. The bilge keels exist from
section 7 to section 13, so for simplicity drag coefficient CD = 1.45 is used for all
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these cross-sections.

Body

Bilge keel

Figure 5.5: Sketch for flow around the cross-section with bilge keel. Dotted line:
sketch of the flow streamline.

For the other ship sections, with geometry close to rectangular, the same pro-
cedure introduced above has been followed. The well boat sections near the ship
ends present shapes not studied experimentally or numerically. A rough estimation
of their drag coefficients has been obtained by interpolating the drag coefficients
of ship sections with closest geometries studied numerically in the turbulent-flow
regime by Aarsnes et al. (1985). This is an error source but has a limited influence
on the average drag coefficient for the well boat, as discussed below in the text.
The 2D drag coefficient for different sections needs to be lowered as consequence
of 3D effects. Since no other study on 3D effects is available, but for the one by
Aarsnes et al. (1985), the 3D reduction factor for the cross-section drag coefficient
from such research work has been adopted here. The drag coefficients for different
sections with and without considering the 3D reduction factor are shown in Fig-
ure 5.6. The average drag coefficient with and without considering the reduction
effect are 0.9 and 1.06, respectively. The obtained ship average CD is reasonable
compared with that shown in Mercier and Huijs (2005) for a tanker-based FPSO
with bilge keels.

From our results, the average drag coefficient for the well boat is not much
sensitive to the specific value of the drag coefficients for cross-sections close to
the ship ends, which are those potentially more connected with estimate errors.
In fact, a change in these CD of 10% would cause a change of about 3% for the
average well-boat drag coefficient. In order to assess the method introduced, we
applied the same procedure to estimate the transverse drag coefficient for a tanker
(without bilge keels) presented by Faltinsen et al. (1979) in loaded condition and
we compared the results against their experimental data. The results are shown in
Figure 5.7. The empirically estimated average drag coefficient (CD = 0.69) agrees
well with that from the model tests (CD = 0.68). This suggests a fair reliability
of the followed approach for the CD prediction. The well-boat scenarios examined
in this thesis will not lead to important yaw excitation, therefore the viscous and
Munk current yaw moments will not be discussed; details can be found in e.g.
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Figure 5.6: Sectional transverse drag coefficient CD for different sections of the
present well boat. The 2D drag coefficients with and without the 3D reduction
effects are shown. The corresponding average drag coefficients are also given.
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Figure 5.7: Sectional transverse drag coefficient CD for different sections of the
tanker documented by Faltinsen et al. (1979).

Faltinsen (1990).

Longitudinal viscous force

The viscous force in longitudinal direction is mainly due to the friction force on
the wetted ship hull. Pressure drag and roughness effects are not considered as
first approximation. The frictional coefficient CF is estimated according to the
ITTC’57 guidelines as the value for a smooth flat plate in turbulent flow conditions
(see Faltinsen, 1990) and given as

CF = 0.075/(logRn
10 −2)2 (5.4)
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where Reynolds number Rn = UFL/ν, with L the length between perpendiculars
of the well boat.

Roll damping coefficient due to bilge keels

According to Himeno (1981), the ship roll damping for zero forward speed can
be divided into several components, that are, friction, eddy and wave damping
for a naked hull, and bilge-keel damping, involving normal-force damping, hull-
pressure damping and wave damping. Here, the different components of the roll
damping are approximated using a simplified formula proposed by Kawahara et al.
(2011), obtained as best-fitting of the Ikeda’s method from Ikeda et al. (1977). This
formula is convenient compared with the direct use of the Ikeda’s method because
the involved parameters are limited to the general ship features. Detailed results
are not shown here.
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Figure 5.8: Non-dimensional equivalent roll damping coefficient predicted with
the simplified formula proposed by Kawahara et al. (2011). Solid symbols: bilge-
keel damping estimated by Ikeda’s method from Ikeda et al. (1977). The results
are presented versus non-dimensional wave frequency (upper) and roll amplitude
(lower).
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The non-dimensional equivalent roll damping coefficient estimated by the sim-
plified method is shown in Figure 5.8. The figure also shows the prediction of
each individual damping component. The friction damping coefficient is negligible
for a full-scale ship, as shown in the figure. The damping due to the bilge keels
has the dominant contribution to the roll damping, approximately 70%-80%. It
should be noted that the damping due to the waves generated by the ship rolling
is already estimated by the potential flow theory and therefore not included in the
final calculation in order to avoid redundancy. For the bilge-keel damping, the
bilge-keel dimensions are needed and for the simplified formula validity, the follow-
ing conditions should be satisfied: 0.01 ≤ bbk/B ≤ 0.06 , 0.05 ≤ lbk/L ≤ 0.4 and
−0.2 ≤ OG/D ≤ 1.5. All the mentioned symbols are defined in Table 5.3. In our
case, the OG/D = -0.25 is slightly out of the applicability region. So the bilge-keel
damping predicted by the original Ikeda’s formula is also provided in the figure.
From the figure, we can see that there is a difference between the two methods
especially for cases with higher wave frequency and larger roll amplitude, but it is
quite moderate, about 10%. So the simplified method will be used in the analysis.

5.2.2 Contact force estimation

The well boat is coupled with the fish farm system in two ways: it is connected to
the floating collar by two ropes and has also direct contact with the floating collar.
This represents a typical connection scenario for well-boat operations at fish farm.
For each rope, the connection force is estimated as a linear spring force directed
along the connection line and given by the product between the rope spring stiffness
and the rope elongation. The latter is easily estimated when the well-boat position
and the floating-collar configuration are known. The force is taken as zero if the
elongation is negative.

The contact force Fc is normal to the surface of the boat when contact with
the floating collar happens. Here a simplified method (named indirect method) is
proposed to deal with the contact between the well boat and the floating collar.
Before estimating the contact force, we need to determine whether the contact
happens or not. If the distance ∆c between the center line of the floating-collar
outer tube and the boat surface is smaller than the tube’s cross-sectional radius
df/2, then the floating collar gets in contact with the boat. The reason to use the
center line in this contact criterion is that the motions of the floating collar center
line can be readily obtained in the simulations.

If the floater gets in contact with the boat, the contact force Fc is assumed to
be proportional to df/2 − ∆c and expressed as Fc = kc(df/2 − ∆c) with kc the
contact stiffness and df/2 − ∆c the normal distance between the floating collar
outer surface and the boat surface. This means that we model the contact effect
like a spring (or multiple springs) with stiffness kc between the well boat and the
floating collar, see Figure 5.9. The next step is to determine the contact stiffness
kc. Ideally, the contact stiffness should be close to infinity to well represent the
stiffness of the boat surface, but very small time-step is then needed to guarantee
the convergence of the simulations. Practically, we should choose a sufficiently high
kc to ensure correct global response of the coupled system while still reasonable
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Figure 5.9: Sketch for explaining the estimation of the well boat-fish farm contact
force by very soft springs. Left: bird view. Right: three-dimensional view.

time-steps can be used in the simulations.

For the well boat, the fish farm acts like a spring, preventing the boat from
drifting away. The inserted spring stiffness (or contact stiffness) kc is determined
on the basis that the restoring stiffness of the fish farm (with well boat) kg will
not change from its original value (without well boat) kf , namely kg = 1/(1/kc +
1/kf ) ≈ kf . This means that the inserted spring stiffness kc � kf .

To estimate a suitable value for kc, one must establish a realistic value for kf .
Let us assume that the well boat is placed at the fish farm according to set-up A
(defined in Figure 5.3). Then the equivalent fish-farm stiffness kf to be compared
with kc can be defined as kf = dFx/dx. Here Fx is the horizontal force, along the
xE-axis, acting at position β = 180o of the floating collar and pointing towards
the positive xE-axis while x is the corresponding horizontal displacement along
xE-axis. Figure 5.10 shows the equivalent stiffness kf of the fish farm without well
boat as a function of the pretension force and floating collar stiffness. The figure
shows that kf is not constant when subjected to sufficiently small external force.
This is due to the catenary shape of the chains in the lower end of the anchor lines.
As the load exerted on the system increases, kf is almost constant and about 24
kN/m. In this case, there is no anchor chain laying on the seabed and the stiffness
of the mooring system is mainly determined by the mooring line stiffness. Larger
pretension forces in the anchor lines will increase kf when small external force is
exerted on the system. If we increase the floating collar stiffness, kf increases, as
expected. If we consider a rigid floating collar, then kf reaches a maximum value
and the maximum stiffness kfmax is about 40 kN/m. So it is fairly safe for us to set
the contact stiffness between the well boat and the floating collar kc = 100kfmax
= 4000 kN/m to ensure correct global restoring stiffness for the well boat.

In order to see how the contact stiffness will influence the mooring forces, time
histories of the contact force Fc and the load in anchor line-1 (see Figure 5.1) with
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Figure 5.10: The equivalent stiffness kf of the fish farm without well boat is repre-
sented by the slope of the curve Fx. Upper: with different pretension forces in the
anchor lines. Lower: with different floating collar stiffnesses. EI = 7.27×106 Nm2

is the cross-sectional bending stiffness of the floating collar in the horizontal plane
with E the Young’s modulus (high-density polyethylene) and I the area moment
of the cross-section with two tubes.

three different values of the contact stiffness, i.e. kc = 400 kN/m, 4000 kN/m
and 40000 kN/m, are shown in Figure 5.11. Regular waves in the xE direction
and set-up A are considered in the analysis. By using regular waves, we can
analyze the influence of the contact stiffness on both the mean value and oscillation
amplitude of the anchor force. The mean value is relevant for the study in current
while the oscillation amplitude is important for the investigation of the coupled
system in irregular waves examined in Section 5.3. From the figure, larger high-
frequency oscillations are observed when larger contact stiffness is adopted, which
is reasonable. However, for the anchor force, relatively small difference is observed
for the three examined values of the contact stiffness. This indicates that we can
have a reasonable prediction of the global response of the coupled system as long
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Figure 5.11: Time histories, during transient and steady-state phases, of the well
boat-floating collar contact force (upper) and of the loads in anchor line-1 (lower)
in beam-sea regular waves, i.e. along xE-axis when set-up A is used, with wave
period T = 6 s and wave height-to-wavelength ratio H/λ = 1/60. Three different
contact stiffnesses kc are considered.

as a reasonably high contact stiffness is assumed, while locally the contact force
may be more sensitive to the actual stiffness. The time histories of the loads in
anchor line-1 show that the total anchor load comprises two components: (1) wave
frequency component that oscillates with the incident wave period and (2) slowly
varying decaying component that oscillates with the natural period ≈ 150 s of
the coupled fish farm-well boat system. The slowly varying resonant oscillation
may be excited by nonlinear wave loads when the coupled system is exposed to
irregular waves and can significantly increase the mooring loads and floating collar
stresses. More discussions for the coupled system in irregular waves can be found
in Section 5.3.

An alternative method (named direct method) to estimate the contact force is
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given by Shen et al. (2016) and is just briefly mentioned here for completeness. The
essence of this method is that the contact force is estimated directly by satisfying
the condition that the floater and the boat share the same normal velocity at a
given contact point. The method is physically sound, but difficult to implement in
actual scenario. For a simplified coupled system in waves, numerical results show
that the two contact methods give the same contact forces and mooring forces if
sufficiently high contact stiffness kc is used in the above introduced indirect method,
see Appendix C.

In general when contact happens, also a tangential force Fs will act on the
ship, directed to the opposite direction of the relative tangential velocity between
the well boat and the floating collar and estimated as Fs = µFc, with µ the fric-
tional coefficient between the well boat (steel) and the floating collar (high-density
polyethylene). According to the experimental results from Dhouibi et al. (2013),
the frictional coefficient µ is in the range µ = 0.09− 0.15. µ = 0.12 will be used in
numerical simulations.

5.3 Theory and numerical model: in long-crested
irregular waves and current

The modeling of the coupled well boat-fish farm system in current has been doc-
umented in Section 5.2. There, the modeling of the well boat in current and the
strategy used for the well boat-fish farm coupling was explained. In this section,
we will mainly deal with the modeling of the coupled system in long-crested irreg-
ular waves and current. For the fish-farm system in irregular waves, the numerical
modeling was introduced in Chapter 4 and is not repeated here. In terms of the
well-boat response, apart from the first-order wave-induced motions, the slow-drift
resonant oscillations of the well boat may also be excited by non-linear interaction
effects between incident waves and body motions.

The well boat can be moored in different positions relative to the fish farm,
as shown in Figure 5.3. Assuming a scenario with main inflow direction along
positive xE-axis, two well-boat set-ups are modeled in this section, i.e. set-up A:
with the well boat at the weather side of the floating collar and set-up C: with the
well-boat bow against the inflow. The coupled system with set-up A is expected
to be more critical in terms of mooring loads and floating collar stresses and will
be our research focus in the next chapter. Results for set-up C will be considered
in selected cases, for comparison.

Irregular long-crested waves and current in positive xE direction are assumed in
the analysis. The modeling of the irregular waves is described in section 5.3.1. For
the coupled system with set-up A (see Figure 5.3) with the well boat placed at the
weather side of the fish farm, the slow-drift surge motion and yaw motion of the
well boat are expected to be small and therefore neglected, i.e. only the slow-drift
sway motion is considered. Detailed explanation of how to estimate the motion is
provided in section 5.3.2. For the coupled system with set-up C (see Figure 5.3),
the slow-drift sway and yaw motions are expected to be far less important than
the slow-drift surge motion, so we will only consider the slow-drift surge motion in
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the simulations and its modeling is briefly discussed in Section 5.3.3.

5.3.1 Irregular waves

The Norwegian standard for design of aquaculture fish farms operating in the sea
(NS9415, 2009) requires that the JONSWAP spectrum with γ = 2.5 for wind-
generated seas shall be used for calculations of response in irregular waves, where
γ is the spectral peakedness parameter. As an example, Figure 5.12 provides the
wave spectra for two sea states that will be investigated in the numerical simulations
in next chapter. They are with Hs = 2 m and Tp = 6 s, and with Hs = 1 m and Tp
= 5 s, corresponding to moderate exposure and to heavy exposure sea conditions
(see Table 1.2), respectively.
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Figure 5.12: JONSWAP wave spectrum as a function of wave frequency. Solid line:
significant wave height Hs = 2 m and peak period Tp = 6 s. Dashed line: Hs = 1
m and Tp = 5 s.

The definition of the JONSWAP wave spectrum and detailed procedure to gen-
erate the long-crested irregular waves were given in Chapter 4. Here only the main
information on the numerical strategy for estimating the well-boat slow-drift mo-
tions is provided. In particular, when generating the incident irregular waves, the
frequency is evenly distributed into Nf components between fmin = 0.7/Tp and
fmax = 2.0/Tp with the length of each interval ∆f = (fmax − fmin)/Nf . Here fmin

and fmax are the minimum and maximum frequency in Hz of the range where the
wave spectrum has energy. The selection of the number of wave components Nf
requires some care. We must require that ∆f is a small fraction of the smallest
natural frequency fn of the relevant slow-drift response in order to model numeri-
cally wave components with frequency sufficiently close to fn and, therefore, able
to excite a resonance condition. In the simulations, Nf = 500 is used. Within each
frequency interval, a frequency value fi is randomly selected and, there, the wave
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spectrum is evaluated, i.e. S(fi). The random selection of frequencies avoids that
the incident-wave time history shows a periodic behavior.

5.3.2 Coupled well boat-fish farm system in set-up A

In this section, we will focus on the modeling of the coupled system in set-up A.
Special attention is paid to the modeling of the slow-drift sway motion of the well
boat. The governing equation of the sway motion is introduced at first by solving
the first-order motion and the slow-drift motion simultaneously. The modelings of
the slow-drift excitation force and slow-drift damping are introduced. The damping
terms may include eddy-making damping and wave-drift damping. The coupling
between the well boat and the fish farm is also included.

To reduce complexity and for validation purpose, a simplified model of the
coupled system is also proposed, with the fish farm represented by a linear spring
and neglecting the influence of the first-order motion. The damping from the fish
farm is also neglected, as it is not straightforward to be incorporated in a simple
way. In this way, frequency-domain solutions for the slow-drift sway motion can
be obtained, using a technique to linearize the eddy-making damping.

Well-boat sway-motion equation

By neglecting the coupling with other rigid-body motions, the sway motion of the
well boat η2 in beam-sea irregular waves and collinear current with speed U∞ can
be described by the following one-degree-of-freedom equation

[M +A22 (∞)] η̈2 +

t∫
0

K22 (τ) η̇2 (t− τ) dτ +BSD22 η̇2

+BD (η̇2 − uw − U∞) |η̇2 − uw − U∞| = FExcit2 + FExt2

(5.5)

Here η̈2 = d2η2/dt
2, η̇2 = dη2/dt and FExcit2 are the acceleration, velocity and

excitation force in sway, including both the first-order and slow-drift components.
M is the mass of the well boat. A22 (∞) and K22 are the infinite-frequency added
mass and the retardation function in sway, respectively. BSD22 is the wave-drift
damping in sway. BD is the quadratic damping coefficient connected with the
eddy-making damping and can be expressed as 0.5ρCDAY with ρ the water den-
sity, AY the projected area of the submerged hull in the direction of the sway
motion and CD the corresponding ship averaged drag coefficient. uw is the trans-
verse component of incident-wave velocity, estimated at 0.5D below the mean free
surface, with D the mean draft of the well boat. FExt2 contains possible external
forces in sway due to coupling with the fish farm, which may include contact force
and connection-line forces. The reason to solve the first-order motion and slow-
drift motion simultaneously is because the first-order velocity may matter when
evaluating the eddy-making damping. This effect will be examined in the next
chapter.

The first-order excitation force is calculated by the linear potential-flow solver
WAMIT. The evaluation of the external forces from the fish farm has been given
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in Section 5.2.2. In the following, we will explain how to find the remaining terms
introduced in Eq. (5.5), i.e. slow-drift excitation force (FSV2 ), wave-drift damping
(BSD22 ) and eddy-making damping (BD).

Slow-drift excitation force

The slow-drift excitation loads are generally much lower than linear wave loads,
but relatively large slow-drift response amplitudes may occur if resonance is excited
and the slow-drift damping, involving wave-drift and eddy-making damping in our
application, is small. Slow-drift excitation loads can be explained in a similar way
as mean wave loads, detailed derivation process can be found in Faltinsen (1990),
here we will just recall the main formulas for sway motion. In general, such loads
are caused by the interaction of a body with irregular long-crested waves. If we
can split the incident waves in N regular-wave components, a generic slow-drift
second-order load oscillates with a circular frequency µ equal to the difference of
two incident-wave frequencies, i.e. µ = ωk − ωj (k, j = 1, .., N). In particular, the
slow-drift second-order force in sway FSV2 can be formally written as

FSV2 =

N∑
j=1

N∑
k=1

AjAk


T 2c
jk cos [(ωk − ωj) t+ (εk − εj)]

+
T 2s
jk sin [(ωk − ωj) t+ (εk − εj)]

 (5.6)

Here Ak, ωk and εk and Aj , ωj and εj , are the amplitude, circular frequency and
random-phase angle for wave k and wave j, respectively. The coefficients T 2s

jk and

T 2c
jk are second-order transfer functions of the cosine and sine contribution to the

force, respectively. By their definition in eq. Eq. (5.6), they are independent of
the wave amplitudes Aj and Ak, but a function of wave frequency ωj and ωk,
as well as of the heading angle of the waves and of the body geometry. One
should note that Eq. (5.6) includes also the mean loads associated with the wave-
body interaction. An approximate way to calculate FSV2 is to use the Newman’s
approximation (Newman, 1974), which implies that

T 2c
jk = T 2c

kj = 0.5
(
T 2c
jj + T 2c

kk

)
T 2s
jk = T 2s

kj = 0
(5.7)

The approximation is less good if T 2c
jk shows maxima or minima in the vicinity

of the line ωj = ωk, or if the natural period of the studied body motion is not
sufficiently large, or in shallow-water conditions, but neither of these cases should
occur in the present study. The direct calculation of Eq. (5.6), including approxi-
mation Eq. (5.7), is still time consuming. Newman (1974) proposed to approximate
Eq. (5.6) further by substituting the double summation with the square of a single
series. This can be done by adding high-frequency terms that have no physical
meaning but do not excite any relevant response if body resonance conditions are
in the low-frequency range. The simplified expression of the slow-drift force is given
as

FSV2 = 2

 N∑
j=1

Aj

√
T 2c
jj cos (ωjt+ εj)

2

(5.8)
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According to Pinkster (1975), the spectral density for the low-frequency part of
the force, i.e. not including the mean-drift force, can be expressed in terms of the
wave spectrum as

SF (µ) = 8

∞∫
0

S (ω)S (ω + µ)

[
F̄2 (ω + µ/2)

ζ2
a

]2

dω (5.9)

where S is the incident wave spectrum, F̄2 is the mean wave load in sway for
frequency ω + µ/2.

Wave-drift damping

The wave-drift damping for the horizontal motions of a structure is connected with
the structure’s ability to generate waves and is a potential flow effect that neglects
interaction with flow separation. In fact, this damping is caused by second-order
effects in the wave-body interactions and therefore is proportional to the square
of the incident-wave amplitude. However it is a linear damping load in terms
of the body slowly-varying speed. The presence of the wave-drift damping can
be seen by comparing free decay model tests in surge or sway of a large-volume
structure in still water and in regular waves. The wave-drift damping in surge or
sway can be explained by interpreting the slow-drift surge or sway speed, caused
by the wave-body interaction, as a quasi-steady forward and backward speed of
the structure (Zhao and Faltinsen, 1988). This ”steady” speed can for an observer
on the structure be interpreted as an incident steady flow, i.e. a fictitious current
with equal and opposite speed, say U∞. The interaction with the body causes a
mean force in the inflow direction that depends on U∞. For the slowly oscillating
body, this force acts as a damping and to a leading order is linearly dependent on
U∞. For example, in case of slowly varying motion in sway, the wave-drift damping

coefficient is therefore BWD
22 = ∂F2

∂U∞

∣∣∣
U∞=0

, with F̄2 the mean-wave force in sway

direction, and assuming implicitly that the body interacts only with waves, i.e.,
without a real current. Within this approach, to estimate BWD

22 , the dependence
on U∞ of the F̄2 experienced by the body must be estimated. In particular, this
can be done by examining the structure in regular waves without current and with
current (1) in the same and (2) in opposite direction of the incident waves, and

then using the approach by Zhao and Faltinsen (1988) to approximate ∂F2

∂U∞

∣∣∣
U∞=0

.

