
July 2008
Jacob Laading, MATH

Master of Science in Physics and Mathematics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Mathematical Sciences

Pricing a Bermudan Swaption using the
LIBOR Market Model
A LSM approach

Ole-Petter Bård Anstensrud

Problem Description
The aim of this study is to present the theoretical framework behind the LIBOR market model and
use the model to price an exotic interest rate derivative. The model will be implemented and
calibrated using real data. The exotic interest rate derivative is taken to be a Bermudan swaption
and the The Least Squares Monte Carlo (LSM) algorithm will play a central role in the pricing
procedure.

Assignment given: 18. February 2008
Supervisor: Jacob Laading, MATH

i

Preface

This report represents my work on my Master’s thesis during the spring semester of 2008.
It represents one full semester of work and completes my five year Master of Technology
program at the Norwegian University of Science and Technology. The study is performed
at the Department of Mathematical Sciences.

My project work fall 2007 discussed the use of Monte Carlo methods in the pricing
procedure of some common types of stock options. This study concerns the pricing of var-
ious types of interest rate derivatives within the framwork of the LIBOR Market Model.
This is in general more difficult than the preceding and often requires the use of higher
dimensional simulations. The Least Squares Monte Carlo algorithm was used for pricing
american options in my project work, and it was mentioned in the concluding chapter
that this algorithm was especially well suited for multidimensional simulations. In this
study we pursue that statement and use a multidimensional version of the algorithm to
price a Bermudan swaption. The study depends heavily on computer simulation and
a lot of C++ programming. This has been the source to some frustrating debugging,
but in the end it always feels quite satisfactory to finally see your code up and working.
I’ve tried to provide a fundamental understanding of the whole subject and not just
a superficial treatment. This approach made the use of some stochastic calculus and
the description of the relevant simulation techniques almost unavoidable, but I hope it’s
possible to gather the details together into a whole.

I would like to thank my supervisor Associate Professor II Jacob K. Laading for
providing useful information and giving constructive feedback throughout the entire
semester. I would also like to thank my student colleagues for a lot of fruitful dis-
cussions and my closest family for all the motivation and encourage they have given me.

Trondheim, July 2008

Ole-Petter B. Anstensrud

ii PREFACE

iii

Abstract

This study will focus on the pricing of interest rate derivatives within the framework of the
LIBOR Market Model. First we introduce the mathematical and financial foundations
behind the basic theory. Then we give a rather rigouros introduction to the LIBOR
Market Model and show how to calibrate the model to a real data set. We use the model
to price a basic swaption contract before we choose to concentrate on a more exotic
Bermudan swaption. We use the Least Squares Monte Carlo (LSM) algorithm to handle
the early exercise features of the Bermuda swaption. All major results are vizualised and
the C++ implementation code is enclosed in appendix B.

iv ABSTRACT

CONTENTS v

Contents

Preface i

Abstract iii

1 Introduction 1

2 Mathematical and Financial Foundations 3
2.1 Definitions . 3
2.2 Choice of Numeraire . 10
2.3 Historical Development of Interest Rate Models 15

3 Simulation and Monte Carlo Methods 19
3.1 An Introduction to Monte Carlo Methods 19
3.2 Simulation of Random Variables . 20
3.3 Discretization of Stochastic Differential Equations 22

4 The LIBOR Market Model 25
4.1 Theory . 25
4.2 Calibration to Market Data . 27
4.3 Pricing a Swaption . 29

5 The LSM Algorithm 35
5.1 Theory . 35
5.2 Pricing a Bermudan Swaption . 36

6 Conclusion 41

References 43

A Results from Stochastic Calculus 45

B Computer Code 51
B.1 Main Code . 51
B.2 Multinorm Header . 61
B.3 Multinorm Class . 61

vi CONTENTS

1

1 Introduction

A swap is an agreement between two parties to exchange, or swap, future cashflows.
This study will discuss interest rate swaps. These are swaps where two parties exchange
cashflows represented by the interest rate on a notional principal. Typically one side
agrees to pay the other a fixed interest rate. The cashflow in the opposite direction is a
floating rate. One of the most common floating rates is the London Interbank Offer Rate,
known as the LIBOR rate. Swap agreements are used both by speculators who possess
a particular market view, and hedgers who want to manage their daily risk. The swap
market is huge and very liquid. According to the Bank for International Settlements 1

the total notional amount of outstanding interest rate swaps was about $309.6 trillions
by the end of 2007. A swap option, called a swaption, is an option on a swap agreement.
This option provide one party with the right at a future time to enter into a swap where
a predetermined fixed rate is exchanged for a floating rate. A Bermudan swaption is a
swaption that can be exercised on some or all the agreed payment dates of the underlying
swap. The precise definitions of these contracts will be stated in chapter 2.1. But how
much is such a contract worth? The aim of this study is essentially to provide an answer
to this question.

Interest rate derivatives are in many ways much harder to deal with than derivatives
on stocks, like common stock options. Interest rates are for one thing much harder
to model than stocks, but in addition we’ll often have to work with a multiple set of
correlated interest rates. This leads to a lot of calibration issues and higher dimensional
simulations. The LIBOR Market Model is the modern way of pricing exotic interest rate
derivatives, and will play the leading part in this thesis. To price the bermudan swaption
we’ll use the LSM (Least Squares Monte Carlo) algorithm modified to handle forward
rates under a particular forward measure. The LSM algorithm was first proposed by
Francis A. Longstaff and Eduardo S. Schwartz in 2001, see [11] for the original paper,
and is particular suited to handle higher dimensional simulations with early exercise
features.

Chapter 2 explains the basic concepts and notation, and give a brief introduction
to the subject. This chapter deals with the necessary mathematical tools as well as
the financial aspects of the contracts. It also offer a guided tour through the historical
development of interest rate models. Chapter 3 gives a brief introduction to computer
based simulation and Monte Carlo methods. Chapter 4 deduce the LIBOR Market
Model from scratch and suggest a possible calibration scheme. We also show how to use
the model to price a swaption. Chapter 5 is dedicated to the LSM algorithm and the
pricing of a bermudan swaption. Chapter 6 contains come conclusions and final remarks.
Appendix A states some useful results from stochastic calculus and reviews some of the
most fundamental concepts of the theory.

All the major algorithms are implemented in C++, as listed in appendix B, and the
LIBOR Market Model are calibrated to real data from DnB Nor.

1http://www.bis.org/

2 1 INTRODUCTION

3

2 Mathematical and Financial Foundations

2.1 Definitions

Most people understand the basic mechanism of a bank account. They expect the amount
of deposited money to grow as time goes by, and they expect their spare money to be
safe from theft and financial risk. In every-day life this is what you really need to know,
but in mathematical terms we need a more precise definition.

Definition 2.1 (Bank account). We define B(t) to be the value of a bank account at
time t ≥ 0. We assume B(0) = 1 and that the bank account evolves according to

dB(t) = rtB(t)dt

where rt is a positive, and possibly stochastic, function of time, known as the instanta-
neous spot rate. rt is assumed to be risk-free. Solving this differential equation gives

B(t) = exp
(∫ t

0
rsds

)
We assume there is no way to loose money on an investment at the risk-free rate.

There is no such thing as a totally risk-free investment in real life. But even though there
is a positive probability a bank can go bankrupt, we assume the bank account to be free
of risk. There is no such thing as an instantaneous interest rate either, but in practice we
can take the one-month spot rate quoted in the market as the instantaneous rate. The
overnight rate is usually too illiquid for this purpose.

In many situations we want to know what an amount of money at time T > t is
worth at time t. If we allow the evolution of the interest rate to be a possible stochastic
process we have the following definition of a discounting process

Definition 2.2 (Stochastic discount factor). The possibly stochastic discount factor
D(t, T) between two time instants t and T is the amount at time t that is equivalent to
one unit of currency payable at time T , and is given by

D(t, T) =
B(t)
B(T)

= exp
(
−
∫ T

t
rsds

)
If the interest rate is a deterministic process in the form of a constant, say rt = r,

we obtain the well known formula D(t, T) = e−r(T−t). In the pricing of for example
stock options we often make this assumption because we assume the variability of the
interest rate to contribute considerably less to the price than the underlying stock. In
very interest rate sensitive products, like interest rate derivatives, we just can’t make this
assumption and we need to model the interest rate as a stochastic process.

Bonds are instruments of crucial importance in the analysis of interest rate derivatives.
A bond is a debt security, in which the authorized issuer owes the holders a debt. The
bond’s principal is received at some given date in the future known as the maturity date.
Most bonds pay a periodically interest known as coupons to the holder. A zero-coupon
bond is a bond where all interest is paid at maturity or more precice

4 2 MATHEMATICAL AND FINANCIAL FOUNDATIONS

Definition 2.3 (Zero-coupon bond). A T -maturity zero-coupon bond (pure discount
bond) is a contract that guarantees its holder the payment of one unit of currency at
time T, with no intermediate payments. The contract value at time t < T is denoted by
P (t, T). Clearly P(T,T)=1 for all T.

It’s possible to multiply P (t, T) with an arbitrary principal, but we find it convenient
to work with a scaled version of the zero-coupon bond. The zero-coupon bond can be
seen as the expectation of the random variable D(t, T) under the risk-neutral measure
as seen in chapter 2.2.

LIBOR is short for London Interbank Offer Rate and is the spot rate at which a bank
is prepared to make a deposit with other banks. Large banks and other financial insti-
tutions quote 1-month, 3-month, 6-month and 12-month LIBOR in all major currencies.
In according to quoting LIBOR rates, large banks also quote LIBID rates. This is the
London Interbank Bid Rate and is the spot rate at which they will accept deposits from
other banks. Due to active trading there is usually a small spread between the quoted
LIBID and LIBOR rates. In this study we only work with LIBOR rates and ignore this
difference. LIBOR rates are simply-compounded rates and we denote them by L(t, T) in
accordance with the following definition:

Definition 2.4 (Simply-compounded spot interest rate). The simply-compounded
spot interest rate prevailing at time t for the maturity T is denoted by L(t, T) and is the
constant rate at which an investment has to be made to produce an amount of one unit
of currency at maturity, starting from P (t, T) units of currency at time t, when accruing
occurs proportionally to the investment time. In formulas:

P (t, T)(1 + L(t, T)τ(t, T)) = 1

=⇒L(t, T) =
1− P (t, T)

τ(t, T)P (t, T)

where τ(t, T) is the time difference T − t, usually quoted in years.

Bond prices can be expressed in terms of L(t, T) as

P (t, T) =
1

1 + L(t, T)τ(t, T)

Although we will not make much use of other compounding types in this study we
mention the continously-compounded interest rate, R(t, T), given by eR(t,T)τ(t,T)P (t, T) =
1 and the annually compounded interest rate, Y (t, T), given by P (t, T)(1+Y (t, T))τ(t,T) =
1.

The effective rate of interest achieved from a bond is usually referred to as the bond
yield. A set of zero-coupons of different maturities can build up what we call a yield
curve. The yield curve is also known as the term structure of interest rates. A yield
curve is a plot of yield against time. An investor would in general expect a higher yield
on a long-term investment than a short-term investment. The yield curve is therefore
usually an increasing function of time to maturity. A flat, or maybe decreasing, yield

2.1 Definitions 5

0 5 10 15 20 25 30

2.
5

3.
0

3.
5

4.
0

4.
5

Yield Curve

Years to Maturity

Y
ie

ld
 (

%
)

Figure 1: A normal yield curve

curve imply that the market expect a lower interest rate in the future. A typically shaped
yield curve can be seen in figure 1.

Forward rates are interest rates that can be locked in today for a future time period,
and are set consistently with the current term structure of interest rates. Assume we are
at time t and buy one zero-coupon bond of maturity S and sell one zero-coupon bond of
maturity T with the same principal, where T < S. At time T we pay back a principal
with interests and at time S you receive a principal with interests. Measured by the yield
with normalized zero-coupon bonds we pay (1 + L(t, T)τ(t, T)) at time T and receive
(1 + L(t, S)τ(t, S)) at time S. If we call the forward rate between T and S at time t for
F (t;T, S) we have the equation

(1 + L(t, T)τ(t, T))(1 + F (T, S)τ(T, S)) = (1 + L(t, S)τ(t, S))

By definition 2.4 we obtain

(1 +
1− P (t, T)

P (t, T)
)(1 + F (T, S)τ(T, S)) = (1 +

1− P (t, S)
P (t, S)

)

=⇒ F (t;T, S) =
1

τ(T, S)

(
P (t, T)
P (t, S)

− 1
) (1)

If we negligate the bid-ask spread, F (t;T, S) is the (simply-compounded) interest rate
at which you at time t can borrow or lend money between time T and S. A forward-rate

6 2 MATHEMATICAL AND FINANCIAL FOUNDATIONS

agreement is a contract between two parties involving the three time instants t, T and
S. At maturity, S, one party pays the other a fixed payment based on a fixed rate K,
and the other party pays a floating payment based on the spot rate L(T, S) resetting in
T and with maturity S. At time S the receiver of the fixed payment receives

Nτ(T, S)(K − L(T, S))

= N

[
τ(T, S)K − 1

P (T, S)
+ 1
]

where N is the notional principal. 1
P (T,S) is worth P (T, S) 1

P (T,S) = 1 at time T . This is
equivalent to an amount of P (t, T) at time t. τ(T, S)K+1 is worth P (t, S)(τ(T, S)K+1)
at time t. Hence at time t the contract is worth

N [P (t, S)τ(T, S)K − P (t, T) + P (t, S)]
=NP (t, S)τ(T, S)(K − F (t;T, S))

where we have used the definition of the forward rate in the last equation. Therefore,
to value a forward rate agreement, we replace the LIBOR rate L(T, S) with the corre-
sponding forward rate F (t;T, S) and discount with the corresponding zero-coupon bond
P (t, S). Note that the initial value of the forward rate agreement equates to zero if
K = F (t;T, S). We also show in chapter 2.2 that the forward rate can be seen as the
expectation of the corresponding spot rate under the corresponding forward measure.
When the maturity of the forward rate collapses towards its expiry, we have the notion
of instantaneous forward rate. The instantaneous forward rate, f(t, T), is expressed as

f(t, T) = lim
S→T+

F (t;T, S) = − lim
S→T+

1
P (t, S)

P (t, S)− P (t, T)
S − T

= − 1
P (t, T)

∂P (t, T)
∂T

= −∂ lnP (t, T)
∂T

If an investor believes that rates in the future will be quite different from the forward
rates observed in the market today, he can speculate in according to something called
yield curve play. If an investor for example believes the 1-year interest rates won’t change
much the next 5 years, he can lend money for 1 year and invest them in a 5 year bond.
The 1-year borrowings can be rolled over for further 1-year periods at the end of the
first, second, third and fourth years. This is can be a lucrative, but dangerous business.
Robert Citron, once the Treasurer at Orange County, used yield curve plays similar to
this one very successfully in 1992 and 1993. The profit from Mr. Citron’s trade became
an important contributor to Orange County’s budget and he was re-elected. In 1994
he expanded his yield curve play. If short-term interest rates had remained the same
or declined he would have continued to do well, but interest rates rose sharply. On
December 1, the same year, Orange County announced that its investment portfolio had

2.1 Definitions 7

lost $1.5 billion. At that point Orange County was left with no recourse other than to file
for bankruptcy. While in bankruptcy, every county program budget was cut, about 3,000
public employees were discharged and all services were reduced. Mr. Citron was found
guilty of violating state investment laws and was sentenced to one year of community
service. The lesson must be to never underestimate the risk potential of an investement.

