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Problem Description
The main objective with this work is to study the effects of a variable surface tension along an
interface separating two fluids by using an existing computational framework owned by and
developed at SINTEF Energy Research for studying two-phase flows.

A nonuniform surfactant concentration on the interface is one source of surface tension gradients.
An investigation should be made to find a model that describes the surfactant concentration and
how surfactants affect the surface tension.
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Samandrag

Denne oppgåva er ei studie av effektane som følgjer av varierande overflatespenning på ei overflate
mellom to fluid. Varierande overflatespenning fører til krefter i tangentretninga langs overflata,
noko som ofte vert kalla Marangoni-effekten. Desse kreftene er diskutert i detalj, og to testproblem
blir studerte for å analysere Marangoni-effekten og verifisere implementasjonen. Den første testen
fokuserer på flate grenseflater mellom fluida og ser på stasjonærløysinga for ein lineært varierande
overflatespenning, medan den andre testen ser på kreftene på ein to-dimensjonal drope som følgje
av varierande overflatespenning. Testane viser at den noverande implementasjonen kan simulere
tofase-strøymningar der variasjonen av overflatespenninga er gitt.

Den underliggjande modellen er ein tofase-modell for newtonske fluid med konstant viskositet og
tettleik. Tofase-modellen er basert på Navier-Stokes-likningane med ei singular overflatekraft, som
saman med forskjellen i eigenskapane til fluida introduserer diskontinuitetar over overflata. Navier-
Stokes-likningane blir løyste med ein projeksjonsmetode, og ein kombinasjon av level-set-metoden
for å følgje overflata og ghost-fluid-metoden (GFM) for å behandle overflate-diskontinuitetane.

Oppgåva diskuterer også effekten av surfaktantar på overflata. Surfaktantar på ei overflate reduserer
den lokale overflatespenninga, og ein ikkje-uniform surfaktantkonsentrasjon fører til varierande
overflatespenning og Marangoni-effekten. Ein surfaktantmodell er undersøkt, der ei transportlikning
er brukt for å følgje surfaktantkonsentrasjon samt ei tilstandslikning for å kople overflatespenninga
med surfaktantkonsentrasjonen.
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Abstract

This thesis is a study on the effects of varying surface tension along an interface separating two
fluids. Varying surface tension leads to tangential forces along the interface. This is often called the
Marangoni effect. These forces are discussed in detail, and two test cases are considered to analyse
the Marangoni effect, and to verify the present implementation. The first test studies steady-state
two-phase flow where the fluids are separated with plane interfaces and the flow is driven by a linear
surface-tension gradient. The second case is an analysis of the initial forces on a two-dimensional
droplet due to a linear surface-tension gradient. The tests indicate that the present implementation
is capable of simulating two-phase flow with a given surface-tension gradient.

The underlying model is a two-phase flow model for Newtonian fluids with constant viscosity and
density. The two-phase model is based on the Navier-Stokes equations coupled with a singular
surface force, which together with the difference in fluid properties induces discontinuities across
the interface. The Navier-Stokes equations are solved using a projection method, and a combination
of the level-set method for capturing the interface and the ghost-fluid method (GFM) for handling
the interface discontinuities.

The thesis also discusses the effect of surfactants on an interface. The presence of surfactants
reduces the local surface tension, and a non-uniform surfactant distribution results in varying
surface tension and the Marangoni effect. A surfactant model is reviewed, where an equation of
state couples the surface tension to the surfactant concentration and a transport equation is used to
solve the surfactant mass-conservation.
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1 Introduction

1.1 Background

The mixture of oil and water produced at an oil well often consists of a continuous oil phase
containing a large amount of very small water droplets. The amount of water can be as high as
30%, but the quality of the oil is often considered by customers as bad if it contains more than 0.5%
water. To remove the water from the oil, the water-containing oil is put in a separation vessel. The
most basic separation vessel is the gravity separator. Because water has a higher density than oil,
gravity forces the water droplets to sink to the bottom of the vessel. There the water droplets form a
dense-packed layer, and eventually they coalesce and form a continuous water-phase which can be
extracted. This separation process can be a bottleneck in offshore oil production, both because of
the time the oil spends in the separation vessels, and because of the size of the tanks: A gravity
separator can be 5 meter in diameter and 20 meter long (Lundgaard, 2005).

The gravity separator can be enhanced by adding electrodes to the sedimentation tanks. By utilizing
electric fields, attractive forces can be induced between the droplets and make them coalesce before
reaching the bottom of the tank. This process is called electrocoalescence, and it has two main
enhancements over the gravity separator:

• The droplets that coalesce before reaching the bottom layer become larger, and therefore fall
faster.

• The number of droplets needing to coalesce in the bottom layer is reduced.

Many years of research have been put into the electrocoalescence process, an effort which has
resulted in coalescers and more efficient separation vessels. More detailed understanding is needed,
though, to create even more efficient coalescers. SINTEF Energy Research has an ongoing project
where the water-in-oil sedimentation process is being studied, see e.g. Lundgaard (2005). Part of
this project focuses on developing a model for simulating multi-drop behaviour in liquid flows
on a macro-scale. The macro-scale model requires a thorough understanding of the interaction
between the drops. A second model is therefore developed to study the forces between droplets on
a micro-scale. This model is based on Hansen (2005), where a framework for studying detailed
droplet interactions in electric fields is presented. The framework was used in Fosse (2006) to study
droplet collisions in the presence of an electric field.

The numerical framework created at SINTEF Energy Research for the micro-scale model is able
to handle advanced simulations of incompressible, viscous two-phase flows. Interacting, rising
bubbles were investigated in Teigen (2007) using the implemented framework, and the ability to
model phenomena related to the liquefaction of natural gas was evaluated.

In Hansen (2005), it was suggested to further expand the numerical framework to include a
conservation law for surfactants along the interface between the phases. This will allow for the
coefficient of surface tension to be a function of surfactant concentration, and will lead to tangential
forces dependent on the gradient in the coefficient of surface tension, i.e. Marangoni forces, see e.g.
Brennen (2005).
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1 Introduction

Figure 1.1: Two water droplets in a continuous oil phase with surfactants along the interfaces.

1.2 Objectives

The main goal of this thesis is to begin the work of expanding the numerical framework to
include surfactant effects on the interface. This task is quite comprehensive, and requires a deep
understanding of the underlying model.

The two-phase model that is currently implemented is based on that described in Hansen (2005).
The flow is modelled using the Navier-Stokes equations with an added singular surface force to
model the effects of surface tension along the interface. This force and the discontinuities across the
interface in fluid properties lead to jump conditions for the velocity and pressure along the interface.
The numerical implementation of the model is based on a projection method that decouples the
pressure and velocity. Many advanced techniques are involved in the discretization, including
the ghost-fluid method for handling the interface discontinuities (Fedkiw, 1999) and the level-set
method for capturing and evolving the interface (Osher & Fedkiw, 2003; Sethian, 1999). The
governing equations and the numerical methods involved will be reviewed and described in detail.

Figure 1.1 shows an example of a two-phase flow consisting of two water droplets in a continuous
oil phase with surfactants attached to the interfaces. The coefficient of surface tension can be
related to the surfactant density through an equation of state, and the distribution of surfactants
along the interface can be modelled by a transport equation for the surfactants (Xu et al., 2006). In
the currently implemented model, the interfacial forces are restricted to the normal direction only.
As mentioned above, surfactants on the interface lead to tangential forces as well as normal forces,
and the first step towards reaching the main goal is therefore to remove this restriction. The details
involved will be described, and the implementation will be tested thoroughly.

The last step is to study and derive a surfactant model that describes the surfactant effects on the
interface and the surfactant conservation in the fluid and on the interface.

1.3 Present contribution

The work in this thesis has contributed to the model for studying droplet interactions in several ways.
The main contribution is an expansion of the numerical framework to include the Marangoni effect
due to varying surface tension. This contribution involves a thorough study of the current numerical
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1.4 Survey of the report

framework in order to implement new functionality. A summary of the important contributions is
given below.

• The numerical framework has been expanded to include the Marangoni effect.

• The governing equations and the numerical methods have been reviewed, and the Marangoni
effect has been studied and analysed in detail.

• One of the test cases for the Marangoni force required periodic boundaries for the velocity
and the level-set function. Periodic boundary conditions have therefore been implemented
and tested.

• A study on how surfactants affect the surface tension has been made, and a surfactant model
is presented. Ideas for further work on the implementation of the surfactant model are
discussed.

1.4 Survey of the report

Chapter 2 An introduction to the fluid dynamics involved in the mathematical model. The
equations of motion are reviewed, and special attention is given to the derivation of the jump
conditions across an interface.

Chapter 3 The numerical methods involved in the current implementation are reviewed, and some
details of the implementation of the Marangoni force are given.

Chapter 4 The Marangoni force is studied, and the implementation of the Marangoni effect is
validated with several tests and comparisons with analytic expressions.

Chapter 5 A general model for the effects of surfactants on the interface is reviewed and discussed.

Chapter 6 Presents concluding remarks and suggestions for further work.
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2 Fluid dynamics

This chapter will present a mathematical model for an incompressible and Newtonian two-phase
flow. In the first section, it will be shown how the Navier-Stokes equations with a singular surface
force acting on the interface separating the phases are used to obtain the two-phase flow model.

The numerical model is based on solving the single-phase Navier-Stokes equations in the entire
domain, i.e. for both phases. The singular surface force together with the possible discontinuities
in the fluid properties, e.g. density and viscosity, induce jumps across the interface in both the
pressure and the velocity and their derivatives. These jumps are handled by a set of jump conditions
which are derived and discussed in Section 2.2.

In the discretization of the Navier-Stokes equations, a projection method is used to decouple the
pressure and velocity. This will result in a Poisson-equation for the pressure coupled with a system
of ordinary differential equations (ODEs) for the velocity. The projection method is described
for the continuous case in Section 2.3, and is based on the derivation given in Hansen (2005,
Chapter 2.2).

Note that all the flows considered in this thesis are two dimensional. This means that the following
review of the hydrodynamics will be restricted to two dimensions. Also note that basic details such
as the derivation of the Cauchy equation are omitted, as it is assumed that the reader has some
familiarity with fluid dynamics. These details can be found in most introductory books on fluid
mechanics, e.g. White (2003).

2.1 The Navier-Stokes equations

Under suitable boundary and initial conditions, the Cauchy equation

ρ

(
∂uuu
∂ t

+uuu ·∇∇∇uuu
)

= ∇∇∇ ·TTT +ρ fff , (2.1)

and the mass-conservation equation,

∂ρ

∂ t
+∇∇∇ ·(ρuuu) = 0, (2.2)

describe viscous, single-phase flow where temperature effects are neglected. Here ρ is the fluid
density, uuu is the flow velocity, t is time, TTT is the stress tensor and fff denotes body forces. See for
example White (2003, Chapter 4) for details and a derivation of these equations. The stress tensor
for Newtonian fluids is

TTT =−p111+2µDDD+λ (tr DDD)111, (2.3)

see for instance Aris (1989, §5) for a good derivation. Here p is the pressure, 111 is the identity tensor,
µ is the dynamic viscosity, λ is the bulk viscosity, tr DDD denotes the trace of the deformation tensor
DDD,

DDD =
1
2
(
∇∇∇uuu+(∇∇∇uuu)T ) . (2.4)

5



2 Fluid dynamics

Figure 2.1: A simple two-phase domain where the two phases Ω+ and Ω− are separated by the interface
Γ. The normal vector, nnn, points from Ω− to Ω+.

All fluids considered in this thesis are assumed to be Newtonian, and the viscosities and densities
are assumed to be constant. In this case, the stress tensor reduces to

TTT =−p111+ µ∆∆∆uuu, (2.5)

and the mass-conservation equation reduces to

∇∇∇ ·uuu = 0 (2.6)

so that equation (2.1) becomes

∂uuu
∂ t

+uuu ·∇∇∇uuu =−∇∇∇p
ρ

+ν∆∆∆uuu+ fff , (2.7)

where ν = µ/ρ is the kinematic viscosity. The equations (2.6) and (2.7) are often called the
Navier-Stokes equations.

