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Abstract

The thesis describes the Average Exceedance Rate (AER) method, which is a method
for predicting return levels from sampled time series. The AER method is an alternative
to the Peaks over threshold (POT) method, which is based on the assumption that data
exceeding a certain threshold will behave asymptotically. The AER methods avoids this
assumption by using sub-asymptotic data instead. Also, instead of using declustering
to obtain independent data, correlation among the data is dealt with by assuming a
Markov-like property.

A practical procedure for using the AER method is proposed and tested on two sets
of real data. These are a set of wind speed data from Norway and a set of wave height
data from the Norwegian continental shelf. From the results, the method appears to
give satisfactory results for the wind speed data, but for the wave height data its use
appears to be invalid. However, the method itself seems to be robust, and to have certain
advantages when compared to the POT method.
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1 Introduction

Extreme value statistics is the branch of statistics that deals with unusual events, such
as the very smallest or the very greatest levels of a process. The discipline may be used
to estimate the risk of an unusual event occurring or the maximum value of a physical
quantity during a long time span. It is therefore of great use to engineers, who want
to estimate the magnitude of the forces that may be expected to affect a structure.
Especially, one will often be interested in the long-term return levels of the extreme
values. The return levels are the levels one expects to be exceeded by the process during
a certain time interval.

When predicting the future, we must rely on information from the past. But since
unusual events are scarce and belong to the very tail of the distribution of the phe-
nomenon under study, we may not have observations on the levels we are interested in.
In extreme value statistics, this problem is overcome by fitting the tail of the distribu-
tion and extrapolating from the known levels to the unknown. In particular, it is often
assumed that the extreme values among the observed events belong to the asymptotic
part of the tail, and that an extreme value distribution can be fitted to those data. This
assumption is the foundation of both the Generalized Extreme Value (GEV) method and
the Peaks over Thresholds (POT) method, both of which are widely used in practice.
There is an extensive literature on the subject, for example [2].

The GEV and POT methods rely on the assumption of the data used in the analysis
stemming from the asymptotic part of the distribution tail. In practice, however, it
is impossible to ascertain whether this is true or not, and so we cannot know if the
assumption is valid and the methods are useable. Using them requires, it has been
noted, “a leap of faith” [2, p. vii]. Therefore, an alternative method has been developed,
a method that relies also on data from the subasymptotic part of the distribution, and
hopefully will prove to be more flexible and robust. This is the Average Exceedance Rate

(AER) method.

The AER method is a fairly recent method. Except for [11], the literature on the sub-
ject is scarce, and there has not been done much work on the practical implementation of
the method. In this work, after describing the theoretical background of the method, we
will propose a practical implementation for extreme value estimation based on sampled
time series. Especially, we must then account for the statistical dependence between
the data. The method will be tested on four sets of real data. The two first consist
of 7 years of daily wind speed observations from Ørlandet Airport and Alta Airport in
Norway. The two last consist of almost 13 years of ocean wave height observations from
the Draugen and Ekofisk oil fields off the coast of Norway. The analysis of the Ørlandet
wind speed data will be thoroughly discussed in order to illustrate the practical use of
the method, while the results from the other data sets will be presented and compared.

In section 2, the theoretical background of the method and a proposed practical
implementation of it are presented. In section 3, the wind speed and ocean wave data
are presented and discussed. Then, in section 4, a detailed practical example of using
the AER method is given, before the results are presented and discussed. Finally, in



2 2 THEORY

section 5, there are some concluding remarks. To illustrate the actual implementation of
the method on a computer, some of the R code used in the analysis is added in appendix
A.

2 Theory

We shall consider a time series of observations X = {X1,X2, . . . ,XN} derived from a
stochastic process, where the distribution of the elements Xj , j = 1, . . . , N are considered
unknown, and where the observations were made at discrete times tj , j = 1 . . . , N over
a time span of length T . The extreme value of the series, MN , is the largest among the
elements,

MN = max{Xj ; j = 1, . . . , N}. (1)

The cumulative distribution of the extreme value, Prob(MN ≤ η), will be referred to as
P (η).

2.1 Return Levels

Now, if we let the time span (0, T ) of the time series represent a period, we are interested
in finding the return level xm, the level which we expect the process to exceed every m

periods. In other words, the return level is the level which for every period will be
exceeded with a probability of 1

m
.

An element in the time series exceeding the level xm is equivalent to the extreme
value MN of the series exceeding xm. We can therefore relate the exceedance probability
to the cumulative distribution P (η) of the extreme value MN , setting

Prob(MN > η = xm) = 1 − Prob(MN ≤ η = xm) =
1

m
. (2)

In practice, a convenient time span such as one year is often used as the period.

2.2 The POT Method

A widely used method to estimate the return levels is the POT method. In order that
we may understand the differences between the AER method and the POT method, a
brief exposition of the latter will here be given, before we proceed to the AER method.
The exposition follows [2].

Since the extreme value MN is the greatest among the elements of X, it will belong to
the very tail of the distribution of those elements. Now, since we do not know the distri-
bution, we cannot say anything about the tail. However, it can be shown that asymptot-
ically, we can actually say something about the distribution of MN . When N → ∞, the
distribution of MN will converge against one of only three extreme value distributions.
Those are the Gumbel distribution, the Fréchet distribution and the Weibull distribu-
tion. All three distributions can be written on the form of the generalized extreme value
distribution,
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G(η) = exp

{

−
[

1 + ξ
(η − µ

σ

)]− 1

ξ

}

, (3)

where µ is a location parameter, σ > 0 is a scale parameter, and ξ is a shape parameter.
The case ξ > 0 is equivalent to the Fréchet distribution, the case ξ > 0 is equivalent to
the Weibull distribution, and the case ξ is equivalent to G(η), ξ → 0, which gives the
Gumbel distribution,

G(η) = exp

{

− exp
[

−
(η − µ

σ

)]

}

. (4)

In short, we have

P (η) = Prob(MN ≤ η) → G(η), N → ∞. (5)

If (5) is valid, it can also be shown that for a high threshold u, the residuals Y = X−u

follow the distribution

Prob{Y = y|X > u} = H(y) = 1 −
[

1 + ξ
( y

σ̃

)]− 1

ξ
, (6)

where

σ̃ = σ + ξ(u − µ), (7)

and σ, µ, and ξ are the parameters of the corresponding GEV distribution of MN . This
distribution is called the generalized Pareto (GP) distribution. So, if MN follows a GEV
distribution, the residuals X − u follow a GP distribution with the same parameters as
in the GEV distribution.

The foundation of the POT method is the assumption of using asymptotic data.
That is, we assume that the approximation P (MN ≤ η) ≈ G(η) is valid for large N and
for η values larger than some high threshold u. A GP distribution is then fitted to the
residuals {X −u|X > u}, using the maximum likelihood method to find estimates of the
constants µ, σ and ξ. Estimates of the return levels are calculated from (2) using the
estimated extreme value distribution. The exceedances of the threshold are assumed to
be independent, and if in practice they are not, one can extract independent exceedances
by declustering.

The weakness of the POT method is the very assumption of using asymptotic data.
In practice, it is impossible to determine if the approximation is valid, so it does really
rest on a “leap of faith” [2, p. vii] [11]. We would assume that N as well as the number
of exceedances of the threshold would have to be large for the assumption to be valid,
but in practice, we will often have very few exceedances of the highest levels to work
with [3]. Using declustering, many of the observations will be left out from the analysis.
Hence, if there is great uncertainty among the data, the estimates will not be very
reliable. Indeed, one or two outliers among the greatest values may distort the return
level estimates greatly.
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2.3 The Average Exceedance Rate (AER) Method

To overcome the problem of having to assume asymptotic data, the Average Exceedance
Rate (AER) method has been developed. This method also takes into account data
from the sub-asymptotic part of the distribution, so that more data may be used and
the estimates are less dependent on the greatest values. It has a limitation, though, in
that it is assumed that the extreme values really follow a Gumbel distribution.

In this and in the next section, the theoretical background of the AER method will be
exposed. The exposition mainly follows [11]. The theoretical foundation of the method
is also discussed in [12] and [13].

We want to find a way of estimating the return levels xm from the time series X. Now,
as we have seen, the return levels are related to the cumulative distribution P (η) of the
extreme values. Hence, we can estimate the return levels by way of estimating P (η). To
be able to estimate P (η), we will have to make a few assumptions. First, we need to take
into account the correlation among the data in the time series. To use the POT method,
we had to assume independence among the exceedances of the threshold, or else use
declustering to select only independent exceedances. This will possibly leave out a great
number of data points which could have been useful in estimating the GP distribution.
Using the AER method, however, it is not necessary to assume independence among the
data. Instead, we assume that our time series has a Markov-like property. Given the
time series X = {X1, . . . ,XN}, we have

P (η) = Prob{X1 ≤ η, . . . ,XN ≤ η}
= Prob{XN ≤ η|X1 ≤ η, . . . , xN−1 ≤ η}Prob{X1 ≤ η, . . . ,XN−1 ≤ η}

=

N
∏

j=2

Prob{Xj ≤ η|X1 ≤ η, . . . ,Xj−1 ≤ η} · P (X1 ≤ η). (8)

Introducing the Markov-like property, we write

Prob{Xj ≤ η|X1 ≤ η, . . . ,Xj−1 ≤ η} ≈ Prob{Xj ≤ η|Xj−k+1 ≤ η, . . . ,Xj−1 ≤ η} (9)

for a suitable k. That is, we assume that the element Xj of the time series is only
dependent on the k − 1 last elements. If k = 1, the elements are independent. For
convenience, we will set k = 2 in the following exposition, otherwise referring to [11].
Then, we will have
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P (η) ≈
N
∏

j=2

Prob{Xj ≤ η|Xj−1 ≤ η} · P (X1 ≤ η)

=
N
∏

j=3

Prob{Xj ≤ η|Xj−1 ≤ η} · Prob{X2 ≤ η|X1 ≤ η} · P (X1 ≤ η)

=

N
∏

j=3

Prob{Xj ≤ η|Xj−1 ≤ η} · Prob{X1 ≤ η,X2 ≤ η}

=

∏N
j=2 Prob{Xj−1 ≤ η,Xj ≤ η}

∏N
j=3 Prob{Xj−1 ≤ η}

=

∏N
j=2 Prob{Xj−1 ≤ η,Xj ≤ η}

∏N−1
j=2 Prob{Xj ≤ η}

=

∏N
j=2 p2j(η)

∏N−1
j=2 p1j(η)

, (10)

where we have introduced the notation

pkj(η) = Prob{Xj−k+1 ≤ η, . . . ,Xj ≤ η}, j ≥ k. (11)

Next, we introduce the expression

αkj(η) = 1 − pkj(η)

pk−1,j−1(η)
, j ≥ k ≥ 2. (12)

which can be written

αkj(η) = Prob{Xj > η|Xj−k+1 ≤ η, . . . ,Xj−1 ≤ η}, (13)

and which is an expression for the probability that the element Xj will exceed the
threshold η, supposing the k − 1 last elements in the time series did not exceed that
threshold. Let us call such an exceedance a“conditional exceedance” of η. An alternative
way of writing P (η) in (10) will then be

P (η) ≈
∏N

j=2 p2j(η)
∏N−1

j=2 p1j(η)
=

N
∏

j=2

p2j(η)

p1,j−1(η)
· p1N (η) =

N
∏

j=2

(

1 − α2j(η)
)

· p1N (η). (14)

For k = 1, we define

α1j = Prob{Xj > η} = 1 − p1j(η), (15)

which gives

P (η) ≈ P1(η) = exp
(

−
N

∑

j=1

α1j(η)
)

. (16)
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If we approximate 1 − αkj(η) ≈ exp{−αkj(η)}, for k = 2 we can write

P (η) ≈ P2(η) = exp
(

−
N

∑

j=2

α2j(η) − α1N (η)
)

≈ exp
(

−
N

∑

j=2

α2j(η)
)

, (17)

if N is large. Generally, we can write [11]

P (η) ≈ Pk(η) ≈ exp
(

−
N

∑

j=k

αkj(η)
)

. (18)

Let us investigate more closely what the sum
∑N

j=2 αkj(η) expresses. For k ≥ 2,

αkj(η) is the probability that Xj is a conditional exceedance. The sum
∑N

j=1 αkj(η)
therefore is the expected number of conditional exceedances of the level η during the time
span (0, T ). Similarly,

∑N
j=1 α1j(η) is the expected number of unconditional exceedances.

We now introduce the average exceedance rate (AER) ǭk(η), which is expressed as

ǭk(η) =
1

N − k + 1

N
∑

j=k

αkj(η),≈ 1

N

N
∑

j=k

αkj(η), k = 1, 2, . . . (19)

The expression in (18) can then be rewritten

Pk(η) ≈ exp{−ǭk(η)N}. (20)

Thus, it is possible to estimate P (η) by way of ǭk(η). Of course, as long as the underlying
distribution of the elements in the time series is unknown, we do not have an expression
for ǭk(η). But asymptotically, we know that P (η) must converge to one of the Weibull,
the Gumbel or the Fréchet distributions. Especially, if we assume that our underlying
distribution converges to the Gumbel distribution, by comparing (4) and (20) we find
that asymptotically, ǭk(η) ∝ exp{−a(η − b)}, where b corresponds to µ of the Gumbel
distribution and a corresponds to 1

σ
.

Now, we assume that sub-asymptotically, the average exceedance rate can be ap-
proximated by

ǭk(η) ≈ q(η) exp {−a(η − b)c}, η ≥ η1, (21)

where the function q(η) varies slowly compared to the exponential function, and a, b, c

are the above-mentioned constants. It is assumed that this approximation is valid for η

larger than some η1. For c = 1, (21) is of course equivalent to the asymptotic Gumbel
distribution.

