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Problem Description
In the article "Product of Hyperfunctions on the Circle" in Israel Journal of Mathematics, 2000, J.
Esterle and R. Gay discuss the definition of the product of hyperfunctions on the circle; in
particular they show that for two hyperfunctions with disjoint support the product is defined and
equals zero. Their approach uses the structure of the sheaf of hyperfunctions. They mention in the
introduction that the problem comes from the article by Y. Domar of 1997 and the later comments
to this article. J. Esterle and R. Gay also claim that their first approach to the problem was based
on the theory of entire functions.

The first aim of this project is to study the original article by Y. Domar, fill in the details of his
construction of an invariant subspace of the weighted l^p-space and see how this result is
connected to the product of hyperfunctions. Then we want to see how the technique based on the
theory of entire functions can be adjusted to show that the product of two hyperfunctions with
support in two disjoint arcs is zero in the sense of Esterle and Gay.

Further aims of this project are to give a new proof of the result by Esterlie and Gay about
hyperfunctions on the circle with disjoint support and consider the corresponding problem for
hyperfunctions on the real line.
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Abstract

We prove that if two hyperfunctions T1 and T2 on the unit circle have disjoint
support, then

lim
r→1−

∑
n∈Z

r|n|cn(T1)cm−n(T2) = 0 (m ∈ Z)

where ck are the Fourier coefficients of the hyperfunctions. We prove this by
using the Fourier-Borel transform and the G-transform of analytic function-
als. The proof is inspired by an article by Yngve Domar. In the end of his
article he proves the existence of a translation-invariant subspace of a certain
weighted lp-space. This proof has similarities to our proof, so we compare
them. We also look at other topics related to Domar’s article, for example
the existence of entire functions of order ≤ 1 under certain restrictions on
the axes. We will see how the Beurling-Malliavin theorem gives some an-
swers to this question. Finally, we prove that if T and S are hyperfunctions
on R with compact and disjoint support, then

lim
a→0

∫ ∞
−∞

FT (z)FS(w − z)e−a|x| dx = 0.
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Chapter 1

Introduction

In my project in the fall of 2007 I gave an introduction to hyperfunctions
and analytic functionals on the unit circle, and showed that there exists
a bijection between these sets. I also showed that the product of an ana-
lytic function h and a hyperfunction f is well defined and that we have the
following formula for the Fourier coefficients of the product:

ĥf(m) =
∑
n

ĥ(n)f̂(m− n).

In an article by Esterle and Gay [5] it is shown that if two hyperfunctions
T1 and T2 have disjoint support, then

lim
r→1−

∑
n∈Z

r|n|cn(T1)cm−n(T2) = 0 (m ∈ Z) (1.1)

where ck are the Fourier coefficients of the hyperfunctions. They proved
this by first showing that it is possible to take the product of two hyper-
functions with disjoint support and then they drew conclusions about the
Fourier coefficients. One of the aims of this project is to prove this formula
directly using the Fourier-Borel transform and the G-transform of analytic
functionals. That was what Esterle and Gay did first, but they did not write
about it in the article. Their first proof was inspired by a paper by Yngve
Domar [4] and a preprint by Atzmon. We will go through the details of the
proof by Domar that inspired Esterle and Gay.

Before we do that, we will look at some other topics related to Domar’s
article. The article proves the existence of entire functions of order≤ 1 under
certain restrictions on the axes. We will see how the Beurling-Malliavin
theorem given in [3] gives some answers to this question. Domar proves two
theorems, and one of them is used to show that there exists a translation-
invariant subspace of a weighted lp-space. It is this part that has similarities
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to the proof of formula (1.1). When we have proved (1.1), we will compare
Domar’s proof to our proof of formula (1.1).

Finally, we will give an introduction to hyperfunctions on R and see if it is
possible to find a formula similar to (1.1) here.
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Chapter 2

Hyperfunctions and analytic
functionals

2.1 Hyperfunctions on T

We will let H (W ) be the space of holomorphic functions on an open subset
W of C. If V1 and V2 are open subsets of C and V1 ⊆ V2, we let RV1,V2 :
H (V2)→H (V1) be the restriction map. Let L be a nonempty open subset
of T, then we denote by UL the set of all open subsets W of C such that
W ∩T = L. If W ∈ UL we define the quotient space

BW (L) := H (W \ L)/RW\L,W (H (W )).

It can be shown that this definition is independent of W , so we may define
B(L) := BW (L) [5, page 273].

Definition 2.1.1. The space of hyperfunctions on L is the complex vector
space defined as the quotient

B(L) := H (W \ L)/RW\L,W (H (W )).

A hyperfunction on L is an element of B(L).

This means that the elements of B(L) are represented by pairs of holomor-
phic functions (f+, f−) in W+ = W∩D and W− = W∩(C\D̄), respectively.
Two pairs of functions (f+, f−) and (g+, g−) are equivalent if there exists a
U ∈H (W ) such that f+ − g+ = U |W+ and f− − g− = U |W−.

Let H0(C \ D̄) = {g ∈ H (C \ D̄)| lim|z|→∞ g(z) = 0}. We will need the
following fact a few times: If T ∈ B(T) there exists a unique f+ ∈ H (D)
and a unique f− ∈ H0(C \ D̄) such that T is represented by (f+, f−) [5,
page 273].
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Definition 2.1.2. Let L1 ⊂ L2 be two nonempty subsets of T. Let T ∈
B(L2) be represented by f ∈ H (V2 \ L2), where V2 ∈ UL2. The restriction
of T to L1, denoted T |L1, is the hyperfunction in B(L1) which is associated
to f |((V1 ∩ V2) \ L1), for any open V1 ∈ UL1.

Definition 2.1.3. Let T ∈ B(T). The support of T on T, suppT , is the
complement on T of the largest open set U ⊆ T such that T |U = 0.

This means that supp T is the complement on T of the largest open set
U ⊆ T such that f+ and f− extend each other analytically across U .

2.2 Analytic functionals

We now define the restriction map RV1,V2 : H (V2) → C(V1) where C(V1)
is the set of continuous functions on V1, and we no longer require V1 to be
open. The space of holomorhic functions on a compact set K is then

H (K) =
⋃
K⊆Ω

RK,Ω(H (Ω))

where the union is taken over all open sets containing K.

Definition 2.2.1. Let K ⊂ C be compact. We define H ′(K), the space of
analytical functionals carried by K, to be the space of linear functionals Γ
on H (K) such that for all open ω containing K there exists Cω for which

|〈Γ, ϕ〉| ≤ Cω sup
ω
|ϕ|

holds for each ϕ ∈H (K) analytic in ω.

2.3 Fourier coefficients

The Fourier coefficients of a function f ∈ L1(T) are given by

cn(f) =
1

2π

∫ 2π

0
f(eiθ) e−inθ dθ.

We may also define the Fourier coefficients of an analytic functional.

Definition 2.3.1. Let T ∈H ′(T). The nth Fourier coefficient of T is given
by

cn(T ) =
〈
T, ζ−n−1

〉
4



for all n ∈ Z.

There is a definition in [5] which we will also use.

Definition 2.3.2. The Fourier coefficients f̂(n) of a hyperfunction T ∈
B(T) represented by (f+, f−) where f+ ∈ H (D) and f− ∈ H0(C \ D̄), are
defined by the formulae

f+(z) =
∑
n≥0

f̂(n)zn |z| < 1

and
f−(z) = −

∑
n<0

f̂(n)zn |z| > 1.

