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Abstract This paper considers gains from coordinated bidding strategies in
multiple electricity markets. The gain is quantified by comparing profits from
coordinated bidding to profits from a purely sequential bidding strategy. We
investigate the effect of the production portfolio size on gains. We formulate
a coordinated planning problem for a hydropower producer using stochastic
mixed-integer programming. A comprehensive scenario-generation methodol-
ogy is proposed. An extensive case study of the current Nordic market is
carried out. Under the current Nordic market conditions, we found that gains
from coordinating bids are very moderate, just below 1% in total profits for
one watercourse, and about 0.5% for two and three watercourses. Gains from
coordinated bidding decline with portfolio size, but only to a certain degree,
because the gains seem to stabilise at a certain level.

Keywords electricity markets · coordinated bidding · hydropower ·
production portfolio size · stochastic programming · scenario generation

1 Introduction

Electricity is a commodity that must be produced and consumed simultane-
ously. Therefore, there is a need for flexible production resources that can be
adjusted according to fluctuating and unpredictable real-time demand. As the
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supply side of most power markets has become a mix of traditional and new
renewable assets, an increased amount of short-term uncertainty comes from
the supply side. It is expected that the power markets’ dispatchable capacities
will experience a greater demand for regulating reserves as the share of inter-
mittent production grows [2]. Traditional power-producing assets are charac-
terised by (some) flexibility and by time couplings in production, whereas the
new renewables are characterised by nondispatchable production that is hard
to plan and predict.

Growth of intermittent production has increased the mere number of en-
ergy markets with a shorter time horizon and the liquidity in those markets,
catering to needs of inflexible producers and of the transmission system op-
erator (TSO). Such markets can be either multilateral or organised by the
transmission system operator. In addition, system services from spinning ca-
pacities are often traded in markets organised by the TSO. The shorter-term
markets are tools to maintain the demand-supply balance and system secu-
rity. Owners of dispatchable production assets can get higher value for their
flexibility by trading wisely in the reserve markets. However, participating in
multiple markets also makes the bidding and production planning processes
more complex. This article contributes to quantify the effect of an ideal bid-
ding process in multiple subsequent energy and reserve markets, and thereby
contributes to understanding the trade-off between operational feasibility and
optimal bidding theory.

This article focuses on a set-up where the day-ahead electricity market is
cleared first, and the reserve markets are cleared subsequently. In most elec-
tricity markets of today, the largest amount of electricity is traded in the
day-ahead market [27], and therefore the day-ahead bid is one of the most im-
portant decisions. Does it pay to consider trading opportunities in subsequent
markets when formulating the day-ahead market bid? Referring to Figure 1,
a framework where opportunities in the reserve markets are considered at the
time of producing the day-ahead market bid will be referred to as ”coordinated
bidding”. An approach where subsequent markets are considered only after
bidding into the previous market will be denominated ”sequential bidding”.
In technical terms, coordinated bids take all subsequent market scenarios into
account, while sequential bids consider only scenarios in the upcoming market.
A priori, coordinated bidding will yield higher profit than sequential bidding
does, but to what degree? How does portfolio size influence these results?

This paper contributes to the current research on electricity market bidding
in several respects. First, we perform an extensive empirical comparison of
the profit from sequential bidding with the profit from coordinated bidding,
and evaluate them with respect to realised prices and volumes. Second, we
acknowledge that the value from coordinated bidding is very dependent on
the quality of the scenarios in terms of predictive ability and inter-market and
inter-temporal relationships. Our scenario-generation methodology combines
hourly probabilistic forecasts derived from quantile regression with a copula-
based heuristic to create scenarios. This approach accurately models the price
level and price profile uncertainty in the day-ahead market, while maintaining



Portfolio size’s effects on gains from coordinated bidding in electricity markets 3

Fig. 1 Illustration of scenario trees used to create bids for each market with coordinated
bidding (left) and sequential bidding (right)

the relationship to the reserve market. To our knowledge, this approach has
not been previously applied and it provides a better probabilistic description
of day-ahead market prices than provided by previous studies. Third, although
the value of the coordinated bidding approach for a flexible producer has been
empirically studied previously [24], [22], no author has discussed the effect of
portfolio size on the gains from coordinated bidding. This article gives both a
qualitative discussion and an empirical quantification of the matter.

We derive our conclusions from a case study of a hydropower producer
situated in the price zone NO3 in Norway. Bidding and the operation of pro-
duction capacity are modelled using stochastic programming (SP). Section
2 addresses the existing literature on coordinated multimarket optimisation
models, and how this paper contributes to it. We then provide an introduc-
tion to the energy markets treated in this paper in section 3. In section 4 we
propose an SP model that produces bid curves for the Nord Pool day-ahead
market, while taking into account the opportunities in subsequently cleared
reserve markets. The scenario-generation approach for the stochastic problem
is described in section 5. In section 6 we explain the scope of the computa-
tional case study. The results are presented and discussed in section 7. Finally,
section 8 concludes the paper.

2 Coordinated bidding in the literature

Since 2005, deregulation has fostered a rich literature on bidding in electricity
markets; consult [16] and [17] for recent surveys. In contrast, the studies on
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multimarket optimisation are scarce and anecdotal. The earliest contributions
focus on problem formulation and solution techniques, such as [18], [5], [21],
and [22]. Of these, only the last focuses on coordinated bidding.

More recently, the research has branched out to consider multimarket bid-
ding in the context of hydro and wind [28], demand-side participation [23],
and market power issues [29].

There are some efforts in the literature to quantify the value of coordinating
bids between electricity markets (see [22],[24], [31]). Boomsma et al. [24] offer
the most theoretical approach to the coordinated bidding problem. They derive
bounds on the gains from coordinated bidding between the day-ahead market
and the balancing market in the Nordic region. They also perform an empirical
study reporting coordinated bidding gains of up to 25% for a price taker and
of up to 5% for a market where there is a price response. We find that the
gains from coordinated bidding suggested by [24] are too optimistic, because it
builds on the assumption of unlimited sales potential in the balancing market.
In our study, we limit the turnover in the balancing market. This approach is
more in line with the effect of the price-taker as sketched by [24], since both
modelling choices imply that the producer cannot sell an unlimited volume to
the balancing market.

Given a proper description of uncertainty, the gains from coordinated bid-
ding will always be zero or more. In evaluating the gains from coordinated
bidding, the risk included in inaccurate scenario generation should be con-
sidered. Some authors use expected profits with respect to a scenario tree to
arrive at conclusions about the gains associated with coordinating bids (see
for instance [25]). This approach has the unfortunate consequence that value
from coordination is always positive. Scenarios are supposed to represent the
possible outcomes of the markets, but scenarios do not always do so in prac-
tice, especially for unpredictable reserve markets. The performance of bidding
decisions should rather be evaluated using sample scenarios or actual realisa-
tions of prices and volumes, thus taking into account the uncertainty in the
generated scenarios as well.

