
June 2008
Einar Rønquist, MATH

Master of Science in Physics and Mathematics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Mathematical Sciences

Numerical solution of partial
differential equations in time-
dependent domains

Øystein Tråsdahl

Problem Description
The governing equations for heat transfer and fluid flow problems in time-dependent domains will
be reviewed. In particular, the Arbitrary Lagrangian Eulerian formulation will be used in the
formulation and the numerical treatment of such problems. Selected model problems will be
solved numerically using a spectral method in space combined with a semi-implicit multi-step
method in time.

Assignment given: 24. January 2008
Supervisor: Einar Rønquist, MATH

Abstract

Numerical solution of heat transfer and fluid flow problems in two spatial di-
mensions is studied. An arbitrary Lagrangian-Eulerian (ALE) formulation of
the governing equations is applied to handle time-dependent geometries. A Leg-
endre spectral method is used for the spatial discretization, and the temporal
discretization is done with a semi-implicit multi-step method. The Stefan prob-
lem, a convection-diffusion boundary value problem modeling phase transition,
makes for some interesting model problems. One problem is solved numeri-
cally to obtain first, second and third order convergence in time, and another
is used to illustrate the difficulties that may arise with distribution of compu-
tational grid points in moving boundary problems. Strategies to maintain a
favorable grid configuration for some particular geometries are presented. The
Navier-Stokes equations are more complex and introduce new challenges not
encountered in the convection-diffusion problems. They are studied in detail by
considering different simplifications. Some numerical examples in static domains
are presented to verify exponential convergence in space and second order con-
vergence in time. A preconditioning technique for the unsteady Stokes problem
with Dirichlet boundary conditions is presented and tested numerically. Free
surface conditions are then introduced and studied numerically in a model of a
droplet. The fluid is modeled first as Stokes flow, then Navier-Stokes flow, and
the difference in the models is clearly visible in the numerical results. Finally,
an interesting problem with non-constant surface tension is studied numerically.

v

vi

Contents

Introduction 1

1 The convection-diffusion equation 5

1.1 Strong and weak formulation . 5
1.2 ALE framework . 6
1.3 Spatial discretization . 8

1.3.1 Implementation issues . 11
1.4 Temporal discretization . 11
1.5 An example with known domain velocity 12

2 The Stefan problem 15

2.1 The Stefan condition . 15
2.2 Updating the domain velocity . 19

2.2.1 A numerical example: the Stefan problem 20
2.2.2 Choice of tangential component of the domain velocity . . 22
2.2.3 A numerical example: moving grid points 23

2.3 Multi-element methods . 26
2.3.1 Five-element structure . 27
2.3.2 Multi-element approach to a Poisson problem 28
2.3.3 Multi-element approach with full ALE formulation 29
2.3.4 A Stefan problem on a circular domain 30

3 The Navier-Stokes equations 33

3.1 The viscous term . 33
3.1.1 A numerical example of the pure viscous problem 35

3.2 Steady Stokes flow . 35
3.2.1 Weak form . 38
3.2.2 Discretization . 38
3.2.3 The Uzawa algorithm . 39
3.2.4 A numerical example: steady Stokes flow 40

3.3 Unsteady Stokes flow . 42
3.3.1 A numerical example: unsteady Stokes flow 43

3.4 Free surface Stokes flow . 43
3.4.1 ALE formulation . 44
3.4.2 Surface integral . 45
3.4.3 Discretization . 46
3.4.4 A droplet: free surface Stokes flow 47

3.5 Free surface Navier-Stokes flow 49

vii

3.5.1 A droplet: free surface Navier-Stokes flow 50
3.5.2 A droplet with non-constant surface tension 51

Conclusion and further work 55

Bibliography 57

viii

Introduction

The spectral or high-order method [9, 11, 28] is closely related to the finite
element method in that it uses a Galerkin approach, based on a weak formu-
lation of the problem. It involves seeking a solution to a differential equation
in a discrete space of smooth functions, expressing the solution in terms of a
truncated series of basis functions. If the discrete space and the basis are well
chosen, then the problem can be solved relatively fast and with errors that are
sub-dominant the errors caused by the discretization. Hence, the quality of the
solution is determined by the quality of the approximation space. The most
commonly chosen discrete spaces are those of trigonometric functions or high
order polynomials, depending on the problem at hand. In this paper we will
use Legendre polynomials for the approximation. If the exact solution and the
geometry are analytic functions, we can achieve exponential convergence, i.e.
the error will decay faster than any algebraic power of the polynomial degree N
[23].

The Arbitrary Lagrangian-Eulerian (ALE) formulation provides a power-
ful framework for studying partial differential equations on time-dependent do-
mains. The approach gathers the best from the Lagrangian and Eulerian frame-
works, enabling proper description of the boundary, while preventing mesh dis-
tortions. In the ALE formulation we operate with a domain velocity, which
may differ from the particle velocity. The domain velocity must satisfy the
kinematic condition, which requires that the normal component equals the nor-
mal component of the particle velocity on the boundary of the computational
domain.

The ALE formulation finds many applications in solid and fluid mechanics,
and is an area of active research [15]. In order to study the ALE framework, it
is convenient to start with simpler equations than the Navier-Stokes equations.
Here, the convection-diffusion equation will be used as a starting point for study-
ing the framework. It is a simpler equation, but still shows all the aspects of
the ALE formulation that we will encounter with the Navier-Stokes equations.
An interesting example of a convection-diffusion boundary value problem is the
Stefan problem, in which the heat flux across the boundary is used to deter-
mine the movement of the domain in the direction of the surface normal vector.
The Stefan problem models phase transition in heat transfer problems, typically
between solid and liquid state, i.e. melting or freezing problems.

When solving a Stefan problem on a finite or spectral element grid, the Stefan
condition determines how the computational grid points on the boundary should
move in the direction of the normal vector. The movement in the tangential
direction, however, is not subject to any condition, so we are given a certain
freedom of choice. There is no algorithm for determining the optimal choice;

1

INTRODUCTION

we do not even have a way of defining what an optimal choice should imply in
this context. But a good goal is to try to retain the regularity of the mapping
from the reference domain to the physical domain after the domain is updated.
This is done in practice by imposing certain Dirichlet or Neumann boundary
conditions on the domain velocity.

Spectral methods have evolved to be applicable to a wide range of fluid
dynamics problems. Many of the most frequently recurring fluids in engineering
applications (e.g. water) can be modeled as incompressible Newtonian flow,
i.e. flow with a constant viscosity. This type of flow is properly modeled by
the Navier-Stokes equations, which describe conservation of mass and linear
momentum for viscous fluid flow. Numerical treatment of the Navier-Stokes
equations is not trivial. There are complicating factors which make them a
lot more difficult to handle than the convection-diffusion equation. However,
the Navier-Stokes equations can be simplified in various ways, for example by
assuming steady flow or infinite viscosity. The way we will study the equations
in this paper is by starting with only the viscous term, which is the differential
operator of highest order, and then gradually expanding the equations, adding
new terms. Each new term will introduce new challenges that will be discussed.

The Navier-Stokes equations can be accompanied by Dirichlet or Neumann
boundary conditions and solved on a time-independent domain. To study the
equations in time-dependent domains, we will add a free surface condition once
we arrive at the Stokes problem. The surface tension allows the surface to
deform elastically, and the free surface condition requires that there is no shear
stress on the surface at equilibrium. The addition of free surface conditions
necessitates an ALE formulation, which will be presented.

Due to the complexity of the equations, free surface problems with known
exact solutions are difficult to construct, and very few are available. We will
study a problem for the which the steady state solution is known, but the evo-
lution from the initial state is unknown. The problem models a drop of liquid
with free surface and constant surface tension in an environment free of gravita-
tional forces. The only external force is the ambient pressure, which is constant.
For this problem the equilibrium, at which the surface area is minimized, is a
circular drop with no particle velocity and constant pressure. This problem will
be modeled both as a Stokes problem and as a Navier-Stokes problem. The
unsteady Stokes model will make the drop deform slowly towards the steady
state, while the unsteady Navier-Stokes model will make it oscillate, behaving
more elastically as the viscosity decreases and the inertial effects become more
important. The effect of the dimensionless Capillary number on the oscillations
will be studied.

Finally, the problem of the liquid drop will be modeled with non-constant
surface tension. The surface tension must be everywhere positive, and periodic
along the surface. We will study a problem where the surface tension varies
linearly with one of the spatial coordinates. Now the steady state is unknown.
It seems reasonable to anticipate some sort of vorticity. We will use the steady
state solution from the constant surface tension problem as an initial condition
and see if numerical simulations lead to a steady state.

This structure of this paper reflects the way the work has been done. The
material is divided into chapters, organized by the equation being studied. Each
chapter builds on the experience from the previous chapters, and only novel con-
cepts are discussed in detail. The framework for both the spectral method and

2

the ALE formulation is presented in the first chapter, using the convection-
diffusion equation as a framework. In the second chapter, mesh update tech-
niques are introduced and studied for the Stefan problem. This chapter also
contains a brief discussion of the multi-element approach, as we move from
solving problems on a single element to solving problems on multiple elements.
This transition is motivated by the need for studying problems on circular do-
mains. The last chapter covers the entire evolution towards the Navier-Stokes
equations, from the crude simplification involving only the viscous term, to the
full Navier-Stokes equations with free surface boundary conditions.

Numerical examples are included for every new problem or aspect intro-
duced. The examples are all two-dimensional, and most of the problems are
just constructed to illustrate matters in the text. In the examples where the
solution is known a priori, convergence properties of the numerical methods are
studied. All numerical simulations are done in Matlab, and no extra software
packages are used. All code is written from scratch by the author, apart from a
few simple functions, which were part of the material in the course MA8502.

The reader is assumed to have a knowledge of the basic ingredients of spectral
element methods, such as weak formulation and discretization, although these
are briefly covered in the text. A mathematics student on Master’s thesis level
should be able to follow.

3

4

Chapter 1

The convection-diffusion

equation

In this chapter we will use the unsteady convection-diffusion equation as a basis
for investigating different aspects of numerical treatment of partial differential
equations in time-dependent domains. This equation is a convenient starting
point since it is linear, and exact solutions are easy to construct in two dimen-
sions. At the same time it is useful, since it properly models many heat flow
problems.

The arbitrary Lagrangian-Eulerian (ALE) formulation will be used to handle
the challenges of the time-dependent geometry. It is based on the weak form of
the problem and results in a formulation that is numerically tractable and allows
for accurate interface-tracking. A semi-discrete system will then be derived,
using a Legendre spectral method. The resulting system of ordinary differential
equations is readily solvable with the conjugate gradient algorithm.

1.1 Strong and weak formulation

The strong form of the unsteady convection-diffusion problem reads:

∂ϕ

∂t
−∇2ϕ + U · ∇ϕ = f in Ω ⊂ R

2,

ϕ = 0 on ∂Ω,

ϕ = ϕ0(x, y) at t = 0.

(1.1)

Here U is a prescribed two-dimensional convection field, and f is a given vol-
umetric heat source. Homogeneous Dirichlet boundary conditions are given for
simplicity, but they may be partially or fully exchanged with inhomogeneous
Dirichlet boundary conditions or Neumann boundary conditions.

Before stating the weak form, we introduce the spaces

X = {v ∈ H1(Ω)
∣∣ v = 0 on ∂Ω} ≡ H1

0 (Ω),

Y (X) = {v
∣∣ ∀t ∈ [0, T], v(x, y; t) ∈ X,

∫ T

0

‖v‖2
H1(Ω) dt < ∞}.

5

CHAPTER 1. THE CONVECTION-DIFFUSION EQUATION

The weak form is attained by multiplying with a test function and integrat-
ing. Integration by parts of the diffusion term and application of the boundary
conditions yields the following problem: find ϕ ∈ Y (X) such that

∫

Ω

v
∂ϕ

∂t
dΩ +

∫

Ω

∇ϕ · ∇v dΩ +

∫

Ω

v U · ∇ϕ dΩ =

∫

Ω

f v dΩ ∀v ∈ X (1.2)

1.2 ALE framework

The Lagrangian and Eulerian descriptions of a moving computational mesh each
have their benefits and problems. The Lagrangian description, in which each
mesh node follows a material particle in its motion, is great for tracking free
surfaces and interfaces between different materials. Its weakness is its inability
to follow large distortions without recourse to frequent re-meshing operations.
The Eulerian description uses a fixed computational grid and is therefore able
to handle large distortion with relative ease. On the other hand, a fixed grid
means a fixed resolution in space, limiting the accuracy in surface or interface
descriptions and resolution of flow details.

The Arbitrary Lagrangian-Eulerian (ALE) description is designed to over-
come these shortcomings, allowing the mesh nodes to move independently of the
fluid particles. It combines features of both the Lagrangian and the Eulerian
descriptions, since the mesh nodes may move along with the material particles,
or be held fixed. The motion of the computational mesh is described by the do-

main velocity, which we denote w. This needs not be that same as the particle

velocity, here denoted u. The only requirement is that the computational grid
must follow the surface of the computational domain. The tangential movement
of the mesh points on the surface, however, is not subject to any condition, so
here we have significant freedom. Typically, we choose a compromise between
Lagrangian and Eulerian grid motion in order to keep a favorable grid configu-
ration.

The requirement that the surface of the computational domain follows the
material surface results in the so-called kinematic condition. It states that the
normal components of the particle velocity u and the domain velocity w must
be equal,

u · n = w · n, (1.3)

as illustrated in Figure 1.1. The surface must move along with the particles that
reside on the surface. We have implicitly assumed a certain regularity of the
surface, namely that particles on the surface remain on the surface, and that no
particles “switch places”.

The starting point for the ALE formulation is the weak form (1.2). The first
integral contains a time derivative inside the integral, and is therefore difficult
to evaluate numerically. The time derivative can be moved outside the integral
using Reynold’s transport theorem [1]. It states that for any property ϕ of the
material (e.g. mass, momentum or energy) in a moving domain,

d

dt

∫

Ω

ϕ dΩ =

∫

Ω

∂ϕ

∂t
dΩ +

∫

∂Ω

ϕu · n dS, (1.4)

where u is the material velocity and n is the unit normal on the surface ∂Ω. In
order to be able to apply Reynold’s transport theorem, we first have to integrate

6

1.2. ALE FRAMEWORK

u
w

Ω

Figure 1.1: The kinematic condition requires that the normal component of
the particle velocity u equals the normal component of the domain velocity w

on the surface.

by parts

∫

Ω

v
∂ϕ

∂t
dΩ =

∫

Ω

∂(vϕ)

∂t
dΩ −

∫

Ω

ϕ
∂v

∂t
dΩ

=
d

dt

∫

Ω

v ϕ dΩ −
∫

∂Ω

vϕu · n dS −
∫

Ω

ϕ
∂v

∂t
dΩ. (1.5)

Now the last term contains time derivative of the test function. This can be
replaced by a convective term, due to the fact that the derivative of the test
function convected with the domain velocity is zero:

Dv

Dt
=

∂v

∂t
+ w · ∇v = 0.