2.4 Bijection between B(T) and H ′(T)

I showed in my project that there exists a bijection between B(T) and
H ′(T). Here we will use a slightly different bijection which has the ad-
vantage of preserving the Fourier coefficients.

We let
H : H ′(T)→ B(T)

be given by
Γ 7→ [Γ̃1,−Γ̃2]

where [Γ̃1,−Γ̃2] is the equivalence class of (Γ̃1,−Γ̃2) and

Γ̃1(z) = 〈Γ, 1
ζ − z

〉 |z| < 1

Γ̃2(z) = 〈Γ, 1
z − ζ

〉 |z| > 1.

It follows from Proposition 2.4.1, which is part of Proposition 1.6.10 in [2],
that Γ̃1 ∈H (D) and Γ̃2 ∈H0(C \ D̄).

Proposition 2.4.1. Let Γ ∈H ′(T). Then Γ̃1 ∈H (D) and Γ̃2 ∈H0(C\D̄)
and

Γ̃1(z) =
〈

Γζ ,
1

ζ − z

〉
=
∑
n≥0

cn(Γ)zn (|z| < 1),

Γ̃2(z) =
〈

Γζ ,
1

z − ζ

〉
=
∑
n>0

c−n(Γ)z−n (|z| < 1).

5



By comparing this proposition with definition 2.3.2 we see that H preserves
the Fourier coefficients.

We also define the inverse of H. Let T = [f+, f−] ∈ B(T). Then there
exists a unique g+ ∈ H (D) and a unique g− ∈ H0(C \ D̄) such that T is
represented by (g+, g−) [5, page 273]. We then define

F : B(T)→H ′(T)

by
[f+, f−] 7→ ΓT

where

〈ΓT , h〉 = − 1
2πi

∫
γ1

g−(ζ)h(ζ) dζ +
1

2πi

∫
γ2

g+(ζ)h(ζ) dζ

and γ1 and γ2 are cycles outside and inside the unit circle, respectively, and
h ∈H (T). The cycles are contained in the domain where h is analytic. ΓT
is in H ′(T) since

|〈ΓT , h〉| ≤
1

2π

∫
γ1

|g−(ζ)||dζ| sup
z∈γ1
|h(ζ)|+ 1

2π

∫
γ2

|g+(ζ)||dζ| sup
z∈γ2
|h(ζ)|

≤ Cω sup
z∈ω
|h(ζ)|

where ω is the annulus between γ1 and γ2.
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Chapter 3

Domar’s article

We need some definitions before we can formulate the problem in [4], which
is Domar’s article.

3.1 Entire functions

We will now define the order and the type of an entire function. This is
taken from [8].

Definition 3.1.1. The entire function f is of order ρ if

lim sup
r→∞

log logM(r)
log r

= ρ (0 ≤ ρ ≤ ∞)

where M(r) = max|z|=r |f(z)|.

Definition 3.1.2. The entire function f of positive order ρ is of type τ if

lim sup
r→∞

logM(r)
rρ

= τ (0 ≤ ρ ≤ ∞).

An entire function is said to be of exponential type if its order is ≤ 1 and
its type is finite.

3.1.1 Example

The function eaz
2

is of order 2 and type |a|.
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3.2 The problem

Domar’s article gives some answers to the following question:

Question 3.2.1. Is there a not identically vanishing entire function f , of
order ≤ 1, such that

log |f(x)| ≤ k(x), x ∈ R,
log |f(iy)| ≤ a|y|, y ∈ R,

where a is a positive number and k is a continuous real-valued function on
R.

We will study this problem, both for its own interest, and for its links to
hyperfunctions. One of Domar’s theorems leads to results about translation-
invariant subspaces of weighted lp-spaces, so we will study this topic too. It is
through this topic we will find similarities to the product of hyperfunctions.

First we will take a look at a famous theorem by Beurling and Malliavin,
and see how this theorem gives us some answers to question 3.2.1. Then we
will state Domar’s generalisation. We will define what we mean by weighted
lp-spaces and see how Domar’s theorem leads to results about translation-
invariant subspaces of these spaces.

3.3 The Beurling-Malliavin theorem

We will now see how the original theorem by Beurling and Malliavin in [3]
leads to the one in Domar’s article. We will need some new definitions.

Let M be the set of measures with compact support on the real line. For
a > 0 we denote by Ma the set of measures with support contained in
[−a, a]. We do not include the identically vanishing measure in these sets.
The Fourier transform of a measure with support in K is

µ̂(z) =
∫
K
e−izζ dµ(ζ).

M̂ and M̂a are the sets of Fourier transforms of the measures belonging to
M and Ma, respectively. For µ ∈Ma we have

|µ̂(z)| =
∣∣∣∣∫ a

−a
e−izζ dµ(ζ)

∣∣∣∣ ≤ ∣∣∣∣∫ a

−a
dµ(ζ)

∣∣∣∣ sup
ζ∈[−a,a]

∣∣∣e−izζ∣∣∣ ≤ Cea|y|
so we see that µ̂ is an entire function of order 1 and type ≤ a.
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Let w(x) ≥ 1 be a measurable function on R. We let f be a measurable
function and define the norm

||f ||p =
(∫ ∞
−∞
|f(x)|pw(x)p dx

)1/p

for 1 ≤ p <∞ and

||f ||∞ = ess sup
−∞<x<∞

|f(x)|w(x) = inf{a ∈ R : |f(x)|w(x) ≤ a for a.e. x}

for p = ∞. We let Lpw be the space of measurable functions that are finite
in this norm.

Let Wp be the set of all weight functions w(x) ≥ 1 that fulfil the following
requirements:

• The translation operators f(x)→ f(x+ t) are bounded in Lpw.

• For each a > 0, Lpw contains elements of M̂a.

Then we have the following result:

Theorem 3.3.1. Beurling-Malliavin The sets Wp, where 1 ≤ p ≤ ∞, are
independent of p and consists of all weight functions w(x) ≥ 1 satisfying

ess sup
−∞<x<∞

| logw(x+ t)− logw(x)| <∞

and ∫ ∞
−∞

logw(x)
1 + x2

dx <∞.

The next theorem is stated in Domar’s article.

Theorem 3.3.2. The answer to question 3.2.1 is yes for every a if k, outside
some compact interval, is absolutely continuous with bounded derivative, and∫ ∞

−∞

min(0, k(x))
1 + x2

dx > −∞.

We want to show that this theorem follows from Theorem 3.3.1. We define
the weight

w(x) =

{
e−k(x) k(x) ≤ 0
1 k(x) > 0

where k is defined like in theorem 3.3.2. If we assume that∫ ∞
−∞

min(0, k(x))
1 + x2

dx > −∞,
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we also have ∫ ∞
−∞

max(0,−k(x))
1 + x2

dx <∞,

and since logw(x) = max(0,−k(x)), we have∫ ∞
−∞

logw(x)
1 + x2

dx <∞.

Now we need to show that the first assumption in Theorem 3.3.1 is fulfilled.
Let K be the interval from the assumption of Theorem 3.3.2 and fix t > 0.
Let I = K + [−t, t]. Then

ess sup
x∈I

| logw(x+ t)− logw(x)| <∞

since k is assumed to be continuous in question 3.2.1. Since k is continuous
and has bounded derivative outside K, we have

|k(x+ t)− k(x)| ≤ Ct
for x ∈ R \K where C = supR\K |k′(x)|. Then we have

ess sup
−∞<x<∞

| logw(x+ t)− logw(x)| <∞.