In addition, most research considers planning and bidding for a small port-
folio of production resources, without regard to how portfolio size alters the
gain. Most producers must plan for large portfolios. Portfolio size determines
the recourse options of the producer and may affect possible gains from coordi-
nated bidding. With a larger portfolio, the producer may have more flexibility
to seize subsequent trade opportunities not accounted for in the initial day-
ahead bidding. This may dilute the gains from coordination for very large
portfolios. On the other hand, reserve markets are inherently unpredictable,
so when coordinating planning fails because of forecasting errors, additional
costs can be mitigated more effectively. A larger portfolio may allow the pro-
ducer to make even more extreme bids in a coordinated framework. Aiming to
quantify this effect, we conduct a case study with portfolio size as one of the
control variables.



Portfolio size’s effects on gains from coordinated bidding in electricity markets 5

Fig. 2 Sequential clearing of relevant markets

3 Energy markets

In this section we begin by briefly presenting the Nord Pool day-ahead market.
It is the main arena for trading power in the Nordic region. In contrast to many
other European electricity markets, the most important reserve markets are
cleared after the clearing of the day-ahead market. The reserve markets we
consider are the Nordic primary reserve and tertiary reserve markets. These
markets are presented in sections 3.2 and 3.3, respectively.

3.1 Day-ahead market

The day-ahead market is the main arena for trading power. Producers can
make a variety of bids. This paper considers only single hourly bids. The seller
must decide how much he wants to deliver at what price, hour by hour. A
buyer must assess how much power he needs to meet demand the following
day, and how much to pay for this volume. Nord Pool aggregates both supply
and demand curves and calculates the price that balances the two, referred to
as the spot price.

The deadline is 12:00 CET for submitting bids for power which will be de-
livered the following day. Hourly prices are typically announced at 12:42 CET
or later. An hourly price corresponds to a volume commitment for produc-
ers and buyers. From 00:00 CET the next day, power contracts are physically
delivered (meaning that the power is provided to the buyer) hour by hour
according to the contracts agreed. If a producer should fail to deliver the com-
mitted volume, the TSO will buy tertiary reserves on his behalf and bill him
afterwards [12]. However, if the TSO suspects that the producer abuses the
tertiary reserve regime, by repeatedly and systematically failing to meet his
obligation from the day-ahead market, the TSO may withdraw the producer’s
license to operate.

3.2 Primary reserve market

When either production or consumption changes, so does the frequency in the
grid. A change in frequency of +/- 0.1 Hz activates primary reserves. The
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regulation of these reserves is completely automated within the respective
plants, with the generator droop setting controlled by the producer restricting
the degree of possible regulation. The market comprises both normal operation
reserves (FCR-N) and disturbed operation reserves (FCR-D). In this paper,
we model only the FCR-N day market, where commitments occur once a day,
hour by hour.

Only an operating plant can deliver primary reserves. The producer is paid
for the reservation of a power band, not for an actual delivery of energy. The
width of the power band is determined by the droop setting on the generator.
The supplier is remunerated for the half-width of the band (in MW).

To secure good distribution of primary reserves, producers are obliged to
set their plants’ droop setting equal to or below 12 per cent. It is up to the TSO
to decide which quantities of primary reserves to provide. The final committed
bid sets the price for all participants, and the market is thus a marginal pricing
market[13]. Bids are committed before 18:00 CET on the day before delivery,
and final commitments are given by the TSO at 19:00.

3.3 Tertiary reserve market

The tertiary reserves market will be referred to as the ”balancing market”
(BM) in this paper. Tertiary reserves are used to reduce larger imbalances
unforeseen at the time of day-ahead settlement, and are activated to relieve
primary reserves, such that these more reactive reserves are ready for the next
sudden imbalance. Tertiary reserves are also activated when regional bottle-
necks are present.

A producer tentatively places an increasing bid curve for the market by
21:30 on the evening before the day of dispatch. However, bids can be changed
until 45 minutes before the hour of schedule, and bids the evening ahead are
merely for guiding the TSO.

The activation happens after a call from the TSO to the producer, and
the producer must be able to fully activate the volume agreed upon within
15 minutes. Both production and consumption capacities can be offered in
the market. In the case of tertiary reserves, the producer is paid for actual
energy delivery. The TSO, at all times, has a list of offered reserves, and
starts by activating the cheapest (upper) alternative whenever needed. The
final activated bid sets the price for all market participants. In the case of
upward regulation, the balancing price is by market rules equal to or higher
than the day-ahead market price, and in the down-regulation case, the price
is equal to or lower than the day-ahead market price. The absolute values of
these differences (between balancing market and day-ahead market price) are
referred to as ”balancing market premiums” [14].

Figure 2 shows the time line of bidding and clearing for all three markets.
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Table 1 Market characteristics

Day-ahead Primary reserve Balancing

Settlement granularity Hourly Hourly Hourly

Market clearing Day-ahead Day-ahead Real time

Remuneration Energy only Reserved capacity Energy only

Pricing scheme Marginal pricing Marginal pricing Marginal pricing

Activation Manual Automatic Manual

Single/dual pricing Single Single Dual

Price cap/floor [NOK] -4 500 - 27 000 >10 Day-ahead price

4 Problem Formulation

In this section, a stochastic mixed-integer programming model (SMIP) is de-
veloped for constructing bid curves for the day-ahead market, taking into
account the bidding alternatives in the primary reserve and tertiary reserves
markets. We also state the corresponding sequential planning model towards
the end of the section. The models have a daily planning horizon, and water
values from a long-term model are used as boundary conditions. The producer
is modelled as a risk-neutral price taker.

The flow of information during the bidding process is stage-wise. When
day-ahead prices clear, the producer obtains information about production
obligations, and may then allocate these obligations to available production
capacity. In addition, the producer submits bids for the primary reserve mar-
ket. In the next stage, primary reserve prices and obligations are revealed. For
the balancing market, final bids are placed at latest 45 minutes before the
operating hour. The balancing market is then operated in real time, and the
producer may or may not be dispatched during an operating hour. Hence, the
problem consists of 27 stages, counting initial bid submission to the day-ahead
market.