Hence the last integral can be written

∫

Ω

ϕ
∂v

∂t
dΩ = −

∫

Ω

ϕw · ∇v dΩ.

The second term on the right hand side of (1.5) contains the normal compo-
nent of the material velocity. We apply the the kinematic condition to replace
this with the normal component of the domain velocity. We also apply the
divergence theorem, and the term becomes

∫

∂Ω

v ϕu · n dS =

∫

Ω

∇ · (vϕw) dΩ.

Now expanding the spatial derivatives of the product in the last integrand, we
get three terms. Inserting this and the rest of (1.5) into the weak form (1.2),
we arrive at

d

dt

∫

Ω

v ϕ dΩ −
∫

Ω

ϕw · ∇v dΩ −
∫

Ω

v w · ∇ϕ dΩ −
∫

Ω

vϕ∇ · w dΩ

+

∫

Ω

ϕw · ∇v dΩ +

∫

Ω

∇ϕ · ∇v dΩ +

∫

Ω

v U · ∇ϕ dΩ =

∫

Ω

f v dΩ.

The second and the fifth term on the left hand side are equal and cancel out.
Thus, we arrive at the following ALE formulation, written in abstract form: find

7

CHAPTER 1. THE CONVECTION-DIFFUSION EQUATION

ϕ ∈ Y (X) such that

d

dt
(v, ϕ) + a(v, ϕ) + c(v, ϕ) − e(v, ϕ) = (v, f) ∀v ∈ X, (1.6)

where (·, ·) is the usual L2 inner product and

a(v, ϕ) =

∫

Ω

∇ϕ · ∇v dΩ,

c(v, ϕ) =

∫

Ω

v (U − w) · ∇ϕ dΩ,

e(v, ϕ) =

∫

Ω

vϕ∇ · w dΩ.

(1.7)

Comparing the ALE formulation to the weak form (1.2), we see that both the
right hand side and the diffusion term remain unchanged. The convection term
is modified by the domain velocity, such that the effective convection field now
is the difference between the prescribed convection field and the domain veloc-
ity. A completely new term has also appeared, an “expansion term” containing
the divergence of the domain velocity. Last but not least, the time derivative
is no longer a partial derivative, since integration is performed before taking
the derivative. This greatly simplifies time integration, and makes the ALE
formulation a more suitable starting point for numerical approximation.

1.3 Spatial discretization

The method that will be applied throughout this paper is a Legendre spectral
method. The solution is approximated using high order polynomials on a ref-
erence domain, and then transformed to the physical domain. The reference
domain is the square Ω̂ = ((−1, 1))2, and it is mapped to the physical domain

by a one-to-one mapping F : Ω̂ → Ω. A point (x, y) in the physical domain is

-

6

x

y

Ω
-

�

F−1

F
-

6

(−1,−1)

(1, 1)

Ω̂

η

ξ

Figure 1.2: F is the mapping from the reference domain to the deformed
domain.

uniquely determined by the mapping

x = x(ξ, η),

y = y(ξ, η),

8

1.3. SPATIAL DISCRETIZATION

where ξ and η are the coordinates in the reference domain. A function v in the
physical domain can be transformed to the reference domain by composition,

v(x, y) = (v ◦ F)(ξ, η) = v̂(ξ, η), (1.8)

such that v̂ is a function in the reference variables. The hat notation will be used
to separate functions in the reference variables from functions in the physical
variables.

We now introduce a discrete space of functions which are polynomials in the
reference variables:

XN = {v ∈ H1
0 (Ω)

∣∣ (v ◦ F) ∈ PN (Ω̂)}.

The dimension of this space is (N − 1)2, since a polynomial of degree N needs
N + 1 parameters to be uniquely determined, but two degrees of freedom are
lost in each spatial direction due to the boundary conditions. The discrete space
in which we will seek a solution is then

Y (XN) = {v | ∀t ∈ [0, T], v(x, y; t) ∈ XN ,

∫ T

0

‖v‖2
H1(Ω) dt < ∞}.

The discretization is based on the ALE formulation (1.6), and the discrete prob-
lem reads: find ϕN ∈ Y (XN) such that

d

dt
(v, ϕN)N +aN(v, ϕN)+cN (v, ϕN)−eN(v, ϕN) = (v, f)N ∀v ∈ XN (1.9)

The subscript indicates that the integrals in (1.7) and the inner products will
be evaluated using Gauss-Lobatto-Legendre (GLL) quadrature. The quadrature
is applied to integrals over the reference domain, so integrals over Ω must be
transformed to integrals over Ω̂. Integrating a function v ∈ L2(Ω) over Ω, the
transformation is simply

∫

Ω

v dΩ =

∫

bΩ

v̂ J dΩ̂,

where J is the determinant of the Jacobian of the mapping F : Ω̂ → Ω, given
by

J =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
.

GLL quadrature with N + 1 quadrature points is then preformed as a weighted
sum in each spatial direction,

∫

bΩ

v̂J dΩ̂ =

N∑

α=0

N∑

β=0

ραρβ v̂(ξα, ξβ)J(ξα, ξβ),

where ξα are the quadrature points and ρα the associated quadrature weights
(both are the same in each spatial directions). With N + 1 quadrature points,
we are able to integrate exactly all polynomials up to degree 2N − 1 in each
spatial direction [8].

The domain Ω is approximated using high order polynomials. We will use
an isoparametric approach, approximating the geometry with the same order

9

CHAPTER 1. THE CONVECTION-DIFFUSION EQUATION

polynomials as the numerical solution ϕN . In particular, the computational
mesh points are placed at the GLL points ξα in each spatial direction in the
reference domain, which is then transformed to the physical domain.

We will use a nodal basis for the discrete space XN . The basis functions
v̂ij(ξ, η) are products of Lagrangian interpolants through the nodal points in
both spatial directions,

v̂ij(ξ, η) = ℓi(ξ) ℓj(η), 1 ≤ i, j ≤ N − 1.

Note the range of the indices. Due to the Dirichlet boundary conditions there
are no test functions associated with the nodal points on the boundary. The
Lagrangian interpolants are polynomials of degree N with the property that

ℓi(ξα) = δiα,

where δiα is the Kronecker delta. Hence, when the solution ϕ̂N (i.e., expressed
in the reference variables) is expanded in this basis, the basis coefficients ϕmn

equal the function values in the GLL points:

ϕ̂N (ξα, ξβ) =

N∑

m=0

N∑

m=0

ϕmn ℓm(ξα) ℓn(ξβ)

=

N∑

m=0

N∑

m=0

ϕmn δmα δnβ

= ϕαβ , 0 ≤ α, β ≤ N.

Note that these are also the function values in the corresponding nodal points
on the computational grid on the physical domain.

Each of the basis functions is inserted as a test function into the discrete
problem (1.9). Consider for example the inner product on the right hand side.
Inserting the test function v̂ij(ξ, η) and applying the GLL quadrature, we get

∫

Ω

f vij dΩ =

∫

bΩ

f̂ v̂ij J dΩ̂

=

∫ 1

−1

∫ 1

−1

f̂(ξ, η) ℓi(ξ) ℓj(η) J(ξ, η) dξ dη

=

N∑

α=0

N∑

β=0

ραρβ f̂(ξα, ξβ) δiαδjβ J(ξα, ξβ)

= ρiρj J(ξi, ξj) f̂(ξi, ξj), 1 ≤ i, j ≤ N − 1.

Let f ∈ R
(N−1)2 be a vector containing the function values f̂(ξi, ξj) in the

internal nodal points, sampled first in the ξ-direction, then the η-direction. We
can then evaluate the inner product in all the computational grid points as a
matrix-vector product [10, 11]

w = Bf , (1.10)

where B ∈ R
(N−1)2×(N−1)2 is the mass matrix, with entries given by

B(ij)(mn) ≡ (ℓiℓj , ℓmℓn)N = ρiρjJ(ξi, ξj)δimδjn. (1.11)

10

1.4. TEMPORAL DISCRETIZATION

The two-digit index counts all the nodal points, sampled in the same way as
in f (first in the ξ-direction, then the η-direction), but now both for rows and
columns of the matrix. Note that B is diagonal, due to the fact that the test
functions are orthogonal in the discrete inner product, i.e. evaluated using GLL
quadrature.

In order to achieve similar matrix-vector products for the other terms in
(1.9), we construct a vector ϕ similar to f , containing the values ϕmn of the
solution in the nodal points. Evaluation of the operators can be realized as
matrix-vector products similar to (1.10) with matrices A, C and E. In the
same way as for the mass matrix (1.11), the entries of A are given by

A(ij)(mn) = aN (ℓiℓj , ℓmℓn),

and similarly for C and E. We arrive at a set of ordinary differential equations

d

dt
Bϕ + Aϕ + Cϕ − Eϕ = Bf . (1.12)

1.3.1 Implementation issues

Constructing the matrices in (1.12) explicitly is possible, but not computation-
ally efficient. The full mass matrix requires storage for O(N4) floating point
numbers, and a matrix-vector product requires O(N4) floating point operations.
Utilization of techniques for storing sparse matrices could save a lot of storage
space for the mass matrix, but the other matrices are not diagonal, and they
will require full storage. Hence, it will not lower the asymptotic running time
and storage requirement.

However, the matrices need not be constructed. Instead of representing f

as a vector, we will represent it as a matrix, such that f ∈ R
(N−1)×(N−1). This

representation much better reflects the geometry of the problem. We also create
matrices R and J with entries

Rij = ρiρj ,

Jij = J(ξi, ξj),

and we can then perform the discrete operator evaluation (1.10) as an element-
wise matrix-matrix product

Wij = RijJijϕij , 1 < i, j < N − 1.

This only requires O(N2) operations. Evaluation of the other discrete operators
can be done in the same way, exploiting the tensor-product feature of our basis
functions [21, 26]. However, they will involve some full matrix-matrix products
of N×N matrices, requiring O(N3) operations. Still, it is a significant improve-
ment. All in all we are able to evaluate all the operators in (1.12) in O(N3)
operations, using only O(N2) storage locations.

For a more detailed discussion on the topic of computational efficiency in
the implementation of spectral methods, see for example [11].

1.4 Temporal discretization

The semi-discrete system (1.12) is a set of first order linear ordinary differential
equations. When applying temporal discretization, any time integration method

11

CHAPTER 1. THE CONVECTION-DIFFUSION EQUATION

can in principle be used. Explicit schemes are best avoided though, since the
time step restriction associated with such schemes may render them too costly.

When constructing an implicit scheme, we want to be able to customize
the treatment of each operator according to its properties. Both A and B are
symmetric positive definite (SPD), and allow for efficient iterative algorithms
such as the Conjugate Gradient (CG) method for solving the algebraic system.
Hence, they can be treated implicitly. The matrices C and E, on the other
hand, are not SPD, and should be treated explicitly. One way to achieve this is
through an operator splitting method, as described in [24]. Another possibility
is a simple implicit multi-step scheme with modified coefficients to allow for
explicit treatment of the terms Cϕ and Eϕ [14]. This is the method we will use
in this text. A second order semi-implicit Backward Difference (BD2) scheme
for (1.12) results in an algebraic system

(An+1 +
3

2∆t
Bn+1)ϕn+1 = Bn+1fn+1 +

2

∆t
Bnϕn − 1

2∆t
Bn−1ϕn−1

+
2∑

j=0

βj(C
n−j − En−j)ϕn−j , (1.13)

where the coefficients βj are chosen so that second order polynomials are inte-
grated exactly. The coefficients (taken from [14]) are

β0 =
8

3
, β1 = −7

3
, β2 =

2

3
. (1.14)

The Helmholtz type operator on the left hand side of (1.13) is SPD, since it is a
sum of SPD matrices. Hence, the system of equations can be solved efficiently
with CG iterations.

1.5 An example with known domain velocity

To illustrate the concepts introduced in this chapter, we look at a simple model
problem with a known exact solution and known domain velocity. The problem
is an unsteady diffusion problem with no volumetric heat sources in Ω:

∂ϕ

∂t
= ∇2ϕ in Ω,

ϕ = 0 on Γ1,

ϕ = by on Γ3,

∂ϕ

∂n
= 0 on Γ2 & Γ4.

(1.15)

Although there is no convection in the strong formulation of the problem, there
will be a non-zero convective term in the ALE formulation, due to the moving
domain.

The vertical surfaces of Ω represent adiabatic walls, through which there is
no heat flow. At the bottom surface the temperature is held constant, and at
the top surface the imposed temperature changes as the domain moves. The
problem has the exact solution

ϕ(x, y, t) = b y,

12

1.5. AN EXAMPLE WITH KNOWN DOMAIN VELOCITY

6

(0, 0) x = 1

y = 1

ϕ = 0

∂ϕ
∂n

= 0

ϕ
∣∣∣
Γ3

= by

∂ϕ
∂n

= 0

Γ1

Γ2

Γ3

Γ4

w
∣∣∣
Γ3

=

[
0
ax

]

Figure 1.3: Ω is initially a square. The top boundary Γ3 moves with a velocity
wy

∣∣
Γ3

= ax.

where b is a constant. This function is independent of t, but since the compu-
tational grid moves as the domain boundary moves, the solution in each grid
point will be a time-dependent function.

The horizontal component of the domain velocity is everywhere zero, so the
x-component of the grid points do not need to be updated. The domain velocity
is zero on the bottom surface Γ1, while on the top surface Γ3 it is given by

w
∣∣
Γ3

=

[
0
ax

]
. (1.16)

Integrating the second component from t0 = 0 to t, the vertical displacement of
Γ3 is found to be

y
∣∣
Γ3

= 1 + axt.

In order to keep the GLL points correctly distributed in Ω, we interpolate wy

between Γ1 to Γ3, using the Gordon-Hall algorithm [13]. This yields a vertical
domain velocity

wy(x, y, t) =
axy

1 + axt
.

A linear interpolation is necessary to maintain a GLL distribution of the nodal
points in the vertical direction.

Both the solution and the geometry consist of linear functions, and the
Jacobian is simply

J =
1

8
(2 + at(ξ + 1)) . (1.17)

Hence, all the integrands in (1.6) are polynomials, and there should not be any
quadrature error.

The solution ϕ is a linear function of y, which in turn is a linear function of
t. Hence, ϕ̂ (i.e., represented in the reference coordinates) is a linear function
of t. So is the Jacobian (1.17), so the entries of Bϕ are quadratic functions of
t and should be integrated exactly by the second order scheme (1.13).