We further assume that for large η, q(η) will vary so slowly that it can be approxi-
mated by a constant q. Then (21) can be rewritten

ǭk(η) ≈ q exp {−a(η − b)c}, η ≥ η1. (22)
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Now, combining (2) and (20), and inserting the approximation (22), we can find an
expression for the m periods return values,

Pk(MN > η = xm) = 1 − Pk(η = xm) = 1 − exp {−ǭk(xm)N} =
1

m

−ǭk(xm)N = log
(

1 − 1

m

)

q exp{−a(xm − b)c}N = − log
(

1 − 1

m

)

−a(xm − b)c = log
(

− log(1 − 1
m

)

qN

)

xm =
[

−1

a
log

(

− log(1 − 1
m

)

qN

)]
1

c
+ b. (23)

Thus, it turns out that we can estimate the return levels by finding suitable estimates
of the constants q, b, a, and c in the approximation of ǭk(η).

2.4 Estimation of ǭk(η)

To find estimates of the constants q, b, a, and c, we first have to find estimates ǫ̂k(η) of
the average exceedance rate ǫ̂k(η). The average exceedance rate can be written as

ǭk(η) = E[βk(η)], (24)

where

βk(η) =
1

N − k + 1

N
∑

j=k

1kj(η), (25)

and where 1kj is an indicator variable for the event {Xj > η|Xj−1 ≤ η, . . . ,Xj−k+1 ≤ η}.
For k = 1, estimating β1(η) will be particularly simple, since for each element Xj of the
time series we do not condition on any previous elements. Our estimate will be

β̂1(η) =
1

N

N
∑

j=1

I(Xj > η), (26)

where
∑N

j=1 I(Xj > η) is the counted number of exceedances of the level η. However,
using (25) to estimate βk(η) for k ≥ 2 is impractical. Instead, we note that we can write

Prob(Xj > η|Xj−1 ≤ η, . . . ,Xj−k+1 ≤ η) =
Prob(Xj > η,Xj−1 ≤ η, . . . ,Xj−k+1 ≤ η)

Prob(Xj−1 ≤ η, . . . ,Xj−k+1 ≤ η)
,

(27)
for k ≥ 2. Therefore, a practical formula to estimate βk(η) is
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β̂k(η) =

∑N
j=k I

(

{Xj > η,Xj−1 ≤ η, . . . ,Xj−k+1 ≤ η}
)

∑N
j=k+1 I

(

{Xj−1 ≤ η, . . . ,Xj−k+1 ≤ η}
) , (28)

where
∑N

j=k I
(

{Xj > η,Xj−1 ≤ η, . . . ,Xj−k+1 ≤ η}
)

is the counted number of events
{Xj > η,Xj−1 ≤ η, . . . ,Xj−k+1 ≤ η}, or one exceedance preceded by k − 1 non-

exceedances, and
∑N

j=k+1 I
(

{Xj−1 ≤ η, . . . ,Xj−k+1 ≤ η}
)

is the counted number of
non-exceedances or events {Xj−1 ≤ η, . . . ,Xj−k+1 ≤ η}, whether they be followed by
an exceedance or not. For small values of η, the number of non-exceedances may be
0, making it impossible to calculate β̂k(η) for those values. For large η, the number of
non-exceedances will be close to N , so that we can approximate

β̃k(η) ≈ 1

N

N
∑

kj

I
(

{Xj > η,Xj−1 ≤ η, . . . ,Xj−k+1 ≤ η}
)

, (29)

which is an alternative estimate for βk(η). This formula may often be preferable in
practice, since it requires less counting. In the following we will write β̂k(η) for the
estimates of βk(η), but β̃k(η) can of course be substituted.

Now, if we partition our time series into R blocks, and estimate βk(η) for each block,

obtaining R estimates β̂
(r)
k (η), the mean of those R estimates will be an estimate for the

average exceedance rate. The estimate will be

ǫ̂k(η) =
1

R

R
∑

r=1

β̂
(r)
k (η). (30)

If R is large enough, R ≥ 20, we can also estimate the standard deviation sk(η) of
ǭk(η),

ŝk(η) =

√

√

√

√

1

R − 1

R
∑

r=1

(

β̂
(r)
k (η) − ǫ̂k(η)

)2
, (31)

and estimate 95% confidence intervals for ǭk(η),

ĈI
(

ǭk(η)
)

= ǫ̂k(η) ± 1.96ŝk(η)√
R

. (32)

Generally, the blocks should not be too short. Each split of the original time series
will lessen the number of possible conditional events in the resulting blocks, as we cannot
count across the splits. Therefore, two shorter blocks instead of one long will give worse
ǭk(η) estimates for larger k.

The blocks should ideally be of the same length, containing the same number of
elements from the time series. It is convenient to have one block per time period. For
example, if we have several years of daily observations of a phenomenon, it is convenient
to let each year represent a block, let one year be the unit of time, and set N = 365.
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However, often the number of observations per time unit and the length of the blocks
will be different. This may be due to missing data, or because we have chosen to have
multiple blocks per period, in order to have more blocks. Thus, it may be the case that
the blocks have different lengths N1, . . . , NR, or that they have the same length N , but
that N is different from the number of observations per period. In such cases, we must

be careful. When calculating β̂
(r)
k (η), N should be the length of the particular block in

question, but when calculating the return levels using (23), N should be the number of
observations per period.

To find an estimate from one realization of a time series, we need to assume that the
time series in question is ergodic. However, if this is not the case, we can assume that
our time series consists of smaller parts, each of which is ergodic on its own. Making
this assumption, it can be argued that our long-time estimates are valid. [9]

The estimations just mentioned are easily made on a computer. In practice, however,
the time series will often contain missing observations or NA’s. This is handled simply by
cutting away the NA’s and shortening the time series. If so, the blocks will be of different
lengths. Usually this factor is negligible, but if the block lengths are very dissimilar, we
might use a weighted mean and standard deviation instead of (30) and (31).

In practice, we must discretize η, making a vector of η points separated by steps
of some length dη. Since the observations will be discretized as well, we should find
a discretization that fits the certainty of the data in question. By the nature of (25),
choosing a too fine discretization will give us redundant information, while a too coarse
discretization will make our estimates less exact than they could be. ǫ̂k(η) and ŝk(η) will
of course be vectors of the same length as η.

2.5 Estimation of the Constants

Having found estimates of ǭk(η), the next step in the process of estimating the return
levels is to find estimates of the constants q, b, a, and c in (22). First, we note that that
expression has a much simpler form on the logarithmic scale, where

log ǭk(η) = f(η) = log q − a(η − b)c, η ≥ η1. (33)

We will call the curve of ǭk(η) on the logarithmic scale f(η), and will refer to a plot of
f(η) against η as a log plot. In the future, we will mostly work on this scale. Therefore,
we will be interested in having the confidence intervals of ǭk(η) on the same scale. We
will call them ĈI

(

log ǭk(η)
)

, and approximate them by simply taking the logarithm of
the confidence intervals in (32). That is,

ĈI
(

log ǭk(η)
)

≈ log

{

ǫ̂k(η) ± 1.96ŝk(η)√
R

}

. (34)

This approximation will give us problems when 1.96ŝk(η)√
R

< ǫ̂k(η) or 1.96ŝk(η)√
R

≈ ǫ̂k(η), but

as this will only happen for very large values of η, the approximation can probably be
used for most η values.
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To estimate the constants q, b, a, and c, we are going to fit a curve to the estimates
ǫ̂k(η), for η ≥ η1. The fitted curve will be

f̂(η) = log q̂ − â(η − b̂)ĉ, η ≥ η1, (35)

and q̂, b̂, â, and ĉ will be our estimates of the constants q, b, a, and c, respectively.
So, our problem turns out to be a curve fitting problem. However, fitting a non-linear
curve determined by four constants to log ǫ̂k(η) will be difficult, unless we can find more
information to help us.

Now, we take the logarithm on both sides of (33). It then turns out that

∣

∣

∣
log

[ ǭk(η)

q

]
∣

∣

∣
= a(η − b)c

log
∣

∣

∣
log

[ ǭk(η)

q

]
∣

∣

∣
= log a + c log(η − b), (36)

for η ≥ η1. This implies that log
∣

∣

∣
log

[

ǭk(η)
q

]
∣

∣

∣
is linear with respect to log(η − b). So, a

plot of log
∣

∣

∣
log

[

ǭk(η)
q

]
∣

∣

∣
against log(η − b) will give a straight line for η ≥ η1. Such a plot

will be referred to as a log log-log plot.
Accordingly, good estimates q̂ and b̂ of q and b should give us a straight line when

plotting log
∣

∣

∣
log

[

ǫ̂k(η)
q̂

]
∣

∣

∣
against log(η− b̂). This information is useful in three ways. First,

it gives us a criterion for finding good estimates q̂ and b̂, which are the ones that give us
a straight line in the log log-log plot. Second, it gives us a criterion for finding η1, since

η1 should be the value of η where log
∣

∣

∣
log

[

ǫ̂k(η)
q̂

]
∣

∣

∣
becomes straight in the log log-log plot.

And third, we can then easily find estimates of the constants a and c. Having found
good estimates q̂ and b̂, the last two estimates â and ĉ can be found simply by doing a
linear fit on the straight line and calculating the slope and the intercept.

Obviously, we could complete the estimation of the constants in the log log-log plot.
However, the estimates will be much more exact if we do the curve fitting in the log
plot. Therefore, the results obtained by studying the log log-log plot can be regarded as
initial estimates to be used as start points for the analysis in the log plot. Having good
start points, the curve fitting of (35) will be much easier.

Hence, our analysis will be a two-step operation. In step 1, we fit a straight line to

log
∣

∣

∣
log

[

ǫ̂k(η)
q̂

]
∣

∣

∣
in the log log-log plot, and in step 2 we fit a non-linear curve to log ǫ̂k(η)

in the log plot. The resulting estimates q̂, b̂, â, and ĉ enable us to estimate the m periods
return levels by (23).

When performing the analysis, we cannot use all the available estimates ǫ̂k(η). First,
we can only use ǫ̂k(η) for η ≥ η1, because the approximation (22) is only valid for η ≥ η1.
Second, for large values of η, we will have few data with which to estimate ǭk(η), and
the resulting estimates ǫ̂k(η) will be unreliable. These unreliable estimates might make
the curve fitting difficult. Therefore, we should ignore the estimates ǫ̂k(η) where η > η2,
for some η2, and only take into account those estimates where η1 ≤ η ≤ η2.
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So, in addition to the four constants q, b, a and c, which must be estimated, we will
have two more constants, η1 and η2, that we must decide on. Obviously, it would be
difficult to find all six constants at once. As mentioned, we will instead use a two step
method. The method will be sketched here, and the details will be given in the next two
sections.

Step 1

• For all possible combinations of η1 and η2:

– For all possible combinations of q and b:

∗ Try to fit a straight line to the estimates in the log log-log plot.

• Select the best log log-log plot fit, choose the corresponding η1 and η2, and let
the corresponding estimated constants q̂, b̂, â, and ĉ be starting values in the next
step.

Step 2

• Using the starting values found in step 1, fit a curve to the estimates in the log
plot. The resulting estimated constants q̂, b̂, â, and ĉ will be our final estimates,
with which we can estimate the return levels.

In general, we should try to gather as much information as possible about the data
to be analysed. Especially, finding bounds on the possible values of the constants will
make the analysis easier.

As we proceed to demonstrate a practical method for estimating the return levels,
we note that in practice, we operate with six different vectors of the same length. As
mentioned, we have a η vector, having been chosen by us as a discretization of the η

scale. In addition, there are corresponding vectors ŝk(η), ǫ̂k(η), and log ǫ̂k(η), as well as
two vectors for the lower and the upper confidence bounds of log ǭk(η).

2.6 Step 1

As noted above, the purpose of step 1 is to find a good fit, a straight line, in the log
log-log plot. We therefore need a criterion by which to judge our linear fits, so as to
decide which is a “good” fit. First, we obviously want to use as much of our vector ǫ̂k(η)
as possible, as the fit will be more precise the more points we use. In other words, we
want η1 to be as small as possible, and η2 as large as possible, while still being able to
have a good fit. By keeping η1 as small as possible, we also ensure that we use the most
reliable estimates of ǭk(η). [13] So, we introduce the distance

L = η2 − η1, (37)

which we want to maximize.

Second, we need a measure to use as a criterion for deciding how well the linear fit
suits the data. Since we must compare fits based on different sets of ǫ̂k(η) points, we
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cannot simply use least squares minimization. The fitted line in the log log-log plot will
be of the form

y = λ + κ log (η − b), (38)

where κ is the slope, and λ is the intercept. Now, the linearity of the fit can be measured
by the distance

∆ = max
η1≤η≤η2

∣

∣

∣

∣

log
∣

∣

∣
log

[ ǫ̂k(η)

q

]∣

∣

∣
− y

∣

∣

∣

∣

, (39)

which is the maximum distance between the estimates log
∣

∣

∣
log

[

ǫ̂k(η)
q

]
∣

∣

∣
and the fit y for

values of η between η1 and η2. As will be discussed, this is not a perfect measure, but it
probably is good enough for our use. Obviously, the better the linear fit, the smaller ∆
will be.

Hence, we have two criteria for deciding on what is a good fit. First, L should be
as large as possible, and second, ∆ should be as small as possible. Clearly, these two
criteria will not always be compatible. We will have to find a compromise, so as to
render justice to both.

Now, having found criteria by which to judge our linear fits, we turn to the practical
procedure. First, we will try to decide on which η1 and η2 to use. Usually, we do not
want to search through all the possible values of η when looking for the most suitable
values of η1 and η2. If the discretization of the η scale is fine, there can be hundreds of
such combinations, and investigating all of them would be a time-consuming task. But
it is clear that the return levels cannot be overly sensitive to the choice of η1 and η2. If
we assume that the approximation in (22) is valid for η values larger than some optimal

η1 value η
(opt)
1 , choosing a slightly larger η1 value will still make the approximation valid.

Hence, we can allow a slight uncertainty in the choice of η1. The same will be true for
η2.

Likely values of η1 and η2 can often be read from a plot of log ǫ̂k(η) against η. Using
this information, we can make selections of some of the more likely η1 and η2 values. On

the η scale, we select a part (η
(min)
1 ,≤ η

(max)
1 ) which we believe contains η1. This selection

will correspond to a certain number of elements of the η vector. Now, if the discretization
of η is coarse, we may use all those elements. If not, to save computer run time, we choose

only nη1
of the elements to represent the entire selection (η

(min)
1 , η

(max)
1 ). For example,

if there are really 100 elements contained in the selection, we may choose only 10 of
them as our representation. These representative elements should of course be dispersed
equally throughout the selection. The selected nη1

elements from the η vector will be a

vector of possible η1 values. Equivalently, we make a selection η
(min)
2 ≤ η ≤ η

(max)
2 which

we believe will contain η2, and choose nη2
so as to get a vector of possible η2 values.