For computational tractability, we consider a simplified structure. This
structure consists of three stages, and is illustrated in Figure 3. In the first
stage, the producer places day-ahead bids. In the second stage, day-ahead
obligations are calculated according to the realised price. In addition, the pro-
ducer receives information about the primary reserve price, and may decide on
a commitment to this market. In the final stage, balancing market prices are
revealed for the entire day and commitments are decided upon. This structure
may seem like a violation of natural non-anticipativity. However, considering
marginal pricing and the price taker assumption, the producer has an incentive
to bid until marginal cost. Only prices above marginal cost are attractive to the
producer, which would be reflected in a bid curve. Therefore, only inter-hour
coordination and predictability in the trade-off between reserve markets are
overestimated using this structure. In addition, day-ahead commitments are
much more important for inter-hour coordination than reserves are because
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Fig. 3 Simplified structure decision tree (squares denote decisions, circles denote new in-
formation)

these commitments usually determine whether a generator is on or off. The
calculated value from reserve markets should nevertheless be regarded as an
upper bound.

Uncertainty is inevitable considering the problem at hand. The model con-
tains parameters that are inherently stochastic: clearing prices in the three
markets as well as the volumes traded in the balancing market. The producer
has a set of scenarios, S, when constructing day-ahead bid curves. The sce-
narios contain day-ahead and primary reserve prices. For each s ∈ S, a set of
scenarios Ωs for prices and volumes in the balancing market is given.

The remainder of this section consists of three parts. In section 4.1 we
introduce notation and define the mathematical model for the markets. Section
4.2 addresses modelling of production. Finally, in section 4.3 we formulate the
corresponding sequential bidding problem.

4.1 Modelling bidding and commitments

Throughout this section we use the following nomenclature: decision vari-
ables are represented by lower-case latin letters, parameters are represented by
upper-case latin letter, while exogenous stochastic parameters are represented
by lower-case greek letters. Sets are denoted by calligraphic letters. We seek
to model four markets: day-ahead, primary reserve, upward balancing, and
downward balancing. Let the set m ∈M denote the different markets

m ∈M =


1 Day-ahead

2 Primary reserve

3 BM Up

4 BM Down
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Fig. 4 Example bid curve showing the relation between market price and producer com-
mitment: Any clearing price within the interval in the figure will result in the specified
commitment

The here-and-now decision of the producer is to decide what bid curve to
submit for the day-ahead market. Therefore, this is the only bid curve mod-
elled explicitly. The bid curve consists of a set of non-decreasing price-volume
pairs, see Figure 4. The bid curve can be interpreted as an approximation
of the supply function of the producer, i.e. the quantity it produces param-
eterized by market price x1ts(ρ1ts), where ρ1ts denotes the day-ahead price
and x1ts denotes the committed quantity. This function may be nonlinear and
discontinuous due to nonlinearity of production cost and unit commitment
decisions. To preserve the linearity of the model, we discretize the price axis
by assigning fixed bid points and then optimise the corresponding volume. A
similar approach was implemented by [4]. Bid points are assigned such that
an equal number of price scenarios are distributed between each point. Let
p ∈ P denote the set of bid points, Pp the price of the bid point, and zpt the
bid volume of bid point p at time t. Now, when a price clears between two bid
points, a commitment will be determined by linear interpolation (1):

x1ts = zpt + (zp+1t − zpt)
ρ1ts − Pp
Pp+1 − Pp

if Pp ≤ ρ1ts ≤ P(p+1), p ∈ P \ |P|, s ∈ S, t ∈ T (1)

z(p+1)t ≥ zpt p ∈ P \ |P|, t ∈ T (2)

Next, for each price realisation in S, it must be decided what reservation of
primary reserve to offer in each hour t ∈ T for the day of planning. This reser-
vation is allocated to the decision variable x2ts. Non-anticipativity is handled
by

xmts = xmtsω m ∈ {1, 2}, s ∈ S, t ∈ T , ω ∈ Ωs (3)

For the day-ahead and primary reserve markets, we assume that any vol-
ume can be delivered as long as these volumes are placed below market price
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and do not exceed production capacity. This is a reasonable approximation
because possible delivery in these markets is small compared to total market
demand. On the other hand, balancing market commitments are limited by
the real-time demand for balancing power. Balancing demand may be zero
in some hours, or small in other hours such that a producer might possibly
deliver the entire demand. To prevent the producer from delivering the entire
balancing demand at the exogenous price, we choose market-share modelling,
an option pointed out by Klæboe and Fosso [27].

Therefore, we must model an explicit volume allowance in the balancing
market. For example, (4) restricts balancing commitments by an estimated
market share Y share multiplied by the forecast demand in NO3 νmtsω. Natu-
rally, upward and downward balancing cannot be delivered simultaneously. A
non-zero value in ν3tsω excludes a non-zero value in ν4tsω and vice versa.

xmtsω ≤ Y shareνmtsω m ∈ {3, 4}, s ∈ S, t ∈ T , ω ∈ Ωs (4)

4.2 Modelling production

Next, we seek to model the connection between commitments and produc-
tion. The committed volumes in each market must be allocated between the
available generators. Let q1itsω, q2itsω, and qmitsω when m ∈ {3, 4}, denote
the volume or reservation allocated to generator i at time t in scenario s for
the day-ahead, primary reserve, and balancing market, respectively. Then it
follows that∑

i∈I
qmitsω = xmtsω, m ∈M, s ∈ S, t ∈ T , ω ∈ Ωs (5)

The primary reserve reservation on a running generator must lie within
an interval, whose lower and upper bounds are functions of Gmaxi and Gmini ,
the generator’s maximum and minimum droop settings. Generators I can be
turned on and off during the planning horizon by the binary variable uihsω.
This decision can be made for sub-periods h ∈ H of the planning horizon,
with corresponding operating hours T h. Primary reserves can be offered only
on operating generators, and we have the following relations for capacity reser-
vations

uihsω
0.2Ni
Gmaxi

≤ q2itsω ≤ uihsω
0.2Ni
Gmini

h ∈ H, i ∈ I, s ∈ S, t ∈ T h, ω ∈ Ωs (6)

where Ni denotes nominal production.
Similarly, to ascertain that generators produce within the possible power

range, the following two restrictions are required:

uihsωN
max
i ≥ q1itsω + q2itsω + q3itsω − q4itsω, h ∈ H, i ∈ I, s ∈ S,
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t ∈ T h, ω ∈ Ωs (7)

uihsωN
min
i ≤ q1itsω − q2itsω + q3itsω − q4itsω, h ∈ H, i ∈ I, s ∈ S,

t ∈ T h, ω ∈ Ωs (8)

where Nmax
i and Nmin

i denote upper and lower bounds on production, respec-
tively. The primary reserve reservation must be included in both directions;
hence, the change in sign of q2itsω.