For the numerical simulations we set both a = 1 and b = 1. The numer-
ical solution, shown in Figure 1.4, is indeed independent of x and linear in y.

13

CHAPTER 1. THE CONVECTION-DIFFUSION EQUATION

The computational grid is properly shaped in the interior, due to our linear
interpolation of the domain velocity.

The Figure also shows the error as a function of the step length ∆t in the
time integration. The error is measured in the energy norm, which is defined by

|||v|||2 ≡ a(v, v).

For convection-diffusion problems, the energy norm coincides with the H1 semi-
norm. We see that the error is independent of ∆t, and is everywhere on level
with the tolerance level in the CG iterations. Simulations have also been done
to confirm that the spatial discretization error is negligible for all N . Thus
we conclude that the problem can be solved to machine precision level for any
resolution in both space and time.

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2
0

0.5

1

1.5

2

xy
10

−3
10

−2
10

−1
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

∆t

|||ϕ
−

ϕ
N
|||

Figure 1.4: Left: numerical solution of the model problem with a = 1 and
b = 1, using polynomial degree N = 20 and n = 1000 time steps from time
t0 = 0 to time t = 1. Right: error in the numerical solution, as a function of
the step length ∆t in the time integration. The error is on the tolerance level
of the CG iterations, since neither the spatial nor the temporal discretization
introduce any numerical error.

14

Chapter 2

The Stefan problem

An a priori known domain velocity is typically not available. Instead we may
have a general law or condition of how the domain should change given a certain
solution to the partial differential equation. The Stefan condition is an interface
condition providing such a connection in convection-diffusion problems, linking
the heat flow across the boundary of the computational domain to the motion
of the boundary.

The Stefan problem is a convection-diffusion boundary value problem, used
to model phase transition in heat transfer problems. Different domains represent
different phases of a medium, in which physical properties such as thermal
conductivity may be different. Typically, the phases are solid and liquid, and
the interface between the phases is the point at which matter melts or solidifies.
The temperature at which this phase transition occurs is always constant for
a certain matter at a certain pressure (i.e. 0◦C for water at one atmosphere).
Melting is an endothermic reaction, meaning heat is absorbed, while freezing is
an exothermic reaction, where heat is released. The heat needed to melt a unit
mass one degree is called the latent heat and is denoted L.

The PDE is solved to find the temperature in each phase separately, and
then the Stefan condition is used to determine how the interface between the
two phases moves. Note that the Stefan condition only provides information
about what happens in the direction normal to the surface. Tangentially, we
have no information. This means that when moving the computational grid, we
have to decide how the grid points are to move tangentially along the surface.
A bad choice of tangential velocity may result in a poor distribution of the
grid points on the surface, which again results in poor numerical approximation
properties. We will consider different ways to remedy this.

But first we will present the Stefan condition and show how it relates the
normal movement of the interface to the heat flux across that interface. We will
consider two ways of finding the heat flux.

2.1 The Stefan condition

Consider a two-dimensional Stefan problem as shown in Figure 2.1. In the two
domains Ω1 and Ω2 there are either liquid or solid. Which is which is irrelevant.
The interface between the two phases, denoted Γ3, is where the phase transition

15

CHAPTER 2. THE STEFAN PROBLEM

occurs. The convection-diffusion equation models the heat flow in each phase
of the matter. Boundary conditions may be Neumann or Dirichlet, but on Γ3

n

Γ4 Γ2

Γ1

Γ3

Ω1

Ω2

Figure 2.1: A two-dimensional Stefan problem. The domains Ω1 and Ω2

represent two different phases of a matter, and Γ3 is the interface at which
phase transition occurs.

Dirichlet boundary conditions are natural, since temperature is constant during
phase transitions.

Now let η denote the elevation of the surface in the direction of the surface
normal n. The Stefan condition then states that the normal velocity of the
interface is given by

L
dη

dt
= (q2 − q1) · n on Γ3, (2.1)

where L is the latent heat and q2 − q1 is the net heat flux across the surface.
When the temperature ϕ is known, the heat flux is found from Fourier’s law,

q = −k∇ϕ, (2.2)

where k is the thermal conductivity. Assume for simplicity that the temperature
ϕ2 = 0 in Ω2, such that there is no heat flux on Γ3 from Ω2. The net heat flow
across the interface is then equal to the heat flow from Ω1,

Q = −
∫

Γ3

k1
∂ϕ1

∂n
ds, (2.3)

where ∂ϕ1

∂n
is the rate of temperature change in the direction of the unit normal

on Γ3, and ds is an infinitesimal surface element. In the following, only ϕ1 will
be considered, and the subscript will be dropped.

The heat flow Q, as given in (2.3), can be computed numerically, given
a numerical solution ϕN of the PDE. Partial derivatives of ϕN and the unit
normal n can be computed in the nodal points of the computational mesh,
and the integral can be evaluated using for example GLL quadrature. This
procedure is quite elaborate, and the accuracy is limited by the accuracy of
the numerical solution. In the case of a Legendre spectral method, the limiting
factor is the polynomial degree N .

There is a much more convenient method, however, based on the connection
between equation (2.3) and Neumann boundary conditions. Consider a steady

16

2.1. THE STEFAN CONDITION

heat transfer problem

−∇ · k∇ϕ = f in Ω,

ϕ = 0 on Γ1 & Γ3,

k
∂ϕ

∂n
= 0 on Γ2 & Γ4.

(2.4)

This problem is a simplification of the full convection-diffusion problem (1.1)
in order to focus on the essential elements of the procedure. Extension to
unsteady convection-diffusion is straightforward. We allow here for the thermal
conductivity to be a function of x and y to show that it does not affect the
method.

The weak formulation of the problem is: find ϕ ∈ X = {v ∈ H1(Ω)
∣∣ v

∣∣
Γ1

=

v
∣∣
Γ3

= 0} such that

a(v, ϕ) = (v, f) ∀v ∈ X, (2.5)

where (·, ·) is the L2 inner product and the diffusion term now includes the
conductivity k:

a(v, ϕ) =

∫

Ω

k∇ϕ · ∇v dΩ.

Assume that this problem is solved to find ϕ. In order to satisfy the Dirichlet
boundary conditions, there is heat flux across Γ1 and Γ3, but we do not know
this heat flux.

Now consider a modification of the problem (2.4), with inhomogeneous Neu-
mann boundary conditions imposed on Γ3 instead of Dirichlet boundary condi-
tions:

−∇ · k∇ϕ = f in Ω,

ϕ = 0 on Γ1,

k
∂ϕ

∂n
= g on Γ3,

k
∂ϕ

∂n
= 0 on Γ2 & Γ4.

(2.6)

The change of boundary conditions calls for a new solution space. It also results
in a new weak formulation, which reads: find ϕ ∈ X∗ = {v ∈ H1(Ω)

∣∣ v
∣∣
Γ1

= 0}
such that

a(ϕ, v) = (v, f) + lS(v) ∀v ∈ X∗. (2.7)

The new term on the right hand side is a surface integral

lS(v) =

∫

Γ3

k
∂ϕ

∂n
v ds =

∫

Γ3

gv ds (2.8)

that appears due to the inhomogeneous Neumann boundary condition on Γ3.
Note that this integral is quite similar to (2.3). In fact, comparing the two, we
see that the heat flow through Γ3 can be written as

Q = −lS(v∗) (2.9)

for functions v∗ with the property that v∗
∣∣
Γ3

= 1.
Now the key is to assume that the function g is chosen so that the modified

problem has the exact same solution as the original problem. That is, the

17

CHAPTER 2. THE STEFAN PROBLEM

imposed heat flux across Γ3 is adjusted so that the temperature is zero on this
surface. The solution ϕ of the original problem is then also a solution of the
modified problem. The value of the surface integral term (2.8) can then be
computed as the remainder

−lS(v) = (v, f) − a(ϕ, v) = r ∀v ∈ X∗. (2.10)

This remainder will be zero everywhere except on Γ1 and Γ3.

To achieve a numerical approximation of Q, we first discretize the original
problem (2.5) with a Legendre spectral method. This yields an algebraic system

Aϕ = Bf

which is solved for ϕ. If N is the polynomial degree used in the discretization,
then ϕ, f ∈ R

N2
−1 and A, B ∈ R

(N2
−1)×(N2

−1).

Discretizing the modified problem (2.7) results in a modified algebraic system

A∗ϕ∗ = B∗f∗ − r∗,

where r∗ is a vector containing the remainder (2.10) in each computational
grid point. Now there are degrees of freedom associated with Γ3 as well, so
ϕ∗, f∗, r∗ ∈ R

N(N+1) and A∗, B∗ ∈ R
N(N+1)×N(N+1). The solution ϕ∗ is

found by extending ϕ by zeros in all positions corresponding to grid points on
Γ3 (recall that we assumed homogeneous boundary conditions on this boundary
in (2.4)). The remainder in (2.10) is then found by computing

r∗ = B∗f∗ − A∗ϕ∗.

Comparing (2.9) and (2.10), we see that we need to choose a v ∈ X∗ such that
v
∣∣
Γ3

= 1. The unity function on Γ3 is simply the sum of all the test functions
associated with degrees of freedom on this surface, and hence the heat flow
across the interface is given by

QN =

N∑

k=0

rkN ,

i.e. the sum of the remainder in the grid points on Γ3.

Finally we add a note about practical implementation. The system matrices
in the original and the modified problems have different dimensions, and it seems
we would have to construct A∗ and B∗ explicitly, just for the purpose of finding
Q. This is not the case. We can actually form (N + 1)2 × (N + 1)2 matrices, as
if solving with pure Neumann boundary conditions, and use them to solve both
problems. We just have to mask the results in the grid points where we have
Dirichlet boundary conditions. This can be done by creating a mask matrix

M with zeros in all the entries corresponding to nodes on Dirichlet boundaries,
and ones in all the other entries. Each side of the algebraic system is then
multiplied by the mask matrix element-wise in order to ensure zero contribution
to the values already imposed in those grid points from the Dirichlet boundary
conditions.

18

2.2. UPDATING THE DOMAIN VELOCITY

2.2 Updating the domain velocity

When the heat flux through the phase transition front is known, the movement
of the interface can be computed, using the Stefan condition (2.1) and the
kinematic condition (1.3). The Stefan condition gives the speed of propagation
of the interface, and the kinematic condition requires that this also be the
normal component of the domain velocity. The latter is by definition equal to
the temporal derivative of the surface elevation η, i.e.

wn ≡ dη

dt
.

Now assume that we have followed the procedure of the last section to find the
remainder rkN in each grid point on Γ3. Consider equation (2.9), which gives
the heat flux on the whole interface. By multiplying the integrand with a test
function associated with a grid point on Γ3, we see that the result equals the
remainder rkN in that grid point:

rkN = −
∫

Γ3

k
∂ϕN

∂n
vkN ds.

Applying the Stefan condition to the integrand, we get

rkN =

∫

Γ3

Lwn vkN ds, k = 1, . . . , N.

The integral is transformed to the reference domain and evaluated using GLL
quadrature,

rkN = L
∑

α

ρα(wn)αN δαk(JS)α = Lρk(wn)kN (JS)k,

where JS is the Jacobian along the surface Γ3. In order to solve the above
equation for all k, we have to solve a linear system

r = BSw.

Here r, w ∈ R
N+1 are vectors containing the remainder and the normal velocity,

respectively, on Γ3, and BS is the surface mass matrix. Fortunately, due to the
discrete orthogonality of the test functions when using GLL quadrature, BS is
diagonal. Hence, the above equation can easily be solved for w just by dividing
r by the diagonal elements of BS .

Obviously we must require wn = 0 on the part of the surface where there
is no phase transition. As a result, wn is known all over the boundary ∂Ω.
For now we postpone the problem of choosing a tangential component of w,
we just assume that it has been done. We then have to extend the domain
velocity from the boundary ∂Ω to the interior of Ω. We typically want it to be
as smooth as possible in the interior, but apart from that we have quite a lot of
freedom in how to do it. There are several possible approaches. It can be solved
as an elasticity problem, modeling the components of w as an elastic material
[17, 20, 33]. The boundary values are the values we have found previously in
this section.

19

CHAPTER 2. THE STEFAN PROBLEM

Another possibility is harmonic extension. It means solving a Poisson prob-
lem for the domain velocity:

∇2w = 0 in Ω,

w = wΓ on ∂Ω.
(2.11)

This yields a vector-valued function w in Ω where each component is in H1,
adhering to the known boundary data.

Yet another possibility is modeling the motion of the mesh nodes as a steady
Stokes flow [5]. This means solving a steady Stokes problem with proper bound-
ary values. The incompressibility condition will result in a divergence-free do-
main velocity. Although we will not apply this technique for extending the
domain velocity, we will return to both the steady and the unsteady Stokes
problems later.

Last but not least, we can use the Gordon-Hall algorithm. This may be
the quickest method, and it yields a smooth domain velocity. The Gordon-
Hall algorithm is based on a linear interpolation, and it uses the sum of three
different interpolations (in R

2) in order to satisfy the boundary conditions. The
Gordon-Hall algorithm was first presented in [13], and it is also described in for
example [11].

Once the domain velocity has been found all over the computational domain,
we update the computational grid by solving

dx

dt
= w

with an explicit time integration scheme.

2.2.1 A numerical example: the Stefan problem

We illustrate the concepts of this section with an example. The model problem
is a very simple Stefan problem: a rectangular domain, zero temperature in
one of the phases, constant temperature along the phase transition front and
hence a constant domain velocity along the front. Besides, we assume that the
temperature stabilizes very rapidly in Ω compared to the dynamics associated
with phase transition, enabling us to model it as a steady state problem at each
point in time. The problem is then:

∇2ϕ = 0 in Ω,

ϕ = 1 on Γ1,

ϕ = 0 on Γ3,

∂ϕ

∂n
= 0 on Γ2 & Γ4.

(2.12)

The upper boundary Γ3 is the interface at which the phase transition occurs.
The temperature is zero on and outside Γ3, so there is no contribution to heat
flux on Γ3 from outside Ω. The vertical surfaces are adiabatic walls, and at the
lower surface the temperature is kept constant, with no phase transition.