Left plot of Figure 5.13 presents the effect of a current on the mean sway force
on the well boat. Regular beam sea waves and three different current velocities
are considered with U∞ = -0.5 m/s, 0 m/s and 0.5 m/s. The positive current is in
the wave direction. The potential-flow solver HydroStar (BureauVeritas, 2016) is
adopted to estimate the mean-wave loads, considering the wave-current interaction
and neglecting the flow separation. The results indicate that, for the well boat in
beam sea, a current in the wave direction will significantly increase the mean sway
force, especially for cases in short waves. In the HydroStar formulation, only the
first-order term in the parameter τ = U∞ωe/g, being ωe = ω+ kU∞ the encounter
frequency with ω the incident wave frequency and k = ω2/g the wave number, is
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Figure 5.13: Left: the effect of current on the mean sway force based on potential
flow. From the lowest to the highest curve: U∞= -0.5 m/s to 0.5 m/s. F̄2 is
the mean sway force, ξa the wave amplitude, ρ the water density, g the gravity
acceleration, L the boat length. Solid lines: results from the potential-flow solver
HydroStar considering wave-current interactions. Empty circles: results according
to formula from Aranha (1994). Dashed lines: results from our simplified analysis
by the direct pressure-integration method. Right: wave-drift damping BWD

22 as a
function of wave period T .

kept in the simplified free-surface boundary condition when considering the wave-
current interactions. It means that the results in Figure 5.13 are reliable for small
τ . So for very short waves (T = 2π/ω ≤ 4 s), the results from HydroStar are
questionable. In order to characterize the effect of current in high wave frequency,
we examined also the results based on the formula proposed by Aranha (1994).
This formula is commonly used in engineering practice and there are some disputes
about its accuracy. According to Aranha (1994), the mean sway force is influenced
by the current velocity as

F̄2 (ω,U∞) = F̄2 (ωe) (1 + 4U∞ω/g) (5.10)

This expression is formally similar to that given in the short wavelength asymptotic
theory by Faltinsen et al. (1980). The results based on Eq. (5.10) are also shown
in Figure 5.13. From the figure, reasonable agreement is observed between them
and those from HydroStar for wave period T ≥ 4 s. We also carried out a simplified
analysis by using the direct pressure integration method for cases with very high
frequency, i.e. ω → ∞, see Appendix D. It is assumed that the waterline of the
well boat near the free surface acts like a vertical wall and that the incoming wave
is totally reflected. For the effect of current, only the encounter frequency effect
is considered, then we can obtain similar formula as that from Aranha (1994) and
given as

F̄2 (ω,U∞) = F̄2 (ω) (1 + 4U∞ω/g) (5.11)

It should be noted that only the incident wave frequency ω is involved in this
formula. Since the applicability of the formula is for very high wave frequency,
the difference between ω and ωe is expected to be small, so the mean wave load
predicted, respectively, by Eq. (5.10) and Eq. (5.11) should be similar. The
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obtained results according to Eq. (5.11) are also shown in the left plot of Figure
5.13 and indicate a consistency with the formula by Aranha for small values of
incident-wave periods. Therefore, the HydroStar’s predictions of the mean-drift
force in sway have been substituted by the Aranha’s formula for T <4 s. The
resulting mean-drift force in sway was used to estimate the wave-drift damping
presented in non-dimensional form in the right plot of Figure 5.13.

BWD
22 (ω)/ζ2

a represents the second-order transfer function of the mean wave-
drift damping and can be used to estimate the mean wave-drift damping B̄SD22 in
irregular long-crested waves as follows

B̄SD22 = 2

∞∫
0

S (ω)

(
BWD

22 (ω)

ζ2
a

)
dω (5.12)

Faltinsen and Zhao (1989) argued that there also ought to be a slowly-varying wave-
drift damping if there is a slowly-varying excitation force. It can be expressed in a
similar way as the slow-drift excitation force and reads

BSD22 =

N∑
j=1

N∑
k=1

AjAk
∂

∂U


T 2c
jk cos [(ωk − ωj) t+ (εk − εj)]

+
T 2s
jk sin [(ωk − ωj) t+ (εk − εj)]


U=0

(5.13)

The formula can be further simplified in a similar way as for the slow-drift excitation
force shown in Eq. (5.8) to increase computational efficiency.

Eddy-making damping

Eddy-making damping is usually also important for the estimation of slow-drift
sway motion. Here, this is calculated by strip theory assuming valid the cross-flow
principle. In order to have a reliable prediction of its value, we need a reliable
estimation of the drag coefficient at the different ship cross-sections. Detailed
procedures to estimate the cross-sectional drag coefficients for cases in oscillatory
flow only and in combined oscillatory flow and current are presented in the fol-
lowing. The oscillatory flow is mono-chromatic and associated with the natural
sway period. The 3D flow effects are also accounted for and estimated by using a
reduction factor in a similar way as it was done in estimating transverse current
forces in Section 5.2.1.

Cross-sectional drag coefficient in oscillatory flow

Faltinsen (1990) showed that the cross-flow drag coefficient for ship cross-sections in
mono-chromatic oscillatory flow depends on the section geometry (beam-to-draft
ratio, bilge radius, bilge keel presence and dimensions), the Keulegan-Carpenter
number KC=UMT/D (with UM = amplitude of oscillatory relative velocity be-
tween the body and the ambient flow, T = oscillatory period, D = sectional draft),
the free-surface and three-dimensional (3D) effects. A brief explanation of the dif-
ferent parameters will be given in the following.
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Free surface: For the slow-drift oscillation in sway, relevant characteristic KC
number is expected to be less than 10. Then the free surface will have little influ-
ence on the drag coefficient, according to Faltinsen (1990).

Cross-sectional shape: The effect of the cross-sectional shape on the drag coeffi-
cient for typical midship sections is mainly due to the bilge radius r, beam-to-draft
ratio B/D and bilge keels. Increasing the bilge radius means decreasing the drag
coefficient. The beam-to-draft ratio will have influence, but only when B/(2D) < 1.
In terms of the bilge keels, the drag coefficient depends strongly on the bilge-keel
breadth.
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Figure 5.14: Drag coefficient CD as a function of aspect ratio B/2D for a rectan-
gular cylinder with sharp corners at KC = 20 (Tanaka et al., 1982).
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Figure 5.15: Left: drag coefficient CD as a function of KC for a sharp-edged
square cylinder from Tanaka et al. (1982) and Bearman et al. (1984). Right: drag
coefficient CD as a function of r/D at KC = 20. Experimental results are from
Tanaka et al. (1982). The fitted curves are used in present analysis.

For a rectangular cross-section, the drag coefficient will be obtained by adjusting
the value for a sharp-edged square cross-section, considering the influence of aspect
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ratio and bilge radius. The reason is that relevant information of the drag coefficient
for a square cross-section is more readily available. Detailed procedure used here
is explained below. The dependence of the drag coefficient CD on the aspect ratio
B/(2D) for a sharp-edged rectangular cross-section at KC = 20 is shown in Figure
5.14 (see Tanaka et al., 1982). The dependence is assumed to be applicable also for
KC¡ 20. If the drag coefficient for a square section is known, then the value for a
general rectangular section can be obtained, considering the aspect ratio influence.
So our main attention is paid to the estimation of CD for a square section.

The drag coefficient CD,r=0 for a sharp-edged square section as a function of
KC number is shown in the left plot of Figure 5.15 (see Tanaka et al., 1982 and
Bearman et al., 1984). A fitted curve of the experimental data is also provided in
the figure and will be used in the analysis. On the other hand, experimental results
by Tanaka et al. (1982) show that there is a strong effect of the bilge radius on the
drag coefficient, see the right plot of Figure 5.15. Similarly as shown in Eq. (5.3) for
a section in steady flow, a best fit of these experimental data is estimated, giving

CD,r/CD,r=0|KC=20 = 0.5 + 0.5e−3r/D. (5.14)

The examined KC is 20, but the bilge-radius influence on the CD is assumed
applicable also for KC< 20, as we do not have, to author’s knowledge, experiments
for KC lower than 20. This is an error source in the numerical results. This means
that CD,r for a given KC can be evaluated by

CD,r = CD,r=0 · (0.5 + 0.5e−3r/D) (5.15)

with CD,r=0 given by the fitted curve in the left plot of Figure 5.15 as a function
of KC number. Once CD,r for a square section is obtained, by accounting for the
influence of aspect ratio B/(2D), the drag coefficient CD for a generic rectangular
section at different KC numbers can be estimated by

CD = CD,r · CD,(B/2D)/CD,(B/2D=1) (5.16)

with CD,B/2D provided by the fitted curve in Figure 5.14.
Next, we will show how the drag coefficients for different cross-sections of the

well boat are predicted. For the ship sections without bilge keels and with geometry
close to a rectangle (sections 4-6, 14-18, see Figure 5.2), the same procedure as the
one described for a rectangular cross-section has been followed. For sections with
bilge keels (sections 7-13), the above introduced procedure cannot be applied, as
the drag coefficient depends strongly on the breadth of the bilge keels. Instead, we
estimate the drag coefficient based on the experimental data from Faltinsen and
Sortland (1987). In these experiments, B/(2D) = 1.35, r/D = 0.22 and three bilge-
keel breadth-to-draft ratio b/D = 0, 0.03 and 0.06 were examined. In our case, for
the considered well-boat sections, B/(2D) = 1.12, r/D = 0.15 − 0.23 and b/D =
0.0448. The drag coefficient is expected to be mainly determined by the parameter
b/D, so its value can be obtained through interpolating the experimental data in
terms of b/D, see Figure 5.16. There are differences of B/(2D) and r/D between
the well-boat sections with bilge keels and the sections studied experimentally and
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Figure 5.16: The effect of bilge keels on the drag coefficient CD at small KC
numbers. Symbols: experimental data from Faltinsen and Sortland (1987). Solid
curve: interpolated value for the cross-section of the well boat equipped with bilge
keels.

given in the figure, but their effect is expected to be small, based on the results
shown in Figures 5.14 and 5.15.

The well-boat sections near the ship ends (section 1-3, 19-20, see Figure 5.2)
present shapes not studied experimentally or numerically. A rough estimation of
their drag coefficients has been obtained by assuming that the flow around one
of these cross-sections resembles that around a flat plate and CD= 8.0 KC−1/3 is
assumed for small KC, as documented in Faltinsen (1990). The reasons to apply
CD for a flat plate to these sections are: (1) the drag coefficients for these sec-
tions in steady flow are close to that for a flat plate (2) some of these sections are
characterized with small beam-to-draft ratio. This is an error source but has a
limited influence on the average drag coefficient for the well boat, as explained in
Section 5.2.1. Similarly as shown in Section 5.2.1 in steady flow, the 2D drag coeffi-
cient for different sections needs to be lowered as consequence of three-dimensional
(3D) effects and the same reduction factor as the one for steady flow is adopted
here because no study on 3D effects for oscillatory flow is available in literature.

Figure 5.17 shows the estimated drag coefficients for different sections of the well
boat at KC=8 (left plot) and KC=4 (right plot). From the figure, the ship averaged
drag coefficients are about 2.2 and 2.5 for KC=8 and KC=4, respectively, which
indicates that the average drag coefficient is not so sensitive to the change of KC
number, in the KC range relevant for our application. In order to assess the method
proposed here, we applied it to estimate the average transverse drag coefficient for
a ship for which experimental data are available in Faltinsen et al. (1986). The
results are shown in Figure 5.18. From them, the empirically estimated average
drag coefficients agree well with the experimental data at different KC numbers.
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Figure 5.17: Sectional transverse drag coefficient CD(x) for different sections of the
examined well boat. Left: KC=8. Right: KC=4. The 2D drag coefficients with
and without the 3D reduction effects are shown. The corresponding ship averaged
drag coefficients are also given.
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Figure 5.18: Drag coefficient for slow-drift sway motion of the well boat as a
function of KC number. Symbols: experimental data from Faltinsen et al. (1986).
Solid line: drag coefficient estimated with the empirical approach proposed here.

This suggests a fair reliability of the approach proposed for the CD prediction in
oscillatory flow.

Cross-sectional drag coefficient in combined oscillatory flow and current

Current may have an important effect on the eddy-making damping and its in-
fluence on wave-drift damping and slow-drift excitation force should also be con-
sidered. Sarpkaya and Storm (1985) conducted experiments with circular cylin-
ders moving with constant velocity in a sinusoidally oscillating flow to determine
the drag and inertial coefficients and found that, in general, the drag and inertia
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coefficients obtained for coexisting waves and current (both when following the
waves and when in opposite direction) were found to be much smaller than the
drag and inertia coefficients derived in waves alone for small KC number. They
pointed out that the force coefficients were governed by Keulegan-Carpenter num-
ber KC=UMT/D, Reynolds number Rn=UMD/ν, alternatively expressed by their
ratio β=Rn/KC=D2/νT , and by the reduced velocity VK=U∞T/D. Here the
involved parameters are defined as above in this section and ν is the kinematic
viscosity coefficient of water.

Hamel-Derouich (1993) carried out experiments for smooth sharp-edged rect-
angular cylinders. The cylinders were horizontally submerged and tested in wavy
flow and in combined steady and wavy flows, corresponding to low KC numbers
up to a value of 8. Three different reduced velocities were considered, i.e., VK=8,
12, 16. The experiments showed that the drag coefficient measured in conditions
without current overestimated the measured wave-current induced non-dimensional
forces and the drag coefficient under combined waves and current was quite close
to the value in steady flow and was less KC-number dependent, especially for
larger reduced velocity. The phenomenon can be explained by the fact that when
Uc/UM > 1, the returning vorticity due to the oscillatory part of the flow has a
small influence on the inflow velocity to the body, so the influence of KC on CD is
small. In the present analysis, Uc/UM ≥ 1 for the cases relevant for determining the
operational conditions of the well boat. Therefore, the drag coefficient for steady
flow will be adopted for cases with waves and current. A sensitivity analysis will
be performed to investigate the influence of the variation of the drag coefficient.

Slow-drift sway motion of the well boat with simplified fish-farm cou-
pling

To better explain and verify the numerical modeling of the slow-drift sway motion
of the well boat, a simpler model is proposed. In this case, the loads in sway from
the fish-farm system are simplified as a linear spring, neglecting the damping due
to the net cage and the mooring lines. Moreover the influence of the first-order
response is neglected when formulating the eddy-making damping. Then the slow-

drift sway motion η
(2)
2 of the well boat can be described by the following equation

[M +A22 (0)] η̈
(2)
2 +BSD22 η̇

(2)
2 +BD

(
η̇

(2)
2 − U∞

) ∣∣∣η̇(2)
2 − U∞

∣∣∣+ C22η
(2)
2 = FSV2

(5.17)

where η̈
(2)
2 = d2η

(2)
2 /dt2 and η̇

(2)
2 = dη

(2)
2 /dt are the slow-drift acceleration and

velocity in sway, A22(0) is the zero frequency added mass in sway, FSV2 is the slow-
drift excitation force (including mean value) in sway, C22 is the equivalent restoring
stiffness from the fish farm including the mooring-line and the floating-collar effects.

If only the mean value and the standard deviation of the sway response are
targeted, the time-varying feature of the wave-drift damping can be neglected (see
e.g. Faltinsen, 1990). It means that only the mean wave-drift damping can be
considered, i.e. BSD22 ≈ B̄SD22 . If then the nonlinear eddy-making damping is
approximated with an equivalent linear damping, Eq. (5.17) can be solved in the
frequency domain. Relative to a time-domain solution, this is a very robust and
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time-efficient way to obtain the mean value and standard deviation of the motion.
In particular, the nonlinear eddy-making damping term is linearized through an
equivalent stochastic linearization, see Price and Bishop (1974) and Roberts and
Spanos (2003). By assuming a Gaussian response, which is not strictly true, we
can obtain an equivalent linear damping coefficient, in the form

Be22 = BD

[
4√
2π
σ
η̇
(2)
2

exp
(
−0.5U2

∞/σ
2

η̇
(2)
2

)
+ 2U∞Φ

(
U∞√
2σ

η̇
(2)
2

)]
(5.18)

where σ
η̇
(2)
2

is the standard deviation of the slow-drift sway velocity and Φ is the

error function

Φ =
2√
π

x∫
0

e−t
2

dt (5.19)

We can approximate σ
η̇
(2)
2

as µnση(2)2
, where σ

η
(2)
2

is the standard deviation of

slow-drift sway motion and µn =
√
C22/ [M +A22 (0)] is the natural undamped

circular frequency in sway. For zero current velocity, i.e. U∞ = 0 m/s, Be22 =
4BDση̇(2)2

/
√

2π. This is consistent with the expression documented in Faltinsen

(1990). Eq. (5.17) can then be written as

[M +A22 (0)] η̈
(2)
2 +B22η̇

(2)
2 + C22η

(2)
2 = FSV2 (5.20)

with B22 =
(
B̄SD22 +Be22

)
the sum of mean wave-drift and linearized eddy-making

damping coefficients. The variance of η
(2)
2 can be written as (see e.g. Faltinsen,

1990)

σ2

η
(2)
2

=

∞∫
0

SF (µ) dµ

{C22 − [M +A22 (0)]µ2}2 +B2
22µ

2
(5.21)

Here SF is the spectral density for the slow-drift excitation force, B22 is also a
function of σ

η
(2)
2

, so the unknown σ
η
(2)
2

is on both the left- and right-hand side of

Eq. (5.21) and iteration is needed to obtain σ
η
(2)
2

.

If the damping B22 is small, the major contribution to the variance comes
from the resonance, then SF (µ) can be approximated as SF (µn) and set outside
the integral. By small damping, we mean small relative to the critical damping
2 [M +A22 (0)]µn. It follows that

σ
η
(2)
2

=

√
SF (µn)π

2C22B22
(5.22)

If the mean wave-drift damping B̄SD22 is not considered and the current velocity is
zero, then B22 = Be22 = 4BDση̇(2)2

/
√

2π ≈ 4BDµnση(2)2
/
√

2π. σ
η
(2)
2

from Eq. (5.22)

can then be expressed as

σ
η
(2)
2

=

[
SF (µn)π

√
2π

4µnC22ρACD

]1/3

(5.23)
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This equation shows that σ
η
(2)
2

is proportional to C
−1/3
D . This implies low sensitivity

between σ
η
(2)
2

and CD.

5.3.3 Coupled well boat-fish farm system with set-up C

In set-up C, the slow-drift surge motion of the well boat is excited and needs to
be estimated. By neglecting the coupling with other rigid-body motions, the surge
motion η1 of the well boat in head-sea irregular waves and collinear current with
speed U∞ can be described by the following equation

[M +A11 (∞)] η̈1 +

t∫
0

K11 (τ) η̇1 (t− τ) dτ +BSD11 η̇1

+ CX (η̇1 − uu − U∞) |η̇1 − uu − U∞| = FExcit1 + FExt1

(5.24)

Here η̈1 = d2η1/dt
2, η̇1 = dη1/dt and FExcit1 are the acceleration, velocity and

excitation force in surge, including both the first-order and slow-drift components.
A11 (∞) andK11 are the infinite-frequency added mass and the retardation function
in surge, respectively. BSD11 is the wave-drift damping in surge. CX is the quadratic
damping coefficient. uu is the longitudinal component of incident-wave velocity,
estimated at 0.5D below the mean free surface, with D the mean draft at the
middle section of the well boat. FExt1 contains possible external forces in surge due
to coupling with the fish farm, which may include contact force and connection-line
forces. The slow-drift excitation force FSV1 in surge can be estimated in a similar
way as done for FSV2 . Here we just outline the approach to find the slow-drift
damping in surge, including wave-drift damping (BSD11 ) and viscous hull damping
(CX).

Wave-drift damping

Left plot of Figure 5.19 shows the effect of current on the mean wave force in surge
for the well boat. Different from the beam-sea condition (see Figure 5.13), the
current presence will have a small influence on the mean surge force in shorter
waves (wave period T ≤ 6s). For very short waves (T ≤ 4s), the results from
HydroStar are not reliable, as explained in section 5.3.2. Aranha’s formula is also
employed to account for the current influence (not shown here), but poor agreement
is observed compared with the results from HydroStar. This indicates that such
formula is applicable for beam-sea waves and current, but not for head-sea scenario.
Results from short wavelength asymptotic theory by Faltinsen et al. (1980) are
also given and are used to estimate the wave-drift damping for shorter waves, to
overcome the limitations of the HydroStar predictions in this wave-frequency range.
The requirement by the asymptotic theory that the ship hull surface at the mean
waterline should be vertical is not exactly satisfied by the examined well boat and
is regarded as an error source. The wave-drift damping for slow-drift surge motion
obtained with this approach is shown in the right plot of Figure 5.19 as a function
of the wave period. From the figure, the wave-drift damping is small especially
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for shorter waves (T ≤ 6 s). This suggests that, for the sea states relevant in our
analysis (peak period Tp ≤ 6s), the wave-drift damping is expected to be not so
important.
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Figure 5.19: Left: the effect of current on the mean surge force. From the lowest to
the highest curve: U∞ = -0.5 m/s to 0.5 m/s. F̄1 is the mean surge force. Solid lines:
results from the potential-flow solver HydroStar considering wave-current interac-
tions. Dashed lines: results from short-wavelength asymptotic theory (Faltinsen
et al., 1980). Right: wave-drift damping in surge BWD

11 for the well boat as function
of the wave period T . The solid line indicates the part predicted with HydroStar
and the dashed line the part predicted with the short-wavelength asymptotic the-
ory.