The width of the η1 and η2 selections depends on our knowledge about η1 and η2. If
it is fairly evident where η2, must be, we can let it be small, while if we are uncertain, we
must leave it wider. We can obtain such knowledge by looking at the plot of our estimates
log ǫ̂k(η) along with the corresponding confidence intervals. η1 will be found where the
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curve of ǫ̂k(η) estimates straightens out, while η2 will be found where the confidence
intervals broaden and the estimates ǫ̂k(η) are seen to become irregular compared to the
estimates for lower η. The larger the k values, the fewer conditional exceedances we will
have for smaller η values, and the more uncertain the estimates of log ǫk(η) will be for
those values. Hence, we if we have already found η1 for k = 1, we should expect η1 to
be larger for k = 2, and so on. This information may sometimes be useful.

All in all, we will now have nη1
· nη2

possible combinations of η1 and η2 values. For
each of these combinations, we must try to find the best linear fit in the log log-log
plot.Hence, we need to find the q and b values that will give us the best linear fit. This
we will do simply by running through all the possible values of q and b, and try to fit
a linear curve in the corresponding log log-log plot. Obviously, we must discretize the
possible q and b values, using steps dq and db, respectively. This discretization will give
us a vector of length nq of possible values of q and a vector of length nb of possible b

values. Experience shows that the value of q is much more important for finding a linear
fit than the value of b. Therefore, q should have a finer discretization than b.

What values can q and b possibly take? From (36) we see that we must have q >

maxη1≤η≤η2
ǫ̂k(η) and b < minη1≤η≤η2

η = η1, since η− b must be positive and log
[

ǫ̂k(η)
q

]

must be of the same sign for all η1 ≤ η ≤ η2. We thus have a lower and an upper
bound for q and b, respectively. Obviously, these will vary with each combination of η1

and η2. We must select some upper bound q(high) for q and some lower bound b(low)

for b ourselves. q(high) we must select entirely from experience, but b(low) may often be
inferred from the nature of the physical phenomenon we are studying. For example, in
some cases it turns out that b(low) = 0.

Now, for each combination of η1 and η2 values, we run through all combinations of

the constants q and b, making linear fits of log
∣

∣

∣
log

[

ǫ̂k(η)
q

]∣

∣

∣
against log (η − b). Comparing

(36) against (38), we can calculate the corresponding constants a and c from the slope
and intercept of the linear fit by

a = exp (κ) (40)

and

c = λ. (41)

We also calculate the ∆ value for the particular fit from (39).

So, for each combination of η1 and η2 values, we will have nq · nb different ∆ values,
each of which corresponds to a set of constants q, b, a and c of a particular linear fit. It is
also useful to compute a return level corresponding to the fit, for exemple the 100 years
return level, for comparison. To each combination of η1 and η2, we assign the lowest
of these ∆ value along with its corresponding constants and return level. We then go
on to compare the ∆ values of combinations of η1 and η2 values that have the same L

value. To each L value we assign the lowest ∆ value together with its corresponding η1,
η2 values, constants and return level. Hence, each value of L will have a corresponding
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return level and a ∆ value, which represents a particular fit, which is itself represented
by η1, η2, q, b, a, and c.

This part of the analysis will of course be done by a computer, which will present
us with a table of L values and the corresponding ∆, η1, η2, q, b, a, c, and xm values.
However, we must do the last part of the analysis ourselves. This analysis consists in
comparing the fits of the different L values and choosing the one which appears to be the
best. In doing so, we must consider our two criteria. Each fit has a corresponding pair
of L and ∆ values. As noticed, we want L to be as large as possible, while ∆ should be
as small as possible. The ideal fit is therefore a fit which has both a large value of L and
a reasonably small value of ∆. For example, if several fits have very similar ∆ values,
we select the one with the largest L value. At last, we will have found one best fit with
corresponding η1 and η2 values among the possible choices in the table. The constants
of this fit will be our initial estimates q̂i, b̂i, âi, and ĉi.

Choosing the best fit from the values of L and ∆ only may be difficult. It is therefore
advisable to make both log log-log plots and log plots of the estimates and the fitted
curves. In these plots, the fits should of course follow the estimates as closely as possible
for η1 ≤ η ≤ η2. Generally, the log plots are more useful for comparison between the fits
than the log log-log plots.

Further, the return level estimates of each fit can be useful for comparison between
the fits. As mentioned, for η1 values that are larger than the optimal η1 value, (22)
will still be valid. Hence, the return level estimates made with η1 values larger than the
optimal value should be approximatively the same. If we plot the return levels against
the η1 values, the optimal η1 value can then be found where the return levels seem to
stabilize. A plot of the return levels against the η2 values should give a similar result, as a
η2 value smaller than the optimal η2 should give approximatively the same return levels.
A plot of the return levels against the L may also be able to give some information.

Combining the information obtained from these sources, we should be able to decide
which of the fits is the best. The most important is of course that the fit actually is a
good fit in the log plot, since we are going to operate on the log scale in the next step
of the analysis. On the other hand, we should not put too much emphasis on this step,
since the results are only starting points for step 2. Only η1 and η2 are actually kept,
while the estimates of q, b, a, and c will be altered. We must also remember that a
certain uncertainty is allowed in the choice of η1 and η2. Generally, we should try to
make step 1 as simple as possible, by not choosing nη1

and nη2
too large and dq and db

too small. If not, the analysis will be impractical and computer run time too long.

Especially, the analysis will become complicated and require much computer run time
if nη1

and nη2
are too large. The number of fits to compare in the end will simply be too

great. In practice, nη1
and nη2

should be no more than 10 or 15. But if we are uncertain
about where to find η1 and η2, we may require a broad selection of possible values of
η1 and η2. Selecting only 10 possible values of η1 will then give very inaccurate results.
However, after the analysis, we can perform it again, but this time with a tighter selection
of η1 and η2. Each performance of the analysis will give us more accurate information
on where to find the optimal values of η1 and η2. Thus, we can “zoom in” on the optimal
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values. This procedure is usually more effective than one analysis with large nη1
and nη2

values. The same argument holds true for small dq and db values.

Finally, we must add a few comments about the measure ∆, which is of crucial
importance in the analysis. Since the fits that are compared using ∆ have different q

and b values, and we measure the goodness of these fits in the log log-log plot, where the
scales are dependent on those two constants, our measure is not an absolute measure,
since a distance in one log log-log plot cannot be compared directly to another distance in
another log log-log plot. But by transforming those distances to some common measure,
we must leave the log log-log plot, and loose what we were going to measure in the first
place, the linearity. Therefore, we choose to keep our measure, knowing it to be imperfect.
On the other hand, if we suppose that there exists some optimal value ∆(opt) for each
value of L, having corresponding constants q(opt) and b(opt), then, in an area around q(opt)

and b(opt), we suppose the ∆ values to be relatively stable, justifying comparisons in that
area.

2.7 The Numerics

We will not go into details on the implementation of step 1 on a computer. Instead, the R
code of an actual implementation is given in Appendix A. However, when performing the
computations on a computer, we may save some run time by using a special procedure.

As we have seen, for each combination of η1 and η2 values, and for each combination
of possible q and b values, we make a linear fit. Each fit takes a certain amount of
computer run time. Obviously, since only certain q and b values give good fits, most of
those fits will be poor. Hence, since we are only interested in the good fits, we can save
run time by avoiding the calculation of the poorer fits.

We can do this by comparing the fit under consideration to the best ∆ value of those
fits which have already been performed, and which have the same value of L. Let us
call the current best ∆ value ∆∗. In order that the values q and b under consideration
may give a better fit than that represented by ∆∗, from the definition (39) of ∆, all the

points log
∣

∣

∣
log

[

ǫ̂k(η)
q

]
∣

∣

∣
have to be within a distance of ∆∗ from the linear fit in the log

log-log plot. Equivalently, this line must be within a distance of ∆∗ from any of the

points log
∣

∣

∣
log

[

ǫ̂k(η)
q

]
∣

∣

∣
, and also, more specially, from the first and the last among these

points, the points log
∣

∣

∣
log

[

ǫ̂k(η)
q

]∣

∣

∣

(first)
and log

∣

∣

∣
log

[

ǫ̂k(η)
q

]∣

∣

∣

(last)
.

Now, if we draw a line between log
∣

∣

∣
log

[

ǫ̂k(η)
q

]∣

∣

∣

(first)
and log

∣

∣

∣
log

[

ǫ̂k(η)
q

]∣

∣

∣

(last)
, and draw

two parallel lines a distance ∆∗ away from that line on both sides, our fit has to be found
between those two lines if it is to be better than the ∆∗ fit. Further, if we draw two
new parallel lines 2∆∗ away from the first line on both sides, all the points ǫ̂k(η) have
to be found between those two lines if we are going to get a better fit. If not, there is
no use of making the fit. By performing this test, we will be able to avoid some of the
calculations. The concept is illustrated in figure 1. We may also be able to save som
computer run time by starting with the largest η1 values, since it will be easier to make
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a linear fit for η1 values larger than the hypothetical optimal value η
(opt)
1 , than for η1

values smaller than that value. Hence, we will obtain small ∆ values from the start, and
be able to reject many of the later fits at once.
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Figure 1: Illustration of the principle used to save computing time. All the points

log
∣

∣

∣
log

[

ǫ̂k(η)
q

]∣

∣

∣
have to be situated between the outer lines if this particular combination

of q and b can possibly give us a better fit than we already have. Hence, this particular
combination of q and b could be rejected at once.

2.8 Step 2

In step 1 we found a good linear fit in the log log-log plot. This fit had corresponding η1

and η2 values, and gave us initial estimates q̂i, b̂i, âi and ĉi of the constants q, b, a, and
c. Now, we keep the η1 and η2 values, while we use the initial estimates of the constants
as starting values for a further curve fitting in the log plot.

The initial estimates were found using the linear property of the log log-log plot.
When finding the final estimates, we will use the log plot. This step can be seen as
refining the initial estimates, since we expect that a fit in the log plot will give a higher
degree of accuracy than the linear fit in the log log-log plot. As we have seen, in the log
plot we need to fit a curve f̂(η) given by (35) to the points ǫ̂k(η), for η1 ≤ η ≤ η2. This
is a nonlinear problem, but it can be solved numerically using a nonlinear least squares
solver.

Since our estimates ǫ̂k(η) have varying certainty, we should probably put more weight
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on the more certain estimates when fitting the curve, while less emphasis should be put
on the less certain estimates. Therefore, we will use a weighted version of the nonlinear
least squares solver. To each of the elements in the vector of estimates ǫ̂k(η), we assign
a weight w(η).

Now, our curve fitting problem turns out to be equivalent to finding the constants q̂,
b̂, â, and ĉ that minimize the expression

∑

η1≤η≤η2

(

log ǫ̂k(η) − f(η)
)2

w(η) =
∑

η1≤η≤η2

(

log ǫ̂k(η) − log q + a(η − b)c
)2

w(η), (42)

where η and log ǫ̂k(η) are vectors, and where w(η) is a vector of weights. We will return
to the choice of these weights further below. η1 and η2 are of course the η1 and η2 values
we found in step 1.

The weighted nonlinear least squares problem can be solved numerically by the
Gauss-Newton or the Marquardt-Levenberg algorithm, for example using the lsqnon-

lin method in Matlab [6, p. 11-178]. We then let the values of q, b, a and c vary, but we
should not let them vary freely. Especially, either q or b should be have both lower and
upper bounds, while a and c should be positive. For q and b, we can use the same bounds
as we used when finding the linear fits in step 1, that is

(

maxη1≤η≤η2
ǫ̂k(η), q(high)

)

for q

and
(

b(low),minη1≤η≤η2
η = η1

)

for b. However, only one of them needs to be bounded on

both sides, since they are related. If b(low) is determined by the nature of the data under
study, it is convenient to let q vary freely upwards, since q(high) was only an arbitrary
number chosen in step 1. Experience shows that if q and b are not bounded at all, we
will often get estimates q̂ and b̂ that tend to ∞ and −∞, respectively.

As starting values to the numerical method we use the initial estimates which we
found in step 1, q̂i, b̂i, âi, and ĉi.

In some cases, it may be difficult to reach an optimal solution. As we saw, the case
c = 1 corresponds to the Gumbel distribution. From (22) it is clear that if c = 1 there
will be an infinity of possible combinations of q and b that can describe the same curve
f(η). Thus, if c ≈ 1, the numerical method may have problems finding the optimal fit.
If we experience problems, it may perhaps be better to set ĉ = 1 at once, fix either q or
b, and run the curve fitting varying only the two remaining variables. [11]

The result of the nonlinear least squares fit will be a fitted curve f̂(η), represented
by the estimates q̂, b̂, â and ĉ, from which we can calculate the return level estimates
x̂m by inserting q̂, b̂, â, and ĉ for q, b, a, and c in (23). This procedure can be regarded
as extrapolating our curve f̂(η) in the log plot outside of η1 ≤ η ≤ η2, and finding xm

as the value of η where f̂(η) crosses the level on the y axis of the plot corresponding
to ǭk(xm). Thus, it is important that the phenomenon being studied is described by a
homogeneous distribution. If it is not, and for example the larger values belong to a
different distribution than the smaller, the extrapolation will be invalid, and the AER
method is rendered useless.
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2.9 Weights

We have to decide upon a set of weights to use when fitting the nonlinear curve. The
purpose of using weights is to put less emphasis on the more uncertain estimates log ǫ̂k(η).
As we are now operating on the logarithmic scale, the uncertainty is expressed by the
width of the confidence intervals of log ǭk(η) given in (34). To put emphasis on the more
certain estimates, we can use as weights the inverse of the confidence interval width on
the log scale. The weights formula will then be

w1(η) =
1

ĈI(log ǭk(η))(high) − ĈI(log ǭk(η))(low)
. (43)

Of course, for such η where ĈI(log ǭk(η)) is undefined, we set w1(η) = 0. Alternatively,
we can use the inverse of the squared confidence interval width,

w2(η) =
1

(

ĈI(log ǭk(η))(high) − ĈI(log ǭk(η))(low)
)2 . (44)

Both weights formulae can be used, but they will give slightly different results, as
the second formula puts much more emphasis on the more certain estimates of log ǫ̂k(η),
while almost neglecting the more uncertain. Now, the more uncertain estimates will
be found where η is great, in the tail of the distribution. It is of course a good thing
that emphasis is put on the reliable estimates, but as we are primarily interested in tail
behaviour of ǭk(η), we should not neglect the information contained in log ǫ̂k(η) about
the tail. Therefore, the weights formula w1(η) probably is the better choice.