Then, by Theorem 3.3.1, there is an entire function f in M̂a∩L∞w such that

ess sup
−∞<x<∞

|f(x)|w(x) ≤ C.

Since f and k are continuous we have |f(x)|w(x) = |f(x)|e−k(x) ≤ C for
all x ∈ R. Then |f(x)| ≤ Cek(x). We also know that |f(iy)| ≤ C̃ea|y| since
f ∈ M̂a. If we divide by max{C, C̃} we get a new function that fulfils
|f(iy)| ≤ ea|y| and |f(x)| ≤ ek(x), so the requirements of question 3.2.1 are
fulfilled.

3.4 Domar’s theorem

Domar proves two theorems in his article. We will need the following one
here. This is Theorem 2’ in his article.

Theorem 3.4.1. Let k be odd on R, absolutely continuous in some interval
[b,∞), and with its derivative equivalent to a function of bounded variation.
Then the answer to question 3.2.1 is yes, for every a.

This theorem shows that for an odd weight the conditions of Theorem 3.3.2
can be weakened. We will not give the proof of this result, but we will see
how it is used for a construction of a translation-invariant subspace of a
weighted lp-space. Before we do that we will state some theorems that we
will need later.
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3.5 Necessary theorems

The first theorem is given as an exercise on page 130 in [11], and is a version
of the Phragmén-Lindelöf theorem.

Theorem 3.5.1. Phragmén-Lindelöf theorem
Let S be a sector whose vertex is the origin, and forming an angle of π/β.
Let F be a holomorphic function in S that is continuous in the closure of S,
so that |F (z)| ≤ 1 on the boundary of S and

|F (z)| ≤ Cec|z|α

for all z ∈ S and some c, C > 0 and 0 < α < β. Then |F (z)| ≤ 1 for all
z ∈ S.

The sector in this theorem can be rotated and the result will remain the
same [11]. If we let α = 1 and β = 2 we get the version we will need.

We use the following Fourier transform in the next theorems:

Definition 3.5.2. If f is in L1(R), its Fourier transform is

f̂(w) =
∫
R

e−2iπwxf(x) dx.

If f is in L2(R), we define its Fourier transform to be

f̂(w) = lim
n→∞

∫ n

−n
e−2iπwxf(x) dx.

The Paley-Wiener theorem is taken from page 122 in [11], and the Poisson
summation formula is from page 345 in [7].

Theorem 3.5.3. Paley-Wiener theorem
Suppose f is continuous and of moderate decrease on R, that is

|f(x)| ≤ C

1 + x2

for some C > 0. Then f has an extension to the complex plane that is entire
with

|f(z)| ≤ Ae2πM |z|

for some A > 0 if and only if f̂ is supported in the interval [−M,M ].

Theorem 3.5.4. Poisson summation formula
Let f be a distribution with compact support. Then

∞∑
n=−∞

f(n) =
∞∑

n=−∞
f̂(n),

11



where we may interpret the left-hand sum as a distribution where the specific
values of the function do not appear:

∞∑
n=−∞

τnf

Here τn is the translation operator.

3.6 Weighted lp-spaces

We will now define lp(w,Z), which is the weighted lp-spaces.

Definition 3.6.1. For 1 ≤ p <∞, lp(w,Z) is the Banach space of complex
sequences c = {cn}n∈Z with

||c||p =
∞∑

n=−∞
|cn|pwpn <∞.

The completeness of this space follows from the completeness of C. The
translation operator τ is defined by {cn} 7→ {cn−1}. We have

||τ || = sup
||{cn}||=1

( ∞∑
n=−∞

|cn−1|pwpn

) 1
p

= sup
||{cn}||=1

( ∞∑
n=−∞

|cn−1|pwpn
wpn−1

wpn−1

) 1
p

= sup
||{cn}||=1

( ∞∑
n=−∞

|cn−1|pwpn−1

wpn
wpn−1

) 1
p

≤ sup
||{cn}||=1

( ∞∑
n=−∞

|cn−1|pwpn−1

) 1
p

︸ ︷︷ ︸
1

(
sup
n

wpn
wpn−1

) 1
p

= sup
n

wn
wn−1

,

so it is bounded if supn
wn
wn−1

is bounded. We also see from this that τ is a
well-defined operator from lp(w,Z) to itself if supn

wn
wn−1

is bounded, since
||τ(c)|| ≤ ||τ ||||c|| < ∞. Similarly, its inverse defined by {cn} 7→ {cn+1} is
well-defined and bounded if supn

wn
wn+1

is bounded.

Definition 3.6.2. Let T : V → V be a linear mapping from some vector
space V to itself. A subspace W of V is an invariant subspace if T (W ) is
contained in W .

12



Description of invariant subspaces is a famous topic in analysis. In particular
it is interesting if the given translation operator in the Banach space has a
nontrivial closed subspace. In the end of his article Domar uses Theorem
3.4.1 to show that there exists a nontrivial translation-invariant subspace of
lp(w,Z), where w satisfies some conditions. We will write the details of this
last part and see how this relates to the product of hyperfunctions.

3.7 Translation-invariant subspaces of lp(w,Z)

We will now look at the details of the last page of Domar’s article. What
we will show is the following:

Fact 3.7.1. Let {k(n)}n∈Z be a real odd sequence such that {k(n + 1) −
k(n)}n∈Z is bounded and

∞∑
n=−∞

|k(n+ 1)− 2k(n) + k(n− 1)| <∞.

We consider the Banach space lp(w,Z) with wn = ek(n) and the translation
operator τ : lp(w,Z) → lp(w,Z), which is well-defined and bounded since
supn

wn
wn−1

= supn ek(n)−k(n−1) < +∞. Then there exists a nontrivial closed
translation-invariant subspace of lp(w,Z).

By proving this we come across another fact which is of more interest to
proving formula 1.1:

Fact 3.7.2. If f is an entire function such that

|f(x)| ≤ ek(x)

1 + x2
, x ∈ R,

|f(iy)| ≤ ea|y|, y ∈ R,

with a < 1
2π, then ∑

n∈Z
f(n)(−1)nf(m− n) = 0.

3.7.1 Proof of fact 3.7.1 and fact 3.7.2

We extend k to an odd continuous function on R by letting it be linear in
each interval in R\Z. Then k satisfies the conditions of Theorem 3.4.1. It is
absolutely continuous since {k(n+ 1)− k(n)}n∈Z is bounded. Its derivative
is piecewice constant and has bounded variation since the sum of the jumps

13



is the sum of |k(n+ 1)− 2k(n) + k(n− 1)|, which is finite. Let a ∈ (0, 1
2π).

Then by Theorem 3.4.1 there exists an entire function of order ≤ 1, such
that log |f(x)| ≤ k(x) for x ∈ R and log |f(iy)| ≤ a|y| for y ∈ R.

It follows from the proofs of the theorems in Domar’s article that after
dividing away some zeros if necessary, we may assume

|f(x)| ≤ ek(x)

1 + x2
(3.1)

for x ∈ R.