A generalization of the forward-rate agreeement is the interest rate swap. An interest
rate swap is a contract that exchanges payments between two differently indexed legs,
starting from a future time instant. At every instant Ti in a prespecified set of dates
Tα+1,...,Tβ

the fixed leg pays out the amount NτiK corresponding to a fixed interest rate
K, a nominal value N and a year fraction τi between Ti−1 and Ti. The floating leg pays
out the amount NτiL(Ti−1, Ti) at dates Tα+1,...,Tβ

and resets at dates Tα,...,Tβ−1
. When

the fixed leg is paid and the floating leg is received we call it a payer interest swap.
Otherwise we call it a receiver interest rate swap. The swap agreement can be seen as a
portifolio of forward rate agreements and hence has the valuation

N

β∑
i=α+1

τiP (t, Ti)(K − F (t;Ti−1, Ti))

for a receiver swap (for a payer swap we just change the sign).
Now we find the fixed rate, K = Sα,β(t), which equates the value of the whole

agreement to zero:

N

β∑
i=α+1

τiP (t, Ti)(K − F (t;Ti−1, Ti))

= N

β∑
i=α+1

[τiP (t, Ti)K − P (t, Ti−1) + P (t, Ti)] = 0

=⇒K

β∑
i=α+1

τiP (t, Ti) = P (t, Tα)− P (t, Tβ)

=⇒K = Sα,β(t) =
P (t, Tα)− P (t, Tβ)∑β

i=α+1 τiP (t, Ti)

Definition 2.5 (Swap rate). The forward swap rate Sα,β(t) is the rate in the fixed leg
of an interest rate swap that makes the contract fair at the present time, i.e. the fixed
rate which equates the value of the agreement to zero.

Sα,β(t) =
P (t, Tα)− P (t, Tβ)∑β

i=α+1 τiP (t, Ti)
(2)

As we would expect the swap rate coincides with the forward rate if there is only on
time period in consideration.

Some algebraic manipulation of equation 1 yields P (t,S)
P (t,T) = 1

1+F (t;T,S)τ(T,S) . If we
divide both the numerator and the denominator in equation 2 by P (t, Tα) and use the

8 2 MATHEMATICAL AND FINANCIAL FOUNDATIONS

described manipulation we obtain

Sα,β(t) =
1− P (t,Tβ)

P (t,Tα)∑β
i=α+1 τi

P (t,Ti)
P (t,Tα)

=
1− P (t,Tβ)

P (t,Tα) · 1∑β
i=α+1 τi

P (t,Ti)
P (t,Tα) · 1

=
1− P (t,Tβ)

P (t,Tα)

∏β−1
j=α+1

P (t,Tj)
P (t,Tj)∑β

i=α+1 τi
P (t,Ti)
P (t,Tα)

∏i−1
j=α+1

P (t,Tj)
P (t,Tj)

=
1−

∏β
j=α+1

P (t,Tj)
P (t,Tj−1)∑β

i=α+1 τi
∏i

j=α+1
P (t,Tj)

P (t,Tj−1)

=
1−

∏β
j=α+1

1
1+τjFj(t)∑β

i=α+1 τi
∏i

j=α+1
1

1+τjFj(t)

(3)

This is a practical formula because it’s often convenient to calculate the swap rate in
terms of forward rates. We will use this formula in the simulations in chapter 4.3 and
5.2.

A cap is a contract that can be viewed as a payer swap where each exchange payment
is executed only if it has positive value. The cap discounted payoff is therefore given by

β∑
i=α+1

D(t, Ti)Nτi(L(Ti−1, Ti)−K)+

where the +-operator has the meaning max(L(Ti−1, Ti)−K, 0). A floor can be viewed as
a "positive" receiver swap with payoff (K − L(Ti−1, Ti))+. A cap contract can be used
to guarantee that the borrower of an arbitrary loan tied to a floating rate won’t pay
higher interest rate than K. To see this suppose L exceed the fixed rate K for some time
interval. Then the borrower pays the floating rate L but receives (L − K). In general
the borrower always pays L− (L−K)+ = min(L,K).

A cap can be decomposed additively as a sum of caplets, D(t, Ti)Nτi(L(Ti−1, Ti) −
K)+. A floor contract can be decomposed additively as the sum of floorlets (which are
quite similar). It’s common market practice to price a cap with the following sum of
Black’s formulas

N

β∑
i=α+1

P (0, Ti)τiBl(K, F (0, Ti−1, Ti), νi, 1) (4)

2.1 Definitions 9

where, if we denote by Φ the standard Gaussian cumulative distribution function,

Bl(K, F, ν, ω) = FωΦ(ωd1(K, F, ν))−KωΦ(ωd2(K, F, ν))

d1(K, F, ν) =
ln(F/K) + ν2/2

ν

d2(K, F, ν) =
ln(F/K)− ν2/2

ν

νi = σα,β

√
Ti−1

The volatility parameter σα,β must be retrieved from market quotes. The Black formula
is similar to the Black-Scholes formula for valuing stock options except that the spot
price of the underlying is replaced by the forward price F . We will justify this formula
in chapter 4.1. A floor has a similar formula, see for instance [16]. There exist a similiar
formula for the floor case. Because of the similarity with a swap contract a cap is said
to be at the money if K = Sα,β , where Sα,β is the representative swap rate. The cap is
said to be in the money if K < Sα,β and out of the money if K > Sα,β . To use the same
notation on a floor we simply reverse the inequalities.

A swaption is an option on a swap contract. There are two versions, payer swaptions
and receiver swaptions. A European payer swaption is an option giving the right (and no
obligation) to enter a payer swap at a given future time, the swaption maturity. Usually
the swaption maturity coincides with the first reset date of the underlying swap. The
underlying swap length, say (Tβ − Tα) is called the tenor of the swaption. The payoff of
a payer swaption at time t < Tα is equal to

ND(t, Tα)

(
β∑

i=α+1

P (Tα, Ti)τi(F (Tα;Ti−1, Ti)−K)

)+

=ND(t, Tα)

(
β∑

i=α+1

P (Tα, Ti)τiF (Tα;Ti−1, Ti)−K

β∑
i=α+1

P (Tα, Ti)τi

)+

=ND(t, Tα)

(
β∑

i=α+1

P (Tα, Ti)τi
1
τi

(
P (Tα, Ti−1)− P (Tα, Ti)

P (Tα, Ti)

)
−K

β∑
i=α+1

P (Tα, Ti)τi

)+

=ND(t, Tα)

(
β∑

i=α+1

(P (Tα, Ti−1)− P (Tα, Ti))−K

β∑
i=α+1

P (Tα, Ti)τi

)+

=ND(t, Tα)

(∑β
i=α+1 τiP (Tα, Ti)∑β
i=α+1 τiP (Tα, Ti)

(P (Tα, Tα)− P (Tα, Tβ))−K

β∑
i=α+1

P (Tα, Ti)τi

)+

=ND(t, Tα)

(
β∑

i=α+1

τiP (Tα, Ti)Sα,β(Tα)−K

β∑
i=α+1

P (Tα, Ti)τi

)+

=ND(t, Tα)(Sα,β(Tα)−K)+
β∑

i=α+1

τiP (Tα, Ti)

10 2 MATHEMATICAL AND FINANCIAL FOUNDATIONS

This last expression clearly illustrates the idea of a swapion in, out and at the money.
We will use this expression in chapter 4.3.

Contrary to the cap case, this payoff cannot be decomposed in more elementary
products. From an algebraic point of view, this is essentially due to the fact that the
summation is inside the +-operator. As a consequence, in order to value and manage
swaption contracts, we will need to consider the joint action of the rates involved in the
contract payoff. We will observe the consequences of this fact in chapter 4.3. In fact we
have the inequality(

β∑
i=α+1

P (Tα, Ti)τi(F (Tα;Ti−1, Ti)−K)

)+

≤
β∑

i=α+1

P (Tα, Ti)τi(F (Tα;Ti−1, Ti)−K)+

(5)
with no equality in general. This means that a payer swaption in practice has a value
that is always smaller than the value of a corresponding cap contract. Similar to the cap
case it’s common market practice to value swaptions with a Black-like formula given by

NBl(K, Sα,β(0), σα,β

√
Tα, 1)

β∑
i=α+1

τiP (0, Ti) (6)

where σα,β is a volatility parameter quoted in the market that in general is different from
the corresponding volatility parameter in the cap/floor case. A similar formula is used
for a receiver swaption. [1] contains a rigorous treatment and derivation of both of these
formulas.

2.2 Choice of Numeraire

A numeraire is the unit of account in which other assets are denominated. One usually
takes the numeraire to be the currency of the country. In some applications one must
change the numeraire in which one works because of financial of modeling considerations.
Here we will restrict ourself to the bank account numeraire and the zero coupon bond
numeraire. First we need som basic definitions. We assume we work in an economy, or
trade in a financial market, that satisfies the following definition:

Definition 2.6 (Financial market). By a market we mean a collection of K + 1 non
dividend paying securities under a filtration, F(t), that is traded continously from time 0
until time T . Their prices are modeled by a K + 1 dimensional adapted semimartingale
S = {St : 0 ≤ t ≤ T} whose components S0, S1, . . . , SK are positive. The asset indexed
by 0 is a bank account. Its price then evolves according to dS0

t = rtS
0
t dt with S0

0 = 1 and
rt the instantaneous short-term rate at time t.

Next we define precisely what we mean be a trading strategy.

Definition 2.7 (Trading strategy). A trading strategy is a K +1 dimensional stochas-
tic process φ = {φt : 0 ≤ t ≤ T}, whose components φ0, φ1, . . . φK are locally bounded

2.2 Choice of Numeraire 11

and predictable. The value process associated with a strategy φ is defined by

Vt(φ) = φtSt =
K∑

k=0

φk
t S

k
t , 0 ≤ t ≤ T

and the gain process associated with a strategy φ by

Gt(φ) =
∫ t

0
φudSu =

K∑
k=0

∫ t

0
φk

udSk
u, 0 ≤ t ≤ T

The k-th component φk
t of the strategy φt at time t, for each t, is interpreted as the

number of units of security k held by an investor at time t. The predictability condition
on each φk means that the value φk

t is known immediately before time t. This is a quite
natural definition. If we think in terms of stock trader, he cannot decide the quantity
of stocks held after the market has spoken. This also makes the gains process an Itô
process. Vt(φ) and Gt(φ) are respectively interpreted as the market value of the portfolio
φt and the cumulative gains realized by the investor until time t by adopting the strategy
φ. A trading strategy is called self-financing if its value changes only due to changes in
the asset prices. In other words, no additional cash inflows or outflows occur after the
intial time. This motivates the following definition

Definition 2.8 (Self-financing trading strategy). A trading strategy φ is self-financing
if V (φ) ≥ 0 and

Vt(φ) = V0(φ) + Gt(φ), 0 ≥ t < T

The next definition states exactly what we mean by an risk-neutral measure.

Definition 2.9 (Risk-neutral measure). A risk-neutral measure P̃ is a probability
measure on the space (Ω,F) such that

(i) P̃ and the objective measure P is equivalent, that is P̃(A) = 0 if and only
if P(A) = 0 for every A ∈ F .

(ii) The Radon-Nikodym derivative dP̃
dP belongs to L2(Ω,F , P) (the space of

square Lebesgue-integrable functions, see [14] for a good reference).

(iii) The discounted asset price process D(0, ·)S is an (F(t), P̃)-martingale,
that is Ẽ(D(0, t)Sk

t |Fu) = D(0, u)Sk
u for all k = 0, 1, . . . ,K and for all 0 ≤

u ≤ t ≤ T , with Ẽ denoting the expectation under P̃.

An arbitrage opportunity is an opportunity to create something out of nothing. This
should, in theory, not be possible in a modern and sufficient efficient financial market. It
should not be possible to start with nothing and earn money with no risk involved. A
mathematical precise definition can be stated as

Definition 2.10 (Arbitrage). A self-financing trading strategy φ is called an arbitrage
if V0(φ) = 0, E[VT (φ) ≥ 0] = 1 and E[VT (φ) > 0] > 0.

12 2 MATHEMATICAL AND FINANCIAL FOUNDATIONS

In words, there exists an arbitrage opportunity if it’s possible to start with nothing,
impossible to loose money, but a positive probability for a gain. A contingent claim
is a contract that mandate payments that are contingent on uncertain events. The
distinctions between contingent claims and derivatives are pretty weak, and they are
often interchanged, but in general there are contracts that are contingent claims and not
derivatives. Examples of such contracts are casualty and life insurance contracts. In this
study we will only treat derivatives, but choose to work with the slightly more general
contingent claims. We now define what we mean by a contingent claim.

Definition 2.11 (Contingent claims). A contingent claim is a square Lebesgue-integrable
and positive random variable on (Ω,F , P). A contingent claim H is attainable if there
exists some self-financing trading strategy φ such that VT (φ) = H. Such a φ is said to
generate H and πt = Vt(φ) is the price at time t associated with H.

With attainable we essentially mean a hedge. There must be some way to replicate
the payoff generated from the contingent claim. We now define what we mean by a
complete market.

Definition 2.12. A financial market is complete if and only if every contingent claim is
attainable.

In this study we assume every market to be complete. The next three theorems are
of fundamental importance for all asset pricing. The proofs are rather difficult, but can
be found in [5] and [6].

Theorem 2.1. Assume there exists an risk-neutral measure P̃ and let H be an attainable
contingent claim. Then, for each time t, 0 ≤ t ≤ T , there exists an unique no-arbitrage
price Ht, associated with H, i.e.,

Ht = Ẽ(D(t, T)HT |Ft)

where HT is the payoff function at time T .

We have worked within a finite dimensional market, but this theorem can be extended
to infinite dimensional markets too. See [1] for references. We can use this theorem to
find the expectation of the zero-coupon bond, P (t, T), under the risk-neutral measure.
Because P (T, T) = 1 we have P (t, T) = Ẽt[D(t, T)]. This proves the statement in chapter
2.1 that the zero-coupon bond can be seen as the expectation of the random variable
D(t, T) under the risk-neutral measure.

Theorem 2.2 (First fundamental theorem of asset pricing). If a market model
has a risk-neutral probability measure, then it does not admit arbitrage.

Theorem 2.3 (Second fundamental theorem of asset pricing). Consider a market
model that has a risk-neutral measure. The model is complete if and only if the risk-
neutral measure (associated with the given numeraire) is unique.

Now we give a precise statement of a numeraire.

2.2 Choice of Numeraire 13

Definition 2.13 (Numeraire). A numeraire is any positive non-dividend-paying asset.

In general, a numeraire Z is identifiable with a self-financing strategy φ in that
Zt = Vt(φ) for each t. Intuitively, a numeraire is a reference asset that is chosen as to
normalize all other asset prices with respect to it. Choosing a numeraire Z then implies
that the relative prices Sk/Z, k = 0, 1, . . . ,K are considered instead of the securities
prices themselves. The value of the numeraire will be often used to denote the numeraire
itself. If we take the bank account as a numeraire, [5] proved that a trading strategy is
self-financing if and only if the trading strategy expressed in terms of the bank account
is a numeraire. This is stated in the next theorem.