With a simple modification, the same approach can be used to derive the governing equations for
two-phase flow. First, let Ω denote the flow domain, let ∂Ω denote the exterior boundary, let Ω+

and Ω− be two immiscible phases, and let Γ denote the interface dividing them, see Figure 2.1.
Note that the superscripts + and − will be used to denote the different phases throughout the thesis.
The extension of the single-phase model to account for two phases can be made by adding a singular
surface force term to represent the effects of surface tension between the fluids. The singular surface
force is defined as

fffs(xxx, t) =
∫

Γ

fffsfd(sss, t)δδδ (xxx− xxxI(sss))dsss, (2.8)

where fffsfd is the surface-force density, δδδ is the Dirac delta function and xI(sss) is a parametrization
of the interface. The position of the interface is assumed to be known. The surface-force density
that will be used throughout this thesis is based on the one used in Xu et al. (2006),

fffsfd = σκnnn+∇∇∇sσ , (2.9)

where σ is the coefficient of surface tension, κ is the local curvature, nnn is the normal vector and

∇∇∇s = (I−nnnnnn) ·∇∇∇ (2.10)

is the surface-gradient operator. The notation nnnnnn is used for the outer product of vectors, i.e.
nnnnnn = nnnnnnT , and it will be used throughout for the outer products nnnnnn, nnnttt, tttnnn and tttttt, where ttt is the unit
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2.2 The jump conditions across an interface

tangent vector. The terms on the right-hand side of equation (2.9) can be identified as the capillary
and the Marangoni force, respectively. For more details concerning the singular surface force, see
Hansen (2005, Chapter 2).

The singular surface force (2.8) is added to the Cauchy equation (2.1),

ρ

(
∂uuu
∂ t

+uuu ·∇∇∇uuu
)

= ∇∇∇ ·TTT +ρ fff + fffs. (2.11)

The previous assumptions of Newtonian fluids and constant viscosity and density then immediately
yield the Navier-Stokes equations with a singular surface force,

∂uuu
∂ t

+uuu ·∇∇∇uuu =−∇∇∇p
ρ

+ν∆∆∆uuu+ fff +
fffs
ρ

, (2.12)

and
∇∇∇ ·uuu = 0. (2.13)

Proper boundary conditions are needed to solve the incompressible Navier-Stokes equations. As
discussed in Hansen (2005), the issue of well-posed boundary conditions is still an open question. In
the two-dimensional case, though, it has been proven that the proper initial and boundary conditions
are given by

uuu(xxx,0) = uuu0(xxx) ∀xxx ∈ Ω, (2.14)

uuu(xxx, t) = uuub(xxx, t) ∀xxx ∈ ∂Ω, (2.15)

where uuu0(xxx) and uuub(xxx, t) are assumed known. More details on the issue of boundary and initial
conditions can be found in Temam (1995, Page 4).

2.2 The jump conditions across an interface

The jump in viscosity and density across the interface can be written as

[µ] = µ
+−µ

−, (2.16)

[ρ] = ρ
+−ρ

−, (2.17)

where [ · ] denotes the difference across the interface. This is a convenient notation, and it will be
used throughout the following derivation. As stated previously, the singular surface force and the
discontinuities in the fluid properties across the interface induce jumps in the pressure and the
velocity and their derivatives at the interface. These jumps can be represented by jump conditions
for the pressure and the velocity and their derivatives. The derivation of these jump conditions
is the topic of this section, and it is mainly based on Hansen (2005, Section 2.4). The section is
divided into two parts, where the first part is a derivation of the general jump conditions, and the
second part gives the jump conditions for the surface-force density given in equation (2.9).

2.2.1 Derivation of the general jump conditions

In viscous two-phase flow, it is assumed that the velocity is continuous over the interface, see
Landau & Lifshitz (1987, Chapter 61). This gives the first jump condition,

[uuu] = 0, (2.18)
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2 Fluid dynamics

and it forces the tangential derivative of the velocity field to be continuous,

[∇∇∇uuu] · ttt = 0. (2.19)

If this was not true, the velocity at one side of the interface would develop differently along the
interface than the velocity at the other side, which violates the continuity of the velocity. Now,
since both fluids are incompressible,

[∇∇∇ ·uuu] = nnn · [∇∇∇uuu] ·nnn+ ttt · [∇∇∇uuu] · ttt = 0. (2.20)

Combining equations (2.19) and (2.20) yields

nnn · [∇∇∇uuu] ·nnn = 0, (2.21)

which states that the normal component of the normal derivative of the velocity field is continuous
across the interface.

To find the remaining jump conditions, consider the domain Ωε depicted in Figure 2.2,

Ωε = {x ∈ Ω | min
xI∈Γ

(x− xI)≤ ε}, (2.22)

where ε > 0. Multiply the Cauchy equation for two-phase flow (2.11) with an arbitrary, smooth
test function ϕ with compact support, and integrate over the domain Ωε ,∫

Ωε

ϕρ
Duuu
Dt

dxxx =
∫

Ωε

ϕ∇∇∇ ·TTT dxxx+
∫

Ωε

ϕρ fff dxxx+
∫

Ωε

ϕ

∫
Γ

fffsfd δδδ (xxx− xxxI(s))dsdxxx, (2.23)

where D/Dt = ∂/∂ t + uuu ·∇∇∇ denotes the convective derivative. Apply the Reynolds transport
theorem, see e.g. White (2003, Section 3.2), use that the velocity is continuous across the interface
and change the order of integration in the last term to obtain

d
dt

∫
Ωε

ϕρuuudxxx =
∫

∂Ωε

ϕ TTT ·nnnds−
∫

Ωε

TTT ·∇∇∇ϕ dxxx+
∫

Ωε

ϕρ fff dxxx+
∫

Γ

ϕ fffsfd ds. (2.24)

Figure 2.2: The domain Ωε covering the interface, Γ.
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2.2 The jump conditions across an interface

If ε goes to zero, the left-hand side and the second and third terms on the right-hand side vanish.
The first term on the right-hand side becomes the integral of the difference in the stress tensor
across the interface, and the resulting equation can be written as

0 =
∫

Γ

ϕ ([TTT ] ·nnn+ fffsfd)ds. (2.25)

This means that the integrand must be zero, and since the test function is arbitrary,

0 = [T ] ·nnn+ fffsfd. (2.26)

Expanding the stress tensor according to equation (2.3) with the usual assumptions of Newtonian
and incompressible fluids yields

[p]nnn = [2µDDD] ·nnn+ fffsfd. (2.27)

The jump condition for the pressure is now obtained by taking the inner product of equation (2.27)
with the normal vector nnn, using the identity

aaa ·BBB ·ccc = ccc ·BBBT ·aaa, (2.28)

together with the equation (2.21), i.e.

[p] = nnn · [2µDDD] ·nnn+ fffsfd ·nnn
= nnn ·

[
µ
(
∇∇∇uuu+(∇∇∇uuu)T )] ·nnn+ fffsfd ·nnn

= nnn · [µ∇∇∇uuu] ·nnn+nnn · [µ(∇∇∇uuu)T ] ·nnn+ fffsfd ·nnn
= 2[µ]nnn ·∇∇∇uuu ·nnn+ fffsfd ·nnn. (2.29)

To find the jump in the viscous stresses, [µ∇∇∇uuu], it is first rewritten as

[µ∇∇∇uuu] = [nnn ·µ∇∇∇uuu ·nnn]nnnnnn+[ttt ·µ∇∇∇uuu · ttt] tttttt
+[nnn ·µ∇∇∇uuu · ttt]nnnttt +[ttt ·µ∇∇∇uuu ·nnn] tttnnn.

(2.30)

Equations (2.19) and (2.21) can be used to show that

[nnn ·µ∇∇∇uuu ·nnn] = [µ]nnn ·∇∇∇uuu ·nnn, (2.31)

[ttt ·µ∇∇∇uuu · ttt] = [µ] ttt ·∇∇∇uuu · ttt, (2.32)

[nnn ·µ∇∇∇uuu · ttt] = [µ]nnn ·∇∇∇uuu · ttt. (2.33)

The simplification of the fourth term from equation (2.30), i.e. [ttt ·µ∇∇∇uuu ·nnn], can be found by taking
the inner product of equation (2.27) with ttt,

0 = ttt · [2µDDD] ·nnn+ fffsfd · ttt
= ttt ·

[
µ
(
∇∇∇uuu+(∇∇∇uuu)T )] ·nnn+ fffsfd · ttt

= ttt · [µ∇∇∇uuu] ·nnn+ ttt · [µ(∇∇∇uuu)T ] ·nnn+ fffsfd · ttt
= ttt · [µ∇∇∇uuu] ·nnn+nnn · [µ∇∇∇uuu] · ttt + fffsfd · ttt,

where the identity from equation (2.28) was used in the last step. This results in

[ttt ·µ∇∇∇uuu ·nnn] =−[µ]nnn ·∇∇∇uuu · ttt− fffsfd · ttt, (2.34)
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2 Fluid dynamics

and the jump in the viscous stress tensor is reduced to

[µ∇∇∇uuu] = [µ]
(
(nnn ·∇∇∇uuu ·nnn)nnnnnn+(nnn ·∇∇∇uuu · ttt)nnnttt

− (nnn ·∇∇∇uuu · ttt)tttnnn+(ttt ·∇∇∇uuu · ttt)tttttt
)
−
(
ttt · fffsfd

)
tttnnn.

(2.35)

The last jump condition is the jump in the gradient of the pressure, [∇∇∇p]. This is a little bit more
involved, though a derivation for the simplified case with uniform densities and viscosities and a
normal surface tension force can be found in Hansen (2005). In this thesis, the jump is set to

[∇∇∇p] = 0. (2.36)

according to Kang et al. (2000, Page 340).

For more details on the derivation of these jump conditions, see Hansen (2005). The jump
conditions for the generalized surface force density fffsfd are now given in equations (2.18), (2.29),
(2.35) and (2.36), repeated here for convenience:

[uuu] = 0,

[p] = 2[µ]nnn ·∇∇∇uuu ·nnn+ fffsfd ·nnn,

[µ∇∇∇uuu] = [µ]
(
(nnn ·∇∇∇uuu ·nnn)nnnnnn+(nnn ·∇∇∇uuu · ttt)nnnttt

− (nnn ·∇∇∇uuu · ttt)tttnnn+(ttt ·∇∇∇uuu · ttt)tttttt
)
−
(
ttt · fffsfd

)
tttnnn,

[∇∇∇p] = 0.

A derivation of the jump conditions in three dimensions can be found in Kang et al. (2000), although
that derivation is restricted to the case where fffsfd = σκnnn. It has been verified that the approach
used here is equivalent to the approach in Kang et al. (2000) for two dimensions when considering
fffsfd = σκnnn.