For m ∈ Z we define
gm(z) = f(z)f(m− z).

gm is an entire function and |gm(x)| ≤ (1+x2)−1(1+(m−x)2)−1ek(x)+k(m−x)

for x ∈ R. We know that f(iy) ≤ ea|y|. It can be shown with a method
similar to what we use below for gm, that f(m − iy) ≤ Kme

a|y| for some
Km > 0. Then we have gm(iy) ≤ Kme

2a|y| for y ∈ R. We now want to show
that |gm(z)| ≤ Cme

2a|y| for all z ∈ C. We have k(x) + k(m − x) = k(x) +
k(−x)+k(1−x)−k(−x)+k(2−x)−k(1−x)+...+k(m−x)−k(m−1−x) ≤ Bm
for some constant Bm since k(x) = −k(−x) and {k(n + 1) − k(n)}n∈C is
bounded. We consider the function h(z) = gm(z)e2aiz in the first quadrant.
h is analytic and bounded on the real ray by Am = eBm since |h(x)| =
|gm(x)e2aix| = |gm(x)| ≤ eBm = Am. It is also bounded on the imaginary
ray by Km since |h(iy)| = |gm(iy)||e−2ay| ≤ Kme

2a|y||e−2ay| = Km. h is
of order 1 and bounded type since both gm and e2aiz are of order 1 and
bounded type. Then by the Phragmén-Lindelöf theorem h is bounded by
Cm = max{Km, Am} in the first quadrant. Then |gm(z)| ≤ Cm|e−2aiz| =
Cme

2ay = Cme
2a|y|.

We may use the same h to show that |gm(z)| ≤ Cme2a|y| in the second quad-
rant. In the third and fourth quadrants we use h(z) = gm(z)e−2aiz. Then
we get |h(iy)| = |gm(iy)||e2ay| ≤ Kme

2a|y||e2ay| = Km on the imaginary
ray since y is negative. Then |gm(z)| ≤ Cm|e2aiz| = Cme

−2ay = Cme
2a|y|

in the lower half-plane as well, and then |gm(z)| ≤ Cme
2a|y| for all z ∈ C.

This means that gm is of exponential type ≤ 2a. We also have |gm(x)| ≤
Cm(1 + x2)−1(1 + (m − x)2)−1 by (3.1). Then by the Paley-Wiener the-
orem the Fourier transform of gm has support in [− a

π ,
a
π ] ⊂ (−1

2 ,
1
2) since

a ∈ (0, 1
2π).

We will apply the Poisson summation formula to the function

x 7→ gm(x)eπix.

The Fourier transform of gm(x)eπix is∫
R

e−2iπwxgm(x)eπix dx =
∫
R

e−2iπx(w− 1
2

)gm(x) dx = ĝm(w − 1
2

).
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Then by the Poisson summation formula we get

∞∑
n=−∞

ĝm(n− 1
2

) =
∞∑

n=−∞
gm(n)eπin,

and since the support of ĝm is in (−1
2 ,

1
2), this sum must be equal to 0. Since

gm(n)eπin = f(n)(−1)nf(m− n), we get∑
n∈Z

f(n)(−1)nf(m− n) = 0.

For every p, {f(m− n)}n∈Z is in lp(w,Z), since by (3.1) we have∑
n∈Z
|f(m− n)|pwpn =

∑
n∈Z
|f(m− n)|pek(n)p

≤
∑
n∈Z

1
(1 + (m− n)2)p

ek(m−n)pek(n)p

≤
∑
n∈Z

1
(1 + (m− n)2)p

eBmp <∞.

We also have that {(−1)nf(n)}n∈Z belongs to the dual space of lp(w,Z):
Since |(−1)nf(n)| ≤ 1

1+n2 e
k(n) we have by Hölder’s inequality [6, page 182]∣∣∣∣∣∑

n∈Z
cn(−1)nf(n)

∣∣∣∣∣ ≤∑
n∈Z
|cn||(−1)nf(n)|

≤

(∑
n∈Z
|cn|pwp

) 1
p
(∑
n∈Z

|(−1)nf(n)|q

wq

) 1
q

≤ ||c||p,w

(∑
n∈Z

(
ek(n)

(1 + n2)ek(n)

)q) 1
q

= ||c||p,w

(∑
n∈Z

1
(1 + n2)q

) 1
q

where 1
p + 1

q = 1. Then the norm of {(−1)nf(n)}n∈Z as a functional is

sup
c∈lp(w,Z)

∣∣∑
n∈Z cn(−1)nf(n)

∣∣
||c||p,w

≤

(∑
n∈Z

1
(1 + n2)q

) 1
q

<∞

so {(−1)nf(n)}n∈Z belongs to the dual space.
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Let A be the closed linear span of the translates of {f(−n)}. We claim that
this is a nontrivial closed translation-invariant subspace of lp(w,Z). Since
we may choose f such that it does not vanish identically at the integers,
the subspace is not equal to {0}. Since

∑
n∈Z f(n)(−1)nf(m − n) = 0 for

all m ∈ Z, A is contained in the kernel of the functional {(−1)nf(n)}n∈Z.
This is a nonzero functional, so A is properly contained in lp(w,Z). The
space is translation-invariant by the way it is defined. Then the closed linear
span of the translates of {f(−n)} is a nontrivial closed translation-invariant
subspace.
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Chapter 4

Product of hyperfunctions

I showed in my project that it is possible to define the product of an analytic
function and a hyperfunction and that the product of two hyperfunctions is
not well defined in general. We also saw that the Fourier coefficients of the
product of a hyperfunction and a function h ∈H (T) are given by

ĥf(m) =
∑
n

ĥ(n)f̂(m− n).

We want to show that a similar formula is valid for two hyperfunctions with
disjoint support. We want to prove the following theorem:

Theorem 4.0.3. Let T1, T2 ∈ B(T). If suppT1 ∩ suppT2 = ∅, then

lim
r→1−

∑
n∈Z

r|n|cn(T1)cm−n(T2) = 0 (m ∈ Z).

If, further, limn→∞ cn(T1)cm−n(T2) + c−n(T1)cm+n(T2) = 0, then

lim
p→∞

∑
|n|≤p

cn(T1)cm−n(T2) = 0.

This is proved in [5], but here we will use another method. We first need
to define the Fourier-Borel transform and the G-transform. The next two
sections are taken from chapter 1.3 and 4.1 in [2].

4.1 The Fourier-Borel transform

Definition 4.1.1. Let Ω be a subset of C. The Fourier-Borel transform of
an analytic functional T ∈H ′(Ω) is the function

F(T )(z) = 〈Tζ , eζz〉.
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We will state two theorems that we will need later.

Proposition 4.1.2. Let Ω be a convex set and let S ∈ H ′(Ω) have as
convex support the set K, then for every ε > 0 there is a constant Cε > 0
such that

|F(S)(z)| ≤ CεeHK(z)+ε|z| (z ∈ C),

where HK(z) = supζ∈K Re(zζ). In particular, F(S) is an entire function of
exponential type.

Theorem 4.1.3. Let K be a compact convex subset of a convex open set
Ω. Let f be an entire function of exponential type such that for every ε > 0
there is a constant Cε > 0 so that f satisfies everywhere the estimate

|f(z)| ≤ CεeHK(z)+ε|z|.

Then there is a unique analytic functional S ∈H ′(Ω) such that F(S) = f .