Theorem 2.4. Let φ be a trading strategy. Then, φ is self-financing if and only if
D(0, t)Vt(φ) = V0(φ) +

∫ t
0 φud(D(0, u)Su).

This proof is extended to an arbitrary numeraire in [3]. Therefore, an attainable
claim is also attainable under any numeraire. The next theorem is also proven by [3]. As
we will see, its consequences are of crucial importance for the rest of this study.

Theorem 2.5. Assume there exists a numeraire N and a probability measure EN , equiv-
alent to the initial E, such that the price of any traded asset X (without intermediate
payments) relative to N is a martingale under EN , i.e.,

Xt

Nt
= EN

[
XT

NT
|Ft

]
, 0 ≤ t ≤ T

Let U be an arbitrary numeraire. Then there exists a probability measure EU , equivalent
to the initial E, such that the price for any attainable claim Y normalized by U is a
martingale under EU , i.e.,

Yt

Ut
= EU

[
YT

UT
|Ft

]
, 0 ≤ t ≤ T

If we assume a complete market we have a risk-neutral measure and hence theorem
2.1 holds. By taking N as the bank account numeraire (and noting that any tradet asset
is also a trivial contingent claim) the assumptions of theorem 2.5 holds. We are then in
position to deduce two crucial facts from theorem 2.5.

FACT ONE. The price of any asset divided by a numeraire is a martingale under the
measure associated with that numeraire.

FACT TWO. The unique price Ht (at time t and under the filtration Ft) associated
with a risk-neutral measure EB

t , that is

Ht = EB
t

[
Bt

HT

BT

]
where HT is the payoff at time T , is invariant by change of numeraire. If S is any other
numeraire, we have

Ht = ES
t

[
St

HT

ST

]

14 2 MATHEMATICAL AND FINANCIAL FOUNDATIONS

The change-of-numeraire technique described in fact two is typically emplyed as fol-
lows. A payoff H(XT) is given, which depends on an underlying variable X (for example
an interest rate or an stock) at time T . Pricing such a payoff amounts to compute the
risk-neutral expectation H0 = Ẽ0[D(0, T)H(XT)] = Ẽ0[

B(0)
B(T)H(XT)] = B(0)Ẽ0[

H(XT)
B(T)],

where B(t) is the bank account numeraire. Due to fact two this is equal to

H0 = Ẽ0[D(0, T)H(XT)] = S(0)ES
0

[
H(XT)
S(T)

]
for an arbitrary numeraire S.

As a numeraire we will now choose the zero-coupon bond whose maturity T coin-
cides with that of the derivative to price. This imply ST = P (T, T) = 1. This is
referred to as the T -forward measure and will be denoted by PT . The related expec-
tation will be denoted by ET . Denoting Ht the price of the derivative at time t yields
Ht = P (t, T)ET [HT |Ft] for 0 ≤ t ≤ T . We will now show that any simply-coumponded
forward rate spanning a time interval ending in T is a martingale under this measure and
that the forward rate can be seen as the expectation of the future simply-compounded
spot rate under this measure.

Theorem 2.6. Any simply-compounded forward rate spanning a time interval ending in
T is a martingale under the T -forward measure, i.e..

ET [F (t;S, T)|Fu] = F (u;S, T)

for each 0 ≤ u ≤ t ≤ S < T . In particular, the forward rate spanning the interval [S, T]
is the PT -expectation of the future simply-compunded spot rate at time S for the maturiy
T , i.e,

ET [L(S, T)|Ft] = F (t;S, T)

for each 0 ≤ t ≤ S < T .

Proof. From the definition of a simply-compunded forward rate we have

F (t;S, T) =
1

τ(S, T)

[
P (t, S)
P (t, T)

− 1
]

=⇒ F (t;S, T)P (t, T) =
1

τ(S, T)
[P (t, S)− P (t, T)]

This is a multiple of the difference of two bonds, and hence a traded asset. Theorem 2.5
then states that F (t;S,T)P (t,T)

P (t,T) = F (t;S, T) is a martingale under the T -forward measure.
The relation F (S;S, T) = L(S, T) and the now proven martingale property of the forward
rate yields

ET [L(S, T)|Ft] = ET [F (S;S, T)|Ft] = F (t;S, T)

This proof the final assertion.

2.3 Historical Development of Interest Rate Models 15

2.3 Historical Development of Interest Rate Models

In 1973 Fischer Black and Myron S. Scholes published their celebrated option pricing
formula that now bears their name. They worked in close cooperation with Robert C.
Merton. He also published an article which included the formula and various extensions
the same year. The Black-Scholes formula is therefore also known as the Black-Scholes-
Merton formula. Merton and Scholes received the 1997 Nobel Prize in Economics for
their work. Fischer Black sadly passed away in 1995, but was mentioned as an important
contributor by the Nobel prize committee. The Black-Scholes model provided for the
first time, under some restrictions, a theoretical method for fairly pricing an attainable
contingent claim, more common known as an (attainable) financial derivative. By attain-
able we stress the existence of a self-financing dynamic trading strategy that reproduces
the final payoff of the derivative, as defined in 2.1. [7] defines a financial derivative as a
financial instrument whose value depends on the value of other, more basic, underlying
variables. These underlying variables must be traded assets in order to satisfy the rea-
soning behind the Black-Scholes model. Examples of common derivatives are options,
swaps and future contracts. The Black-Scholes equation solved for simple vanilla calls
and puts are usually called the Black-Scholes option pricing formula. A ’fair’ price in
this context must coincide with the cost of succesfully hedging the derivative. A higher
price would admit arbitrage because it would allow the seller to sell a derivative, hedge
away all risk and earn ’free money’. In finance there is no such thing as ’free lunch’. At
least not in theory. A lower price would in the long run (with probability one) ruin the
seller.

A naive use of the Black-Scholes formula was the first attempt to price interest-rate
derivatives. The most common approach was to calculate the Black-Scholes option price
using the spot bond price as the underlying. This approach soon came under heavy
criticism because of the so-called pull-to-par phenomena. In its original form the Black-
Scholes formula requires a constant percentage volatility of the underlying. But since
the bond price has to converge to par at maturity, its volatility can certainly not be
a constant. This was not considered a big problem if the expiry of the bond option
was much shorter than the maturity of the underlying bond, but could cause a serious
headache if the expiry and maturity was comparable. An easy fix for the problem was to
consider a non-traded quantity, like the bond yield, as the underlying. This was certainly
not a theoretically justifiable use of the Black-Scholes formula, because of the non-traded
asset as the underlying, but was a popular approach because the volatility of the yield
was more independent of the underlying instrument than the volatility of the spot price.
This approach was not surpricingly hated by the academic society and researchers in the
field, and it proved to be a blind alley. A more fruitful market practice at that time was
to price caplets and swaptions using the Black formula, see 4 and 5. These formulas were
first proven theoretical justifiable almost a decade after they became standard market
practice. None the less they showed up to be correct, and this rather sketchy market
practice actually paved the way for the LIBOR Market Model

In 1977 the Czech mathematician Oldrich Vasicek introduced the first yield-curve
model known as the Vasicek model. In search for a coherent and self-consistent descrip-

16 2 MATHEMATICAL AND FINANCIAL FOUNDATIONS

tion Vasicek made the sweeping assumption that the dynamics of the whole yield curve
could be driven by the instantaneous short rate alone. The model specified that the
instantaneous interest rate followed the following stochastic differential equation:

dR(t) = (α− βR(t))dt + σdW (t) (7)

where α and β are constants to be calibrated and σ is a constant volatility factor. A
good thing about this model is its mean reverting ability. That is, the interest rate won’t
move too far away from the mean. Unfortunately the model is also capable of producing
negative interest rates. If we’re not in Japan in 1998 or Switzerland in the 1960’s this is
not very realistic. Anyway, given the existence of a single source of uncertainty in the form
of the instantaneous short rate, the stochastic movements of any bond can be perfectly
hedged by simultaneously taking a suitable position in another bond of different maturity
(see for instance [16]). An appropriate hedge ratio could then be found by the use of
ItÃ´’s lemma. The solution of the problem could then be reduced to fit into the Black-
Scholes model. The Vasicek model was not a big practical success, but its influence upon
the academic society was enormous, and a lot of similar one-factor models were developed
in the years to come. The model could be used both in a presciptive and a descriptive
way. If applied in a fundamental way, by estimating the parameters econometrically, the
model would indicate what the yield curve should look like today. The other possibility
is to fit the model directly to the current yield curve in the best possible way. In either
cases a believer in the model would indicate a bond traded in the market as a trading
opportunity if the price of the bond differ from the bond price implied by the model. But
for the option trader any such mismatch between the model and the market would be
equal to force him to use the wrong price for the underlying in a Black-Scholes framework.
This was definetely not a satisfactory solution. There’s a little technical issue here worth
mentioning. To price a derivative we often need to work under a risk-neutral measure.
The volatility, or the diffusion coeffisient, will remain the same both in the real and the
risk-neutral world, but the other coeffisients will in general not. Therefore we will often
need to calibrate the model to the market price of a given set of instruments (which could
be the zero coupon bonds implied from the yield curve) and not the yield curve directly,
but the fundamental problem remains the same. The one-factor models are unable to
reproduce the current yield curve implied by the market. Another well-known model
from this period is the CIR model namned after its inventors; Cox, Ingersoll and Ross.

The second generation yield-curve models featured time-dependent parameters which
allowed an exact fit to the observed yield curve given by the market. Great news for the
option traders who finally where in position to use the correct underlying values for their
option pricing formulas. Important second generation yield-curve models are the Hull
and White model, the extended Vasicek model and the extended CIR model. These
models were of course useless for the bond trader because such "overfitting" to the yield
curve makes the model loose all its explanatory power. And even worse, the day to
day refitting of the yield curve typically showed serious relative inconsistencies. Even
for the option traders one big problem remained unsolved. The interest rate models
could now reproduce any yield curve, but failed to match the market data on vanilla

2.3 Historical Development of Interest Rate Models 17

options like swaptions and caplets. If the models were implemented as recommended by
their inventors, with a constant volatility parameter, the models could only be calibrated
to match one single vanilla option quoted in the market at a time. Similarly to the
way bond traders used the last generation of yield-curve models to pick "cheap" bonds,
vanilla option traders could now use the new models to pick "cheap" vanilla options in the
market. This was a big issue for traders of more exotic interest rate options like knock-
out caps, indexed-principal swaps, callable inverse floaters, index accruals and Bermudan
swaptions. Exotic traders wanted their hedges (caplets and swaptions) correctly priced
by the model as much as the vanilla option traders wanted their hedges (bonds and
swaps) correctly priced by the model. The problem just grew bigger in the early 90’s as
new exotic products really began to hit the market with great pace.

The development of multifactor models like the G2++ model made some improvement
but the real revolution came with the Heath-Jarrow-Morton (HJM) model in 1992. This
was a quite general framework for the modelling of interest-rate dynamics. By choosing
the instantaneous forward rates as fundamental quantities to model, they derived an
arbitrage-free framwork for the stochastic evolution of the entire yield curve. There were
no more one single volatility factor, but an entire instantaneous volatility structure for the
whole forward-rates dynamics. Moreover there can be showed that every short-rate model
free of arbitrage is a subset of the HJM family. The only problem with this promising
model was the dependence of the instantaneous forward rates. The instantaneous forward
rate is a theoretical construction not observable in the market. This fact made the model
hard to implement and calibrate. The model actually impose a mathematically quite
interesting problem of random dynamics in infinite dimensions.

The real breakthrough came in 1994 in the form of the LIBOR Market Model (LMM),
created by Kristian Miltersen, Klaus Sandmann and Dieter Sondermann. The LIBOR
Market Model was later modified to its current form in 1997 by Farshid Jamshidian
based on the work of Alan Brace, Dariusz Gatarek and Marek Musiela. This is why
the LIBOR Market Model also is known as the BGM or BGM/J model. The LMM
can be looked upon as a discrete version of the HJM model and models the discrete
forward rates directly observable in the market instead of the theoretical construction
of instantaneous forward rates. This makes the model easy to calibrate to market data.
Actually it’s possible to carry out a joint calibration to both discount bonds, swaptions
and caplets at the same time. The model is also, as the first interest model in history,
compatible with Black’s formula for caplets. The forward rates are assumed lognormal
under its measure, and because of this the model is also called the lognormal forward-
LIBOR model (LFM). There exists a different version of the model which assume the
forward swap rates to be lognormal under its measure. This model is called the lognormal
forward-swap model (LSM, not to be confused with the LSM algorithm) and is compatible
with Black’s formula for swaptions. Unfortunately it can be showed that LFM and LSM
are incompatible models, see for instance [1]. In the upcoming chapters we will solely
talk about the LFM and we prefer to use the name LMM.

18 2 MATHEMATICAL AND FINANCIAL FOUNDATIONS

19

3 Simulation and Monte Carlo Methods

3.1 An Introduction to Monte Carlo Methods

Monte Carlo methods are a class of computational algorithms that rely heavily on re-
peated random sampling to compute their results. In this study we will make use of
Monte Carlo integration. We want to find an expectation of a discounted contingent
payoff which depend on one or more assets under a certain martingale measure. To
make the idea clear suppose we want to price the expectation of a certain contingent
claim C under some specified dynamics. In other words we want to calculate E[C]. We
do so by generating n realizations of C, indexed by i, and average. The final result is
E[C] ≈ C̄n = 1

n

∑n−1
i=0 Ci, where n is taken as a large number. By common sense a large

n will increase the accuracy of the answer, but also slow down the algorithm. To find
a large, but not too large, n is of crucial importance for all practical implementations
of the algorithm. To further analyze the situation we can calculate the variance of the
Monte Carlo estimate

Var[C̄n] = Var

[
1
n

n−1∑
i=0

Ci

]
=

1
n2

n−1∑
i=0

Var[Ci] =
1
n2

n−1∑
i=0

σ2 =
1
n2

· nσ2 =
σ2

n

where σ is the standard deviation of Ci. σ is in general an unknown parameter but an
consistent estimate is given by

σ ≈ sC =

√√√√ 1
n− 1

n−1∑
i=0

(Ci − C̄n)

Remark the (n − 1) quantity in the denominator which is not a misprint. For large n
we can invoke the central limit theorem to obtain an asymptotic 100(1− δ)% confidence
interval for E[C] given by

C̄n ± zδ/2
sC√

n

where zδ/2 is the 1 − δ
2 quantile in the standard normal distribution. The rate of con-

vergence is thus O
(

1√
n

)
. Hence an increase in the accuracy by a factor of 10 implies an

increase in the number of repetitions by 100. For low dimensional problems this may be
a serious drawback, but the methods are very competitative for large or maybe infinite
dimensional problems because the rate of convergence is constant and doesn’t increase
with the dimension of the problem like regular methods usually do. The use of Monte
Carlo methods in financial engineering were for many years considered as some kind of
last resort if everything else failed, but with greatly increasing computer power, more
efficient algorithms and an increasing demand for higher dimensional simulations, time
has changed. The use of Monte Carlo methods is indeed essential in the modern world
of quantitative finance.