2.2.2 The jump conditions with Marangoni terms

By use of the expression for the surface force density given in equation (2.9), i.e.

fffsfd = σκnnn+∇∇∇sσ ,

the set of jump conditions becomes

[uuu] = 0, (2.37)

[p] = 2[µ]nnn ·∇∇∇uuu ·nnn+σκ, (2.38)

[µ∇∇∇uuu] = [µ]
(
(nnn ·∇∇∇uuu ·nnn)nnnnnn+(nnn ·∇∇∇uuu · ttt)nnnttt

− (nnn ·∇∇∇uuu · ttt)tttnnn+(ttt ·∇∇∇uuu · ttt)tttttt
)
−
(
ttt ·∇∇∇sσ

)
tttnnn,

(2.39)

[∇∇∇p] = 0. (2.40)

The current implementation of the two-phase model is restricted to simulate flows where the surface
tension is constant. In these cases, the Marangoni term in the jump condition (2.39) vanishes, i.e.(

ttt ·∇∇∇sσ
)
tttnnn = 0. (2.41)
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2.3 Decoupling the pressure from the velocity

With the addition of surfactant effects to the model, this restriction is no longer valid. Surfactants
on the interface affect the surface tension, and the surface tension can be written as a function
of surfactant concentration. Removing this restriction is therefore a vital step in generalizing the
model to include surfactant effects. Implementation details regarding the addition of the Marangoni
term will be given in the next chapter. The implementation will be based on the expression for
the jump condition (2.39), which is therefore given in its expanded form below. First, the jump
condition is written in Cartesian tensor notation,

[µ∇∇∇uuu]i j = [µ]
(

nk
∂uk

∂xl
nl nin j +nk

∂uk

∂xl
tl nit j

−nk
∂uk

∂xl
tl tin j + tk

∂uk

∂xl
tl tit j

)
− tk

∂σ

∂xk
tin j,

(2.42)

where xi, ui, ti and ni denote the ith component of the position vector, the velocity vector, the
tangent vector and the normal vector, respectively, and the summation convention is used, i.e.
akBk j = ∑k akBk j. The expansion is then found to be

[µ∇∇∇uuu]11 = [µ]
(

(n4
1 +n4

2)
∂u
∂x

+(n3
1n2−n1n3

2)
(

∂u
∂y

+
∂v
∂x

)
+2n2

1n2
2

∂v
∂y

)
−n1n2

2
∂σ

∂x
+n2

1n2
∂σ

∂y
,

(2.43)

[µ∇∇∇uuu]12 = [µ]
(

2n1n3
2

(
∂v
∂y

− ∂u
∂x

)
+(2n2

1n2
2 +n2

1)
∂u
∂y

+(2n2
1n2

2−n2
2)

∂v
∂x

)
−n3

2
∂σ

∂x
+n1n2

2
∂σ

∂y
,

(2.44)

[µ∇∇∇uuu]21 = [µ]
(

2n3
1n2

(
∂u
∂x

− ∂v
∂y

)
+(2n2

1n2
2−n2

1)
∂u
∂y

+(2n2
1n2

2 +n2
2)

∂v
∂x

)
+n2

1n2
∂σ

∂x
−n3

1
∂σ

∂y
,

(2.45)

[µ∇∇∇uuu]22 = [µ]
(

2n2
1n2

2
∂u
∂x

− (n3
1n2−n1n3

2)
(

∂u
∂y

+
∂v
∂x

)
+(n4

1 +n4
2)

∂v
∂y

)
+n1n2

2
∂σ

∂x
−n2

1n2
∂σ

∂y
,

(2.46)

where the tangent components were removed using the identity ttt ·nnn = 0, resulting in

ttt =
[

t1
t2

]
=
[

n2
−n1

]
. (2.47)

2.3 Decoupling the pressure from the velocity

A projection method is used to numerically solve the Navier-Stokes equations. It is based on the
Helmholtz-Hodge theorem, which is stated here without proof. Details and proof of the theorem
can be found in Chorin & Marsden (2000). A variant of the theorem and a proof can also be found
in Aris (1989, §3.44).

Any arbitrary vector field www can be uniquely decomposed in a bounded domain D such
that

www = uuu+∇∇∇p, (2.48)

uuu ·nnn = 0 on ∂D, (2.49)

11



2 Fluid dynamics

where p is a scalar function, nnn is the normal vector pointing out of D and uuu is any
divergence-free vector field, i.e.

∇∇∇ ·uuu = 0 in D. (2.50)

The theorem proves the existence and uniqueness of an orthogonal projection operator PPP, mapping
arbitrary vector fields into divergence-free vector fields:

uuu = PPPwww = www−∇∇∇p. (2.51)

By the definition of orthogonal projectors, see for example Saad (2003),

PPPuuu = uuu, (2.52)

which immediately gives
PPP(∇∇∇p) = 0. (2.53)

It remains to identify the projection operator, which is done by using the orthogonality between the
projection operator and the divergence operator, i.e.

∇∇∇ ·PPPwww = 0. (2.54)

Applying the divergence operator to equation (2.51) yields a Poisson equation for p,

∇∇∇ ·PPPwww = ∇∇∇ ·uuu = ∇∇∇ ·www−∇∇∇
2 p = 0

⇓
∇∇∇

2 p = ∇∇∇ ·www, (2.55)

and using that uuu ·nnn = 0 on ∂D gives a Neumann boundary condition for equation (2.55),

nnn ·∇∇∇p = nnn ·www. (2.56)

These results can be used to decouple the pressure from the incompressible Navier-Stokes equations.
First, assume that uuu is smooth enough, i.e. its first derivative is continuous, and rewrite equation (2.7)
to get

∂uuu
∂ t

= www− ∇∇∇p
ρ

, (2.57)

where
www =−(uuu ·∇∇∇)uuu+ν∇∇∇

2uuu+ fff . (2.58)

Now ∂uuu/∂ t is recognized as the divergence-free vector and www as the arbitrary vector. The pressure
can be obtained from the Poisson equation,

∆∆∆p
ρ

= ∇∇∇ ·www, (2.59)

with Neumann boundary conditions as for equation (2.55),

nnn ·
(

∇∇∇p
ρ

)
= nnn ·www on ∂Ω. (2.60)
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2.4 Summary

2.4 Summary

In this chapter, a model for simulating two-phase fluid flow has been presented. The governing
equations are the Navier-Stokes equations with a singular surface force given in equations (2.12)
and (2.13). The initial and boundary conditions have been discussed, and the jump conditions
across the interface were derived. The jump conditions for a surface-tension force that includes
both capillary and Marangoni forces are given in equations (2.37) to (2.40). The flow equations
were manipulated to decouple the pressure from the velocity, resulting in a new set of equations
given in equations (2.57) to (2.59).
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3 Discretization and numerical methods

There are many details involved in the numerical solution of the two-phase flow model, some of
which will be discussed in this chapter. The reader is referred to Burden & Faires (2004) for basic
numerical analysis and results.

The chapter starts with a review of a semi-discretization of the flow equations based on the
Helmholtz-Hodge decomposition. It continues with an introduction to the interface-capturing
method, followed by a section devoted to the discretization of the spatial operators. An example is
given to illustrate the need for using an upwind scheme in the discretization of the convective term.
Next, the ghost-fluid method which is used to handle the interfacial discontinuities is discussed.
Then the temporal discretization is reviewed, and the chapter concludes with some comments on
the implementation details.

3.1 The projection method

There exists a large number of methods for solving the Navier-Stokes equations numerically. In
Langtangen et al. (2002), an overview of the most common numerical solution strategies for the
incompressible Navier-Stokes equations are presented. One can divide the numerical solution of
the incompressible Navier-Stokes equations in two main parts: An algorithm for approximating
the temporal evolution of the fluid flow and a set of discrete approximations of the continuous
differential operators that build up the governing equations.

In this numerical framework, the discretization of the Navier-Stokes equations (2.7) and (2.6) is
based on the Helmholtz-Hodge decomposition shown in Section 2.3. First, the Navier-Stokes
equations are written on approximate form using numerical spatial approximations for the different
terms, i.e.

∂uuu
∂ t

+CCC(uuu,uuu) =−GGGp/ρ +νLLLuuu+
fff
ρ

,

DDDuuu = 0,

(3.1)

where GGG,CCC,DDD and LLL denote the approximate gradient, convective, divergence and Laplacian
operators, respectively. Then the semi-discretized Navier-Stokes equations (3.1) are decoupled in
the same manner as the continuous equations were in Section 2.3, resulting in

∂uuu
∂ t

= aaan− GGGpn

ρ
, (3.2)

and
aaan =−CCC(uuun,uuun)+νLLLuuun + fff n/ρ, (3.3)

where aaa is hereafter called the right-hand side vector, and uuun, aaan and pn are the velocity, the
right-hand side vector and the pressure evaluated at time t = tn. The Poisson equation becomes

DDD
(

GGGpn

ρ

)
= DDDaaan, (3.4)

15



3 Discretization and numerical methods

with Neumann boundary conditions on ∂Ω:

nnn · GGGpn

ρ
= nnn ·aaan. (3.5)

The projection scheme can be summarized with the following simple algorithm for updating the
pressure and velocity for each time step:

1. Calculate the right-hand side vector with equation (3.3).

2. Solve the Poisson equation (3.4) to update the pressure.

3. Advance the system of ODEs (3.2) one time step to find uuun+1.

The Poisson equation in step 2 is mainly solved using the conjugate gradient method with incomplete
Cholesky factorization (see e.g. Saad (2003)), while the system of ODEs in step 3 can be advanced
using a Runge-Kutta method.

3.2 The level-set method

The temporal evolution of the Navier-Stokes equations assumes that the location of the interface
is known. A method which tracks or captures the position of the interface between time steps is
therefore essential. There exist several methods for this, many of which are discussed in Hansen
(2005, Section 5.4). The level-set method is chosen because of its relative ease of implementation
and for its straightforward handling of topological changes. The following derivation of the level-set
method is based on Osher & Fedkiw (2003). The interested reader is referred to the book for more
details.

3.2.1 The level-set function

In the level-set method, the interface is represented implicitly as the isocontour of some smooth,
continuous function, φ . φ is defined in the whole domain Ω such that

Γ = {xxx |φ(xxx) = 0}, (3.6)

Ω
+ = {xxx |φ(xxx) > 0}, (3.7)

Ω
− = {xxx |φ(xxx) < 0}. (3.8)

The signed distance function is used in this work as the level-set function, i.e.

φ(xxx) =
{

d(xxx) | xxx ∈ Ω+

−d(xxx) | xxx ∈ Ω− , (3.9)

where d(xxx) is the distance function, i.e. the minimum distance from the point xxx to the interface Γ.
The signed distance function has the property that |∇∇∇φ |= 1, and it is smooth and well behaved.
This makes it a good choice for the level-set function.

The level-set function is defined such that the normal to the interface pointing from Ω− to Ω+ can
be calculated as

nnn =
∇∇∇φ

|∇∇∇φ |
. (3.10)
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3.3 Spatial discretization

This makes it easy to find the local curvature,

κ =−∇∇∇ ·nnn =−∇∇∇
2
φ

|∇∇∇φ |
. (3.11)

3.2.2 The level-set advection equation

The evolution of the interface is captured by solving an advection equation of the form

∂φ

∂ t
+uuuI ·∇∇∇φ = 0, in Ω, (3.12)

where the left-hand side is the convective derivative of the level-set function and uuuI is the interface
velocity. Since the fluid velocity is continuous across the interface, the interface velocity is equal to
the fluid velocity at the interface, uI(xxxI) = uuu(xxxI), where xxxI is an interfacial point. For xxx 6= xxxI , the
velocity uuuI(xxx) is found by extrapolation,

∂uuuI

∂τ
+S(φ0)nnn ·∇∇∇uuuI = 0, (3.13)

where τ is pseudo time and S(φ) is a smeared sign function,

S(φ) =
φ√

φ 2 +(2∆x)2
. (3.14)

which is based on Sussman et al. (1994). One could of course simply use the fluid velocity,
uuuI(xxx) = uuu(xxx), but it is shown that the velocity extrapolation helps to preserve the signed distance-
function, see Hansen (2005, Section 5.4.1) and Zhao et al. (1996).

When the level-set equation (3.12) is solved numerically, the signed distance-function property will
inevitable be lost with time due to numerical errors and smearing. To maintain a signed distance
function, the level-set function is reinitialized at regular intervals using an equation proposed by
Sussman et al. (1994),

∂φ

∂τ
+S(φ)(|∇∇∇φ |−1) = 0. (3.15)

Note that both the reinitialization equation (3.15) and the velocity extrapolation equation (3.13) are
solved in pseudo-time, τ . They are both hyperbolic equations, so only a small number of time steps
are needed to extend the signed distance function property or the normal velocity field to a narrow
region around the interface.

Due to numerical errors in the advection of the level-set function, in addition to numerical smearing
in the reinitialization step, the level-set method does not inherently conserve mass. The mass loss is
noticeable in regions with high curvature or low grid resolution.