4.2 The G-transform

Let K be a convex compact subset of the strip Ω := {z ∈ C : |Imz| < π}.
Ω can also be moved up or down, as long as its width is less than 2π. We
define e−K := {e−z : z ∈ K} and Ω(K) = C \ e−K . Then let H0(Ω(K))
denote the space of those holomorphic functions in Ω(K) which vanish at
∞. If T is an analytic functional carried by such a compact set K we define
its G-transform to be

G(T )(z) := 〈Tζ ,
1

1− zeζ
〉.

The following proposition expresses a relation between the Fourier-Borel
transform and the G-transform.

Proposition 4.2.1. If T is an analytic functional carried by the compact
convex set K ⊂ Ω, then G(T ) belongs to H0(Ω(K)). Moreover, its Taylor
series development about z = 0 is given by

G(T )(z) =
∑
n≥0

F(T )(n)zn,

and its Laurent development about z =∞ is

G(T )(z) = −
∑
n>0

F(T )(−n)
zn

.

We will also need the following fact.

Proposition 4.2.2. Let K be a compact convex subset of Ω, then the map
G : H ′(K)→H0(Ω(K)), given by T 7→ G(T ), is bijective.
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4.3 A necessary theorem

The following theorem is stated as an example following the Mittag-Leffler
theorem on page 225 in [1].

Theorem 4.3.1. Let Ω1 and Ω2 be two open subsets of C, and let f ∈
H (Ω1 ∩ Ω2). Then there are f1 ∈H (Ω1) and f2 ∈H (Ω2) such that

f = (f1|(Ω1 ∩ Ω2))− (f2|(Ω1 ∩ Ω2)).

4.4 Proof of Theorem 4.0.3, first statement

We will first prove a lemma that we will need in the proof of Theorem 4.0.3.

4.4.1 A lemma

Lemma 4.4.1. Let T be an analytic functional on T with support contained
in an arc U = {eiθ : θ ∈ [α1, α2]} which is not all of T. Then there exists
an analytic functional S on K = [−iα2,−iα1] such that F(S)(n) = cn(T )
for n ∈ Z and for every ε > 0 there is a constant Cε > 0 such that

F(S)(z) ≤ Cεeα2y+ε|z| Im z ≥ 0,

F(S)(z) ≤ Cεeα1y+ε|z| Im z < 0.

Conversely, if F is an entire function such that for every ε > 0 there is a
constant Cε > 0 such that

F (z) ≤ Cεeα2y+ε|z| Im z ≥ 0,

F (z) ≤ Cεeα1y+ε|z| Im z < 0,

where α2 − α1 < 2π, then there exists an analytic functional T on T with
support contained in [eiα1 , eiα2 ] such that cn(T ) = F (n).

Proof. Let T be an analytic functional on T with support contained in an
arc U = {eiθ : θ ∈ [α1, α2]}. The corresponding hyperfunction under the
bijection H is [T̃1,−T̃2], and since suppT ⊂ U we know that T̃1 and −T̃2

can be extended across T \ U to a function T̃ in H0(C \ U). If we let
Ω(K) = C \ U , then U = e−K and K = [−iα2,−iα1]. From Proposition
4.2.2 we know that the map G : H ′(K) → H0(Ω(K)) given by S 7→ G(S)
is bijective. Since T̃ is in H0(C \U) there must exist an analytic functional
S on K = [−iα2,−iα1] such that G(S) = T̃ .
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We then take the Fourier-Borel transform of S. From Proposition 4.2.1 we
see thatG(S)(z) =

∑
n≥0 F(S)(n)zn for |z| < 1 andG(S)(z) = −

∑
n>0

F(S)(−n)
zn

for |z| > 1. We also have from Proposition 2.4.1 that T̃1(z) =
∑

n≥0 cn(T )zn

and T̃2(z) =
∑

n>0 c−n(T )z−n. Since G(S) = T̃1 for |z| < 1 and G(S) = −T̃2

for |z| > 1, we see by comparing the expressions above that F(S)(n) = cn(T )
for n ∈ Z.

Now we will use Proposition 4.1.2. Since K = [−iα2,−iα1] and Re((x +
iy)iα) = −yα we get

HK(z) =

{
α2y y = Im z ≥ 0
α1y y = Im z < 0

Then
F(S)(z) ≤ Cεeα2y+ε|z| Im z ≥ 0

and
F(S)(z) ≤ Cεeα1y+ε|z| Im z < 0.

Conversely, let F be an entire function such that for every ε > 0 there is a
constant Cε > 0 such that

F (z) ≤ Cεeα2y+ε|z| Im z ≥ 0,

F (z) ≤ Cεeα1y+ε|z| Im z < 0.

By Proposition 4.1.3 there is a unique analytic functional S such that F(S) =
F , and the support of S is contained in [−iα2,−iα1]. By using the G-
transform on S we get a function in H (C\ [eiα1 , eiα2 ]). This function can be
considered as a hyperfunction or analytic functional T on T. Then suppT ⊂
[eiα1 , eiα2 ]. We have T̃1 =

∑
n≥0 cn(T )zn and T̃2 =

∑
n<0 cn(T )zn. We also

haveG(S)(z) =
∑

n≥0 F(S)(n)zn for |z| < 1 andG(S)(z) = −
∑

n>0
F(S)(−n)

zn

for |z| > 1. Then cn(T ) = F (n).

4.4.2 Support contained in two disjoint arcs

We consider first the case where two analytic functionals T1 and T2 have
support contained in two disjoint arcs {eiθ : θ ∈ [α1, α2]} and {eiθ : θ ∈
[β1, β2]} on the unit circle. The angles are chosen so that α1 > β2 and
α2 < 2π + β1, see figure 4.1.

We define a new functional Ť2 by Ť2(eiθ) = T2(ei(π+θ)) or equivalently
Ť2(ζ) = T2(−ζ). Then

cn(Ť2) = 〈Ť2, ζ
−n−1〉 = 〈T2, (−ζ)−n−1〉 = (−1)−n−1cn(T2).
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α1

β2

β1

α2

Figure 4.1: Hyperfunctions with support in disjoint arcs

Using Lemma 4.4.1 we find the analytic functionals S1 and S2 corresponding
to T1 and Ť2, respectively. Let F1 = F(S1) and F2 = F(S2). By the same
lemma we have

F1(z) ≤ Cεeα2y+ε|z| Im z ≥ 0

and
F1(z) ≤ Cεeα1y+ε|z| Im z < 0.

Similarly, for F2 we get

F2(z) ≤ Cεe(π+β2)y+ε|z| Im z ≥ 0

and
F2(z) ≤ Cεe(π+β1)y+ε|z| Im z < 0.

Then we define Gm(z) = F1(z)F2(m − z) where m ∈ Z. Gm is an entire
function and Gm(n) = cn(T1)cm−n(Ť2) = cn(T1)cm−n(T2)(−1)−m+n−1. By
combining the above expressions we get

|Gm(z)| ≤ Bεeα2y−(π+β1)y+ε|z| Im z ≥ 0

and
|Gm(z)| ≤ Bεeα1y−(π+β2)y+ε|z| Im z < 0.