The exact solution is a linear function, decreasing from ϕ = 1 at Γ1 to ϕ = 0
at Γ3:

ϕ(x, y, t) = 1 − y

ytop

, (2.13)

20

2.2. UPDATING THE DOMAIN VELOCITY

∂ϕ
∂n

= 0∂ϕ
∂n

= 0

Γ4 Γ2

(0, 0) x = 1

y = ytop
Γ3

Γ1

Ω

ϕ = 0

ϕ = 1

Figure 2.2: Illustration of the Stefan problem (2.12). The temperature ϕ is
independent of x, so the phase transition front Γ3 will remain horizontal.

where ytop(t) is the y-value at Γ3. Due to the geometry of the problem, ytop

does not depend on x. The velocity of the phase transition can also be found
exactly. Applying Fourier’s law (2.2) to the heat flux in the Stefan condition
(2.1), we find the following equation for ytop:

L
dytop

dt
= −k∇ϕ = −k

∂ϕ

∂y
=

k

ytop

.

This differential equation is separable and can easily be solved, integrating from
t0 = 0 to t. The exact solution for the vertical displacement of Γ3 is

ytop(t) =

√
y2
0 +

2kt

L
, (2.14)

where ytop(0) = y0 = 1.
The problem is solved numerically to check how the error in the geometry

depends on the temporal step length. Discretization is applied directly to the
weak formulation of (2.12). There is no ALE formulation now, due to our as-
sumption of rapidly stabilizing temperature. We arrive at a system of algebraic
equations

Aϕ = g,

where A is the discrete Laplace operator, and g is a vector representing the
known inhomogeneous boundary conditions along Γ1. The normal component
of the domain velocity at the moving surface is found by solving

BS wn = (g − Aϕ)
∣∣
Γ3

,

where wn is a vector containing wn on Γ3. The domain velocity is then given
by wx = 0, wy = wn. We update the domain by solving

dytop

dt
= wy

with both first, second and third order Adams-Bashforth schemes (AB1, AB2
and AB3), to see three different orders of convergence. Note that while this is
actually a scalar equation, it has been implemented as a vector equation to be
solved for each grid point on Γ3. This is done to check that the domain velocity

21

CHAPTER 2. THE STEFAN PROBLEM

is actually the same along all of Γ3, and that the surface remains horizontal. It
is also a preparation for the more complex model problems to come.

Convergence is verified by measuring the difference between the numerically
computed ytop,N and the theoretical ytop(t) from (2.14), averaged over all the
nodal points on Γ3. Results are displayed in Figure 2.3. The plot is logarithmic
in both axes, so the order of temporal convergence can be read out as the slope
of the curves. As expected, we see first, second and third order convergence for
AB1, AB2 and AB3, respectively.

10
−3

10
−2

10
−1

10
−10

10
−8

10
−6

10
−4

10
−2

AB1

AB2

AB3

∆t

|y
t
o
p
−

y
t
o
p
,N

|

Figure 2.3: Error in the numerical solution of the model problem, measured
as the absolute value of the difference between the theoretical and the numerical
values of ytop, the vertical position of the upper boundary Γ3. Time integration
is preformed from t0 = 0 to t = 1 for different values of the step length ∆t. The
polynomial degree is simply N = 1, to show that this is sufficient for representing
both the solution and the geometry exactly in this particular example. We
observe first, second and third order convergence from the first, second and
third order Adams-Bashforth schemes.

Note that we need the exact solution of the domain velocity prior to t0 in
order to start the multi-step schemes AB2 and AB3. The exact domain velocity
at Γ3 for t < t0 is found by differentiating (2.14) with respect to time.

2.2.2 Choice of tangential component of the domain ve-

locity

As mentioned in the beginning of this chapter, we have significant freedom in
the choice of tangential velocity wt on the interface. Our target is to preserve
the regularity of the mapping from the reference domain to the physical domain.
An easy way out is to require w to be normal to the surface [7], i.e. w · t = 0,
where t is the unit tangential vector. Then we do not have to compute any
tangential component, we can just find the unit normal and multiply it by the
proper length wn.

In the previous example, the distribution of the grid points on Γ3 remained
unchanged because the normal vector was the same all over the interface. This
may not always be the case. If there is a non-constant curvature on the interface,

22

2.2. UPDATING THE DOMAIN VELOCITY

the grid points may move relative to each other on the boundary, even though
the domain velocity is normal to the boundary. An example of such behavior is
shown in Figure 2.4. Over time, as the interface moves, this distribution may
become increasingly different from the initial distribution, resulting in increasing
interpolation errors.

Figure 2.4: Displacement of grid points on a moving surface. The direction of
the unit normal will over time lead to a clustering of grid points in the rightmost
part of the curve.

The error in the distribution of nodal points may be remedied by adding a
tangential component to the domain velocity. This does not affect the kinematic
condition, and will not change the shape of the surface of the domain. What
tangential component to add, however, is not a simple question, and there may
be more than one answer. It is a question that can not be answered without
considering the geometry at hand, and it may be difficult to find an answer
without some a priori knowledge of how the domain evolves over time. This
problem is best illustrated with an example.

2.2.3 A numerical example: moving grid points

This problem is quite similar to that in example 2.2.1. The difference is the
boundary condition on Γ1 and the addition of a temporal partial derivative in
the strong formulation, which will necessitate an ALE formulation in the weak
form. The problem is:

∂ϕ

∂t
= ∇2ϕ in Ω,

ϕ = g(x) = 1 +
1

2
cos 2πx on Γ1,

ϕ = 0 on Γ3,

∂ϕ

∂n
= 0 on Γ2 & Γ4.

(2.15)

Note that the derivative of the imposed temperature on Γ1 is zero at the end
points of that surface, which it needs to be, in order to meet the Neumann
conditions on the vertical boundaries. Initially the problem domain is Ω =
(0, 1) × (0, 1/4).

The ALE formulation of the problem is the one we derived in equation (1.6).
Now, the right hand side is zero, since there is no volumetric heat source. Also,
there is no prescribed convection field, so the convection term in (1.7) simplifies
to

c(v, ϕ) = −
∫

Ω

v w · ∇ϕ dΩ.

23

CHAPTER 2. THE STEFAN PROBLEM

Spatial discretization is done as always with a Legendre spectral method, re-
sulting in a system of differential equations (1.12). A second order Backward
Difference scheme (1.13) is applied for time integration.

0

0.5

1

0 0.2 0.4 0.6 0.8

0

0.5

1

1.5

x
y

Figure 2.5: Numerical solution of the model problem at time t = 1, using
polynomial degree N = 20 and a step length ∆t = 10−3. The latent heat is
L = 5.

The solution decreases from g(x) at Γ1 to zero at Γ3. Since the temperature is
higher towards the vertical boundaries of the domain, the rate of phase transition
will also be greater here, and hence the domain velocity will be larger. As a
consequence the surface Γ3 will have almost the same cosine shape as g(x).
However, as time goes by and the phase transition front moves away from the
bottom surface, the contributions from g(x) will even out along Γ3, and the
difference in the domain velocity from the sides to the middle of Γ3 decreases.
Hence, as the domain grows, the curvature of the top boundary decreases.

The horizontal component of the unit normal on Γ3 is everywhere pointing
towards the center of Γ3, except at the end points, where it is zero. When
moving the grid points on the surface in the direction of the surface normal, all
the points will move towards the middle of the surface, as shown in Figure 2.6.

Figure 2.6: Displacement of the grid points on the interface between the
phases. All grid points are moving towards the center of the curve.

This problem is apparent in the numerical simulation and illustrated in Fig-
ure 2.7. Here, the x-component of the grid points on Γ3 are plotted as a function
of the reference coordinate ξ. Initially, the mapping is given by the linear func-
tion x = (ξ + 1)/2, yielding a GLL distribution in the x-direction. When the
grid points are moved with the domain velocity, they all move horizontally to-

24

2.2. UPDATING THE DOMAIN VELOCITY

wards x = 0. Over time the x-component of the nodal points becomes bigger
than the GLL distribution to the left of the center point (i.e., for negative ξ),
and smaller to the right (ξ positive).

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

GLL distribution

Modified distribution

ξ

x

Figure 2.7: The x-component of the nodal points on Γ3 as a function of ξ for
the solution in Figure 2.5. Initially the points are distributed as x = (ξ + 1)/2,
i.e. a linear function. As the grid points all move towards the center point, the
x-component is larger than the GLL distribution to the left of the center point,
and smaller to the right.

A simple way to avoid this problem is to ignore the x-component of the
domain velocity and update just the y-component. After all, the expansion of
the domain is in the vertical direction, the vertical boundaries are adiabatic
walls. Removing the horizontal component, we are guaranteed that the GLL
points will be correctly distributed along the x-axis. The price to pay is that the
kinematic condition is no longer satisfied. This makes the method erroneous,
and we can not expect the solution to be correct. However, we will avoid
collapse.

Considering what has been said about this issue in the previous section,
we should be able to do better. We can achieve both goals at the same time,
i.e. satisfying the kinematic condition and preserving the GLL distribution, by
adding a tangential component to the domain velocity to make the resulting
velocity vector vertical all along Γ3. We do not need to compute the tangential
component explicitly. Simple trigonometry leads to a vertical component

w̃y =
w2

n

wy

,

where wn and wy are the normal component and y-component of the original w,
respectively. Since wn > wy, we expect this approach to yield a faster moving
phase transition front than the two other alternatives.

We compare the three methods in a numerical simulation. The system is
now simulated much longer in time (until t = 10) to make the differences more
conspicuous. Figure 2.8 shows the distribution of the grid points on the interface
Γ3 at the final time step. Using a strictly normal w on the interface has caused

25

CHAPTER 2. THE STEFAN PROBLEM

0 0.2 0.4 0.6 0.8 1

1.946

1.947

1.948

1.949

1.95

1.951

1.952

1.953

x

y

ewy = w2
n/wy

wt = 0

wx = 0

Figure 2.8: The distribution of the grid points on the top boundary Γ3 in the
final configuration at t = 10. The strategy of no tangential component of w

on the interface has caused a severe displacement of the grid points and large
numerical errors. The shape of the boundary is incorrect, and the numerical so-
lution will only deteriorate further until collapsing. The middle curve represents
removal of the x-component from w, while the top curve represents addition of
a tangential component to satisfy the kinematic condition. The curves have the
same shape and the same distribution of the grid points. The upper curve is
the solution we expect to be the best.

a substantial displacement of the grid points and a serious deterioration in the
regularity of the mapping from the reference domain. The shape of the interface
is obviously incorrect, and the end points of the interface are no longer moving
strictly vertically, causing a deformation of the entire domain. The numerical
solution is not far from collapse.

The two other approaches have avoided this deterioration. They have re-
tained the cosine-shape of the interface, although the amplitude is now very
small, as we predicted. The method which violated the kinematic condition has
caused the interface to move shorter than the method which satisfies the kine-
matic condition, which is also as we expected. The latter is what we consider
to be the best solution in this case.

2.3 Multi-element methods

So far all the domains encountered are distorted rectangles. This enables us
to solve the differential equations on a single element, representing the domain
using smooth transformations from a square reference domain. However, many
domains do not fit this description, i.e. their surface can not be divided into
four smooth curves. Examples include common, simple domains as triangles
or circles. When we try to represent such domains using a single quadrilateral
element, we end up with “corners” where the angle between the adjacent curves
are 0 or π. The Jacobian of the associated mapping becomes singular, and this
can cause seriously deteriorating convergence properties and should be avoided.

26

2.3. MULTI-ELEMENT METHODS

The solution is using multi-element methods [23, 27]. The domain Ω is
divided into K subdomains

Ω =

K⋃

k=1

Ωk,

where each subdomain has four corners and hence can be mapped to the refer-
ence domain. The number of elements and the topology of the elements can be
adapted to handle complex geometries. The multi-element approach is highly
similar to the finite element method, where the solution is usually approximated
by piecewise linear functions. Here we will use high order polynomials in each
element, which increases the number of variables to be determined in each ele-
ment.

In the same way as for the finite element method, we need to assemble the
contribution from each element across the element boundaries. The solution
is required to be smooth across the interface between the elements. When
evaluating the operators, care must be taken to ensure that contributions from
adjacent elements are properly added up at the right nodal points. This means
summing integrals associated with the same test function, evaluated over each
subdomain. For example, evaluating the bilinear form a(·, ·) from (1.7) yields a
sum

a(u, v) =

∫

Ω

∇u · ∇v dΩ =

K∑

k=1

∫

Ωk

∇u · ∇v dΩk.

First the operator is evaluated in each element, and then contributions are
added along surfaces between adjacent elements. We will refer to the summation
process as a “direct stiffness summation”.

2.3.1 Five-element structure

The multi-element structure that will be used here is a five-element structure,
as shown in Figure 2.9. It is one of the simplest structures possible to represent
a circle or ellipse.

Ω1

Ω2

Ω3

Ω4 Ω5

Figure 2.9: Five-element structure.

27

CHAPTER 2. THE STEFAN PROBLEM

Each of the four elements that are part of the external surface, is rotated
so that the circular surface is mapped from the line η = −1 in the reference
domain. This is convenient when it comes to operator evaluation on the exter-
nal surface, but we must take care when implementing the assembling on the
interface between the boundary elements and the center element. In particular,
the grid points are distributed in the opposite direction on the interface between
elements 3 and 5, and elements 4 and 5. This must be taken into account when
constructing the direct stiffness sum.

Each nodal point on the internal surfaces between elements will be repre-
sented in the data structure of each adjacent element. Hence, they will be
represented more than one place. This is a challenge when it comes to preform-
ing dot products. The product at one point must not be counted more than
once. One solution is to make a multiplicity vector (or matrix, depending on
the implementation) m consisting of weights, compensating for the number of
representations of each point. The weight is 1/2 on internal surfaces with two
adjacent elements, and 1/3 on the corners of Ω5, where three elements meet.
Everywhere else the weight is 1. Now, a dot product on Ω is computed as

vT w =

K∑

k=1

N∑

j=0

N∑

i=0

vk
ijw

k
ijm

k
ij

where vk
ij is the entry in v corresponding to the GLL point (ξi, ξj) in subdomain

k.

In order to perform the direct stiffness sum, we make a customized function
to deal with this particular geometry. It takes one parameter, namely the data
structure of values in the computational points in all Ω, and adds the values
at grid points that are represented several times in different places in the data
structure. We must also take care to store the new value in all the places where
the point is represented, in order to avoid inconsistency.

As a side-note it can be added that it is not necessary to sum up the contribu-
tion for each operator evaluated. It is possible to first evaluate all the operators
involved in the differential equation, and then do the direct stiffness summation.
This is computationally more efficient, especially in problems involving many
different (discrete) operators.

Even though the topology of the five-element structure is fairly simple, the
transition from single-element to multi-element representation is not trivial, and
there are many potential sources of error. Therefore, we start by solving a simple
Poisson problem with a known analytic solution. This problem will be used to
verify exponential convergence in space. Then we will re-implement example
2.2.3 in order to test the multi-element approach on a full ALE formulation.
Finally we will present a new ALE example.