Viscous damping

The prediction of the viscous surge force on the well boat in non-separated oscilla-
tory flow is addressed here. The boundary-layer flow can be turbulent or laminar
depending on the characteristic Reynolds number. The flow is likely to be turbulent
in full scale. Jonsson (1980) proposed empirical formulas for the shear stress that
apply to turbulent flow along fixed-plane surfaces. Outside the boundary layer, the
flow oscillates harmonically. Jonsson defines the Reynolds number as

Rn = U2
M/ων = ωA2

0/ν (5.25)

where ω is the oscillatory circular frequency and A0 the oscillatory amplitude. For
the slow-drift surge motion, ω and A0 are taken, respectively, as the resonance
frequency and the standard deviation of the motion. Rn=105 is proposed as an
engineering criterion for transition to turbulent boundary-layer flow for a smooth
surface. When the surface is smooth, Jonsson writes the maximum wall shear stress
τwm as

2τwm/
1

2
ρU2

M = 0.09Rn−0.2 (5.26)

However, when considering the viscous force in surge on the well boat connected
with the non-separated turbulent boundary-layer flow, it is not sufficient to account
for the shear stresses. Since the ship surface has a finite curvature, it follows that
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there is an in/out flow through the boundary layer (Faltinsen and Timokha, 2009).
The in/out flow is associated with pressure gradient. It means that there is also a
pressure drag force. We write the total drag force in the longitudinal ship direction
as

FD,x =
1

2
ρ
(
0.09Rn−0.2Sw + CpAX

)
η̇

(2)
1

∣∣∣η̇(2)
1

∣∣∣ = CX η̇
(2)
1

∣∣∣η̇(2)
1

∣∣∣ (5.27)

Here η̇
(2)
1 is the slow-drift velocity in surge, Sw is the mean wetted-surface area,

Cp and AX are the drag coefficient and the mean-wetted projected area in the
longitudinal ship plane. Projected area AX can be approximated as B × D. By
applying Eq. (5.27) to the ship presented in Faltinsen et al. (1986) and comparing
with their experimentally obtained CX from free-decay test, we have Cp = 0.59 for
their ship, once substituted in the CX expression of Eq. (5.27) the values for Rn,
Sw and AX . Since the geometry of the ship examined by Faltinsen et al. (1986) is
quite close to the present well boat, the same Cp will be used for the well boat.

5.4 Conclusions and following work

The numerical modelings of a well boat operating at a fish farm in current only
and in combined long-crested irregular waves and current have been introduced.
A modern design well boat and a realistic fish farm were adopted. Both the well
boat and the fish farm were modeled with state-of-the-art theoretical and numerical
formulations. In particular, the transverse viscous loads on the boat were estimated
by the cross-flow principle and the cross-sectional drag coefficients were estimated
empirically and validated against available experiments. Important parameters
are section geometry, Reynolds number and three-dimensional flow at the ship
ends, and in addition, reduced velocity and Keulegan-Carpenter number with the
presence of waves. The strategy used for the coupling between the well boat and fish
farm was also introduced and the approach to measure the contact force between
them was explained.

For the coupled system in long-crested irregular waves and current, the numer-
ical modeling of the sway motion (including the first-order motion and slow-drift
motion) of the well boat when operating at a realistic fish farm in setup A, was
introduced. The approach to estimate the slow-drift excitation force and slow-drift
damping (wave-drift damping and eddy-making damping) was given. The motion
equation of the slow-drift sway motion of the well boat was also provided by simpli-
fying the influence of the net cage as a restoring term and neglecting the influence
of the first-order motion. The simplified analysis involves an analytically-oriented
approach and will serve in the next chapter as a verification of the complete time-
domain analysis of the coupled well boat-fish farm system. The complete coupling
with well boat in setup C has been also outlined as it will be examined for selected
cases in the next chapter.

The proposed numerical model will be used to analyze the coupled well boat-
fish farm system in the time domain in the following chapter and the operational
conditions of the well boat will be determined through systematic simulations.
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Chapter 6

Numerical investigation of a
well boat operating at a fish
farm

The dynamic responses of a well boat operating at a fish farm in current and in long-
crested irregular waves and current are analyzed numerically in the time domain
using the numerical model proposed in Chapter 5. The main target is to quantify
the influence of the well boat on the fish farm and to determine the operational
conditions of the well boat. The most critical scenario with the well boat placed
at the weather side of the fish farm is analyzed in detail. Special attention is paid
to two critical response variables, i.e. maximum anchor-line loads and maximum
floating-collar stresses.

Numerical response of the coupled system in current is presented at first. The
influence of the well boat on the fish farm is addressed. A detailed sensitivity
analysis is also performed and the effects of different parameters on the two critical
response variables are discussed. The most important parameters for determining
the operational conditions of the well boat are identified.

The coupled system in long-crested irregular waves and current is investigated
afterwards. The slow-drift sway motion of the well boat is studied at first by sim-
plifying the fish farm as a linear spring. The modeling of the slow-drift motions of
the well boat is verified by comparing the mean value and standard deviation of the
motion from the time domain with those from frequency domain when equivalent
linearized drag damping is incorporated. Then the coupled system with a realistic
fish farm is analyzed in detail, together with a sensitivity analysis to identify the
important parameters influencing the two critical response variables. Lastly, the
operational conditions of the well boat are determined through systematic simu-
lations. Parts of the results in this chapter are documented in Shen et al. (2016),
Shen et al. (2018a) and Shen et al. (2018b).
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6.1 Physical investigation of the coupled system
in current

In this section, we present a physical investigation of a coupled well boat-fish farm
system in current using the numerical model proposed in Section 5.2. Relevant
arrangement and dimensions of the system are described in Section 5.1. The main
focus is on how the presence of the well boat will influence the fish farm. Based on
the previous description of the proposed numerical model, we expect that the nu-
merical results for the coupled system are reliable. Unfortunately, no experimental
data are available for a quantitative validation of our numerical model including
the well boat and the fish farm. Performing such model tests is challenging due
to the scaling of different components. The coupled system with set-up A (see
Figure 5.3), with the well boat placed at the weather side of the floating collar, is
our research focus. Results for the other two set-ups presented in Figure 5.3 will
be considered in selected cases, for comparison. Current with zero incident angle
are considered in nominal simulations. ”Nominal” denotes that basis values are
used in the simulations. First, nominal results are shown in section 6.1.1. Special
attention is paid to the load in anchor line-1 (defined in Figure 5.1) and to the
floating-collar stresses, which are two important parameters for the fish-farm in-
tegrity. Then a detailed sensitivity analysis is performed in section 6.1.2 to identify
important parameters affecting the anchor loads and the maximum stress in the
floating collar. Finally, the operational conditions of the well boat are discussed
and the most important parameters for determining them are proposed in section
6.1.3.

6.1.1 Nominal results

Time histories of the loads in anchor line-1 in current are shown in Figure 6.1. In
the simulations, the isolated fish farm is investigated first, then, after about 280
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Figure 6.1: Time histories of loads in anchor line-1 in current only. The pre-tension
is subtracted. Current velocity varies from 0.1 m/s to 1.0 m/s.
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s, the well boat is connected with the fish farm. The considered current velocity
varies from 0.1 m/s to 1.0 m/s, covering the scenario from small exposure to high
exposure, according to the Norwegian Standard (see Table 1.2). The figure shows
that the mean steady-state anchor loads increase strongly due to the viscous current
loads on the well boat.
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Figure 6.2: The effect of the well boat on the mean steady-state anchor loads.
Results for set-up B and set-up C (see Figure 5.3) are also provided. FF and
FC represent the anchor loads for the fish farm only and for the coupled system,
respectively.

In Figure 6.2, the steady-state anchor loads with and without the well boat are
shown. The figure highlights that the anchor load increases by more than 40% in
small current velocities and up to 90% in high current velocities due to the well
boat. Results for the other two set-ups with boat heading angle ψ = 270o and ψ
= 180o are also given. It is not surprising that the well boat has a small influence
on the anchor loads for set-up C with boat heading angle ψ = 180o, as the loads
on the boat mainly come from the hull friction in this case. The anchor loads for



140 Numerical investigation of a well boat operating at a fish farm

set-up B are about 20% smaller than that for set-up A. This is because the shading
effect of the net cage on the ambient flow is considered when estimating the viscous
loads on the boat for set-up B. Apart from the flow reduction due to the front part
netting, an additional reduction after the flow go through the aft part of the net
is also considered for set-up B. The flow reduction factor is estimated according to
Eq. (2.38). Steady shapes of the coupled system with different set-ups are shown
in Figure 6.3.
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Figure 6.3: Steady configurations of the coupled system in current. Current velocity
U∞ = 0.5 m/s along the x-axis. Left: set-up A. Middle: set-up B. Right: set-up
C. Upper: bird view. Lower: three-dimensional view.

Figure 6.4 and Figure 6.5 examine the influence of the well boat on the hori-
zontal deformations of the floating collar. In Figure 6.4, time histories of the first
seven horizontal mode amplitudes are provided for current velocity U∞=0.5 m/s.
Both the results for the fish farm only and for the coupled system are included.
From the figure, the first four horizontal modes are the most important and there is
a big increase of both rigid-body surge mode (c1) and other elastic cos(nβ) modes
due to the well boat. Structural modes that are asymmetric about the xE-axis, i.e.
sin(nβ) are also included in the simulations, but they are relatively small, so they
are not presented here. The influence of the well boat on the steady values of the
first four horizontal mode amplitudes of the floating collar versus current velocity
is shown in Figure 6.5. Numerical results indicate that the well boat will strongly
increase these mode amplitudes. Considering the current speed U∞=0.5 m/s, the
well boat will increase the first four mode amplitudes by about 41%, 99%, 73.7%



6.1. Physical investigation of the coupled system in current 141

0 200 400 600 800
-5

0

5

10

15

20

25

30
c

1

c
2

c
3

c
4

c
5

c
6

c
7

Fish farm

Coupled
c

1

c
3

c
2

c
4

Figure 6.4: Time histories of non-dimensional horizontal floating collar Fourier
mode amplitudes cn in current with set-up A (see Figure 5.3). Current velocity
U∞ = 0.5 m/s. The different mode amplitudes are made non-dimensional by the
cross-sectional radius of the floating collar tubes cf = df/2.
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Figure 6.5: The effect of the well boat on the steady values of surge and first
three elastic horizontal mode amplitudes versus current speed. The different mode
amplitudes are made non-dimensional by cf . Current velocity varies from 0.1 m/s
to 1.0 m/s. Results for cases with set-up B and set-up C are also provided.

and 360%, respectively. Numerical results for the system with set-up B and set-up
C are also shown in the figure. Negligible difference is observed in the floating
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collar deformations with and without the well boat for set-up C. For cases with
set-up B, the presence of the well boat will mainly affect the surge motion c1 and
the third elastic mode c4. The main reason is that there is no contact between the
well boat and the floating collar in this scenario and the loads from the well boat
are transferred to the fish farm through the connection lines.

To see more clearly how the well boat will influence the floating collar, the stress
distribution along the floating collar due to horizontal deformations without and
with the well boat are shown in Figure 6.6.
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Figure 6.6: Stress distribution along the floating collar due to horizontal defor-
mations. The stress is made non-dimensional by the yield stress (high-density
polyethylene). The labels 0o - 360o represent the radial angle β (position) along
the floating collar. Upper left: fish farm system only. Upper right: coupled system
with set-up A. Lower left: set-up B. Lower right: set-up C. Different lines corre-
spond to different current velocities and from inner to outer they correspond to
current velocity U∞ = 0.1 m/s - 1.0 m/s. The 8 solid circles in each plot represent
the positions where bridle lines are attached to the floating collar.
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The maximum stress due to horizontal deformations at a position x = R cosβ
along the floating collar is given as

σ (β, t) =
M (β, t)

I
rmax =

Ermax

R2

∞∑
n=2

n2[cn (t) cosnβ + dn (t) sinnβ] (6.1)

where rmax = 3cf with cf = df/2 the cross-sectional radius of the floating collar,
which comprises two tubes, R = (Df1/2 + Df2/2)/2 is the mean value of the
center line radius of the two tubes. Results are provided for all the three coupling
set-ups in Figure 5.3. From Figure 6.6, the maximum stress for set-up A occurs
at the region where the well boat is in contact with the floating collar while the
maximum stress for the two other set-ups occurs at the positions β = 117o and
β = 243o where bridle lines are attached. Moreover, the maximum stress for set-up
A is much larger than those for the other two set-ups and for the fish farm only.
By examining the loads in anchor line-1 and stresses along the floating collar for
set-up A and set-up B, we can see that it is more favorable to place the well boat
in the leeward side of the fish farm, if one accepts to face higher probability of
sucking the net into the well-boat propeller.

6.1.2 Sensitivity analysis

Due to uncertainties in the mathematical modeling and system set-up, we per-
formed a sensitivity analysis for the coupled system in current. The main focus is
on the loads in anchor line-1 (defined in Figure 5.1) and the maximum stresses in
the floating collar. As explained before, the well boat is implicitly assumed to be
placed at the weather side of the fish farm (set-up A). The different parameters
examined are shown in Table 6.1. In order to quantify the significance of them and
try to identify the important ones, we present condensed results in Figure 6.7 and
Figure 6.12 for the two parameters, respectively. Each bar represents the percent-
age difference of the load in anchor line-1 (Figure 6.7) and the maximum floating
collar stress (Figure 6.12) with respect to the nominal value, averaged over all the
considered current velocities. From the figures, we can see that each parameter has
different impact on the examined two parameters. Parameters that lead to more
than 5% difference are marked by ”×” in the right two columns in Table 6.1. More
detailed discussions are presented below.
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Figure 6.7: Each bar represents the percentage difference of the anchor load with
respect to the nominal value, averaged over all the examined current velocities. The
numbers on the horizontal axis refer to the variation numbers as given in Table
6.1.

Environment : In the nominal simulations, zero current direction αc = 0o is
assumed. αc = −15o and αc = 15o are considered in the sensitivity analysis to
account for the influence of possible change of current direction. Changing the
current direction to αc = −15o will reduce the anchor load by about 12%. There
are two reasons for the reduction. One is that the current loads on the boat are
reduced due to the change of current direction. The other is that the anchor line
provides less support to the fish-farm system in the considered current direction.
Small difference is observed with respect to the nominal value for the case with
αc = 15o. This is because smaller load is exerted on the well boat while more
load is absorbed by the anchor line, so the joint effects tend to balance each other
leading to a small change of the anchor load.

Well boat : The cross-sectional drag coefficients CD for the well boat in current
are estimated empirically (see Section 5.2.1), so an error in the boat drag coefficient
is expected. In the nominal simulations, the ship averaged drag coefficient equals
to 0.9. Changing the value by 10% leads to about 4% change of the anchor load
with respect to the nominal value.

In the following, we will discuss the influence of the fish farm related parameters
on the anchor load.

Floating collar : The influence of the floating collar elasticity on the anchor load
is studied and numerical results indicate that modeling the floating collar as rigid
or as flexible has a small influence on the anchor load. Similar conclusion was
drawn for the fish farm without well boat when exposed to current in Chapter 4.
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In the nominal simulations, the well boat is connected to the floating collar by
two ropes at positions β1 = 135o and β2 = 225o, as shown in Figure 5.1, while in
the sensitivity study β1 = 90o and β2 = 270o are examined. Negligible difference
is observed when changing the positions where the well boat is connected to the
floating collar.

Y
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Z

Figure 6.8: Sketch showing the lifting of the sinker tube up during the loading/of-
floading operation. Left: initial shape. Right: sinker tube is lifted up (well boat
not shown).

Sinker tube: During the loading/offloading operation, the sinker tube may be
lifted up for sake of operational convenience and this is not considered in nominal
simulations. Lifting the sinker tube up to half of its original depth will reduce the
anchor load by 16.8%. To lift the sinker tube, additional 20 ropes between the
floating collar and the sinker tube are added, see Figure 6.8, using similar lift-up
configuration as in Nygaard (2013).

A larger weight of the fish-farm bottom is expected to limit the reduction of
net-cage volume when the fish farm operates in exposed regions. To investigate
quantitatively this effect, two additional bottom weights have been examined and
related results are compared with those of the nominal fish-farm set-up. These
bottom weights correspond, respectively, to a sinker tube weight ws=80 kg/m with
center point weight Wc= 1000 kg, and ws=93 kg/m with center point weight Wc=
1500 kg. The choices are motivated by expected practical set-ups for fish farms op-
erating in exposed regions. Numerical results show that the anchor load increases
by about 9% and 12.2%, respectively, with the two new bottom weights.

Net cage: In the nominal simulations, the shading effects of the well boat on
the net incoming flow is not considered when evaluating the loads on the net cage.
In reality, the presence of the well boat will change the incoming flow and will
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consequently alter the loads on the net cage. Only the ship wake effect on the
front part of the net cage is assessed. To quantify the influence, we need to have
a reasonable estimation of the flow distribution behind different sections of the boat.

X

Y

Z

Figure 6.9: Positions of the different sections of the well boat relative to the net
cage from bird view.

The relative positions of the different well-boat sections to the net cage are
shown in Figure 6.9. The net cage is in the wake of section 3 to section 17. Since
we do not have available information on the flow behind each section individually,
we divide all the considered sections into two types: with and without bilge keels.
For sections with bilge keels (section 7-13), the flow will separate at the leading
edge (i.e. at the sharper corner in the weather side) and the flow behind the body
is assumed to be similar to that behind a two-dimensional (2D) rectangular body
(a block), see the left plot in Figure 6.10. The center line of the free shear layer
zm is given according to the experimental results from Baker (1977) for the flow
behind a 2D block on a wall. Baker (1977) showed that the distribution of mean
horizontal velocity in free shear layer behind the 2D block resembles that of a plane
mixing layer flow. According to White (2006), the mean velocity profile ū in a plane
mixing layer between parallel streams, with the upper stream moving with mean
velocity U2 and the lower stream with mean velocity U1 can be written as

ū− U1

U2 − U1
=

1

2

[
1 + Φ

(
13.5z

x

)]
(6.2)

where Φ is the error function, see Eq. (5.19). Eq. (6.2) is for the flow with the
center line of the free shear layer at z=0. For cases with curved shear layer, as in
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Figure 6.10: Left: sketch showing important lines for the free shear layer around
a section with bilge keels. zm represents the center line of the free shear layer and
z0 the outer boundary of the turbulent separated flow. Both x and z coordinates
are made non-dimensional by the draft D. Right: distribution of mean horizontal
velocity. Solid line: experimental data from Baker (1977). Dashed line: theoretical
value for plane mixing layer flow. Dash-dot line: undisturbed inflow velocity.

Figure 6.10, we need to express the formula in a curved coordinate as

ū− U1

U2 − U1
=

1

2

[
1 + Φ

(
13.5

zs − zm
xs

)]
(6.3)

where zm is the center line of the shear layer, xs is a curved coordinate along zm
with xs = 0 at the separation point and zs is a coordinate perpenticular to xs and
pointing downwards. The half thickness of the free shear layer is given by tan(7o)xs
(White, 2006), using this, we can identify the outer boundary of the turbulent shear
layer zo, as shown in Figure 6.10. If we can have a reasonable estimation of U1 and
U2, then the flow distribution behind these sections can be obtained. In the right
plot of Figure 6.10, a comparison of the mean velocity distribution in free shear
layer from the experimental data by Baker (1977) and the theoretical plane mixing
layer flow is given. To fit the experimental data, mean lower stream velocity U1 =
1.1 U∞ and mean upper stream velocity U2 = -0.1 U∞ are used in the theoretical
calculation and good agreement between the experimental and theoretical results
is observed. This demonstrates that the plane mixing layer flow can be used to
describe the flow behind a 2D block. U1 = 1.1 U∞ means that the flow is accelerated
outside the boundary of turbulent flow compared with the incident flow U∞. U2 =
-0.1 U∞ denotes that there is a small mean reverse flow behind the section.

The obtained free shear layer region is quite similar to the experimental mea-
surements by Chauhan et al. (2017) for the flow past a square prism with a splitter
plate attached behind. The Particle Image Velocimetry (PIV) technique is adopted
in their measurement. Their experimental results also show that the horizontal ve-
locity is almost constant outside the turbulent layer with U1 equal to about 1.2U∞
at x = 2D and for z between -4D and -2.2D. The main reason for the difference
in U1 from the two experiments is that the tests from Chauhan et al. (2017) were
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performed in water while the tests from Baker (1977) were conducted in air. There
exists a very thick boundary layer of the inflow in the front region of the 2D block
in Baker (1977), so the inflow mass flux is reduced compared with that in Chauhan
et al. (2017). The value of U1 from Chauhan et al. (2017) is believed to be more
accurate for our case.

As U2 is small compared with U1, the load on the front upper part of the net
cage is expected to have a small contribution to the total net cage load, for simplic-
ity U2 = -0.1U∞ from Baker (1977) is used in the sensitivity analysis. In terms of
U1, two U1 values with U1 = 1.1U∞ and 1.3U∞ are investigated. The chosen two
U1 values are consistent with the minimum and maximum values of the horizontal
velocity at x = 2D with −4D ≤ z ≤ −D, obtained from potential-flow calculation
for the section in steady flow. Considering the deformation of the net cage, the
velocity profile at position x = 2D is used as the incident flow for the front part of
the net cage.