We want to make
|Gm(z)| ≤ BεeA|y|+ε|z|

with A < π, then we need α2 − π + β1 < π and α1 − π + β2 > −π. That
means α2 − β1 < 2π and α1 > β2. This is fulfilled because of the way we
chose the angles. Then by Lemma 4.4.1 there exists an analytic functional

21



Γ with support in [e−iA, eiA] and cn(Γ) = Gm(n). Since supp Γ ⊂ [e−iA, eiA]
we see that the limit as z approach −1 from both sides must be equal.

lim
x→−1+

∑
n≥0

cn(Γ)xn = lim
x→−1−

−
∑
n<0

cn(Γ)xn

Then
lim
r→1−

∑
n∈Z

cn(Γ)r|n|(−1)n = 0

and since cn(Γ) = cn(T1)cm−n(T2)(−1)−m+n−1 we see that

lim
r→1−

∑
n∈Z

r|n|cn(T1)cm−n(T2)(−1)−m+n−1(−1)n = 0 (m ∈ Z),

and then
lim
r→1−

∑
n∈Z

r|n|cn(T1)cm−n(T2) = 0 (m ∈ Z).

4.4.3 The general case

Now we need to prove this without assuming that the support of T1 and
T2 are contained in disjoint arcs. We still let the support of T1 and T2 be
disjoint, but their support can now be anywhere on the circle.

We will show that T1 and T2 can be written as a sum of finitely many
hyperfunctions T1i and T2j , each with support contained in an arc. Then
we may repeat the above proof for all combinations of T1i and T2j .

Let K1 = suppT1 and K2 = suppT2. Since K1 and K2 are compact and
disjoint we will show that there exist finite families of intervals {Ii} and
{Jj} such that K1 ⊂ ∪ni=1Ii and K2 ⊂ ∪mj=1Jj and Ii∩Jj = ∅ for all i and j.
For each point of K1 there is an interval with centre at that point that does
not intersect K2; take the interval with the same centre and half the length.
These intervals will cover K1, and similarly for K2. Let {Ii} and {Jj} be
these covers. We will see that Ii ∩ Jj = ∅ for all i and j. We assume this is
not true, so Ii ∩ Jj 6= ∅ for some i and j. Assume Jj is the longest of the
two intervals, and let x be the centre of Ii. If we double the length of Jj , we
have that x will be in this interval. This is also true if Ii and Jj have equal
length. Since x ∈ K1, we have a contradiction because of the way we chose
Ii and Jj . Then these covers will be disjoint. There exist finite subcovers
by definition of compactness.

Let f ∈ H (C \ T) be a function representing T1. Let K11 be the part of
suppT1 contained in I1 and let U1 = C\K11. We also let V1 = (C\suppT1)∪
I1. We have that f is holomorphic in U1 ∩ V1 = C \ suppT1. By Theorem
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4.3.1 there exist f1 ∈ H (U1) and g1 ∈ H (V1) such that f = f1 + g1 in
U1 ∩ V1. Then f1 represents a hyperfunction T11 with support in K11 and
g1 represents a hyperfunction with support contained in T \ I1.

Now we define U2 = C \ K12 and V2 = (C \ suppT1) ∪ I1 ∪ I2. Since g1

is holomorphic in U2 ∩ V2 = (C \ suppT1) ∪ I1 we may use Theorem 4.3.1
again, and therefore there exist f2 ∈ H (U2) and g2 ∈ H (V2) such that
g1 = f2 + g2. Then f = f1 + f2 + g2 where f2 represents a hyperfunction T12

with support contained in I2 and g2 represents a hyperfunction with support
contained in T \ (I1 ∪ I2).

In the general case we have Ui = C \ K1i, Vi = (C \ suppT1) ∪ik=1 Ik and
Ui ∩ Vi = (C \ suppT1) ∪i−1

k=1 Ik. We continue like this until we have f =
f1 +f2 + ...+fn+gn where gn ∈H (T). Then we may write T1 =

∑n
i=1 T1i,

and similarly T2 =
∑m

j=1 T2j .

Then we repeat the proof in section 4.4.2 for all combinations of T1i and
T2j , and we are done.

4.5 Proof of Theorem 4.0.3, second statement

To prove the second part of theorem 4.0.3 we need a definition and a theorem
from [10, Vol. I, page 382 and 404].

Definition 4.5.1. Let f(z) be analytic in a disc K with boundary L. The
regular points of f(z) are the points ζ ∈ L for which there can be found a
neighbourhood N(ζ) and an analytic function ϕζ(z) defined on N(ζ) such
that ϕζ(z) = f(z) for all z in N(ζ) ∩K.

Theorem 4.5.2. Let

f(z) =
∞∑
n=0

anz
n

be a power series with radius of convergence 1, such that

lim
n→∞

an = 0.

Then the series converges (in fact, uniformly) on every arc

z = eiθ(α ≤ θ ≤ β),

if all the points of the arc are regular points of f(z).

We let an = cn(T1)cm−n(T2) + c−n(T1)cm+n(T2). Since Γ̃1 and Γ̃2 ex-
tend eachother across T \ [e−iA, eiA] we see that −1 is a regular point.
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Then the last part of theorem 4.0.3 follows: If limn→∞ cn(T1)cm−n(T2) +
c−n(T1)cm+n(T2) = 0, then

lim
p→∞

∑
|n|≤p

cn(T1)cm−n(T2) = 0.

4.6 Comparison of the proofs

We will compare the proof of Theorem 4.0.3 to the proof of the existence of
a nontrivial translation-invariant subspace of lp(w,Z).

We will see now that fact 3.7.2 can be turned into a statement about hyper-
functions. Let f be an entire function of order ≤ 1 that fulfils

|f(x)| ≤ ek(x)

1+x2 , x ∈ R,

|f(iy)| ≤ ea|y|, y ∈ R,

with a < 1
2π. Assume also that for every ε > 0 there is a constant Cε > 0

such that
f(z) ≤ Cεeay+ε|z| Im z ≥ 0,

f(z) ≤ Cεe−ay+ε|z| Im z < 0.

Then f corresponds to a hyperfunction T by Lemma 4.4.1 with support
contained in [e−ia, eia] and we have cn(T ) = f(n). If we rotate this hyper-
function by an angle π, like we did in subsection 4.4.2, its Fourier coefficients
will be (−1)−n−1f(n), or equivalently −(−1)nf(n). We call this hyperfunc-
tion Ť . T and Ť will have disjoint support since a < 1

2π. Then we may
interpret the sum ∑

n∈Z
f(n)(−1)nf(m− n) = 0

as the fact that the convolution of the Fourier coefficients of T with the
Fourier coefficients of Ť , which is the same hyperfunction rotated by an
angle π, is zero.

The Paley-Wiener theorem in Domar’s proof corresponds to Theorem 4.1.2
and 4.1.3 in our proof. If K is a compact subset of R and we replace z by
−iz in the Fourier-Borel transform it will become the Fourier transform of
an analytic functional on the real line:

FT (z) = F(T )(−iz) = 〈Tζ , e−izζ〉.
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If we replace z by −iz in Proposition 4.1.2 it becomes

|FT (z)| = |F(T )(−iz)| ≤ CεeHK(−iz)+ε|−iz| = Cεe
HK(−iz)+ε|z|

and sinceHK(−iz) = supζ∈K Re(−izζ) = supζ∈K Re(−i(x+iy)ζ) = supζ∈K yζ,
we get

|FT (z)| ≤ Cεesupζ∈K(yζ)+ε|z|.