20 3 SIMULATION AND MONTE CARLO METHODS

3.2 Simulation of Random Variables

At the core of all simulations is the ability to create sequences of apparently random
numbers. A computer is a very deterministic machine unable of creating real random
number by itself. Instead it makes use of so-called pseudorandom numbers. If we really
need genuine random numbers we must use some kind of physical device attached to the
computer. For most practical applications this is not necessary.

A pseudorandom number generator must be sufficiently good at mimicking genuine
randomness. Informally, given a true random sequence and a sequence of pseudorandom
numbers we must be unable to tell the difference between the sequences. Humorously
there’s often stated that; "If it looks like a duck, talk like a duck and walk like duck. It’s a
duck." But even though we can’t tell the difference it’s important to be aware of the fact
that all pseudorandom numbers are produced by completely deterministic algorithms.

Normally we would want to mimick a sequence of uniformly independent random
numbers between 0 and 1. The uniform distribution is easy to handle and can be trans-
formed into virtually any other thinkable distribution. General linear congruential gen-
erators are one common way of creating such pseudorandom numbers.

xi+1 = (axi + c) modm

ui+1 = xi+1/m
(8)

where a, c and m are integer constants that determine the values generated. The gener-
ation is initialized by an initial seed x0 between 1 and m − 1 normally specified by the
user. The operation y modm returns the remainder of y (an integer) after division by m.
For example 3 mod 7 = 10 mod 7 = 3 because 3 = 7 ·0+3 and 10 = 7 ·1+3. The fact that
(k ·m+d) modm = d modm = d, k an integer, makes the generated numbers range from
0 to m−1. Dividing by m will then create numbers in the range [0, 1). The algorithm will
eventually start repeating itself. A linear congruential generator that produces all m− 1
distinct values before repeating is said to have full period. This is a desired feature. In
practice we would like the generator to generate at least tens of millions of distinct values
before repeating itself. Simply choosing m to be very large does not ensure this property
because of the possibility that a poor choice of the parameters a, c and m may result
in short cycles amoung the generated values. Other important properties of a pseudo-
random generator are the speed at which it generates numbers and what can be called
the degree of randomness of the generator. In many applications speed is important, but
with modern computer power it’s not recommended to compromise good distributional
properties for a gain in speed. Randomness is a hard property to define, but in a nutshell
the generated values should be uniformly distributed and independent. Given a sequence
of generated numbers we should not be able to guess any future numbers. It’s also very
important that the the generated numbers are approximately uniformly distributed along
the whole interval and don’t leave any gaps. To ensure good distributional properties
it’s often necessary to run a couple of statistical tests on the pseudorandom outputs. For
the interested reader [10] gives a comprehensive coverage of the topic.

3.2 Simulation of Random Variables 21

To sample from the standard normal distribution we can use the Box-Muller algo-
rithm. The algorithm takes two drawings from the uniform distribution and generates
two standard normal distributed variables. The algorithm is based on two properties of
the bivariate normal distribution. If Z ∼ N(0, I2) then R = Z2

1 + Z2
2 is exponentially

distributed with mean 2 and given R the point (Z1, Z2) is uniformly distributed on a cir-
cle of radius

√
R centered at the origin. To sample from the exponential distribution we

may set R = − log(U1), where U1 is a uniformly (pseudo)random variable in the interval
[0, 1]. For a proof of this see for example [12]. To generate a random point on a circle we
may generate another uniform variable U2 and multiply it by 2π. The normal variables
are then given by (Z1, Z2) = (

√
R cos(2πU2),

√
R sin(2πU2)) (by a transformation from

polar to Cartesian coordinates).

Algorithm 1 Box-Muller
generate U1, U2 ∼ Unif[0, 1]
set R = −2 log(U1)
set V = 2πU2

Z1 =
√

R cos(V), Z2 =
√

R sin(V)
return Z1, Z2

To sample from a univariate normal distribution with mean µ and standard deviation
σ we may use the transform N(µ, σ) = σZ +µ. This is very basic probability theory and
a proof can be found in for example [2].

We have now the necessary tools available to simulate from a multivariate normal
distribution. By p independent drawings from the univariate standard normal distribu-
tion we can simulate from Z ∼ Np(0, I), where 0 is a null vector and I the identity
matrix. We want to simulate from a general multivariate normal distribution, that is
X ∼ Np(µ,Σ), where Σ is a covariance matrix. If AAT = Σ, where AT is the transpose
of A, then µ + AZ ∼ Np(µ,AAT) = Np(µ,Σ). A proof of this fact can be found in
[8]. Hence we can simulate from Np(µ,Σ) by finding a matrix A such that AAT = Σ,
simulate Z ∼ Np(0, I) and calculate X = µ + AZ. If Σ is a positive definite matrix,
we can use the Cholesky decomposition to find such an A which is unique up to changes
in sign. A positive definite matrix is a matrix which every eigenvalue is strictly greater
than zero. This is equivalent to xT Ax > 0, for all nonzero x. An extensive discussion
of positive definite matrices and facts about the Cholesky decomposition can be found
in [15]. Although it will make the implementation of the algorithm somewhat more in-
volved, it’s also possible to perform a Cholesky decomposition on a positive semidefinite
matrix. A positive semidefinite matrix is a matrix where every eigenvalue is greater than
or equal to zero, or equivalently xT Ax ≥ 0, for all nonzero x. Details on the algorithm
can be found in [4]. Remark the fact that, by definition, a positive definite matrix is
also a positive semidefinite matrix. Positive definite is a stronger statement than positive
semidefinite. If a matrix is positive semi definite, but not positive definite, one or more
of its eigenvalues must equal zero. Because the determinant of a matrix can be expressed
as the product of its eigenvalues, the matrix must be singular. By a short argument we

22 3 SIMULATION AND MONTE CARLO METHODS

can deduce the fact that every covariance matrix is at least positive semidefinite. The
variance of the linear combination aX, where a is a p-dimensional vector (not z zero-
vector) and X ∼ Np(µ,Σ), can according to [8] be expressed as aTΣa. The variance
of a random variable can under no circumstances become negative, so we must have
aTΣa ≥ 0. Because a was an arbitrary vector and Σ an arbitrary covariance matrix,
every covariance matrix is at least positive indefinite, and hence has a Cholesky decom-
position. A "random" variable with zero variance is in fact not a random variable, but
a constant. Obtaining this from a linear combination of random variables (with nonzero
variance) requires one or more subsets of the random variables to be perfectly correlated
and in this case we have a positive semidefinite covariance matrix. This is not very likely
to happen with a real data set, but singular covariance matrices can arise from factor
models in which a vector of length d is determined by k < d sources of uncertainty
(factors).

Algorithm 2 Simulating from a p-dimensional multivariate normal distribution
compute the Cholesky decomposition, A, of the covariance matrix
generate Z ∼ Np(0, I)
return µ + AΣ

The algorithm is implemented in appendix B.3 with µ = 0.

3.3 Discretization of Stochastic Differential Equations

A stochastical differential equation, or SDE, is an equation of the form

dX(t) = a(t, X(t))dt + b(t, X(t))dW (t)

where a(t, X(t)) and b(t, X(t)) are given functions respectively called the drift and the
diffusion coefficient of the equation and must be adapted stocastic processes. The prob-
lem is to find an Itô process X(T), defined for T ≥ 0 such that

X(T) = X(0) +
∫ T

0
a(u, X(u))du +

∫ T

0
b(u, X(u))dW (u)

The integrals
∫ T
0 a(u, X(u))du and

∫ T
0 b(u, X(u))dW (u) must exist. The latter as an Itô

integral. Most SDE cannot be solved explicitly, but if there exist an unique solution
(which may or may not be found explicitly) it’s possible to simulate its trajectories
through a discretization scheme. We will discuss the Euler and the Milstein Scheme.

The Euler scheme is the most intuitive. First we integrate the SDE between t and
t + ∆t to obtain

X(t + ∆t) = X(t) +
∫ t+∆t

t
a(u, X(u))du +

∫ t+∆t

t
b(u, X(u))dW (u) (9)

We then approximate this integral equation by

X̃(t + ∆t) = X̃(t) + a(t, X̃(t))∆t + b(t, X̃(t))(W (t + ∆t)−W (t))

3.3 Discretization of Stochastic Differential Equations 23

If we apply this formula iteratively we obtain a discretized approximation of the solution.
This is called the Euler scheme.

To analyze the situation further we examine the evolution of b(t, X(t)). From the
Itô-Doeblin formula, theorem A.5, we get

db(t, X(t)) = bt(t, X(t))dt + bx(t, X(t))dX(t) +
1
2
bxx(X(t))dX(t)dX(t)

= bt(t, X(t))dt + bx(t, X(t))[a(t, X(t))dt + b(t, X(t))dW (t)]

+
1
2
bxx(X(t))b2(X(t))dt

= [bt(t, X(t)) + bx(t, X(t))a(t, X(t)) +
1
2
bxx(X(t))b2(X(t))]dt

+ bx(t, X(t))b(t, X(t))dW (t)

We then approximate b(X(u)), t ≤ u ≤ t + h by the Euler scheme obtaining

b(X(u)) = b(t, X(t)) + [bt(t, X(t)) + bx(t, X(t))a(t, X(t)) +
1
2
bxx(X(t))b2(X(t))](u− t)

+ bx(t, X(t))b(t, X(t))(W (u)−W (t))

Because W (u)−W (t) is O(
√

u− t), which is of lower order than the O(h) obtained by
the drift term, we cut off the drift term obtaining

b(X(u)) ≈ b(t, X(t)) + bx(t, X(t))b(t, X(t))(W (u)−W (t))

We are now in possession of a refined discretization of the drift term in equation 9. The
approximation now reads∫ t+∆t

t
b(X(u))dW (u) ≈

∫ t+∆t

t
(b(t, X(t)) + bx(t, X(t))b(t, X(t))[W (u)−W (t)]) dW (u)

= b(t, X(t))[W (t + h)−W (t)]

+ bx(t, X(t))b(t, X(t))
(∫ t+∆t

t
[W (u)−W (t)]dW (u)

)
This can be simplified to∫ t+∆t

t
b(X(u))dW (u) ≈ b(t, X(t))[W (t + h)−W (t)]

+
1
2
bx(t, X(t))b(t, X(t))([W (t + h)−W (t)]2 −∆t)

This leads to a refined approximation of 9 given by

X̃(t + ∆t) = X̃(t) + a(t, X̃(t))∆t + b(t, X̃(t))(W (t + ∆t)−W (t))

+
1
2
bx(t, X̃(t))b(t, X̃(t))([W (t + h)−W (t)]2 −∆t)

24 3 SIMULATION AND MONTE CARLO METHODS

This is called the Milstein scheme. We have increased the accuracy of the diffusion
coeffisient from O(

√
h) to O(h). This leads to better strong convergence properties than

the Euler scheme. We also notice the fact that the Euler scheme coincides with the
Milstein scheme if the diffusion coeffisient is deterministic with respect to the time, say
b(t, X(t)) = b(t), because this will make the last term be equal to zero. In chapter 4.3
we will exploit this fact by carry out a smart transformation of the given SDE. A rather
rigorous treatment of stochastical differential equations can be found in [9] and a detailed
discussion on various discretization schemes can be found in [4].

25

4 The LIBOR Market Model

4.1 Theory

We let t = 0 be the current time and consider a set T = {T0, . . . , TM} from which
expiry-maturity pairs of dates (Ti−1, Ti) for a familiy of spanning forward rates are taken.
We denote {τ0, . . . , τM} the corresponding years fractions where τi is associated with
the expiry-maturity pair (Ti−1, Ti) for i ≥ 1. τ0 is the year fraction from settlement
to T0. Time will be expressed in years. We use the notation Fk(t) = F (t;Tk−1, Tk),
k = 1, . . . ,M . This forward rate is "alive" up to time Tk−1 where it coincides with the
simply-compounded spot rate L(Tk−1, Tk).

Theorem 2.6 states that Fk(t) is a martingale under the the Tk-forward measure
Pk. The martingale representation theorem (theorem A.7) then states that Fk(t) can be
represented as an Itô integral. We assume the following driftless dynamics for Fk under
Pk

dFk(t) = σk(t)Fk(t)dZk(t), t ≤ Tk−1

where Zk(t) is a M -dimensional column-vector Brownian motion (under Pk) with in-
stantaneous correlation matrix ρ = (ρ)i,j=1,...,M such that

dZk(t)dZk(t)T = ρdt

The instantaneous correlation matrix must be calibrated to market data. σk(t) is the
M -vector volatility coeffisient for the forward rate Fk(t). We will from now on assume
that

σj(t) = [0 0 . . . σj(t) . . . 0 0]

with the only non-zero entry σj(t) occurring at the j-th position in the vector σk(t).
This yields the following dynamics for Fk(t) under Pk

dFk(t) = σk(t)Fk(t)dZk(t), t ≤ Tk−1

where Zk = Zk
k is the k-th component of Brownian motion vector Zk under the Pk

forward measure. σk(t) is the instantaneous volatility at time t for the forward rate Fk

and must be calibrated to the market.
This representation of the forward rates is known as the LIBOR Market Model. The

dynamic of Fk(t) under a measure Pi different from Pk is stated in theorem 4.1. The
proof is somewhat involved but can be found in [1]. We assume t ≤ min(Ti, Tk−1) because
both the chosen numeraire, P (t, Ti), and the modeled forward rate have to be alive at
time t.

Theorem 4.1. The dynamics of Fk under the forward measure Pi in the three cases

26 4 THE LIBOR MARKET MODEL

i < k, i = k and i > k are respectively

i < k, t ≤ Ti : dFk(t) = σk(t)Fk(t)
k∑

j=i+1

ρk,jτjσj(t)Fj(t)
1 + τjFj(t)

dt

+ σk(t)Fk(t)dZk(t)

i = k, t ≤ Tk−1 : dFk(t) = σk(t)Fk(t)dZk(t)

i > k, t ≤ Tk−1 : dFk(t) = −σk(t)Fk(t)
i∑

j=k+1

ρk,jτjσj(t)Fj(t)
1 + τjFj(t)

dt

+ σk(t)Fk(t)dZk(t)

As seen in chapter 2 the discounted payoff of a cap at time zero with N = 1 is equal
to

β∑
i=α+1

D(0, Ti)τi(L(Ti−1, Ti)−K)+

By theorem 2.1 the unique no arbitrage-price associated with the cap is equal to the
risk-neutral expectation at time zero, that is

Ẽ

[
β∑

i=α+1

D(0, Ti)τi(L(Ti−1, Ti)−K)+
]

=
β∑

i=α+1

Ẽ [D(0, Ti)τiF (Ti−1;Ti−1, Ti)−K]+

Where we have used the fact that L(Ti−1, Ti) = F (Ti−1;Ti−1, Ti). Fact two in chapter
2.2 states that this expectation is invariant under the choice of numeraire. Hence we can
switch from the bank account numeraire to the zero coupon bond numeraire to obtain
the more convenient pricing formula

β∑
i=α+1

P (0, Ti)τiEi [F (Ti−1;Ti−1, Ti)−K]+

The price of a cap is therefore equal to the price of an additively sum of caplets of the
form P (0, Ti)τiEi[Fi(Ti−1)−K]+. This imply that correlations between the forward rates
are not involved in this calculation. To calculate the expectation Ei[Fi(Ti−1) −K]+ at
time 0 we can simulate Fi(t) by a Monte Carlo method and calculate the average payoff.
The drift of Fi(t), under Pi, is by theorem 4.1 given by dFi(t) = σi(t)Fi(t)dZi(t). Hence
the above expectation can be calculated as a Black-Scholes price for a stock call option
whose underlying is Fi(0), instead of a stock, with maturity Ti1 , zero constant "risk-free

4.2 Calibration to Market Data 27

rate", strike K and volatility σi(t). This justify the Black formula for caps as stated in
equation 4 and makes the LIBOR Market Model compatible with Black’s formula for
caplets. If σi(t) is a time dependent parameter we may set σα,β =

√
1

Ti−1

∫ Ti−1

0 σi(t)2dt

in equation 4.