Start-up costs accrue whenever generators start operating after a period
of standstill. Start-up costs are accounted for in the following formulation:

cihsω ≥ Ci(uihsω − ui(h−1)sω) h ∈ H, i ∈ I, s ∈ S, ω ∈ Ωs (9)

where Ci denotes the cost of a start-up.
The quantity of power produced depends on the volume discharged through

the turbine system, the efficiency of the turbine, and the effective head accord-
ing to the physical relation

q = η(d, heff )%gdheff

where q is the power produced in watts, η(d, heff ) is the system efficiency
at the given discharge and head, % is the density of water in kg/m3, g is
the gravitational constant, heff is the effective head in meters, and d is the
discharge in m3/s. The dependence on d is stressed to reveal the non-linear
relationship between discharge and production. To preserve the linearity of
the model and hence use linear programming tools, a set of cuts f ∈ F is
introduced. heff can for well-regulated reservoirs (i.e., those having a negligible
change in the height of the water surface) be treated as constant throughout a
day of planning. Approximation of the concave production curve is thus done,
forcing

q1itsω + q3itsω − q4itsω ≤ Aifuihsω +Bifditsω h ∈ H, i ∈ I, f ∈ F , s ∈ S,

t ∈ T h, ω ∈ Ωs (10)

where primary reserve capacity is not included, because there is no net water
usage in this market. There may be restrictions governing the minimum or
maximum discharge of a generator (e.g., considering wildlife in a watercourse).
For the same reasons, there may be restrictions on minimum and maximum
volume vjtsω in a reservoir. Therefore, we introduce lower and upper bounds
on discharge and reservoir volume

Dmin
i ≤ ditsω ≤ Dmax

i i ∈ I, s ∈ S, t ∈ T , ω ∈ Ωs (11)

V minj ≤ vjtsω ≤ V maxj j ∈ J , s ∈ S, t ∈ T , ω ∈ Ωs (12)
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where J is the set of reservoirs. Furthermore, one must model how the reser-
voir levels respond to production, and to the interconnected flow between
reservoirs. Since most watercourses consist of several reservoirs, production in
one part of the watercourse will increase reservoir levels downstream. Let Ijt
denote inflow, Γij and Λj′j indicators for discharge at i and spill at j′ ending
up at j, and oj′tsω the spill at j′ at time t. Now we get

vjtsω − vj(t−1)sω = Ijt +
∑
i∈I

Γijditsω +
∑
j′∈J

Λj′joj′tsω, j ∈ J , s ∈ S, t ∈ T ,

ω ∈ Ωs (13)

vj1sω − V 0
j = Ij1 +

∑
i∈I

Γijdi1sω +
∑
j′∈J

Λj′joj′1sω, j ∈ J , s ∈ S, ω ∈ Ωs

(14)
where V 0

j denotes the initial volume.

Next, we model the value of water in the reservoirs. In addition to depend-
ing on the outlook on prices, the marginal water value depends on the level
of the reservoirs. It is high at low levels, and tends to zero at full reservoirs.
Hence, the water value curve is concave and can be modelled by linear cuts to
gain linearity [30].

We introduce a set of cuts l ∈ L reflecting the different levels. Let wks
denote the future income of watercourse k at the end of the period, Elk the
reference level of future income, Wjk the marginal water value at the reference
level, Vjl the reference level, and J k the set of reservoirs in the watercourse.
Then for all cuts, it must hold that

wksω ≤ Elk +
∑
j∈J k

Wjk(vj|T |sω − Vjl) k ∈ K, l ∈ L, s ∈ S, ω ∈ Ωs (15)

Finally, the objective function is

maximise
x,z,q,u,c,d,v,o,w

∑
s∈S

∑
ω∈Ωs

πsω

( ∑
m∈M

∑
t∈T

(ρmtsω + ιmρ1tsω)xmtsω

+
∑
k∈K

wksω −
∑
i∈I

∑
h∈H

cihsω

)
(16)

where πsω denotes the probability of a scenario and ρ3tsω and ρ4tsω are upward-
and downward-balancing premiums, respectively. For a more compact formu-
lation, the day-ahead and primary reserve prices are written with double sce-
nario indices, but ρmtsω=ρmts for m = {1, 2} for all ω ∈ Ωs. ιm is a dummy. In
accordance with the market mechanisms, we define ι1 = 0, ι2 = 0, ι3 = 1, and
ι4 = −1. The coordinated bidding problem is obtained by maximizing (16)
subject to (1)-(15). The model can, given a reasonable instance size, be solved
by direct implementation in off-the-shelf mixed integer linear programming
solvers.
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4.3 Sequential model

The sequential model formulation is very similar to the coordinated model.
However, in this formulation we consider only a set S of day-ahead scenar-
ios. No reserve markets scenarios are used when optimising the bid curve,
which produces a somewhat simplified two-stage planning problem. All other
assumptions stated in the previous part of this section continue to hold for
the sequential formulation as well. We simply state the model in full in the
following:

maximise
x,z,q,u,c,d,v,o,w

∑
s∈S

πs

(∑
t∈T

ρ1tsx1ts +
∑
k∈K

wks −
∑
i∈I

∑
h∈H

cihs

)
, (17)

subject to

x1ts = zpt + (zp+1t − zpt)
ρ1ts − Pp
Pp+1 − Pp

if Pp ≤ ρ1ts ≤ P(p+1), p ∈ P \ |P|, s ∈ S, t ∈ T (18)

z(p+1)t ≥ zpt p ∈ P \ |P|, t ∈ T (19)

∑
i∈I

q1its = x1ts, s ∈ S, t ∈ T (20)

uihsN
min
i ≤ q1its ≤ uihsNmax

i , h ∈ H, i ∈ I, s ∈ S, t ∈ T h (21)

cihs ≥ Ci(uihs − ui(h−1)s) h ∈ H, i ∈ I, s ∈ S (22)

q1its ≤ Aifuihs +Bifdits h ∈ H, i ∈ I, f ∈ F , s ∈ S, t ∈ T h (23)

Dmin
i ≤ dits ≤ Dmax

i i ∈ I, s ∈ S, t ∈ T (24)

V minj ≤ vjts ≤ V maxj j ∈ J , s ∈ S, t ∈ T (25)

vjts − vj(t−1)s = Ijt +
∑
i∈I

Γijdits +
∑
j′∈J

Λj′joj′ts, j ∈ J , s ∈ S, t ∈ T (26)

vj1s − V 0
j = Ij1 +

∑
i∈I

Γijdi1s +
∑
j′∈J

Λj′joj′1s, j ∈ J , s ∈ S (27)

wks ≤ Elk +
∑
j∈J k

Wjk(vj|T |s − Vjl) k ∈ K, l ∈ L, s ∈ S (28)
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Fig. 5 Scatter plot for the day-ahead and primary reserve prices 2014–2016

5 Scenario generation

The stochastic parameters are the day-ahead price, the primary reserve price,
the balancing premium, and the volume in both regulating directions (ρmts, m ∈
{1, 2}, ρmtsω, m ∈ {3, 4}, νmtsω, m ∈ {3, 4}). These parameters must be spec-
ified using an appropriate scenario-generation algorithm.