We can do the same in Theorem 4.1.3. These theorems then give a correspon-
dence between analytic functionals with compact support and entire func-
tions that fulfil |f(z)| ≤ Cεe

supζ∈K(yζ)+ε|z| in the same way that the Paley-
Wiener theorem gives a correspondence between distributions with compact
support and entire functions that fulfil |f(z)| ≤ Ae2πM |z| and |f(x)| ≤ C

1+x2 .

In both proofs we have entire functions, gm in Domar’s proof and Gm in
our proof. We know that |gm(z)| ≤ Cme

2a|y| and |gm(x)| ≤ Cm
1

(1+x2)2
. In

our proof we have |Gm(z)| ≤ Bεe
A|y|+ε|z| where A < π, but we do not have

enough restrictions on the growth on R to be able to use the Paley-Wiener
theorem. We use Lemma 4.4.1 instead.

The Poisson summation formula is what gives us∑
n∈Z

f(n)(−1)nf(m− n) = 0

in Domar’s article. In our proof we use Lemma 4.4.1 and then consider
the hyperfunction in the point −1. This point is outside the support of the
hyperfunction, so the limit as you approach −1 from both sides must be
equal. Then we get

lim
r→1−

∑
n∈Z

r|n|cn(T1)cm−n(T2) = 0

instead. Our proof gives a meaning to the factor r|n|.
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Chapter 5

Hyperfunctions on R

5.1 Introduction

We want to show that a formula similar to the one in Theorem 4.0.3 is valid
for hyperfunctions on R. Instead of a sum over the Fourier coefficients we
will here get a convolution of the Fourier transforms. Our first attempt to
prove this used parts of section 5.2, but it did not succeed. We have kept
the section for its own interest. In section 5.3 we prove a formula for the
convolution of Fourier transforms using similar methods as on T.

First we need to define what we mean by a hyperfunction on R.

Let Ω be an open subset of R. We let C+ = {z ∈ C : Imz > 0} and
C− = {z ∈ C : Imz < 0}. We also let C] = C \R and Ω̃ = C] ∪Ω. We define
UΩ to be the family of open sets V in C such that V ∩ R = Ω. If V1 and
V2 are open sets in C and V1 ⊆ V2, then RV1,V2 : H (V2) → H (V1) is the
restriction map.

Definition 5.1.1. The space of hyperfunctions is the complex vector space
defined as the quotient

B(Ω) := H (C])/RC],Ω̃(H (Ω̃))

A hyperfunction in Ω is an element of B(Ω).

This means that a hyperfunction is represented by pairs of holomorphic
functions (f+, f−) in the upper and lower halfplanes. The next proposition
shows that a hyperfunction can also be represented by a pair of holomorphic
functions (f+, f−) in V + = V ∩ C+ and V − = V ∩ C−, respectively.

Proposition 5.1.2. For every V ∈ UΩ, the natural map

B(Ω) iV−→H (V \ Ω)/RV \Ω,V (H (V ))
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which assigns to the class T ∈ B(Ω) of the function f ∈ H (C]), the class
T1 of f |(V ∩ C]) in the quotient space H (V \ Ω)/RV \Ω,V (H (V )), is an
isomorphism of complex spaces. [2]

The product of a hyperfunction and an analytic function h is defined by

h(f+, f−) = (hf+, hf−).

The restriction and support of a hyperfunction on R is defined similarly as
for T:

Definition 5.1.3. Let L1 ⊂ L2 be two nonempty subsets of R. Let T ∈
B(L2) be represented by f ∈H (V2 \L2), where V2 ∈ UL2. The restriction of
T to L1, denoted T |L1, is the hyperfunction in B(L1) associated to f |((V1 ∩
V2) \ L1), for any open V1 ∈ UL1.

Definition 5.1.4. Let T ∈ B(Ω). The support of T on R, suppT , is the
complement on R of the largest open set U ⊆ R such that T |U = 0.

This means that supp T is the complement on T of the largest open set
U ⊆ R such that f+ and f− extend each other analytically across U . A
hyperfunction has compact support if R \ U is compact.

We will now define the integral of a hyperfunction with compact support.

Definition 5.1.5. Let T ∈ B(Ω) be a hyperfunction with compact support.
If V ∈ U(Ω) and f ∈H (V \ suppT ) represents T , we define the integral of
T to be ∫

Ω
T (x) dx = −

∫
γ
f dz

where γ is a union of disjoint Jordan curves in V \ suppT oriented so that
the index of γ with respect to every point in supp T is 1.

We need the following proposition from [2].

Proposition 5.1.6. Let Ω be a nonempty open subset of R and let T ∈ B(Ω)
have compact support. The function T̆ defined in C] by

T̆ (z) =
1
π

∫
Ω

T (x)
z − x

dx, z ∈ C],

is holomorphic in C] and has an analytic continuation to C \ suppT . More-
over, T̆ (∞) = limz→∞ T̆ (z) = 0 and T̆ represents −2iT . It is the only
representative of −2iT with these properties.
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5.2 Fourier transform of a hyperfunction with com-
pact support

Let T be a hyperfunction on R with compact support. We want to find the
Fourier transform of T . We have∫

R

T (x)e−ixw dx = −
∫
γ
− 1

2i
T̆ (z)e−izw dz =

∫
γ

1
2i
T̆ (z)e−izw dz

where we let γ be a rectangle containing suppT , see figure 5.2. Then∫
R

T (x)e−ixw dx =
1
2i

∫
γ
T̆ (z)e−izw dz =

=
1
2i

∫ x0

−x0

−T̆ (x+ iy0)e−i(x+iy0)w dx+
1
2i

∫ x0

−x0

T̆ (x− iy0)e−i(x−iy0)w dx

+
1
2i

∫ y0

−y0
T̆ (x0 + iy)e−i(x0+iy)w dy +

1
2i

∫ y0

−y0
−T̆ (−x0 + iy)e−i(−x0+iy)w dy.

-

6

R
suppT

x0

y0

γ

Figure 5.1: The rectangle of integration

We find an estimate of the integrals in y with w ∈ R. We have∣∣∣∣∫ y0

−y0
T̆ (x0 + iy)ei(x0+iy)w dy

∣∣∣∣
≤

∫ y0

−y0
e−yw dy |eix0w| sup

y∈[−y0,y0]

∣∣∣T̆ (x0 + iy)
∣∣∣

≤ C
∣∣∣T̆ (x0 + iy∗)

∣∣∣
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where y∗ is the point where T̆ attains its maximum. Similarly∣∣∣∣∫ y0

−y0
T̆ (−x0 + iy)ei(x0+iy)w dy

∣∣∣∣ ≤ C̃ ∣∣∣T̆ (−x0 + iỹ∗)
∣∣∣

for some ỹ∗. From Proposition 5.1.6 we see that when we let x0 →∞ these
integrals approach 0.

We now show that T̆ ∈ L2(R) for fixed y. We have

|T̆ (z)| =
∣∣∣∣ 1π
∫

Ω

T (x)
z − x

dx
∣∣∣∣ =

1
π

∣∣∣∣∫
γ
− T (ζ)
z − ζ

dζ
∣∣∣∣

≤ 1
π

∣∣∣∣∫
γ
T (ζ) dζ

∣∣∣∣ sup
ζ∈γ
| 1
z − ζ

| = C
1

|z − ζ ∗ |
,

and then

|T̆ (x+ iy)| ≤ C 1√
(x− x∗)2 + (y − y∗)2

= C
1√

(x− x∗)2 +K
,

so T̆ ∈ L2(R). Then we may write the Fourier transform of T as

FT (w) = lim
x0→∞

∫ x0

−x0

−T̆ (x+ iy0)ei(x+iy0)w dx+
∫ x0

−x0

T̆ (x− iy0)ei(x−iy0)w dx

= lim
x0→∞

∫ x0

−x0

−T̆ (x+ iy0)eixwe−y0w dx+
∫ x0

−x0

T̆ (x− iy0)eixwey0w dx.