4.2 Calibration to Market Data

We choose to calibrate the model to the 1st of January 2008. The data set from DnB Nor
contains five forward rates with representatively 1, 2, 3, 4 and 5 years to expiry and each
with one year to maturity. The forward rates are quoted back to 1998. As of January
the 1st 2008, the representative forward rates are

F (0;T0, T1)
F (0;T1, T2)
F (0;T2, T3)
F (0;T3, T4)
F (0;T4, T5)

 =

F1(0)
F2(0)
F3(0)
F4(0)
F5(0)

 =

5.56%
5.20%
5.15%
5.56%
5.55%

 (10)

where Ti is the date January the 1st, year 2008 + i + 1. The forward rates have a
rather uncommon u-shape, but this must be seen in context with all the turbulence in
the financial market at that time. The forward rate structure tells us that the market
believes the rates are going to fall, and then raise again.

Caps with the same expiry and maturity are also quoted back to 1998. The cap
prices, with N = 1, at January the 1st 2008 were quoted to be

Cap(T0, T1)
Cap(T1, T2)
Cap(T2, T3)
Cap(T3, T4)
Cap(T4, T5)

 =

0.0126
0.0145
0.0147
0.0147
0.0145

in the currency NOK (Norwegian kroner).

These caps can be seen as caplets with respect to their corresponding forward rates.
The caplet prices are quoted "at the money". Hence we can take the quoted forward rates
as the underlying in Black’s formula (equation 4). The first zero-coupon was calculated
by formula 2.1, where we assumed L(0, 1) ≈ 5.50%. The rest of the zero-coupons were
calculated by iteratively use of equation 1. All these calculations were performed in
Microsoft Excel. By inverting the standard Black-Scholes option pricing formula for a
call, we can retrieve the desired volatility factors from the cap prices as quoted in the
market. This can be done by standard root finding techniques because the option price
is a monotonically increasing function of the volatility, see for instance [16]. By use of a
standard option 2 calculator we retrieved the following volatility factors:

2http://www.oslobors.no/ob/opsjonskalkulator

28 4 THE LIBOR MARKET MODEL

σT0,T1

σT1,T2

σT2,T3

σT3,T4

σT4,T5

 =

63.74%
84.39%
91.16%
88.96%
93.14%

 (11)

These volatility factors are pretty large, but again they must be seen in context with all
the financial turbulence.

With our usual notation, Fk(t) = F (t;Tk−1, Tk), k = 1. . . . ,M , we assume the fol-
lowing instantaneous volatility structur for the forward rates:

Instant. Vol. Time: t ∈ (0, T0] (T0, T1] (T1, T2] . . . (TM−2, TM−1]
Fwd Rate: F1(t) s1 Dead Dead . . . Dead

F2(t) s2 s2 Dead . . . Dead
...

FM (t) sM sM sM . . . sM

By setting si = σTi−1,Ti for i = 1, . . . , 5 we have successfully calibrated the LIBOR
Market Model to the cap prices as quoted by the market.

It now remains to calibrate the instantaneous correlation structure to the market
data. We estimate the correlation between the forward rates throughout the year 2007
by the following Gaussian approximation[

ln
(

F ∗1 (t + ∆t)
F ∗1 (t)

)
, . . . , ln

(
F ∗5 (t + ∆t)

F ∗5 (t)

)]
∼ N(µ,Σ)

where µ is a 5-dimensional drift vector and Σ is the covariance (not correlation) matrix.
F ∗i (t) is the forward rate for the period T ∗i−1-T

∗
i depending on t by a fixed constant.

Hence starting at the year t + 1 for F ∗1 (t) and generally at time t + i for F ∗i (t). ∆t
is one day. The correlation matrix ρ is then estimated by the matrix ρ̂ with elements
ρ̂i,j = V̂i,j√

ˆVi,i

√
ˆVi,i

where

µ̂i =
1
n

n−1∑
k=0

ln
(

F ∗i (tk+1)
F ∗i (tk)

)

V̂i,j =
1
n

n−1∑
k=0

[(
ln
(

F ∗i (tk+1)
F ∗i (tk)

)
− µ̂i

)(
ln

(
F ∗j (tk+1)
F ∗j (tk)

)
− µ̂j

)]

and n is the number of quoted forwards rates. Because of holidays and weekends, the
number of quoted forward rates in one year is approximately 250. During 2007 there
were exactly 250 quoted forward rates, so in this calibration n = 250. The result of this

4.3 Pricing a Swaption 29

historical estimation si given below.
1.0000000 0.6036069 0.4837154 0.3906583 0.2847411
0.6036069 1.0000000 0.5462708 0.4847784 0.3399323
0.4837154 0.5462708 1.0000000 0.4631405 0.2109093
0.3906583 0.4847784 0.4631405 1.0000000 0.2191104
0.2847411 0.3399323 0.2109093 0.2191104 1.0000000

 (12)

It seems like the quoted forward rates have a tendency to correlate more with former
than future rates, but otherwise the correlation structure looks nice with forward rates
close to each other having the greatest correlation.

To save computation time it’s possible to simulate under a reduced correlation struc-
ture. We can assume the correlation matrix ρ to be a positive definite matrix because
a correlation matrix is essentially a scaled covariance matrix, and a covariance matrix is
almost always positive definite, se chapter 3.2. Then we can find a matrix A, possibly
by performing a Cholesky decomposition, such that ρ = AAT . We can try to mimick
this decomposition by means of a suitable m-rank M × m matrix B such that BBT

is an m-rank correlation matrix with typically m << M . We can then replace the M -
dimensional random shocks dZ with the m-dimensional standard Brownian motion dW
by the transformation dZ(t) ≈ BdW (t). This imply that we move from the correlation
structure dZdZT = ρdt to BdW (BdW)T = BdW dW T BT = BBT dt where we have
used the fact that dW dW T = I. We set ρB = BBT . There are many techniques and
algoithms available for choosing a suitable parametric form for B. For a comprehensive
discussion see for instance [1]. In this study we choosed to run full scale simulations
because of the relatively modest original dimension of the problem, but rank-reducing
techniques should be considered in higher dimensional simulations.

4.3 Pricing a Swaption

We consider the price of a payer swaption with strike K given by

Ẽ

[
D(0, Tα)(Sα,β(Tα)−K)+

β∑
i=α+1

τiP (Tα, Ti)

]

A change of numeraire to the Tα forward measure gives

P (0, Tα)Eα

[
(Sα,β(Tα)−K)+

β∑
i=α+1

τiP (Tα, Ti)

]

This expression depends on the joint distribution of the forward rates Fα+1(Tα), Fα+2(Tα), . . . Fβ(Tα),
so correlation do matter in the pricing of swaptions. From theorem 4.1 we see that the
dynamics of the forward rates under the Pα measure is given by

dFk(t) = σk(t)Fk(t)
k∑

j=i+1

ρk,jτjσj(t)Fj(t)
1 + τjFj(t)

+ σk(t)Fk(t)dZk(t)

30 4 THE LIBOR MARKET MODEL

We need to generate n realizations of each forward rate from time t = 0 to t = Tα,
calculate the payoff (Sα,β(Tα)−K)+

∑β
i=α+1 τiP (Tα, Ti) for each realization and average.

We can use equation 3 to calculate Sα,β(Tα) and equation 1 to calculate P (Tα, Ti).
Before we discretizise the forward rate dynamics we do a simple logarithm transfor-

mation. By Itô-Doeblin’s formula, equation A.5, we obtain

d lnFk(t) =
1

Fk(t)
dFk(t)−

1
F 2

k (t)
dFk(t)dFk(t)

=
1

Fk(t)

σk(t)Fk(t)
k∑

j=i+1

ρk,jτjσj(t)Fj(t)
1 + τjFj(t)

+ σk(t)Fk(t)dZk(t)

− 1

2
1

F 2
k (t)

σ2
k(t)F

2
k (t)dt

= σk(t)
k∑

j=i+1

ρk,jτjσj(t)Fj(t)
1 + τjFj(t)

−
σ2

k(t)
2

dt + σk(t)dZk(t)

This is a stochastic differential equation with a deterministic diffusion coeffisient. In
chapter 3.3 we proved that this imply that the Euler scheme coincides with the more
sophisticated Milstein scheme. The Euler discretization applied to the transformed SDE
yields

ln F̃k(t + ∆t) = ln F̃k(t) + σk(t)
k∑

j=α+1

ρk,jτj(t)F̃j(t)

1 + τjF̃j(t)
∆t

−
σ2

k(t)
2

∆t + σk(t)(Zk(t + ∆t)− Zk(t))

(13)

By the definition of the correlation structure we have Z(t + ∆t)−Z(t) ∼
√

∆t N(0,ρ).
Because of the independence property of Brownian motion, these joint shocks can be
taken as independent draws from the multivariate normal distribution N(0,ρ). Algo-
rithm 2 decribes how to perform these draws.

We now consider a payer swaption with a tenor of 5 years starting one year from
January the 1st 2008. The initial forward rates are given in equation 10. We take
∆t = 1

250 years (which imply 250 time steps) and use equation 13 to simulate the forward
rates through one year. The volatility coeffisients and the correlation matrix are given
by respectively equation 11 and 12. We summarize the whole process in algorithm 3.

To price a receiver swaption we simply change the payoff function from (Sα,β(Tα)−
K)+ to (K − Sα,β(Tα))+. The corresponding swap rate as of January the 1st 2008 was
calculated to be 5.40%. Figure 2 and 3 shows representatively a payer swaption and a
receiver swaption with the just described tenor structure (expiry in one year, tenor 5 year
and January the 1st 2008 as "today"). The swap rate is labeled with a red rectangle.

Figure 4 shows a payer and a receiver swaption plotted against each other. The swap
rate is again labeled with a red triangle. We see that the price of the payer swaption
equals that of the receiver swaption then K = ST0,T5 . This is not a coincidence. The

4.3 Pricing a Swaption 31

2 4 6 8 10

−
0.

1
0.

0
0.

1

Payer Swap and Swaption

Strike (% interest rate)

S
ca

le
d

P
ric

e

Figure 2: A plot of a payer swaption and a payer swap as a function of strike K. The
swap rate is labeled by a red triangle.

Algorithm 3 Pricing a swaption
initialize the forward rates Fα+1(0), Fα+2(0), . . . Fβ(0) at time zero
initialize the volatility coeffisients and the correlation structure
for i = 0 . . . n− 1 do

for t = 0 . . . number of time steps do
Z(t + ∆t)−Z(t) ∼

√
∆t N(0,ρ)

for i = 0 . . . number of forward rates do
ln F̃k(t + ∆t) = ln F̃k(t) + σk(t)

∑k
j=α+1

ρk,jτj(t) eFj(t)

1+τj
eFj(t)

∆t

−σ2
k(t)
2 ∆t + σk(t)(Zk(t + ∆t)− Zk(t))

end for
end for
evaluate (Sα,β(Tα)−K)+

∑β
i=α+1 τiP (Tα, Ti)

end for
return P (0, Tα) 1

n

∑n
i=1

[
(Sα,β(Tα)−K)+

∑β
i=α+1 τiP (Tα, Ti)

]

32 4 THE LIBOR MARKET MODEL

2 4 6 8 10

−
0.

1
0.

0
0.

1

Receiver Swap and Swaption

Strike (% interest rate)

S
ca

le
d

P
ric

e

Figure 3: A plot of a receiver swaption and a receiver swap as a function of strike K.
The swap rate is labeled by a red triangle.

4.3 Pricing a Swaption 33

difference between a payer swaption and the corresponding receiver swaption is easily
calculated to be the price of a swap contract. Because a swap contract at the money is
not worth anything, the price of a payer swaption and a receiver swaption must equal
each other then they are at the money. Here they are both worth approximately 0.051
NOK (with N = 1 NOK). The number of repetitions in the simulations are, in both
cases, taken to be n = 10000.

2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

Receiver and Payer Swaption

Strike (% interest rate)

S
ca

le
d

P
ric

e

Figure 4: A plot of a payer swaption and a receiver swaption as a function of strike K.
The swap rate is labeled by a red triangle.

34 4 THE LIBOR MARKET MODEL

35

5 The LSM Algorithm

5.1 Theory

Bermudan swaptions are options which gives the holder the right to enter a swap agree-
ment at a sequence of reset dates, or more precise

Definition 5.1 (Bermudan payer swaption). A Bermudan payer swaption is a swap-
tion characterized by three dates Tα < Th < Tβ, giving its holder the right to enter at any
time Tl in the time interval Tα ≤ Tl ≤ Th into a payer swaption with first reset in Tα,
last payment in Tβ and fixed rate K.

Traditional numerical methods like the finite difference techniques or binomial trees,
are generally unsuited to handle higher-dimensional problems like the pricing of a Bermu-
dan swaption because their computation time grows too large as the dimension of the
problem increases. Monte Carlo methods are very well suited for higher dimensional
problems and path dependency, but have serious problems with early exercise features.
In 2001 Francis A. Longstaff and Eduardo S. Scwartz at UCLA proposed a promising
new algorithm, known as the Least Squares Monte Carlo (LSM) algorithm, for pricing
early exercise products by Monte Carlo simulation. The key idea behind the algorithm
is to approximate the conditional expected payoff from continuation with least squares
approximation down to a set of basic functions.

As usual we assume an underlying probability space with a finite time horizon, say
t ∈ [0, T], equipped with a filtration F(t). We also assume the existence of a risk-neutral
measure and consider square Lebesgue-integrable contingent claims. The objective of the
LSM algorithm is to provide a pathwise approximation to the optimal stopping rule that
maximizes the value of a derivative with early exercise features. We assume the intelligent
investor will exercise as soon as the immediate exercise value is greater than or equal to
the value of continuation. We assume further that the derivative must be exercised at
the K discrete times 0 < t1 ≤ t2 ≤ . . . ≤ TK . An american option can be approximated
by choosing a sufficient large K. We introduce the notation C(s; t, T) to denote the
path of cash flows generated by the derivative, conditional on that the derivative are not
exercised at or prior to time t, and that the optimal stopping strategy are followed for
all s ∈ (t, T]. The original paper, [11], expresses the value of continuation at time tk by
taking the value of the remaining discounted cash flows under the risk-neutral measure

Ẽ

 K∑
j=k+1

D(tk, tj)C(tj ; tk, T)|Ftk

 (14)

The LSM approach uses least squares to approximate the conditional expectation at
tK−1, tK−2, . . . , t1. We work backwards since the path of cash flows generated by the
derivative is defined recursively. C(s; tk, T) may differ from C(s; tk+1, T) since it may be
optimal to stop at time tk+1. We assume that the expectation in equation 14 may be
represented as a linear combination of a countable set of Ftk -measurable basis functions.
This assumption can be formally justified if the expectation is an element in L2, the

36 5 THE LSM ALGORITHM

space of square-integrable functions, usually with respect to the Lebsgue measure (see
[14] for a good introduction to this topic). Because L2 is a Hilbert space, and every
Hilbert space has a countable orthonormal basis, we can represent the expectation as
a linear combination of some orthogonal basis functions. Typical choices would be the
Laguerre, Hermite or Legendre polynomials. Numerical tests indicate that even simple
polynomials of the state variables give accurate results. But in higher order polynomial
approximations a more sophisticated form of basis functions would be advisory because
of their orthogonal properties. We only consider paths in the money. The reason for this
is somewhat involved, but paths out of the money is not considered to be good predictors
for future cash flows. In addition they would contribute to a bigger least square problem
and slow down the algorithm.