3.3 Spatial discretization

In this section, the spatial numerical operators will be discussed. The section is divided into two
parts. The first part gives the discretization of the ordinary spatial operators, e.g. the gradient and
the Laplacian, while the second part is a derivation of the weighted ENO (WENO) scheme used to
discretize the convective operator.
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3 Discretization and numerical methods

Note that the spatial discretization utilizes a staggered grid following Osher & Fedkiw (2003),
where scalar values are stored in cell centres and vector values are stored on cell boundaries as
depicted in Figure 3.1.

3.3.1 The gradient, divergence and Laplacian operators

For the rest of this chapter, let ϕ be a smooth test-function, let www = (w1,w2) be an arbitrary, smooth
vector field and let eeex and eeey be the unit vectors in the x- and y-direction. The numerical gradient,
divergence and Laplacian operators are all defined using central differences,

GGGϕ =
ϕi+1, j −ϕi, j

∆x
eeex +

ϕi, j+1−ϕi, j

∆y
eeey, (3.16)

DDDwww =
w1

i+1/2, j −w1
i−1/2, j

∆x
+

w2
i, j+1/2−w2

i, j−1/2

∆y
, (3.17)

LLLwww =

(
w1

i+3/2, j −2w1
i+1/2, j +w1

i−1/2, j

(∆x)2 +
w1

i, j+3/2−2w1
i, j+1/2 +w1

i, j−1/2

(∆y)2

)
eeex

+

(
w2

i+3/2, j −2w2
i+1/2, j +w2

i−1/2, j

(∆x)2 +
w2

i, j+3/2−2w2
i, j+1/2 +w2

i, j−1/2

(∆y)2

)
eeey.

(3.18)

This is consistent with the staggered grid, since the gradient and Laplacian returns a vector with
components defined on the cell faces, while the divergence returns a scalar defined at the cell
centres. These operators are all second-order approximations to their continuous counterparts.

3.3.2 The convective operator

Both the Navier-Stokes equations and the level-set equation involves the convective derivative,

Duuu
Dt

=
∂uuu
∂ t

+uuu ·∇∇∇uuu, (3.19)

Figure 3.1: Example of a staggered grid. The scalar values are stored at the cell centres (i, j), while
the x-component and y-component of vectors are stored at the cell faces, (i+1/2, j) and (i, j +1/2),
respectively.
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3.3 Spatial discretization

where the convective operator is uuu ·∇∇∇. Consider the level-set equation in the one-dimensional case,

∂φ

∂ t
+uφx = 0, (3.20)

where u is the velocity and uφx is the convective term, which represents the direction and speed of
the interfacial advection. Central differences are not recommended for the discretization of this
term, since they tend to introduce spurious oscillations. Instead, the spatial discretization should
depend on the direction of the velocity. If u < 0, the spatial discretization should use information to
the right of the current node, and if u > 0, the information to the left should be used.

In this thesis, the WENO scheme is used for the discretization of the convective operator. This
scheme obtains fifth-order accuracy in smooth regions and third-order accuracy in nonsmooth re-
gions. Following is a short derivation of the one dimensional WENO scheme. The one-dimensional
approach can be used independently for each dimension when expanding to two and three dimen-
sions. For further details on the subject, see Osher & Fedkiw (2003).

As already argued, the sign of u determines the spatial discretization of ϕx, i.e.

∂ϕ

∂x
'
{

ϕ+
x if u ≤ 0

ϕ−
x if u > 0

. (3.21)

Let D+ϕ and D−ϕ denote the standard forward difference and backward difference respectively,

D+
ϕi =

ϕi+1−ϕi

∆x
, (3.22)

D−
ϕi =

ϕi−ϕi−1

∆x
, (3.23)

where ϕi = ϕ(xi) denotes the arbitrary function evaluated at xi. Letting ϕ+
x = D+ϕ and ϕ−

x = D−ϕ

gives the method called upwind differencing. The upwind scheme is only a first-order method,
and can be improved upon by using more accurate approximations for ϕ+

x and ϕ−
x . The essential

non-oscillatory (ENO) correction scheme is a third-order method which utilizes a subset of

{ϕk−3,ϕk−2,ϕk−1,ϕk,ϕk+1,ϕk+2},

where k = i for ϕ−
x and k = i+1 for ϕ+

x . Since the WENO scheme is an improvement of the ENO
scheme, it is natural to start with a derivation of the ENO scheme.

The four first divided differences of ϕ are

D0
i ϕ = ϕi, (3.24)

D1
i+1/2ϕ =

D0
i+1ϕ −D0

i ϕ

∆x
, (3.25)

D2
i ϕ =

D1
i+1/2ϕ −D1

i−1/2ϕ

2∆x
, (3.26)

D3
i+1/2ϕ =

D2
i+1ϕ −D2

i ϕ

3∆x
. (3.27)

Note that the zeroth and the second divided differences are defined at the grid nodes, while the first
and the third are defined at the midpoints between grid nodes. The divided differences will be used
to construct a polynomial of the form

ϕ(x) =
3

∑
j=0

Q j(x), (3.28)
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3 Discretization and numerical methods

where Q j is a polynomial of degree j. Differentiating and evaluating at xi yields

ϕx(xi) =
3

∑
j=1

Q′
j(x). (3.29)

By using appropriate representations of the Q j’s, equation (3.29) can be used to approximate ϕ+
x or

ϕ−
x . Beginning with the first-order term, let

Q1(x) = (D1
k+1/2ϕ)(x− xi), (3.30)

such that
Q′

1(xi) = D1
k+1/2ϕ. (3.31)

This gives an approximation to ϕ−
x or ϕ+

x , depending on whether k = i−1 or k = i. Note that the
first-order polynomial is exactly the first-order upwind differencing. To improve the approximation,
let ξ1 = |D2

k+1ϕ|− |D2
kϕ|, and define

C =
{

D2
kϕ if ξ1 ≥ 0

D2
k+1ϕ otherwise

, (3.32)

k∗ =
{

k−1 if ξ1 ≥ 0
k otherwise

. (3.33)

Now the second-order correction can be found by

Q2(x) = C(x− xk)(x− xk+1), (3.34)

and
Q′

2(xi) = C(2(i− k)−1)∆x. (3.35)

The third-order correction can be found in a similar way; let ξ2 = |D3
k∗+3/2ϕ|− |D3

k∗+1/2ϕ|, and let

C∗ =

{
D3

k∗+3/2ϕ if ξ2 ≥ 0
D3

k∗+1/2ϕ otherwise
. (3.36)

The third polynomial becomes

Q3(x) = C∗(x− xk∗)(x− xk∗+1)(x− xk∗+2), (3.37)

and
Q′

3(xi) = C∗(3(i− k∗)2−6(i− k∗)+2)(∆x)2. (3.38)

These corrections can be used to find third-order approximations for ϕ+
x and ϕ−

x by inserting
equations (3.31), (3.35) and (3.38) into equation (3.29). There are three possible approximations
for each of (ϕ+

x )i and (ϕ−
x )i. Defining v j = D−ϕi−3+ j for j = 1,2,3,4 and 5 gives the three

approximations for (ϕ−
x )i:

ϕ
1
x =

v1

3
− 7v2

6
+

11v3

6
, (3.39)

ϕ
2
x =−v2

6
+

5v3

6
+

v4

3
, (3.40)

ϕ
3
x =

v3

3
− 5v4

6
− v5

6
. (3.41)

The same three formulae gives (ϕ+
x )i by defining v j = D+ϕi+3− j.
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3.3 Spatial discretization

The ENO-scheme chooses one of three approximations for each of (ϕ+
x )i and (ϕ−

x )i, depending on
the value of the divided difference. In the WENO-scheme, a weighted combination of these three is
used, giving fifth-order accuracy in smooth regions. The weighted combination can be written as

ϕx = ω1ϕ
1
x +ω2ϕ

2
x +ω3ϕ

3
x , (3.42)

where 0 ≤ ωk ≤ 1 are weights such that ∑
3
k=1 ωk = 1. In Jiang & Shu (1996) it was shown that the

optimal fifth-order accuracy can be achieved using ω1 = 0.1,ω2 = 0.6 and ω3 = 0.3. In nonsmooth
regions, however, this weighting can be very inaccurate. In Jiang & Peng (2000) a smoothness
estimation was used to improve the order in nonsmooth regions. The smoothness of the stencils
given in equations (3.39) to (3.41) are found as

S1 =
13
12

(v1−2v2 + v3)2 +
1
4
(v1−4v2 +3v3)2, (3.43)

S2 =
13
12

(v2−2v3 + v4)2 +
1
4
(v2− v4)2, (3.44)

S3 =
13
12

(v3−2v4 + v5)2 +
1
4
(3v3−4v4 + v5)2, (3.45)

respectively. Now define

α1 =
0.1

(S1 + ε)2 , (3.46)

α2 =
0.6

(S2 + ε)2 (3.47)

and
α3 =

0.1
(S3 + ε)2 , (3.48)

where ε = 10−6 is used to prevent division by zero. The αs are normalized, giving the following
weights:

ω1 =
α1

α1 +α2 +α3
, (3.49)

ω2 =
α2

α1 +α2 +α3
, (3.50)

ω3 =
α3

α1 +α2 +α3
. (3.51)

In a smooth region, the weights will be very close to the optimal weights and result in fifth-order
accuracy. In nonsmooth regions, the stencils that represent the least smooth areas gets small
values of α , reducing their influence on the approximation. This way the WENO scheme achieves
third-order accuracy in nonsmooth regions. Also, note that the number of calculations needed for
solving the WENO scheme is small compared to that of the ENO scheme, so the WENO scheme is
in general much faster than the ENO scheme.

A simple test case demonstrates the difference in how the schemes perform. Let φ(t,x) be initialized
to the step function shown in Figure 3.2(a), and let the advection speed u be constant, u = 0.5.
Figure 3.2(b) shows the step function after t = 1s. The solid line shows the exact solution, the
medium-dashed line shows the WENO solution, the dotted line shows the ENO solution, the
short-dashed line shows the central-difference (CD) solution and the long-dashed line shows the
first-order upwind (FUP) solution. All the simulations were solved on a grid with ∆x = 0.01
using a four-stage third order SSP RK scheme with CFL number C = 0.21. It can be seen that CD

1See Section 3.5 for a review of the SSP RK schemes and an explanation of the CFL number
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3 Discretization and numerical methods

φ(x)

x

(a) Initial step function, φ(x).

φ(x)

x

(b) Step function at t = 1s.

Figure 3.2: A comparison of the different discretization methods for the convective term. (a) shows
the initial step function and (b) shows the result at t = 1s. The solid line is the exact solution, the
medium-dashed line is the WENO solution, the dotted line is the ENO solution, the short-dashed line is
the central-difference (CD) solution and the long-dashed line is the first-order upwind (FUP) solution.
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3.4 The ghost-�uid method

Table 3.1: Simulation run times for the different discretization schemes.

Discretization scheme Run time (s)
WENO 13.42
ENO 43.02
CD 8.99
FUP 8.64

introduces spurious oscillations, and that FUP smears the solution. The smearing is also present in
ENO and WENO, but they perform noticeably better than FUP. The difference between WENO
and ENO is small, which is expected since they are both third-order methods in nonsmooth areas.
The test also demonstrated that the calculation time using WENO was considerably less than the
corresponding time for ENO, see Table 3.1.

3.4 The ghost-�uid method

In Section 2.2, the interfacial discontinuities due to the interfacial force and the fluid properties
were discussed. The ghost-fluid method (GFM) is used to treat these interfacial discontinuities
numerically by modifying the discretization schemes close to the interface. This modification
results in a first-order scheme at the interface. The method was first introduced by Fedkiw (1999),
and was originally developed for treating discontinuities in compressible flow. In Kang et al. (2000),
it was modified for incompressible flow.