Scenario generation consists of three building blocks. First, we must con-
struct reliable probabilistic forecasts for each of the hours and each of the
markets. These forecasts enable us to make relevant scenarios for the day of
planning, and to reflect uncertainty appropriately. Second, we must discretise
the probabilistic forecast distributions into scenarios by taking into account
the relationship (dependence) between hours and markets. Finally, we must
construct a branching structure between the stages.

We propose and test a modified quantile autoregression (QAR) model for
the day-ahead and primary reserve prices to obtain hourly probabilistic fore-
casts. This approach allows us to relate the scale, shape, and location of the
conditional price to the price level, which is not possible using a constant-
coefficient time series. We construct scenarios from these forecasts using the
copula-based heuristic presented in [7]. Copulas are an effective way of mod-
elling non-elliptical distributions for which correlations fail to capture depen-
dencies.

The balancing market volumes and premiums can be interpreted as un-
equally spaced time series, and the resampling techniques in [8] are used.
Thereafter AR/ARMA models are fitted and used to provide distribution-
based probabilistic forecasts that in turn are combined with the copula heuris-
tic to generate scenarios.

This section in structured as follows: Section 5.1 presents the market re-
lationships that must be accounted for in the scenario generation. Sections
5.2 and 5.3 discuss modelling of the day-ahead/primary reserves and of the
balancing market, respectively. Section 5.4 briefly describes the copula-based
heuristic, and section 5.5 connects the dots and outlines the final generation
algorithm.
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Table 2 Modelled relationships between the markets

Primary reserve Balancing
Price Reg. state Volume Premium

Day-ahead
Negative
non-linear
relationship

No explicit
dependence1

Independent
Positive linear
relationship

Primary reserve
Conditionally
independent2

Conditionally
independent

Conditionally
independent

5.1 Relationships between the markets

We have performed an empirical study of the markets at hand in the period
2014–2016 in the Nord Pool price zone NO3. This study reveals certain rela-
tionships between the markets. Table 2 shows how we have chosen to model
the relationships using the findings. Both reserve markets are related to the
day-ahead price. Balancing market premiums are higher when the day-ahead
price is high. In contrast, the primary reserve price declines when the day-
ahead price increases, however in a non-linear fashion; see Figure 5. Reserve
markets are treated as independent of each other, solely conditional on the
day-ahead price.

5.2 Probabilistic forecasts for day-ahead and primary reserve prices

Day-ahead and primary reserve prices are very similar in several respects.
Both markets are cleared day-ahead and all 24 hourly prices are quoted si-
multanously. In addition, the individual hours in each market have different
statistical properties (e.g., variance). Finally, prices in both markets are sta-
tionary and highly autocorrelated. We therefore aim to model day-ahead and
primary reserve prices in the same manner.

Both day-ahead and primary reserve prices exhibit an autoregressive sig-
nature with slowly decaying positive ACF. We therefore turn our attention
to autoregressive models. Autoregressive models are intended for stochastic
processes in which the next observation depends on a combination of previ-
ous observations. However, day-ahead and primary reserve prices are quoted
simultaneously for all hours in a day. The information set that market par-
ticipants use is the same for all bidding hours. It is therefore unsound from a
methodological perspective to model the sequence of day-ahead and primary
reserve prices as a one-dimensional hourly time series. To see this, consider the
transition between two consecutive days. The price at hour 1 on day y should
not necessarily be strongly correlated with the price at hour 24 on day y−1. In

1 Downward regulation is more likely in morning hours while day-ahead prices are low, but
this likelihood is implicitly caught in the daily seasonality of the price and the hour-specific
Markov model for regulating state

2 Conditional on the day-ahead price
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addition, day-ahead and primary reserve prices exhibit very different statistical
characteristics of variance and mean reversion at each of the hours. One should
therefore not model all hours with the same time-series coefficients. Rather,
the prices should be modelled as a 24-dimensional cross-sectional panel, with
discrete time increments of one day.

Electricity prices are often modelled using constant coefficient time series
such as ARIMA. One problem with this approach is that the innovation term
has constant variance independent of the forecast price level. Quantile au-
toregression, on the other hand, captures the systematic influence of previous
prices on the conditional distribution of the price in terms of shape, scale,
and location. It has been used for scenario generation before; see for example
[10]. This approach is valuable because price variance can be related to the
forecasted value (e.g., high forecasts might yield a higher variance of innova-
tions). Processes with asymmetric dynamics can also be modelled efficiently
with QAR [9]. In terms of the notation in this paper, a QAR process of order
r can be written

Qρmt(y)

(
τ |ρmt(y − 1), ..., ρmt(y − r)

)
=

φmt0(τ) + φmt1(τ)ρmt(y − 1) + ...+ φmtr(τ)ρmt(y − r) (29)

where τ denotes the quantile and φmt(τ) are coefficients. For some discretisa-
tion τ ∈ (0, 1), we obtain an approximation of the conditional density.

The partial autocorrelation function of the series and the Bayesian infor-
mation criterion are used to identify the order of the process. Approximately
all hours in both markets are of order 3. To be able to compare coefficients
between hours directly, our choice is to model all hours as the same order. In
addition, there are weekly seasonal effects, so a seasonal term with coefficient
Φmt7(τ) is added.

Qρmt(y)(τ |·) = φmt1(τ)ρmt(y − 1) + φmt2(τ)ρmt(y − 2) + φmt3(τ)ρmt(y − 3)+

Φmt7(τ)ρmt(y − 7) + φmt0(τ), τ ∈ (0, 1) (30)

Extensions to the basic model The hourly prices may be interpreted as a cross-
sectional panel, and are correlated across hours. One should therefore include
price information at other hours on previous days to forecast hour t on day y.
A principal-component analysis reveals that the daily mean price accounts for
approximately 83% and 71% of the variance in hourly prices across the panel
in the day-ahead and primary reserve markets, respectively. Yesterday’s mean
price can therefore be inserted into the model (30) as a proxy for the overall
price across all hours. We arrive at the following model for the conditional
price density at hour t:

Qρmt(y)(τ |·) = φmt1(τ)ρmt(y − 1) + φmt2(τ)ρmt(y − 2) + φmt3(τ)ρmt(y − 3)+
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Φmt7(τ)ρmt(y − 7) + ψmt(τ)µρm(y − 1) + φmt0(τ), τ ∈ (0, 1) (31)

where µρm(y − 1) is yesterday’s mean price in the market. The model is es-
timated using regular quantile regression for each hour separately because of
the different characteristics between hours. The conditional distribution is ob-
tained by performing cubic interpolation3 between the conditional quantiles
found at 5% increments between the 5% and 95% quantiles. Due to tail un-
certainty, tails below 5% and above 95% are estimated using empirical tails
of the error distribution associated with the median of the conditional price
(τ = 0.5).

