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ABSTRACT

The aim of seismic inversion is to determine the distribution of elastic parame-
ters from recorded seismic reflection data. If a combination of elastic parameters
is known, they indicate a certain fluid or lithology. Elastic parameters can there-
fore be very good hydrocarbon indicators. Although it is possible to interpret
the reflection data from seismic acquisitions after processing, an improved anal-
ysis can be achieved by inverting for elastic properties. This can contribute to
improved vertical resolution of the image.

This work applies different applications of the blocky seismic inversion tech-
nique, which is based on Bayesian inversion. Generally, a Gaussian prior for
the three elastic parameters P-wave velocity, S-wave velocity and density is as-
sumed in inverse problems. This assumption does not always provide sharp
edges between layers, and the idea of the work reported here is to improve this
by assuming a prior distribution for the contrasts in the elastic parameters with
more probability of high contrasts. Since the Cauchy distribution has heavier
tails than the normal distribution, the idea for the blocky inversion is to assume
a Cauchy prior distribution for the contrasts in the elastic parameters.

Inversion is a non-unique process, hence, the more reasonable prior informa-
tion we use, the better the result. When using statistical inversion based on
Bayes’ rule, the prior distribution is used to shape the solution, and the modified
Cauchy norm can help provide a solution with better focused layer boundaries.
The scale parameter in the Cauchy distribution is not very easy to estimate, and
different methods are tested.

Spatial coupling of the model parameters m is introduced along a line to pro-
vide lateral consistency and robust results from inverse problems. The 2D in-
version was done by assuming a Markov model where the inversion result at
one location depends only on the neighbouring traces. This implies a sparse
structure of the matrix to be inverted, and Cholesky factorization was used as a
computational tool. This method allows tracewise nesting in contrast to setting
up the whole operation matrix for all traces at a line, and therefore reduces the
computational time significantly. The aim of this approach was to consider the
use of lateral correlation while inverting data as a sophisticated way of stacking
data to improve the signal to noise ratio. To get a picture of the uncertainties in
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the inversion result, different methods, such as importance sampling was per-
formed, even though the answers were unreasonable large. This remains a topic
for further work. The data used in this work are a synthetic created case and
real seismic data from the Kvitebjørn field in the North Sea.
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1 INTRODUCTION

Seismic data analysis is a geophysical tool to examine the underground. The
results from collecting seismic signals are maps of the geological structures.
These maps are interesting for oil companies because they are very useful in
the search for hydrocarbons. Inversion of seismic data in order to extract elas-
tic parameters as P-wave velocity, S-wave velocity and density, is provided in
order to get an improved analysis of the seismic data. Amplitude versus offset
(AVO) or Amplitude versus angle (AVA) analysis was first defined in 1984, and
was a break-through method on this topic. Ostrander (1984), showed that the
presence of gas in a sand capped by a shale would cause an amplitude varia-
tion with offset. After that, AVO has become a common technique for pre-stack
qualitative seismic interpretation.

The aim of this work has been to explore the possibility of improving the well
known Bayesian inversion technique. This technique uses prestack seismic re-
flection data to provide an image of the distribution of the P-wave velocity (vp),
the S-wave velocity (vs) and the density (ρ) in the subsurface. The traditional
assumption is a Gaussian prior distribution of the elastic parameters. This work
will compare regular Gaussian inversion to blocky inversion. Blocky inversion
assumes Cauchy distributed contrasts for the elastic parameters in order to get
a more "blocky" inversion result. Lateral correlation along a 2D seismic line,
parameter estimation and estimation of uncertainties will also be discussed.

Standard Bayesian inversion is, among others, performed by Buland and Omre
(2003a), and the blocky inversion technique is tested by Theune (2007). The idea
of applying the Cauchy norm for sharper contrasts is also used in other subject
areas, such as edge preserving imaging, Charbonnier et al. (1997), Youzwishen
and Sacchi (2006) and Portniaguine and Zhdanov (1999). Lateral correlation
was discussed by Buland et al. (2003), but in a different setting compared to this
work. The work presented here experiments with different methods related to
the blocky inversion technique for inversion of elastic parameters.

Next chapter is an introduction to seismic inversion and the linearized model
for seismic data. Chapter 3 describes Gaussian Bayesian inversion and estima-
tion methods related to this inversion, and Chapter 4 is about blocky Bayesian
inversion. Chapters 5 and 6 describe the results from a synthetic created case
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and data from the Kvitebjørn field respectively.
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2 SEISMIC AVO INVERSION

There are two types of seismic waves, body waves and surface waves. Geo-
physicists are mainly interested in the body waves, which propagate through
the earth and are reflected at structural interfaces of interest. Longitudinal P-
waves (Primary waves or Pressure waves) are the fastest of the body waves and
arrive first at the recording system. These waves have particle movement along
the direction of propagation. The other type of body waves are the transversal
S-waves (Secondary waves or Shear waves). These waves are slower, and the
particle movement is perpendicular to the direction of propagation. For land
seismics and ocean bottom seismics, the receivers are geophones that record
particle movement, whilst hydrophones are used in marine seismic acquisition
to get information regarding pressure changes. The explosions, which cause the
seismic input signals, are mostly generated by air guns or vibrators (land seis-
mics). Recorded amplitudes represent the seismic data, which depend on the
distance between the source and the receiver (offset) and the properties in the
rocks. Before seismic inversion, the offset dependency is transformed to angle
of incidence. The seismic inversion process aims to determine the reason for the
recorded seismic signal. This includes characteristics of rocks and fluids in the
underground.

To extract information about the subsurface parameters from seismic reflection
data is called quantitative seismic interpretation. There are methods that anal-
yse the strength of the reflected amplitudes and detect the presence of different
fluids in the rock’s pore space. Prior to AVO analysis and linear AVO inversion,
the recorded seismic data need to be processed.

AVO explains the direct impact of changes in the rock properties on the ampli-
tudes, and is a useful part of the total seismic interpretation. However, it should
not be considered as a stand-alone technique. This is because the AVO analysis
is very sensitive to the quality of the pre-processing, which includes the estima-
tion of the signal-to-noise ratio and the wavelet phase, correction for absorption,
anisotropy and geometrical spreading, top and bottom muting, normal move-
out (NMO) correction, dip moveout (DMO) correction, time migration and mul-
tiple removal. Anisotropy means that the properties of the rocks vary with the
measurement direction (Ayzenberg and Ursin (2007)).
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The aim of seismic inversion is to obtain an image of the velocities and densities
in the subsurface based on seismic reflection data. An isotropic, elastic medium
is completely described by the three elastic material parameters, P- and S-wave
velocity and density. These parameters influence the two-way vertical seismic
traveltime (twt) and depend on the lateral location (Buland and El Quair (2006)).

2.1 Linearized model of the seismic data

A basic assumption in seismic processing is that the recorded seismic signal can
be expressed as a convolution between the wavelet representing the input sig-
nal and the impulse responses of the earth (reflectivities). From an exploration
point of view, the interesting information about the subsurface is contained in
the impulse responses. Therefore, the aim is to extract the impulse responses
from the recorded seismic signal. This is called deconvolution (Landrø (2007)).

Figure 2.1: Synthetic example to show the steps in modelling and inversion.
From left: Changes in an elastic parameter, corresponding reflectivities, seismic
trace after convolution with the wavelet, seismic trace with data noise.

Figure 2.1 shows (from left) how elastic parameters with corresponding reflec-
tivities convolved with a wavelet constitute the seismic trace. Seismic inversion
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aims to go backwards, to extract the reflectivities and the distribution of the
elastic parameters from the recorded seismic trace. The reflection coefficient for
zero offset reflected P-wave data is given as

RPP (0) =
zi+1 − zi

zi+1 + zi
, (2.1)

where zi, is the acoustic impedance vpρ for layer i at the reflector. Figure 2.2
shows a sketch of the first two layers (i = 1, 2). The non-linear Zoeppritz equa-
tions describe the reflection coefficient from such two-layer systems with reflec-
tion angle θ. They are valid under assumptions of elastic homogenous materials
and incoming plane waves.

Figure 2.2: Sketch of the two-layer system described by the Zoeppritz equations.