2.3.2 Multi-element approach to a Poisson problem

The problem we consider is:

−∇2ϕ = 2π2 cos(πx) cos(πy) in Ω,

ϕ = cos(πx) cos(πy) on ∂Ω,

28

2.3. MULTI-ELEMENT METHODS

where Ω is a circle of radius 1, centered at the origin. The exact solution to this
problem is

ϕ = cos(πx) cos(πy),

i.e. an analytic function. The problem is solved using a five-element approach.
The main elements of the numerical procedure that need to be changed from the
single-domain approach is the data structure and the evaluation of the discrete
Laplace operator. Besides, inner products need to be implemented with the
multiplicity matrix, and the direct stiffness sum must be applied after operator
evaluations.

Both the numerical solution for N = 20 and the error, measured in the energy
norm, are shown in Figure 2.10. Exponential convergence is indeed observed.
The error stabilizes around 10−10, which is the tolerance in the Conjugate Gra-
dient iterations used to solve the algebraic system.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

0

1

x

y
5 10 15 20 25 30 35

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

|||ϕ
−

ϕ
N
|||

N

Figure 2.10: Left: Numerical solution of the model problem, using polynomial
degree N = 20. The five-element structure can be recognized by a higher density
of grid lines near the boundaries between the elements. Right: Error, measured
in the energy norm. Convergence is exponential, and the error levels out when
reaching the tolerance level in the CG iterations.

2.3.3 Multi-element approach with full ALE formulation

We solve the model problem from Section 2.2.3, but this time with a multi-
element representation of the domain. The problem requires full ALE formu-
lation, which in turn gives several operators to be evaluated over the entire
domain. We take care to evaluate each operator over all elements before apply-
ing the direct stiffness sum.

Compared to the previous example, we now have to update the computa-
tional domain. After finding the heat flux and applying the Stefan condition,
we find the normal vector on the external surface. For simplicity, no tangential
component is added to the domain velocity on the moving interface. Now, the
external surface is distributed on four different elements, and we have to inter-
polate the domain velocity to the internal grid points. The simplest approach
is to use a harmonic extension, as in (2.11). Since we implemented the solution
of the Poisson problem with a multi-element approach in the previous example,
this is now easily done.

29

CHAPTER 2. THE STEFAN PROBLEM

The numerical solution is shown in Figure 2.11. Compared to the solution in
Figure 2.5, we see that they are practically identical. This serves as a indication
of correct implementation.

0

0.5

1
0 0.2 0.4 0.6 0.8

0

0.5

1

1.5

x
y

Figure 2.11: Numerical solution of the model problem, using polynomial de-
gree N = 20 and n = 1000 time steps from time t0 = 0 to time t = 1. The latent
heat is L = 5. These are the same parameters as those used in the example in
Section 2.2.3, and comparing this result to Figure 2.5, we see that the solutions
are practically the same. This confirms that our multi-element implementation
is correct.

2.3.4 A Stefan problem on a circular domain

Consider a Stefan problem on a circular two-dimensional domain, where all of
the circular boundary is a part of the phase transition front. The initial domain
is a circle of radius r0 = 1, and the temperature is in polar coordinates given by

ϕ(r, θ, t) = 1 − r2.

Hence the temperature is zero on the surface, and we assume zero temperature
outside Ω, such that the net heat flux on the interface equals the heat flux out
from Ω. The Stefan condition applies to all of ∂Ω, and due to the symmetry
of the problem, we expect the domain to expand radially, as a growing circle.
We also expect the temperature to decrease inside Ω, and since energy is lost in
the phase transition, temperature should eventually fall to zero and the domain
should stabilize at a certain radius. This radius can be calculated by energy
considerations. The internal energy in the initial configuration is

E0 =

∫

Ω

ϕ dΩ =

∫ 2π

0

∫ 1

0

(1 − r2) r dr dθ =
π

2
.

In our two-dimensional model, the energy needed to melt a unit area equals the
latent heat L. Hence, the energy needed to expand the domain to a radius r is
given by

Ept = L

∫ 2π

0

∫ r

1

r dr dθ = π(r2 − 1),

30

2.3. MULTI-ELEMENT METHODS

where L = 1. Over time, the temperature in Ω approaches zero, and the energy
absorbed in the phase transition will approach the initial energy,

π(r2 − 1) → π

2
.

Hence, as the time t → ∞, the radius

r →
√

3

2
.

Numerically, we have to run the simulations for a finite amount of time. The
order of magnitude of the temperature in Ω can serve as an indicator of how
close we should be to the final radius computed above.

Now that the phase transition front extends over multiple elements, we are
faced with a new challenge: how to determine the domain velocity in the joints
between the elements. The normal component of the domain velocity, which is
found from an integral over the phase transition interface, must now be summed
up from contributions over each element. Hence, we need a sort of direct stiffness
sum over the external surface. We could use the algorithm used on the entire
Ω, discarding the results that are not on ∂Ω. A computationally more economic
solution, however, is to design a summation procedure to cater for the points
that are in the intersection of the external and the internal surfaces. This is
fairly easy and is the path followed in this example.

Then there is the question of how to determine the unit normal in the same
“corner points”. Usually the normal vector is computed locally in the element in
which the surface points reside. Now what about points that reside on the joint
between two elements? In order to find a unique w, we use information from
both adjacent elements. We add the normal vectors computed on each element
and normalize the resulting vector. The length of the normal component wn is
the same in both representations of the corner point, due to the direct stiffness
sum. Hence, we end up with a unique velocity vector in the corner points that
contains information from both adjacent elements.

In this problem we will use the Gordon-Hall algorithm to interpolate the
domain velocity to the interior. However, we can not simply interpolate linearly
from one boundary to the other. We have to find a way to interpolate from the
surface, via the center element, to the other surface. Unless we know exactly the
distance from each point on the boundary to the surface of the center element,
the interpolation will only be piecewise linear. This is sufficient, though, as long
as the domain velocity is continuous across element boundaries [12]. In this
case we define the domain velocity on the corners of the center element as half
of the domain velocity on the external surface. The number is chosen because
this is the ratio of the distance from the origin to these corners and the external
surface in the initial configuration. This will make the center element expand
with approximately the same velocity as the external surface.

The numerical solution is indeed an expanding circular domain, as expected.
The radial symmetry in the geometry is properly reflected in the symmetry of
the five elements. Figure 2.12 shows that the solution remains a parabola, but
that the height approaches zero. Hence the rate of phase transition decreases
and approaches zero. The decreasing expansion rate can be seen in the right
plot, which shows the radius of the circle as a function of time. The radius

31

CHAPTER 2. THE STEFAN PROBLEM

−1
−0.5

0
0.5

1

−1

0

1

0

0.5

1

1.5

2

x 10
−9

xy
0 1 2 3 4 5

1

1.05

1.1

1.15

1.2

1.25

r

t

Figure 2.12: Left: numerical solution of the model problem with L = 1, using
polynomial degree N = 14 and n = 1000 time steps from time t0 = 0 to time
t = 5. The solution ϕN remains a parabola. The peak is of magnitude 10−9

and decreasing, since energy is absorbed in the phase transition. Right: radius
of the circular domain as a function of time. The radius increases, but stabilizes
when the temperature approaches zero.

increases, quickly in the beginning, then slower and slower as the temperature
in Ω decreases.

The radius is calculated as the mean radius of all grid points on the surface,
and is found to be r ≈ 1.216. This is slightly less than the theoretical value
r =

√
3/2 ≈ 1.225. The difference is larger than we might expect, given the

magnitude of the temperature. The peak of the temperature is of magnitude
10−9, and the change of radius from t = 3 to t = 5 is in the fifth decimal. Hence,
simulating the system further in time will only result in unnoticeable changes
to the radius.

An immediate reaction is that the computation of the radius may be inac-
curate. However, this explanation fails as the difference between the maximum
and the minimum of the radius in the nodal points on the boundary is about
0.05% at t = 5. Changing the way we compute the radius would only change
the value in the fourth decimal.

Another explanation could be that the difference is due to numerical er-
rors introduced by either the spatial or the temporal discretization. However,
running more simulations with different parameters, we have verified that de-
creasing the resolution in either time or space (or both) does not change the
solution notably. Hence, the resolution is high enough.

What is the explanation then? It is actually quite simple. The semi-implicit
scheme (1.13) requires values of ϕ and w at the last two time steps before t0 to
start the iterations. In this case, since the exact solution is unknown, we have
just assumed zero domain velocity prior to t0. This makes all the convection and
expansion terms in the first time step vanish, and in result, the heat flux is not
computed correctly in this time step. Energy is lost and can not be recovered,
and the final radius is smaller than it should be.

This example shows the value of having model problems where the exact
solution is known. Even though we know what the final radius should be, we
can not find it numerically with a high precision without some knowledge of
what the domain velocity is at the initial configuration.

32

Chapter 3

The Navier-Stokes equations

We now turn our attention to the world of fluid dynamics. This is one of
the most important areas of application for the spectral methods. Fluid flows
in time-dependent geometries are encountered in a large number engineering
problems, and analytic solutions are hardly available, due to the complexity
of the equations. Hence, good numerical approximations are valuable, and the
spectral methods have evolved to be able to handle many complex fluid dynamics
problems [10].

We will here consider incompressible Newtonian fluid flow, i.e. fluids with
constant viscosity. The motion of such fluids is properly described by the Navier-
Stokes equations [32]. These equations express conservation of linear momentum
and mass, and are in two dimensions given as

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
− µ

∂

∂xj

(
∂ui

∂xj

+
∂uj

∂xi

)
+

∂p

∂xi

= fi in Ω, i = 1, 2,

∂uj

∂xj

= 0 in Ω,

(3.1)

where ρ is the fluid density, µ is the dynamic viscosity, ui is the i-th component
of the fluid velocity, and fi is the i-th component of the body force. The indicial
notation is used with the Einstein summation convention, meaning summation
over repeated indices. Dirichlet or Neumann boundary conditions are given for
either both Cartesian components or for normal and tangential components of
the fluid velocity along ∂Ω.

Numerical treatment of the full Navier-Stokes equations is fairly complicated,
and the most natural approach to master it is to simplify the equations as much
as possible, and then gradually expand them, including more terms. We will
start out here by modeling only the viscous term, excluding convection, pressure
and unsteady terms. We will then gradually expand the model, via pressure,
unsteady terms and convection. In the end we will add a free surface condition,
necessitating a moving grid and an ALE formulation.

3.1 The viscous term

The viscous term contains the highest order differential operator in the Navier-
Stokes equations. It is a suitable starting point because it is the term that

33

CHAPTER 3. THE NAVIER-STOKES EQUATIONS

governs both the boundary conditions and the regularity requirement of the
weak solution. The simplifications done from the full Navier-Stokes problem is
removing pressure from the model, as well the unsteady term and the convection
term. The incompressibility condition is then no longer necessary. We arrive at
a model problem that is given in strong form as

−µ
∂

∂xj

(
∂ui

∂xj

+
∂uj

∂xi

)
= fi in Ω, i = 1, 2,

uj = 0 on ∂Ω.

(3.2)

Homogeneous Dirichlet boundary conditions are assumed for simplicity, and
they may be exchanged for any Dirichlet or Neumann boundary conditions. The
equations are similar to the Poisson equation, with the important difference that
the solution is now a vector, and that the equation for each component of the
vector depends on the other component. The solution we are seeking can be
written on vector form as

u =

[
u1

u2

]
.

Similarly, the body force f and test function v are two-dimensional vectors at
each point (x, y) in Ω.

The weak formulation is derived by multiplying with test functions and in-
tegrating over Ω. The solution space is now a space of two-dimensional vector-
valued functions, and so are the test functions. Integration by parts and appli-
cation of the boundary conditions yields the following weak formulation: find
u ∈ X = (H1

0 (Ω))2 such that

a(v, u) = (v, f) ∀v ∈ X,

where (·, ·) is an L2 inner product

(v, f) =

∫

Ω

vifi dΩ, i = 1, 2, (3.3)

in each of the components of the vectors, and a : X × X → R
2 is the viscous

operator, defined by

a(v, u) = µ

∫

Ω

∂vi

∂xj

(
∂ui

∂xj

+
∂uj

∂xi

)
dΩ, i = 1, 2. (3.4)

Since there is one equation for each component of the velocity, this operator can
be considered vector-valued and is therefore written in vector notation.

The discretization is done with a Legendre spectral element method, where
each of the components of u are approximated with Legendre polynomials on
each element. The discrete space, in which we seek a solution, is

XN = {v ∈ X
∣∣ (v

∣∣Ωk ◦ F ∈ (PN (Ω̂))2}.

We use a nodal basis of Lagrangian interpolants on a GLL grid in the same
way as for the convection-diffusion equation, but now there will be a vector of
two test functions associated with each spatial grid point. Hence, a function
v ∈ XN can on each subdomain Ωk be expanded in the reference coordinates as

v̂k(ξ, η) =
∑

m

∑

n

vk
mnℓm(ξ)ℓn(η), k = 1, . . . , K,

34

3.2. STEADY STOKES FLOW

where the coefficients vmn are two-dimensional vectors.
After the spatial discretization, we end up with a system of equations

Au = Bf ,

where A is the discrete viscous operator and B is the mass matrix. The matrix
A is SPD, and hence the system of equations can be solved with the conjugate
gradient algorithm.

3.1.1 A numerical example of the pure viscous problem

To illustrate the concepts of the previous section, we solve (3.2) with the fol-
lowing body force:

f1 = π2µ

(
3

4
cos(

πx

2
) cos(

πy

2
) + cos(πx) cos(πy)

)

f2 = −π2µ

(
1

4
sin(

πx

2
) sin(

πy

2
) + 3 sin(πx) sin(πy)

)

This problem is solved on a domain that coincides with the reference domain,
and it has the exact solution

u1 = cos(
πx

2
) cos(

πy

2
),

u2 = − sin(πx) sin(πy).

The problem is solved here using a multi-element approach with the five-
element structure described in section 2.3.1. This is not necessary in this case
since Ω is a square, but it is done in preparation for later problems, when we
will encounter circular domains. As for the multi-element approach, there is not
much that separates the treatment of fluid problems from that of convection-
diffusion problems. The direct stiffness summation depends on the topology of
the elements and is therefore the same, except that separate summations must
be done for both components of u.

The numerical solution for N = 10 is shown in Figure 3.1. We see higher
density of arrows along the boundaries between the elements, reflecting the five-
element structure. The Figure also shows the numerical error. It is measured
in the energy norm, given by

|||v|||2 ≡ a(v, v),

where the right hand side is the sum of the contributions from the two integrals
of a(·, ·). We observe exponential convergence, as is to be expected, considering
that the domain in this case is represented exactly, and body force and solution
are analytic functions. The error stops decreasing when it reaches the tolerance
level of the CG iterations, which is set to 10−12.