2.10 Confidence Intervals

Having found estimates x̂m for the return levels xm, we want to estimate confidence
intervals for xm.

A straightforward way of finding those confidence intervals is to use the confidence
intervals of log ǭk(η). The uncertainty of the estimates log ǫ̂k(η) is described by the
confidence intervals ĈI(log ǭk(η)) of (34), which give us confidence bands on each side
of log ǫ̂k(η) for η1 ≤ η ≤ η2. We realize that the fitted curve f̂(η) is only one of the
possible fitted curves defined by (33), as we could think of other curves defined by other
constants q̂, b̂, â, and ĉ. Each of those curves would provide a particular estimate x̂m

of the return level. Now, we assume that the return levels corresponding to those fitted
curves that fall inside of the 95% confidence bands around ǫ̂k(η) will describe a 95%
confidence interval for the return level xm. Then the minimum and maximum values
of those return level estimates would constitute the lower and upper confidence interval
bounds, respectively, for xm. [11]

So, if we want to estimate a confidence interval for xm, we should search for the
two curves f̂ (high)(η) and f̂ (low)(η) that fall inside the confidence bands on both sides of
log ǫ̂k(η) for η1 ≤ η ≤ η2 and at the same time give the highest and lowest possible return

levels estimates, x̂
(high)
m and x̂

(low)
m , respectively. Then x̂

(high)
m and x̂

(low)
m constitute the
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boundaries of the estimated confidence interval for the return level xm. Each of the two
curves f̂ (high)(η) and f̂ (low)(η) will be defined by constants q̂(high), b̂(high), â(high), ĉ(high),
and q̂(low), b̂(low), â(low), ĉ(low), respectively.

However, since the edges of the confidence bands on both sides of log ǫ̂k(η) will be
rugged, the confidence interval estimates obtained in this way will probably be too short.
We can ameliorate the situation by transferring the confidence intervals of log ǭk(η) from
the estimates log ǫ̂k(η) onto the fitted curve f̂(η), which is smooth. Then, the confidence
bands will be smoother, and the resulting estimated confidence intervals of xm broader.
Hence, for a 95% confidence interval, we approximate

ĈI
(

f(η)
)

≈ log
[

q̂ exp{−â(η − b̂)ĉ} ± 1.96ŝk(η)√
R

]

, η1 ≤ η ≤ η2. (45)

This will give us smooth bands with which to find the curves that represent the confidence
intervals boundaries for xm. However, it should be stressed that the curves f̂(η)(high) and
f̂(η)(low) themselves do not constitute any confidence intervals; only the corresponding

estimates x̂
(high)
m and x̂

(low)
m of xm do.

The formula in (45) should be used with some care, though. As noted earlier, when

the difference q̂ exp{−â(η − b̂)ĉ} − 1.96ŝk(η)√
R

approaches 0, which will sometimes be the

case for the lower confidence bound for large values of η, the resulting confidence bands
will be unreliable and may be rugged, such that the confidence intervals of xm will
become tighter than they should. And when that difference is negative, we will have no
bounds at all. One should therefore consider the confidence intervals calculated in this
way before using them, and, if necessary, cut away the parts that are seen to present a
problem.

The problem of finding the two curves f̂ (high)(η) and f̂ (low)(η) can be regarded as

an optimization problem. We want to find the values x̂
(low)
m and x̂

(high)
m that are as

small and as large as possible, respectively, under the condition that the curves, which
are determined by the corresponding constants q̂(low), b̂(low), â(low), ĉ(low), and q̂(high),
b̂(high), â(high), ĉ(high), respectively, do not fall outside of the confidence bands ĈI

(

f(η)
)

,
for η1 ≤ ηη2. This is a constrained nonlinear optimization problem, which can be solved
numerically, for example by using the fmincon method in Matlab [6, p. 11-35]. We let
all the four constants vary, but here, too, they cannot be unbounded, especially not q

and b. We can use the same bounds as we used with the curve fitting in section 2.8.

Generally, however, we should use all that we know about our data to find tighter
bounds on the constants and thus keep the confidence intervals from becoming too wide.
Especially, having bounds on c would be useful. The further away from 1 c is allowed
to be, the more rounded the curves will be, and consequently, the wider the confidence
intervals of xm will be. Again, it is also important that η1 is as small as possible, as the
confidence bands will be tighter for smaller values of η.
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3 The Data

We are going to test the AER method on four different data sets. The first two are
two series of wind speed observations, while the two latter are two series of ocean wave
height observations.

3.1 The Wind Speed Data

Our first data sets consist of two data series of 20 years of daily wind speed observations
from the weather stations of the Norwegian Meteorological Institute at Ørlandet Airport
and Alta Airport in Norway.

The Norwegian Meteorological Institute makes daily observations of many different
meteorological phenomena at their weather stations. Especially, they make certain main
observations at specific times. One of the phenomena which are measured in this way
is the wind speed. The main observation of the wind speed is called FF, and is defined
to be the average of the wind speed during the last ten minutes before the observation
time. On day number i we will thus have n wind speed measurements {Vi1, . . . , Vin}
from the n main observations. The largest among these measurements,

Xi = max
j=1,...,n

Vij , (46)

is called FFX. [7]
We will investigate a series of such FFX observations from the weather station Ørland

III at Ørlandet Airport in Sør Trøndelag fylke in Norway, and from the weather station
at Alta Airport. Ørlandet is situated on a flat plain at the western tip of the Fosen
peninsula, by the Norwegian Sea. Given the location, we should expect to find some
high wind speeds among the observations. Alta is located in the extreme north of
Norway, but as it is located by the innermost part of a fjord, we would expect the wind
speeds to be lower.

Our data series consists of all FFX measurements at Ørlandet and at Alta Airports
from January 1, 1987, to December 31, 2006. All in all, for each location we have 7305
measurements from a period of 20 years. The numbers are given in meters per second,
[m

s
], and the vector of observations is called X,

X = {X1, . . . ,X7305}. (47)

The observations were made by the Norwegian Meteorological Institute and were
collected for our purpose using their web service eKlima [8]. Regarding the quality
of the material, the Meteorological Institute themselves regard them as being “a little
uncertain” (litt usikre). For our purpose, however, the reliability of the data should not
be of too great concern, as we are primarily using the data to test the AER method.
A few observations are missing, but since we have a large number of observations, this
should be insignificant.

By studying the numbers of the data series, we discover that the observed wind
speed values are quite coarsely discretized. The observation values are only to be found
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on certain levels. For example, at Ørlandet, for wind speeds between 5 and 10, an
observation Xi can only take values such as

{5.1, 5.7, 6.2, 6.7, 7.0, 7.2, 7.7, 8.2, 8.7, 9.3, 9.8}. (48)

As we see, the difference between the possible values of Xi varies slightly, but it is at
most 0.5. This is a rather coarse discretization, and these numbers tell us something
about the uncertainty in the data material. At Alta the discretization is even coarser,
with differences between the layers of possible values at most 0.6, expect for the last year
of the series, where it is 0.1. The two parts of the Alta data series thus have different
accuracies, but this fact will have no consequence for our results, as we must adjust to
the data with the least accuracy.
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Figure 2: Plot of the Ørlandet wind speed data series.

In figure 2 and 3, we see plots of the entire series X of the Ørlandet and the Alta
data, respectively. For the Ørlandet data, most of the values fall between 0 and 25, but
we also have two extraordinarily high values, at about 30 and 45, respectively. We may
suspect these two values are outliers that do not belong to the distribution we wish to
investigate, and as such they might cause problems in a POT analysis. However, since
we are going to use the AER method, we do not need to think about that, since our
method ignores the data from the very tail η > η2, where uncertainty is high. For the
Alta data, the observed wind speeds are seen to be somewhat lower, as most values fall
between 0 and 20. In this plot, wee clearly see how the observed values are found only
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Figure 3: Plot of the Alta wind speed data series.

year 1 2 3 4 5 6 7 8 9 10
max. wind speed 20.1 21.6 23.2 20.1 22.6 31.4 21.6 18.5 21.6 19.0

year 11 12 13 14 15 16 17 18 19 20
max. wind speed 21.1 19.0 23.2 20.6 23.7 20.1 22.1 21.6 45.3 24.2

Table 1: The yearly observed maxima of the Ørlandet wind speed data.

on certain discrete levels, as they seem to fall along horizontal lines. This is not the case
for the last year of the data series, where the discretization is finer.

In tables 1 and 2 we list the maximum wind speeds for each of the 20 years, for the
Ørlandet and the Alta data, respectively. We again notice the extraordinary values in
the 6th and in the 19th year of the Ørlandet data.

Each of the data series has a clear periodicity; this will be clearer if we look at a plot
of the data series for the first year only of the Ørlandet data, as given in figure 4. We
here see a clear tendency, the highest values occurring at the beginning and at the end
of the year, which is quite natural, as we would expect higher wind speeds during the
autumn and winter storms. Further, from our knowledge of meteorology we expect that
observations made at small time intervals will be correlated, as they might come from
the same storm or the same weather system. We will have to account for this correlation
in our analysis.

To use the AER method, we assume that the distribution of wind speed maxima
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year 1 2 3 4 5 6 7 8 9 10
max. wind speed 15.9 18.0 15.9 15.4 18.5 15.4 20.1 17.0 14.9 14.9

year 11 12 13 14 15 16 17 18 19 20
max. wind speed 17.0 12.9 12.9 14.9 18.5 17.5 23.7 17.5 15.5 14.8

Table 2: The yearly observed maxima of the Alta wind speed data.
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Figure 4: Plot of the first year of the Ørlandet wind speed data.
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asymptotically will follow a Gumbel distribution. This seems reasonable, since using a
Weibull distribution would implicate that there were some fixed upper limit of the wind
speeds only slightly above the maximum observed values. However, there are no physical
phenomenon which would seem to explain the existence of such a fixed limit. Further, by
looking at the long term distribution of the wind speeds as estimated from observations,
it seems clear that the constant b of the Gumbel distribution must be nonnegative, as it
is related to the mean wind speed. And as that constant is the same constant as appears
in (22), we can assume beforehand that b ≥ 0. [10]

3.2 The Ocean Wave Data

Our second pair of data series consists two series of 12 years and 8 months of daily ocean
wave height observations, also from the Norwegian Meteorological Institute [1].

Wave heights can be defined by the zero up crossing method. We have a level called
0. The wave height Hi of observation number i is defined as the distance between the
highest and the lowest sea level during the period Ti between two up crossings or down
crossings of the 0 level.

We will use three different types of wave data. The first is called the significant wave
height, which is abbreviated HS. The significant wave height is defined as the average
of the 1

3 largest wave height observations in the observation period [4, ch. 3]. The
two other types are called wind sea, abbreviated HSWS, and swell, abbreviated HSSW ,
respectively. Both of these are components of the significant wave heights. The wind
sea is the component which accounts for the part of the wave height which is due to
wind, while the swell component accounts for the part of the wave height which is due
to far-travelling waves generated in other areas of the sea [5, ch. 5]. Accordingly, the
values of HSWS and HSSW must be smaller than the corresponding value of HS , since
the two former constitute parts of the latter.

We have observations from two different locations on the Norwegian continental shelf.
The first location is the oil field“Draugen”, which is situated in the Norwegian Sea, about
145 kilometres to the north-west of Kristiansund. The other is the oil field “Ekofisk”,
which is situated in the middle of the North Sea, between Scotland and Denmark.

For each of the two oil fields, we have 12 years and 8 months of daily observations,
from January 1, 1990, to August 11, 2002. The observations were made every three
hours. Thus, there are eight observations for each day and 2920 for each year, except in
the last year. There are 36,919 observations in all. All the numbers are given in metres
[m], with three decimals. Hence, these data are much more accurate than the wind speed
data.

There will be three different vectors of wave height observations, XHS
, XHSWS

, and
XHSSW

, for the significant wave data, the wind sea data, and the swell data, respectively.
We will have one set of vectors for the Draugen data, and another for the Ekofisk data.
In figures 5 and 6 we see plots of the three vectors for the Draugen and the Ekofisk data,
respectively. We note that the HS plots and the HSWS plots are very similar, especially
for the high wave height values. The HSWS height must, as mentioned, be smaller than
the HS height, but it seems to be only a little smaller than the Hs height for high wave
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heights. We should therefore expect the return values of the HSWS wave heights to be
only a little smaller than the return levels of the HS wave heights. The HSSW values
are seen to be much lower than the two others.

The same tendencies can be found in tables 3 and 4, where the yearly maxima of
the Draugen and Ekofisk maxima are listed. Again, we see that the maximum HSSW

values are only slightly smaller than the corresponding HS values. We also note that the
Draugen numbers generally seem to be larger than the ones from Ekofisk.
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Figure 5: Plot of the Draugen (a) HS data, (b) HSWS data, and (c) HSSW data.

A plot of only one year of observations, for example of the first year of the Draugen
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Figure 6: Plot of the Ekofisk (a) HS data, (b) HSWS data, and (c) HSSW data.
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HS

year 1 2 3 4 5 6 7
max. height 14.339 11.261 12.321 12.787 11.376 11.766 9.352

year 8 9 10 11 12 13
max. height 11.513 11.941 10.298 10.819 13.468 9.113

HSWS

year 1 2 3 4 5 6 7
max. height 14.199 11.187 11.809 12.615 11.225 11.595 9.289

year 8 9 10 11 12 13
max. height 11.391 11.822 10.207 10.493 13.039 8.647

HSSW

year 1 2 3 4 5 6 7
max. height 9.176 6.810 6.532 9.159 6.513 7.274 5.910

year 8 9 10 11 12 13
max. height 8.353 6.838 7.985 7.975 8.136 6.759

Table 3: The yearly maxima of the Draugen ocean wave data.