Different linear approximations to the Zoeppritz equations are commonly used,
such as the Aki & Richards approximations (Aki and Richards (2002)). By using
this approximation, the reflected P-wave impulse (PdownPup) for a target reflec-
tor as the one in Figure 2.2 is given by

RPP (θ) = a(θ)
Δvp

vp
+ b(θ)

Δvs

vs
+ c(θ)

Δρ

ρ
, (2.2)

where
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a(θ) =
1

2
(1 + tan2 θ),

b(θ) = −4
vs

2

vp
2

sin2 θ,

c(θ) =
1

2
(1 − 4

vs
2

vp
2

sin2 θ),

Δξ = ξ2 − ξ1 and

ξ =
ξ1 + ξ2

2

(2.3)

for ξ ∈ {vp, vs, ρ} (Buland and Omre (2003a)). This approximation is valid for
small reflection angles (up to approximately 40◦) and weak contrasts between
layers. The coefficients b(θ) and c(θ) are dependent on the ratio between vs and
vp. This ratio is commonly assumed constant for inversion. In some parts of this
work, however, vs and vp are approximated by a background trend extracted
from borehole data. This is a slowly varying curve made by applying a lowpass
filter to the borehole data. The coefficients in Equation 2.3 then become time
dependent as a(t, θ), b(t, θ) and c(t, θ) where t is the traveltime along the trace.
Since the aim is to invert for velocities and densities directly, and not reflectivi-
ties, the contrasts Δξ, ξ ∈ {vp, vs, ρ} can be approximated by the derivative. This
gives

Δξ

ξ
≈ ∂

∂t
ln ξ,

and Equation 2.2 becomes

RPP (t, θ) = a(t, θ)
∂

∂t
ln vp(t) + b(t, θ)

∂

∂t
ln vs(t) + c(t, θ)

∂

∂t
ln ρ(t). (2.4)

In order to get an expression for the recorded seismic data, the reflection co-
efficients in Equation 2.4 is convolved with the wavelet. The wavelets have
to be estimated from the seismic data, and this can cause some uncertainties.
Buland and Omre (2003b) and Gunning and Glinsky (2006) are works regard-
ing wavelet estimation. The reflectivities in Equation 2.4 and the convolution
operation have to be discretized in order to express this as a linear problem.
The linearized version of the convolution operation is a convolution matrix W ,
with one wavelet for each chosen angle, and the reflection coefficients a(t, θ),
b(t, θ) and c(t, θ) in Equation 2.4, are stored in the reflection matrix A. Then the
linearized model can be written as
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d = WADm + n, (2.5)

where d = (d1, ..., dS·T )T is the pre-processed seismic data, D is a differential
matrix and length N = 3 · T vector m is arranged as

m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ln(vp1)
ln(vp2)

...
ln(vpT

)
ln(vs1)
ln(vs2)

...
ln(vsT

)
ln(ρ1)
ln(ρ2)

...
ln(ρT )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.6)

and contains the logarithm of the three elastic parameters vp, vs and ρ for each
time sample in the seismic trace, t = 1, 2, ..., T . S is the number of angles. The
additive noise term n is added to describe model and measurement noise. The
noise terms, n1, ..., nS·T are considered independent and normally distributed
with zero mean and variances σ2

1 , ..., σ
2
S for the S different angles. The noise

terms are assumed equal for all traveltimes, t = 1, ..., T . This can be written as

ni ∼ N(0, σ2
i ), i = 1, ..., S.

The derivatives of the properties with respect to time are approximated by a
first order differential operator D as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂m1

∂t
∂m2

∂t

.

.

.

.

.

.
∂mN

∂t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≈ Dm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 . . . . . 0
−1

2
0 1

2
0 . . . . 0

0 −1
2

0 1
2

0 . . . 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . 0 −1

2
0 1

2

. . . . . . 0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1

m2

.

.

.

.

.

.
mN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.7)
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This represents forward difference as an approximation for the first component,
backward for the last, and central differences for the rest of the components.
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3 GAUSSIAN BAYESIAN INVERSION

Inverse problems can be defined by finding the cause of an observed effect. In
seismic data analysis, the observed effect is the recorded seismic amplitudes
and the cause is the elastic properties in the subsurface. The linear problem in
Equation 2.5 shows the relation between the observed effect (d) and the cause
(m) that are sought. Knowledge and uncertainties regarding the parameter
m are summarized in the Bayesian approach as probability distributions. The
prior distribution P (m) indicates the knowledge prior to observations, the like-
lihood distribution P (d|m) expresses how the data depend on the parameters
m, and the posterior distribution P (m|d) is the answer to the inverse prob-
lem from the Bayesian point of view. The posterior describes the distribution
of the parameters given the data, and the aim is to maximize this posterior to
obtain the most probable solution (Kolbjørnsen (2002b)). This solution is called
the maximum posterior (MAP) solution. A Bayesian setting is a natural choice
for many geophysical inverse problems since it is possible to combine available
prior knowledge with the information in measured data. The possibility of cal-
culating uncertainties in the results is also an important advantage of Gaussian
Bayesian inversion. Bayes’ rule can be written as

P (m|d) =
P (m, d)

P (d)
=

P (d|m)P (m)

P (d)
, (3.1)

for every random variables d and m.

The following theory is first presented for one trace, and then extended to 2D
in Section 3.1. As mentioned before, the common assumption in Bayesian lin-
ear AVA inversion is that the prior distribution of the logarithm of the elastic
parameters m is Gaussian, given by

P (m) =
1

(2π)N/2(det(Cm))1/2
exp

{
−1

2
(m − mp)T Cm

−1(m − mp)

}
, (3.2)

where mp is the prior expectation of m. In this work, the low frequency back-
ground model derived from lowpass filtering of well log data, is used as mp
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to guide the inversion. The symmetric 3 × 3 covariance matrix Σ0 for the three
elastic parameters vp, vs and ρ,which is estimated from well logs, is defined as

Σ0 =

⎡⎣ τ 2
vp

ηvp,vs ηvp,ρ

ηvs,vp τ 2
vs

ηvs,ρ

ηρ,vp ηρ,vs τ 2
ρ

⎤⎦ , (3.3)

where τ 2
ξ , ξ ∈ {vp, vs, ρ} are the variances, and ηα,β, α, β ∈ {vp, vs, ρ} are the

covariances between α and β. The properties in the covariance matrix Σ0 are
assumed equal for all time samples t = 1, 2, ..., T . Each time sample is further
assumed independent, and this gives a sparse symmetric N × N covariance
matrix Cm given as

Cm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ 2
vp

ηvp,vs ηvp,ρ

. . . . . . . . .
τ 2
vp

ηvp,vs ηvp,ρ

ηvs,vp τ 2
vs

ηvs,ρ

. . . . . . . . .
ηvs,vp τ 2

vs
ηvs,ρ

ηρ,vp ηρ,vs τ 2
ρ

. . . . . . . . .
ηρ,vp ηρ,vs τ 2

ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.4)

The likelihood model describes how likely the observed data are for specified
parameters. For the linearized model of the seismic data, the likelihood model
is already defined in Equation 2.5. Due to the assumption of independent and
normally distributed noise terms, the seismic data given the properties m are
Gaussian distributed with mean WADm = Gm and variances σ2

i , i = 1, ..., S
for the different angles. Independency for the noise terms in time is assumed,
and the likelihood can be written as

P (d|m) =
1

(2π)ST/2(det(Cd))1/2
exp

{
−1

2
(d − Gm)T Cd

−1(d − Gm)

}
, (3.5)

where Cd is a diagonal ST × ST covariance matrix with the noise for differ-
ent angles, σ1, ..., σS on the diagonal. These variances are estimated from the
seismic data, and they are assumed equal for all time samples t = 1, 2, ..., T .
Cd could possibly be a full matrix with correlation between the noise terms.
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Independency is chosen here for simplicity, which gives fewer parameters to
estimate. In this model, the variances of the noise terms are the only unknown
parameters.

By using Bayes’ rule in Equation 3.1, the aposteriori distribution is given by

P (m|d) ∝ P (d|m)P (m).

By using the expressions in equations 3.2 and 3.5, the posterior distribution for
the Gaussian inversion becomes

P (m|d) ∝ exp

{
−1

2
(d − Gm)T Cd

−1(d − Gm) − 1

2
(m − mp)T Cm

−1(m − mp)

}
.

(3.6)

The maximum posterior (MAP) solution for the Gaussian inversion is calculated
by maximizing Equation 3.6 with respect to m. This gives the most probable
solution, and can be found by minimizing

f(m) =
1

2
(d − Gm)T Cd

−1(d − Gm) +
1

2
(m − mp)

T Cm
−1(m − mp).

Derivation with respect to m gives

∂f(m)

∂m
= (Cm

−1 + GT Cd
−1G)m − (GT Cd

−1d + Cm
−1mp).