The model has been tested in terms of Christoffersen’s test for interval
forecasts [11] for both unconditional and conditional coverage for the first 50
days in 2016. The results are generally very good; almost all hours pass the
test at the 1% significance level. We are thus confident that the model provides
forecasts with good calibration.

5.3 Modelling the balancing market

The balancing market is essentially modelled the same way as the best per-
forming model from [3] is, with some adjustments.

Balancing states An hour-specific Markov matrix is used to model the tran-
sitions between balancing states. Should there be regulation, the balancing
volume in that direction is strictly positive. Let ϑt denote the balancing state
of the system at time t

ϑt =


−1 if down regulation, i.e., ν4t > 0

0 if no regulation, i.e., νmt = 0 m ∈ {3, 4}
1 if up regulation, i.e., ν3t > 0

(32)

An hour-specific Markov model has a transition probability matrix

ξt =

 ξ11t . . . ξ1nt...
. . .

...
ξm1t . . . ξmnt

 (33)

where ξijt denotes the probability of the balancing state switching from
state i to state j from hour t to hour t + 1. In our case, ξt is a 3 × 3 ma-
trix reflecting the possible outcomes of ϑt. Estimators for ξijt are calculated
according to

ξijt =
|ϑt = i ∩ ϑt+1 = j|

|ϑt = i|
(34)

3 Piecewise Cubic Hermite Interpolating Polynomial
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using historical data, where | · | denotes the number of entries in a set.
These can be used to simulate outcomes for the regulating state throughout
the day of planning.

Balancing volumes We can think of the balancing volume (and premiums)
as unequally spaced or irregularly sampled time series. That is, hours with
zero volume in the historical data are simply regarded as hours in which no
information about the volume or price process is available. If we had included
such zero hours in the analysis, results would have been biased. On the other
hand, if we had excluded zero values and artificially compressed the time series,
hours that are far apart in time would have contributed to the calculation as
if they were consecutive. Other options include linear interpolation in the data
and mean value substitution, but as [8] points out, this smoothens the data
and causes bias. Erdogan et al.[8] present a statistical model for unequally
spaced time series. The core idea is to use an autoregressive process of order 1
to resample the missing values. Ordinary time series techniques can be applied
after resampling. We use this methodology to resample balancing volumes.

We now consider probabilistic forecasting of the balancing volumes. After
the resampling process, AR(1) models are fitted to the resampled series for
a training period of 80 days. The estimated Gaussian distribution from the
AR(1) model can be used to provide probabilistic forecasts for the forecasting
horizon of 12–36 hours.

Balancing premiums The regulating premiums are obviously dependent on
the regulating state. Premiums are also dependent to a varying degree on the
day-ahead price and balancing volumes. Two of the best models from [3] use
the day-ahead price and/or volume as exogenous variables. Because of the
correlation between these quantities in NO3, we include those same exogenous
parameters in this model.

Since there is no volume in hours without regulation, the premium is not of
any relevance to the decision model at these hours. We follow the resampling
procedure in [8] for premiums as well, because our testing shows that this
approach provides the best results. The resampled time series is of order 2
even after resampling. An ARMA(2,0,1) model eliminates all autocorrelation
in the residuals, and is fitted to the resampled data with resampled volumes
and the day-ahead price as exogenous variables. Predictive densities can be
obtained by simulating pairs of volumes and premiums conditional on each
day-ahead price scenario s ∈ S. By simulating conditional on the spot price,
we can construct a branching from the second to the third stage, including the
effect of knowing the day-ahead price on premiums.

5.4 Modelling dependence between hours and across markets

Dependence between random variables should not always be modelled linearly
using correlations. For instance, in morning hours there is some threshold day-
ahead price, at which the primary reserve price is expected to be low, typically
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in the range of 15–25 NOK/MWh. If the day-ahead price is reduced from this
threshold by only a few per cent, the primary reserve price can be expected to
increase sharply. On the other hand, if the day-ahead price is increased from
the threshold value by a few per cent, very little is expected to happen to the
primary reserve price. Dependence in downturns differs from dependence in
upturns. Correlations are not sufficient to model such dynamics.

The models proposed in Section 5.2 and 5.3 provide hourly predictive den-
sities for prices and volumes. Constructing daily paths from these densities
with correct dependence properties between hours and markets is our next
goal. Nowotarski et al. [26] state that two main solutions exist in the litera-
ture in the context of probabilistic electricity price forecasting. The first one
is to use the correlation between the marginal distributions. This solution has
a major drawback; it describes only linear relationships. The second solution
(only for hourly dependence) is to simulate daily paths. This solution has an
obvious drawback in that a large number of simulations are needed to reduce
sampling error, and raises a need for scenario reduction.

Dependence across hours and across markets (day-ahead, primary reserve
and balancing volume premium) will be modelled with the copula-based ap-
proach in [7]. In this section, we explain only briefly what a copula is, and
the goal of generating scenarios from a copula. For a more extensive introduc-
tion to copula theory and to copula-based scenario generation, the reader is
referred to the original work by Kaut.

Copula-based scenario generation A copula is the joint cumulative distribution
function of any n-dimensional random vector with standard uniform margins,
that is, a function K : [0, 1]n → [0, 1]. Sklars theorem [32] states that for any
n-dimensional cumulative distribution function F with marginal distribution
functions F1, ..., Fn, a copula K exists such that

F (α1, ..., αn) = K
(
F1(α1), ..., Fn(αn)

)
(35)

If all the marginal cumulative distribution functions Fi are continuous,
then there exists only one unique K. A consequence of the theorem is that for
every γ = (γ1, ..., γn) ∈ [0, 1]n we have

K(γ1, ..., γn) = F
(
F−11 (γ1), ..., F−1n (γn)

)
(36)

where F−1i is the generalized inverse of Fi, meaning that knowing the
marginal cdfs and the copula is the same as fully knowing the multivariate
cdf. The copula approach contrasts with correlations that assume a linear
dependence. Furthermore, copulas, unlike correlations, are independent from
the marginal distributions. Therefore we can model the two independently.
A copula models only the interdependence of two or more distributions; the
information about the distributions themselves has been removed.