3.2 Steady Stokes flow

The Stokes equations are used to model creeping fluid flow, where viscous forces
dominate inertial forces [32]. They are a simplification of the Navier-Stokes

35

CHAPTER 3. THE NAVIER-STOKES EQUATIONS

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

5 10 15 20 25

10
−10

10
−5

10
0

|||u
−

u
N
|||

N

Figure 3.1: Top: numerical solution of the viscosity model problem, using
polynomial degree N = 10. The five-element structure gives a higher density of
vectors along the boundaries between the elements. Bottom: error, measured in
the energy norm, as a function of the polynomial degree N . The exact solution
is analytic and convergence is exponential. The error levels out when it reaches
the tolerance level of the CG iterations.

equations in that the convection term is disregarded. For steady Stokes flow the
unsteady terms vanish as well, and we end up with the equations

−µ
∂

∂xj

(
∂ui

∂xj

+
∂uj

∂xi

)
+

∂p

∂xi

= fi in Ω, i = 1, 2,

∂uj

∂xj

= 0 in Ω,

u = g on ∂Ω,

(3.5)

where we have prescribed inhomogeneous Dirichlet boundary conditions. There
are no boundary conditions for the pressure. First, note that with these bound-
ary conditions there is a solvability condition that needs to be satisfied for the
problem to have a solution. Conservation of mass and the divergence theorem

36

3.2. STEADY STOKES FLOW

imply that

0 =

∫

Ω

∇ · u dΩ =

∫

∂Ω

u · n dS =

∫

∂Ω

g · n dS (3.6)

This condition is always satisfied for homogeneous and periodic boundary con-
ditions.

There is also a question of uniqueness that should be addressed. Consider
two solutions (u1, p1) and (u2, p2) of (3.5). Due to linearity of the equations,
(w, q) = (u1 − u2, p1 − p2) represents a solution to the problem

−µ
∂

∂xj

(
∂wi

∂xj

+
∂wj

∂xi

)
+

∂q

∂xi

= 0 in Ω, i = 1, 2,

∂wj

∂xj

= 0 in Ω,

w = 0 on ∂Ω.

(3.7)

Multiplying the momentum equations with wi and integrating over Ω, we get

−µ

∫

Ω

wi

∂

∂xj

(
∂wi

∂xj

+
∂wj

∂xi

)
dΩ +

∫

Ω

wi

∂q

∂xi

dΩ = 0, i = 1, 2.

Integrating by parts and using the homogeneous boundary conditions of (3.7),
we get

µ

∫

Ω

∂wi

∂xj

(
∂wi

∂xj

+
∂wj

∂xi

)
dΩ +

∫

Ω

∂wi

∂xi

q dΩ = 0, i = 1, 2.

Note that there is no summation over the index i, so there is only one partial
derivative in the last integral. Adding the two momentum equations together,

µ

2∑

i=1

∫

Ω

(
∂wi

∂xj

)2

+

(
∂wj

∂xj

)2

dΩ +

2∑

i=1

∫

Ω

∂wi

∂xi

q dΩ = 0,

we get a divergence term in both integrals, which vanishes due to the incom-
pressibility condition. The other two terms in the first integral are non-negative
and must therefore be everywhere zero for the equation to hold. Hence the
gradients are everywhere zero,

∇wi = 0 i = 1, 2,

and the solution is a constant in Ω. The homogeneous boundary conditions then
imply that w = 0, and we conclude that

u1 = u2.

Now the momentum equations in (3.7) simplify to

∂q

∂xi

= 0, i = 1, 2

meaning that q is constant in Ω. But since we have no boundary condition
“anchoring” the pressure, it is only determined up to a constant. Hence, for any
constant p0 we may have

p2 = p1 + p0.

p0 is called the hydrostatic mode.

37

CHAPTER 3. THE NAVIER-STOKES EQUATIONS

3.2.1 Weak form

The relevant solution spaces for the Stokes problem (3.5), now with g = 0 for
simplicity, are

X = {v ∈ (H1(Ω))2
∣∣ v|∂Ω = 0} = (H1

0 (Ω))2

Y = {q ∈ L2(Ω)
∣∣

∫

Ω

q dΩ = 0} = L2
0(Ω)

The pressure is not required to be continuous, which is due to the fact that
no partial derivatives of the pressure are present in the weak formulation of the
problem. The weak formulation is derived in the same way as before, and states:
find u ∈ X and p ∈ Y such that

a(v, u) − d(v, p) = (v, f) ∀v ∈ X,

−d(u, q) = 0 ∀q ∈ Y.
(3.8)

Here a : X × X → R
2 is the viscous operator, as defined in (3.4), and d :

X × Y → R
2 is a bilinear form

d(v, q) =

∫

Ω

q
∂vi

∂xi

dΩ, i = 1, 2. (3.9)

3.2.2 Discretization

We will apply a Legendre spectral element method to solve (3.8). Both pres-
sure and velocity will be approximated by polynomials, but we will not use
equal order approximations. This will lead to a non-trivial null space for d(·, ·),
consisting of spurious pressure modes, which will be hidden by d(·, ·) in the
equations [3].

Instead we will apply the so-called PN − PN−2 method [25]. This involves
the discrete spaces

XN = {v ∈ X
∣∣ v

∣∣
Ωk

◦ Fk ∈ (PN (Ω̂))2}

YN = {q ∈ Y
∣∣ q

∣∣
Ωk

◦ Fk ∈ (PN−2(Ω̂))2}
(3.10)

where Ω̂ = ((−1, 1))2 is the reference domain. These spaces can be proved to
be compatible [4]; they guarantee a unique solution and no spurious pressure
modes. This will not be proved here.

The pressure will be a sum of Lagrangian interpolants in the same way as
the velocity is. Functions q ∈ YN can be expanded in a nodal basis on the
reference domain associated with each spectral element,

q̂k(ξ, η) =

N−1∑

m=1

N−1∑

n=1

qk
mnℓ̃m(ξ)ℓ̃n(η), k = 1, . . . , K,

where ℓ̃i(ξ) ∈ PN−2(Ω̂). The tilde is used to show that these basis functions are
different from the polynomials ℓi(ξ) in the basis for XN .

The order of the polynomials is different, and this affects the nodal points.
If there are N + 1 nodal points in each spatial direction for the velocity to
be represented in, there are only N − 1 for the pressure. One possible choice

38

3.2. STEADY STOKES FLOW

of points could be the internal GLL points. A better choice, however, are the
Gauss-Legendre (GL) points corresponding to a polynomial degree N−2. These
points are not the same as the internal GLL points, so the grids will be staggered.
We use ξi to denote the GLL points and ζi to denote the GL points. Note that

ℓi(ξj) = δij and ℓ̃i(ζj) = δij .

The use of GL points makes use of GL quadrature natural, which is what we
will do for the gradient and divergence terms. The result is an algebraic system
of equations

Au − DT p = Bf

−Du = 0
(3.11)

where A represents the discrete viscous operator, DT the discrete gradient
operator, and D the discrete divergence operator. For more details, see for
example [11].

3.2.3 The Uzawa algorithm

The system matrix in the discrete Stokes problem (3.11) can be written on block
matrix form as [

A −DT

−D 0

]
. (3.12)

The matrix A is both symmetric and positive definite, and this system matrix is
clearly symmetric. However, it is no longer positive definite, and the eigenvalues
are now both positive and negative. The algebraic system does no longer corre-
spond to a minimization problem, it now represents a symmetric saddle problem

[31]. The conjugate gradient algorithm can no longer be applied. However, the
Uzawa algorithm [2, 6] will be used to transform the algebraic system (3.11) to
a form that allows use of the CG algorithm. Using block Gaussian elimination
we arrive at system

[
A −DT

0 DA−1DT

] [
u

p

]
=

[
Bf

−DA−1Bf

]
, (3.13)

which is triangular and can be solved. First, consider the second equation. The
matrix DA−1DT is symmetric positive semi-definite, and the system can be
solved for p using CG iterations. However, this requires operator evaluations

w = DA−1DT p, (3.14)

which must be done in three steps:

1. w1 = DT p

2. w2 = A−1w1, which is found by solving Aw2 = w1. A is SPD, so the
system can be solved with the CG algorithm.

3. w = D w2

The use of the CG algorithm inside the CG iterations gives rise to the name
nested CG iterations. Once this system is solved for p, we solve the system

Au = DT p + Bf

to find u, again with CG iterations.

39

CHAPTER 3. THE NAVIER-STOKES EQUATIONS

3.2.4 A numerical example: steady Stokes flow

We test the algorithm presented in the previous section on a simple model
problem. The problem has an analytic solution

u1 = sin(πx) sin(πy),

u2 = cos(πx) cos(πy),

p = sin(πx) cos(πy),

and the problem domain is simply Ω = ((−1, 1))2. We will use a multi-element
approach, of the same reasons as before.

This problem does not have homogeneous boundary conditions. The system
to solve for the pressure then becomes

DA−1DT p = −DA−1 (Bf − Ag) − Dg, (3.15)

where g is a matrix with the boundary values in the entries corresponding to
grid nodes on the surface, and zeros in the other nodes.

Figure 3.2 shows the error in both pressure and velocity. The error in the
velocity is measured in the energy norm, while the error in the pressure is
measured in the L2-norm. These are natural norms for the respective function
spaces where we find u and p. Convergence is exponential as expected, until it
reaches the tolerance level of the CG iterations.

5 10 15 20 25

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

p

u

N

E
rr

o
r

Figure 3.2: Error in the numerical solution of the model problem as a function
of the polynomial degree N , measured in the energy norm. The exact solution
is analytic and convergence is exponential. The error stabilizes on the tolerance
level of the CG iterations (10−12).

The algebraic system that is solved to find the pressure, can with success
be preconditioned. To see how, observe that the continuous equivalence to the
pressure-operator (3.14) is ∇· (∇2)−1∇. Heuristically [22], this is similar to the
identity operator I,

∇ · (∇2)−1∇ ∼ I.

The discrete version of the similarity above is

DA−1DT ∼ B̃.

40

3.2. STEADY STOKES FLOW

Hence, we can use the mass matrix B̃ as a preconditioning matrix. The tilde is
used to indicate that this is the mass matrix on the GL grid, where the pressure
is computed. This is necessary for the matrix dimensions to be correct. As the
Lagrangian interpolants ℓ̃i(ζ) in the GL points are orthogonal in the discrete in-

ner product, B̃ is diagonal and hence easily invertible. Preconditioning involves

matrix-vector products with the inverse B̃
−1

, which can be done element-wise
as

{B̃−1
v}ij =

vij

ωiωjJ̃ij

,

where ωi is the GL weight corresponding to the GL point ζi, and J̃ij is the
Jacobian computed in the GL grid point (ζi, ζj). As this operation does not
require any matrix-matrix products, it is done in O(N2) operations. Since oper-
ator evaluation in the CG iterations requires O(N3) operations, preconditioning
does not add any significant computation time to the algorithm.

0 20 40 60 80 100 120 140

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iterations

R
es

id
ua

l

N = 10
N = 20
N = 30

Figure 3.3: Residual during CG iterations for different polynomial degrees,
i.e. problem sizes. With preconditioning, the number of iterations needed for
convergence does not depend on the problem size.

Figure 3.3 shows the residual during the CG iterations as a function of
the iteration number. We see that the convergence properties of the uncondi-
tioned system depend on the problem size, i.e. the dimension of the matrices
in the system solved. For the preconditioned system, the number of iterations
needed to reach the desired residual is seemingly independent of the problem
size. Convergence in the CG iterations depends on the condition number of the
system matrix [30], and preconditioning with B̃ keeps the condition number
constant. For a polynomial degree N = 10, preconditioning gives 4 times less
iterations, while for N = 30, it gives 14 times less iterations. Considering that
the computation time for one iteration is approximately the same with or with-
out preconditioning, this ratio also applies to the CPU time in the numerical
simulations.

41

CHAPTER 3. THE NAVIER-STOKES EQUATIONS

3.3 Unsteady Stokes flow

The next step towards the Navier-Stokes equations is adding the partial deriva-
tive of the velocity with respect to time, resulting in an unsteady Stokes problem.
The strong form of the problem is

ρ
∂ui

∂t
− µ

∂

∂xj

(
∂ui

∂xj

+
∂uj

∂xi

)
+

∂p

∂xi

= fi in Ω, i = 1, 2,

∂uj

∂xj

= 0 in Ω,

(3.16)

with boundary conditions

u = g on ∂Ω,

u = u0(x, y) at t = 0.
(3.17)

For simplicity we set ρ = 1. The weak formulation is the same as that of the
steady problem (3.8), apart from an added term with the time-derivative. Since
the geometry and the test functions are not time-dependent, this term simplifies
to a normal derivative outside the integral,

∫

Ω

v
∂u

∂t
dΩ =

d

dt

∫

Ω

vu dΩ,

after integration by parts. Applying the same PN − PN−2 method for spatial
discretization as we did for the steady problem, we arrive at a semi-discrete
system of ordinary differential equations:

B
du

dt
+ Au − DT p = Bf ,

−Du = 0.
(3.18)

Temporal discretization of the first equation is done with a second order back-
ward differentiation scheme

B
3un+1 − 4un + un−1

2∆t
+ Aun+1 − DT pn+1 = Bfn+1.

Rearranging the equation in order to solve it for un+1, we obtain

(A +
3

2∆t
B)un+1 = DT pn+1 + B

(
fn+1 +

2

∆t
un − 1

2∆t
un−1

)
. (3.19)

The Helmholtz like operator is SPD, since both A and B are SPD. Hence this
system can be solved with conjugate gradient iterations. However, this requires
pn+1 to be known. We find the pressure in the same way as before, with the
block Gaussian elimination of the Uzawa algorithm. The resulting system

D(A+
3

2∆t
B)−1DT pn+1 = −D(A+

3

2∆t
B)−1B

(
fn+1 +

2

∆t
un − 1

2∆t
un−1

)

can be solved for pn+1 with a nested CG algorithm, as shown in the previous
section. We can then solve (3.19) for un+1.

42

3.4. FREE SURFACE STOKES FLOW

3.3.1 A numerical example: unsteady Stokes flow

We solve a problem with exact solution

u1 = sin(πx) sin(πy)(1 − e−t),

u2 = cos(πx) cos(πy)(1 − e−t),

p = sin(πx) cos(πy)(1 − e−t),

on a circular domain of radius 1 with center in the origin. Inhomogeneous
boundary conditions are prescribed in accordance with the exact solution. Both
the fluid density ρ and the dynamic viscosity µ are equal to unity.