The MAP solution m̂MAP is calculated by setting this equation equal to zero.
This gives

m̂MAP =
[
Cm

−1 + GT Cd
−1G

]−1 [
GT Cd

−1d + Cm
−1mp

]
(3.7)

since Cm and Cd are symmetric matrices. The Gaussian inversion finds the con-
ditional expectation E[m|d]. With the notation used in this report, this posterior
expectation from Equation 30 in Buland and Omre (2003a) is given as

E [m|d] = mp + CmGT
[
GCmGT + Cd

]−1
(d − Gmp). (3.8)

In order to show that the MAP solution is equal to the posterior expectation
when the prior distribution is Gaussian, Equation 3.8 is multiplied with

11



[
Cm

−1 + GT Cd
−1G

]
. If this is equal to

[
GT Cd

−1d + Cm
−1mp

]
, the proof is

completed. This is legal because
[
Cm

−1 + GT Cd
−1G

]
is already defined in-

vertible in Equation 3.7. This means that the statement that has to be proved
is[
Cm

−1 + GT Cd
−1G

]
mp +

[
Cm

−1 + GT Cd
−1G

]
CmGT

[
GCmGT + Cd

]−1
(d − Gmp)

= GT Cd
−1d + Cm

−1mp.

Multiplying out some parentheses yields

Cm
−1mp + GT Cd

−1Gmp +
[
Cm

−1 + GT Cd
−1G

]
CmGT

[
GCmGT + Cd

]−1
(d − Gmp)

= GT Cd
−1d + Cm

−1mp.

Subtracting C−1
m mp on both sides and moving GT Cd

−1Gmp to the right side
gives[
Cm

−1 + GT Cd
−1G

]
CmGT

[
GCmGT + Cd

]−1
(d−Gmp) = GT C−1

d (d−Gmp).

Now it is enough to show that
[
Cm

−1 + GT Cd
−1G

]
CmGT

[
GCmGT + Cd

]−1

is equal to GT C−1
d since these two expressions are both multiplied to the right

with the vector d − Gmp.
[
GCmGT + Cd

]
is assumed invertible in Equation

3.8, and multiplying to the right with
[
GCmGT + Cd

]
on both sides gives[

Cm
−1 + GT Cd

−1G
]
CmGT = GT C−1

d

[
GCmGT + Cd

]
.

Multiplying out the parenthesis now gives

GT + GT C−1
d GCmGT = GT C−1

d GCmGT + GT ,

and the statement is proved.

For the Gaussian case, the covariance matrix is

V ar(m̂MAP ) =

[
∂2f(m)

∂2m

]−1

=
[
Cm

−1 + GT Cd
−1G

]−1
. (3.9)

The conditional variance V ar[m|d] is given in Equation 31 in Buland and Omre
(2003a). With notation used here, this is

V ar [m|d] = Cm − CmGT
[
GCmGT + Cd

]−1
GCm. (3.10)
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In order to show that the posterior variance in Equation 3.10 is equal to the MAP
variance in Equation 3.9, Equation 3.10 is multiplied with the inverse of Equa-
tion 3.9. This must be shown to be equal to the identity matrix. The conditional
variance in Equation 3.10 multiplied with

[
Cm

−1 + GT Cd
−1G

]
means that the

statement which has to be proved is[
Cm

−1 + GT Cd
−1G

] [
Cm − CmGT

[
GCmGT + Cd

]−1
GCm

]
= I.

Multiplying out some parenthesis, subtracting an identity matrix on both sides
and moving some parts to the right side gives

GT Cd
−1GCmGT

[
GCmGT + Cd

]−1
GCm = −GT

[
GCmGT + Cd

]−1
GCm+GT C−1

d GCm.

Setting GCm outside on the right and then multiplying the rest to the right with[
GCmGT + Cd

]
gives

GT Cd
−1GCmGT = −GT + GT Cd

−1(GCmGT + Cd),

and the statement is proved.

3.1 Lateral correlation along a 2D line

In order to provide lateral consistency and robust results from inverse prob-
lems, spatially coupling of the model parameters m may be a possibility to
ensure this. Considering the circumstances in seismic data, such laterally cou-
pling between traces is an obvious option, since the lithology at a certain depth
is strongly correlated to the lithology at the same depth for neighbouring traces.
One exception from this can be at faults, where the layers are shifted upwards or
downwards. At the edge of faults, direct correlation with neighbouring traces
is not preferred.

The following theory is inspired by Rue and Held (2005). Here it is applied to
each trace and in a new setting. Markov properties are assumed for simplicity,
implying that the inversion result for one trace is only dependent on the neigh-
bouring traces. This can also be denoted as conditional independence. Elastic
parameters at trace i and all other traces except traces i− 1 and i + 1, are condi-
tional independent given the traces i − 1 and i + 1. Determining the properties
for the traces except traces i − 1 and i + 1 does not give additional information
about the distribution of the model parameters for trace i. This corresponds to
the model of autoregressive time series. The vectors mj, j = 1, 2, ..., M , where

13



M is the number of traces, represent the elastic parameters for trace j at all time
steps. The full conditional probability distribution for the laterally correlated
m = (m1, m2, ..., mM)T is then

P (m) = P (m1)P (m2|m1) · .... · P (mM |mM−1). (3.11)

The vector m therefore consists of N · M values since each mj is an N × 1
vector. An autoregressive process of order 1 with standard normal errors εj is
expressed as

mj = φmj−1 + εj, εj
iid∼N(0, I) (3.12)

where iid means independent identical distributed, and φ ∈ [0, 1] is the lateral cor-
relation coefficient. φ = 0 corresponds to zero lateral correlation. In conditional
form, for j = 2, ..., M , this can be written as

mj|m1, m2, ..., mj−1 ∼ N(mpj + φ(mj−1 − mpj−1), I), (3.13)

which is common in time series (Rue and Held (2005)). By assuming m1 ∼
N(mp1,

1
1−φ2 I), the full conditional probability distribution can be written as

P (m) =
1

(2π)M/2|Σ|1/2
exp

{
−1

2
(m − mp)TΣ−1(m − mp)

}
, (3.14)

where Σ−1 is the precision matrix or the inverse covariance matrix. This con-
sists of two elements, Q and C−1

m that is explained next. The covariance matrix
is a full matrix, whereas the precision matrix for each trace is sparse due to the
Markov assumptions, with the structure

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −φ
−φ 1 + φ2 −φ

. . .
. . .

. . .
. . .

−φ 1 + φ2 −φ
−φ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.15)

14



Equation 3.15 gives the correlation structure between the traces laterally, and
corresponds to a covariance matrix with 1

1−φ2 on the diagonal. This can be ex-
tended to 2D (and 3D) by assuming mj as a vector of length N = 3T , where
T is the number of time samples. As before, independence between the elastic
parameters in time is assumed. Then, the result from the inversion is a vector of
length N · M . Equation 3.15 is extended to 2D by multiplying each entry with
the inverse of the N × N covariance matrix Cm for each trace (Equation 3.4).
This is the Kronecker product of Q and C−1

m . The resulting covariance matrix is
NM × NM , and can be written as

Σ−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Cm
−1 −φCm

−1

−φCm
−1 (1 + φ2)Cm

−1 −φCm
−1

. . . . . . . . .
. . . . . . . . .

−φCm
−1 (1 + φ2)Cm

−1 −φCm
−1

−φCm
−1 Cm

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(3.16)

Σ−1 is an extension of the precision matrix in Equation 3.15 in 2D. Σ includes
both the variances and covariances between the three elastic parameters vp, vs

and ρ, and the covariances between neighbouring traces laterally. The covari-
ance matrix for the noise terms, Cd, is also extended to 2D. This becomes an
NM × NM diagonal matrix since independency between traces is assumed.

The MAP solution in 2D is given as an extension of Equation 3.7. This gives

Rm̂MAP = b,

where

R =
[
Σ−1 + GT Cd

−1G
]

(3.17)

and
b =

[
GT Cd

−1d + Σ−1mp

]
.

G is a sparse and block diagonal NM × NM matrix with the matrix Gj =
WAjD for each trace on the main diagonal:
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G =

⎡⎢⎢⎢⎢⎢⎣
G1

G2

G3

. . .
GM

⎤⎥⎥⎥⎥⎥⎦ . (3.18)

In this work, the convolution matrix W and the differential matrix D are equal
for all traces, and the reflectivity matrix A depends on the low frequency back-
ground model for the current trace. Due to instability in the inversion result
when varying the A matrix for each trace, Gi = Gj, ∀i, j is used for the Gaus-
sian inversion. In cases with enough information available to estimate different
wavelets for each trace, W could vary along the line as well.

3.1.1 Numerical solution

If the number of traces on the seismic line is large, G is a very large matrix.
Therefore, a numerical solution that avoids setting up the entire matrix R is
required in order to determine the solution on a computer. Several methods
have been used such as Sequential Gaussian Simulation or Cholesky factoriza-
tion of the R matrix which is used here. This factorization determines a lower
triangular matrix L which satisfies

R = LLT .