For sections without bilge keels, the flow will separate at the cross-section
backward corner in turbulent flow and we assume that the flow behind the body
can be described by the flow behind a backward facing step (beam-to-draft ratio
B/D ≥ 1), see Figure 6.11. The center line of the free shear layer in the figure is
given according to the experimental results from Baker (1977). According to Baker
(1977), the flow behind a backward facing step can also be seen as a plane mixing
layer flow. A comparison of the mean horizontal velocity distribution between ex-
perimental data and theoretical results (plane mixing layer flow) is shown in the
right plot of Figure 6.11. U1 = U∞ and U2 = 0 m/s are used in the theoretical
model. Reasonable agreement is observed. U2 = 0 m/s means that negligible re-
verse flow is found in the region right behind the cross- section, this is intuitively
reasonable because the flow separation is not intense.
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Figure 6.11: Same as in Figure 6.10, but for flow around a section without bilge
keels.

The flow is expected to be accelerated below the cross-section with respect to
the undisturbed inflow, according to the law of mass conservation. However, the
obtained U1 value seems to indicate that this is not the case, see Figure 6.11. The
main reason is that the inflow mass flux is reduced due to a very thick boundary
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layer of the inflow in the experiments. Larger U1 value should be used for our case.
In the sensitivity analysis, U2 = 0 m/s is assumed. For U1, since the flow separates
at the backward corner, U1 should be close to the potential-flow solution, from
which U1 is between 1.1U∞ and 1.3U∞ at x = 2D with z between -4D and -D.
This means that we can use the same upper limit and lower limit of U1 both for
sections with and for sections without bilge keels. It should be noted that the flow
distributions around sections with and without bilge keels can be totally different,
even if similar U1 and U2 values are assumed. This is because the length of the
free-shear-layer center line xs is also very important, as shown in Eq. (6.3).

Numerical results show that considering the shading effect of the well boat will
reduce the anchor loads by 10.7% with U1 = 1.1U∞ and 3.5% with U1 = 1.3U∞,
respectively. The results denote that the increment of the load on the lower part of
the net cage due to the accelerated inflow can not compensate the reduction of the
load on the upper part and larger U1 will cause a smaller reduction of the anchor
loads.

Mooring system: In the nominal simulations, the pretension force in the an-
chor line is 10 kN, two alternative values of the pretension force are considered
in the sensitivity study, i.e. 5 kN and 15 kN, respectively. They correspond to a
50% reduction and a 50% increase of the pretension force, respectively. Relatively
large increase of the anchor loads, about 9.6%, is observed when pretension force
equal to 5 kN is adopted. The pretension force is subtracted during the comparison.

Increasing the stiffness of the anchor lines by 100% and reducing the anchor
chain weight by 50% has negligible influence on the anchor loads. However, in-
creasing the anchor chain weight by 100% will increase the anchor loads by about
10.5%. This is due to that with larger anchor chain weight, the side anchor lines will
have smaller stiffness, so the front two anchor lines will provide more contribution
to balance the load on the fish farm.

Maximum stress in the floating collar

From Figure 6.12, the maximum stress in the floating collar is in general sensitive
to parameters that are important for estimating the viscous current loads on the
well boat. For example, changing the current direction αc from 0o to +15o and
−15o will reduce the maximum stress by about 6.7% and 3.3%, respectively, due to
the reduction of the current loads on the boat. Increasing the ship averaged drag
coefficient will increase the maximum stress and a variation of the former by 10 %
will lead to about 7% change of the latter. The maximum stress is also sensitive
to parameters that are closely related with the stiffness of the floating collar, like
the pretension force in the anchor line. Larger floating collar stiffness is expected
when higher pretension force is applied. Numerical results show that increasing the
pretension force in the anchor line from 10 kN to 15 kN will reduce the maximum
stress by about 10.7% while reducing the value from 10 kN to 5 kN will increase
the maximum stress by about 14.7%. The maximum stress is not so sensitive to
parameters associated with the evaluation of the loads on the net cage, like the
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weight system including sinker tube depth, sinker tube weight and center point
weight as well as the shading effect on the incident current field due to the well
boat.
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Figure 6.12: Each bar represents the percentage difference of the maximum floating
collar stress with respect to the nominal value, averaged over all the examined cur-
rent velocities. The numbers on the horizontal axis refer to the variation numbers
as given in Table 6.1.

6.1.3 Operational conditions in current

Operating fish farms in exposed regions will increase the probability of routine
well boat operations in severe weather conditions. Nowadays the decision on when
performing the operation is mainly dependent on the captain. So it is valuable
to have a decision-support tool to give guidance for safe well-boat operations. In
this section, we will discuss how to determine the operational conditions of the
well boat when operating at the fish farm during the loading/offloading operation.
The well boat is moored at the weather side of the fish farm. The operational
conditions are determined based on the criteria that the structural integrity of the
fish farm system is not endangered. The loads on the well boat are transferred to
the fish farm through direct contact with the floating collar, so the floating collar
should be able to withstand the loads. Moreover, the floating collar is moored
to the seabed through the mooring system, so the mooring lines should be strong
enough. Therefore, two operational criteria are proposed, connected, respectively,
with maximum forces in the mooring lines and maximum stress in the floating
collar.

In this section, we mainly focus on the coupled system in current only. Results
of the loads in anchor line-1 and floating collar stresses were shown in Figure 6.2
and Figure 6.6. The considered current velocity varies from small exposure to high
exposure. The minimum breaking force for the considered anchor polysteel rope
is about 628 kN, which is much larger than the maximum force experienced by
the anchor line, about 185 kN, so the anchor load is not the main concern when
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determining the operational conditions. The loads in the two bridle lines are also
examined, the maximum loads are slightly smaller than that in anchor line-1 and
will also not exceed the breaking limit for the considered sea states. The maximum
stress in the floating collar occurs in the region where the well boat is in contact
with the floating collar with a value about 80% of the yield stress for the considered
current velocities. Although the maximum stress does not exceed the yield stress
in the present study, the results indicate that this response variable is of concern
in current and it is expected to be even more critical in combined waves and current.

To represent more realistic scenario and provide practical guidance for well-boat
operation, the coupled system in irregular waves has to be examined. This will be
done in the following section.

6.2 Physical investigation of the coupled system
in long-crested irregular waves and current

In this section, the dynamic response of a coupled well boat-fish farm system in
irregular long-crested waves and current is analyzed numerically in the time do-
main. Free decay tests in xE direction for the coupled system with set-up A (see
Figure 5.3) in calm water are performed at first to have an idea of the natural pe-
riod of the system and the damping contributions from different components of the
system, in particular from the net cage. Then, a numerical study of slow-drift sway
motion of the well boat is performed, with the fish farm represented by a linear
spring. The main purpose of this study is to verify the modeling of the slow-drift
motion of the well boat. Finally, the coupled system with the well boat placed at
the weather side of the fish farm is analyzed in detail, using a realistic fish-farm
set up. The operational conditions of the well boat are also determined through
systematic simulations.

6.2.1 Free decay tests

A free decay test for the coupled system with set-up A in still water is performed.
The well boat is assumed to experience only sway motion. The motion can be
described by Eq. (5.5) but with zero wave-drift damping and zero wave excitation
force, i.e. BSD22 = 0 and FExcit2 = 0. A ship averaged drag coefficient CD = 2.2
is used for estimating the eddy-making damping. The way to estimate the viscous
hydrodynamic loads on the fish farm, including the net cage, has been shown in
Chapter 2.

Time history of the sway motion of the well boat during the free decay is shown
in the upper row of Figure 6.13. The linear and quadratic damping coefficients are
found according to Faltinsen (1990). The natural period of the coupled system is
Tn = 153.8 s. A free decay test without the net cage is also conducted and the
corresponding results are shown in the lower row in Figure 6.13. The quadratic
damping coefficient due to the mooring lines is expected to be small, so the obtained
value mainly comes from the well boat. By comparing the drag coefficients from
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Figure 6.13: Left: time histories of sway motion of the well boat from free decay
tests for the coupled system in calm water. Right: illustration of how to obtain
linear damping coefficient p1 and quadratic damping coefficient p2 (see e.g. Faltin-
sen, 1990). Upper: fish farm with net cage. Lower: fish farm without net cage. Xn

is the amplitude of the nth oscillation. Tm is the mean natural period.

the two cases, we can see that the net cage contributes about 50% to the quadratic
damping, but has negligible contribution to the linear damping. It should be
noted that the restoring stiffness provided by the fish farm is not constant and also
that the quadratic damping coefficient from the net cage is response-amplitude
dependent, so the estimated drag coefficient can just serve as a guidance value for
the coupled system in oscillatory flow. A free decay test for the coupled system in
current has been also examined and numerical results indicate that the system is
overdamped.

6.2.2 Slow-drift response of the well boat

In this part, we present numerical results of the slow-drift sway motion of the
well boat, with the load on the well boat from the fish-farm system represented
by a linear spring. The damping from the fish farm is neglected, as it is not
straightforward to be considered, although it may have important contribution,
as shown from the free-decay tests. The main purpose of this study is to verify
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the modeling of the slow-drift motion and investigate the influence of different
parameters on the motion. This will serve as a guidance for the study of the
coupled well boat-fish farm system in section 6.2.3.

The slow-drift motion is estimated here by solving Eq. (5.17) in the time domain.
A stiffness coefficient in sway from the fish farm C22 = 24 kN/m is assumed,
corresponding to the restoring stiffness provided by the fish farm when there is no
anchor chain laying on the seabed, as obtained from Figure 5.10. The importance
of different slow-drift damping terms is discussed and the necessity of considering
the first-order motion when calculating the eddy-making damping is also studied.
In addition, different statistic approaches are used to examine the extreme values
obtained from time-domain simulations with different time durations.

Wave-drift damping

Figure 6.14 shows the time histories of the slow-drift sway motion of the well
boat, considering in Eq. (5.17) the mean wave-drift damping and the mean plus
slowly-varying wave-drift damping, respectively. The eddy-making damping is not
included. Two wave conditions with Hs = 2 m, Tp = 6 s and with Hs = 1 m, Tp
= 5 s, respectively, are considered. The figure shows that considering the slowly-
varying wave-drift damping will reduce the maximum motion for Hs = 2 m and Tp
= 6 s, while negligible influence is observed for Hs = 1 m and Tp = 5 s. Detailed
analysis is given below.
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Figure 6.14: Time histories of the slow-drift motion in sway. Just a short time
interval when the motion reaches the largest maximum in the performed simulation
is shown. The duration of the simulations is 3 hours. Solid line: numerical solution
of Eq. (5.17) with mean wave-drift damping. Dashed line: numerical solution of
Eq. (5.17) with mean plus slowly-varying wave-drift damping. Left: Hs = 2 m and
Tp = 6 s. Right: Hs = 1 m and Tp = 5 s.

• Irregular waves with Hs = 2 m, Tp = 6 s:

The expected mean value η̄
(2)
2 , the standard deviation σ

η
(2)
2

and the maximum

value η
(2)
2,max of the slow-drift motion from time-domain simulations are presented
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Figure 6.15: Expected mean value (upper), standard deviation (middle) and max-
imum value (lower) of the slow-drift sway motion. Only the wave-drift damping
is included. Left: Hs = 2 m, Tp = 6 s, U∞ = 0 m/s. Right: Hs = 1 m, Tp =
5 s, U∞ = 0 m/s. The predicted maximum values based on Rayleigh distribution
(including only the mean wave-drift damping), exponential distribution and Stans-
berg’s method (including only the mean wave-drift damping, see Stansberg, 1991)
are also shown.

in the left column of Figure 6.15 as a function of simulated time (from 2 hours
up to 10 hours). Ten different realizations are considered and the simulated
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time of each realization is 10 hours. In the analysis, portions of each realization
are considered, with duration varying from 2 hours to 10 hours, and treated as
individual realizations to see the effect of the simulated time. Each value in
the figure is taken as the mean value from ten different realizations. From the
figure, the expected mean value and standard deviation are almost independent
from the simulated time. Including the slowly-varying wave-drift damping will
reduce the mean value, the standard deviation and the maximum value, with
the maximum value the most affected. The frequency-domain solutions of the
standard deviation from Eq. (5.21) and the mean sway motions caused by the
mean wave loads are also provided. In this case the slowly-varying wave-drift
damping cannot be accounted for. The figure shows that the expected mean
value and the standard deviation from the time-domain analysis agree nicely with
those from the frequency-domain solution. The mean value and the standard
deviation from frequency domain are 4.86 m and 5.78 m, respectively. In terms
of the damping level, the considered mean wave-drift damping is ξ = 7.86% of
the critical damping.

• Irregular waves with Hs = 1 m, Tp = 5 s:

The expected mean value, the standard deviation and the maximum value of
the slow-drift motion are presented in the right column of Figure 6.15. Also
in this case nice agreement is observed for the mean value and the standard
deviation between the time-domain and the frequency-domain results. The mean
value and the standard deviation from frequency domain are 1.41 m and 2.74 m,
respectively. The mean wave-drift damping is ξ = 2.22% of the critical damping.
Including the slowly-varying wave-drift damping has negligible influence on the
motion due to the small damping level.

Three different statistical approaches are used to examine the expected largest
sway motion from the time-domain simulations. One is based on the use of the
Rayleigh distribution. This is theoretically sound when the damping is linear, time-
independent and asymptotically small. So only the mean wave-drift damping can

be included. The expected largest value η
(2)
2,max can then be written as

η
(2)
2,max(ts) ≈ ση(2)2

√
2 lnN + η̄

(2)
2 (6.4)

where ts is the simulated time, N is the number of slow-drift oscillations during ts.
This can be estimated as N = ts/Tn with Tn the natural period of the slow-drift
motion. The standard deviation σ

η
(2)
2

can be obtained from frequency-domain or

time-domain analysis.

The second approach is to use exponential distribution as a rough approxima-
tion to estimate the extreme slow-drift response. This was suggested by Naess
(1989). In this case, the expected maximum value takes the form

η
(2)
2,max(ts) = σ

η
(2)
2

lnN + η̄
(2)
2 (6.5)



6.2. Physical investigation of the coupled system in long-crested
irregular waves and current 157

Eq. (6.5) is generally on the conservative side and the smaller is the damping the
more it is conservative.

The third approach is based on a simple statistical model proposed by Stans-
berg (1991). A critical point in the use of such model is the determination of
the relative spectral bandwidth parameter, defined as the ratio between the width
of the wave group spectrum and the width of the slow-drift response spectrum.
Detailed formulas will not be shown here. More accurate estimation procedure is
possible (Naess, 1986), but the quadratic transfer function (QTF) of the wave-drift
force on the well boat must be known and the estimation of this is not attempted
in the present work.

Detailed comparison of the expected largest values obtained directly from the
time-domain simulations and using the three theoretical statistical approaches for
the considered two sea states are shown in the lower plots of Figure 6.15. From
the figure, the exponential distribution clearly overestimates the extreme values for
both cases. The Rayleigh distribution can well-predict the extreme values for Hs

= 1 m and Tp = 5 s, when the damping is small, but will underpredict the extreme
values for Hs = 2 m and Tp = 6 s associated with relatively large damping (>
3-4% of the critical damping). The Stansberg’s method has a nice prediction of the
extreme values for cases with Hs = 2 m and Tp = 6 s but overpredicts the results
for cases with Hs = 1 m and Tp = 5 s.
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Figure 6.16: Standard deviation (left) and maximum value (right) of the slow-
drift sway motion from different realizations with only mean wave-drift damping
considered. The considered Hs = 2 m, Tp = 6 s, U∞ = 0 m/s. The numbering along
the horizontal axis represents the use of different random-phase seeds to generate
the incident irregular waves. In each plot, the dashed line represents the expected
value, taken as the mean value from different realizations.

Figure 6.16 presents the standard deviation and maximum value of the slow-
drift motion from ten different realizations with Hs = 2 m and Tp = 6 s. The
first 3-hour simulation of each realization is considered. The corresponding mean
standard deviation and mean maximum value are shown in Figure 6.15. Figure
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6.16 shows that both the standard deviation and the maximum value are realization
dependent. At least 10-20 realizations are needed to have a robust estimation of
the two examined variables.

Eddy-making damping

In this section, the analysis of the slow-drift sway motion is carried out assuming
that the slow-drift damping is only associated with the eddy-making damping. Fig-
ure 6.17 presents the influence of the ship averaged drag coefficient on the expected
standard deviation and on the largest value of the slow-drift motion in irregular
waves. Two different wave conditions are considered with Hs = 2 m, Tp = 6 s (left
column) and with Hs = 1 m, Tp = 5 s (right column), respectively. Two differ-
ent ship averaged drag coefficients CD = 2.2 and 0.9 are examined, corresponding
to the value for oscillatory flow (KC =8) and for steady flow, respectively. The
main purpose to use two different CD is to examine the sensitivity of the slow-drift
motion to CD. Detailed explanations are given below.

• Irregular waves with Hs = 2 m, Tp = 6 s:

The expected standard deviations obtained from both time-domain and frequency-
domain solutions are provided and agree for the two CD values, see the upper plot
in Figure 6.17. The eddy-making damping is linearized according to Eq. (5.18)
in the frequency-domain solution. The ratio between the linearized damping
and the critical damping is ξ = 16.2% and 8.89%, respectively, when CD = 2.2
and 0.9 are used. For 3-hour simulated time, the expected standard deviations
are 4.08 m and 5.65 m, respectively, for the two values of the CD, indicating

approximatively a dependence on CD as C
−1/3
D , consistently with that shown in

Eq. (5.23). In terms of the expected largest values, the Rayleigh distribution
underpredicts while the exponential distribution overpredicts them for both CD
values. The predictions by Stansberg’s method agree well with the time-domain
values, see the lower two plots in the figure.

• Irregular waves with Hs = 1 m, Tp = 5 s:

In this case, the ratio between the linearized eddy-making damping and the crit-
ical damping is ξ = 6.48% and 3.54%, respectively, when CD = 2.2 and 0.9 are
used. The exponential distribution and the Stansberg’s method tend to overpre-
dict the expected largest value while the Rayleigh distribution can well predict
this value especially when the damping is small (i.e., CD = 0.9 for which ξ =
3.54%).
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Figure 6.17: Expected standard deviation (upper) and maximum value (middle
with CD = 0.9 and lower with CD= 2.2) of the slow-drift sway motion. Only the
eddy-making damping is included. Full symbols: time-domain results. Left: Hs =
2 m, Tp = 6 s, U∞ = 0 m/s. Right: Hs = 1 m, Tp = 5 s, U∞ = 0 m/s. The expected
maximum values predicted by Rayleigh distribution, exponential distribution and
Stansberg’s method are also provided.

The influence of current on the slow-drift motion is also examined. In particular,
a current velocity U∞ = 0.3 m/s leads to the results shown in Figure 6.18. The
considered current velocity corresponds to a small to moderate current condition,
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Figure 6.18: Expected mean value (upper), standard deviation (middle) and max-
imum (lower) value of the slow-drift sway motion of the well boat. Only the eddy-
making damping is included. Upper: Hs = 2 m, Tp = 6 s, U∞ = 0.3 m/s. Lower:
Hs = 1 m, Tp = 5 s, U∞ = 0.3 m/s. The predicted maximum value based on
Rayleigh distribution, exponential distribution and Stansberg’s method are also
shown.

see Table 1.2. As explained in section 5.3.2, the steady-flow drag coefficient should
be used for cases in combined oscillatory flow and current when estimating the eddy-
making damping. Therefore, a ship averaged drag coefficients CD = 0.9 is adopted
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following the analysis in steady current documented in Chapter 5. From the figure,
the expected mean values and standard deviations from frequency domain match
nicely with the time-domain results for both examined sea states. The eddy-making
damping is linearized according to Eq. (5.18) in the frequency-domain solution and
the ratio between the equivalent linearized damping and the critical damping is ξ
= 13.86% and 12.69% for cases with Hs = 2 m and 1 m, respectively. Compared
with the value without current, we can see that the presence of current significantly
increases the ratio ξ, changing ξ from 8.89% to 13.86% for Hs = 2 m and Tp =
6 s and from 3.54% to 12.69% for Hs = 1 m and Tp = 5 s. When estimating the
mean value of the sway motion in frequency domain, apart from the contribution
from mean-wave load, the influence of current in connection with mean-drag force
in sway should be also considered and written as

1

TN

TN∫
0

BD

(
η̇

(2)
2 − U∞

) ∣∣∣η̇(2)
2 − U∞

∣∣∣dt
≈ 1

TN

TN∫
0

BD

[
η̇

(2)
2a cos (µN t)− U∞

] ∣∣∣η̇(2)
2a cos (µN t)− U∞

∣∣∣dt
(6.6)

Here TN is the damped natural period of the slow-drift motion considering lin-

earized eddy-making damping, η̇
(2)
2a ≈

√
2σ

η̇
(2)
2
≈
√

2µNση(2)2
is the characteristic

velocity amplitude of the slow-drift motion, µN = 2π/TN is the natural wave fre-
quency. σ

η̇
(2)
2

and σ
η
(2)
2

are the standard deviation of the slow-drift velocity and

motion in sway, respectively. There exists also theoretical solution for the expected
mean-drag force (Price and Bishop, 1974), given as
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−2U∞ση̇(2)2√
2π
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2

U2
∞
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2

− (σ2

η̇
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2

+ U2
∞

)
Φ

(
U∞√
2σ

η̇
(2)
2

) (6.7)

Here Φ is the error function, see Eq. (5.19). The mean-drag forces predicted by
Eq. (6.6) and Eq. (6.7) are quite close.

For the expected largest value, when current is present, the exponential distri-
bution can provide a reasonable prediction of this variable, especially for sea state
with Hs = 2 m and Tp = 6 s, while Stansberg’s solution yields better results for
cases with Hs = 1 m and Tp = 5 s.