To implement the LSM algorithm we first simulate n paths. Then we work back-
wards and approximate the value of continuation by regressing the discounted values of
C(s;Tk, T) onto the chosen set of the M < ∞ basic functions. In every possible stopping
time we make a rule by regression to determine if a given derivative (on a given path)
should be exercised or not. In the end every path is either decided exercised (possibly at
maturity and only once) or not decided to be exercised. We add up all the discounted
cash flows and divide by the n number of paths to calculate the expected price of the
derivative.

It can be shown, see [11], that the LSM price of the derivative is always less or equal
to the objective price when we let n → ∞. This provides an objective criterion for
convergence because we can increase the number M of basic functions until the value
implied by LSM algorithm no longer increases.

5.2 Pricing a Bermudan Swaption

We will price a Bermudan swaption similar to the swaption priced in chapter 4.3, but we
can enter the "swaption" at time T0, T1 ,T2, T3 and T4. We are forced to simulate under
the Pβ = PT5 measure because we must simulate through 5 time periods (year) and the
numeraire has to be alive. By a change of numeraire equation 14 now yields

Eβ

 K∑
j=k+1

P (Tk, Tβ)
P (Tj , Tβ)

C(tj ; tk, T)|Ftk

The Pβ measure and the Bermudan exercise feature imply that the date of the payoff and
the maturity of the numeraire no longer coincides. This make the expression somewhat
harder to evalute. The dynamics of the forward rates under this measure is according to
equation 4.1 equal to

dFk(t) = −σk(t)Fk(t)
i∑

j=k+1

ρk,jτjσj(t)Fj(t)
1 + τjFj(t)

dt + σk(t)Fk(t)dZk(t)

5.2 Pricing a Bermudan Swaption 37

By a Euler scheme approximation we obtain

F̃k(t + ∆t) = F̃k(t)− σk(t)F̃k(t)
i∑

j=k+1

ρk,jτjσj(t)F̃j(t)

1 + τjF̃j(t)
(∆t) + σk(t)F̃k(t)dZk(t) (15)

For each time period we will loose one forward rate. Table 5.2 visualizes the flow of the
algorithm.

0-T0 T0-T1 T1-T2 T2-T3 T3-T4 T4-T5

F1(t) Dead Dead Dead Dead Dead
F2(t) F2(t) Dead Dead Dead Dead
F3(t) F3(t) F3(t) Dead Dead Dead
F4(t) F4(t) F4(t) F4(t) Dead Dead
F5(t) F5(t) F5(t) F5(t) F5(t) Dead

First we simulate 5 rates, then 4 rates, and in the end there is only one rate remaining. All
rates are simulated according to the discretization in equation 15. One such realization
is called a path. We will create approximately n = 100000 such paths. When these paths
are simulated, we begin to work backwards. The only rate still remaining at T4 is F5(t).
The payoff is the possible positive value of a swap contract for the last time interval.
At time T3 we discount down all the payoffs from the n paths by the ratio P (T3,T5)

P (T4,T5) . We
also calculate the paths which are in the money at time T3. For all the paths that are
in the money, we calculate the swap rate. We then make a rule for optimal stopping by
regressing all the representative discounted payoffs down to a second order polynomial
of the swap rate, and to all the forward rates still alive. This choice of basic functions
is recommended by [11] when they price a pretty similar Bermudan swaption with a
20-factor string model. The regression is performed by standard matrix algebra with
the GNU Scientific Library (GSL)3. For all the paths that are in the money we use the
calculated stopping role to decide whether we should exercise or continue. If we decide to
exercise, we simply discount this value down to T2 and repeat the procedure. If we decide
to continue we will discount down the current available cashflow (which could be zero).
At time T1 we simply discount the possible n cashflows down to time zero, and average.
This is the price of the Bermudan swaption. It’s important to notice that we never take
the approximated value of continuation as a cashflow. We only use this approximated
value as our stopping role, to decide whether we should continue or exercise. If we used
the approximated cashflow of continuation directly we would make an overestimation of
the price of the derivative. Actually, we should ideally have used our stopping rules on
a new dataset, but [11] argues that this not necessary on behalf of a lot of numerical
testing.

The LSM algorithm applied to the market data as stated in chapter 4.2 is visualized
in figure 5. The Bermuda exercise feature adds significant value to the contract. As
seen in chapter 4.3 a payer swaption at the money is worth 0.051 NOK. In comparison

3http://www.gnu.org/software/gsl/

38 5 THE LSM ALGORITHM

the corresponding Bermuda payer swaption is worth 0.092 NOK. Figure 6 shows how
the price of the Bermuda swaption converges to the objective price as the number of
regression coefficients increases. The blue line is obtained by using only a second degreee
polynomial of swap-rates as the basic functions. The black line use both forward rates
and a second degreee polynomial of swap-rates. The red line is identical to the black line
but use a third degree polynomial of swap rates. This clearly don’t improve the accuracy
of the algorithm and is not recommended. Even higher degree polynomials can make
the regression unstable and is not recommended if the polynomials don’t possess some
orthogonal characteristics. Hence, a sensible choice of basic functions in this situation is
a second order polynomial of the swap rate and all the living forward rates. To achieve a
satisfactory accuracy we used n = 100000 in most our simulations. The computation time
was about 7 minutes on a modern computer. If this algorithm was to be implemented for
commercial use it would be advisable to implement some variance reduction methods to
decrease computation time without lack of accuracy. The whole implementation of the
algorithm in C++ is listed in appendix B.

2 4 6 8 10

0.
05

0.
10

0.
15

0.
20

Swaption and Bermudan Swaption

Strike (% interest rate)

S
ca

le
d

P
ric

e

Figure 5: A swaption and a Bermuda swaption.

5.2 Pricing a Bermudan Swaption 39

2 4 6 8 10

0.
05

0.
10

0.
15

0.
20

Increasing number of regression parameters

Strike (% interest rate)

S
ca

le
d

P
ric

e

Figure 6: A Bermuda swaption with an increasing number of regression coefficients.

40 5 THE LSM ALGORITHM

41

6 Conclusion

The LIBOR Market Model is a modern and excellent framework for pricing interest rate
derivatives. The model can be calibrated to fit a huge amount of market data, is perfectly
suited for Monte Carlo simulation, and is compatible with Black’s formula for caplets.

Unfortunately the heavy dependence on Monte Carlo simulation has a drawback
when it comes to interest rate derivatives with early exercise features, such as Bermudan
swaptions. Standard Monte Carlo methods are in general not suited for pricing these kind
of derivatives, but the LSM algorithm yields a very promising solution to the problem.
The LSM algorithm really show off its potential when it comes to pricing contracts with
higher dimensional underlying variables and early exercise features.

In the particular case of a Bermudan swaption, it’s recommended to use both the
still «living» forward rates and a second order degree polynomial of the swap rates as
regression coeffisients in the regression procedure. Numerical tests with higher degree
polynomials showed no significant effects, with the possibly exception of a slightly higher
computation time. We also showed that the Bermudan exercise feature added consider-
able value to the contract.

If this model, and especially the LSM algorithm, was to be implemented for com-
mercial purposes it would be highly recommendable to use variance reduction techniques
to decrease computation time. For even higher dimensional simulations, a reduced-rank
parametrization, as briefly discussed in chapter 4.2, should be considered.

42 6 CONCLUSION

REFERENCES 43

References

[1] D. Brigo and F. Mercurio. Interest Rate Models - Theory and Practice. Springer,
second edition, 2006.

[2] G. Casella and Berger R.L. Statistical Inference. Duxberry Press, second edition,
2001.

[3] H. Geman, N. El Karoui, and J.C. Rochet. Changes of numeraire, changes of prob-
ability measures and pricing of options. Journal of Applied Probability, 32:443–458,
1995.

[4] P. Glassermann. Monte Carlo Methods in Financial Engineering. Springer, first
edition, 2000.

[5] J.M. Harrison and S.R. Pliska. Martingales and stochastic integrals in the theory of
continous trading. Stochastic Processes and their Applications, 11(3):215–260, 1981.

[6] J.M. Harrison and S.R. Pliska. Martingales and stochastic integrals in the theory of
continous trading: Complete markets. Stochastic Processes and their Applications,
15:313–316, 1983.

[7] J.F. Hull. Options, Futures And Other Derivatives. Pearson Prentice Hall, sixth
edition, 2006.

[8] R.A. Johnson and D.W Wichern. Applied Multivariate Statistical Analysis. Pearson
Prentice Hall, sixth edition, 2007.

[9] F.C. Klebaner. Introduction to Stochastical Calculus with Applications. Imperial
College Press, second edition, 2005.

[10] D.E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Algo-
rithms. Addison-Wesley, second edition, 1998.

[11] F.A. Longstaff and Schwartz E.S. Valuing american options by simulation: A simple
least-squares approach. Review of Financial Studies, 14(1):113–147, 2001.

[12] S.M. Ross. Probability Models. Academic Press, eight edition, 2003.

[13] S.E. Shreve. Stochastic Calculus for Finance II - Continous-Time Models. Springer,
first edition, 2004.

[14] E.M. Stein and R. Shakarchi. Real Analysis: Measure Theory, Integration, and
Hilbert Spaces (Princeton Lectures in Analysis). Princeton University Press, first
edition, 2005.

[15] G. Strang. Linear Algebra and its Applications. Harcourt Brace Jovanovich Inc,
third edition, 1976.

[16] P. Wilmott. Paul Wilmott on Quantitative Finance. Wiley, second edition, 2006.

44 REFERENCES

45

A Results from Stochastic Calculus

This appendix will review some of the most fundamental probability theory and state
som useful results from stochastic calculus. A good introduction to this rather difficult
subject can be found in [13] or [9].

Definition A.1 (σ-algebra). Let F be a collection of subsets of a nonempty set Ω. We
say that F is a σ-algebra if:

(i) ∅ ∈ F

(ii) A ∈ F ⇒ Ac ∈ F

(iii) whenever the sequence of sets A1, A2, . . . ∈ F their union ∪∞n=1An ∈ F

Definition A.2 (Borel σ-algebra). The minimal σ-algebra over R containing all the
open sets is called the Borel σ-algebra and is written B. We also say that B is a σ-algebra
generated by the open sets in R.

By definition B contains all the closed and half-closed sets (every closed set is the
complement of an open set). R is of course in B since R = ∅c. The Borel sets are all
measurable, see [14], and behaves nicely in all analysis. Every subset of the real line we
encounter in this study is taken to be a Borel set.

Definition A.3 (Probability space). Let Ω be a nonempty set, and let F be a σ-
algebra of subsets of Ω. A probability measure P is a function that, to very set A ∈ F ,
assigns a number in [0, 1], called the probability of A and written P(A). We require:

(i) P(Ω) = 1

(ii) whenever a sequence of disjoint sets A1, A2, . . . ∈ F , then

P

(∞⋃
n=1

An

)
=

∞∑
n=1

P(An)

The triple (ω,F , P) is called a probability space.

There is a rather subtle technical point in connection with events of probability
measure zero. An event may be assigned probability measure zero, even though the event
may occur. To see the difference between impossible and improbable events, assume a
coin is tossed an unlimited number of times, and we note the result of every toss (head
or tail). What is the probability that every toss results in a tail? The probability is zero,
and so are actually any other predetermined sequence of heads and tails (an event with
50% probability would for example be the set of outcomes where the first toss is a tail).
We say such an event is almost sure not to happen, but it’s not an impossible event.
There’s no law of nature which states this can’t happen, it’s just very, very improbable.
An impossible event would be any other event than a sequence of heads and tails, because

46 A RESULTS FROM STOCHASTIC CALCULUS

this is impossible by definition. Technically speaking, an event of probability zero is a set
of outcomes with Lebesgue measure zero. Whenever an event is said to be almost sure,
we mean it has probability one, even though it may not include every possible outcome.
But the set of outcomes not included has probability zero. This is the motivation behind
the next definition.

Definition A.4 (Almost surely). Let (Ω,F , P) be a probability space. If a set A ∈ F
satisfies P(A) = 1, we say that the event A occurs almost surely.

Next we give a precise statement of a random variable.

Definition A.5 (Random variable). Let (Ω,F , P) be a probability space. A random
variable is a real valued function X defined on Ω with the property that for every B ∈ B

the subset of Ω given by

{X ∈ B} = {ω ∈ Ω; X(ω) ∈ B}

is in the σ-algebra F .

Imprecisely this definition states that given an outcome of the experiment, it should
be possible to determine the value of every random variable defined on the representative
probability space. The contrary that given the value of a random variable you should be
able to determine the outcome of the experiment, is of course not true.

Definition A.6 (Filtration). Let Ω be a nonempty set. Let T be a fixed positive number,
and assume that for each t ∈ [0, T] there is a σ-algebra F(t). Assume further that if s ≤ t,
then every set in F(s) is also in F(t). Then we say that F(t) has a finer resolution than
F(s) and we call the collection of σ-algebras F(t), 0 ≤ t ≤ T , a filtration.

Definition A.7. Let X be a random variable defined on a nonempty sample space Ω.
The σ-algebra generated by X, denoted σ(X), is the collection of all subsets of Ω of the
form {X ∈ B} where B ∈ B.

Informally we can say σ(X) is the smallest available σ-algebra such that X is a
random variable on Ω.

Definition A.8. Let X be a random variable defined on a nonempty sample space Ω.
Let G be a σ-algebra on Ω. We say that X is G measurable if every set in σ(X) is in G.

Definition A.9 (Adapted stochastic process). Let Ω be a nonempty sample space
equipped with a filtration F(t), 0 ≤ t ≤ T . Let X(t) be a collection of random variables
indexed by t ∈ [0, T]. We say this collection of random variables is an adapted stochastic
process if, for each t, X(t) is F(t) measurable.

Definition A.10 (Brownian motion). Let (Ω,F , P) be a probability space. For each
ω ∈ Ω assume there exists a continous function W (t), t ≥ 0, which satisfy W (0) = 0 and
depends on ω. We say that W (t) is a Brownian motion if the intervals

W (t1)−W (t0),W (t2)−W (t1), . . . ,W (tm)−W (tm−1)

47

are independent and normally distributed for every 0 = t0 < t1 < . . . < tm with

E[W (ti+1)−W (ti)] = 0
Var[W (ti+1)−W (ti)] = ti+1 − ti

Ω can be interpreted as the set of every uncountable infinite paths the Brownian
motion can follow from t = 0 to t = tm. A Brownian motion is also known as a Wiener
process. Figure 7 visualize an arbitrary realized Brownian motion.