This is a special case of the LU factorization where the upper triangular matrix
U is equal to the transpose of the lower triangular matrix L due to the sparse-
ness in the Markov problem. A lower triangular matrix is a matrix with non-
zero elements only on or below the diagonal. Because of the assumed Markov
property in this case, the matrix R has a sparse block tri-diagonal structure.
The Cholesky factorization is therefore a good choice due to computational effi-
ciency. The lower triangular matrix L inherits the structure from R, and L can
be written as
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L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1,1

L2,1 L2,2

L3,2 L3,3

. .
. .

. .
LM−1,M−2 LM−1,M−1

LM,M−1 LM,M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.19)

Li,j, i, j ∈ {1, 2, ..., M} are N ×N matrices. By multiplying L and LT , the matrix
R becomes

R =

⎡⎢⎢⎢⎣
L1,1L

T
1,1 L1,1L

T
2,1

L2,1L
T
1,1 L2,1L

T
2,1 + L2,2L

T
2,2 L2,2L

T
3,2

. . . . . . . . .
LM,M−1L

T
M−1,M−1 LM,M−1L

T
M,M−1 + LM,MLT

M,M

⎤⎥⎥⎥⎦
Since most of the lower triangular matrix L contains only zeros, the non-zero
elements of L is of size NM × 2N . These elements, Li,j, i, j ∈ {1, 2, ..., M}, can
be constructed sequential in this order:

• R1,1 = L1,1L
T
1,1 ⇒ L1,1 = chol(R1,1)

• R1,2 = L1,1L
T
2,1 ⇒ LT

2,1 = L−1
1,1R1,2

• R2,2 = L2,1L
T
2,1 + L2,2L

T
2,2 ⇒ L2,2 = chol(R2,2 − L2,1L

T
2,1)

...

...

• RM−1,M = LM−1,M−1L
T
M,M−1 ⇒ LT

M,M−1 = L−1
M−1,M−1RM−1,M

• RM,M = LM,M−1L
T
M,M−1+LM,MLT

M,M ⇒ LM,M = chol(RM,M−LM,M−1L
T
M,M−1)

chol(A) means the Cholesky factorization of the matrix A. The matrices Ri,j are
taken from the definition of R in Equation 3.17, and are given by

R1,1 = C−1
m + GT

1 C−1
d1

G1,

RM,M = C−1
m + GT

MC−1
dM

GM ,
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Ri,i = (1 + φ2)C−1
m + GT

i C−1
di

Gi,

and
Ri,i+1 = −φC−1

m ,

where Gi and Cdi
correspond to trace i.

The intention with the Cholesky factorization is, as mentioned, to avoid setting
up the full NM × NM matrix R, but rather do this sequentially trace by trace.
The problem to be solved is

Rm̂MAP = b. (3.20)

After Cholesky factorization of R, the problem can be solved by first calculating

Lv = b,

and then, using the resulting vector v, solve

LT m̂MAP = v.

These two steps can be done trace by trace by solving v = L−1b forward and
then m = L−T v backward in for-loops for all traces j = 1, 2, ..., M . Within these
two for-loops, there is just need for inverting N×N matrices Lj,j, j = 1, 2, ..., M ,
which are small enough for the memory on a regular computer.

Solving Lv = b forward

The forward problem can be written as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1,1

L2,1 L2,2

L3,2 L3,3

. .
. .

. .
LM−1,M−2 LM−1,M−1

LM,M−1 LM,M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

.

.

.

.

.
vM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

.

.

.

.

.
bM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(3.21)

where vj and bj, j = 1, 2, ..., M are N × 1 vectors for each trace. This can be
solved tracewise by
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• Initialize

v1 = L−1
1,1b1

• Iterate forward, j = 2, 3, ..., M

vj = L−1
j,j (bj − Lj,j−1vj−1)

Solving LT m = v backward

When the vector v is built in the forward loop, LT m = v can be solved back-
ward. This problem can be written as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

LT
1,1 LT

2,1

LT
2,2 LT

3,2

LT
3,3 LT

4,3

. .
. .

. .
LT

M−1,M−1 LT
M,M−1

LT
M,M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1

m2

.

.

.

.

.
mM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

.

.

.

.

.
vM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(3.22)

and is solved stepwise by

• Initialize

mM = L−T
M,MvM

• Iterate backward, j = M − 1, M − 2, ..., 1

mj = L−T
j,j (vj − LT

j+1,jmj+1)

3.2 Estimation of Σ0 from well logs

The estimation of the covariance matrix in Equation 3.3 from well logs can be
performed straight forward by using standard estimates for variances and co-
variances as

τ̂ 2
ξ =

1

T − 1

T∑
i=1

(mξi
− mξ)

2, ξ ∈ {vp, vs, ρ}, (3.23)
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and

η̂α,β =
1

T − 1

T∑
i=1

(mαi
− mα)(mβi

− mβ), α, β ∈ {vp, vs, ρ}, (3.24)

where m is the mean of the mi’s from i = 1, 2, ..., T .

3.3 Estimation of Σ0 and φ from seismic data

Because of the completely different scales for well log data and seismic data, the
covariance matrix in Equation 3.3 should be estimated from seismic data instead
of well log data in order to achieve consistency in the results. One alternative
method to do this is described by the Figure 3.1 workflow. In this case, the
covariance matrix from well logs is multiplied with a scaling parameter γ, Σ0 =
γΣ0well

. P (d) is Gaussian distributed, P (d) ∼ N(Gmp, GCmGT + Cd). From
Bayes rule in Equation 3.1, this can also be written as

P (d) =
P (d|m)P (m)

P (m|d)
, (3.25)

where the mean and the variance of the Gaussian density P (m|d) is given in
Equations 3.8 and 3.10. P (d) = Pγ,φ(d) can now be calculated for a range of γ
and φ values used in the inversion. The best choice of γ and φ was assumed to
be the pair of parameter values that corresponds to a maximization of Pγ,φ(d)

3.4 Simulation from a Gaussian Markov Random Field

One way of introducing inference in complex hierarchical models is to use simulation-
based methods. Variances and means can be calculated by creating several re-
alizations from the target distribution, and use Monte Carlo methods on them.
In general this means that the target integral

I =

∫
D

g(m)P (m|d)dm,

where D is a high dimensional region, is approximated by

În =
1

n
{g(m(1)) + ... + g(m(n))}.
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Figure 3.1: Generalized workflow of the estimation method for the parameters
in the Gaussian inversion.

This approximation is exact when the number of samples, n, approaches in-
finity. For the Gaussian inversion, there is need for simulation from a Gaussian
Markov Random Field (GMRF). One way of doing this is to simulate from a zero
mean GMRF with precision matrix R, and add the MAP solution as a mean af-
terwards. This can be done by computing the Cholesky triangle of R (L) and
solve

LT x = z,

where z is a vector of independent standard normal variables, and x is the
model parameters m before the low frequency model is added, see Rue and
Held (2005). The sparse structure of L will make this step efficient. This method
can also be used as an approximation for the blocky inversion, with the Cholesky
factorization of the R matrix in Equation 4.11. The algorithm for making real-
izations from the posterior distribution P (m|d) is

• Set up the lower triangular matrix L created from Cholesky factorization
of the precision matrix

• Make realizations from a standard normal distribution, z ∼ N(0, I)

• Iterate backward to get realizations from a zero mean GMRF x

Initalize xM = L−T
M,MzM

Iterate backward, j = M − 1, M − 2, ..., 1
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xj = L−T
j,j (zj − LT

j+1,jxj+1)

• Add the inversion result m̂MAP as a mean to the zero mean vector x

After doing this, a realization of the posterior distribution for all traces j =
1, 2, ..., M is available. This can be repeated, and inference on the realizations
will provide estimates of the variance of the MAP-solution. This is accom-
plished by calculating the inverse of the lognormal cumulative distribution func-
tion, since the interesting property is the variance of exp {m|d).
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4 BLOCKY BAYESIAN INVERSION

In order to achieve a more realistic image of the changes in the properties m
in the subsurface, the idea is to assume a Cauchy distribution for the contrasts
Dm. The principle idea of this approach is to enforce a sparse distribution of
the model gradients, thereby sharpening the contrast of boundaries between
adjacent layers. This is based on the assumption that mainly intermediate gra-
dients contribute to the apparent smoothing in seismic inversion. In theory,
the inverted properties of a layer have then sharp, flat boundaries at the top
and bottom, while they are constant within the layer. The Cauchy distribution
can be characterized mathematically as a probability distribution with heavier
tails than the Gaussian distribution, which gives more probability to larger con-
trasts, whilst suppressing intermediate values. This can contribute to sharper
edges between the layers. Figure 4.1 shows a comparison of the Gaussian and
the Cauchy distributions. The blue curve is the Gaussian distribution and the
red curve is the Cauchy distribution for corresponding maximum values.