Influence of the first-order motion on the slow-drift sway response

When evaluating the eddy-making damping, it is not common to account for the
first-order velocity. However, this may matter for the slow-drift sway motion. To
include the first-order velocity, we need to solve the first-order motion and slow-
drift motion simultaneously, see Eq. (5.5). Time histories of the sway motion of the
well boat without and with including the first-order motion are shown in Figure
6.19. For the slow-drift damping, only the eddy-making damping is considered to
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Figure 6.19: Time histories of the slow-drift sway motion of the well boat without
and with considering the first-order motion. Upper: Hs = 2 m, Tp = 6 s. Lower:
Hs = 1 m, Tp = 5 s. Left: irregular waves only (U∞ = 0 m/s). Right: irregular
waves and current (U∞ = 0.3 m/s).

reduce complexity, which means that BSD22 in Eq. (5.5) is set to zero. The figure
shows that considering the first-order motion will reduce the maximum value of
the slow-drift motion when U∞ = 0 m/s (left plot), but will have a much smaller
influence when U∞ = 0.3 m/s (right plot). The presented results also show that
the first-order motion is small compared with the slow-drift component for the
considered sea states.

6.2.3 Dynamic response of the coupled well boat-fish farm
system

In this part, we present a numerical investigation of the coupled well boat-fish farm
system in irregular waves and current. The main purpose is to see how the presence
of the well boat will influence the behavior of the fish farm and in this respect to
determine the operational conditions of the well boat. The slow-drift sway motion
of the well boat with a simplified mooring system has been studied and verified
in section 6.2.2. The numerical model for the fish-farm system has been validated
against experimental data in Chapter 4. This suggests that the numerical results
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of the coupled system can be reasonable and suitable for the analysis of well-boat
operational limits in waves and current. Long-crested irregular waves and current
in positive xE direction (see Figure 5.1) are assumed. As shown in Section 6.1,
the coupled system with set-up A (see Figure 5.3), with the well boat placed at
the weather side of the floating collar, is the most critical in terms of anchor-line
loads and floating collar stresses, so this set-up is also our research focus here.
Results for set-up C, also shown in Figure 5.3, will be considered in selected cases
for comparison. Nominal results are first shown. The main attention is paid to the
load in anchor line-1 (defined in Figure 5.1) and to the floating-collar stresses, which
are two important parameters for the structural integrity of the fish farm. Then
a sensitivity analysis is carried out to identify important parameters affecting the
maximum anchor loads and floating-collar stresses. Lastly, systematic simulations
are performed to determine the operational conditions of the well boat.

Nominal results

In the nominal simulations, we try to model the coupled system as complete as
possible. For the well boat, both the first-order motions and the slow-drift motions
are included. The first-order motions are solved by the classical linear potential-
flow theory, including all the six-degree-of-freedom motions shown in Eq. (5.1). In
terms of the slow-drift motions, the slow-drift surge, sway and yaw motions can be
considered. For the coupled system with set-up A, the well boat is placed at the
weather side of the fish farm, the slow-drift surge and yaw motions are expected
to be small, therefore they are not considered in the simulations, i.e. only the
slow-drift sway motion is included. Concerning the wave-drift damping, both the
mean and the slowly-varying wave-drift damping are included. When formulating
the eddy-making damping, both the first-order velocity and slow-drift velocity are
accounted for. This means that the first-order motions and slow-drift motions
need to be solved simultaneously. In terms of the fish farm, a realistic set-up
(with single cage) is considered, including a floating collar, an elastic sinker tube, a
flexible-closed net cage and a complex mooring system. The final motion equations
of the well boat are similar to Eq. (5.5), but for the six rigid degrees of freedom.
The restoring provided by the fish farm is represented by contact and connect-line
forces, as explained in Chapter 5.

Time histories of the sway motion of the well boat in irregular waves and in
combined irregular waves and current are shown, respectively in the left and right
plot of Figure 6.20. The duration of the simulations is 3 hours. The considered
environmental parameters are: significant wave height Hs = 1 m and peak period
Tp = 5 s for the waves, and current velocity U∞ = 0 m/s and 0.3 m/s. The ship
averaged drag coefficients CD = 2.2 and 0.9 are adopted, respectively, for U∞ =
0 m/s and U∞ = 0.3 m/s. From the figure, the presence of current increases the
maximum sway motion from 6.33 m to 8.03 m, with an increment of about 26.4%.
The figure also shows that the slow-drift motion dominates over the wave-frequency
component for both cases, similarly to the results for the simplified system in
Figure 6.19. The coupled system in sea state with Hs = 2 m and Tp = 6 s is also
investigated and numerical results (not shown here) indicate that the maximum
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sway motion increases with similar magnitude due to the current. In particular,
the increment is about 22%, with a change from 14.12 m to 17.23 m.
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Figure 6.20: Time histories of the sway motion of the well boat when placed at the
weather side of a fish farm (set-up A). A zoomed view is also given when the motion
reaches the largest maximum within the examined simulated time (3 hours). Left:
Hs = 1 m, Tp = 5 s and U∞ = 0 m/s. Right: Hs = 1 m, Tp = 5 s and U∞ = 0.3
m/s.
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Figure 6.21: Same as in Figure 6.20, but for the loads in anchor line-1.

Figure 6.21 shows the time histories of the loads in anchor line-1 for the coupled
system in sea state with Hs = 1 m and Tp = 5 s. From the figure, the wave-
frequency component is small compared with the total anchor load, especially for
the case with current. The time instant when the anchor load reaches the largest
maximum coincides with that when the largest sway motion occurs within the
examined simulated time (see Figure 6.20). The presence of current increases the
maximum anchor load significantly, from 44 kN to 107.5 kN. There are two reasons:
(1) the maximum sway motion of the well boat increases due to the current and
(2) viscous loads on the net cage increase due to the current. Without the well
boat, the maximum anchor loads are about 10 kN and 29 kN for U∞ = 0 m/s and
0.3 m/s, respectively. It means that the well-boat presence increases the maximum
anchor load by more than 300% both without and with current. When the coupled
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system is exposed to more severe sea states with Hs = 2 m and Tp = 6 s, the
maximum anchor loads are 167 kN and 300 kN, respectively, for U∞ = 0 m/s
and 0.3 m/s. Without the well boat, much smaller maximum values are obtained,
approximately 16.2 kN and 44 kN, respectively.

Next, we show the results of the bending stresses in the floating collar due to
its horizontal deformations. The stresses are estimated according to Eq. (6.1). The
maximum stress is expected to occur at β = 180o where the well boat is in contact
with the floating collar, see Figure 6.6. Time histories of the stress at β = 180o in
the floating collar are shown in Figure 6.22 for Hs = 1 m and Tp = 5 s. The largest
maximum stress occurs at the time when the sway motion of the well boat reaches
the largest maximum value within the examined simulated time. The maximum
stresses are 0.48 σ0 and 0.7 σ0, respectively, for U∞ = 0 m/s and 0.3 m/s. Here σ0

is the yield stress (high-density polyethylene) for the floating collar. The obtained
maximum stress for U∞ = 0.3 m/s is close to the yield stress. This indicates that
the examined sea conditions are of relevance when determining the operational
conditions of the well boat.
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Figure 6.22: Same as in Figure 6.20, but for the stresses at β = 180o in the
floating collar. The stress is made non-dimensional by the yield stress (high-density
polyethylene).

To see more clearly how the well boat will influence the floating collar, the stress
distributions along the floating collar due to horizontal deformations without and
with the well boat are shown in Figure 6.23. Results for the coupled system with
set-up C (see Figure 5.3) are also given for comparison. Two wave conditions with
Hs = 1 m, Tp = 5 s and with Hs = 2 m, Tp = 6 s, respectively, are considered. Each
wave condition is combined alternatively with two current velocities, U∞ = 0 m/s
and 0.3 m/s. From the figure, the presence of the well boat will change the stress
distribution along the floating collar. For fish farm only, there are several peak
values with similar amplitude along the floating collar. For the coupled system,
the maximum stress occurs at the region where the well boat is in contact with the
floating collar, respectively, at β = 180o for set-up A and at β = 270o for set-up
C. For cases with Hs = 1 m and Tp = 5 s, without the well boat, the maximum
stresses are about 0.08 σ0 and 0.17 σ0, respectively, for U∞ = 0 m/s and 0.3 m/s
while for the coupled system, with set-up A the corresponding values are 0.48 σ0
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and 0.7 σ0 and with set-up C the corresponding values are 0.27 σ0 and 0.35 σ0.
The results show that the maximum stresses increase significantly due to the well
boat and that the coupled system with set-up A is more critical, as expected.
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Figure 6.23: Maximum stress distribution along the floating collar due to horizontal
deformations. The stress is made non-dimensional by the yield stress (high-density
polyethylene). Left: fish-farm system only. Middle: coupled system with set-up A.
Right: coupled system with set-up C. Upper: Hs = 1 m and Tp = 5 s. Lower: Hs

= 2 m and Tp = 6 s. Solid lines: U∞ = 0 m/s. Dashed lines: U∞ = 0.3 m/s. The
8 solid circles in each plot represent the positions where bridle lines are attached
to the floating collar.

For cases with Hs = 2 m and Tp = 6 s without the well boat, the maximum
stresses are about 0.162 σ0 and 0.195 σ0 for U∞ = 0 m/s and 0.3 m/s, respectively,
while for set-up A the corresponding values are 1.03 σ0 and 1.3 σ0 and for set-up
C the corresponding values are 0.74 σ0 and 0.76 σ0. The results show that the
maximum stress for the coupled system with set-up A will exceed the yield stress
for the considered Hs sea state even without current. One should note that, for the
coupled system with set-up C, the well boat will have a pendulum motion relative
to the floating collar, see Figure 6.24. If one more rope is used to connect the
well boat and the floating collar, inserted between the two existing ropes and with
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connecting position at the floating collar β = 270o, a significant reduction of the
maximum stress (≈ 30%− 40%) with respect to the original value is observed.

X

Y

Z

Figure 6.24: Sketch for the coupled system with set-up C in three different time
instants showing the pendulum motion of the well boat relative to the floating
collar.

6.2.4 Sensitivity analysis

Due to uncertainties in the mathematical modeling and system set-up, we per-
formed a sensitivity analysis for the coupled system in irregular waves and current.
The main focus is on the maximum loads in anchor line-1 (defined in Figure 5.1)
and the maximum stresses in the floating collar. The inflow is in the positive xE
direction (αc = 0o, αw = 0o). The well boat is assumed to be placed at the weather
side of the fish farm (set-up A).

For the irregular waves, Hs = 1 m and Tp = 5 s, are considered, combined with
two current conditions, i.e. U∞ = 0 m/s and 0.3 m/s. The different parameters
examined are shown in Table 6.2. In order to quantify their significance and try
to identify the critical ones, we present condensed results in Figure 6.25 for the
maximum load in anchor line-1 and in Figure 6.27 for the maximum stress in the
floating collar. Each bar represents the percentage difference with respect to the
corresponding nominal value. Parameters that lead to more than 5% difference
from the nominal value are considered to be important. More detailed discussions
are presented below for the anchor loads and the floating collar stresses, respec-
tively.
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Loads in anchor line-1
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Figure 6.25: Each bar represents the percentage difference of the anchor load (max-
imum value) with respect to the nominal value. The considered Hs = 1 m and Tp
= 5 s. The numbers on the horizontal axis refer to the variation numbers as given
in Table 6.2. Left: U∞ = 0 m/s. Right: U∞ = 0.3 m/s.

Well boat : The maximum anchor load is closely connected with the slow-drift
sway motion of the well boat, so the main attention in the sensitivity analysis is
paid to parameters that may be important for the slow-drift motion.

First we examine the influence of the ship averaged drag coefficient. The cross-
sectional drag coefficients CD for the well boat are estimated empirically and as-
sumed KC-number independent in the nominal simulations. In reality, CD may
slightly vary with KC for small KC number. Furthermore, the influence of first
order motions on CD is not considered. So an error in the boat drag coefficient is
expected. Changing the ship averaged drag coefficient by 20% will lead to about
6%-8% change of the maximum anchor load with respect to the nominal value when
U∞ = 0 m/s. Negligible influence is observed for the case with current.

For the wave-drift damping, considering the mean wave-drift damping instead
of the time-varying wave-drift damping will lead to a moderate increase of the
maximum anchor load, by about 5% and 3%, respectively, for cases without and
with current. This indicates that considering only the mean wave-drift damping is
sufficient for the examined wave condition.

Next, we want to quantify how the maximum anchor load will be influenced
when simplified modeling of the coupled system is adopted. The main purpose of
simplifying the modeling is to increase the computational efficiency.

In the nominal simulations, for sea state with Hs = 1 m and Tp = 5 s, a time
step in the range of 0.03 s is needed to reach convergence and it takes about 4.8-5
hours computational time on a 3.0 GHZ one-core laptop for a simulated time ts =
3 hours. For more severe sea states, smaller time step is needed and greater com-
putational time is expected. Although the developed numerical solver is efficient
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enough compared with available commercial softwares, it is still interesting to see
whether it is possible to increase the computational efficiency by simplifying the
numerical modeling, while still preserving reasonable accuracy. In the following
analysis, in terms of the wave-drift damping, only the mean wave-drift damping is
considered in the simulations.

Net cage: Modeling the net cage is challenging in the simulations and the latter
may more easily break down with the presence of net cage due to the occurrence of
unphysical negative tensions, especially in irregular waves with higher Hs. Neglect-
ing the net cage, i.e. modeling the fish-farm effect only in terms of the mooring
lines and the floating collar, will increase the maximum anchor load by about 28%
when U∞ = 0 m/s, but will reduce the value by about 15.9% when U∞ = 0.3
m/s. The maximum sway motion of the well boat will increase if the net cage is
neglected, this will tend to increase the maximum anchor load, but neglecting the
net cage means that the loads on the net cage are not included, this will tend to
reduce the maximum anchor load. So the actual change of the maximum anchor
load with respect to its nominal value depends on the joint effects of these two
factors. The fact that the maximum anchor load increases without current will
then mean that in this case the increase of sway motion dominates with respect to
the net-cage loads not included, while the opposite occurs in current. Neglecting
the net cage will reduce the computational time by about 20%.

First-order motion: To predict the first-order motions of the well boat, tran-
sient effects are included in the motion equations. This is time consuming.

Neglecting the transient effects and using zero-frequency added mass coefficients
for the well boat will lead to an increase of the maximum anchor load by 11.4%
when U∞ = 0 m/s. For the case with current, negligible influence is observed. The
computational time will reduce by about 23%.

Neglecting the first-order response, i.e., only considering the slow-drift motions
for the well boat and the fish farm, will increase the maximum anchor load by
about 28 % when U∞ = 0 m/s, but will reduce the value by about 11.5% when
U∞ = 0.3 m/s. The computational time will be reduced by about 50% when only
the slow-drift motions are considered.

First-order motion + net cage: If both the first-order motion and the net cage
are neglected, the maximum anchor load will increase by about 43% when U∞ = 0
m/s but will reduce by about 26% when U∞ = 0.3 m/s. The computational time
will be reduced by about 90%.

Selected fish-farm related parameters are also examined and detailed results are
given in the following.

Floating collar : The influence of the number of modes used for the floating
collar is studied and numerical results indicate that modeling the floating collar
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with less modes in both the lateral and vertical directions will have small influence
on the maximum anchor load.

The shading effect of the well boat on the floating collar is not considered in
the nominal simulations and is investigated here. Only the case with U∞ = 0
m/s is examined. As an example, the wave excitation forces of the floating collar
in heave and surge directions with and without the presence of the well boat are
shown in Figure 6.26. The hydrodynamic loads for both cases are estimated by
the linear potential-flow solver WAMIT. From the figure, the excitation forces of
the floating collar are significantly reduced due to the presence of the well boat in
shorter waves (T < 6 s), which is relevant for the present study. Therefore, for
simplicity, to account for the shadowing effect we assume the excitation forces of
the floating collar to be zero for all wave periods in the sensitivity analysis and a
12.7% increase of the anchor load is observed with respect to the nominal value.
WAMIT simulations showed that the hydrodynamic loads on the well boat are
instead almost not influenced by the floating collar (not shown here).
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Figure 6.26: The effect of the well boat on the wave excitation forces of the floating
collar. Solid line: the floating collar only. Dash-dotted line: the well boat placed
at the weather side of the floating collar. Left: heave force. Right: surge force.
Forces are made non-dimensional by the displacement of the floating collar. V is
the displacement volume of the floating collar when half submerged.

Mooring system: In the nominal simulations, the pretension force in the anchor
line is 10 kN. Increasing the pretension force by 50% or reducing the value by 50%
will lead to a moderate influence on the maximum anchor load. Increasing the
stiffness of anchor lines by 100% will increase the maximum anchor load by 15%
when U∞ = 0 and a smaller increment, i.e. about 6.5%, is observed when U∞ =
0.3 m/s.
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Maximum floater stress
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Figure 6.27: Same as in Figure 6.25, but for the maximum stress in the floating
collar at the position β = 180o.

Maximum stress in the floating collar

The sensitivity of the maximum stress to the different parameters is similar to
that of the maximum anchor load when U∞ = 0 m/s, but when U∞ = 0.3 m/s
the maximum stress is not sensitive to the majority of the examined parameters,
with a maximum variation of about 5% with respect to the nominal value (see
Figure 6.27). The only exception is parameter No.7 (see definition in Table 6.2),
when less modes are used to model the floating collar. In nominal simulations,
Nh = 7 and Nv = 8 are found sufficient for convergence purpose. If less modes
are used with Nh = 3 and Nv = 4, a significant reduction of the maximum stress,
about 35%, is observed. It implies that the elasticity of the floating collar must
be properly modeled to have a reliable prediction of the maximum floating-collar
stress.

6.2.5 Operational conditions

In this section, we will discuss how to determine the operational conditions of the
well boat when at the fish farm for the loading/offloading operation. The well boat
is moored at the weather side of the fish farm. As explained in Section 6.1.3, two
operational criteria are proposed connected, respectively, with maximum forces in
the mooring lines and maximum stresses in the floating collar.

In the present context, we mainly focus on the coupled well boat-fish farm
system in irregular waves and current. The simulation matrix is shown in Table
6.3, covering the scenario from small exposure to high exposure, according to the
Norwegian Standard (see Table 1.2). For sea states with Hs = 2 m, only irregular
waves are considered (U∞ = 0 m/s). The ship averaged drag coefficient CD = 2.2
and 0.9 are adopted, respectively, for U∞ = 0 m/s and U∞ > 0 m/s. The duration
of each simulation is 3 hours.

Numerical results of the force in anchor line-1 are given in Figure 6.28. Mean
value, standard deviation and maximum value are provided. The maximum force
experienced by the anchor line for the considered sea states is about 0.42F0 with
F0 = 628 kN the minimum breaking force for the considered anchor polysteel rope.
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Table 6.3: Environmental matrix used in the simulations for determining the op-
erational conditions, showing current velocity U∞ and significant wave height Hs,
respectively, in the first column and first row. Four current velocities and three
significant wave heights are considered. The remaining cells give the examined
peak-period Tp ranges. For each examined Tp range, an interval ∆Tp = 1 s is used.

Current U∞ [m/s]
Hs [m]

0.5 1 2
0.0 2-3 s 2-5 s 3-6 s
0.1 2-3 s 2-5 s -
0.3 2-3 s 2-5 s -
0.5 2-3 s 2-5 s -

0

0.05
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Figure 6.28: Mean value (upper row), standard deviation (middle row) and max-
imum value (lower row) of the force in anchor line-1. The force is made non-
dimensional by the minimum breaking force F0, which is 628 kN for polysteel rope
with 3 strands and a diameter 64 mm. From left to right: current velocities U∞ =
0 m/s, 0.1 m/s, 0.3 m/s, 0.5 m/s.
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The maximum anchor load for the considered sea states is less than 50% of the
breaking limit, so it should not be of concern. For a given Hs without current,
all the three examined parameters decrease with increasing peak period Tp. For a
given Hs with current, the mean anchor load decreases while the standard deviation
and maximum value of the anchor load tend to increase with increasing Tp. For
a given Tp and Hs, the maximum anchor load tends to increase with increasing U∞.

The coupled system in regular waves and current is also examined. The main
purpose is to check whether it is possible to use equivalent regular waves to rep-
resent the irregular waves, as done for the fish farm in Section 4.3.4. The results
for the maximum force in anchor line-1 as a function of wave height are shown in
Figure 6.29. Two wave steepness H/λ = 1/60 and 1/30, two current velocity U∞
= 0 m/s and 0.5 m/s, and nine wave period T = 3 - 7 s with an interval ∆T = 0.5 s
are considered. For the irregular waves with Hs = 1 m, the equivalent regular wave
height will be H = 1.9 m, according to Table 1.2. The maximum anchor loads in
regular waves with H = 1.9 m are 0.24F0 and 0.52F0 for the case with U∞ = 0 m/s
and 0.5 m/s, respectively. The corresponding values in irregular waves are 0.07F0

- 0.1F0 when U∞ = 0 m/s and 0.21F0 - 0.22F0 when U∞ = 0.5 m/s. The obtained
values in regular waves are much higher than those in irregular waves because of
unrealistic high mean wave-drift loads exerted on the boat. This implies that the
technique to use equivalent regular waves is not applicable for the coupled system,
although performing such simplified study is valuable in understanding some basic
features of the system, as shown in Shen et al. (2016).
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Figure 6.29: Maximum value of the force in anchor line-1 in regular waves and
current versus wave height.