HS

year 1 2 3 4 5 6 7
max. height 12.122 9.659 8.955 10.830 9.822 10.125 9.400

year 8 9 10 11 12 13
max. height 7.128 7.962 9.196 11.241 6.518 10.323

HSWS

year 1 2 3 4 5 6 7
max. height 12.076 9.542 8.901 10.791 9.770 10.058 9.298

year 8 9 10 11 12 13
max. height 6.664 7.918 9.096 11.096 6.436 10.283

HSSW

year 1 2 3 4 5 6 7
max. height 5.090 4.733 4.666 4.270 5.568 4.763 4.242

year 8 9 10 11 12 13
max. height 3.556 5.037 5.046 5.884 3.715 4.013

Table 4: The yearly maxima of the Ekofisk ocean wave data.
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HS data, as given in figure 7, reveals the same periodic structure as we found in the
wind speed data, which is very natural, since ocean waves are generated by wind. A
plot of a smaller section of the data, for example the very first month of the Ekofisk HS

data, as given in figure 8, reveals a correlation among the observations. As for the wind
speed data, we must take account for this correlation during our analysis.

Again, we can assume that the extreme value distribution is of the Gumbel form. By
a similar argument as was used for the wind speed data, we can also assume that the
constant b in (22) must be nonnegative, b ≥ 0. [14]

0 500 1000 1500 2000 2500 3000

0
2

4
6

8
1

0
1

2
1

4

i

X

Figure 7: Plot of the first year of the Draugen HS data.

4 Results

4.1 The Ørlandet Wind Speed Data

To illustrate the use of the AER method in practice, we are going to go rather thoroughly
through the analysis of the Ørlandet wind speed data. In all our examples, we will use
the 100 years return value estimate to compare our results.

Our wind speed data are originally given in a long vector X with 7305 elements,
each element representing the FFX observation of one day. In the data set, there are
15 missing values, given as “NA”. Since we wish to find the return levels for long time
intervals, it is natural to use a year as our time period. Further, having 20 years of data,
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Figure 8: Plot of the first month of the Ekofisk HS data.

it is natural to let each year represent a block of data. We will then have R = 20 blocks
with N = 365.25 observations per time period.

It is convenient to work on a a non-dimensional scale. Therefore, we transform our
scale η into the non-dimensional scale η

σ̂
, where σ̂ is the empirical standard deviation of

the entire data series in consideration. We will refer to this transformed scale simply
as η, and in the future all plots and numbers will be given using this scale. The return
levels, however, will be transformed back to the original scale. In this case, σ̂ = 3.5931.

First, we will have to discretize the η scale. As noted in section 3.1, the wind speed
data were heavily discretized. Now, from (26) and (28) it follows that using a too fine
discretization when finding estimates ǫ̂k(η) will only give us redundant information. But
in section 3.1 we saw that the observation values were discretized with a maximum
difference of 0.5. So, we should use that discretization to avoid too much redundant
information. On the transformed scale, such a discretization corresponds to a step
dη = 0.14 between the η levels.

We now proceed to find the estimates ǫ̂k(η). We have not yet decided which value of
k to use, but calculating the estimates ǫ̂k(η) for several values of k and comparing them
will often give us the information we need to make the decision.

Finding the estimates is rather straightforward. We simply calculate the β̂k(η) values
for each of the R blocks and use the average of those numbers as our estimate, as given
by (30). When finding the standard deviations, we use (31). For k ≥ 2, when estimating
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ǭk(η), we can use either of the two formulae (29) or (28). A comparison of the log ǫ̂2(η)
estimates for using the two formulae is given in figure 9. As we can see, the estimates are
almost identical for large values of η, while they diverge for smaller η. However, since
the uppermost curve, the curve of estimates made from (28), is more correct for smaller
values of η, we may be able to have a slightly longer fit if we use that curve. Therefore,
in the following analysis, the formula (28) has been used.
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Figure 9: Plot of log ǫ̂2(η) for the Ørlandet wind speed data, calculated by (28) (starting
in the upper left corner) and by (29) (starting in the lower left corner).

The estimates log ǫ̂k(η) for values of k from 1 to 6 calculated using (28) are shown
in figure 10. As we can see, the estimates for k ≤ 2 are nearly identical, at least for η

values greater than about η = 5, and are not too far from each other for smaller values
of η. On the other hand, the line representing k = 1 is seen to be at some distance from
the others, at least for η values smaller than about η = 5, and again for η values greater
than about η = 6. The fact that the estimates log ǫ̂k(η) for k ≥ 2 seem to converge, but
are different from the estimates for k = 1, indicates that setting k = 2 will account for
the correlation in the data series. Generally, k should be as small as possible, as choosing
a larger value of k than is necessary will only give us more inaccurate results, because
the estimates will be made with fewer conditional exceedances. Although it seems clear
that k = 2 is the optimal value of k, we will here do the analysis for several values of k,
to compare the results. We will start with k = 1, the case which will serve as our main
example of the AER method.

Having chosen a k value, we should make a log plot of the estimates with the 95%
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Figure 10: Convergence plot of log ǫ̂k(η), k = 1, . . . , 6 for the Ørlandet wind speed data.
The uppermost curve represents k = 1; then k = 2 follows beneath, then k = 3, etc.

confidence intervals ĈI
(

log ǭk(η)
)

added. Hopefully, from that plot we will be able to
read the approximate position of the optimal values of η1 and η2. For k = 1, such a plot
is shown in figure 11.

From this figure we must choose bounds within which we would expect η1 and η2 to be
found. Looking at the plot, we notice that the confidence intervals widen significantly for
η > 6. Hence, since we wish to avoid the more uncertain ǫ̂1(η) estimates, it seems right to

cut away the estimates where η is larger than about 6. Using (5, 7) as our (η
(low)
2 , η

(high)
2 )

interval, we should be fairly sure to include the optimal value of η2. When it comes to
η1, reading information from the plot is more difficult. The optimal value will probably
be found where the curve constituted by the ǫ̂1(η) points straightens out, somewhere

near η = 1. We should be on the safe side using (0, 2) as our (η
(low)
1 , η

(high)
1 ) interval.

As mentioned, our discretization of the η scale is quite coarse. Actually, it turns
out that there are 15 η points in the selection (0, 2), while there are 14 in the selection
(5, 7). These numbers are low enough that we can conveniently compare all the possi-
ble combinations of η1 and η2 values, without using only a representative selection, as
proposed in section 2.6. Thus, we only need to do the analysis once. All in all, there
will be 15 · 14 = 210 combinations of η1 and η2 values to be computed, and 50 different
lengths L = η2−η1 for which to compare the ∆ values of the linear fits made using those
combinations.

As mentioned in section 2.6, we must decide on which are possible values of the
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Figure 11: Plot of the estimates log ǫ̂1(η) (circles) for the Ørlandet wind speed data,
with 95% confidence interval bands (dots).

constants q and b. A lower bound for q is given by maxη1≤η≤η2
ǫ̂k(η), and will differ

with each combination of η1 and η2, as different subsets of the set of estimates ǫ̂1(η)
are used. We must decide on an upper bound of q ourselves. A little trial and error
seems to indicate that by setting q(high) to q(high) = 1.4, all likely values of q should
be covered. Generally, if our analysis return fits where q = q(high), we should raise its
value and try again. On the other hand, if the good fits are found to have q values that
are significantly smaller than q(high), we can lower it to get more precise results. The
discretization of the q values, determined by dq, must be decided on so as to obtain the
desired accuracy. In this case, dq = 0.01 is found to be sufficiently small.

The upper bound of the possible b values was found to be minη1≤η≤η2
η = η1. In this

case we also have a given lower bound b(low) = 0, since, as was mentioned in section 3,
we cannot have negative b values. As for the discretization of the b values, determined
by db, it was said in section 2.6 that it does not need to be as small as dq, since the
value of q is much more important for the linearity of the fit. db = 0.05 is found to be
sufficiently small.

We do the analysis of step 1 on a computer, and have the computer print the results
in a table with the same number of rows as the number of differents lengths L. Hence,
there will be 50 rows. In each row of the table it is convenient to print the length L and
the corresponding η1 and η2 values, the corresponding ∆ value of the best fit, as well as
the corresponding constants q, b, a and c of that fit, and the corresponding estimate of



4.1 The Ørlandet Wind Speed Data 33

the 100 years return level x100. We should also make a log log-log plot and a log plot for
each fit. Finally, we should make plots of the return level against L, η1, η2, and perhaps
∆.

For k = 1, a selection from the table of results is shown in table 5. The corresponding
plots cannot all be shown here, of course, but three pairs of the log log-log plots and log
plots are given in figure 13. The return level plots are shown in figure 12.

When trying to select the best fit from the 50 alternatives, we can exclude many of
them at once. The ones with the highest ∆ values, such as lines 26, 32, 47, 49, and
50, obviously are poor fits. Further, all the fits in lines 1–30, with the exception of line
26, all have very similar ∆ values. If two fits have the same ∆ values, the one with the
larger L value will be preferred. Thus, we can exclude lines 1–29 from consideration.
This leaves us with lines 30–46, and among those line number 41 seems to stand out. Its
∆ value is not much higher than in the preceeding lines, about 0.02, but from the next
line on the ∆ values rise to 0.1 and 0.2. So, choosing the values of line number 41 seems
to give us a fit where the ∆ value is as small as possible, when at the same time the L

value is kept as large as possible.

Next, we look at the return level plots to see if they are consistent with our choice.
In figure 12 we have plotted the estimates of x100 for each fit against the corresponding
L, η1, η2, and ∆ values. The largest estimates where left out, so as not to distort the
plot.

When plotting x̂100 against L, we expect the estimates of x100 to be fairly stable for
L values lower than the optimal one. From plot (a) in figure 12, L = 6 seems to be a
good value. As mentioned in 2.6, the return level estimates should also be stable for η1

values higher, and for η2 values lower than the optimal ones. From plots (b) and (c)
in the same figure, the return level estimates seem to stabilize for η1 values larger than
about 0.8, and for η1 values larger than about 7. The last of the plots in figure 12, plot
(d), where the estimates of x100 are plotted against ∆, is not very helpful in this case.

Our analysis of the plots in figure 12 seems to strengthen the conclusion drawn from
table 5. The fit described by the numbers in line 41 of that table does indeed have
L = 6.02, η1 = 0.84, and η2 = 6.86, numbers that fit well with our analysis of the return
level plots. In this case, it is really simple.

Finally, we turn to the pairs of log log-log plots and log plots. Three of those are
shown in figure 13, where the plots of lines 20, 41 and 45 are given as examples of how
to interpret such plots.

The first plot, (a), corresponds to line 20 in the table. The linear fit is good, with a
∆ value of just 0.01999, and it seems to give a good fit in the log plot, but it is too short,
as it is obvious from the log plot that η2 could have been moved further to the right. In
the third plot, (c) which corresponds to line 52 in the table, we have a large L value,
but the ∆ value is high, and the linear fit is not good at all. Neither is the fit in the log
plot. A comfortable middle ground is found in the second plot, (c), which corresponds
to line 41 in the table. The log log-log plot fit gives a straight line, and the log plot fit
is very good. In fact, it is seen from the log plot that η2 could not possibly have been
moved further to the right. All in all, our reasoning seems to indicate that the numbers
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L ∆ η1 η2 q b a c x100

1 3.08 0.01282 1.96 5.04 1.281 0 0.2848 1.76 28.28
2 3.22 0.01305 1.82 5.04 1.241 0.05 0.2894 1.757 28.25

· · ·
15 4.06 0.01285 1.68 5.74 1.168 0.25 0.3384 1.694 28.43
16 4.2 0.01298 1.54 5.74 1.14 0.3 0.3475 1.685 28.43
17 4.2 0.01273 1.68 5.88 1.298 0 0.2915 1.747 28.36
18 4.34 0.0129 1.4 5.74 1.117 0.35 0.3588 1.673 28.45
19 4.34 0.01264 1.54 5.88 1.28 0 0.2861 1.757 28.31
20 4.48 0.01278 1.4 5.88 1.257 0.05 0.297 1.742 28.36
21 4.62 0.01467 1.54 6.16 1.25 0 0.2742 1.782 28.13
22 4.62 0.01324 1.26 5.88 1.189 0.15 0.3073 1.736 28.27
23 4.76 0.0144 1.26 6.02 1.239 0 0.271 1.788 28.11
24 4.76 0.015 1.54 6.3 1.25 0 0.274 1.782 28.12
25 4.9 0.01473 1.26 6.16 1.239 0 0.2709 1.788 28.1
26 4.9 1.209 0.14 5.04 1.4 0 0.6957 0.9843 58.47
27 5.04 0.01702 1.12 6.16 1.074 0.4 0.3553 1.689 28.21
28 5.04 0.01504 1.26 6.3 1.239 0 0.2708 1.789 28.09
29 5.18 0.02199 0.98 6.16 0.9934 0.65 0.4348 1.605 28.44
30 5.18 0.01736 1.12 6.3 1.074 0.4 0.3552 1.69 28.2
31 5.32 0.02205 0.98 6.3 0.9934 0.65 0.4347 1.606 28.43
32 5.32 1.284 0.14 5.46 1.4 0 0.697 1.023 52.51
33 5.46 0.02287 1.4 6.86 1.037 0.55 0.4118 1.622 28.51
34 5.46 0.02274 0.84 6.3 0.9815 0.7 0.4583 1.58 28.57
35 5.6 0.02291 1.26 6.86 1.079 0.45 0.3863 1.645 28.48
36 5.6 0.023 1.12 6.72 1.014 0.6 0.4232 1.612 28.51
37 5.74 0.02296 1.12 6.86 1.034 0.55 0.4103 1.624 28.5
38 5.74 0.02405 0.84 6.58 0.9815 0.7 0.4583 1.579 28.6
39 5.88 0.02521 0.98 6.86 0.9934 0.65 0.4349 1.604 28.47
40 5.88 0.02419 0.84 6.72 0.9815 0.7 0.4583 1.579 28.6
41 6.02 0.02367 0.84 6.86 0.9815 0.7 0.4583 1.579 28.59
42 6.02 0.2212 0.56 6.58 1.064 0 0.1778 2.037 26.68
43 6.16 0.1055 0.7 6.86 1.105 0 0.2072 1.939 27.33
44 6.16 0.4694 0.42 6.58 1.024 0 0.1368 2.209 25.66
45 6.3 0.2152 0.56 6.86 1.064 0 0.1785 2.03 26.82
46 6.44 0.4687 0.42 6.86 1.024 0.05 0.1552 2.133 26.13
47 6.44 1.459 0.14 6.58 1.4 0 0.6936 1.11 42.78
48 6.58 0.7409 0.28 6.86 1.008 0 0.1148 2.318 25.22
49 6.58 1.478 0.14 6.72 1.4 0 0.6927 1.119 42
50 6.72 1.497 0.14 6.86 1.4 0 0.6917 1.127 41.24

Table 5: A selection of the results of the initial analysis of the Ørlandet wind speed data,
with k = 1.
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Figure 12: Step 1 performed on the Ørlandet wind speed data with k = 1. (a) Plot of
x̂100 against L. (b) Plot of x̂100 against η1. (c) Plot of x̂100 against η2. (d) Plot of x̂100

against ∆. Some return level estimates have been left out.
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given by row number 41 in table 5 are the most suitable for further analysis.
Of course, this was a very simple example. In more complex cases, analysing the

table can be difficult, and the return level plots may not give such explicit information
as it did here. Sometimes they may not be useful at all. However, looking at the fits in
the plots is always useful, as it is instantly made clear if the numbers given in the table
represent a good fit or not. Thus, the fitted curve in the log plot should always be the
last point of reference. In the end, if we have a reasonably good fit in the log plot, it can
be used for further analysis.