The method applied is the one described in the previous section, with a
second order temporal discretization scheme. The inhomogeneous boundary
conditions result in modifications of the method similar to (3.15).

10
−3

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

∆t

E
rr

o
r

p

u

5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

N

E
rr

o
r

p
u

Figure 3.4: Error in the numerical solution at time t = 1. The velocity is
measured in the energy norm, the pressure in the L2-norm. Left: error as a
function of the step length ∆t for N = 10. Convergence is second order for
both pressure and velocity until ∆t ≈ 10−2, where the spatial discretization
error is no longer subdominant the temporal discretization error. Right: error
as a function of the polynomial degree N , with a step length ∆t = 10−3. The
temporal discretization error is subdominant the spatial discretization error for
N < 12.

Second order convergence in time is verified for both pressure and velocity in
Figure 3.4. The temporal discretization error dominates the spatial discretiza-
tion error until ∆t ≈ 10−2, where the spatial discretization error becomes dom-
inant. The same Figure also shows exponential convergence in space. Here we
have the opposite case: the spatial discretization error dominates the temporal
discretization error until N ≈ 12.

3.4 Free surface Stokes flow

A free surface is a surface that is subject to neither normal nor tangential stress.
Surface tension is a property of the surface of a liquid that makes it behave
like an elastic sheet, and it is often neglected in large scale models. Here, we
will assume that surface tension forces are significant, and we will consider the

43

CHAPTER 3. THE NAVIER-STOKES EQUATIONS

surface between two immiscible incompressible fluids, one of which is viscous
and one inviscid. Free surface conditions can then be written as [19]

niσijnj = γκ − p0 on ∂Ω,

tiσijnj =
dγ

ds
on ∂Ω,

(3.20)

where dγ
ds

is the derivative of the surface tension along the free surface, κ is the
local curvature, p0 is the external pressure and ni and ti are the i-th components
of the unit normal and tangential vectors, respectively. The stress tensor σij is
for a Newtonian fluid given by [1]

σij = −pδij + µ

(
∂ui

∂xj

+
∂uj

∂xi

)
, i, j = 1, 2.

The unsteady Stokes equations can be written in stress tensor form, using
indicial notation, as

ρ
∂ui

∂t
− ∂σij

∂xj

= fi in Ω, i = 1, 2,

∂uj

∂xj

= 0 in Ω.

(3.21)

The relevant function spaces for the weak form are:

X = {v
∣∣ ∀t ∈ [0, T], v(x, y; t) ∈ H1(Ω),

∫ T

0

‖v‖2
H1(Ω) dt < ∞}

Y = {q
∣∣ ∀t ∈ [0, T], q(x, y; t) ∈ L2(Ω),

∫ T

0

‖v‖2
L2(Ω) dt < ∞}

In deriving the weak formulation, we multiply by test functions and integrate
over Ω. The weak formulation in indicial notation reads: find ui ∈ X, i = 1, 2
and p ∈ Y such that

ρ

∫

Ω

vi

∂ui

∂t
dΩ +

∫

Ω

∂vi

∂xj

σij dΩ =

∫

Ω

vifi dΩ +

∫

∂Ω

viσijnj ds ∀vi ∈ X,

∫

Ω

q
∂uj

∂xj

dΩ = 0 ∀q ∈ Y.

(3.22)

3.4.1 ALE formulation

Now we derive the ALE formulation of the free surface Stokes problem (3.22).
The procedure is very similar to the derivation of the ALE formulation of
the convection-diffusion problem. Applying integration by parts and Reynold’s
transport theorem, the first term in (3.22) becomes

∫

Ω

vi

∂ui

∂t
dΩ =

d

dt

∫

Ω

vi ui dΩ −
∫

∂Ω

viuiujnj ds −
∫

Ω

ui

∂vi

∂t
dΩ.

Using the kinematic condition and the divergence theorem, the second term on
the right hand side can be written

∫

∂Ω

viuiujnj ds =

∫

Ω

∂vi

∂xj

uiwj + vi

∂ui

∂xj

wj + viui

∂wj

∂xj

dΩ.

44

3.4. FREE SURFACE STOKES FLOW

Inserting this into the weak formulation of the Stokes problem, and integrating
the stress tensor term by parts, we arrive at

d

dt

∫

Ω

vi ui dΩ −
∫

Ω

∂vi

∂xj

uiwj + vi

∂ui

∂xj

wj + viui

∂wj

∂xj

dΩ −
∫

Ω

ui

∂vi

∂t
dΩ

−
∫

Ω

∂vi

∂xj

σij dΩ =

∫

Ω

vifi dΩ +

∫

∂Ω

viσijnj ds. (3.23)

The derivative of the test functions following the domain velocity is zero,

Dvi

Dt
=

∂vi

∂t
+ wj

∂vi

∂xj

= 0,

which makes two of the terms on the left hand side vanish, and we end up with
the following ALE formulation (returning to vector notation): find u ∈ (X)2

and p ∈ Y such that

d

dt
(v, u) + a(v, u) + c(v, u) − d(v, p) − e(v, u)

= (v, f) + Iγ(v) ∀v ∈ (X)2, (3.24)

where a(·, ·) is the viscous term (3.4), d(·, ·) as defined in (3.9) denotes both the
gradient and the divergence terms, and Iγ(v) denotes the surface integral. The
ALE formulation introduces two new operators, very similar to the operators
(1.7) in the ALE formulation of the convection-diffusion problem. Here they
consist of two integrals, one for each component of u:

c(v, u) = −
∫

Ω

viwj

∂ui

∂xj

dΩ, i = 1, 2,

e(v, u) =

∫

Ω

viui

∂wj

∂xj

dΩ, i = 1, 2.

The ALE formulation of the linear momentum equations is of course accompa-
nied by the incompressibility equation, which is the same as in the weak form.

3.4.2 Surface integral

Let us for simplicity assume an ambient pressure p0 = 0. The total surface
tension forces on the boundary are given by

σijnj = γκni +
dγ

ds
ti, i = 1, 2.

This, together with the definition of the curvature,

κ ni =
dti
ds

,

45

CHAPTER 3. THE NAVIER-STOKES EQUATIONS

enables us to transform the surface integral to a convenient form:
∫

∂Ω

viσijnj ds =

∫

∂Ω

vi

(
γκni +

dγ

ds
ti

)
ds

=

∫

∂Ω

vi

(
γ

dti
ds

+
dγ

ds
ti

)
ds

=

∫

∂Ω

vi

d(γti)

ds
ds

= [γviti]
b
a −

∫

∂Ω

γ
dvi

ds
ti ds

= −
∫

∂Ω

γ
dvi

ds

dxi

ds
ds,

where a and b denote the start and end of the free surface. Here the free surface
is a closed surface, so this term vanishes. The last integral includes all surface
tension contributions, both tangential and normal.

3.4.3 Discretization

Discretization is merely a matter of combining the techniques presented so far.
Spatial discretization is done with the same Legendre spectral element method
as before, with the same discrete spaces (3.10). The resulting system of ordinary
differential equations is

B
du

dt
+ Au + Cu − Eu − DT p = Bf + g,

−Du = 0,

where g is a vector containing the value of the surface integral Iγ(v) for each
test function.

For temporal discretization we apply the same semi-implicit BD2 scheme as
we did for the convection-diffusion equation in (1.13). The discrete system then
becomes

3 Bn+1un+1 − 4 Bnun + Bn−1un−1

2∆t
+ An+1un+1 − (DT)n+1pn+1

= Bn+1fn+1 + gn+1 +

2∑

j=0

βj(C
n−j − En−j)un−j ,

where the coefficients βj are the same as before (1.14). The block Gaussian
elimination of the Uzawa algorithm is now applied, and we end up with the
following system to solve for the pressure:

Dn+1(An+1 +
3

2∆t
Bn+1)−1(DT)n+1pn+1 =

− Dn+1(An+1 +
3

2∆t
Bn+1)−1

(
Bn+1fn+1 + gn+1 +

2

∆t
Bnun

− 1

2∆t
Bn−1un−1 +

2∑

j=0

βj(C
n−j − En−j)un−j

)
. (3.25)

46

3.4. FREE SURFACE STOKES FLOW

The equation may seem huge and complex, but the only addition from the
unsteady Stokes flow in the previous section are elements on the right hand
side, which are treated explicitly. The system can be solved using nested CG
iterations, as before.

3.4.4 A droplet: free surface Stokes flow

It is hard to construct free surface problems with exact solutions, but we can
come up with an example where we easily can see if the solution is physically
reasonable.

Consider a two-dimensional free surface Stokes problem with constant sur-
face tension γ all over the surface ∂Ω. This problem models a drop of fluid with
a low Reynolds number. The natural equilibrium, in which surface tension is
minimized, is a circular surface. In this state the fluid velocity will be zero, and
the pressure will be constant all over Ω with a value

p =
γ

r
, (3.26)

where r is the radius of the circle.
We let the initial domain be elliptical with major semi-axis a =

√
2 and

minor semi-axis b = 1/
√

2. There are no body forces and no gravity, so the only
force at work in the initial configuration is the surface tension force. Figure 3.5
shows the numerical solution for u at the initial configuration. Observe how
the velocity field points the surface towards a more circular shape. The domain
must neither shrink nor grow, since the incompressibility condition necessitates
a constant area.

Figure 3.6 shows the domain at a few selected time levels. The transition
towards a circular shape is fast in the beginning, then slower as we approach
the steady state. In the final configuration, the domain is close to a circle with
radius r = 1.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.5: Velocity field u computed at the initial configuration with N = 10
and µ, ρ and γ all set to unity. The field points the droplet towards a circular
shape, in a way so that the area of Ω remains constant.

47

CHAPTER 3. THE NAVIER-STOKES EQUATIONS

−1.5 −1 −0.5 0 0.5 1 1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(a) t = 0

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b) t = 2

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(c) t = 6

Figure 3.6: Material domain in a free surface problem at selected time levels.
The polynomial degree is N = 10, and the step length is ∆t = 0.03. The initial
domain is elliptical, but surface tension forces work towards an equilibrium,
which is a circular domain.

Figure 3.7 shows the numerical solutions for u and p at t = 6. At this
point it is easy to see that the system is close to equilibrium. The domain is
almost circular, and the velocity is close to zero, making the velocity vectors
microscopic in the Figure. The pressure is almost constant, and deviations are
in the fourth decimal. It approaches the constant p = 1, which is in agreement
with (3.26), since r ≈ 1 and the surface tension is set to γ = 1.

A closer look at Figure 3.6 reveals a problem with the GLL distribution of
nodal points along the surface. This does not come as a surprise, considering
our experience with the same issue in Section 2.2.3. The problem here is that
all the nodal points on the surface tend to move toward y = 0. This is caused
by the geometry of the problem: the domain velocity is largest at the beginning
of the iterations, when the eccentricity of the ellipse is at its largest. Hence, the
nodal points move most rapidly when the normal vector deviates the most from
the radial vector, and they move toward the x-axis.

We recall that the solution to this problem was to add a tangential com-
ponent to the domain velocity on the boundary, not violating the kinematic

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) u

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0.999

0.9995

1

1.0005

1.001

xy

(b) p

Figure 3.7: Numerical solution for velocity u and pressure p at time t =
6. Simulations are done with N = 10 and ∆t = 0.03. We are very close to
equilibrium, with close to zero velocity and almost constant pressure.

48

3.5. FREE SURFACE NAVIER-STOKES FLOW

condition. Here, it is natural to add a component to make the domain velocity
point toward the origin. After all, in the steady state, the surface is circular
and the normal vector is everywhere coinciding with the radial vector.

Simulation reveals that this modification has positive effects. A plot of
the major axis as a function of time shows no visible difference between the
methods with and without the added tangential component. Hence, we conclude
that the difference in the numerical solution with the two methods is minimal.
However, a plot of the y-component of the nodal points on the part of the
surface belonging to the element Ω2 (see Figure 2.9) reveals a difference in
the GLL distribution. That is, none of the methods perfectly preserve the
GLL distribution, but Figure 3.8 shows that the method with a radial domain
velocity retains a better distribution than the method with a strictly normal
domain velocity on the boundary.

−1 −0.5 0 0.5 1
−0.5

0

0.5

ξ

y

w normal

w radial

Figure 3.8: Distribution of the nodal points along the part of the surface that
belongs to the element Ω2 at time level t = 3. The shape of the ellipse forces
the points toward the line y = 0, and the resulting deviation from the GLL
distribution can be seen as deviation from the straight line (dotted) in the plot.
When adding a tangential component to w to make it radial, we achieve a better
distribution of the nodal points.

3.5 Free surface Navier-Stokes flow

We are now ready to simulate the full Navier-Stokes equations (3.1) with free
surface conditions (3.20). There will be very little new to add here, as most of the
theory and algorithms necessary already have been covered. In the strong form,
the only difference from the unsteady Stokes problem (3.16) is the convection
term

uj

∂ui

∂xj

, i = 1, 2,

which will account for inertial forces. This term results in a modified convective
term

c(v, u) =

∫

Ω

vi(uj − wj)
∂ui

∂xj

dΩ, i = 1, 2,

49

CHAPTER 3. THE NAVIER-STOKES EQUATIONS

in the ALE formulation (3.24), where the difference is the introduction of the
particle velocity uj in the convection field uj −wj . The rest of the terms in the
ALE formulation are the same as before.

All aspects of the discretization are the same as before, both in space and
time. Hence, the resulting algebraic system is the same as that for the free
surface Stokes flow (3.25), only the discrete convection operator C is slightly
different. The algebraic system will be solved using the Uzawa algorithm and
nested CG iterations as before.

3.5.1 A droplet: free surface Navier-Stokes flow

We solve the same free surface problem as in Section 3.4.4, modeling a drop
of a liquid. Using the Navier-Stokes equations, the fluid is now laminar, and
convective effects are taken into account. The addition of convection results in
inertial forces, making the fluid less viscous. The inertial forces will counteract
change in velocity, making the drop deform in a damped oscillation, slowly
stabilizing towards a steady state. The equilibrium is still a circular shape and
constant pressure, since the surface tension is constant all along the surface. It
is only the transition towards the steady state which is different.

We now have to consider the the balance between surface tension and con-
vective forces, which is governed by the dimensionless Capillary number

Ca =
µ2

ργL
,

where µ is the dynamic viscosity, ρ the fluid density, γ the surface tension and
L a characteristic length, here set to unity. The Capillary number is a measure
of viscous forces relative to surface tension forces.

Some numerical testing has been done to find the right Capillary number
for oscillations to show. Nice results are found for Ca = 0.02. A few grid
configurations at selected time levels are shown in Figure 3.9. The time levels are
chosen when there is maximum deformation, to make the damped oscillations
more conspicuous. The symmetry of the problem makes the domain elliptic at
all times, with no asymmetric deformations.