Finally, we show the numerical predictions of the maximum stress in the floating
collar due to its horizontal deformations. The results for cases in current only in
Section 6.1 showed that the maximum stress due to horizontal deformations occurs
at the position β = 180o (defined in Figure 5.1) where the well boat is in contact
with the floating collar. In Figure 6.30, we present the predicted maximum stresses
at the position β = 180o. From the figure, the maximum stress is influenced by the
different environmental parameters in a similar way as for the maximum anchor



6.2. Physical investigation of the coupled system in long-crested
irregular waves and current 175

load. For a given Hs without current, the maximum stress tends to decrease
with increasing Tp, especially for higher Hs, while an opposite trend is observed
in current. One possible reason for the difference is that the presence of current
changes the standard deviation’s dependency on Tp, as shown in Figure 6.30. For
given Hs and Tp, a higher current velocity will lead to larger maximum stress. The
maximum stress will exceed the yield stress σ0 of the floating collar for sea states
with Hs = 2 m. For cases with Hs = 1 m, the maximum stress predicted for the
examined sea states is about 0.82σ0. This indicates that Hs = 1 m is relevant for
determining the operational conditions of the well boat. It should be noted that
just one realization is considered in the analysis and actual results in irregular waves
are realization dependent for the considered simulated time, nevertheless they can
still provide a valuable guidance for determining the operational conditions of the
well boat. Also, we just examine the coupled system in the most critical scenario
with long-crested irregular waves and current aligned. The coupled system in more
general sea states should also be studied and possibly three-dimensional waves
should be accounted for. This is left for future investigations.
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Figure 6.30: Same as in Figure 6.28, but for the stress in the floating collar at
position β = 180o. The stress is made non-dimensional by the yield stress (high-
density polyethylene).
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6.3 Conclusions

Numerical studies of a well boat operating at a fish farm in current only and in
irregular long-crested waves and current have been performed. The main target was
to assess the influence of the well-boat presence on the fish farm and to determine
the operational conditions of the well boat. A modern design well boat and a
realistic fish farm (with a single cage) were considered in the analysis. Both the
well boat and the fish farm were modeled with state-of-the-art theoretical and
numerical formulations.

• The coupled system in current:

The viscous cross-flow loads on the well boat without the net cage and mooring
loads on the net cage without the well boat are numerically predicted with ex-
perimentally validated methods. However, there is a need for model tests with
the coupled system.

Detailed analysis of the load in one of the front anchor lines and of the floating
collar motions performed when the well boat is moored at the weather side of the
fish farm. The current transverse viscous loads on the boat were estimated by
the cross-flow principle and the cross-sectional drag coefficients were estimated
empirically. Numerical results showed that the anchor load increases significantly
due to the viscous forces on the boat. A big increase of the floating collar
horizontal deformations (both rigid and elastic modes) was also observed and
the maximum stress due to the horizontal deformations occurs at the region
where the well boat is in contact with the floating collar.

Due to uncertainties in mathematical modeling and system parameters, a sys-
tematic sensitivity analysis was performed, to identify the dominant factors when
modeling the coupled system. The main focus was on the load in anchor line-1
and the maximum stress in the floating collar. In order to have a more reli-
able prediction of the anchor load, we should know more accurate values of the
environment related parameters (current direction); the fish-farm related param-
eters (weight system including sinker tube depth, sinker tube weight and center
point weight) and the mooring system properties (pretension load, anchor chain
weight). In particular, lifting the sinker tube up to half of its original depth
would lead to a significant reduction of the anchor load, by about 16.8%. Ac-
curate estimation of the cross-sectional drag coefficients for the well boat and of
the shading effect on the net inflow due to the well boat are not straightforward.
However the sensitivity analysis showed that they have moderate effect on the
anchor loads. In terms of the maximum floating collar stress, it is more sensi-
tive to well-boat loads related parameters (current direction, cross-sectional drag
coefficient) and pretension load in the anchor lines; less sensitive to parameters
associated with the loads on the net cage (sinker tube depth, sinker tube weight,
etc).

Lastly, the operational conditions of the well boat when it operates at the fish
farm were investigated. Two criteria were chosen: maximum loads in the mooring
lines and maximum stresses in the floating collar. Numerical results showed
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that the mooring system could withstand the loads transferred from the well
boat for the considered current velocities. The maximum stresses in the floating
collar reached values close to the yield stress for the examined maximum current
velocity and should be a major concern.

• The coupled system in long-crested irregular waves and current:

The slow-drift sway motion of the well boat was investigated at first by simpli-
fying the influence of the net cage in terms of a restoring term. Hydrodynamic
and statistical theories of the motion were presented. Numerical results indi-
cated that both the mean and the slowly-varying wave-drift damping are impor-
tant, especially for cases with larger significant wave height. When estimating
the eddy-making damping, both first-order and slow-drift velocities should be
included. The results also showed that Rayleigh distribution can be used to
predict the extreme values when the damping is small (i.e. linearized damping
< 3-4% of the critical damping). For cases in combined irregular waves and
current, both exponential distribution and Stansberg’s method can have a rea-
sonable prediction of the extreme values. The former is on the conservative side
while the latter gives a slight underestimate. The simplified analysis involved
an analytically-oriented approach and served as a verification of the complete
time-domain analysis of the coupled well boat-fish farm system.

A physical investigation of a coupled well boat-fish farm system was also per-
formed, with the well boat moored at the weather side of the fish farm. Detailed
analysis of the maximum load in one of the front anchor lines and of the maxi-
mum stress in the floating collar was given. Numerical results showed that both
of them increase significantly due to the well boat. The increment can be more
than 300% when the system operates in moderate exposure sea states.

A sensitivity analysis was also performed to identify important factors influencing
the maximum load in anchor line-1 and the maximum stress in the floating
collar. The study showed that the examined two variables were in general more
sensitive to the variation of different parameters for cases without current than
with current. The cross-sectional drag coefficients for the well boat and the fish-
farm related parameters, like the pretension load in the anchor lines and anchor-
line stiffness, have moderate influence on the two variables. Sufficient number of
structural modes for the floating collar should be used for a reliable prediction
of the maximum floating-collar stress. Simplifying the modeling of the coupled
system, for instance, neglecting the net cage and the first-order motion has more
effect on the maximum anchor load than on the maximum floating-collar stress
and smaller influence on the maximum floating-collar stress was observed when
current is present.

Lastly, the operational conditions of the well boat were investigated through
systematic simulations. Two criteria were examined based on the limit for the
maximum loads in the mooring lines and for the maximum stress in the floating
collar, respectively. Numerical results showed that the maximum anchor load will
not exceed the anchor-line breaking limit even in high exposure sea conditions
and thus it should not be of concern. The maximum stress in the floating collar
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would be close to the yield stress when the system operates in moderate exposure
sea states, and should be used to determine the operational conditions of the well
boat. The conclusions are similar to those in current only. However, in the same
current condition, the presence of aligned irregular waves would significantly
increase, for instance, the maximum floating-collar stress, due to the slow-drift
motion of the well boat.

Although we studied a typical floating-collar fish farm, the numerical solver
proposed is applicable to any net-based fish farm concept and can also be used to
analyze the operational condition of the well boat when operating in novel open
cage fish-farm designs. The effect of short-crested sea as well as the presence
of several near-by fish cages should be investigated in the future. Furthermore,
the approaching and leaving phases of the well boat need to be studied. The
presence of fish inside the net cage matters (see He et al., 2018) and represents
an uncertainty in our analysis. More detailed description of the future work will
be presented in the following chapter.



Chapter 7

Conclusions and further
work

7.1 Conclusions

Present investigations for a fish farm and for a coupled well boat-fish farm system
are summarized in Section 7.1.1 and Section 7.1.2, respectively.

7.1.1 Fish-farm system

Dynamic responses of a realistic marine fish farm (with single cage) in current, reg-
ular waves and long-crested irregular waves have been investigated through numer-
ical simulations and their comparison against available model tests. The examined
fish-farm system comprises a floating collar with two concentric tubes, a flexible
net cage and a sinker tube attached directly to the net, moored by a complex moor-
ing system with anchor lines, bridle lines and frame lines. Important parameters
influencing the mooring loads have been identified and survival conditions of the
system have also been determined through systematic simulations. More detailed
summary is given below.

A time-domain numerical solver has been developed, with the different com-
ponents modeled with the state-of-the-art theoretical and numerical formulations.
The motions of the floating collar and the sinker tube are described by a curved
beam equation with consideration of axial stiffness and curvature effects. The lin-
ear potential-flow solver WAMIT, using a high-order Boundary Element Method,
calculates the hydrodynamic loads on the floating collar. The many meshes in a net
cage make Computational Fluid Dynamics (CFD) and complete structural mod-
eling impracticable. A hydrodynamic screen model and structural truss elements
are instead used to represent the hydrodynamic loading and the structural defor-
mation of the net. The screen-force model implicitly accounts for hydrodynamic
net-shadow and Reynolds number effect. In addition, the wake inside the net due
to current is considered and the inflow modification due to the net-cage presence
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is also modeled. The ropes and chains, elements of the mooring lines, are modeled
as elastic trusses and the corresponding hydrodynamic forces are estimated by a
modified Morison’s equation. An implicit strategy was adopted for the coupling
between the different components. An original explicit strategy was also suggested.
This needs more attention in terms of robustness but can be more easily applied to
other net-based fish-farm concepts. For these two strategies a solution algorithm,
with a criterion to prevent unphysical net tensions, was also proposed.

The modeling of the different components was assessed by comparing against ex-
periments available in literature. These validation studies involved simplifications
of the various components. Three cases were chosen: (CA1) vertical accelerations
along a single circular torus in deep-water regular waves, considering a flexible
torus and a nearly rigid torus; (CA2) viscous current loads on a rigid-circular cage,
a flexible-bottomless circular cage and a deformable, closed net cage; (CA3) moor-
ing loads for a simplified fish-farm with horizontal mooring lines in current only
and in combined waves and current. Reasonable agreement between the numerical
and experimental results was observed for all the three examined cases. Numerical
studies also indicated that: (CA1) the elasticity of the torus is important for the
vertical accelerations, even if the torus is almost rigid; (CA2) the screen-type force
model tends to slightly overestimate the viscous current loads on the cage and
an improved prediction is expected if the flow around the net cage is considered
by applying Lagally’s theorem; (CA3) the numerical solver gives better results for
cases with smaller wave steepnesses.

A sensitivity analysis was also performed for the scenario CA3 to examine the
importance of different parameters on the mooring loads. When current is present,
the following conclusions were drawn: (1) the two most important parameters are
the floater elasticity and the flow reduction for the rear part of the net cage; (2)
neglecting the drag force on the floater, avoiding the axial stiffness due to the
axial tension, using zero frequency instead of the frequency-dependent added mass
for the floater, considering nonlinear Froude-Kriloff and restoring forces, adopting
relatively coarse mesh, defining the Reynolds number by the characteristic free
stream velocity instead of the instantaneous relative velocity and doubling the net-
twine added mass, have all moderate influence on the mooring loads.

The validated numerical tool was used to analyze a realistic aquaculture fish-
farm system (with single cage) in current only, and in regular and long-crested
irregular waves. The obtained numerical results were compared with available ex-
perimental data. Loads in the anchor lines and in the bridle lines were investigated
in detail and satisfactory agreement between numerical and experimental results
was demonstrated for the system in both regular and irregular waves.

A systematic sensitivity analysis was also performed to identify important pa-
rameters influencing the mooring loads. Similarly as for the simplified fish farm,
CA3, the most important parameter for the anchor loads is the flow reduction in
the rear part of the net cage. Modeling the floating collar as a rigid body has a
moderate effect on the anchor loads, but the bridle loads may differ by more than
20% as a rigid collar will change the force distribution along bridles. It is worth to
note that the bridle lines in the complete mooring system are similar to the moor-
ing system adopted in CA3. Other parameters such as net elasticity, net weight,
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flow modification around the net cage, and drag forces on the floating collar, sinker
tube and buoys, have moderate influence on the mooring loads. Neglecting the
transient effects and using zero-frequency added mass for the floating collar would
lead to negligible error in irregular waves. There is a big variation of the maximum
loads in the anchor line and in the bridle line when different random phase seeds are
used to generate the incident irregular waves in the numerical simulations. Gumbel
distribution is found proper to fit the maximum loads in the mooring lines from
different realizations, especially for the loads in bridle lines.

The operational limits of the fish farm have been determined through systematic
simulations. Regular waves and current were examined. Numerical results indi-
cated that the main constraint for operating the floating-collar fish farm in more
exposed sea regions is the net volume reduction. The maximum floating-collar
stress and mooring loads are moderate, even in extreme sea states. Moreover,
the sinker tube is more suitable to be used to reduce the net-cage deformation,
compared with the discrete sinker weights. Numerical results showed that moor-
ing loads in equivalent regular waves are of similar magnitude, but generally more
conservative than those in irregular waves.

7.1.2 Coupled well boat-fish farm system

Dynamic response of a well boat operating at a fish farm in current and in long-
crested irregular waves and current has been analyzed numerically in the time
domain. The most critical scenario with the well boat placed at the weather side
of the fish farm has been analyzed in detail. The influence of the well boat on the
fish farm has been quantified and the operational conditions of the well boat have
been determined. A detailed summary is given below.

A time-domain numerical solver has been developed to investigate the response
of the coupled system. The transverse viscous loads on the boat in current only
and in oscillatory flow and current are evaluated based on the cross-flow principle.
A systematic approach is proposed to estimate the corresponding drag coefficients,
using available empirical formulas. The Reynolds number, rigid free-surface con-
dition, three-dimensional flow at ship ends, Keulegan-Carpenter number and the
ratio between current velocity and a characteristic wave velocity are accounted for.
The approach has been validated by experiments available in literature. The strat-
egy for the coupling between the well boat and the fish farm is also introduced and
the method to measure the contact force between them is given. The well-boat
shading effect on the net inflow is approximated by assuming that the flow behind
the boat acts like a plane mixing flow with curved shear layer. The numerical
modeling of the slow-drift motions of the well boat, in particular the slow-drift
sway motion, is explained. The approaches to estimate the slow-drift excitation
force and slow-drift damping (wave-drift damping and eddy-making damping) are
provided, together with the technique to linearize the eddy-making damping.

Using the developed numerical solver, the coupled system in current only was
studied at first. Numerical results showed that both the anchor loads and the
floating-collar horizontal deformations increase significantly due to presence of the
well boat. Moreover, the floating-collar maximum stress due to the horizontal
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deformations occurs at the region where the well boat is in contact with the floating
collar. A sensitivity analysis was also performed, showing that the anchor loads
are more sensitive to the net-cage related parameters (e.g. sinker tube depth,
sinker tube weight), while the maximum floating-collar stress is more sensitive to
well-boat loads related parameters (e.g. cross-sectional drag coefficient).

Before analyzing the complete well boat-fish farm system in long-crested irreg-
ular waves and current, the slow-drift sway motion of the well boat was studied as
a simplified one-degree-of-freedom system for verification purpose. In particular,
the fish farm was simplified as a linear spring, neglecting the damping due to the
net cage and the mooring lines. The modeling of sway motion was verified by com-
paring the mean value and standard deviation of the motion from the time-domain
solution with those from the frequency-domain solution. The importance of differ-
ent slow-drift damping terms was examined, leading to the following conclusions:
(1) both the mean and the slowly-varying wave-drift damping are important for
cases with larger significant wave height; (2) when estimating the eddy-making
damping, both the first-order and slow-drift velocities should be included; (3) the
first-order motion is small compared with the slow-drift component for the exam-
ined sea states; (4) Rayleigh distribution can be used to predict the extreme values
when the damping (both wave-drift damping and eddy-making damping) is small;
(5) for cases in combined irregular waves and current, both exponential distribu-
tion and Stansberg’s method (Stansberg, 1991) can have a reasonable prediction
of the extreme values. The former is on the conservative side while the latter gives
a slight underestimate.

A physical investigation of the coupled system was then performed, with the well
boat moored at the weather side of the fish farm. Both the maximum anchor load
and the maximum floating-collar stress increase significantly due to the well boat,
e.g. increasing more than 300% in moderate exposure sea states. Numerical results
indicated that sufficient number of structural modes for the floating collar should be
used for a reliable prediction of the maximum floating-collar stress. Simplifying the
modeling of the coupled system, for instance, neglecting the net cage and the first-
order motion has more effect on the maximum anchor load than on the maximum
floating-collar stress. Smaller influence on the maximum floating-collar stress was
observed when current is present.

The operational conditions of the well boat were investigated through system-
atic simulations. Numerical results showed that the maximum anchor load would
not exceed the anchor-line breaking limit even in high exposure sea conditions. The
maximum stress in the floating collar would be close to the yield stress when the
system operates in moderate exposure sea states, and should be used to determine
the operational conditions of the well boat. For the anchor loads, using equivalent
regular waves to represent irregular waves is not applicable for the coupled well
boat-fish farm system due to unrealistic high mean wave-drift loads.
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7.2 Recommendations for further work

This thesis provides a good understanding of the response of a realistic floating-
collar fish farm (with single cage), without and with the well-boat presence. Many
studies can be pursued as a continuation of the present work.

7.2.1 Fish-farm system

• In this work, a realistic fish farm with single cage was examined. However, in
reality many net cages operate in close vicinity, arranged in mooring grid in single
or double rows. This raises questions about spatial variations of the current and
wave environment, as well as about hydrodynamic interaction between the net
cages.

• Snap loads were observed in the bridle lines and in the upper part of the net
cage. Occurrence of snap events could lead to unexpected high loads, thus they
deserve more research.

• The studies in survival conditions for the fish farm just examined the most critical
scenario with aligned regular waves and current. It means that the conclusions
may be a bit conservative. The fish-farm system in more general sea states should
also be studied and possibly three-dimensional waves should be accounted for.
Their implementation in the present method is relatively straightforward within
the assumption of linear superposition principle of incident wave components.
More detailed statistical analysis is needed, e.g. performing fatigue analysis for
the mooring lines and the net cage.

• The numerical solver developed in this thesis is applicable to any net-based fish-
farm concept, so it can be used to analyze novel open cage fish-farm designs.

7.2.2 Coupled well boat-fish farm system

• The slow-drift motions of the well boat without the net cage and mooring loads
on the net cage without the well boat were numerically predicted and carefully
validated. This suggests that the numerical results of the coupled system should
be reasonable. However, there is still a need of model tests to better validate the
modeling of the coupled system.

• The studies in operational conditions for the well boat just considered the most
critical scenario with the well boat placed at the weather side of the fish farm in
aligned long-crested irregular waves and current. More generic sea states should
be examined.

• In this work, a fish-farm system with single cage was included. To represent
more realistic scenario, a well boat operating at a fish farm with multiple cages
should be checked.
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• A typical well-boat operation can be categorized into three phases: approaching,
loading/offloading and leaving. Here, just the loading/offloading phase was in-
vestigated. However, the approach and departure phases of a well boat need also
to be studied. Maneuvering in waves becomes then an issue. Possible contact
with the mooring lines, suction of the net into the propeller and collision with
the floating collar need to be prevented when choosing the maneuvering strategy.
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Appendix A

Mode shape plots
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Figure A.1: Normal deformation modes from 1-6. Left: cos(nβ). Right: sin(nβ).
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Appendix B

Analytical integration for
axial stiffness

The integration terms in Eq. (2.14) are given analytically by∫
cos (nβ) cos (mβ) dβ =

1

2

sin [(m+ n)β]

m+ n
+

1

2

sin [(m− n+ ε)β]

m− n+ ε

∫
sin (nβ) cos (mβ) dβ = −1

2

cos [(m+ n)β]

m+ n
+

1

2

[cos (m− n+ ε)β]

m− n+ ε

(B.1)

here ε is a infinitely small value (10−15). The main purpose to add ε in denominator
is to deal with the case when m = n.
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Appendix C

Contact force between the
well boat and the floating
collar

Accurate prediction of the contact force between the fish farm and the well boat is
important for the response of the coupled system.

Figure C.1: Configuration of the well boat and the moored fish-farm system with
definitions of coordinate systems and wave and current directions. Left: birds eye
view. Right: three-dimensional view.

The indirect method, used in the present thesis for this estimation, is described
in Section 5.2.2. A different strategy, named as direct method, has been compared
against the indirect method by Shen et al. (2016). The results are repeated here
for completeness, because the consistency of these independent methods confirms
the applicability of the indirect approach. In the direct method, the contact force
is evaluated based on the condition that the floater and the boat share the same
normal velocity at a given contact point. The direct method is physically sound,
but difficult to implement in a general scenario. A simplified case is examined
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198 Contact force between the well boat and the floating collar

where the well boat used in this thesis can move only in sway and is coupled with
a simplified fish-farm system involving an isolated rigid floater and a bottomless
net cage, see Figure C.1. Detailed parameters of the simplified fish farm can be
found in Shen et al. (2016). The comparisons of the contact forces and mooring
forces are shown in Figure C.2. Two results are shown from the indirect method
using two values of the contact stiffness. Increasing further the kc (not shown here)
gives the same predictions as with kc = 1.6× 106N/m for which the two methods
provide consistent results. This indicates that the indirect method is reliable as
long as sufficiently high contact stiffness kc is adopted.

0 20 40 60 80 100
0

20

40

60

80

100

120

140

C
o
n
ta

c
t 
fo

rc
e
  
[k

N
]

0 20 40 60 80 100
-10

0

10

20

30

40

50

M
o
o
ri
n
g
 f
o
rc

e
  
[k

N
]

Figure C.2: Time histories of the contact forces (left) and the mooring tensions
(right) in waves with wave period T = 6 s and wave height-to-wavelength ratio
H/λ = 1/60.