Equation (2.39) shows that the viscous term, µ∇∇∇uuu, is discontinuous across the interface. To solve
the flow equations, terms like

∇∇∇ ·µ∇∇∇uuu (3.52)

must be addressed. The simplification

∇∇∇ ·µ∇∇∇uuu = µ∆∆∆uuu (3.53)

follows when µ is constant, but this simplification leads to numerical smearing across the interface
where µ∇∇∇u is discontinuous. Following is an example of how the GFM is used to discretize the
term (3.52) in the one-dimensional case,

∂

∂x

(
µ

∂u
∂x

)
. (3.54)

First, let the tensor JJJ be a discretization of the expressions for the jump conditions such that

JJJ ' [µ∇∇∇u], (3.55)

i.e. J11 ' [µ ∂u/∂x]. Now consider the discretization of the viscous term (3.54) at the point xi+1/2, j.
Define

uL = ui−1/2, j, (3.56)

uM = ui+1/2, j, (3.57)

uR = ui+3/2, j. (3.58)

Also, let the averaged values of J11 and the level-set function φ at the corresponding points be
φL, φM, φR, JL, JM and JR. The simplest cases are when the interface is not close enough to be
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3 Discretization and numerical methods

Figure 3.3: The split cell (i, j), where the dotted vertical line depicts the interface.

considered, that is φL, φM and φR are all either greater than or equal to zero or less than zero. In
these cases, (

∂

∂x

(
µ

∂u
∂x

))
i+1/2, j

' µ
+ uR−2uM +uL

(∆x)2 , (3.59)

or (
∂

∂x

(
µ

∂u
∂x

))
i+1/2, j

'= µ
− uR−2uM +uL

(∆x)2 , (3.60)

respectively. Otherwise, let

(
∂

∂x

(
µ

∂u
∂x

))
i+1/2, j

'

(
µ

∂u
∂x

)
R
−
(

µ
∂u
∂x

)
L

∆x
. (3.61)

Suppose that φL < 0 and φM ≥ 0, such that the interface splits the cell (i, j) into two pieces of size
θ∆x on the left side and (1−θ)∆x on the right side, where

θ =
|φL|

|φL|+ |φM|
, (3.62)

see Figure 3.3. Let uI denote the continuous velocity at the interface, and calculate the jump at the
interface,

JI = θJM +(1−θ)JL. (3.63)

Now discretize the jump condition [µ ∂u/∂x] at the interface to obtain

µ
+
(

uM −uI

(1−θ)∆x

)
−µ

−
(

uI −uL

θ∆x

)
= JI, (3.64)

and solve this equation for uI ,

uI =
µ+uMθ + µ−uL(1−θ)− JIθ(1−θ)∆x

µ+θ + µ−(1−θ)
. (3.65)

The expression for uI can be used to discretize the split cell, i.e.(
µ

∂u
∂x

)
L
' µ

+
(

uM −uI

(1−θ)∆x

)
= µ̂

(
uM −uL

∆x

)
+

µ̂JIθ

µ− , (3.66)
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3.5 Temporal discretization

where µ̂ defines an effective µ ,

µ̂ =
µ+µ−

µ+θ + µ−(1−θ)
. (3.67)

Similarly one finds when φL ≥ 0 and φM < 0,(
µ

∂u
∂x

)
L
' µ

−
(

uM −uI

(1−θ)∆x

)
= µ̃

(
uM −uL

∆x

)
+

µ̃JIθ

µ+ , (3.68)

where

µ̃ =
µ+µ−

µ−θ + µ+(1−θ)
. (3.69)

For the two remaining cases, let

θ =
|φR|

|φR|+ |φM|
(3.70)

and
JI = θJM +(1−θ)JR. (3.71)

The same approach can be used, and one finds that when φR ≥ 0 and φM < 0,(
µ

∂u
∂x

)
R
' µ

−
(

uI −uM

(1−θ)∆x

)
= µ̃

(
uR−uM

∆x

)
+

µ̃JIθ

µ+ , (3.72)

and when φR < 0 and φM ≥ 0,(
µ

∂u
∂x

)
R
' µ

+
(

uI −uM

(1−θ)∆x

)
= µ̂

(
uR−uM

∆x

)
+

µ̂JIθ

µ− . (3.73)

For the interested reader, further details regarding the ghost-fluid method used on the Poisson
equation can be found in Hansen (2005) and Osher & Fedkiw (2003) or in the articles Fedkiw
(1999) and Kang et al. (2000).

3.5 Temporal discretization

All the partial differential equations used in this thesis are semi-discretized, resulting in systems of
ODEs that may be written as

dϕ(t)
dt

= f (ϕ(t)) (t ≥ 0), ϕ(0) = ϕ0, (3.74)

where ϕ(t) is once again used as an arbitrary, smooth function and ϕ0 is given. The ODEs are
discretized using one of the strong stability preserving Runge-Kutta (SSP RK) schemes. The
SSP RK schemes are used because they do not introduce instabilities in the solution. This is done
by extending low-order methods to higher order while preserving the stability of the low-order
method, see Ketcheson & Robinson (2005) or Hansen (2005). The SSP RK schemes used in this
thesis also allows for some memory optimizations. Details on the general RK method can be found
in most books on numerical analysis, i.e. Iserles (1996) or Burden & Faires (2004).

This section is divided into two parts. The relevant schemes will be presented in the first part, and
the time-step restriction will be discussed in the second part.
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(a) The general explicit Butcher
table.

(b) Euler method (c) Three-stage third-order SSP
RK

(d) Four-stage second-order SSP
RK

(e) Four-stage third-order SSP RK

Figure 3.4: Butcher tables for the relevant SSP RK schemes.

3.5.1 The SSP RK schemes

Any explicit s-stage RK scheme for the problem (3.74) can be written as

ϕ
(i) = ϕn +∆t

s

∑
j=1

ai j f
(

ϕ
( j)
)

(i = 1,2, . . . ,s), (3.75)

ϕn+1 = ϕn +∆t
s

∑
i=1

bi f
(

ϕ
(i)
)

, (3.76)

where ai j = 0 for j ≥ i. The different schemes can be represented by the corresponding Butcher
tables, see Figure 3.4(a). The Euler method is shown as an example in Figure 3.4(b). In the numeri-
cal framework, several SSP RK schemes are implemented. The most frequently used schemes are
a three-stage third-order scheme, a four-stage third-order scheme and a four-stage second-order
scheme, represented with Butcher tables in Figures 3.4(c), 3.4(e) and 3.4(d), respectively. If not
otherwise mentioned, the four-stage third-order scheme is used for the equations of motion and the
four-stage second-order scheme is used for the level-set equations. The higher-stage schemes are
stable for larger time steps than lower-stage schemes, at least on linear problems.

It should be noted that the implementation of the RK schemes used in this work are based on the
Shu-Osher form of the RK method, see Shu & Osher (1988),

ϕ
(0) = ϕn (3.77)

ϕ
(i) =

i−1

∑
j=0

(
αi jϕ

( j) +∆tβi j f (ϕ( j))
)

, i = 1, . . . ,s (3.78)

ϕn+1 = ϕ
(s). (3.79)

It can be shown that the SSP property is enforced when αi j ≥ 0 and βi j ≥ 0, and the schemes
used in this work are all optimal SSP schemes, see Ketcheson & Robinson (2005). The four-stage
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3.5 Temporal discretization

second-order scheme is given in its Shu-Osher form as an example:

ϕ
(1) = ϕn +

∆t
3

f (ϕn) (3.80)

ϕ
(2) = ϕ

(1) +
∆t
3

f (ϕ(1)) (3.81)

ϕ
(3) = ϕ

(2) +
∆t
3

f (ϕ(2)) (3.82)

ϕn+1 =
1
4

ϕn +
3
4

ϕ
(3) +

∆t
4

f (ϕ(3)). (3.83)

For more details on the Shu-Osher form, the SSP property and optimal SSP schemes, the reader is
reffered to Ferracina & Spijker (2004) and Ferracina & Spijker (2005).

3.5.2 The time-step restriction

Stability of the explicit time-integration method can be enforced using the Courant-Friedrich-Lewy
(CFL) condition. Simply put, this condition asserts that a fluid particle does not move more than
one grid cell during one time step. In one dimension, this can be written as

|u|∆t < ∆x (3.84)

where ∆t is the time-step length, ∆x is the grid size and u is the fluid velocity. This leads to the CFL
time-step restriction

∆t ≤ ∆x
max{|u|}

, (3.85)

where max{|u|} is the largest value of |u| on the entire grid. The equation is usually enforced by
using a CFL number C such that

∆t
(

∆x
max{|u|}

)
= C, (3.86)

where 0 < C < 1. In two dimensions, the CFL condition can be written as

∆t max
{
|u|
∆x

+
|v|
∆y

}
= C, (3.87)

where u and v represents the different components of the flow velocity. The CFL condition must
be generalized to take into account the effects of viscous stress, surface tension and gravity. In
Kang et al. (2000), a method to compute the criterion including these effects is given. In the
implemented framework, a variant of this is used. Let Cc, Cv, Cs and Cg be the contribution from
from the convective term, the viscous stresses, the surface tension and the gravity, respectively.
Then the time-step restriction is defined as

∆t =
C

(Cc +Cv)/2+
√

(Cc +Cv)2 +4C2
g +4C2

s

, (3.88)
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where

Cc =
max{|u|}

∆x
+

max{|v|}
∆y

, (3.89)

Cv = 2max
{

ν
−,ν+}( 1

(∆x)2 +
1

(∆y)2

)
, (3.90)

Cs =

√
σmax|κmax|

max{ρ+,ρ−}(min{∆x,∆y})2 , (3.91)

Cg =

√
|gx|
∆y

+
|gy|
∆y

. (3.92)

In Kang et al. (2000), the minimum and not the maximum density was used in equation (3.91).
Because of this, the current criterion is less conservative in flows where there is a large density ratio
between the phases. Also note that for cases where the surface tension varies along the interface,
the maximum of the surface tension over the interface is used, σmax.

3.6 Implementation details

In this section, some important implementation details will be discussed. The discretization and
implementation of the Marangoni terms will be described first, followed by a presentation of the
boundary conditions used in this thesis.

3.6.1 The Marangoni term

In the old implementation, the surface tension was assumed to be constant. The first step of
removing this restriction is to let the surface tension be a varying variable on the interface. This
is handled by letting the coefficient of surface tension be represented by a field variable over the
entire domain. Since the surface tension is only defined on the interface, the value of the surface
tension at the interface is found by interpolation.

The next step is to add the Marangoni terms to the routine that calculates the jump conditions for
the viscous stress tensor. In the implemented framework, the tensor JJJ from equation (3.55) is a
straightforward discretization of equation (2.35), where the last term (ttt · fffsfd) tttnnn is ignored. When
the surface tension varies, this term becomes (ttt ·∇∇∇sσ) tttnnn and results in equations (2.43) to (2.46).
The surface tension terms are discretized with central differences, e.g.

∂σ

∂x

∣∣∣
i+1/2

' σi+1−σi

∆x
. (3.93)

3.6.2 Boundary conditions

Several types of boundary conditions are used in this work. Following is a short description of each
of them, based on Griebel et al. (1998).

First, let computational grid have imax× jmax internal nodes and a set of up to three ghost cells
across the boundary in each direction. Let n denote the number of ghost cells in each direction, and
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let k = 1, . . . ,n. Also, note that for the no-slip and the free-slip condition, the level-set function is
reflected across the boundary using

φi,1−k = φi,k, φi, jmax+k = φi, jmax+1−k, i = 1, . . . , imax−1,

φ1−k, j = φk, j, φimax+k, j = φimax+1−k, j, j = 1, . . . , jmax−1.
(3.94)

No-slip The no-slip condition on the boundary implies that the fluid velocity relative to the
boundary is zero at the boundary. This means that both the normal and the tangent components of
the fluid velocity at the boundary is zero. The normal components of the velocity are given at the
walls,

u0, j = uimax, j = 0, j = 1, . . . , jmax,

vi,0 = vi, jmax = 0, i = 1, . . . , imax.
(3.95)

The tangential components of the velocities do not lie on the boundary, so the no-slip condition can
be enforced with

ui,1−k =−ui,k, ui, jmax+k =−ui, jmax+1−k, i = 1, . . . , imax−1,

v1−k, j =−vk, j, vimax+k, j =−vimax+1−k, j, j = 1, . . . , jmax−1,
(3.96)

such that the average of the values on either side of the boundary is zero.