Obtaining the copula for a multivariate distribution is a non-trivial task.
Instead we construct an empirical copula, KT , from historical samples, each
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historical sample containing one sample price/volume from each of the markets
modelled.

The method takes the number of scenarios to generate, S, as input. The
goal of the method is now to generate the copula scenarios for each margin
γ̃sg, s ∈ {1..S}, g ∈ {1..n}, that in aggregate deviate as little as possible from
the target copula. According to the definition of a copula, the scenarios γ̃sg
should be placed approximately uniformly between 0 and 1. In addition, for
all s ∈ {1..S}, γ̃sg must be connected across the n distributions (hours and
markets), such that the dependence between distributions resembles the one
of the target copula. This dependence is achieved by solving an assignment
problem heuristically. The problem minimises the deviation between the target
copula and the copula defined by the scenarios.

After obtaining γ̃sg, we can make the transformation back to target vari-
ables. We calculate the actual price scenarios using F−1g (γ̃sg). These scenarios
will be correctly distributed across each margin and will also have correct
dependence properties between hours and markets.

5.5 Scenario generation algorithm and evaluation

Figure 6 shows a rough sketch of the scenario-generation methodology. The
reader is reminded of the problem structure in Figure 3, consisting of three
stages. The here-and-now decision is to decide on the bid curve to submit
in the day-ahead market. No decision is made between the day-ahead price
realisation and the primary reserve price realisation. Hence, there is no need
to create additional branching between these events. We instead model pairs
of day-ahead and primary reserve prices in the same scenario set s ∈ S. The
copula-based heuristic is used to model dependence in the scenarios. In the
second stage, a primary reserve commitment is decided upon with the oppor-
tunity cost of lost balancing market opportunities. Hence, for each s there
must be a set of possible balancing market realisations ω ∈ Ωs. The balancing
market premiums are dependent on the day-ahead price, and are therefore
generated conditional on each day-ahead price scenario. Dependence between
balancing market volumes and premiums is also modelled using the copula-
based heuristic.

The scenario-generation algorithm is implemented partly in Matlab and
partly in C++. In the following, we outline a high-level pseudocode for the
algorithm. Our goal is to clarify how the different building blocks from this
section fit into the procedure.

1. Hourly probabilistic forecasts are created using quantile regression on an
hourly basis for day-ahead and primary reserve prices.

2. The copula heuristic is used to create the desired number of day-ahead and
primary reserve scenarios, with respect to the connection between hours
and the connection between markets. We use the empirical copula of the
training period directly as the target to model dependence.

3. Balancing market data are resampled.
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Fig. 6 Final model overview

4. Balancing market dependence is modelled using its empirical copula, and
copula scenarios are generated before simulation.

5. Appropriate AR/ARMA models are fitted to the balancing market volumes
and premiums and used to simulate a large number N times. Premiums
have day-ahead price scenarios as the explanatory variable, and thereby the
linear dependence between the day-ahead price and premiums is respected.
Using the simulations, we approximate the predictive density for volumes
and premiums on an hourly basis for the 12–36-hour forecasting horizon.

6. Cumulative distributions for the balancing market are matched with copula
scenarios to yield scenarios of target variables.

7. The balancing state is simulated using the hour-specific Markov model in
each branch. Volumes and premiums at hours where ϑtsω = 0 are set to
zero.

An example of 10 generated scenarios for the day-ahead price can be
found in Figure 7. Scenarios are evaluated in terms of in-sample and out-
of-sample stability as defined in [6]. Stable scenario trees are produced for 40
day-ahead/primary reserve scenarios, with 4 balancing scenarios per branch.

6 Case description

The gains from coordinated bidding are quantified by comparing the profits
from a coordinated bidding approach to the profits from a purely sequential
approach. The test set-up is outlined in Figure 1, where coordinated bidding
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Fig. 7 Example of 10 generated day-ahead price scenarios along with the realised price.
Note that the variance in the scenarios is higher at the more volatile hours

Table 3 Accumulated profit for one watercourse with hourly planning [NOK]

Profit Day-ahead Prim. res. BM Up BM Down Start-up

Sequential 8,535,911 9,070,850 92,825 136,935 375,319 -1,140,018
Coordinated 8,611,677 8,999,220 157,046 167,435 455,974 -1,167,998

% change 0.89% -0.79% 69.19% 22.27% 21.49% 2.45%

relies on decisions informed by the full scenario tree, whereas sequential bid-
ding relies on information about only the next market at hand. All results are
from the first 250 days of 2016.

Aggregating time steps into sub-periods Unit commitment is an important part
of the decision problem, especially concerning the delivery of primary reserves
that require spinning units. The problem is thus a SMIP problem with bi-
nary variables in the second stage, which makes it challenging to solve. The
problem can be solved for hourly granularity only with small portfolios, typ-
ically one watercourse. To mitigate this problem, we allow for partitioning of
the planning horizon into sub-periods, h ∈ H, with corresponding operating
hours t ∈ T h. The generator on/off decision variable, uighsω, requires that a
generator in a given scenario be either on or off during the entire sub-period.
We use the three sub-periods T 1 = {1..7}, T 2 = {8..19}, and T 3 = {20..24}
when constructing the day-ahead bid curve in both approaches. Production
is planned in sub-periods. However, realised production may be very differ-
ent. Sub-periods are used only in the day-ahead planning phase. When the
real prices are revealed, any commitment is possible, and the next decisions
are made hour by hour according to the commitment, without regard to sub-
periods. Comparing Table 3 and 4 reveals that the results from using hourly
granularity and three sub-periods are quite similar, and the reported gains
from coordinated bidding are quite close in the two models.

Balancing market volume restriction In the balancing market, demand is in-
herently unpredictable, clustered, and of varying size. Because of the small
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Table 4 Accumulated profit for one watercourse with sub-periods planning [NOK]

Profit Day-ahead Prim. res. BM Up BM Down Start-up

Sequential 7,802,044 8,006,040 121,965 168,253 453,809 -948,023
Coordinated 7,856,833 7,925,567 186,712 198,362 526,197 -980,005

% change 0.70% -1.01% 53.09% 17.90% 15.95% 3.37%

volumes demanded, one producer could very well sell the entire volume. In
this case, the producer would act as price maker. When volumes are larger,
several producers likely contribute to delivering such volumes. νmts forecasts
the entire demand in hour t in scenario s in NO3. It is therefore unsound
to let one producer deliver the entire volume. To do so would imply that no
other producers placed bids beneath the market price, and would violate the
price-taker assumption. Our approach is simply to restrict the balancing vol-
ume sold by the decision model to a market share multiplied by the total
volume traded in a balancing hour. The market share used corresponds to the
producer’s share of the total day-ahead delivery in 2016, 15%.