Appendix D

Mean wave forces in very
short waves and current

The direct pressure integration method (Pinkster and Van Oortmerssen, 1977) is
adopted to estimate the mean wave (second-order) forces on a structure with ver-
tical side at the water plane in very short waves and current. Similar procedure
as shown in Faltinsen (1990) is followed. We show the method by analyzing inci-
dent regular deep-water waves on a two-dimensional free-surface-piercing body, see
Figure D.1.

y

z

Figure D.1: Incident waves and drift forces on a vertical wall.

The incident wave potential + diffraction potential

φI′ = φI + φD = U∞y +
gζa
ω
ekz cos (ωet− ky) +

[
−U∞y +

gζa
ω
ekz cos (ωet+ ky)

]
=

2gζa
ω

ekz cos (ωet) cos (ky)

(D.1)
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satisfying the body boundary condition. For the effect of current, only the en-
counter frequency effect is considered. The wave elevation at the wall

ζ = −1

g

∂φI′

∂t

∣∣∣∣
y=0,z=0

=
2ζaωe
ω

sin (ωet) (D.2)

We start out with Bernoulli’s equation,

p = −ρgz − ρ∂φI
′

∂t
− 1

2
ρ

[(
∂φI′

∂y2

)2

+

(
∂φI′

∂z2

)2
]

(D.3)

We will calculate the mean drift force correct to second order in wave amplitude.
The contribution from the two first terms in Eq. (D.3) can be written as

−ρg
∫ ζ

0

zdz − ρ ∂φI
′

∂t

∣∣∣∣
z=0

ζ = ρg
ω2
e

ω2
ζ2
a

(D.4)

The third term in Eq. (D.3) results in the following contribution

−1

2
ρ

∫ 0

−∞

[(
∂φI′

∂y2

)2

+

(
∂φI′

∂z2

)2
]
dz = −1

2
ρgζ2

a (D.5)

The total sum is

F2 (ω,U∞) = ρg
ω2
e

ω2
ζ2
a −

1

2
ρgζ2
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1

2
ρgζ2

a

(
2ω2

e
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− 1

)
F2 (ω,U∞) = F2 (ω)

[
1 +

4ωU∞
g

+ 2

(
ωU∞
g

)2
] (D.6)

Let us define τ = ωU∞/g, then the last two terms in the right-hand side of Eq. (D.6)
are equal when τ = 2. If τ is small, e.g. τ < 0.1, then the second-order term of τ
can be neglected and Eq. (D.6) can be rewritten as

F2 (ω,U∞) ≈ F2 (ω)

(
1 +

4ωU∞
g

)
(D.7)
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Fixed Offshore Structures. (Dr.Ing. Thesis) 

MTA-93-

95 

Steen, Sverre, MH Cobblestone Effect on SES. (Dr.Ing. Thesis) 

MTA-93-

96 

Karunakaran, Daniel, MK Nonlinear Dynamic Response and Reliability 

Analysis of Drag-dominated Offshore Platforms. 

(Dr.Ing. Thesis) 

MTA-93-

97 

Hagen, Arnulf, MP The Framework of a Design Process Language. 

(Dr.Ing. Thesis) 

MTA-93-

98 

Nordrik, Rune, MM Investigation of Spark Ignition and Autoignition in 

Methane and Air Using Computational Fluid 

Dynamics and Chemical Reaction Kinetics. A 
Numerical Study of Ignition Processes in Internal 

Combustion Engines. (Dr.Ing. Thesis) 

MTA-94-
99 

Passano, Elizabeth, MK Efficient Analysis of Nonlinear Slender Marine 

Structures. (Dr.Ing. Thesis) 

MTA-94-

100 

Kvålsvold, Jan, MH Hydroelastic Modelling of Wetdeck Slamming on 

Multihull Vessels. (Dr.Ing. Thesis) 

MTA-94-

102 

Bech, Sidsel M., MK Experimental and Numerical Determination of 

Stiffness and Strength of GRP/PVC Sandwich 

Structures. (Dr.Ing. Thesis) 

MTA-95-

103 

Paulsen, Hallvard, MM A Study of Transient Jet and Spray using a 

Schlieren Method and Digital Image Processing. 

(Dr.Ing. Thesis) 

MTA-95-

104 

Hovde, Geir Olav, MK Fatigue and Overload Reliability of Offshore 

Structural Systems, Considering the Effect of 

Inspection and Repair. (Dr.Ing. Thesis) 

MTA-95-

105 

Wang, Xiaozhi, MK Reliability Analysis of Production Ships with 

Emphasis on Load Combination and Ultimate 

Strength. (Dr.Ing. Thesis) 

MTA-95-

106 

Ulstein, Tore, MH Nonlinear Effects of a Flexible Stern Seal Bag on 

Cobblestone Oscillations of an SES. (Dr.Ing. 

Thesis) 

MTA-95-

107 

Solaas, Frøydis, MH Analytical and Numerical Studies of Sloshing in 

Tanks. (Dr.Ing. Thesis) 

MTA-95-

108 

Hellan, Øyvind, MK Nonlinear Pushover and Cyclic Analyses in 

Ultimate Limit State Design and Reassessment of 

Tubular Steel Offshore Structures. (Dr.Ing. Thesis) 

MTA-95-

109 

Hermundstad, Ole A., MK Theoretical and Experimental Hydroelastic 

Analysis of High Speed Vessels. (Dr.Ing. Thesis) 

MTA-96-
110 

Bratland, Anne K., MH Wave-Current Interaction Effects on Large-Volume 

Bodies in Water of Finite Depth. (Dr.Ing. Thesis) 

MTA-96-

111 

Herfjord, Kjell, MH A Study of Two-dimensional Separated Flow by a 

Combination of the Finite Element Method and 
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Navier-Stokes Equations. (Dr.Ing. Thesis) 

MTA-96-

112 

Æsøy, Vilmar, MM Hot Surface Assisted Compression Ignition in a 

Direct Injection Natural Gas Engine. (Dr.Ing. 

Thesis) 

MTA-96-

113 

Eknes, Monika L., MK Escalation Scenarios Initiated by Gas Explosions on 

Offshore Installations. (Dr.Ing. Thesis) 

MTA-96-
114 

Erikstad, Stein O., MP A Decision Support Model for Preliminary Ship 

Design. (Dr.Ing. Thesis) 

MTA-96-

115 

Pedersen, Egil, MH A Nautical Study of Towed Marine Seismic 

Streamer Cable Configurations. (Dr.Ing. Thesis) 

MTA-97-

116 

Moksnes, Paul O., MM Modelling Two-Phase Thermo-Fluid Systems 

Using Bond Graphs. (Dr.Ing. Thesis) 

MTA-97-
117 

Halse, Karl H., MK On Vortex Shedding and Prediction of Vortex-
Induced Vibrations of Circular Cylinders. (Dr.Ing. 

Thesis) 

MTA-97-
118 

Igland, Ragnar T., MK Reliability Analysis of Pipelines during Laying, 
considering Ultimate Strength under Combined 

Loads. (Dr.Ing. Thesis) 

MTA-97-
119 

Pedersen, Hans-P., MP Levendefiskteknologi for fiskefartøy. (Dr.Ing. 

Thesis) 

MTA-98-

120 

Vikestad, Kyrre, MK Multi-Frequency Response of a Cylinder Subjected 

to Vortex Shedding and Support Motions. (Dr.Ing. 

Thesis) 

MTA-98-

121 

Azadi, Mohammad R. E., MK Analysis of Static and Dynamic Pile-Soil-Jacket 

Behaviour. (Dr.Ing. Thesis) 

MTA-98-

122 

Ulltang, Terje, MP A Communication Model for Product Information. 

(Dr.Ing. Thesis) 

MTA-98-

123 

Torbergsen, Erik, MM Impeller/Diffuser Interaction Forces in Centrifugal 

Pumps. (Dr.Ing. Thesis) 

MTA-98-
124 

Hansen, Edmond, MH A Discrete Element Model to Study Marginal Ice 
Zone Dynamics and the Behaviour of Vessels 

Moored in Broken Ice. (Dr.Ing. Thesis) 

MTA-98-
125 

Videiro, Paulo M., MK Reliability Based Design of Marine Structures. 

(Dr.Ing. Thesis) 

MTA-99-

126 

Mainçon, Philippe, MK Fatigue Reliability of Long Welds Application to 

Titanium Risers. (Dr.Ing. Thesis) 

MTA-99-

127 

Haugen, Elin M., MH Hydroelastic Analysis of Slamming on Stiffened 

Plates with Application to Catamaran Wetdecks. 

(Dr.Ing. Thesis) 

MTA-99-

128 

Langhelle, Nina K., MK Experimental Validation and Calibration of 

Nonlinear Finite Element Models for Use in Design 

of Aluminium Structures Exposed to Fire. (Dr.Ing. 

Thesis) 

MTA-99- Berstad, Are J., MK Calculation of Fatigue Damage in Ship Structures. 
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129 (Dr.Ing. Thesis) 

MTA-99-

130 

Andersen, Trond M., MM Short Term Maintenance Planning. (Dr.Ing. Thesis) 

MTA-99-

131 

Tveiten, Bård Wathne, MK Fatigue Assessment of Welded Aluminium Ship 

Details. (Dr.Ing. Thesis) 

MTA-99-

132 

Søreide, Fredrik, MP Applications of underwater technology in deep 

water archaeology. Principles and practice. (Dr.Ing. 

Thesis) 

MTA-99-

133 

Tønnessen, Rune, MH A Finite Element Method Applied to Unsteady 

Viscous Flow Around 2D Blunt Bodies With Sharp 

Corners. (Dr.Ing. Thesis) 

MTA-99-

134 

Elvekrok, Dag R., MP Engineering Integration in Field Development 

Projects in the Norwegian Oil and Gas Industry. 

The Supplier Management of Norne. (Dr.Ing. 

Thesis) 

MTA-99-

135 

Fagerholt, Kjetil, MP Optimeringsbaserte Metoder for Ruteplanlegging 

innen skipsfart. (Dr.Ing. Thesis) 

MTA-99-

136 

Bysveen, Marie, MM Visualization in Two Directions on a Dynamic 

Combustion Rig for Studies of Fuel Quality. 

(Dr.Ing. Thesis) 

MTA-

2000-137 

Storteig, Eskild, MM Dynamic characteristics and leakage performance 

of liquid annular seals in centrifugal pumps. 

(Dr.Ing. Thesis) 

MTA-

2000-138 

Sagli, Gro, MK Model uncertainty and simplified estimates of long 

term extremes of hull girder loads in ships. (Dr.Ing. 

Thesis) 

MTA-

2000-139 

Tronstad, Harald, MK Nonlinear analysis and design of cable net 

structures like fishing gear based on the finite 

element method. (Dr.Ing. Thesis) 

MTA-

2000-140 

Kroneberg, André, MP Innovation in shipping by using scenarios. (Dr.Ing. 

Thesis) 

MTA-

2000-141 

Haslum, Herbjørn Alf, MH Simplified methods applied to nonlinear motion of 

spar platforms. (Dr.Ing. Thesis) 

MTA-
2001-142 

Samdal, Ole Johan, MM Modelling of Degradation Mechanisms and 
Stressor Interaction on Static Mechanical 

Equipment Residual Lifetime. (Dr.Ing. Thesis) 

MTA-
2001-143 

Baarholm, Rolf Jarle, MH Theoretical and experimental studies of wave 
impact underneath decks of offshore platforms. 

(Dr.Ing. Thesis) 

MTA-
2001-144 

Wang, Lihua, MK Probabilistic Analysis of Nonlinear Wave-induced 

Loads on Ships. (Dr.Ing. Thesis) 

MTA-

2001-145 

Kristensen, Odd H. Holt, MK Ultimate Capacity of Aluminium Plates under 

Multiple Loads, Considering HAZ Properties. 

(Dr.Ing. Thesis) 

MTA-

2001-146 

Greco, Marilena, MH A Two-Dimensional Study of Green-Water 
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Loading. (Dr.Ing. Thesis) 

MTA-

2001-147 

Heggelund, Svein E., MK Calculation of Global Design Loads and Load 

Effects in Large High Speed Catamarans. (Dr.Ing. 

Thesis) 

MTA-

2001-148 

Babalola, Olusegun T., MK Fatigue Strength of Titanium Risers – Defect 

Sensitivity. (Dr.Ing. Thesis) 

MTA-
2001-149 

Mohammed, Abuu K., MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 

(Dr.Ing. Thesis) 

MTA-
2002-150 

Holmedal, Lars E., MH Wave-current interactions in the vicinity of the sea 

bed. (Dr.Ing. Thesis) 

MTA-

2002-151 

Rognebakke, Olav F., MH Sloshing in rectangular tanks and interaction with 

ship motions. (Dr.Ing. Thesis) 

MTA-

2002-152 

Lader, Pål Furset, MH Geometry and Kinematics of Breaking Waves. 

(Dr.Ing. Thesis) 

MTA-
2002-153 

Yang, Qinzheng, MH Wash and wave resistance of ships in finite water 

depth. (Dr.Ing. Thesis) 

MTA-

2002-154 

Melhus, Øyvin, MM Utilization of VOC in Diesel Engines. Ignition and 

combustion of VOC released by crude oil tankers. 

(Dr.Ing. Thesis) 

MTA-

2002-155 

Ronæss, Marit, MH Wave Induced Motions of Two Ships Advancing 

on Parallel Course. (Dr.Ing. Thesis) 

MTA-

2002-156 

Økland, Ole D., MK Numerical and experimental investigation of 

whipping in twin hull vessels exposed to severe wet 

deck slamming. (Dr.Ing. Thesis) 

MTA-

2002-157 

Ge, Chunhua, MK Global Hydroelastic Response of Catamarans due 

to Wet Deck Slamming. (Dr.Ing. Thesis) 

MTA-

2002-158 

Byklum, Eirik, MK Nonlinear Shell Finite Elements for Ultimate 

Strength and Collapse Analysis of Ship Structures. 

(Dr.Ing. Thesis) 

IMT-

2003-1 

Chen, Haibo, MK Probabilistic Evaluation of FPSO-Tanker Collision 

in Tandem Offloading Operation. (Dr.Ing. Thesis) 

IMT-
2003-2 

Skaugset, Kjetil Bjørn, MK On the Suppression of Vortex Induced Vibrations 
of Circular Cylinders by Radial Water Jets. (Dr.Ing. 

Thesis) 

IMT-
2003-3 

Chezhian, Muthu Three-Dimensional Analysis of Slamming. (Dr.Ing. 

Thesis) 

IMT-

2003-4 

Buhaug, Øyvind Deposit Formation on Cylinder Liner Surfaces in 

Medium Speed Engines. (Dr.Ing. Thesis) 

IMT-

2003-5 

Tregde, Vidar Aspects of Ship Design: Optimization of Aft Hull 

with Inverse Geometry Design. (Dr.Ing. Thesis) 

 

 

IMT-

 

 

Wist, Hanne Therese 

 

Statistical Properties of Successive Ocean Wave 
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2003-6 Parameters. (Dr.Ing. Thesis) 

IMT-

2004-7 

Ransau, Samuel Numerical Methods for Flows with Evolving 

Interfaces. (Dr.Ing. Thesis) 

IMT-
2004-8 

Soma, Torkel Blue-Chip or Sub-Standard. A data interrogation 
approach of identity safety characteristics of 

shipping organization. (Dr.Ing. Thesis) 

IMT-
2004-9 

Ersdal, Svein An experimental study of hydrodynamic forces on 
cylinders and cables in near axial flow. (Dr.Ing. 

Thesis) 

IMT-
2005-10 

Brodtkorb, Per Andreas The Probability of Occurrence of Dangerous Wave 

Situations at Sea. (Dr.Ing. Thesis) 

IMT-

2005-11 

Yttervik, Rune Ocean current variability in relation to offshore 

engineering. (Dr.Ing. Thesis) 

IMT-

2005-12 

Fredheim, Arne Current Forces on Net-Structures. (Dr.Ing. Thesis) 

IMT-

2005-13 

Heggernes, Kjetil Flow around marine structures. (Dr.Ing. Thesis 

IMT-
2005-14 

Fouques, Sebastien Lagrangian Modelling of Ocean Surface Waves and 
Synthetic Aperture Radar Wave Measurements. 

(Dr.Ing. Thesis) 

IMT-
2006-15 

Holm, Håvard Numerical calculation of viscous free surface flow 

around marine structures. (Dr.Ing. Thesis) 

IMT-

2006-16 

Bjørheim, Lars G. Failure Assessment of Long Through Thickness 

Fatigue Cracks in Ship Hulls. (Dr.Ing. Thesis) 

IMT-

2006-17 

Hansson, Lisbeth Safety Management for Prevention of Occupational 

Accidents. (Dr.Ing. Thesis) 

IMT-
2006-18 

Zhu, Xinying Application of the CIP Method to Strongly 
Nonlinear Wave-Body Interaction Problems. 

(Dr.Ing. Thesis) 

IMT-

2006-19 

Reite, Karl Johan Modelling and Control of Trawl Systems. (Dr.Ing. 

Thesis) 

IMT-
2006-20 

Smogeli, Øyvind Notland Control of Marine Propellers. From Normal to 

Extreme Conditions. (Dr.Ing. Thesis) 

IMT-

2007-21 

Storhaug, Gaute Experimental Investigation of Wave Induced 

Vibrations and Their Effect on the Fatigue Loading 

of Ships. (Dr.Ing. Thesis) 

IMT-

2007-22 

Sun, Hui A Boundary Element Method Applied to Strongly 

Nonlinear Wave-Body Interaction Problems. (PhD 

Thesis, CeSOS) 

IMT-

2007-23 

Rustad, Anne Marthine Modelling and Control of Top Tensioned Risers. 

(PhD Thesis, CeSOS) 

IMT-

2007-24 

Johansen, Vegar Modelling flexible slender system for real-time 

simulations and control applications 

IMT-
2007-25 

Wroldsen, Anders Sunde Modelling and control of tensegrity structures. 
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(PhD Thesis, CeSOS) 

IMT-

2007-26 

Aronsen, Kristoffer Høye An experimental investigation of in-line and 

combined inline and cross flow vortex induced 

vibrations. (Dr. avhandling, IMT) 

IMT-

2007-27 

Gao, Zhen Stochastic Response Analysis of Mooring Systems 

with Emphasis on Frequency-domain Analysis of 

Fatigue due to Wide-band Response Processes 

(PhD Thesis, CeSOS) 

IMT-

2007-28 

Thorstensen, Tom Anders Lifetime Profit Modelling of Ageing Systems 

Utilizing Information about Technical Condition. 

(Dr.ing. thesis, IMT) 

IMT-

2008-29 

Refsnes, Jon Erling Gorset Nonlinear Model-Based Control of Slender Body 

AUVs (PhD Thesis, IMT) 

IMT-

2008-30 

Berntsen, Per Ivar B. Structural Reliability Based Position Mooring. 

(PhD-Thesis, IMT) 

IMT-
2008-31 

Ye, Naiquan Fatigue Assessment of Aluminium Welded Box-

stiffener Joints in Ships (Dr.ing. thesis, IMT) 

IMT-

2008-32 

Radan, Damir Integrated Control of Marine Electrical Power 

Systems. (PhD-Thesis, IMT) 

IMT-

2008-33 

Thomassen, Paul Methods for Dynamic Response Analysis and 

Fatigue Life Estimation of Floating Fish Cages. 

(Dr.ing. thesis, IMT) 

IMT-

2008-34 

Pákozdi, Csaba A Smoothed Particle Hydrodynamics Study of 

Two-dimensional Nonlinear Sloshing in 

Rectangular Tanks. (Dr.ing.thesis, IMT/ CeSOS) 

IMT-

2007-35 

Grytøyr, Guttorm A Higher-Order Boundary Element Method and 

Applications to Marine Hydrodynamics. 

(Dr.ing.thesis, IMT) 

IMT-

2008-36 

Drummen, Ingo Experimental and Numerical Investigation of 

Nonlinear Wave-Induced Load Effects in 
Containerships considering Hydroelasticity. (PhD 

thesis, CeSOS) 

IMT-
2008-37 

Skejic, Renato Maneuvering and Seakeeping of a Singel Ship and 

of Two Ships in Interaction. (PhD-Thesis, CeSOS) 

IMT-

2008-38 

Harlem, Alf An Age-Based Replacement Model for Repairable 

Systems with Attention to High-Speed Marine 

Diesel Engines. (PhD-Thesis, IMT) 

IMT-

2008-39 

Alsos, Hagbart S. Ship Grounding. Analysis of Ductile Fracture, 

Bottom Damage and Hull Girder Response. (PhD-

thesis, IMT) 

IMT-

2008-40 

Graczyk, Mateusz Experimental Investigation of Sloshing Loading 

and Load Effects in Membrane LNG Tanks 
Subjected to Random Excitation. (PhD-thesis, 

CeSOS) 

IMT-

2008-41 

Taghipour, Reza Efficient Prediction of Dynamic Response for 

Flexible amd Multi-body Marine Structures. (PhD-
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thesis, CeSOS) 

IMT-

2008-42 

Ruth, Eivind Propulsion control and thrust allocation on marine 

vessels. (PhD thesis, CeSOS) 

IMT-
2008-43 

Nystad, Bent Helge Technical Condition Indexes and Remaining Useful 

Life of Aggregated Systems. PhD thesis, IMT 

IMT-

2008-44 

Soni, Prashant Kumar Hydrodynamic Coefficients for Vortex Induced 

 Vibrations of Flexible Beams,  PhD 

thesis, CeSOS 

IMT-

2009-45 

Amlashi, Hadi K.K. Ultimate Strength and Reliability-based Design of 

Ship Hulls with Emphasis on Combined Global and 

Local Loads. PhD Thesis, IMT 

IMT-

2009-46 

Pedersen, Tom Arne Bond Graph Modelling of Marine Power Systems. 