Figure 4.1: Comparison of the Gaussian and the Cauchy distributions. The blue
curve is the Gaussian distribution and the red curve is the Cauchy distribution.

The Cauchy distribution is in this work applied to the contrasts Dm in the
blocky inversion. Kolbjørnsen (2002a), also used the Cauchy prior, but for the
parameters directly, and not for the gradients. For each trace, the prior distribu-
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tion is given as

P (m) =
N∏

i=1

1

πκ

(
1 +
(

(Dm)i−(Dm)pi

κ

)2
)

=
1

(πκ)N
exp

{
−

N∑
i=1

ln

(
1 +

(
(Dm)i − (Dm)pi

κ

)2
)}

,

(4.1)

where (Dm)pi
is the expected value for the contrast (Dm)i given by the low

frequency model (Dm)pi
= Dmpi

and κ is the scale parameter in the Cauchy
distribution. No dependency between the (Dm)i’s in time is assumed. The ex-
pression for the contrasts Dm is given in Equation 2.7. The likelihood P (d|m)
is not changed from the Gaussian inversion, and is given in Equation 3.5. The
resulting posterior distribution in 1D is then given as

P (m|d) ∝ P (d|m)P (m)

∝ exp

{
−1

2
(d − WADm)T C−1

d (d − WADm)

}
· exp

{
−

N∑
i=1

ln

(
1 +

(
(Dm)i − (Dm)pi

κ

)2
)}

.

(4.2)

4.1 Lateral correlation along a 2D line

To introduce lateral correlation along a 2D line to the blocky inversion scheme,
the prior distribution is assumed proportional to a product of a Gaussian and a
Cauchy distribution. The model for the lateral correlation is described by Equa-
tion 3.12, while the prior model for each trace vertically is Cauchy distributed
as in Equation 4.1. This gives Gaussian distribution laterally with Cauchy con-
straints vertically, and can be expressed by

P (m) ∝ PG(m)PC(m), (4.3)

where PG(m) is the Gaussian prior given in Equation 3.14 and PC(m) is the
product of the 1D prior distribution in Equation 4.1 for all traces j = 1, 2, ..., M .
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This means that the Gaussian distribution takes care of the lateral correlation,
while the Cauchy distribution is independent for the traces. The full prior dis-
tribution for the elastic parameters for all traces can then be expressed as

P (m) ∝ 1

(2π)M/2
|Q|1/2 exp

{
−1

2
(m − mp)T Q(m − mp)

}

·
M∏

j=1

N∏
i=1

⎛⎜⎜⎝ 1

πκ

(
1 +
(

(Dm)i−(Dm)pi

κ

)2
)
⎞⎟⎟⎠

j

∝ exp

⎧⎨⎩−1

2
(m − mp)T Q(m − mp) −

M∑
j=1

N∑
i=1

ln

(
1 +

(
(Dm)i − (Dm)pi

κ

)2
)

j

⎫⎬⎭ ,

(4.4)

where the precision matrix Q from Equation 3.15 is extended to 2D by multiply-
ing each entry with an N × N identity matrix. Since the likelihood distribution
is still assumed Gaussian, the posterior distribution is given by

P (m|d) ∝ P (d|m)P (m)

∝ exp

{
−1

2
(d − Gm)T Cd

−1(d − Gm) − 1

2
(m − mp)

T Q(m − mp)

}

· exp

⎧⎨⎩−
M∑

j=1

N∑
i=1

ln

(
1 +

(
(Dm)i − (Dm)pi

κ

)2
)

j

⎫⎬⎭ .

(4.5)

As before, this expression needs to be maximized in order to find the maximum
posterior solution for the properties m, or equally, minimizing the cost function
O(m) given by

O(m) =
1

2
(d − Gm)T Cd

−1(d − Gm) +
1

2
(m − mp)T Q(m − mp)

+
M∑

j=1

N∑
i=1

ln

(
1 +

(
(Dm)i − (Dm)pi

κ

)2
)

j

.
(4.6)
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To differentiate O(m) with respect to m, a linearization of the last part of this
function is necessary. The following is done according to Charbonnier et al.
(1997). Because of the non-linearity in the resulting equation, this needs to be
solved iteratively. By Taylor expansion around the previous step in the iteration,
O(m) can be written approximately by

O(m) ≈ 1

2
(d − Gm)T Cd

−1(d − Gm) +
1

2
(m − mp)TQ(m − mp)

+ 2(m − mp)
T DT BD(m − mp),

(4.7)

where m now is the result from the previous iteration step, mp is the prior low
frequency expected model, and B is a sparse diagonal matrix with non-zero
elements given by

Bii =
1

κ2 + ((Dm)i − (Dm)pi
)2

. (4.8)

This approximation is legitimate because of the weak non-linearity in the prob-
lem. Therefore, the inverse problem can be treated as a quasi-linear problem.
Then, differentiation of O(m) with respect to m is

∂O(m)

∂m
= −GT Cd

−1d+GT Cd
−1Gm+Qm−Qmp+4(DT BDm−DT BDmp).

(4.9)

The MAP solution is achieved by setting this equal to zero. This yields

m̂MAP =
[
GT Cd

−1G + Q + 4DT BD
]−1 [

GT Cd
−1d + Qmp + 4DT BDmp

]
.

(4.10)

The size of the matrices in Equation 4.10 is NM ×NM . The G matrix is given in
Equation 3.18 and Cd is the data noise covariance matrix for all traces. For sim-
plicity, this is assumed diagonal, which corresponds to non-correlated random
noise. The data vector d is a TSM ×1 vector with seismic data for all traces and
angles. D is the differential matrix defined in Equation 2.7, extended to 2D by
a block diagonal matrix with N ×N matrices on the main diagonal. The N ×N
matrix B with non-zero elements from Equation 4.8 is also extended to 2D by
making a block diagonal NM × NM matrix for all traces. As for the Gaussian
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problem, Cholesky factorization is used to find the MAP solution in Equation
4.10. Figure 4.2 shows a generalized workflow of the blocky inversion scheme.
The difference from the Gaussian inversion is in the B matrix, which needs to
be updated iteratively due to the non-linearity. It is shown in Theune (2007) that
there is just need for two updates. More updates do not improve the inversion
result further. The Cholesky solution of

Rm̂MAP = b

is then performed with

R = [GT Cd
−1G + Q + 4DT BD] (4.11)

and
b = [GT Cd

−1d + Qmp + 4DT BDmp].

Figure 4.2: Generalized workflow of the blocky inversion scheme.

Asymptotic theory says that the variance of the MAP solution can be expressed
by the fitted curvature at the mode. Theorem 5.1 in Carlin and Louis (2000)
states that the posterior distribution can be expressed by a normal distribution
with mean equal to the posterior mode (MAP solution) and covariance matrix
equal to the negative inverse of the second derivative of the log posterior eval-
uated at the mode. This statement is exact if the likelihood and prior models
both are Gaussian. It can also be used as an approximation if the number of
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data points is much greater than the number of variables. This theory can be
used to calculate an approximation of the covariance matrix for the MAP solu-
tion in the blocky inversion, and gives

V ar(m̂MAP ) ≈
[
∂2O(m)

∂2m

]−1

|m=m̂MAP

=
[
GT Cd

−1G + Q + 4DT BD
]−1

. (4.12)

The Gauss approximation for the blocky MAP solution is checked by impor-
tance sampling described in Section 4.4.

4.2 Maximum likelihood estimation of the scale pa-
rameter κ from well logs

The aim of the maximum likelihood estimation (MLE) method is to find the
most reasonable parameters, i.e. to find the parameters that cause a maximiza-
tion of the product of the probability density functions for all the stochastic
variables represented. Since one different κ value for each of the elastic param-
eters is assumed, the maximum likelihood estimation can be divided into three
parts. The maximum likelihood function for the contrasts Dm for each of the
elastic parameters is defined as

L(Dm) =

T∏
t=1

f((Dm)t) (4.13)

where f((Dm)t) is the probability density function for the stochastic variables
(Dm)t, t = 1, 2, ..., T . A maximization of this function with respect to the sought
parameters will give the most probable solution. In this case, the contrasts Dm
are Cauchy distributed,

(Dm)t ∼ Cauchy((Dm)pt, κ),

with the low frequency prior model used as a mode for Dm. The Cauchy dis-
tribution is an example of a distribution that has no mean, variance or higher
order moments, but the mode and median are both well defined. The parameter
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κ is called the scale parameter, and specifies the width of the distribution func-
tion. Since all the (Dm)t’s in time are assumed independent for all t = 1, 2, ..., T ,
the likelihood function becomes

L((Dm)1, (Dm)2, ..., (Dm)T ; (Dm)p, κ) =

T∏
t=1

f((Dm)t; (Dm)pt, κ),

where

f((Dm)t; (Dm)pt, κ) =
1

πκ(1 + ((Dm)t − (Dm)pt)
2/κ2)

.