Choosing fit number 41 from the table gives us η1 = 0.84 and η2 = 6.58, while we
will have initial estimates q̂i = 0.9815, b̂i = 0.700, âi = 0.4583, and ĉi = 1.5792. We
now proceed to step 2 of the analysis, the final estimation of the constants, using the
initial estimates as our starting values. We are going to fit the curve given by (22) to the
estimates log ǫ̂1(η), for η1 ≤ η ≤ η2, as described in section 2.8. For this task, we prefer
using the Marquardt-Levenberg algorithm, through the lsqnonlin method in Matlab.

We need to have upper and lower bounds for the constants q, b, a and c. In fact, we
have already given bounds for q and b. However, as was mentioned in section 2.8, only
one of those variables needs to be bounded on both sides. Since b is, we can let q vary
freely upwards. a and c only need to be positive. For q, b, a, and c we therefore set the
lower bounds to be maxη1≤η≤η2

ǫ̂1(η), b(low) = 0, 0 and 0, respectively, and the upper
bounds to be ∞, η1, ∞ and ∞, respectively. As weights we use the w1(η) formula given
by (43).

Now, running the method in Matlab, we obtain the results given in table 6. The
initial estimates are given in the first row of the table, while the final estimates are given
in the second row. We also give the corresponding errors of the fits, which are the values
of (42).

η1 η2 q̂ b̂ â ĉ x̂100 error

init. 0.84 6.86 0.9815 0.700 0.4583 1.5792 28.5908 1.771119 · 10−3

final 0.84 6.86 0.9984 0.6262 0.4264 1.6114 28.4828 1.584943 · 10−3

Table 6: Final results for the Ørlandet wind speed data, with k = 1, compared to the
initial estimates.

As we can see from the errors in the last column of the table, our new fit is slightly
better than the one defined by the initial estimates. We also notice that the value of q̂

changed only slighly, to become closer to 1. On the other hand, the b value has changed
rather significantly, which we should perhaps have expected, since we used a rather
coarse discretization of the b values, with db = 0.05. The â and ĉ values have been
slightly altered, and the 100 years return level has been adjusted slightly downward.
However, there were no drastic changes, as step 2 is only a refinement of the results
obtained in step 1.

Having found the final estimates of the constants, we proceed to find a 95% confidence
interval for x100, following the procedure sketched in section 2.10. First, the confidence
bands of log ǭ1(η) are transposed onto our new fit f̂(η), as shown in figure 14. Now,
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Figure 13: Three examples of plots made from table 5. To the left, log log-log plots.
To the right, log-plotts. η = η1 and η = η2 are shown as vertical lines. The examples
correspond to lines (a) 20, (b) 41, and (c) 45 of the table. The fitted curves are drawn
in blue. The dots in red are at a distance ∆ from the linear fits.
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comparing with figure 11, we clearly see that the confidence bands are smoother, and
thus more fitting for our purpose.
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Figure 14: The 95% confidence bands of log ǭ1(η) (dots) put onto the fit f̂(η) (the blue
curve), for the Ørlandet wind speed data. Compare with figure 11. The left and right
vertical lines represent η1 and η2, respectively.

Before calculating the confidence intervals, we should, as mentioned in section 2.10,
make sure that there are no irregularities in the transposed confidence bounds which
would distort the estimated confidence intervals for the return levels. In this case, we
find that the confidence intervals on the logarithmic scale cannot be calculated for the
two largest η values, since in those cases q̂ exp{−â(η − b̂)ĉ} − 1.96ŝk(η)√

R
will be negative,

so that (45) cannot be used. We solve this problem by simply removing the confidence
intervals for those two η values from our analysis, that is, for η > 6.58.

To find the confidence intervals, we again use Matlab, this time with the method
fmincon. As for the final estimation of the constants, we need to put bounds on the
variation of those constants. We can use the same bounds as above. Matlab gives us the
results shown in table 7.

A plot showing how the curves corresponding to the confidence intervals fit in between
the confidence bands of f(η) is given in figure 15. The horizontal line represents the
log ǭ1(η) value corresponding to the 100 years level, and the 100 years level is found
where the fitted curve from figure 14 crosses this line. The confidence bounds of x100 on
both sides of x̂100 are found where the two outermost curves cross the same line. We see
how both the upper and the lower confidence bounds have a corresponding curve (given
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q̂ b̂ â ĉ x̂100

upper bound 1.1045 0 0.1989 1.9902 26.4867
estimate 0.9984 0.6262 0.4264 1.6114 28.4828

lower bound 0.9624 0.8400 0.5651 1.4417 30.2225

Table 7: 95% confidence interval for the 100 years return value of the Ørlandet wind
speed data, with k = 1, with the corresponding constants.

in red in the plot) which neatly fits in between the 95% confidence bands on both sides
of log ǫ̂1(η). These curves are represented by corresponding values of q, b, a, c, which are
called q(high), b(high), a(high), c(high), and q(low), b(low), a(low), c(low), respectively. Those
are also given in table 7. The 95% confidence interval is (26.49, 30.22).
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Figure 15: The 95% confidence intervals of the 100 years return level of the Ørlandet
wind speed data. The log ǭ1(η) value corresponding to the 100 years level is shown as a
horizontal line. The leftmost and the rightmost vertical line shows η1 and η2, respectively.
The middle horizontal line shows where the confidence bounds of the curve f(η) have
been cut. The fit f̂(η) is shown in blue, while the curves corresponding to the confidence
interval limits are shown in red.

It may be of interest to estimate the return levels and confidence intervals using the
squared weights formula w2(η) of (44) instead of w1(η) of (43). We then get the results
shown in table 4.1. As we can see, the return level is almost the same as with the w1(η)
weights formula, but slightly higher. This may be explained by the fact that the w2(η)
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η1 η2 q̂ b̂ â ĉ x̂100 95% ĈI(x100)

0.84 6.86 0.9832 0.6960 0.4595 1.5735 28.72165 (26.6783, 30.3781)

Table 8: Result of the analysis for the Ørlandet wind speed data, k = 1, with squared
weights. Compare with tables 6 and 7.
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Figure 16: Result of the analysis for the Ørlandet wind speed data, k = 1, with squared
weights. Compare figure 15.

formula does not put as much emphasis on the tail as w1(η) does. In this case it did not
matter much, but in other cases this may lead to larger differences in the results. The
fit is shown in figure 16.

We now go on to estimate return levels for k ≥ 2. The analysis will be fairly similar
to the one we have just gone through for k = 1. We may use some of the information
found in the k = 1 analysis to ease our work when analysing k ≥ 2, as the η1 values
of k ≥ 2 will probably be greater than the η1 value of k = 1. This information saves
us from running through too many possible η1 values. The results are given in table 9
and visualized in figure 17. We notice how the value of q̂ decreases with increasing k

values, and how the η1 value is much larger and the 95% confidence interval wider for
k ≥ 2 than for k = 1. We also notice the similarity in the results for k ≥ 2. This is as
expected, since the convergence plot of figure 10 showed us that the log ǭk(η) estimates
were almost identical for large values of η. We therefore accept the k = 2 estimates as
our final estimates. Our estimated 100 years return value will then be x̂100 = 28.18,
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which seems to be a reasonable value, if compared to the yearly observed maxima of
table 1. Especially, this estimate seems to indicate that the two extraordinary values of
the table are indeed outliers.

k η1 η2 q̂ b̂ â ĉ x̂100 95% ĈI(x100)

1 0.84 6.86 0.9984 0.6262 0.4264 1.6114 28.4828 (26.4867,30.2225)
2 2.24 6.58 0.6191 0 0.1918 1.9209 28.1763 (25.7821, 31.6467)
3 2.24 6.72 0.4566 0 0.1521 2.0205 28.1168 (25.6706,31.6344)
4 2.24 6.72 0.3522 0 0.1202 2.1275 27.9625 (25.5617,31.6070)

Table 9: Results for the Ørlandet wind speed data.

Finally, we will try to use the alternative estimate formula β̃k(η) from (29) for ǫ̂k(η),
instead of β̂k(η) from (28). Setting k = 2, we will have estimates of log ǭ2(η) as given in
figure 9, and will have the results given in table 10 and in figure 18. We here notice the
broader confidence bands on both sides of log ǫ̂k(η), which result in a broader confidence
interval for the 100 years return level x100. The value of η1 is found to be slightly higher,
and because the estimates of log ǫ̂2(η) give a more rounded fitted curve, the return level
estimate is lower, at 27.33, compared to 28.18 when using (28). The latter seems to
be the better result, considering the lower value of η1 and the width of the confidence
interval. However, figure 9 seems to indicate that we would get the same results from
both formulae if we chose a slightly larger η1 value. Therefore, letting η1 be as small as
possible is probably not wise when using the β̃k(η) formula. Instead, one should choose
the η1 value after consulting the log plot with the added confidence bands, so as to avoid
the uncertain ǭk(η) estimates for smaller values of η. In this case, it seems that it would
have been better to set η1 somewhere near 3.5. Still, the β̃k(η) formula has the advantage
that it involves less computation than the ǫ̂k(η) formula.

4.2 The Alta Wind Speed Data

We follow the same procedure for the Alta data as for the Ørlandet data. First, we make
a convergence plot of log ǫ̂k(η) with k values from 1 to 6, as shown in figure 19. The plot
is similar to that of the Ørlandet data, but the difference between the line representing
log ǫ̂1(η) and the other lines is less marked. However, k = 2 seems to be a good choice
for the Alta data as well.

When performing step 1 of the analysis, it turns out that the constant c is always
very close to 1. The case c = 1 corresponds to the Gumbel distribution and will give

η1 η2 q̂ b̂ â ĉ x̂100 95% ĈI(x100)

2.38 6.72 0.2652 0.1159 0.0794 2.3586 27.3270 (24.7183,31.3453)

Table 10: Results for the analysis of the Ørlandet wind speed data with k = 2, using
(29) instead of (28) in estimating ǭ2(η). Compare the second row of table 9.
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Figure 17: Results for the Ørlandet wind speed data. (a) k = 2, (b) k = 3, (c) k = 4.
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Figure 18: Results for the analysis of the Ørlandet wind speed data with k = 2, using
(29) instead of (28) in estimating ǭ2(η). Compare plot (a) of figure 17.
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Figure 19: Convergence plot of log ǫ̂k(η) for the Alta wind speed data. The uppermost
line represents k = 1; then k = 2 follows beneath, then k = 3, etc.
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k η1 η2 q̂ b̂ â ĉ x̂100

1 1.80 6.80

lower bound 1.4803 0 0.4248 1.5140 22.0966
estimate 3.9661 0.0407 1.0791 1.0483 25.6527
upper bound, c ≥ 1 3.9760 0 0.0027 1.0000 27.3802
upper bound 58.9684 0 3.2235 0.5998 32.0909

2 1.80 7.00

lower bound 1.1456 0 0.4065 1.5204 22.1886
estimate 3.1979 0.0098 1.0618 1.0410 25.9359
upper bound, c ≥ 1 2.9816 0 1.0834 1.0000 27.7740
upper bound 53.9521 0 3.3555 0.5747 33.0482

3 1.80 7.00

lower bound 1.0928 0 0.4164 1.5057 22.2355
estimate 3.0931 0.0168 1.0935 1.0240 26.1263
upper bound, c ≥ 1 2.7539 0 1.0740 1.0000 27.7789
upper bound 57.5959 0 3.4809 0.5587 33.5458

Table 11: Results for the Alta wind speed data.

us a straight line in the log plot. Further, the fit can be described by infinitely many
combinations of q and b. We therefore try to fix both q and c before continuing with step
2 of the analysis, setting q = 1 and c = 1 and varying only b and a. We then compare
with the usual method, the one described in section 2.8 and used with the Ørlandet
data. In fact, it turns out that the latter gives smaller errors for the fitted curve f̂(η).
We will therefore use it for the Alta data as well.