PhD Thesis, IMT 

IMT-
2009-47 

Kristiansen, Trygve Two-Dimensional Numerical and Experimental 
Studies of Piston-Mode Resonance. PhD-Thesis, 

CeSOS 

IMT-

2009-48 

Ong, Muk Chen Applications of a Standard High Reynolds Number   

Model and a Stochastic Scour Prediction Model for 

Marine Structures. PhD-thesis, IMT 

IMT-

2009-49 

Hong, Lin Simplified Analysis and Design of Ships subjected 

to Collision and Grounding. PhD-thesis, IMT 

IMT-
2009-50 

Koushan, Kamran Vortex Induced Vibrations of Free Span Pipelines, 

PhD thesis, IMT 

IMT-

2009-51 

Korsvik, Jarl Eirik Heuristic Methods for Ship Routing and 

Scheduling. PhD-thesis, IMT 

IMT-
2009-52 

Lee, Jihoon Experimental Investigation and Numerical in 
Analyzing the Ocean Current Displacement of 

Longlines. Ph.d.-Thesis, IMT. 

IMT-

2009-53 

Vestbøstad, Tone Gran A Numerical Study of Wave-in-Deck Impact usin a 

Two-Dimensional Constrained Interpolation Profile 

Method, Ph.d.thesis, CeSOS. 

IMT-

2009-54 

Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine 

Power Plants. Ph.d.-thesis, IMT 

IMT 

2009-55 

Holstad, Anders Numerical Investigation of Turbulence in a Sekwed 

Three-Dimensional Channel Flow, Ph.d.-thesis, 

IMT. 

IMT 
2009-56 

Ayala-Uraga, Efren Reliability-Based Assessment of Deteriorating 

Ship-shaped Offshore Structures, Ph.d.-thesis, IMT 

IMT 
2009-57 

Kong, Xiangjun A Numerical Study of a Damaged Ship in Beam 

Sea Waves. Ph.d.-thesis, IMT/CeSOS. 

IMT 

2010-58 

Kristiansen, David Wave Induced Effects on Floaters of Aquaculture 

Plants, Ph.d.-thesis, CeSOS. 
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IMT 
2010-59 

Ludvigsen, Martin An ROV-Toolbox for Optical and Acoustic 

Scientific Seabed Investigation. Ph.d.-thesis IMT. 

IMT 

2010-60 

Hals, Jørgen Modelling and Phase Control of Wave-Energy 

Converters. Ph.d.thesis, CeSOS. 

 

IMT 

2010- 61 

Shu, Zhi Uncertainty Assessment of Wave Loads and 

Ultimate Strength of Tankers and Bulk Carriers in a 
Reliability Framework. Ph.d. Thesis, IMT/ CeSOS 

IMT 

2010-62 

Shao, Yanlin Numerical Potential-Flow Studies on Weakly-

Nonlinear Wave-Body Interactions with/without 

Small Forward Speed, Ph.d.thesis,CeSOS.  

IMT 

2010-63 

Califano, Andrea Dynamic Loads on Marine Propellers due to 

Intermittent Ventilation. Ph.d.thesis, IMT. 

IMT 

2010-64 

El Khoury, George Numerical Simulations of Massively Separated 

Turbulent Flows, Ph.d.-thesis, IMT 

IMT 

2010-65 

Seim, Knut Sponheim Mixing Process in Dense Overflows with Emphasis 

on the Faroe Bank Channel Overflow. Ph.d.thesis, 

IMT 

IMT 
2010-66 

Jia, Huirong Structural Analysis of Intect and Damaged Ships in 
a Collission Risk Analysis Perspective. Ph.d.thesis 

CeSoS. 

IMT 
2010-67 

Jiao, Linlin Wave-Induced Effects on a Pontoon-type Very 
Large Floating Structures (VLFS). Ph.D.-thesis, 

CeSOS. 

IMT 

2010-68 

Abrahamsen, Bjørn Christian Sloshing Induced Tank Roof with Entrapped Air 

Pocket. Ph.d.thesis, CeSOS. 

IMT 

2011-69 

Karimirad, Madjid Stochastic Dynamic Response Analysis of Spar-

Type Wind Turbines with Catenary or Taut 

Mooring Systems. Ph.d.-thesis, CeSOS. 

IMT -
2011-70 

Erlend Meland Condition Monitoring of Safety Critical Valves. 

Ph.d.-thesis, IMT. 

IMT – 

2011-71 

Yang, Limin Stochastic Dynamic System Analysis of Wave 

Energy Converter with Hydraulic Power Take-Off, 
with Particular Reference to Wear Damage 

Analysis, Ph.d. Thesis, CeSOS. 

IMT – 
2011-72 

Visscher, Jan Application of Particla Image Velocimetry on 

Turbulent Marine Flows, Ph.d.Thesis, IMT. 

IMT – 

2011-73 

Su, Biao Numerical Predictions of Global and Local Ice 

Loads on Ships. Ph.d.Thesis, CeSOS. 

IMT – 

2011-74 

Liu, Zhenhui Analytical and Numerical Analysis of Iceberg 

Collision with Ship Structures. Ph.d.Thesis, IMT. 

IMT – 
2011-75 

Aarsæther, Karl Gunnar Modeling and Analysis of Ship Traffic by 
Observation and Numerical Simulation. 

Ph.d.Thesis, IMT. 
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Imt – 
2011-76 

Wu, Jie Hydrodynamic Force Identification from Stochastic 
Vortex Induced Vibration Experiments with 

Slender Beams. Ph.d.Thesis, IMT. 

Imt – 

2011-77 

Amini, Hamid Azimuth Propulsors in Off-design Conditions. 

Ph.d.Thesis, IMT. 

 

 

IMT – 
2011-78 

Nguyen, Tan-Hoi Toward a System of Real-Time Prediction and 
Monitoring of Bottom Damage Conditions During 

Ship Grounding. Ph.d.thesis, IMT. 

IMT- 
2011-79 

Tavakoli, Mohammad T. Assessment of Oil Spill in Ship Collision and 

Grounding, Ph.d.thesis, IMT. 

IMT- 

2011-80 

Guo, Bingjie Numerical and Experimental Investigation of 

Added Resistance in Waves. Ph.d.Thesis, IMT. 

IMT- 

2011-81 

Chen, Qiaofeng Ultimate Strength of Aluminium Panels, 

considering HAZ Effects, IMT 

IMT- 
2012-82 

Kota, Ravikiran S. Wave Loads on Decks of Offshore Structures in 

Random Seas, CeSOS. 

IMT- 
2012-83 

Sten, Ronny Dynamic Simulation of Deep Water Drilling Risers 

with Heave Compensating System, IMT. 

IMT- 

2012-84 

Berle, Øyvind Risk and resilience in global maritime supply 

chains, IMT. 

IMT- 
2012-85 

Fang, Shaoji Fault Tolerant Position Mooring Control Based on 

Structural Reliability, CeSOS. 

IMT- 

2012-86 

You, Jikun Numerical studies on wave forces and moored ship 

motions in intermediate and shallow water, CeSOS. 

IMT- 

2012-87 

Xiang ,Xu Maneuvering of two interacting ships in waves, 

CeSOS 

IMT- 
2012-88 

Dong, Wenbin Time-domain fatigue response and reliability 
analysis of offshore wind turbines with emphasis on 

welded tubular joints and gear components, CeSOS 

IMT- 
2012-89 

Zhu, Suji Investigation of Wave-Induced Nonlinear Load 
Effects in Open Ships considering Hull Girder 

Vibrations in Bending and Torsion, CeSOS 

IMT- 

2012-90 

Zhou, Li Numerical and Experimental Investigation of 

Station-keeping in Level Ice, CeSOS 

IMT- 
2012-91 

Ushakov, Sergey Particulate matter emission characteristics from 
diesel enignes operating on conventional and 

alternative marine fuels, IMT 

IMT- 
2013-1 

Yin, Decao Experimental and Numerical Analysis of Combined 
In-line and Cross-flow Vortex Induced Vibrations, 

CeSOS 
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IMT- 
2013-2 

Kurniawan, Adi Modelling and geometry optimisation of wave 

energy converters, CeSOS 

IMT- 

2013-3 

Al Ryati, Nabil Technical condition indexes doe auxiliary marine 

diesel engines, IMT 

IMT-
2013-4 

Firoozkoohi, Reza Experimental, numerical and analytical 
investigation of the effect of screens on sloshing, 

CeSOS 

IMT- 
2013-5 

Ommani, Babak Potential-Flow Predictions of a Semi-Displacement 
Vessel Including Applications to Calm Water 

Broaching, CeSOS 

IMT- 

2013-6 

Xing, Yihan Modelling and analysis of the gearbox in a floating 

spar-type wind turbine, CeSOS 

IMT-7-

2013 

Balland, Océane Optimization models for reducing air emissions 

from ships, IMT 

IMT-8-

2013 

Yang, Dan Transitional wake flow behind an inclined flat 

plate-----Computation and analysis,  IMT 

IMT-9-

2013 

Abdillah, Suyuthi Prediction of Extreme Loads and Fatigue Damage 

for a Ship Hull due to Ice Action, IMT 

IMT-10-

2013 

Ramìrez, Pedro Agustìn Pèrez Ageing management and life extension of technical 

systems- 

Concepts and methods applied to oil and gas 

facilities, IMT 

IMT-11-

2013 

Chuang, Zhenju Experimental and Numerical Investigation of Speed 

Loss due to Seakeeping and Maneuvering. IMT 

IMT-12-
2013 

Etemaddar, Mahmoud Load and Response Analysis of Wind Turbines 
under Atmospheric Icing and Controller System 

Faults with Emphasis on Spar Type Floating Wind 

Turbines, IMT 

IMT-13-

2013 

Lindstad, Haakon Strategies and measures for reducing maritime CO2 

emissons, IMT 

IMT-14-
2013 

Haris, Sabril Damage interaction analysis of ship collisions, IMT 

IMT-15-

2013 

Shainee, Mohamed Conceptual Design, Numerical and Experimental 

Investigation of a SPM Cage Concept for Offshore 

Mariculture, IMT 

IMT-16-
2013 

Gansel, Lars Flow past porous cylinders and effects of 
biofouling and fish behavior on the flow in and 

around Atlantic salmon net cages, IMT 

IMT-17-

2013 

Gaspar, Henrique Handling Aspects of Complexity in Conceptual 

Ship Design, IMT 

IMT-18-
2013 

Thys, Maxime Theoretical and Experimental Investigation of a 
Free Running Fishing Vessel at Small Frequency of 

Encounter, CeSOS 

IMT-19-

2013 

Aglen, Ida VIV in Free Spanning Pipelines, CeSOS 
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IMT-1-
2014 

Song, An Theoretical and experimental studies of wave 
diffraction and radiation loads on a horizontally 

submerged perforated plate, CeSOS 

IMT-2-

2014 

Rogne, Øyvind Ygre Numerical and Experimental Investigation of a 

Hinged 5-body Wave Energy Converter, CeSOS 

IMT-3-

2014 

Dai, Lijuan  Safe and efficient operation and maintenance of 

offshore wind farms ,IMT 

IMT-4-

2014 

Bachynski, Erin Elizabeth Design and Dynamic Analysis of Tension Leg 

Platform Wind Turbines, CeSOS 

IMT-5-

2014 

Wang, Jingbo Water Entry of Freefall Wedged – Wedge motions 

and Cavity Dynamics, CeSOS 

IMT-6-
2014 

Kim, Ekaterina Experimental and numerical studies related to the 
coupled behavior of ice mass and steel structures 

during accidental collisions, IMT 

IMT-7-

2014 

Tan, Xiang Numerical investigation of ship’s continuous- mode 

icebreaking in leverl ice, CeSOS 

IMT-8-
2014 

Muliawan, Made Jaya Design and Analysis of Combined Floating Wave 
and Wind Power Facilities, with Emphasis on 

Extreme Load Effects of the Mooring System, 

CeSOS 

IMT-9-

2014 

Jiang, Zhiyu Long-term response analysis of wind turbines with 

an emphasis on fault and shutdown conditions, IMT 

IMT-10-
2014 

Dukan, Fredrik ROV Motion Control Systems, IMT 

IMT-11-

2014 

Grimsmo, Nils I. Dynamic simulations of hydraulic cylinder for 

heave compensation of deep water drilling risers, 

IMT 

IMT-12-
2014 

Kvittem, Marit I. Modelling and response analysis for fatigue design 

of a semisubmersible wind turbine, CeSOS 

IMT-13-

2014 

Akhtar, Juned The Effects of Human Fatigue on Risk at Sea, IMT 

IMT-14-

2014 

Syahroni, Nur Fatigue Assessment of Welded Joints Taking into 

Account Effects of Residual Stress, IMT 

IMT-1-

2015 

Bøckmann, Eirik Wave Propulsion of ships, IMT 

IMT-2-

2015 

Wang, Kai Modelling and dynamic analysis of a semi-

submersible floating vertical axis wind turbine, 

CeSOS 

IMT-3-

2015 

Fredriksen, Arnt Gunvald A numerical and experimental study of a two-

dimensional body with moonpool in waves and 

current, CeSOS 

IMT-4-

2015 

Jose Patricio Gallardo Canabes Numerical studies of viscous flow around bluff 

bodies, IMT 
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IMT-5-
2015 

Vegard Longva Formulation and application of finite element 
techniques for slender marine structures subjected 

to contact interactions, IMT 

IMT-6-

2015 

Jacobus De Vaal Aerodynamic modelling of floating wind turbines, 

CeSOS 

IMT-7-

2015 

Fachri Nasution Fatigue Performance of Copper Power Conductors, 

IMT 

IMT-8-

2015 

Oleh I Karpa Development of bivariate extreme value 

distributions for applications in marine 

technology,CeSOS 

IMT-9-

2015 

Daniel de Almeida Fernandes An output feedback motion control system for 

ROVs, AMOS 

IMT-10-

2015 

Bo Zhao Particle Filter for Fault Diagnosis: Application to 

Dynamic Positioning Vessel and Underwater 

Robotics, CeSOS 

IMT-11-

2015 

Wenting Zhu Impact of emission allocation in maritime 

transportation, IMT 

IMT-12-
2015 

Amir Rasekhi Nejad Dynamic Analysis and Design of Gearboxes in 
Offshore Wind Turbines in a Structural Reliability 

Perspective, CeSOS 

IMT-13-
2015 

Arturo Jesùs Ortega Malca Dynamic Response of Flexibles Risers due to 

Unsteady Slug Flow, CeSOS 

IMT-14-

2015 

Dagfinn Husjord Guidance and decision-support system for safe 

navigation of ships operating in close proximity, 

IMT 

IMT-15-

2015 

Anirban Bhattacharyya Ducted Propellers: Behaviour in Waves and Scale 

Effects, IMT 

IMT-16-

2015 

Qin Zhang Image Processing for Ice Parameter Identification 

in Ice Management, IMT 

IMT-1-

2016 

Vincentius Rumawas Human Factors in Ship Design and Operation: An 

Experiential Learning, IMT 

IMT-2-

2016 

Martin Storheim Structural response in ship-platform and ship-ice 

collisions, IMT 

IMT-3-

2016 

Mia Abrahamsen Prsic Numerical Simulations of the Flow around single 

and Tandem Circular Cylinders Close to a Plane 

Wall, IMT 

IMT-4-

2016 

Tufan Arslan Large-eddy simulations of cross-flow around ship 

sections, IMT 
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IMT-5-
2016 

Pierre Yves-Henry Parametrisation of aquatic vegetation in hydraulic 

and coastal research,IMT 

IMT-6-
2016 

Lin Li Dynamic Analysis of the Instalation of Monopiles 

for Offshore Wind Turbines, CeSOS 

IMT-7-
2016 

Øivind Kåre Kjerstad Dynamic Positioning of Marine Vessels in Ice, IMT 

IMT-8-
2016 

Xiaopeng Wu Numerical Analysis of Anchor Handling and Fish 
Trawling Operations in a Safety Perspective, 

CeSOS 

IMT-9-

2016 

Zhengshun Cheng Integrated Dynamic Analysis of Floating Vertical 

Axis Wind Turbines, CeSOS 

IMT-10-
2016 

Ling Wan Experimental and Numerical Study of a Combined 
Offshore Wind and Wave Energy Converter 

Concept 

IMT-11-
2016 

Wei Chai Stochastic dynamic analysis and reliability 
evaluation of the roll motion for ships in random 

seas, CeSOS 

IMT-12-
2016 

Øyvind Selnes Patricksson Decision support for conceptual ship design with 
focus on a changing life cycle and future 

uncertainty, IMT 

IMT-13-

2016 

Mats Jørgen Thorsen Time domain analysis of vortex-induced vibrations, 

IMT 

IMT-14-
2016 

Edgar McGuinness Safety in the Norwegian Fishing Fleet – Analysis 

and measures for improvement, IMT 

IMT-15-
2016 

Sepideh Jafarzadeh Energy effiency and emission abatement in the 

fishing fleet, IMT 

IMT-16-
2016 

Wilson Ivan Guachamin Acero Assessment of marine operations for offshore wind 
turbine installation with emphasis on response-

based operational limits, IMT 

IMT-17-
2016 

Mauro Candeloro Tools and Methods for Autonomous  Operations on 
Seabed and Water Coumn using Underwater 

Vehicles, IMT 

IMT-18-
2016 

Valentin Chabaud Real-Time Hybrid Model Testing of Floating Wind 

Tubines, IMT 

IMT-1-
2017 

Mohammad Saud Afzal Three-dimensional streaming in a sea bed boundary 

layer 

IMT-2-
2017 

Peng Li A Theoretical and Experimental Study of Wave-
induced Hydroelastic Response of a Circular 

Floating Collar 

IMT-3-
2017 

Martin Bergström A simulation-based design method for arctic 

maritime transport systems 
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IMT-4-
2017 

Bhushan Taskar The effect of waves on marine propellers and 

propulsion 

IMT-5-
2017 

Mohsen Bardestani A two-dimensional numerical and experimental 
study of a floater with net and sinker tube in waves 

and current 

IMT-6-
2017 

Fatemeh Hoseini Dadmarzi Direct Numerical Simualtion of turbulent wakes 

behind different plate configurations 

IMT-7-
2017 

Michel R. Miyazaki Modeling and control of hybrid marine power 

plants 

IMT-8-

2017 

Giri Rajasekhar Gunnu Safety and effiency enhancement of anchor 

handling operations with particular emphasis on the 

stability of anchor handling vessels 

IMT-9-
2017 

Kevin Koosup Yum Transient Performance and Emissions of a 
Turbocharged Diesel Engine for Marine Power 

Plants 

IMT-10-
2017 

Zhaolong Yu Hydrodynamic and structural aspects of ship 

collisions 

IMT-11-
2017 

Martin Hassel Risk Analysis and Modelling of Allisions between 

Passing Vessels and Offshore Installations 

IMT-12-

2017 

Astrid H. Brodtkorb Hybrid Control of Marine Vessels – Dynamic 

Positioning in Varying Conditions 

IMT-13-
2017 

Kjersti Bruserud Simultaneous stochastic model of waves and 

current for prediction of structural design loads 

IMT-14-
2017 

Finn-Idar Grøtta Giske Long-Term Extreme Response Analysis of Marine 

Structures Using Inverse Reliability Methods 

IMT-15-
2017 

Stian Skjong Modeling and Simulation of Maritime Systems and 
Operations for Virtual Prototyping using co-

Simulations  

IMT-1-
2018 

Yingguang Chu Virtual Prototyping for Marine Crane Design and 

Operations 

IMT-2-
2018 

Sergey Gavrilin Validation of ship manoeuvring simulation models 

IMT-3-
2018 

Jeevith Hegde Tools and methods to manage risk in autonomous 
subsea inspection,maintenance and repair 

operations 

IMT-4-
2018 

Ida M. Strand Sea Loads on Closed Flexible Fish Cages 

IMT-5-
2018 

Erlend Kvinge Jørgensen Navigation and Control of Underwater Robotic 

Vehicles 
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IMT-6-
2018 

Bård Stovner Aided Intertial Navigation of Underwater Vehicles 

IMT-7-
2018 

Erlend Liavåg Grotle Thermodynamic Response Enhanced by Sloshing 

in Marine LNG Fuel Tanks 

IMT-8-
2018 

Børge Rokseth Safety and Verification of Advanced Maritime 

Vessels 

IMT-9-
2018 

Jan Vidar Ulveseter Advances in Semi-Empirical Time Domain 

Modelling of Vortex-Induced Vibrations 

IMT-10-
2018 

Chenyu Luan Design and analysis for a steel braceless semi-
submersible hull for supporting a 5-MW horizontal 

axis wind turbine 

IMT-11-
2018 

Carl Fredrik Rehn Ship Design under Uncertainty 

IMT-12-
2018 

Øyvind Ødegård Towards Autonomous Operations and Systems in 
Marine Archaeology 

IMT-13- 
2018 

Stein Melvær Nornes Guidance and Control of Marine Robotics for 
Ocean Mapping and Monitoring 

IMT-14-
2018 

Petter Norgren Autonomous Underwater Vehicles in Arctic Marine 
Operations: Arctic marine research and ice 

monitoring 

IMT-15-
2018 

Minjoo Choi Modular Adaptable Ship Design for Handling 
Uncertainty in the Future Operating Context  

MT-16-
2018 

Ole Alexander Eidsvik Dynamics of Remotely Operated Underwater 
Vehicle Systems 

IMT-17-
2018 

Mahdi Ghane Fault Diagnosis of Floating Wind Turbine 
Drivetrain- Methodologies and Applications 

IMT-18-
2018 

Christoph Alexander Thieme Risk Analysis and Modelling of Autonomous 
Marine Systems 

IMT-19-
2018 

Yugao Shen Operational limits for floating-collar fish farms in 
waves and current, without and with well-boat 

presence 

   

                         
 

           

             
        