In order to quantify the oscillations, we follow the computational grid point
on the boundary ∂Ω which also lies on the positive x-axis. The x-component of
this point will also be the minor or major semi-axis of the ellipse, depending on
where we are in the oscillations. Tracking this point during the time integration
reveals the nature of the damped oscillations. Figure 3.10 shows the oscillation
for three different Capillary numbers. We see that a decreasing Capillary num-
ber yields larger oscillations. For Ca = 1 the fluid is highly viscous and there
are no oscillations.

In the current model, fluids with different values of µ, ρ and γ, but with
the same Capillary number, should display the same behavior. Numerical tests
have been conducted to confirm this. Different values of the parameters have
been used, but chosen such that the Capillary number remains constant. Both
for Ca = 1 and Ca = 0.02, multiplying or dividing all the parameters by 10 did
not change the oscillating curves seen in Figure 3.10.

50

3.5. FREE SURFACE NAVIER-STOKES FLOW

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) t = 0

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) t = 1.38

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(c) t = 2.75

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) t = 4.09

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(e) t = 5.43

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(f) t = 6.77

Figure 3.9: Material domain in a free surface problem at selected time levels,
when the deformation is at a local maximum. The polynomial degree is N =
10, and the step length is ∆t = 10−2. The introduction of convection forces
the domain beyond the equilibrium and makes the drop behave elastic. The
Capillary number is Ca = 0.02.

3.5.2 A droplet with non-constant surface tension

The last two examples both had a constant surface tension. This is what makes
the circular domain with zero velocity and constant pressure a steady state.
It is interesting to see what the steady state will be like under conditions of
non-constant surface tension. In the weak form, the surface integral includes
only the surface tension itself, no partial derivatives. This makes it very easy to
exchange a constant surface tension with a function that depends on geometric

51

CHAPTER 3. THE NAVIER-STOKES EQUATIONS

0 2 4 6 8 10
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Ca=1

Ca=0.09

Ca=0.02

x

t

Figure 3.10: The major semi-axis plotted against time shows the oscillating
behavior for three different Capillary numbers. Surface tension causes the os-
cillations, while convective forces cause the damping. Hence, the smaller the
Capillary number, the larger the oscillations. Regardless of the Capillary num-
ber, the major semi-axis stabilizes on 1 in the equilibrium state.

factors: ∫

Ω

viσijnj ds = −
∫

∂Ω

γ(s)
dvi

ds

dxi

ds
ds.

We must take care so that the surface tension is always positive and periodic
along the surface. A function that satisfies these requirements on a closed surface
is

γ(x, y) = γ0 + βx,

where γ0 and β are constants.
We let the initial configuration be a circular domain, with zero velocity and

constant pressure. With no body forces, the surface tension is what will initiate
any movement. We want the surface tension forces and the viscous forces to
balance, so that there is some convection to make it realistic, but not more than
preventing us from reaching a potential steady state in reasonable time. The
balance is achieved by letting µ = 1, ρ = 1 and γ0 = 1, so that the average of
the surface tension is 1.

Several numerical tests have been conducted in order to see if the system
approaches a steady state. The results are the same: the system moves towards
an equilibrium in approximately the same speed as in the previous examples.
In the steady state, the pressure is a linear function in x, and the velocity field
creates two vortices. The vortices are symmetric about the x-axis, and they
rotate in opposite directions (Figure 3.11). The domain is slightly deformed
from the circular shape, but not so much that it is visible in the Figure. Changes
in the radius occur in the fourth decimal.

This state is verified to be a steady state by running simulations for different
amounts of time, with different spatial and temporal discretization parameters.
Solutions are inspected and found to be almost identical.

Test have also been run with different values of the parameter β. Not surpris-
ingly, a smaller β yields a smaller pressure gradient and smaller fluid velocities

52

3.5. FREE SURFACE NAVIER-STOKES FLOW

in the steady state. As β → 0, we approach the the same equilibrium as in the
previous examples.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

y

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

0

1

2

3

xy

Figure 3.11: The surface tension depends linearly on the geometry as γ =
1 + 0.8x. The other parameters in the problem are µ = 1, ρ = 1, N = 6 and
∆t = 0.04, and time integration is done from t0 = 0 to t = 2. The time span
is shorter than in the previous numerical example, but it is sufficient to show
qualitatively what the steady state is. The initial configuration is a circular
domain, and the surface tension results in a velocity field with a positive x-
component all over the surface. This creates two counter-rotating vortices inside
Ω. The bottom Figure shows that the pressure is a linear function in x.

53

54

Conclusion and further work

A Legendre spectral method with an arbitrary Lagrangian-Eulerian formulation
has been used to solve numerous heat transfer and fluid dynamics problems on
time-dependent domains. In particular, the ALE formulation is derived for
both the convection-diffusion equation and the Navier-Stokes equations, and a
Legendre spectral discretization is used, first on a single element, then later
with a multi-element approach. Important aspects of the numerical method
are presented, including weak formulation, discretization and solution of the
resulting algebraic system. Numerical examples accompany every new element
as they are introduced, verifying the excellent convergence properties for spectral
methods on smooth problems.

The convection-diffusion equation is used as a starting point for discussing
the ALE formulation, as it is a relatively simple, linear equation, and its physi-
cal interpretation is intuitive. After the ALE formulation is derived, we discuss
the Stefan problem and how the Stefan condition predicts the movement of the
boundary of the problem domain, given the heat flux across the boundary. A
useful technique is presented, in which the connection between Dirichlet and
Neumann boundary conditions is utilized for determining this heat flux with-
out having to compute normal vectors and temperature gradients. The method
has proved highly efficient and is easily implemented numerically. Armed with
this technique, we show an example of a simplified Stefan problem where the
precision with which we are able to track the phase transition front, is deter-
mined by the order of the time integration scheme. First, second and third order
convergence is shown.

The Stefan condition only gives information about what happens in the nor-
mal direction on the interface between the phases. Tangentially, we are free
to add a component to the domain velocity; it does not violate the interface
condition. The tangential component is added in order to keep a favorable grid
configuration, preserving a certain regularity in the mapping between the refer-
ence domain and the physical domain. Since the tangential component is not
subject to any condition, it is treated in a rather ad hoc fashion, based on what-
ever qualitative information we may have about the geometry. Strategies for
choosing a tangential component are briefly discussed, and a numerical example
is presented, in which the different strategies are tested, and their effect on the
solution is studied.

In order to be able to handle domains that are not quadrilateral, we present
the multi-element approach for dividing the domain into quadrilateral subdo-
mains. The method is tested on a Poisson problem, and exponential convergence
in space is verified. We also solve a Stefan problem with a full ALE formula-
tion, previously solved on a single element, now with a multi-element approach.

55

CONCLUSION AND FURTHER WORK

This is done to verify that the implementation of the multi-element approach
is correct for such problems in time-dependent domains. The correctness of the
method is verified qualitatively by comparing the solutions.

We then turn to fluid dynamics and the Navier-Stokes equations. They
are explored by studying various simplifications, each adding a new level of
complexity to the problem. For each problem, new issues that arise, such as
potential solvability or uniqueness issues, spatial and temporal discretization
and solution of the resulting algebraic system of equations, are discussed, and
numerical examples are presented. For the simplest problem, involving only the
viscous operator, exponential convergence in space is verified. Then the steady
Stokes problem is considered, and we introduce the Uzawa algorithm to solve
the algebraic system. Here, a preconditioning technique is studied, which makes
the number of Conjugate Gradient iterations independent of the problem size.
Unsteady Stokes problems are also studied, and here we solve a model problem
to second order convergence in time and exponential convergence in space.

Finally, free surface conditions for fluid dynamic problems are introduced.
These conditions yield time-dependent geometries and necessitate an ALE for-
mulation. This formulation is derived. A droplet with constant surface tension
is modeled both as a Stokes problem and a Navier-Stokes problem, and the
transition towards a steady state is studied. For the Navier-Stokes model an
oscillating motion is observed, and the effect of the non-dimensional Capillary
number on the oscillations is studied. An example of a droplet with non-constant
surface tension is also studied, and creation of counter-rotating vortices in the
steady state is verified numerically.

An important problem with time-dependent domains is the distribution of
the computational points when the domain is deformed. If the mapping from
the reference domain to the new, deformed domain is not sufficiently regular, the
polynomial approximation will become less accurate, and over time, the solution
may even collapse. This is studied in this paper, but methods presented are ad
hoc, related to specific geometries. This is indeed still an unsolved problem, and
further work is needed. No general approach for preserving the regularity of the
mapping from the reference domain to the physical domain has been found.
Also, a quantitative study of how convergence depends on the regularity of this
mapping would be useful.

It would also be helpful to have more model problems with exact solutions,
so that the accuracy in the numerical solution on a deformed domain could be
studied quantitatively in more detail, and for different problems. For the Stefan
problem we have one numerical example in this paper where the exact solution
is known, and convergence properties are verified. For the free surface Navier-
Stokes problem we have none. The lack of exact solutions is a relevant issue for
both the Stefan problem and the fluid dynamics problems.

56

Bibliography

[1] R. Aris Vectors, Tensors and the Basic Equations of Fluid Mechanics,
Dover (1989)

[2] K. Arrow, L. Hurwicz, H. Uzawa Studies in Nonlinear Programming,
Stanford University Press, Standford, CA (1958)

[3] C. Bernardi, Y. Maday Spectral Methods in: P.G. Ciarlet, J.L. Lions
(eds.) Handbook of Numerical Analysis. Volume V: Techniques of Scientific

Computing, 209–485, Elsevier (1997)

[4] C. Bernardi, Y. Maday Uniform inf-sup conditions for the spectral dis-

cretization of the Stokes problem, Math. Methods Appl. Sci., 9:395–414
(1999)

[5] N. Bodard, R. Bouffanais, M.O. Deville Solution of moving-

boundary problems by the spectral element method, Applied Numerical
Mathematics, 58(7):968–984 (2008)

[6] J.H. Bramble, J.E. Pasciak, A.T. Vassilev Analysis of the inexact

Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal. 34:1072–
1092 (1997)

[7] R. Bouffanais, M.O. Deville Mesh Update Techniques for Free-Surface

Flow Solvers Using Spectral Element Method, Journal of Scientific Comput-
ing, 27(1–3):137–149 (2006)

[8] R.L. Burdesn, J.D. Faires Numerical Analysis, 7th ed., Brooks/Cole
(2001)

[9] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang Spectral

Methods in Fluid Dynamics, Springer (1988)

[10] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang Spectral

Methods: Fundamentals in Single Domains, Springer (2006)

[11] M.O. Deville, P.F. Fischer, E.H. Mund High-Order Methods for In-

compressible Fluid Flow, Cambridge (2002)

[12] L. Formaggia, F. Nobile A stability analysis for the arbitrary La-

grangian Eulerian formulation with finite elements, East-West J. Numer.
Math., 7(2):105–131 (1999)

57

[13] W.J. Gordon, C.A. Hall Construction of curvilinear co-ordinate sys-

tems and applications to mesh generation, International Journal for Nu-
merical Methods in Engineering, 7:461–477 (1973)

[14] L. Ho, T. Patera A Legendre spectral element method for simulation of

unsteady incompressible viscous free-surface flows, Comp. Methods Appl.
Mech. Eng. 80(11):355–366, (1990)

[15] A. Huerta, A. Rodríguez-Ferran (eds.) The Arbitrary Lagrangian-

Eulerian Formulation, Comp. Methods Appl. Mech. Eng. 193(39–41):4073–
4456, (2004)

[16] A. Iserles A First Course in the Numerical Analysis of Differential Equa-

tions, Cambridge (1996)

[17] A. Johnson and T. Tezduyar Mesh update strategies in parallel finite

element computation of flow problems with moving boundaries and inter-

faces, Comput. Methods Appl. Mech. Eng., 119:73–94 (1994)

[18] C. Johnson Numerical solution of partial differential equations by the fi-

nite element method, Studentlitteratur (1987)

[19] L.D. Landau, E.M. Lifshitz Fluid Mechanics, Course of Theoretical
Physics, Volume 6, Butterworth-Heinemann (1987)

[20] D.R. Lynch Unified approach to simulation on deforming elements with

application to phase change problems, Journal of Computational Physics,
47(3):387–411 (1982)

[21] R.E. Lynch, J.R. Rice, D.H. Thomas Direct solution of partial dif-

ferential equations by tensor product methods, Numer. Math., 6:185–199
(1964)

[22] Y. Maday, D. Meiron, A.T. Patera, E.M. Rønquist Analysis of Iter-

ative Methods for the Steady and Unsteady Stokes Problem: Application to

Spectral Element Discretizations SIAM Journal on Scientific Computating,
14(2):310–337 (1993)

[23] Y. Maday, A.T. Patera Spectral element methods for the Navier-Stokes

equations in: A.K. Noor and J.T. Odden (eds.) State-of-the-Art Surveys in

Computational Mechanics, ASME, New York, 71–143 (1989)

[24] Y. Maday, A.T. Patera, E.M. Rønquist An Operator-Integration-

Factor Splitting Method for Time-Dependent Problems: Application to In-

compressible Fluid Flow, Journal of Scientific Computing, 5(4):263–292
(1990)

[25] Y. Maday, A.T. Patera, E.M. Rønquist The PN×PN−2 method for the

approximation of the Stokes problem, Technical Report 92009, Department
of Mechanical Engineering, MIT, Cambridge, MA (1992)

[26] S.A. Orszag Spectral methods for problems in complex geometry, Journal
of Computational Physics, 37:70–92 (1980)

58

[27] A.T. Patera A spectral element method for fluid dynamics, Journal of
Computational Physics, 54:468–488 (1984)

[28] R. Peyret Spectral Methods for Incompressible Viscous Flow, Springer
(2002)

[29] B. Ramaswamy, M. Kawahara Arbitrary Lagrangian-Eulerian finite el-

ement method for unsteady convective incompressible viscous free surface

flow, International Journal for Numerical Methods in Fluids, 7(10):1053–
1074 (1987)

[30] Y. Saad Iterative Methods for Sparse Linear Systems, SIAM (2003)

[31] G. Strang Introduction to Applied Mathematics, Wellesley-Cambridge
Press (1986)

[32] F.M. White Fluid Mechanics, 6th ed., McGraw-Hill (2008)

[33] Z. Xu, M. Accorsi Finite element mesh update methods for fluid-structure

interaction simulations, Finite Elements in Analysis and Design, 40(9–
10):1259–1269 (2004)

59

	Title Page
	Problem Description
	masteroppgave.pdf