During step 1, we had to set q(high) much higher than for the Ørlandet data and use
a much larger dq value. Indeed, the values of the constants are very different from that
case. Table 11 shows the results after performing step 2. The fits are shown in figure
20. For each value of k, there are four rows in the table. The second row contains the
estimated 100 years return value and the constants of the corresponding fit. The first
and the fourth row contain the lower and upper confidence bounds of x100, respectively.
These are represented by the outermost red curves in the plots. The confidence intervals
are very broad, a fact which is due to the low value of the constant c of the curve
that defines the upper confidence bound. For example, for k = 3, we have c = 0.5587,
which makes the curve turn outwards. But when we compare various Gumbel fittings
of wind speed extremes, it is found that the c value stays above 1. Therefore, it may
be justifiable to set a lower bound for the c values at c = 1 when finding the confidence
intervals. Doing this, we obtain the upper confidence bounds of the third row, and much
shorter confidence intervals. In fact, the new confidence intervals have half the length of
the old. The new upper bound is represented by the middle red curve in the plots. This
case illustrates the importance of considering the physical properties of the phenomenon
under study.

The estimated 100 years levels are lower than the corresponding estimates for the
Ørlandet data, which is reasonable, as the Alta yearly maxima were seen to be lower
than the corresponding Ørlandet maxima. Although both the Alta and the Ørlandet
data are wind speed observations from Norway, the curves in figure 20 and the ones in
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Figure 20: Results for the Alta wind speed data. (a) k = 1, (b) k = 2, (c) k = 3. The
middle red curve represents the curve giving the upper confidence bound when c ≥ 1.
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figure 17 are very dissimilar, and seems to indicate that the wind at Ørlandet behaves
differently than the wind at Alta.

4.3 The Ocean Wave Data

The analysis of the ocean wave data is quite similar to the analysis of the wind speed
data, and we will here only notice some points requiring special attention.

As noted in section 3, we have eight observations for each day throughout the year.
As we are going to study long time intervals, it is again natural to use the year as our
time unit. We therefore set N = 365.25 · 8 = 2922 as the number of observations per
period. We could of course use one block for each year, but that will give us only 13
blocks, one of which would be shorter than the others. R = 13 is somewhat too small to
compute the confidence intervals. Instead, we choose to use two blocks per year, getting
a total of R = 26 blocks. However, we cannot simply split the year in half at the middle,
since the two blocks will be incomparable because of the periodicity of the data. Instead,
we split each month of each year into two parts, assigning the first to the first block, and
the second to the second block. Each block will then consist of 12 half-months, and will
be a representation of the entire year. Now, we must remember that the length of the
blocks is different from the number of observations per year, and use the appropriate
formulae, as discussed in section 2.5. Also, we must remember that two of the blocks
will be much shorter than the others, since we have only eight months of data from the
last year. We therefore use a weighted mean and standard deviation in estimating ǫ̂k(η).

As for the wind speed data, in order to work on a non-dimensional scale, we trans-
form η to the non-dimensional scale η

σ̂
, where σ̂ is the standard deviation of the entire

data series in consideration. Again, we refer to this transformed scale simply as η, but
transform the return level estimates back to the original scale.

We choose to discretize the η scale with dη = 0.01, although we could possibly have
used dη = 0.001. However, dη = 0.01 gives a smaller and more convenient number of
points to work with. In figures 21 and 22 we show convergence plots of the Draugen and
Ekofisk data, respectively. In all these plots, the uppermost line represents k = 1, while
the other lines, k = 2, . . . , 6 converge to a single line. This indicates that setting k = 2
will again take care of the correlation in the data.

When inspecting the convergence plots in figures 21 and 22, we notice that the
log ǫ̂k(η) curves seem to have a bend for larger η values. This is especially obvious in
the case of the HSSW data from both the Draugen and the Ekofisk oil fields, but a
smaller bend seems to occur in the other plots as well. This does not seem to be due to
uncertainty among the estimates alone, but could indicate that the distribution of the
ocean wave heights is inhomogeneous. In that case the AER method is invalid. Anyways,
such a bend will make it more difficult to fit a curve to the log ǭk(η) estimates, and we
will probably find that the η2 values are small, as the bend must be left out.

For the wind speed data, we had such a small number of η values that it was enough
to run step 1 of the method once. However, this time the number of possible η1 and η2

values will be much greater, since the discretization of η is finer, with dη = 0.01. We
therefore run step 1 twice, as described in section 2.6, and zoom in on the optimal η1
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and η2 values. As was seen in section 3, b must be nonnegative, and therefore we set
b(low) = 0. To begin with, we set q(high) at 1.5, and use dq = 0.01. But in the cases
k ≥ 2, after the first run of step 1, we discover that the good fits exclusively have q

values between 0.01 and 0.1. Therefore, before the second run, we change our q(high)

value to 0.15 and the dq value to 0.001, so as to have a more accurate q value.
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Figure 21: Convergence plots of log ǫ̂k(η) for the Draugen data, for k = 1, . . . , 6, with
k = 1 uppermost. (a) HS , (b) HSWS, (c) HSSW .

We first look at the Draugen data. In table 12 we give the results of the analysis.
We notice that for k = 2 and k = 3, we actually get higher return level estimates for
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Figure 22: Convergence plots of log ǫ̂k(η) for the Ekofisk data, for k = 1, . . . , 6, with
k = 1 uppermost. (a) HS, (b) HSWS, (c) HSSW .
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the HSWS data than for the HS data. For example, for k = 2, we have that the HS 100
years return level estimate is 15.8162, while the HSWS return level estimate is 16.5806.
Now, since the HSWS data are observations of the wind sea, which constitutes a part of
the significant wave height HS, that should be impossible. The paradox may perhaps
be explained by the fact that, as we saw from tables 3 and 4, the maximum values of
the HSWS data seem to be only slightly smaller than the maximum values of the HS

data, and that we should expect the return levels of the two wave classes to be close to
each other. Thus, when taking the uncertainty of the estimates into account, a result
such as ours may not be implausible. Indeed, the difference between the HS and the
HSWS estimates are not very great when compared to the width of the corresponding
95% confidence intervals. On the other hand, we have seen from the log plots that the
curves of ǭk(η) seem to behave strangely for large η. Hence, it is probably wise to regard
the results with a bit of scepticism.

When estimating the confidence intervals, we should plot the confidence bands on
the curve f̂(η) beforehand, to see if some of them must be cut away. It turns out that
in many cases it must. Figure 23 gives an example. In that case, the Draugen HS data
with k = 2, the confidence bands are found to be unreliable for η values larger than
about 6.5. Using the bands for all η1 ≤ η ≤ η2 clearly will give us too short confidence
intervals. Therefore, we should cut away the part η > 6.5 when doing the confidence
interval analysis. As can be seen in table 12, the estimated confidence intervals are very
broad. As for the Alta wind speed data, this is due to the values of c. By studying
the properties of the ocean waves in general, we may be able to bound the c values and
shorten the confidence intervals, as was done with the Alta data.

k η1 η2 q̂ b̂ â ĉ x̂100 ĈI(x100)

HS

1 2.00 6.71 0.6682 0 0.3538 1.5569 16.5390 (13.6420,21.2506)
2 2.29 7.21 0.0384 0 0.1144 1.9750 15.8162 (13.2189,20.8974)
3 2.29 7.21 0.0360 0.0196 0.1120 1.9820 15.8397 (13.2215,20.9512)

HSWS

1 2.00 6.43 0.2510 0.0395 0.2572 1.6777 16.3646 (13.5801,21.3275)
2 1.90 6.73 0.0487 0.0280 0.2363 1.6346 16.5806 (13.4252,23.8859)
3 2.40 6.80 0.0347 0 0.1584 1.8123 16.1931 (12.8751,27.9530)

HSSW

1 1.30 6.16 0.9938 0 0.3328 1.6550 9.5002 (8.6256,10.9632)
2 2.07 6.30 0.0890 0.0019 0.1023 2.1258 9.2083 (8.1307,11.3884)
3 2.29 6.30 0.0658 0.0107 0.0776 2.2467 9.1578 (8.0369, 11.6290)

Table 12: Results for the Draugen ocean wave data.

Plots of the fitted curves for the Draugen data are given in figures 24, 25, and 26.
Here, we can clearly see what effect the bends of the log ǭk(η) estimate curves have had
on the results. The HS results seem to be good. For k = 2, a 100 years return level
of 15.82 is not implausible, when we remember that the largest significant wave height



50 4 RESULTS

3 4 5 6 7 8

−
1

0
−

9
−

8
−

7
−

6
−

5
−

4

eta

lo
g

(e
p

s
ilo

n
)

Figure 23: The fitted curve of the Draugen HS data (in blue) with confidence bands.

during the 12 years and 8 months of the Draugen HS time series was 14.34. For the
HSWS and the HSSW data, however, the curve fit abruptly deviates from the log ǭk(η)
estimates at η = η2. Surely, the estimates for η > η2 are uncertain, but we should not
expect those estimates to be very far away from the fitted curve. For the HSWS data,
the fitted curve is found to be situated somewhat above the curve of estimates. This
seems to indicate that our return level estimates are too high, and might explain the
paradox of the HSWS estimates being higher than the HS estimates. For k = 2, the 100
years return level is 16.51, while the highest recorded wave height in the Draugen HSWS

time series was only 14.20. For the HSSW data, the opposite seems to be true. Here,
the fitted curve seems to give much lower estimates than it should. Actually, for k = 2
x̂100 = 9.21 is only slightly higher than the greatest observation in the Draugen HSSW

time series, which was 9.18.

The results for the Ekofisk data are given in table 13 and in figures 27, 28, and 29. As
expected, the return levels of the Ekofisk data are lower than the corresponding Draugen
levels. However, we still find slightly larger return levels for the HSWS data than for the
HS data, at least in the cases k = 1 and k = 3.

Further, we again find abrupt deviances of the fitted curves from the estimates, but,
interestingly, not in the same manner as for the Draugen data. This time, there are
large deviations for the HS data as well as for the HSWS and HSSW data. For the
HS and the HSWS data, we seem to get too low estimates of the return values, while
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Figure 24: Results, Draugen HS. (a) k = 1, (b) k = 2, (c) k = 3.
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Figure 25: Results, Draugen HSWS. (a) k = 1, (b) k = 2, (c) k = 3.
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Figure 26: Results, Draugen HSSW . (a) k = 1, (b) k = 2, (c) k = 3.
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for the HSSW data the estimates seem to be too high. For the HSWS and HSSW data
from Draugen, it was the other way around. For k = 2, the HS and HSWS 100 years
return level estimates, which are 12.30 and 12.25, respectively, may be compared with
the greatest observations from the time series, which are 12.12 and 12.08, respectively.
These numbers seem to indicate that the estimated return levels are indeed too low. On
the other hand, for k = 2, the HSSW 100 years return level estimate x̂100 = 7.33 is far
greater to the greatest among the observations, which is only 5.89.

k η1 η2 q̂ b̂ â ĉ x̂100 ĈI(x100)

HS

1 0.61 5.79 1.1962 0 0.5866 1.3358 13.1804 (11.7054,15.1149)
2 1.93 5.79 0.0392 1.5575 0.5038 1.4215 12.2999 (10.0372,15.3433)
4 1.86 5.79 0.0470 1.0845 0.3969 1.5097 12.2110 (10.0941,15.4945)

HSWS

1 0.96 5.37 0.4755 0.6065 0.6941 1.3127 13.1871 (11.0991,15.5892)
2 1.44 5.27 0.0814 0.0800 0.3599 1.5530 12.2530 (10.2069,15.8445)
3 1.44 5.27 0.0725 0.1473 0.3556 1.5597 12.2385 (10.1477,15.8389)

HSSW

1 1.16 8.10 0.9081 0.9396 0.7438 1.2441 6.4499 (5.8493,6.9785)
2 0.99 5.79 0.3699 0 0.5683 1.2122 7.3256 (6.3618,8.7155)
3 1.41 5.86 0.2514 0.0055 0.4405 1.3157 7.1274 (6.1391,8.6694)

Table 13: Results for the Ekofisk ocean wave data.

Clearly, we should expect the fitted curve to deviate from the estimates for large η,
where the uncertainty of the estimates is large. However, such massive deviations as can
be found in these plots cannot be explained by uncertainty alone. Our fitted curves do
fit the estimates very well for smaller values of η. But the large deviations for η > η2

seem to indicate that the distributions of the wave heights are inhomogeneous. If that
is the case, the return level estimates found by the AER method are invalid, since they
are found by extrapolation of the fitted curve f̂(η), η1 ≤ η ≤ η2 to higher levels of η.

4.4 Discussion

Comparing the different results, we find that the values of the constants vary greatly,
even when we might suspect them to be similar. b̂ is close to 0 for the Draugen HS data
with k = 2, while it is 1.56 for the corresponding Ekofisk data. And the Ekofisk HS data
give almost the same return level estimates for k = 2 and the k = 3, but in the latter
case b̂ is 1.08, as opposed to 1.55 in the former case. The fact that we can have such
variations in the values of the constants, and still get similar results, seems to indicate
that the method is quite robust concerning the estimation of those constants. There
may be several combinations of the four constants that yield almost the same return
level estimates. The plots in figure 12 also indicates a certain robustness with respect to
the choices of η1 and η2.
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Figure 27: Results, Ekofisk HS. (a) k = 1, (b) k = 2, (c) k = 3.
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Figure 28: Results, Ekofisk HSWS. (a) k = 1, (b) k = 2, (c) k = 3.
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Figure 29: Results, Ekofisk HSSW . (a) k = 1, (b) k = 2, (c) k = 3.
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To investigate the robustness with respect to the constants, we try to find out how
the error of the log plot fit is dependant upon the choice of constants, particularly the
choice of q and b. We do this by varying the values of q and b, while a and c are
calculated from the straight line in the log log-log plot. These four constants constitute
a fit, the goodness of which is measured by the error given in (42). Again, we use the
w1(η) weights formula of (43). As an example we choose the Ekofisk HSSW data with
k = 2, η1 = 0.99, and η2 = 5.79, the case that corresponds to the last line but one in
table 13.

Now, plotting the error against q and b, we get the plot of figure 30. The smallest
error is to be found at the point where b = 0 and q ≈ 0.37. However, the area of
the smallest error is seen to be very flat, a fact which suggests that there are many
combinations of q and b that will give an error almost as small as the optimal one.
Indeed, the numerical method we use to find the optimal value may even have problems
finding it. At least is seems advisable to use a small tolerance limit.