0 20 40 60 80 100

−
6

−
4

−
2

0
2

x

y

Figure 7: Brownian motion

We will now define the Itô integral and state some of its properties. Let W (t) be a
Brownian motion, F a filtration and b(t) an adapted stochastic process. First we consider
b(t) to be a constant in every time interval [tj , tj+1). This is called a simple process. Then
we define

I(t) =
∫ t

0
b(u)dW (u) =

k−1∑
j=0

b(tj)[W (tj+1)−W (tj)] + b(tk)[W (t)−W (tk)]

This integral can be interpreted as the limit of a stochastic sum. W (t) og b(t) are
dependent on the same sample space Ω and b(t) can only depend on the information
available at time t. The latter is of crucial importance for the existence of a self-financing
trading strategy as seen in chapter 2.2. For more general integrands we use the following
definition:

48 A RESULTS FROM STOCHASTIC CALCULUS

Definition A.11 (Itô integral). Let W (t) be a Brownian motion and b(t) an adapted
stochastic process satisfying E

∫ T
0 b2(t)dt < ∞. Let bn(t) be a sequence of simple processes

converging to b(t) in the sense limn→∞ E
∫ T
0 |bn(t)− b(t)|2dt = 0. We then define∫ t

0
b(u)dW (u) = lim

n→∞

∫ t

0
bn(u)dW (u), 0 ≤ t ≤ T

This is called an Itô integral.

To summarize, we approximate b(t) as a sum of infinitly many simple processes, bn(t)
converging to b(t).

Definition A.12 (Itô process). Let W (t), t ≥ 0 be a Brownian motion and let F ,
t ≥ 0 be an associated filtration. An Itô process is a stochastic process of the form

X(t) = X(0) +
∫ t

0
a(u)du +

∫ t

0
b(u)dW (u)

where X(0) is a constant and a(u) and b(u) are adapted stochastic processes. We also
assume the usual integrability assumptions E

∫ T
0 b2(t)dt < ∞ and

∫ t
0 |a(u)|du < ∞. In

the future we will not always explicitly states these technical conditions, but we always
assume them to hold.

Definition A.13. Let X(t), t ≥ 0, be an Itô process and Γ(t), t ≥ 0, an adapted process.
We define the integral with respect to an Itô process as∫ t

0
Γ(u)dX(u) =

∫ t

0
Γ(u)a(u)du +

∫ t

0
Γ(u)b(u)dW (u)

Definition A.14 (Martingales). Let (Ω,F , P) be a probability space, and T a positive
fixed number. Let F(t), 0 ≤ t ≤ T , be a filtration of σ-algebras contained in F . An
adapted stochastic process M(t) is a martingale if E[M(t)|F(s)] = M(s) holds for all
0 ≤ s ≤ t ≤ T . A martingale has no tendency to rise or fall. If E[M(t)|F(s)] ≥ M(s)
holds for all 0 ≤ s ≤ t ≤ T we say the process is a submartingale. A submartingale has
no tendency to fall, but may have a tendency to rise. If E[M(t)|F(s)] ≤ M(s) holds for
all 0 ≤ s ≤ t ≤ T we say the process is a supermartingale. A supermartingale has no
tendency to rise, but may have a tendency to fall. A process that is either a submartingale
or a supermartingale is usually termed semimartingale.

Theorem A.1. An Itô integral as defined in definition A.11 is a martingale.

Definition A.15 (Quadratic variation). Let f(t) be a function defined for 0 ≤ t ≤ T .
The quadratic variation og f up to time T is defined as

[f, f](T) = lim
‖Π‖→0

n−1∑
j=0

[f(tj+1 − f(tj)]2

where Π = {t0, t1, . . . , tn} and ‖Π ‖ = maxj=0,...,n−1(tj+1 − tj).

49

Continously differentiable functions in ordinary calculus have zero quadratic varia-
tion. A Brownian motion is not continously differentiable, in fact it’s almost surely not
differentiable at any point, and has quadratic variation. The non-zero quadratic variation
for Brownian motion is considered to be the main difference between stochastic calculus
and ordinary calculus.

Theorem A.2. Let f a continously differentiable function. Then we have [f, f](t) = 0.
Informally we write dtdt = 0.

Theorem A.3. Let W be a Brownian motion. The quadratic variation is almost surely
[W,W](T) = T for every T ≥ 0. Informally we write dW (t)dW (t) = dt.

Theorem A.4. Let X be an Itô process. We have then [X, X](t) =
∫ t
0 b2(u)du. Infor-

mally we write dX(t)dX(t) = b2(t)dt

Theorem A.5 (Itô-Doeblin). Let X(t), t ≥ 0, be an Itô process and f(t, x) a function
where the partial derivatives ft(t, x), fx(t, x) and fxx(t, x) are defined and continous.
Then we have for every T ≥ 0

f (T,X(T)) = f (0, X(0)) +
∫ T

0
ft (t, X(t)) dt +

∫ T

0
fx (t, X(t)) dX(t)

+
1
2

∫ T

0
fxx (t, X(t)) d[X, X](t)

Informally we write

df(t, X(t)) = ft(t, X(t))dt + fx(t, X(t))dX(t) +
1
2
fxx(t, X(t))dX(t)dX(t)

= ft(t, X(t))dt + fx(t, X(t))dX(t) +
1
2
fxx(t, X(t))b2(t)dt

(16)

Theorem A.5 is called the Itô-Doeblins formula for an Itô process and can be consid-
ered as the stochastic counterpart of the chain rule from ordinary calculus. It’s important
to notice how the quadratic variation contributes to an extra term in the formula.

We now state the Girsanov theorem in multiple dimensions. This theorem show
how to change probability measure. This is the foundation for all risk-neutral pricing
formulas.

Theorem A.6 (Girsanov theorem). Let T be a fixed positive time, and let Θ(t) =
(Θ1(t), . . . ,Θd(t)) be a d-dimensional adapted process. Define

Z(t) = exp
{
−
∫ t

0
Θ(u)dW (u)− 1

2

∫ t

0
||Θ2(u)||du

}
W̃ (t) = W (t) +

∫ t

o
Θ(u)du

and assume that

E
∫ T

0
||Θ2||(u)Z2(u)du < ∞

50 A RESULTS FROM STOCHASTIC CALCULUS

Set Z = Z(T). Then EZ = 1, and under the probability measure P̃ given by

P̃(A) =
∫

A
Z(ω)dP(w), ∀A ∈ F

the process W̃ (t) is a d-dimensional Brownian motion. The Itô integral is calculated as∫ t

0
Θ(u) · dW (u) =

∫ t

0

d∑
j=1

Θj(u)dWj(u) =
d∑

j=1

∫ t

0
Θj(u)dWj(u)

W̃ (t) = (W̃1(t), . . . , W̃d(t)) share the same multidimensional interpretation. ||Θ(u)||
denotes the usual Euclidean norm given by

||Θ(u)|| =

 d∑
j=1

Θ2
j (u)

 1
2

Finally we state the Martingale representation theorem in multiple dimensions.

Theorem A.7 (The martingale representation theorem). Let T be a fixed positive
time, and assume that F , 0 ≤ t ≤ T , is the filtration generated by the d-dimensional
Brownian motion W (t), 0 ≤ t ≤ T . Let M(t), 0 ≤ t ≤ T , be a martingale with
respect to this filtration under P. Then there is an adapted, d-dimensional process Γ(u) =
(Γ1(u), . . . ,Γd(u)), 0 ≤ t ≤ T , such that

M(t) = M(0) +
∫ t

0
Γ(u) · dW (u), 0 ≤ t ≤ T.

If, in addition, we assume the notation and assumptions of the Girsanov theorem in
multiple dimensions and if M̃(t), 0 ≤ t ≤ T , is a P̃-martingale, then there is an adapted,
d-dimensional process Γ̃(u) = (Γ̃1(u), . . . , Γ̃d(u)) such that

M̃(t) = M̃(0) +
∫ t

0
Γ̃(u) · dW̃ (u), 0 ≤ t ≤ T.

The martingale representation theorem states that every martingale, with respect to
the filtration induced by the representative Brownian motion, can be represented by an
Itô integral plus an initial condition.

51

B Computer Code

This appendix contains the source code for all the implemented algorithms. Matrix cal-
culations and linear algebra operations are carried out using the GNU Scientific Library
(GSL). GSL is a well tested and freely available library for numerical calculations and can
be downloaded from its homepage http://www.gnu.org/software/gsl/. The pseudo-
random numbers are generated in according to equation 8 with a = 25214903917, c = 11
and m = 248. The normal random variables are calculated with the Box-Muller algo-
rithm as described in algorithm 1. To sample from a multivariate distribution a Cholesky
decomposition of the correlation matrix is performed as explained in chapter 3.2. GSL’s
standard Cholesky decomposition routine is used for this purpose. The sampling routine
is implemented as an object, but the rest of the code is of purely procedural nature.

B.1 Main Code

#include <cs td l i b >
#include <iostream>
#include <fstream>
#include <cmath>
#include <g s l / g s l_ l i n a l g . h>
#include <g s l / gs l_blas . h>
#include <g s l / gsl_rng . h>
#include "multinorm.h"

using namespace std ;
void init (gsl_vector∗ forwardVec , gsl_matrix∗ corrMatrix ,

gsl_vector∗ sigmaVec , int dim) ;
double swaption (const double K , const gsl_vector∗ forwardVec ,

const gsl_matrix∗ corrMatrix , const gsl_vector∗ sigmaVec , int dim) ;
double bermuda (const double K , const gsl_vector∗ inForwardVec ,

const gsl_matrix∗ corrMatrix , const gsl_vector∗ sigmaVec , int dim) ;

int main (int argc , char ∗argv [])
{

// I n i t i a l i z i n g with the de s i r ed dimension
const int DIM = 5 ;
gsl_vector ∗forwardVec = gsl_vector_alloc (DIM) ;
gsl_matrix ∗corrMatrix = gsl_matrix_alloc (DIM , DIM) ;
gsl_vector ∗sigmaVec = gsl_vector_alloc (DIM) ;

// Importing the c o r r e l a t i o n matrix
// and i n i t i a t l i z i n g the forward r a t e s and v o l a t i l i t i e s
init (forwardVec , corrMatrix , sigmaVec , DIM) ;

52 B COMPUTER CODE

// Example o f code to run the p r i c i n g procedures
// swaption (0 . 054 , forwardVec , corrMatrix , sigmaVec , DIM) ;
// bermuda (0 . 054 , forwardVec , corrMatrix , sigmaVec , DIM) ;

// Dea l l o ca t e s memory
gsl_vector_free (sigmaVec) ;
gsl_matrix_free (corrMatrix) ;
gsl_vector_free (forwardVec) ;

system ("PAUSE") ;
return EXIT_SUCCESS ;

}

void init (gsl_vector∗ forwardVec , gsl_matrix∗ corrMatrix ,
gsl_vector ∗sigmaVec , int dim)

{
// Open input stream and reads the c o r r e l a t i o n matrix
ifstream inCorr ;
inCorr . open ("corr.txt") ;
double corr ;
int counter = 0 ;
while (! inCorr . eof ()) {

inCorr >> corr ;
gsl_matrix_set (corrMatrix , int (counter/dim) , counter%dim , corr) ;
counter++;

}
inCorr . close () ;

// Manually d e f i n e s the i n i t i a l forward r a t e s
gsl_vector_set (forwardVec , 0 , 0 . 0 5 5 6) ;
gsl_vector_set (forwardVec , 1 , 0 . 0 5 2 0) ;
gsl_vector_set (forwardVec , 2 , 0 . 0 5 1 5) ;
gsl_vector_set (forwardVec , 3 , 0 . 0 5 5 6) ;
gsl_vector_set (forwardVec , 4 , 0 . 0 5 5 5) ;

// Manually d e f i n e s the i n i t i a l v o l a t i l i t i e s
gsl_vector_set (sigmaVec , 0 , 0 . 6 4) ;
gsl_vector_set (sigmaVec , 1 , 0 . 8 4) ;
gsl_vector_set (sigmaVec , 2 , 0 . 9 1) ;
gsl_vector_set (sigmaVec , 3 , 0 . 8 9) ;
gsl_vector_set (sigmaVec , 4 , 0 . 9 3) ;

}

B.1 Main Code 53

double swaption (const double K , const gsl_vector∗ inForwardVec ,
const gsl_matrix∗ corrMatrix , const gsl_vector∗ sigmaVec , int dim)

{
/∗
I n i t i a l i z i n g
Generates a new ob j e c t to s imulate from the
mu l t i v a r i a t e normal d i s t r i b u t i o n
∗/
Multinorm mn = Multinorm (corrMatrix , dim) ;
gsl_vector ∗sim = gsl_vector_alloc (dim) ;
gsl_vector ∗forwardVec = gsl_vector_alloc (dim) ;
// No o f s imu la t i on s
const int NRUNS = 1000 ;
// No o f s t ep s per s imu la t i on
const int STEPS = 250 ;
// Time s t epcons t double DELTA = 1.0/STEPS;
// P0 : Zero coupon bond f o r the de s i r ed time per iod
const double P0 = 0 . 9473 ;
double sum = 0 ;

// Looping through NRUNS MC s imu la t i on s
for (int run=0; run<NRUNS ; run++) {

// Resets the forward vec to r
for (int i=0; i<dim ; i++) {

gsl_vector_set (forwardVec , i ,
gsl_vector_get (inForwardVec , i)) ;

}

// Looping through the t imes teps
for (int i=0; i<STEPS ; i++) {

// Draws a new random vecto r
mn . getRand (sim) ;

// Simulat ing each ra t e under the Q^alpha forward measure
for (int j=0; j<dim ; j++) {

double forward = gsl_vector_get (forwardVec , j) ;
double sigma = gsl_vector_get (sigmaVec , j) ;
double corr = 0 ;
double temp = log (forward) ;
temp −= 0.5∗ sigma∗sigma∗DELTA ;
temp += sigma∗gsl_vector_get (sim , j)∗ sqrt (DELTA) ;

54 B COMPUTER CODE

double temp2 = 0 ;
for (int k=0; k<=j ; k++) {

corr = gsl_matrix_get (corrMatrix , j , k) ;
sigma = gsl_vector_get (sigmaVec , k) ;
forward = gsl_vector_get (forwardVec , k) ;
temp2 += (corr∗sigma∗forward)/(1+forward) ;

}
temp2 ∗= DELTA∗gsl_vector_get (sigmaVec , j) ;
temp += temp2 ;
gsl_vector_set (forwardVec , j , exp (temp)) ;

}
}

// Ca l cu l a t ing the swap ra t e
double temp , swap = 0 ;
double temp2 = 1 ;
for (int i=0; i<dim ; i++) {

temp2 = 1 ;
for (int j=0; j<=i ; j++) {

temp2 ∗= 1/(1+gsl_vector_get (forwardVec , j)) ;
}
temp += temp2 ;

}
swap = (1−temp2)/ temp ;
/∗
Cal cu l a t ing the cor re spond ing zero coupons
The f i r s t forward ra t e i s "dead" and can be
cons ide r ed as the LIBOR i n t e r e s t r a t e .
The f i r s t ze ro coupons must t h e r e f o r e be t r ea t ed i n d i v i d u a l l y
∗/
double zero = 1/(1+gsl_vector_get (forwardVec , 0)) ;
double zeroSum = zero ;

for (int i=1; i<dim ; i++) {
zero = zero/(1+gsl_vector_get (forwardVec , i)) ;
zeroSum += zero ;