Free-slip With free-slip conditions on the boundary, no fluid can pass through the boundary,
but there is no friction. This means that the velocity components normal to the boundary is zero,
see (3.95). Also, the normal derivative of the velocity tangent to the boundary is zero, which is
achieved by mirroring the velocities of the computational domain across the border:

ui,1−k = ui,k, ui, jmax+k = ui, jmax+1−k, i = 1, . . . , imax−1,

v1−k, j = vk, j, vimax+k, j = vimax+1−k, j, j = 1, . . . , jmax−1.
(3.97)

Periodic When using periodic boundaries, the ends of the domain are overlapping. Thus periodic
boundaries always come in pairs, i.e. if the west boundary is periodic, then obviously the east
boundary is periodic as well. Also, the overlapping of the domain results in a smaller computational
domain, so the width of the domain must be chosen to exceed the period length by one grid-
cell length. The periodic boundary condition will be given for vertical boundaries only, as the
expressions for horizontal boundaries are equivalent. The periodic condition for the horizontal
velocity-component is

u1−k, j = uimax−k, j,

uimax−1+k, j = uk, j,
(3.98)

where j = 1, . . . , jmax. The expression for the vertical velocity-component is

v1, j = vimax, j,

v1−k, j = vimax−k, j,

vimax+k, j = v1+k, j,

(3.99)

where i = 1, . . . , imax. Since the level-set function is defined at the cell center, the expression for the
level-set function is the same as the expression for the vertical velocity-components.

It should be noted that for a periodic domain, the pressure should also be periodic. Since a periodic
boundary condition for the pressure is not implemented, the pressure is restricted to being constant
in the direction of periodicity.
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3.7 Summary

In this chapter, the discretization and numerical methods used to solve the mathematical model
given in Chapter 2 have been discussed. First, the projection method was discussed. It was shown
how the semi-discretized governing equations could be solved as a system of ODEs coupled with a
Poisson equation. Then the level-set method was reviewed, and it was shown how it can be used to
implicitly capture the interface in two-phase simulations. Next, the spatial operators were discussed,
and the approximation of the convective term was discussed in detail. The third-order ENO-scheme
and the fifth-order WENO-scheme were reviewed, and an example was made to demonstrate the
performence of the different schemes for the advection of a step function. The example showed
that the WENO scheme is preferable for the approximation of the convective operator, both with
regard to accuracy, and with regard to computational time. Then the treatment of the interfacial
discontinuities using the ghost-fluid method was discussed, followed by a section dedicated to
the temporal discretization. Finally, some details concerning the implementation of the boundary
conditions and the Marangoni effect were given.
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4 Analysis of the Marangoni force

The mathematical model has been derived and implemented under the assumption that the surface
tension may vary along the interface. It has been shown that this leads to Marangoni terms in
the jump condition for the viscous stress, see Section 2.2 and equations (2.43) to (2.46). The
implementation of these terms were discussed in Section 3.6.

The Marangoni terms induce the so-called Marangoni effect, which will be discussed in this
chapter. Two problems will be analysed and tested numerically, and will be used to verify that the
implementation of the Marangoni terms is reliable.

4.1 The Marangoni e�ect

The derivation of the jump conditions in Section 2.2 showed that gradients in the surface tension
induce forces that modify the interface boundary conditions. The effect of these forces is called the
Marangoni effect. It is easy to show that a two-phase flow where there is a non-zero Marangoni
force can not be static. The flow is static when uuu = 0, which means that ∇∇∇uuu = 0 and

[∇∇∇uuu] = 0, (4.1)

but if ∇∇∇sσ 6= 0, then equation (2.39) can be used to show that

[∇∇∇uuu] = (ttt ·∇∇∇sσ) tttnnn 6= 0. (4.2)

Several different factors may lead to gradients in the surface tension, such as gradients in the
temperature, surfactant concentration and electric potential, see Brennen (2005, Section 3.3). Here
it is also stated that for most ranges of temperature, the surface tension decreases linearly with
temperature, reaching zero at the critical point.

The effects of a non-uniform surfactant distribution will be discussed in detail in Chapter 5. Since
this chapter will describe the Marangoni effect, it can be viewed as a preparation for the study of
surfactant-influenced flows.

In the following sections, the coefficient of surface tension will be given as a function of space, e.g.

σ(x) = σ0 +σ1x, (4.3)

where σ0 and σ1 are constants and the spatial parameter x is to be evaluated on the interface. A
variation in temperature could be used as an explanation of the variation in surface tension, but
then it should be noted that all other temperature effects are still neglected and that the temperature
is assumed to remain constant in time. Thus the results from the following test cases will not be
physically plausible, but they should show the correct mathematical behaviour and illustrate the
Marangoni effect to a two-phase flow.
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4 Analysis of the Marangoni force

4.2 Plane interfaces

4.2.1 A horizontal interface

Consider a two-phase flow in an infinite-length tube of height 2h, with an interface at height h.
Gravity effects are neglected, and the densities and viscosities are assumed equal, i.e. ρ1 = ρ2 = ρ

and µ1 = µ2 = µ . Let the coefficient of surface tension increase linearly along the interface,

σ(x) = σ0 +σ1x, (4.4)

such that
∂σ

∂x
= σ1. (4.5)

The set-up is depicted in Figure 4.1. This problem is actually inspired by the lid-driven cavity
problem, see e.g. Ghia et al. (1982). A lid moving with constant velocity instead of the interface
would have the same effect as the linear surface-tension gradient.

Consider the described flow when it has reached steady state, i.e. when

Duuu
Dt

= 0, (4.6)

∂u
∂x

= 0, (4.7)

v = 0, (4.8)

∇∇∇p = 0, (4.9)

where uuu = (u,v) is the velocity vector and u and v are the horizontal and vertical velocities,
respectively. The velocity at the top and bottom boundaries are zero, that is

u(0) = u(2h) = 0. (4.10)

The jump in the viscous stress tensor is given by equation (2.39), and the only non-zero term is[
µ

∂u
∂y

]
= µ

(
∂u2

∂y
− ∂u1

∂y

)
=−σ1. (4.11)

Figure 4.1: A sketch of the simulation set-up used to test the Marangoni effect with a horizontal
interface.
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4.2 Plane interfaces

The given assumptions and boundary conditions imply that the steady-state solution of the horizontal
velocity is

u(y) = umax

(
1− |y−h|

h

)
, (4.12a)

where

umax = u(h) =
hσ1

2µ
. (4.12b)

Equations (4.12) show that a variation in the surface tension along an interface results in a flow in
the direction of increasing surface tension.

In the simulations, the set-up shown in Figure 4.1 is used with L = 2h. All simulations are calculated
on a 129×129 grid and run until t = 20s. The parameters used are

µ = 0.002 Pa s, σ1 = 0.01 N/m2, h = 0.4 m,

which correspond to the following analytic solution for the flow, see equations (4.12):

u(y) = 1− |y−0.4|
0.4

, (4.13)

where the velocity units are omitted. To simulate an infinite length, periodic boundaries are used
for the left and right borders. The implementation of the periodic boundaries is only valid for
cases with constant pressure, see the paragraph about the implementation of periodic boundaries in
Section 3.6. If the initial state is the analytic solution, the pressure will remain constant, and the
stationary state should be kept in time. If the initial state is not the stationary state, however, the
pressure will not be constant and errors due to the boundary conditions will ruin the simulation.

Figure 4.2 shows the flow-velocity profiles for two simulations. The solid lines show the initial
profile and the dotted lines show the profile after 20 seconds. In Figure 4.2(a), the analytic solution
(4.13) was used, and one can see that the velocity profiles match and indicate that the stationary
state is kept in time. As a reference, Figure 4.2(b) shows a simulation where the initial state was
not stationary. The velocity field was set to

u(y) =
umax

2

(
1− |y−h|

h

)
, (4.14)

and as expected, the velocity profiles in the right-hand figure do not match.

4.2.2 A tilted interface

It has been verified that an orthogonal rotation of the axes gives the same results as the ones
discussed above. As mentioned just before equation (4.11), all but one Marangoni term is zero for
both the horizontal and the vertical case. To test the remaining six terms, a tilted case is considered
where the system described in equations (4.4) to (4.12) is rotated 45 degrees counter-clockwise
relative to the axes. This is a much more general case than the corresponding horizontal and vertical
cases, because an arbitrary interface will normally not be aligned with the axes.

In the tilted case, the coefficient of surface tension becomes

σ(x,y) = σ0 +
σ1√

2
(x+ y), (4.15)
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4 Analysis of the Marangoni force

u(y)

y

(a) Initial velocity set to the steady state velocity.

u(y)

y

(b) Initial velocity set to half the steady state velocity.

Figure 4.2: Flow velocity profiles for two simulations. The solid line is the initial profile and the
dotted line is the profile after 20 simulated seconds. In (a), the steady state-solution is given as initial
condition, and in (b) a false steady-state solution is given as initial condition. The simulations show that
the steady-state solution is kept in time, whereas the false solution is not.
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4.2 Plane interfaces

Table 4.1: Right-hand side vector errors, E(ni).

n E(ni) N
25 2.471 ·10−2 -
51 1.211 ·10−2 1.00

101 6.115 ·10−3 1.00
201 3.073 ·10−3 1.00
401 1.549 ·10−3 0.99
801 7.711 ·10−4 1.01

and the steady-state velocity-field becomes uuu(x,y) =
(
u(x,y),v(x,y)

)
, where

u(x,y) = v(x,y) =
hσ1

2
√

2µ

(
1− |y− x|√

2h

)
. (4.16)

Because of the staggered grid, the velocities u and v are initialized as u(xe,y) and v(x,yn), where xe

is the value of x on the east edge, and yn is the value of y on the north edge.

It is no longer possible to simulate an infinite tube using the implemented framework, so the analytic
solution can not be tested in the same way as was shown for the horizontal case. It can still be
tested, though, by noting that the analytic solution still holds everywhere but at the boundaries at
the first time step. This means that the right-hand side vector, aaa, defined in equation (3.3) should be
zero everywhere except near the boundaries. Hence, the initial right-hand side vector is calculated
on several grid sizes n, and the error E(n) is computed for each n, where the error is defined as the
maximum norm of aaa, i.e.

E(n) = ‖aaa(n)‖∞. (4.17)

Also, the convergence rate is calculated using

Ni = log
(

E(ni)
E(ni−1)

)
/ log

(
ni−1

ni

)
. (4.18)

Note that the values close to the boundaries are removed from aaa before E(n) is calculated, since
the forces do not balance there. Table 4.1 shows the errors E(n) for several grid sizes n. The
table shows that the convergence rate is one, which agrees with expectations since the GFM is a
first-order method.

As a reference to the calculated errors, the error for the corresponding horizontal case when n = 25
is found to be E(25) = 1.9 ·10−15. The errors in the tilted case are thus far greater than the error
in the horizontal case. To find the source of the difference in the error, the separate terms of the
right-hand side vector, i.e. the convective and Laplacian terms and the body force, are calculated
and compared. The body force is zero in both cases. In the horizontal case, the convective term
has no contribution to the error, so the error in the Laplacian is E(25) = 1.9 ·10−15. In the tilted
case, the error in the Laplacian was of order 10−15, exposing the convective term as the source
of the error difference. Table 4.2 shows the errors for the convective term for several grid sizes
n, and shows that the error is of order O(∆x). Note that the implementation of the Marangoni
terms does not affect the convective term, so the small error in the Laplacian term indicates that the
implementation is correct.