This included in the likelihood function yields

L((Dm)1, (Dm)2, ..., (Dm)T ; (Dm)p, κ) =
T∏

t=1

1

πκ(1 + ((Dm)t − (Dm)pt)
2/κ2)

.

It is often easier to maximize the logarithm of the likelihood function instead of
the likelihood itself. This will cause no problems since the logarithm function
is strongly increasing. For the well log estimation, different κ’s for the three
elastic parameters were assumed. The log likelihood function for each of the
three parameters is given by

l = ln(L) = −T ln(πκξ) −
T∑

t=1

ln(1 + (((Dm)t − (Dm)pt)
2/κ2

ξ)), (4.14)

where ξ ∈ {vp, vs, ρ}. The maximum likelihood estimator for κξ results from
maximizing the log likelihood, i.e. setting the derivative of Equation 4.14 equal
to zero,

∂l

∂κξ

= − T

κξ

+
2

κ3
ξ

T∑
t=1

((Dm)t − (Dm)pt)
2

1 + ((Dm)t − (Dm)pt)
2/κ2

ξ

= 0.

This can be solved with respect to κξ numerically by a grid of κ values or by
other numerical methods.
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4.3 Estimation of κ and φ from seismic data

A similar technique as the one in Section 3.3 may be used to estimate the scale
parameter κ and the lateral correlation coefficient φ for the blocky inversion.
The workflow in Figure 3.1 can be followed with the parameter κ instead of γ.
The posterior distribution P (m|d) can be approximated with a normal distri-
bution with mean at the MAP-solution and covariance matrix R−1. R for the
blocky inversion is given in Equation 4.11. This is approximation is noted as
P̂κ,φ(m|d). The prior distribution Pκ,φ(m) is given in Equation 4.4. The inver-
sion is then run for a range of κ and φ values to choose the most probable pair
of parameters by maximizing

Pκ,φ(d) ≈ P (d|m)Pκ,φ(m)

P̂κ,φ(m|d) |m=m̂MAP

. (4.15)

P (d|m) is needed since m̂MAP depends on the κ and φ values used in the prior
distribution, and Gm̂MAP takes a role in P (d|m). As mentioned above, the
approximation of P (m|d) is an asymptotic approximation, but in our case it is
more unclear if a Gaussian approximation in the denominator gives an accurate
approximation of the likelihood P (d).

4.4 Importance sampling

Importance sampling is performed to focus on the correct regions when using
Monte Carlo methods, i.e. to weight the most important simulations heavier
before doing inference with the simulated realizations (Liu (2001)). The target
property is

I = E(h(m)) =

∫
h(m)P (m|d)dm,

where P (m|d) is the distribution function of h(m).

The algorithm to determine the importance sampling weights and calculate an
estimate of I , is

• Draw n realizations from a trial distribution g(·)
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• Calculate the importance weights

w(j) =
P (m|d(j))

g(m(j))
, for j = 1, 2, ..., n

• Approximate I by

Î =
w(1)h(m(1)) + ... + w(n)h(m(n))

w(1) + ... + w(n)
(4.16)

To make the estimation error small, g(m) should have as similar shape as pos-
sible to h(m)P (m|d). This method can be used to make estimates of the mean
of the posterior by making realizations from the posterior, and then calculat-
ing the weights as shown in the algorithm above. For the blocky inversion
case, the trial distribution is the assumed normal distribution for m given d,
g(m) = P̂ (m|d) ∼ N(m̂MAP , R−1). For the Gaussian inversion, all the weights
will be equal because the target distribution is Gaussian.

If h(m) = m2, Î will be an estimate of the variance of m from the definition of
the variance. An estimate of the variance of the MAP solution from importance
sampling is therefore

V ar(m|d) ≈ w(1)[m(1) − E(m|d)]2 + ... + w(n)[m(n) − E(m|d)]2

w(1) + ... + w(n)
. (4.17)
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5 SYNTHETIC EXAMPLE

5.1 Data description

In order to check the inversion and estimation methods, a synthetic example
was created. Figure 5.1 shows the created model for vp, vs and ρ. The model
consists of 7 horizontal layers, where each layer is a Gaussian Random Field
with a certain lateral and vertical variation. These layer boundaries are marked
as black lines in Figure 5.1. The lateral range is related to the lateral correlation
coefficient φ by the exponential autocorrelation function

φ = exp

{
−h

ε

}
,

where ε is the correlation range, and h is the distance. This means, as expected,
that the correlation decreases with the distance. The correlation range, ε, con-
trols how long the correlation has effect before it fades out. To generate the
synthetic data in this case, the correlation range was ε = 30 and the standard
deviation was 0.04. A corresponding criterion was used in the vertical direction
for each of the 7 layers, and the vertical range was set to 13.

A 30 Hz Ricker wavelet was used in the convolution matrix W , and the Aki and
Richards approximation in Equation 2.4 with four reflection angles from 10 to 40
degrees were used to set up the reflectivity matrix A. The time vector consists
of 250 samples ranging from 0 to 1 seconds with a 4 ms sampling interval. In
order to create the seismic data, the models shown in Figure 5.1 were multiplied
with the operator G = WAD. Subsequential, noise with standard deviation
σ was added to make synthetic seismic data. Since the same operator G was
used in the modelling of the data and in the inversion, the results are assumed
to be better than for more realistic cases with real seismic data. In addition,
the noise level σ is known from the modelling, which is very advantageous
for the inversion. For real seismic data, processing of the data can cause big
uncertainties. This synthetic case avoids this problem.
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Figure 5.1: Synthetic model for vp, vs and ρ. Black horizontal lines indicate the
boundaries between the 7 layers.

5.2 Results

5.2.1 Gaussian inversion

The Gaussian inversion was performed with the same G matrix and low fre-
quency model mp for all traces due to instability in the solution. The low fre-
quency model mp was created by calculating the mean of the lowpass-filtered
input models for all traces. Several values of the lateral correlation coefficient φ
and the scaling parameter γ for the covariance matrix Σ0 were tested on a grid,
and the estimation workflow described in Figure 3.1 was used. In the following
results, the standard deviation of the noise is equal to 0.01. Figure 5.2 shows
the synthetic seismic data for the last trace without noise in blue and random
noise with standard deviation 0.01 in red for the four angles. The noise level is
significantly smaller than the main amplitudes, and we assume the noise to be
in a realistic area. Some tests showed that the estimation algorithm resulted in
a φ value very close to the edge at φ = 1. Since φ is limited to a lower bound 0
and upper bound 1, this was reparametrized to the correlation range

ε = − h

ln(φ)
∈ (0,∞),
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in order to easier find the maximum close to 1. Figure 5.3 shows two visualiza-
tions of const + ln P (d) for a range of parameters, where const is an unknown
positive or negative constant. The maximum value for P (d) corresponds to
φ = 0.99 and γ = 0.005 (ln(γ) = −5.2983). It is not so easy to see from Figure 5.3,
but the surface in the right panel dips downwards for the last two φ values close
to 1 tested. The inversion result for the estimated parameters is shown in Fig-
ure 5.4, where the horizontal black lines indicate the original layer boundaries
in the input model.
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Figure 5.2: The created seismic data for the last trace and the four angles (blue).
Random noise with standard deviation 0.01 in red.