}
double swaption = 0 ;
if (swap−K > 0) swaption = (swap−K)∗ zeroSum ;
else swaption = 0 ;

sum += swaption ;
}

B.1 Main Code 55

// De l l o ca t i ng ve c t o r s from memory
gsl_vector_free (sim) ;
sl_vector_free (forwardVec) ;
return P0 ∗(sum/NRUNS) ;

}

double bermuda (const double K , const gsl_vector∗ inForwardVec , const
gsl_matrix∗ corrMatrix , const gsl_vector∗ sigmaVec , const int daim) {

// I n i t a l i z e the dimension va r i ab l e
int dim = daim ;
// No o f s imu la t i on s
const int NRUNS = 100000;
// No o f s t ep s per s imu la t i on
const int STEPS = 250 ;
// Time step
const double DELTA = 1.0/ STEPS ;
/∗
No o f r e g r e s s i o n v a r i a b l e s .
This parameter need som mod i f i c a t i on o f the code to work .
The nece s sa ry code to i n c r e a s e the number o f r e g r e s s i o n
v a r i a b l e s by one are commented out in the code
∗/
const int NVAR = 3 ;
// Zero coupon with maturity T_beta
const double Tbeta = 0 . 7 2 9 ;

// Matrix that conta in s a l l the paths
gsl_matrix ∗scenarioes = gsl_matrix_alloc (daim∗NRUNS , daim+1);

// F i l l s in the i n i t i a l forward r a t e s
for (int i=0; i<daim∗NRUNS ; i++) {

gsl_matrix_set (scenarioes , i , 0 ,
gsl_vector_get (inForwardVec , i%daim)) ;

}

// Loop that run through a l l the time pe r i od s
for (dim ; dim>0; dim−−) {

// I n i t a l i z i n g temporary c o r r e l a t i o n matrix and random vecto r
// with the c o r r e c t dimension
gsl_matrix ∗tempCorr = gsl_matrix_alloc (dim , dim) ;

56 B COMPUTER CODE

gsl_vector ∗tempRand = gsl_vector_alloc (dim) ;
gsl_vector ∗tempFor = gsl_vector_alloc (dim∗NRUNS) ;
gsl_vector ∗tempSigma = gsl_vector_alloc (dim) ;

// Copying e lements to the new reduced c o r r e l a t i o n matrix
for (int i=0; i<dim ; i++) {

for (int j=0; j<dim ; j++) {
gsl_matrix_set (tempCorr , i , j ,

gsl_matrix_get (corrMatrix , i+(daim−dim) , j+(daim−dim))) ;
}

}

// Copying the de s i r ed v o l a t i l i t e s
for (int i=0; i<dim ; i++) {

gsl_vector_set (tempSigma , i ,
gsl_vector_get (sigmaVec , daim−dim+i)) ;

}

// I n i t i a t e a new mu l t i v a r i a t e random ob j e c t
// with the new de s i r ed c o r r e l a t i o n matrix
Multinorm mn = Multinorm (tempCorr , dim) ;

for (int run=0; run<NRUNS ; run++) {
// Copying i n i t i a l forward r a t e s to the
// temporary forward vec to r
for (int i=0; i<dim ; i++) {

double temp = gsl_matrix_get (scenarioes ,
(run∗daim)+(daim−dim)+i , daim−dim) ;

gsl_vector_set (tempFor , i+(run∗dim) , temp) ;
}

// Looping through a l l the d i s c r e t i s i z e d time s t ep s
// in one time per iod
for (int step=0; step<STEPS ; step++) {

mn . getRand (tempRand) ;

// Looping through a l l the " l i v i n g " forward r a t e s
for (int f=0; f<dim ; f++) {

double temp = 0 ;
for (int i=f+1; i<dim ; i++) {

double corr = gsl_matrix_get (tempCorr , f , i) ;
double sigma = gsl_vector_get (tempSigma , i) ;
double forward = gsl_vector_get (tempFor , i+run∗dim) ;

B.1 Main Code 57

temp += (corr∗sigma∗forward) / (1+forward) ;
}
double sigma = gsl_vector_get (tempSigma , f) ;
double forward = gsl_vector_get (tempFor , f+run∗dim) ;
double shock = gsl_vector_get (tempRand , f) ;
temp ∗= −sigma∗forward∗DELTA ;
temp += sigma∗forward∗sqrt (DELTA)∗ shock ;
gsl_vector_set (tempFor , f+run∗dim , forward+temp) ;

}
}
// Updates the s c e n a r i o e s matrix
for (int i=0; i<daim ; i++) {

if (i < daim−dim)
gsl_matrix_set (scenarioes , (daim∗run)+i , 1+(daim−dim) , 0) ;

else {
double temp = gsl_vector_get (tempFor , i−(daim−dim)+run∗dim) ;
gsl_matrix_set (scenarioes , (daim∗run)+i , 1+(daim−dim) , temp) ;

}
}

}

// Free memory
gsl_vector_free (tempSigma) ;
gsl_vector_free (tempFor) ;
gsl_vector_free (tempRand) ;
gsl_matrix_free (tempCorr) ;

}

// Ca l cu l a t ing the f i n a l payo f f
gsl_vector ∗payoff = gsl_vector_alloc (NRUNS) ;
for (int i=0; i<NRUNS ; i++) {

double swapr = gsl_matrix_get (scenarioes , daim ∗(i+1)−1, daim) ;
if (swapr−K>0) {

double zero = 1/(1+swapr) ;
gsl_vector_set (payoff , i , (swapr−K)∗ zero) ;

}
else gsl_vector_set (payoff , i , 0) ;

}

// Swaps conta in the most r e c en t c a l c u l a t ed swap r a t e s
gsl_vector ∗swaps = gsl_vector_alloc (NRUNS) ;

// Looping through a l l the remaining time pe r i od s

58 B COMPUTER CODE

for (int i=0; i<daim−1; i++) {
int inTheMoney = 0 ;
// Discount ing the l a s t payo f f s and c a l c u l a t i n g new swap r a t e s
for (int j=0; j<NRUNS ; j++) {

double P0 = 1/(1+gsl_matrix_get (scenarioes ,
j∗daim + daim−2−i , daim−1−i)) ;

for (int k=0; k<i+1; k++) {
P0 = P0 /(gsl_matrix_get (scenarioes ,

j∗daim + daim−2−i+k , daim−1−i)+1) ;
}
double P1 = 1/(1+gsl_matrix_get (scenarioes ,

j∗daim + daim−1−i , daim−i)) ;
for (int k=0; k<i ; k++) {

P1 = P1 /(gsl_matrix_get (scenarioes ,
j∗daim + daim−1−i+k , daim−i)+1);

}
double cash = gsl_vector_get (payoff , i)∗ (P0/P1) ;
gsl_vector_set (payoff , i , cash) ;

// Ca l cu l a t ing the swaprate
double swap = 0 ;
double temp = 1 ;
for (int k=0; k<i+2; k++) {

temp = 1 ;
for (int l=0; l<=k ; l++) {

temp ∗= 1/(1+gsl_matrix_get (scenarioes ,
j∗daim + daim−2−i+l , daim−1−i)) ;

}
swap += temp ;

}
swap = (1−temp)/ swap ;

// Counting up the paths which are in the money
if (swap−K>0) inTheMoney++;
gsl_vector_set (swaps , j , swap) ;

}
// These are dummy matr i ce s / ve c t o r s f o r the l e a s t square c a l c u l a t i o n s
gsl_vector ∗Atb = gsl_vector_alloc (NVAR+i+1);
gsl_matrix ∗AtA = gsl_matrix_alloc (NVAR+i+1,NVAR+i+1);
gsl_vector ∗x = gsl_vector_alloc (NVAR+i+1);

// Doing a r e g r e s s i o n on the the paths in money
gsl_matrix ∗sr = gsl_matrix_alloc (inTheMoney , NVAR+i+1);

B.1 Main Code 59

gsl_vector ∗index = gsl_vector_alloc (inTheMoney) ;
gsl_vector ∗b = gsl_vector_alloc (inTheMoney) ;
int tempATM = 0 ;
for (int j=0; j<NRUNS ; j++) {

double swap = gsl_vector_get (swaps , j) ;
if (swap−K>0) {

gsl_vector_set (index , tempATM , j) ;
gsl_matrix_set (sr , tempATM , 0 , 1) ;
gsl_matrix_set (sr , tempATM , 1 , swap) ;
gsl_matrix_set (sr , tempATM , 2 , swap∗swap) ;
// gsl_matrix_set (sr , tempATM, 3 , swap∗swap∗swap) ;
gsl_vector_set (b , tempATM , gsl_vector_get (payoff , j)) ;
for (int k=0; k<i+1; k++) {

gsl_matrix_set (sr , tempATM , k+NVAR ,
gsl_matrix_get (scenarioes , j∗daim+daim−k−1, daim−i)) ;

}
tempATM++;

}
}

// Finds the best polynomial f i t with r e sp e c t to the swap ra t e
gsl_blas_dgemm (CblasTrans , CblasNoTrans , 1 . 0 , sr , sr , 0 . 0 , AtA) ;
gsl_blas_dgemv (CblasTrans , 1 . 0 , sr , b , 0 . 0 , Atb) ;
int surf ;
gsl_permutation ∗P = gsl_permutation_alloc (NVAR+i+1);
gsl_linalg_LU_decomp (AtA , P , &surf) ;
gsl_linalg_LU_solve (AtA , P , Atb , x) ;

double x0 = gsl_vector_get (x , 0) ;
double x1 = gsl_vector_get (x , 1) ;
double x2 = gsl_vector_get (x , 2) ;
// double x3 = gsl_vector_get (x , 3) ;

// Exerc i s e the opt ion i f the value i s g r e a t e r than
// the expected value o f cont inuat i on
int continuation = 0 ;
for (int j=0; j<inTheMoney ; j++) {

int status = int (gsl_vector_get (index , j)) ;
double swap = gsl_vector_get (swaps , status) ;
double temp = swap−K ;
double zero = 1/(1+

gsl_matrix_get (scenarioes , status∗daim+daim−2−i , daim−1−i)) ;
double zerosum = zero ;

60 B COMPUTER CODE

for (int k=1; k<i+2; k++) {
zero = zero /(

gsl_matrix_get (scenarioes ,
status∗daim+daim−2−i+k , daim−1−i)+1) ;

zerosum += zero ;
}
temp ∗= zerosum ;
double estpay = x0 + swap∗x1 + swap∗swap∗x2 ;
// estpay += swap∗swap∗swap∗x3 ;
for (int k=0; k<i+1; k++) {

estpay += gsl_vector_get (x , k+NVAR)∗
gsl_matrix_get (scenarioes , status∗daim+daim−k−1, daim−i) ;

}
if (estpay < temp) gsl_vector_set (payoff , status , temp) ;
else continuation++;

}

// Frees memory
gsl_vector_free (x) ;
gsl_vector_free (Atb) ;
gsl_matrix_free (AtA) ;
gsl_vector_free (b) ;
gsl_vector_free (index) ;
gsl_matrix_free (sr) ;

}

// Ca l cu l a t ing the d i scounted sum of the payo f f s
double sum = 0 ;

for (int i=0; i<NRUNS ; i++) {
double temp = 1/(1+gsl_matrix_get (scenarioes , i∗daim , 1)) ;
for (int j=0; j<daim−1; j++) {

temp = temp /(gsl_matrix_get (scenarioes , i∗daim + j+1, 1)+1);
}
sum += (Tbeta/temp)∗ gsl_vector_get (payoff , i) ;

}

// Frees memory
gsl_vector_free (swaps) ;
gsl_vector_free (payoff) ;
gsl_matrix_free (scenarioes) ;

// Returning the averaged r e s u l t
return (sum/NRUNS) ;

B.2 Multinorm Header 61

}

B.2 Multinorm Header

#ifndef MN_H_
#define MN_H_

class Multinorm
{
private :

int dim ;
gsl_rng ∗ rng ;
gsl_rng ∗ initRandGen () ;
gsl_matrix ∗ chol ;
gsl_vector ∗ normVec ;

public :
Multinorm (const gsl_matrix ∗ cov , int dim) ;
~Multinorm () ;
void getRand (gsl_vector ∗ sim) ;

} ;

#endif

B.3 Multinorm Class

#include <iostream>
#include <g s l / gsl_rng . h>
#include <g s l / g s l_ l i n a l g . h>
#include <g s l / g s l_rand i s t . h>
#include <g s l / gs l_blas . h>
#include "multinorm.h"
using namespace std ;

// Constructor .
// Takes a covar i an s e matrix and i t s dimension as inputs
Multinorm : : Multinorm (const gsl_matrix∗ cov , int daim)
{

// I n i t i a l i z i n g
dim = daim ;
rng = initRandGen () ;
chol = gsl_matrix_alloc (dim , dim) ;
normVec = gsl_vector_alloc (dim) ;

// Copying the covar iance matrix
for (int i=0; i<dim ; i++) {

62 B COMPUTER CODE

for (int j=0; j<dim ; j++) {
gsl_matrix_set (chol , i , j , gsl_matrix_get (cov , i , j)) ;

}
}

// Cholesky decomposes the covar iance matrix
gsl_linalg_cholesky_decomp (chol) ;

/∗
Sets the upper t r i a n gu l a r o f the decomposed matrix equal to zero
Necessary because o f t e c hn i c a l r ea sons due to the GSL
implementation o f the output from the Cholesky decomposit ion
∗/
for (int i=0; i<dim ; i++) {

for (int j=0; j<dim ; j++) {
if (j>i) gsl_matrix_set (chol , i , j , 0) ;

}
}

}

// Destructor
// Frees memory
Multinorm : : ~ Multinorm ()
{

gsl_rng_free (rng) ;
gsl_matrix_free (chol) ;
gsl_vector_free (normVec) ;

}

// Simulat ing a new random vecto r
void Multinorm : : getRand (gsl_vector∗ sim)
{

// F i l l s the vec to r with draws from the standard
// normal d i s t r i b u t i o n
for (int i=0; i<dim ; i++) {

gsl_vector_set (normVec , i , gsl_ran_gaussian (rng , 1)) ;
}
/∗
Mul t i p l i e s the S .N. vec to r with the de s i r ed Cholesky
decompostion o f the covar iance matrix to a t t a i n
the c o r r e c t c o r r e l a t i o n s
∗/
gsl_blas_dgemv (CblasNoTrans , 1 , chol , normVec , 0 , sim) ;

B.3 Multinorm Class 63

}

gsl_rng ∗ Multinorm : : initRandGen ()
{

/∗
I n i t i a l i z i n g the random generato r
Using the number o f seconds from
1 s t o f january 1970 as seed
∗/
time_t seconds ;
seconds = time (NULL) ;
long seed = seconds ;
gsl_rng ∗ rng ;
rng = gsl_rng_alloc (gsl_rng_rand48) ;
gsl_rng_set (rng , seed) ;
return rng ;

}

64 B COMPUTER CODE

	Title Page
	Problem Description
	masteroppgave.pdf