The explanation for the error in the convective term is that in the presence of a surface tension
gradient, there is a sharp discontinuity in the derivative of the velocity at the interface. This can be
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4 Analysis of the Marangoni force

Table 4.2: Errors in the convective term for the tilted case.

n ∆x Convective
25 3.20 ·10−2 2.47 ·10−2

51 1.57 ·10−2 1.21 ·10−2

101 7.92 ·10−3 6.12 ·10−3

201 3.98 ·10−3 3.07 ·10−3

401 2.00 ·10−3 1.54 ·10−3

801 9.99 ·10−4 7.71 ·10−4

seen from equations (2.43) to (2.46) by letting [µ] = 0, resulting in

[∇∇∇uuu] =
∂σ

∂x

[
−n1n2

2 −n3
2

n2
1n2 n1n2

2

]
+

∂σ

∂y

[
n2

1n2 n1n2
2

−n3
1 −n2

1n2

]
. (4.19)

Hence, the convective term

uuu ·∇∇∇uuu =
[

uux + vuy

uvx + vvy

]
, (4.20)

might also be discontinuous across the interface. The discretization of the convective term does not
consider any such discontinuity, and might result in a smearing error close to the interface.

A calculation of equation (4.20) using the velocities given in equations (4.12) and (4.16) shows that
the convective term is zero in both the horizontal and the tilted case, as should be expected. The
convective term is thus continuous across the interface in both of these cases, even though ∇∇∇uuu is
not. In the tilted case where none of the components of the velocity or its derivative are zero, the
discretization leads to numerical smearing of the discontinuity in ∇∇∇uuu across the interface. Small
errors therefore appear close to the interface. When the interface is aligned with the axes as in the
horizontal case, only one of the four components of ∇∇∇uuu is non-zero, i.e. ∂u/∂y. The smearing of
the derivative is therefore completely removed, since v = 0, and the convective term is correctly
calculated as zero everywhere.

The plane interface tests have all indicated that the implementation of the Marangoni terms is correct.
The simulations agreed with the analytic results, and it has been shown that the Marangoni effect
induces a flow in the direction of increasing surface tension. The tilted test has exposed a weakness
in the numerical method. The inclusion of Marangoni effect induces discontinuities in the derivative
of the velocity across the interface that should be considered in the discretization of the convective
term. This is not handled by the standard GFM. Li & Lai (2001) presents an extended version of the
immersed interface method (IIM) which seems to account for the discontinuities in ∇∇∇uuu. The IIM,
due to LeVeque & Li (1994), is much more involved than the GFM, so a straightforward adaptation
is not recommended. A correction term based on Li & Lai (2001) might still be adapted into the
method used in this work, and so further investigation along this line is suggested.

4.3 A droplet in a linear temperature �eld

Consider a two-dimensional droplet with radius r in an unbounded fluid medium, see Figure 4.3.
Again, for simplicity, let the viscosity and density of the two fluids match, and let the surface
tension vary linearly, e.g.

σ = σ0 +σ1 x. (4.21)

Assume that the pressure outside the droplet is zero, and let both the droplet and the surrounding
fluid be initially at rest such that uuu = 000 everywhere.
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4.3 A droplet in a linear temperature �eld

Figure 4.3: An idealized droplet with radius r, centred at (x0,y0).

4.3.1 Initial analysis

Let FFFd and FFFs denote the initial net forces on the droplet and the surrounding fluid, respectively.
Since uuu = 0, the only initial forces acting on the droplet are the net Marangoni force, FFFM, and the
net capillary force, FFFc, i.e.

FFFd = FFFM +FFFc. (4.22)

The fluid properties are equal, so the Marangoni force acts on the surrounding fluid with equal
magnitude, that is

FFFs = FFFM. (4.23)

The capillary force acting on the droplet must be matched by the pressure inside the droplet, such
that

[p] = p+− p− =−σ(x)
r

, (4.24)

where + and − denote the different fluids, see equation (2.38). Since the pressure in the surrounding
fluid is assumed zero, p+ = 0, the pressure inside the droplet must be

p− =
σ(x)

r
. (4.25)

Figure 4.4 shows several sketches of the initial forces in the system. Figure 4.4(a) shows the
Marangoni forces, Figure 4.4(b) shows the capillary forces and Figure 4.4(c) shows the total surface
tension forces, i.e. the sum of the Marangoni and the capillary forces. Figure 4.4(d) shows the net
forces on the droplet and the surrounding medium. Note that the forces have the same magnitude
and point of attack.

One of the intermediate results from Section 2.2 can be used to find an analytic expression for the
net forces, FFFd and FFFs. Consider the equation (2.25),∮

Γ

ϕ ([TTT ] ·nnn+ fffsfd)ds = 0, (4.26)

where ϕ is an arbitrary, smooth function with compact support and fffsfd = σκnnn + ∇∇∇sσ is the
surface force density. Let ϕ be chosen such that ϕ = 1 in the neighbourhood of the droplet, then
equation (4.26) becomes ∮

Γ

[TTT ] ·nnnds =−
∮

Γ

(σκnnn+∇∇∇sσ)ds. (4.27)
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4 Analysis of the Marangoni force

The left-hand side can be written as the sum of the net forces,∮
Γ

[TTT ] ·nnnds =
∮

Γ

TTT + ·nnnds−
∮

Γ

TTT− ·nnnds

=−
(∮

−Γ

TTT + ·nnnds+
∮

Γ

TTT− ·nnnds
)

=−(FFFs +FFFd) ,
=−(FFFc +2FFFM) . (4.28)

By comparing the left-hand side expression given in equation (4.28) with the right-hand side of
equation (4.26), one obtains

FFFc =
∮

Γ

σκnnnds, (4.29)

and

FFFM =
1
2

∮
Γ

∇∇∇sσ ds. (4.30)

(a) The Marangoni forces, tangen-
tial to the interface.

(b) The capillary forces, normal to
the interface.

(c) The sum of the Marangoni and
the capillary forces.

(d) The net forces on the droplet
and the surrounding �uid.

Figure 4.4: The surface-tension forces on a droplet and the surrounding fluid due to a linear variation
in surface tension. (d) shows the net forces on the droplet and the surrounding fluid. Both forces in (d)
have the same point of attack.
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4.3 A droplet in a linear temperature �eld

The analytic expressions for equations (4.29) and (4.30) can be found by a calculation of the
integrals. Assume for simplicity that x0 = y0 = 0. The droplet interface can be parametrized in
Cartesian coordinates as two half circles,

y =±
√

r2− x2, −r ≤ x ≤ r. (4.31)

The unit normal, the curvature and the interface-element ds can be calculated as

nnn =
1
r

[
x

±
√

r2− x2

]
, (4.32)

κ =−∇∇∇ ·nnn =−1
r

(4.33)

and
ds =

√
1+
(
y′(x)

)2 dx =
r√

r2− x2
dx. (4.34)

The normal and the curvature can then be used to find the integrand of equation (4.29), which
becomes

σκnnn =−
(

σ0 +σ1x
r2

)[ x

±
√

r2− x2

]
. (4.35)

The integrand in equation (4.30) can be found using equation (2.10), giving

∇∇∇sσ =
σ1

r2

[
r2− x2

±x
√

r2− x2

]
. (4.36)

Now the Marangoni and capillary forces are calculated, resulting in

FFFc =−πσ1r iii, (4.37)

and
FFFM =

πσ1r
2

iii, (4.38)

where iii is the unit vector in the x-direction. Hence, the initial net forces on the droplet and on the
surrounding fluid are

FFFd =−σ1πr
2

iii (4.39)

and
FFFs =

σ1πr
2

iii. (4.40)

Equations (4.39) and (4.40) shows that a surface tension that varies linearly in the x-direction drives
the droplet to flow in the direction of decreasing surface tension. This can also be explained using
the result from the previous section, where it was shown that a variation in the surface tension along
an interface starts a flow along the interface in the direction of increasing surface tension. For a
droplet where the surface tension varies linearly in the x-direction, this induced flow means that
there must be two circulation currents inside the droplet and a net flow in the positive x-direction in
the surrounding fluid. The droplet must then obtain a net velocity in the negative x-direction. If this
was not so, the net force on the system would be non-zero, i.e.

FFFs +FFFd 6= 0, (4.41)

which means that the initial pressure gradient outside the droplet would be non-zero.
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4 Analysis of the Marangoni force

Table 4.3: Calculations of the initial force on the droplet.

n FFFd [N] N
25 2.1943 -
50 2.3460 0.989

100 2.4217 0.976
200 2.4643 1.133
400 2.4799 0.829
800 2.4925 1.422

4.3.2 Numerical results

The droplet is initialized in a box with side lengths h. To simulate an infinite medium, the length h
will be chosen for each set of simulations such that the boundaries do not affect the flow, typically
h ∼ 20r. All simulations will use the same fluid parameters:

σ0 =
0.1
π

N/m, σ1 =−0.1
π

N/m2,

ρ = 1.0 kg/m2, µ = 0.005 Pa s,

r = 0.005 m.

These parameters result in an initial force on the droplet in the positive x-direction with magnitude

|FFFd |= 2.5 ·10−4 N, (4.42)

and the corresponding force on the surroundings is

FFFs =−FFFd . (4.43)

The pressure inside the droplet at the points (x,y) is given by equation (4.25), which in this case
becomes

p−(x) =
20
π

(1− x)' 6.37(1− x). (4.44)

In the first numerical test, the velocity and pressure are initialized to zero, and the Poisson equation
is solved once to update the pressure inside the droplet. The initial force on the droplet is then
calculated using the identity

FFFd =
∫

Γ

TTT ·nnnds =
∫

D
∇∇∇ ·TTT dV, (4.45)

where D is the droplet domain, and the approximated force will be denoted FFFd . The integral is
calculated using a second-order numerical quadrature. Since the force is only considered initially
when t = 0, the side-length h can be chosen close to the diameter of the droplet. In the following
calculations, h = 0.012m is used.

Figure 4.5 shows two plots of the pressure. Figure 4.5(a) shows a contour plot of the pressure, and
Figure 4.5(b) shows the pressure profile along the middle of the droplet in the x-direction. The plots
show that the calculated pressure is consistent with the analytic result given in equation (4.44).

The calculation results for the droplet force for different grid sizes n×n are given in Table 4.3. The
convergence rates are calculated using the equation (4.18), where E(n) is the absolute error of the
calculated force FFFd(n) compared with the analytic result, i.e.

E(n) = |FFFd(n)−FFFd |. (4.46)
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0.000 0.002 0.004 0.006 0.008 0.010 0.012

6.305 6.315 6.325 6.335 6.345 6.355

(a) A pressure contour-plot that shows a linear decrease in pressure
along the x-axis.

0.000 0.002 0.004 0.006 0.008 0.010 0.012

6.300

6.320

6.340

6.360

(b) The pressure pro�le along the centre of the droplet in the x-
direction.

Figure 4.5: The initial pressure inside the droplet. The plots show that the initial pressure is consistent
with equation (4.25).
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The results indicate a first-order convergence towards the analytic results. This is as expected, since
the GFM is a first-order method. The same qualitative results have been obtained for a 60-degree
rotation of the system counter-clockwise. The results show that the Marangoni force acts on the
droplet in the direction of decreasing surface-tension, which is in accordance with literature, see
e.g. Brennen (2005, Section 3.3).

Next, a simulation of the droplet is made using a rectangular box with vertical side-length h1 = 0.1 m
and horizontal side-length h2 = 0.12 m. The droplet is placed in the centre of the box, and the
simulation is run until t = 0.07 s. Figure 4.6(a) shows the velocity vector-field close to the droplet
at t = 0.07 s. It can be seen that the velocity at the droplet interface is positive, and that there are
internal and external currents. Figure 4.6(b) illustrates this by showing the velocity vector field
relative to the droplet. The circulation currents inside the droplet can be seen, and the external flow
is seen to be in the negative x-direction. This is as expected when compared to the discussion in the
previous section.