Bid points Bid points are fixed before the problem is solved. We update the
bid points for every planning day of the test period. Fixing bid point is done
by placing |P | bid points such that price scenarios are distributed approx-
imately uniformly between the bins defined by neighbouring bid points. We

choose |P | = |S|−2
2 , which gives the highest number of bid points, and whereby

non-anticipativity of the bid curve with respect to the scenarios is still ensured
[15]. If interpolation (with a realisation) causes infeasible production, the com-
mitment is set to the nearest feasible point.

Watercourses All involved watercourses are physically disconnected from each
other and contain only one reservoir and one generator each. All generators
have production capacities in the range of 35–55 MW, and are considered small
compared to associated reservoirs. Hence, reservoir volumes and heads change
negligibly over 24 hours, and one water-value cut is regarded as sufficient.

7 The effect of portfolio size on gains from coordinated bidding

Theoretically, coordinated planning always outperforms sequential planning,
and the magnitude of the gain is expected to increase when reserve oppor-
tunities are predictable and there is limited flexibility to respond to reserve
opportunities not accounted for in the first-stage decision. Obviously, pre-
dictability of reserve opportunities is not a function of portfolio size. However,
when more production resources are added, it is cheaper and easier to reallo-
cate committed production. For example, the load on multiple running units
can be increased to allow one unit to turn off in order to seize a favourable
downward balancing price, whereas this approach will be impossible with a
single unit.
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However, some reserve-market opportunities cannot be seized after the
closing of the day-ahead market bidding, regardless of portfolio size. When
day-ahead market prices are low, typically in the late night/early morning, day-
ahead market price expectations may not be sufficient to make a commitment
for the day-ahead market income alone. If income from the primary reserve
capacity is included, as well as possibilities for downward balancing, the total
income may be enough to justify unit commitment. Such opportunities require
running generators, and cannot be seized if no generators are running, no
matter how many generators there are.

The results from running with a one-watercourse portfolio are presented in
Table 4. Profits equal income minus the net value of water usage associated
with the trades (primary reserves do not use water, balancing down saves
water, while the other trades use water). We first note that there is additional
value from participating in the reserve markets; both planning approaches yield
a positive profit in all reserve markets. The gain from coordinated bidding,
however, is approximately one per cent. We observe a modest reduction in
profit from the day-ahead market compared to the profit from the sequential
planning approach. On the other hand, profits from all reserve markets increase
significantly. There is, in other words, not only a modest increase in profits,
but also a shift towards reserve markets. Total start-up costs also increase
marginally.

Next, we add a second and then a third watercourse to the portfolio. Once
again, we run the testing approaches for all 250 days. The results can be found
in Table 5. When planning for two watercourses simultaneously, the gain from
coordinated bidding decreases to about 0.5%. In addition, we observe that the
profits in each market differ less between coordinated and sequential planning
with a larger portfolio. Day-ahead profits are more similar between the two
planning regimes, and so are reserve market profits.

Moving on to three watercourses, the trend continues to some degree, but
the decline in gain from the two-watercourse case is almost negligible. The
gains from coordinated bidding seem to converge to a stable level just below
0.5%.

Table 5 Gains from coordination by portfolio size (%)

1 watercourse 2 watercourses 3 watercourses

Gain from coordination 0.70 0.51 0.47
Gain day-ahead profit -1.01 -0.47 -0.29
Gain primary reserve profit 53.09 37.06 29.79
Gain BM Up profit 17.90 10.65 7.66
Gain BM Down profit 15.95 9.11 7.51
Increased start-up cost 3.37 1.01 0.18

The decline in gain when moving from a one-watercourse to a two-watercourse
portfolio may be explained by the increased flexibility. Increased flexibility al-
lows the sequential planner to seize reserve-market opportunities that are not



Portfolio size’s effects on gains from coordinated bidding in electricity markets 25

feasible with only one watercourse at the planner’s disposal. In this sense it is
less valuable to plan for such opportunities; they will occur anyway. Moving to
three watercourses, we again see a light decline in the gain from coordinated
bidding. However, this decline is extremely small. The profit contribution from
each market converges even more for the two planning regimes. This conver-
gence may have a natural interpretation. In addition to increased flexibility,
the convergence may stem from the limited balancing demand. Even though
we add more production capacity, the balancing demand is identical. Thereby,
the sequential approaches may catch up with coordinated bidding’s perfor-
mance simply because there is no more balancing demand that coordinated
planning can use. However, for the primary reserve markets there are no lim-
its to demand, so saturation of market demand can explain only parts of the
decline. Future research should nevertheless look into the sensitivity in gains
with respect to the market share, as well as with respect to scenarios with
larger balancing demand.

When moving from one to two watercourses, gains decline. Some of this
decline may be explained by the binary nature of decisions about production
resources. Generators are either on or off, and if primary reserves are offered,
the producer cannot turn the generator off. When moving from two to three
watercourses, gains decrease only marginally. It might very well be the case
that coordinated bidding has some value even for very large portfolios. For
instance, downward balancing and offering primary reserves require operating
generators. Hence, it does not matter how many generators are in the portfolio
if none are running. Such opportunities can never be exploited, and sequential
planning will fail to capture this phenomenon.

8 Conclusions

We have developed a SMIP for constructing bid curves for the day-ahead
market, taking subsequent market opportunities into account. For different
portfolio sizes, we have compared the performance of coordinated planning to
that of purely sequential planning.

Coordinated bidding seems to have a very moderate potential for increas-
ing profits, given the current Nordic reserve market prices and volumes. When
planning for only one watercourse, gains of about 1% can be expected. When
planning for more watercourses simultaneously, the value of coordinated bid-
ding decreases to about 0.5%. Having more generators increases recourse op-
tions, and it is likely that having more generators dilutes the value of coordi-
nated planning. The producer can simply reallocate production to respond to
reserve market opportunities.

We thus conclude that gains decline when increasing the portfolio size, but
that there is also a tendency towards stabilisation. The value of coordination
seems to be diluted by production flexibility when planning for increasingly
larger portfolios. However, committing units for later delivery of primary re-
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serves and downward balancing services is an opportunity that a sequential
planner will never see, no matter how flexible his portfolio.

The insights in how the portfolio size influences the gains from coordinated
bidding are likely transferrable to other types of dispatchable production, such
as thermal generators. However, reserve markets are generally small compared
to day-ahead markets and are of an unpredictable nature. This unpredictability
makes any kind of coordination strategy between the markets unreliable and
the upside potential is limited because of market size.
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