A comparison between the input model in Figure 5.1 and the inversion results
in Figure 5.4 shows that the Gaussian inversion with the estimated parameters
reconstruct the input model reasonable well. The colour scale is the same in
both figures, which means that the inversion returns values with the correct
magnitude by using the estimated parameters. It seems as the inversion result
is more continuous horizontally compared to the input model, but this could
be due to the high correlation coefficient. Some of the details laterally from
the input model are not recreated in the inversion result, and some values are
smaller in magnitude, but the boundaries between the layers seem to show very
clear after the inversion. Figure 5.5 shows the inversion result for the estimated
γ = 0.005 and zero correlation. The inversion result with no lateral correlation
seems to be smeared out at the layer boundaries. The input model for vp in
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Figure 5.3: Two realizations of const + ln P (d) for the Gaussian inversion as a
function of φ and ln(γ) on a grid.
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Figure 5.4: Inversion result from the Gaussian inversion with the estimated pa-
rameters, γ = 0.005 and φ = 0.99.
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Figure 5.1 shows two areas with higher velocities at about 0.8 s and 0.9 s trav-
eltime. These events both appear in the inversion result with lateral correlation
in Figure 5.4, but for zero lateral correlation in Figure 5.5, the event are hardly
shown. In the input model, the event at 0.8 s is dipping, and at trace number
15, the two events have merged. The inversion with lateral correlation does not
detect this merge. This can be one of the disadvantages by introducing lateral
correlation; in some areas correlation is needed, whereas in others clearly not
because of e.g. dipping events or faults. To check if the layer boundaries appear
at the correct place, the result for the last trace is plotted in 1D. Figure 5.6, 5.7
and 5.8 show the inversion result for the last trace for vp, vs and ρ respectively
together with the input model and the low frequency background model for
the estimated parameters. These show that the input data is well repeated af-
ter the inversion and that the contrasts between the layers are well defined in
the inversion results, especially for vp and density. To visualize the difference
between zero correlation and φ = 0.99, the last trace for the inversion result
with γ = 0.005 and φ = 0 is shown in Figure 5.9. This shows clearly that the
boundaries between the layers are smeared out compared to Figure 5.6.
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Figure 5.5: Inversion result from the Gaussian inversion with γ = 0.005 and
φ = 0.

The variance of the MAP solution for the Gaussian inversion is given in Equa-
tion 3.9. Figure 5.10 shows the inversion result for the last trace with the es-
timated parameters for the three elastic parameters in blue and the calculated

37



Ti
m

e
(s

)

Vp (m/s) Input model Background model Inversion result

2000 2200 2400 2600 28002200 2400 26002200 2400 2600 2800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.6: From left: Input model, low frequency background model, inversion
result for vp with γ = 0.005 and φ = 0.99 for the last trace from the Gaussian
inversion with the boundaries from the input model indicated by black lines.
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Figure 5.7: From left: Input model, low frequency background model, inversion
result for vs with γ = 0.005 and φ = 0.99 for the last trace from the Gaussian
inversion.
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Figure 5.8: From left: Input model, low frequency background model, inversion
result for ρ with γ = 0.005 and φ = 0.99 for the last trace from the Gaussian
inversion.
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Figure 5.9: From left: Input model, low frequency background model, inversion
result for vp with γ = 0.005 and φ = 0 for the last trace from the Gaussian
inversion with the boundaries from the input model indicated by black lines.
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95% prediction intervals for exp {m} in red. The 95% prediction interval for
m̂MAP is given as

m̂MAP ± zα
2
σ̂,

where zα
2

is the α
2

quantile of the Gaussian distribution, and σ̂ is the calculated
standard deviation of the MAP solution by the square root of the expression in
Equation 3.9. To get a 95% prediction interval, α is equal to 0.05 and zα

2
= 1.96.

The intervals seem reasonable, but maybe too small ranges between the lower
and the upper confidence bounds of about 40 m/s for vp, 15 m/s for vs and 60
kg/m3 for ρ. The different ranges for the three parameters are mainly because
of the different ranges for the three parameters in the input model. The range
of the S-wave velocity in the input model is about 500 m/s, while the range for
the density is almost 1500 kg/m3.
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Figure 5.10: Inversion results from the last trace for the three parameters after
Gaussian inversion with 95% prediction intervals included in red.

5.2.2 Blocky inversion

For the blocky inversion, different G matrices and low frequency models for
each trace were used. The low frequency model was made by applying a low
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pass filter of 3.4 Hz to the input model. A range of values for the lateral cor-
relation coefficient φ and the scaling parameter κ were tested on a grid, using
the estimation method described in Section 4.3. The noise level was unchanged
from the Gaussian inversion, and is shown in Figure 5.2. Figure 5.11 shows two
visualizations of const + ln P (d) as a function of φ and κ values, where const is
an unknown positive or negative constant.
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Figure 5.11: Two representations of const + ln P (d) for the blocky inversion as a
function of φ and ln(κ) values on a grid.

It is easy to see from the left panel that P (d) hardly change with φ compared
to the change with κ. The maximum values from estimation were φ = 0.98
and κ = 100 (ln(κ) = 4.6052). Note that the chosen κ value is the largest value
tested in this grid. This means that a local maximum is not found among the
values tested. Several larger κ values were tested, although P (d) continues to
increase with κ. Since the surface in the right panel of Figure 5.11 seems to flat-
ten out when κ increases, the last value on the grid, κ = 100 is considered as
the estimated κ. The chosen φ value is not the largest value tested, but it is still
very close to the limit 1. The inversion result for the estimated parameters with
similar colour ranges as in Figure 5.1 is shown in Figure 5.12, and Figure 5.13
shows the inversion result for the last trace for vp with the estimated parame-
ters, φ = 0.98 and κ = 100. In Figure 5.13, big and rapid oscillations are shown
in the inversion result in the right panel. The boundaries between layers can
almost not be seen. The values are completely out of acceptable range, and do
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not correspond to the input data in the left panel.
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Figure 5.12: Inversion result for the blocky inversion with the estimated param-
eters, φ = 0.98 and κ = 100.

Since the estimated parameters did not give satisfactory inversion results, a
smaller value of the scale parameter κ was tested. As a first approximation,
the fourth κ value was tested because this corresponds almost to area where
the surface in Figure 5.11 flattens out. Figure 5.14 shows the inversion result
for φ = 0.98 and κ = 0.7 for vp for the last trace. This result is closer to the
magnitude of the input model, but still too large values and many oscillations
lead to further research for better parameter choices. The method of trial and
error with different parameter combinations resulted in the choice φ = 0.4 and
κ = 0.04. Figure 5.15 shows the inversion result for these chosen parameter
values. The inversion result is obviously more likely due to comparison with
the input model in Figure 5.1. The range of the values after inversion is simi-
lar to the input data, and the boundaries between the layers are clearly shown.
Figure 5.16-5.18 show the inversion result for the last trace with φ = 0.4 and
κ = 0.04. The boundaries between the original layers in the input model are
marked as black horizontal lines in the right panels. The inversion results for
vp and ρ are very similar to the input model. One exception are the rapid os-
cillations in ρ and some in vp after inversion. These may arise because of the
multimodal behaviour of the posterior by using the Cauchy distribution as the
prior. Kolbjørnsen (2002a) also commented on these oscillations, and suggested
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Figure 5.13: Inversion result for vp for the last trace from the blocky inversion
with the estimated parameters φ = 0.98 and κ = 100.

that a completely flat model would probably be just as likely in the areas with
the rapid oscillations. The main trend from the input model is though recreated
very well after the inversion, but the boundaries between the adjacent layers
do not show very clear for vs. Here, the inversion result is very similar to the
low frequency background model, so the sharp contrasts between the layers are
smeared out. The same observations were done for the Gaussian inversion, so
vs is probably the most difficult parameter to invert for.

The estimation of the parameters by the method described in Section 4.3 did
not give reasonable results for the blocky inversion. One reason for this could
be that the assumption about the posterior as a Gaussian distribution with mean
at the MAP solution and variance R−1 from Equation 4.11, is not valid. There-
fore, this approximation of the posterior distribution was checked by impor-
tance sampling described in Section 4.4. Importance sampling could also be
used to provide an estimate of the uncertainties in the inversion results. R−1

for the blocky inversion is not so easy to determine as R−1 for the Gaussian in-
version given in Equation 3.17, and after all, R−1 from Equation 4.11 is just an
estimate of the variance of the MAP solution. The assumed posterior distribu-
tion, N(m̂MAP , R−1), was used as a trial distribution, and 100 realizations from
this was simulated by the method described in Section 3.4. Figure 5.19 shows
the estimated variance of the MAP solution with κ = 0.04 and φ = 0.4 for the
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Figure 5.14: Inversion result for vp for the last trace from the blocky inversion
with κ = 0.7 and φ = 0.98.
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Figure 5.15: Inversion result for the blocky inversion with φ = 0.4 and κ = 0.04.
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Figure 5.16: Inversion result for vp the last trace from the blocky inversion with
φ = 0.4 and κ = 0.04.
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Figure 5.17: Inversion result for vs the last trace from the blocky inversion with
φ = 0.4 and κ = 0.04.