This seems to confirm what we have mentioned before, that the choice of the constants
is not important per se, as long as we get a good fit in the log plot. Indeed, that is all we
are interested in. Even if we are not able to find the optimal combination of the constants
q, b, a, and c, we will have a good estimate of the return level as long as the fitted curve
f̂(η) follows the estimates ǫ̂k(η) reasonably well. This is clearly a strength. We may
compare this robustness of the AER method against the sensitivity of the POT method
concerning its dependency upon the very largest values among the data. Removing only
one or two of the greatest data points from the POT analysis may significantly alter the
estimates of the return levels, while this will not affect the AER analysis at all, since it
leaves the very greatest data out of the analysis.

The robustness of the AER method is fortunate, as the method to estimate the
return levels is still, to a certain degree, dependent on human judgement, especially when
selecting the best fit after step 1 of the proposed procedure. But given the robustness of
the method, we know that although we may not choose the optimal values, our estimates
may still be fairly good. As has been pointed out already, the quality of the results can
actually be judged by the goodness of the fit. This gives us a criterion for judging the
resulting estimates. On the other hand, when using the POT method, it may often be
difficult to discern if the fitted extreme value distribution is appropriate or not. In fact,
as was explained in section 2.2, it is even impossible to know if the use of the POT
method is justifiable at all.

In order to obtain optimal results with the AER method, it was seen to be important
to use all available knowledge about the phenomenon under study. Especially, we should
try to use our knowledge to find bounds for the constants. For example, our estimates
of the Alta wind speed data were much more precise, in the sense that the confidence
intervals of the return levels were shorter, when we limited the possible values of the
constant c. A lack of such information will make the procedure more difficult to use,
as we will have no lower bound on the b values, and must find such a bound from trial
and error. Further, the results will be more uncertain, as the confidence intervals will
be broader than they need to be. Finally, as was seen from the ocean wave data, it
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is very important to ascertain that the AER method can actually be used on the data
under study. Especially, we must be sure that the underlying distribution is actually
homogenous, so that the extrapolation from known to unknown levels is valid. Drastic
deviations of the estimates from the fit for η values larger than η2 may indicate that this
is actually not the case.

In general it can be said that although we have tried to make the proposed procedure
as automatic as possible, human judgement, knowledge of the phenomenon under study,
and experience in using the method are still crucial for obtaining good results.

5 Conclusion

The AER method seems to be able to give satisfactory results, as long as the data
under study belong to a homogeneous distribution. By the proposed procedure, it is
possible to find return level estimates with corresponding confidence intervals more or
less automatically on a computer. Still, some of the most crucial parts of the analysis
are left to human judgement, such as the choice of the η1 and η2 values. On the other
hand, the method is robust against small errors in the estimated constants, and in the
choice of η1 and η2 values.

The method seems to have some advantages over the POT method, in that is does
not rely on the dubious assumption of asymptotic data. Instead, a wider range of the
data can be used in the analysis. Hence, the AER is less dependent upon a few data
points in the very tail of the distribution. Evaluation of the results is also made easier,
since the quality of the return level estimates is connected to the goodness of a curve fit.
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A R Code

The following R code is included to illustrate a practical implementation of step 1, as
described in section 2.6.

1 l i n e a r f u n c=function ( eta , ep s i l on , sigma ,m,N, dq , db , eta1low , eta1high , eta2low ,
eta2high , neta1 , neta2 , blow , qhigh )

{
3 ###############################################################

5 # INPUT DATA
# eta − A vec to r o f l e v e l s , on a non−dimensional s c a l e .

7 # eps i l on − A vec to r o f average exceedance ra t e s corresponding to the
d i f f e r e n t e ta l e v e l s .

# sigma − The standard dev i a t i on o f the o r i g i n a l o b s e r va t i on s . Wi l l be
used to transform the re turn l e v e l s back to the o r i g i n a l s c a l e .

9 # m − The number o f per i ods f o r which to f i nd the re turn l e v e l s .
# N − The number o f o b s e r va t i on s per time un i t .

11 # dq − s t e p l eng t h in the d i s c r e t i z a t i o n o f the p o s s i b l e q va l u e s .
# db − s t e p l eng t h in the d i s c r e t i z a t i o n o f the p o s s i b l e b va l u e s .

13 # eta1 low − The lower bound o f the p o s s i b l e e ta 1 va l u e s .
# eta1h i gh − The upper bound o f the p o s s i b l e e ta 1 va l u e s .

15 # eta2 low − The lower bound o f the p o s s i b l e e ta 2 va l u e s .
# eta2h i gh − The upper bound o f the p o s s i b l e e ta 2 va l u e s .

17 # neta1 − The number o f p o s s i b l e e ta 1 va l u e s to be used .
# neta2 − The number o f p o s s i b l e e ta 2 va l u e s to be used .

19 # blow − The lower bound o f the b va l u e s .
# qh i gh − The upper bound o f the q va l u e s .

21
# OUTPUT DATA

23 # tab − A matrix , con ta in ing 9 columns , o f which column
# number (1) con ta ins L va lues , (2) Del ta va lues , (3) eta1 va lues ,

25 # (4) eta2 va lues , (5) q va lues , (6) b va lues , (7) a va lues ,
# (8) c va lues , (9) re turn l e v e l v a l u e s .

27
################################################################

29
# Firs t , we f i nd out which e ta va l u e s are p o s s i b l e eta1 and eta2

31 # va l u e s . I f the numbers neta1 and neta2 o f e ta va l u e s to be used
# are sma l l e r than the number o f p o s s i b l e va lues , we p i ck neta1

33 # and neta2 e ta va l u e s d i s t r i b u t e d r e g u l a r l y throughout the p o s s i b l e
# eta 1 and e ta 2 va lues , r e s p e c t i v e l y . Otherwise , we use a l l the

35 # po s s i b l e va l u e s . This procedure r e s u l t s in two new vec to r s eta1
# and eta2 conta in ing e ta 1 and e ta 2 va l u e s to be used in the

37 # ana l y s i s . Vectors ep s i l on1 and ep s i l on2 wi th corresponding ep s i l on
# va l u e s are a l s o made .

39
s e l e c t i o n 1=which( eta>0 & eta>=min( eta [ eta>=eta1low ] ) & eta<=max( eta [ eta

<=eta1h igh ] ) )
41 s e l e c t i o n 2=which( eta>=min( eta [ eta>=eta2low ] ) & eta<=max( eta [ eta<=

eta2h igh ] ) )

43 i f ( length ( s e l e c t i o n 1 )>neta1 )
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{
45

# We s e l e c t neta1 numbers d i s t r i b u t e d r e g u l a r l y throughout
47 # ( eta1low , e ta1h i gh ) . For each o f t h e s e numbers we s e l e c t the e ta

# element which i s c l o s e s t to t ha t number . Hence , we w i l l have
49 # po s s i b l e e ta 1 va l u e s d i s t r i b u t e d more or l e s s r e g u l a r l y

# throughout ( eta1low , e ta1h i gh ) . The ve c t o r eta1 w i l l contain
51 # the e ta va l u e s to be used in the ana l y s i s .

53 sequence1=seq ( eta1low , eta1high , length=neta1 )
eta . s e l e c t i o n 1=eta [ s e l e c t i o n 1 ]

55 s e l e c t . eta1=matrix(nrow=neta1 )

57 for ( i in 1 : length ( sequence1 ) )
{

59 d i s tance1=abs ( eta . s e l e c t i on1 −sequence1 [ i ] )
eta . i=union ( eta . s e l e c t i o n 1 [ d i s tance1==min( d i s tance1 ) ] )

61 s e l e c t . eta1 [ i ]=which( eta==eta . i )
}

63 eta1=eta [ s e l e c t . eta1 ]
ep s i l on 1=ep s i l on [ s e l e c t . eta1 ]

65 }
else

67 {
eta1=eta [ s e l e c t i o n 1 ]

69 ep s i l on 1=ep s i l on [ s e l e c t i o n 1 ]
neta1=length ( s e l e c t i o n 1 )

71 }

73 i f ( length ( s e l e c t i o n 2 )>neta2 )
{

75 sequence2=seq ( eta2low , eta2high , length=neta2 )
eta . s e l e c t i o n 2=eta [ s e l e c t i o n 2 ]

77 s e l e c t . eta2=matrix(nrow=neta2 )

79 for ( i in 1 : length ( sequence2 ) )
{

81 d i s tance2=abs ( eta . s e l e c t i on2 −sequence2 [ i ] )
eta . i=union ( eta . s e l e c t i o n 2 [ d i s tance2==min( d i s tance2 ) ] )

83 s e l e c t . eta2 [ i ]=which( eta==eta . i )
}

85
eta2=eta [ s e l e c t . eta2 ]

87 ep s i l on 2=ep s i l on [ s e l e c t . eta2 ]
}

89 else
{

91 eta2=eta [ s e l e c t i o n 2 ]
ep s i l on 2=ep s i l on [ s e l e c t i o n 2 ]

93 neta2=length ( s e l e c t i o n 2 )
}

95
# The p o s s i b l e L va l u e s are ca l cu l a t ed , and the t a b l e tab i s
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97 # made , wi th the rows so r t ed by the L va l u e s . The Del ta va l u e s are
# s e t to i n f i n i t y to beg in wi th .

99
d i f f s=matrix(nrow=length ( neta1∗neta2 ) )

101 for ( i in 1 : neta1 )
{

103 for ( j in 1 : neta2 )
{

105 d i f f s [ ( i −1)∗neta2+j ]= eta2 [ j ]− eta1 [ i ]
}

107 }

109 sor t ed=sort (union ( d i f f s , d i f f s ) )
tab=matrix(nrow=length ( sor t ed ) ,ncol=9)

111 tab [ , 1 ]= sor t ed ; tab [ , 2 ]= In f

113 # Al l the combinat ions o f the e l ements o f the eta1 and eta2 ve c t o r s
# are run through , beg inn ing wi th the l a r g e s t e ta1 element and the

115 # sma l l e s t e ta2 element . index1 keeps t rack o f the eta1 elements ,
# whi l e index2 keeps t rack o f the eta2 e lements .

117
index1=neta1

119 while ( index1 >=1)
{

121 index2=1
while ( index2<=neta2 )

123 {

125 # For each combination , we f i nd the co r r e c t L and the co r r e c t
# row rw in the t a b l e . Then the p o s s i b l e q and b va l u e s are

127 # d i s c r e t i z e d as v e c t o r s Q and B, r e s p e c t i v e l y .

129 d i f f e r=eta2 [ index2 ]− eta1 [ index1 ]
rw=which( tab [ ,1]== d i f f e r )

131 Q=seq (max( ep s i l on [ eta>=eta1 [ index1 ] ] ) +0.000001 ,max( qhigh ,max(
ep s i l on [ eta>=eta1 [ index1 ] ] ) +0.000001) ,by=dq)

B=seq ( blow ,max( eta1 [ index1 ] −0.000001 ,0) ,by=db)
133 i=1

135 # We run through a l l combinat ions o f q and b va l u e s .

137 while ( i<=length (Q) )
{

139 j=1
while ( j<=length (B) )

141 {

143 # For each combination , we i n v e s t i g a t e beforehand i f
# the combination can po s s i b l y g i v e a sma l l e r Del ta

145 # va lue f o r the curren t L va lue or not . I f not , we s k i p
# the l i n e a r f i t t i n g .

147
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L1=(log (abs ( log ( ep s i l on 2 [ index2 ] /Q[ i ] ) ) )−log (abs ( log (
ep s i l on 1 [ index1 ]/Q[ i ] ) ) ) )/( log ( eta2 [ index2 ]−B[ j ] )−
log ( eta1 [ index1 ]−B[ j ] ) )

149 L2=log (abs ( log ( ep s i l on 2 [ index2 ] /Q[ i ] ) ) )−L1∗ log ( eta2 [
index2 ]−B[ j ] )

i f (max(abs ( log (abs ( log ( ep s i l on [ eta>eta1 [ index1 ] & eta<

eta2 [ index2 ] ] /Q[ i ] ) ) )−(L1∗ log ( eta [ eta>eta1 [ index1 ]
& eta<eta2 [ index2 ]]−B[ j ] )+L2) ) )<2∗ tab [ rw , 2 ] )

151 {

153 # I f i t i s p o s s i b l e to have a sma l l e r Del ta va lue ,
# we make a l i n e a r f i t , and c a l c u l a t e the cons tan ts

155 # a ( here A) and c ( here C) corresponding to the
# f i t .

157
s e l e c t=which( eta>=eta1 [ index1 ] & eta<=eta2 [ index2 ] )

159 e p s i l o n s e l=ep s i l on [ s e l e c t ]
e t a s e l=eta [ s e l e c t ]

161 f i t=lm( log (abs ( log ( e p s i l o n s e l /Q[ i ] ) ) )˜log ( e t a s e l−B[
j ] ) )

a=exp( as .numeric ( f i t $coe f f i c ients [ 1 ] ) ) ;C=as .numeric
( f i t $coe f f i c ients [ 2 ] )

163 l i n e=−log (A)−C∗ log ( e t a s e l−B[ j ] )
points=−log (abs ( log ( e p s i l o n s e l /Q[ i ] ) ) )

165 d e l t a=max(abs (points−l i n e ) )

167 # I f the new f i t a c t u a l l y has a sma l l e r Del ta va lue
# than the one in the t a b l e , we r ep l a c e the

169 # elements in the row wi th the Del ta va lue , the
# eta1 and eta2 elements , the cons tan ts and the

171 # return l e v e l o f the new f i t .

173 i f ( de lta<tab [ rw , 2 ] )
{

175 tab [ rw ,2 ]= de l t a ; tab [ rw ,3 ]= eta1 [ index1 ] ; tab [ rw
,4 ]= eta2 [ index2 ]

tab [ rw ,5 ]=Q[ i ] ; tab [ rw ,6 ]=B[ j ] ; tab [ rw ,7 ]=A; tab [
rw ,8 ]=C

177 tab [ rw ,9]=((−(1/A)∗ log(−log (1−1/m)/ (Q[ i ] ∗N) ) )
ˆ(1/C)+B[ j ] ) ∗sigma

}
179 }

j=j+1
181 }

i=i+1
183 }

index2=index2+1
185 }

index1=index1−1
187 }

return ( tab )
189 }
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