The analysis of the droplet has been restricted to a two-dimensional droplet. For an analytic treat-
ment of the Marangoni force on a three-dimensional droplet, see Subramanian (1985). The results
in this section indicate that the implementation is capable of simulating two-phase incompressible
flow with a known variation in surface tension. The Marangoni effect has been demonstrated, and
the results have been shown to be in accordance with literature.

4.4 Summary

The Marangoni effect has been studied, and two idealized cases have been used as examples.
The cases showed that a variation in surface tension induces a flow in the direction of increasing
surface tension. For a droplet, this was shown to result in a force in the direction of decreasing
surface tension. The examples have demonstrated that the implementation is correct, and capable
of handling two-phase flow with a given surface-tension variation.
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(a) The velocity vector-�eld at t = 0.07s.

(b) The velocity vector-�eld relative to the droplet at t = 0.07s.

Figure 4.6: The velocity vector-fields close to the droplet at t = 0.07 s. The plots show that the
Marangoni force induces a net flow in the negative x-direction outside the droplet, and two circulation
currents inside the droplet.
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Hansen (2005, Chapter 9.2) stated that a natural extension to the two-phase modelling framework
in order to describe more realistic systems, was to include a conservation law for surfactants along
the interface. This will allow the coefficient of the surface tension to be a function of the surfactant
concentration, and will lead to tangential forces along the interface as described in the previous
chapter.

The goal of this chapter is to present a surfactant model that can be coupled with the existing model.
The chapter is divided into two parts. The first part is an introduction to surfactants and their effects,
while the second part gives a derivation and discussion of a general model.

5.1 Introduction

Surfactants, or surface-active agents, are amphipathic molecules, which means that they typically
consist of a hydrophilic head and a long hydrophobic tail, see Figure 5.1(a). Common examples
of surfactants are detergents, for example soap, but surfactants are also found in crude oil and on
the coating of the surfaces of the alveoli, which are the small air sacks in the lungs serving as the
site of exchange. Because of their amphipathic structure, surfactants tend to align themselves at
the surface and internally so that the hydrophile end is toward the water and the hydrophobic tail
is squeezed away from the water, see Figure 5.1(b) (Zumdahl, 2002). There are several types of
surfactants, some of which are insoluble and others of which are soluble. Insoluble surfactants
remain on the surface, whereas soluble surfactants diffuse into the bulk of the suspending fluid, see
Bush (2004).

The presence of surfactants on the interface reduces the local surface tension, essentially because
the molecules take up a preferred orientation in the surface layer, and exert on each other a
repulsive force which partially balances the tension of the pure water surface, see (Batchelor,
1967, Section 1.9). It follows that gradients in surfactant concentration result in surface-tension
gradients and the Marangoni effect. On the other hand, the surfactant concentration is affected
by the motion of the surrounding fluid: The concentration of surfactant is both advected by the

(a) A schematic sketch of a surfactant
molecule.

(b) Surfactants adsorbed on a
water-oil interface.

Figure 5.1: Sketches of surfactants.
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ambient flow and diffused along the moving interface, see Xu & Zhau (2003). Hence the motion of
the fluid and the surfactant distribution are coupled together. This coupling requires a conservation
law for surfactants along the interface and an equation of state. In the most general case, the
conservation law must include both an advection and a diffusion term, and a source term associated
with adsorption onto or desorption from the surface.

Xu et al. (2006) presents a level-set method for the simulation of fluid interfaces with insoluble
surfactants in two-dimensions. The method couples a surfactant model based on Xu & Zhau (2003)
with the immersed interface method developed by LeVeque & Li (1994) for solving the fluid flow
equations. In James & Lowengrub (2004), an axisymmetric numerical method for simulating the
dynamics of insoluble surfactants on a moving liquid-liquid interface is presented. In the following
section, a surfactant model based on Xu & Zhau (2003) will be reviewed. The model is restricted to
insoluble surfactants, where there is no transfer from or to the bulk either to or from the interface.

5.2 A surfactant model

Let f denote the surfactant concentration along the surface. The surface tension can be related to
the surfactant concentration by the Langmuir equation of state, which expresses the coefficient of
surface tension, σ , as a function of surfactant concentration, f , i.e.

σ( f ) = σ0 +RT f∞ log(1− f / f∞). (5.1)

Here σ0 is the coefficient of surface tension for a clean interface where f = 0, R is the ideal gas
constant, T is the temperature and f∞ is the surfactant concentration at maximum packing. If the
surfactant concentration f � f∞, then the approximation

log(1− f / f∞)'− f / f∞ (5.2)

can be used to simplify equation (5.1), resulting in the linear approximation

σ( f ) = σ0−RT f . (5.3)

Further details about the equation of state and the modelling of surfactant interactions can be found
in Pawar & Stebe (1996).

The conservation law for surfactants can be derived by considering a mass balance on an arbitrary
surface element on the interface. Following is a short derivation based on Stone (1990) for two-
dimensional deforming surfaces. Let m(t) denote an arbitrary surface element, and consider a mass
balance on m(t). In the absence of diffusion, chemical reactions and fluxes to the surface from
either of the surrounding bulk phases, the mass balance yields

D
Dt

∫
m(t)

f dm = 0, (5.4)

where D/Dt denotes the convective derivative. Equation (5.4) can be rewritten by using the product
rule, giving ∫

m(t)

(
D f
Dt

dm+ f
D
Dt

dm
)

= 0, (5.5)

where f Ddm/Dt accounts for the change in the material surface element as a result of stretching
and distortion. Define the vector area dmmm = nnndm, where nnn is the unit normal vector. It can be
shown that the time rate of change of a material surface element with a vector area dmmm is,

D
Dt

dmmm = dmmm∇∇∇ ·uuuI − (∇∇∇uuuI) · dmmm, (5.6)
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where uuuI is the local interface velocity, see Batchelor (1967, page 132). Since the fluid velocity is
continuous across the interface, uuuI = uuu. Taking the inner product of equation (5.6) with nnn gives

D
Dt

dm = ∇∇∇s ·uuu dm, (5.7)

where ∇∇∇s is the surface gradient operator, see equation (2.10). Since f is only defined along the
interface, the convective derivative of f in equation (5.5) is

D f
Dt

=
∂ f
∂ t

+uuus ·∇∇∇s f , (5.8)

where uuus represents the tangential component of the velocity, uuus = (111−nnnnnn)uuu. Combining equa-
tions (5.5), (5.7) and (5.8) gives∫

m(t)

(
∂ f
∂ t

+uuus ·∇∇∇s f +∇∇∇s ·uuu f
)

dm = 0, (5.9)

and since m(t) is arbitrary, it follows that

∂ f
∂ t

+∇∇∇s ·( f uuu) = 0. (5.10)

If the velocity uuu is decomposed into the tangential component uuus and the normal component
uuun = uuu−uuus, equation (5.10) can be rewritten as

∂ f
∂ t

+∇∇∇s ·( f uuus)+(uuu ·nnn)κ f = 0, (5.11)

where κ is the mean curvature, see Xu & Zhau (2003). Here the second term corresponds to the
tangential advection along the interface, and the third term corresponds to surface stretching by
the normal velocity. James & Lowengrub (2004, Appendix A) shows that equation (5.11) can be
written in the following equivalent formulation:

∂ f
∂ t

+uuu ·∇∇∇ f −nnn ·∇∇∇uuu ·nnn f = 0, (5.12)

where nnn ·∇∇∇uuu ·nnn is the normal component of the normal derivative. The surface diffusion is included
in the above equation by adding a diffusion term, Ds∇∇∇

2
s f . This results in the convective-diffusion

equation for surfactant transport,

∂ f
∂ t

+uuu ·∇∇∇ f −nnn ·∇∇∇uuu ·nnn f = Ds∇∇∇
2
s f , (5.13)

where Ds is the surface diffusivity of surfactant, see e.g. James & Lowengrub (2004) or Xu & Zhau
(2003).

To capture the evolution of the surfactant concentration on the interface, Xu & Zhau (2003) suggests
to use an approach similar to the level-set formulation. That is, define an auxiliary function
f̂ (xxx, t) such that for xxx ∈ Γ, f̂ (xxx, t) = f (xxx, t). The function f̂ can be defined arbitrarily as long as
it agrees with f on the interface. Xu & Zhau (2003) states that the best extension of f off the
interface is the orthogonal extension, i.e. ∇∇∇ f̂ ·∇∇∇φ = 0. The extension can be obtained using a
surfactant-extrapolation equation similar to the velocity-extrapolation equation (3.13),

∂ fff
∂τ

+S(φ0)nnn ·∇∇∇ f = 0, (5.14)
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where the -̂notation for f off the interface is dropped. Just as the level-set function needs to
be reinitialized, orthogonality between f and φ must be maintained. This is done by solving
equation (5.14) at regular intervals.

A solution strategy is proposed in Xu & Zhau (2003). The outline of the main procedures that are
proposed per time step is:

1. Evolve the surfactant concentration by solving equation (5.13). A semi-implicit modified
Crank-Nicholson scheme of second-order accuracy in time is proposed for the time discretiza-
tion, and a combination of second-order central differences and a third-order upwind scheme
is proposed for the spatial discretization. It is shown that the proposed discretization yields
second-order accuracy under the CFL condition ∆t = O(∆x).

2. Evolve the interface using the level-set method, see Section 3.2.

3. If needed, reinitialize the level-set function and extend the surfactant concentration off the
interface orthogonal to φ .

4. Use the updated interface and surfactant concentration to update the velocity field.

5.3 Summary

This chapter has reviewed a model for surfactant conservation on an interface and surfactant
influence on the surface tension. The model has been discussed, and a solution strategy proposed
by Xu & Zhau (2003) has been outlined.
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6 Conclusions and recommendations for further work

6.1 Conclusion

This thesis has treated a two-phase flow model for inviscid and Newtonian fluids with constant
density and viscosity. The surface-tension force on the interface and the difference in fluid properties
induce jumps in the pressure and the velocity and their derivatives across the interface. These jumps
are handled by a set of jump conditions, which have been derived for a general surface-tension
force.

It has been shown how a projection method is used to discretize the governing equations. The
spatial discretization has been reviewed, and the ghost-fluid method for handling the interface
discontinuities has been discussed. The level-set method is used to capture the interface, and
SSP RK schemes are used for the temporal discretization.

The main contribution in this thesis is the extension of a two-phase flow model to include the effects
of varying surface-tension along an interface separating two fluids. The jump conditions of the old
framework have been modified, and two test cases have been studied. These test cases are used to
validate the implementation as well as study the effects of Marangoni forces. It has been shown
that a surface-tension gradient induces a flow along the interface in the direction of increasing
surface tension. For a droplet, this was shown to result in a net force in the direction of decreasing
surface tension. The tests indicate that the implementation of the Marangoni terms are correct, and
that the model is capable of simulating two-phase flow with a given surface-tension variation. The
tests also revealed a weakness in the standard GFM: The presence of Marangoni forces induce a
discontinuity in the gradient of the velocity across the interface. Since this discontinuity is not
explicitly accounted for in the discretization of the convective term, an error due to numerical
smearing occurs.

Finally, the thesis has discussed surfactant effects on two-phase flow. Surfactants are explained and
described, and a general surfactant-model is reviewed. The model includes an equation of state for
coupling the surface tension with the surfactant concentration, and a transport equation for evolving
the surfactant concentration in time. The model is discussed, and some implementation ideas are
given.

6.2 Recommendations for further work

It is recommended that further work is made to implement and analyse a surfactant model. The
model reviewed in this thesis can be used as a basis. The implementation will require a discretization
of the transport equation and an implementation of an equation of state. If soluble surfactants are
desirable, a transport equation is also needed for surfactant transport between the bulk and the
interface.

It is also recommended that one finds a way to handle the interfacial discontinuity in the gradient
of the velocity for the convective term. One suggestion is to adapt the correction term for the
convective term given in Li & Lai (2001). This might not be straightforward, especially considering
the higher-order methods, e.g. the ENO and WENO schemes.
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