5.3 Convolution of the Fourier transforms

We will now prove a formula similar to the one in Theorem 4.0.3 for hyper-
functions on R. We will almost follow the scheme of the proof on T. We
need the following theorem from [9].

Theorem 5.3.1. Paley-Wiener-Ehrenpreis The Fourier transform of a hy-
perfunction T with support contained in a compact set K = [b, c] is an entire
function, and for every ε > 0 there is a constant Cε such that

|FT (z)| ≤

{
Ceyc+ε|z| Im z ≥ 0
Ceyb+ε|z| Im z < 0.
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We will now prove the following:

Proposition 5.3.2. If T and S are hyperfunctions with compact and dis-
joint support, then

lim
a→0

∫ ∞
−∞

FT (x)FS(w − x)e−a|x| dx = 0.

Proof. Let T and S be two hyperfunctions with support contained in [b, c]
and [d, e], respectively. We assume c < d, so the supports are disjoint. By
Theorem 5.3.1 we have

|FT (z)| ≤

{
C1e

yc+ε|z| Im z ≥ 0
C1e

yb+ε|z| Im z < 0.

and

|FS(z)| ≤

{
C2e

ye+ε|z| Im z ≥ 0
C2e

yd+ε|z| Im z < 0.

We define a new function Gw(z) = FT (z)FS(w − z), and then we have

|Gw(z)| = |FT (z)FS(w − z)| ≤

{
Cey(c−d)+ε|z| Im z ≥ 0
Cey(b−e)+ε|z| Im z < 0.

We define
BL(u) =

∫
L
Gw(z)eizu dz

where L is a ray starting in 0. If z = x + iy and u = α + iβ, we have
Gw(z)eizu = Gw(z)ei(x+iy)(α+iβ) = Gw(z)e−αy−βxei(−αx−βy). For simplicity
we let −k = c− d and −l = b− e, and then

|Gw(z)eizu| = |Gw(z)|e−αy−βx ≤

{
Ce−yk+ε|z|e−αy−βx Im z ≥ 0
Ce−yl+ε|z|e−αy−βx Im z < 0.

If u is given, we see that we need to choose the ray L carefully in order to
make the integral convergent. When u = iβ where β > 0 for example, we
can integrate along the positive part of the real line. We can sum it up as
follows:

• If β > 0, we can choose x > 0 and y = 0.

• If β < 0, we can choose x < 0 and y = 0.

• If α > −k, we can choose x = 0 and y > 0.

• If α < −l, we can choose x = 0 and y < 0.
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If we impose more restrictions, we can integrate along other rays as well. If
we for example have both α > −k and β > 0, then we can integrate along
any ray in the first quadrant.

Now we will show that BL is independent of which ray we choose. We
assume first that L1 and L2 are two rays in the upper half-plane, and let
U consist of the points u ∈ C such that both BL1(u) and BL2(u) are finite.
Let γr be the loop consisting of the parts of L1 and L2 that are contained
in a ball with radius r > 0, together with a line cr connecting the endpoints
of these two parts of the rays. Let z1 ∈ L1 with |z1| = r and z2 ∈ L2

with |z2| = r. The points of cr are given by z = λz1 + (1 − λ)z2 where
λ ∈ [0, 1]. By assumption we know that for u = α + iβ ∈ U we have that
e−y1(k+α)−βx1+ε|z1| and e−y2(k+α)−βx2+ε|z2| will go to 0 when r → ∞. If we
put z = λz1 + (1− λ)z2 in e−y(k+α)−βx+ε|z| we will see that this expression
also will go to 0 when r →∞, and |e−y(k+α)−βx+ε|z|| ≤ e−δr for some δ > 0.
Then ∣∣∣∣∫

cr

Gw(z)eiuz dz
∣∣∣∣ ≤ Cπre−δr → 0 when r → 0.

Since Gweiuz is entire, we have

lim
r→∞

∫
γr

Gw(z)eiuz dz = 0

by Cauchy’s theorem. We then see that BL1(u) = BL2(u). Then we have
shown that BL is independent of L if L is in the upper half-plane. In the
same way it can be shown that BL is independent of L in all of C. Then we
define B := BL. We see from the list we made that B will be defined for all
u ∈ C \ [−k,−l], and it will be holomorphic there.

Now we let a > 0 and consider

B(ia) =
∫ ∞

0
Gw(x)e−ax dx

and

B(−ia) =
∫ −∞

0
Gw(x)eax dx = −

∫ 0

−∞
Gw(x)eax dx.

We see that these integrals converge by looking at the first two facts in
the list on the previous page. Since B is holomorphic at 0, we must have
lima→0B(ia) = lima→0B(−ia), so

lim
a→0

∫ ∞
0

Gw(x)e−ax dx = lim
a→0
−
∫ 0

−∞
Gw(x)eax dx,

and then
lim
a→0

∫ ∞
−∞

Gw(x)e−a|x| dx = 0.
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Since Gw(z) = FT (z)FS(w − z), we have

lim
a→0

∫ ∞
−∞

FT (x)FS(w − x)e−a|x| dx = 0.

The same result is true even if T and S are not assumed to have support in
two intervals, but in arbitrary compact disjoint sets. We do as we did on T,
and write the hyperfunctions as a sum of finitely many hyperfunctions Ti
and Sj with support in disjoint intervals. Then we repeat the above proof
for all combinations of Ti and Sj , and we are done.

Remark: The function B can be considered a hyperfunction with support
in [−k,−l], and it is the inverse Fourier transform of Gw up to a constant
multiple, but we did not need that fact in our proof.
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Chapter 6

Conclusion

We have looked at the problem of existence of entire functions under certain
restrictions on the axes. The Beurling-Malliavin theorem gives some answers
to this question. We saw that this theorem leads to one of the theorems in
Domar’s article.

In the end of his article Domar uses one of his theorems to show that there
exists a nontrivial translation-invariant subspace of a certain weighted lp-
space. We have seen how this result can be interpretered as a statement
about hyperfunctions. We showed that the generalization of this fact can
be proved using extensions of Domar’s tehnique. More precisely, we showed
that if two hyperfunctions T1 and T2 on T have support contained in two
disjoint arcs, then

lim
r→1−

∑
n∈Z

r|n|cn(T1)cm−n(T2) = 0 (m ∈ Z).

Our proof was based on the correspondence expressed by Lemma 4.4.1 be-
tween hyperfunctions and entire functions of order ≤ 1. To generalize the
result further to any two hyperfunctions with compact support, we used a
version of the Mittag-Leffler theorem. This gives a new proof to the state-
ment by J. Esterle and R. Gay which uses complex analysis and gives a clear
meaning of the factor r|n|.

We also repeated the scheme for the hyperfunctions on the real line. We
showed that if T and S are hyperfunctions on R with compact disjoint
support, then

lim
a→0

∫ ∞
−∞

FT (z)FS(w − z)e−|x| dx = 0.
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