45



Ti
m

e
(s

)

ρ (kg/m3) Input model Background model Inversion result

1500 2000 25001800 2000 2200 2400160018002000220024002600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.18: Inversion result for ρ the last trace from the blocky inversion with
φ = 0.4 and κ = 0.04.

last trace. This is valid under assumptions of a normal approximation for the
posterior. The ranges from the lower to the upper bound of the prediction inter-
val were around 1000 m/s for vp, 600 m/s for vs and 1000 kg/m3 for the density.
These ranges were significantly larger then for the Gaussian case in Figure 5.10.
Figure 5.20 shows the scaled importance weights multiplied with 100 calculated
for blocky inversion with κ = 0.04 and lateral correlation φ = 0.4. The weights
are almost similar, which means that the normal distribution assumed for the
posterior distribution, should be reliable. Figure 5.21 shows the expected model
calculated by the importance weights from Figure 5.20 and Equation 4.16. Since
the weights for the 100 simulated realizations in Figure 5.20 are quite similar,
the expected value from importance sampling is not very different from the in-
version result in Figure 5.15. Figure 5.22 shows the MAP solution for the three
parameters for the last trace in red and 95% prediction intervals calculated by
importance sampling included in cyan. The intervals are very wide, even wider
than the intervals calculated directly from the simulated realizations in Figure
5.19. Importance sampling is possibly not capturing the heavy tails of the true
posterior in the right way.

To compare the Gaussian and the blocky inversion schemes, the inversion re-
sults from the two methods were plotted together. This is shown in Figure 5.23.
The scaling parameter γ in the Gaussian inversion was 0.005 and the lateral
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Figure 5.19: 95% prediction interval for the last trace in the synthetic model with
κ = 0.04 and φ = 0.4, calculated from simulated realizations.
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Figure 5.20: Importance weights calculated by importance sampling for the pos-
terior distribution by blocky inversion with φ = 0.4 and κ = 0.04.
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Figure 5.21: Expected inversion solution calculated by importance sampling for
the blocky inversion with φ = 0.4 and κ = 0.04.
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Figure 5.22: MAP solution with 95% prediction interval calculated by impor-
tance sampling for the last trace for the blocky inversion with φ = 0.4 and
κ = 0.04.
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correlation was φ = 0.98. For the blocky inversion, κ was 0.04 and the lateral
correlation coefficient was 0.4. The green curve in Figure 5.23 is the created syn-
thetic input model, the blue curve is the Gaussian inversion result and the red
curve is the blocky inversion result. It is not easy to decide if the Gaussian or
the blocky inversion is the best method from these results. In some areas of the
inverted data, the blocky inversion result follows the input model better than
the blue Gaussian curve, but especially for the density, the blocky inversion re-
sult contains rapid oscillations that are probably just artefacts due to a difficult
posterior surface with Cauchy prior constraint. Such artefacts do not appear in
the Gaussian inversion result. For vp and ρ, the contrasts between the layers
are clearly reconstructed both for the Gaussian and the blocky inversion. Espe-
cially for the density, the blocky inversion result follows the input model very
well, maybe even better than the Gaussian inversion if the rapid oscillations are
ignored. Another criterion could be to detect the removal of side lobes. That
is though almost impossible, because side lobes could be mistaken for actual
changes in the properties.
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Figure 5.23: Comparison of Gaussian and blocky inversion results for the syn-
thetic model. Input model (green), Gaussian inversion with γ = 0.005 and
φ = 0.98 (blue) and blocky inversion with κ = 0.04 and φ = 0.4 (red).
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6 KVITEBJØRN EXAMPLE

6.1 Data description

The Kvitebjørn field was discovered in 1994. It is located just east of the Gullfaks
field, and contains hydrocarbons characterised as gas-condensate. Figure 6.1
shows where the field is located in the North Sea.

Figure 6.1: Location map of the Kvitebjørn field in the North Sea.

The field is a so-called HPHT (High Pressure High Temperature) field which
is defined as: "Exploration and appraisal wells where the undisturbed bot-
tom hole temperature at prospective reservoir depth or total depth is greater
than 300◦F (149◦C) and, either the maximum anticipated pore pressure of any
porous formation to be drilled through exceeds a hydrostatic gradient of 0.8
psi/ft (1.85 SG) or pressure control equipment with a rated working pressure
in excess of 10000 psig (690 bar) is required (HPHT Well Control Manual, Ab-
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erdeen Petroleum Training International)." Clay coating has resulted in good
reservoir quality with relatively high average porosity. The drainage strategy
is based on pressure depleting (reduction) which causes the drilling to be com-
plex.

After a 3D survey from 2002, seven horizons were mapped in two-way time.
These were Seabed, Balder Formation, Svarte Formation, Base Cretaceous Un-
conformity (BCU), Heather Formation, Brent Group and Etive Formation. Dun-
lin Group and Statfjord Formation are poor reflections, and therefore the inter-
pretation of them is very uncertain.
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Figure 6.2: Real seismic stacked data from a seismic line on the Kvitebjørn field.
From top: near angle, mid angle and far angle. Five interpreted horizons are
included. These are (from top) Svarte, BCU, Brent, Drake and Statfjord. The
location of well A is indicated by the black vertical line.

In this study, real seismic data were used. Well log data from well A were used
to create the low frequency background model, and to compare the inversion
results. This well is located almost at the intersection between a seismic inline
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and crossline. Figure 6.2 shows the real seismic data from this specific crossline
with the interpreted horizons Svarte, BCU, Brent, Drake and Statfjord included.
The traveltimes are not real, but at a correct range. Well A’s location is marked
by the black vertical line. The incidence angles are stacked together to near, mid
and far angles.

The wavelets and the standard deviation of the data Cd used in the inversion
were estimated from the seismic data. Estimating random noise from seismic
data is a difficult, yet important step. In order to obtain a rough estimate of the
noise level, an average of three neighbouring traces was calculated. The differ-
ence from this mean value was used as an estimate of the standard deviation
of the data for each trace. However, this noise estimate resulted in noise values
that were of the same magnitude as the seismic data. This fact could possibly be
explained by dipping layers in the data set used in the noise estimation process.
Such dipping layers would violate the assumption of flat reflections in the seis-
mic data, which is a fundamental assumption in this approach. It was therefore
decided to divide the noise level by two, although this value is open to debate.
On the other hand, an accurate determination of the noise level is probably not
very important within the framework of this project and therefore, this value
can be considered as sufficiently appropriate.

The low frequency expected background model, mp, was extracted from the
well log data by a low pass filter of 4 Hz. This model was stretched according
to the interpreted horizons in order to fit the geology along the line.

6.2 Results

6.2.1 Gaussian inversion

For the case with the real data from Kvitebjørn, the covariance matrix Σ0 from
Equation 3.3 was estimated from well log data as described in Section 3.2, and
this gave

Σ0 =

⎡⎣ 0.0139 0.0181 0.0016
0.0181 0.0299 0.0008
0.0016 0.0008 0.0021

⎤⎦ .

Several values for the correlation coefficient φ were tested, but there were no big
differences. Figure 6.3 shows the inversion result for the three elastic parame-
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ters using Σ0 from well logs and φ = 0.4 for 26 traces around the borehole lo-
cation. 95% prediction intervals were calculated by Equation 3.9. The inversion
result for the trace nearest the borehole with the prediction intervals included,
is shown in Figure 6.4. The borehole data is also included as black dots. For the
last part of the time interval, there is no well log data available. Therefore, the
low frequency background model is not very reliable in this region. The inter-
val ranges are about 1000m/s for vp and vs, and 400kg/m3 for ρ. These ranges
are, as expected, significantly larger than for the synthetic example due to sev-
eral additional noise sources in real data. For comparison, the wavelets and the
noise levels are not known from the modelling, and seismic processing could
have contributed to further uncertainties. The inversion result with φ = 0.4
and Σ0 from well logs in Figure 6.3 shows values for the three parameters with
reasonable magnitudes, and Figure 6.4 shows that the inversion result is in the
correct area, due to the well observations from the current area. Most of the
well observations are inside the limits of the 95% prediction intervals. There-
fore, the whole seismic line with 1110 traces was inverted with this parameter
combination. Figure 6.5 shows the inversion results for the Gaussian inversion
with φ = 0.4 and Σ0 from well logs for vp, vs and density for all the 1110 traces.
It is not easy to decide whether this is a good inversion result, because the truth
is not known as it is for the synthetic example. Although, compared to the seis-
mic data in Figure 6.2, the result looks reasonable. The layered structure in the
inversion result corresponds to the interpreted horizons from seismic data.

Figure 6.6 shows the inversion result for vp from the Gaussian inversion with
different values for the lateral correlation coefficient. There are no main differ-
ences between the results, but at some points the inversions with lateral corre-
lation seem to show some events clearer. The second downmost of the five in-
terpreted horizons from Figure 6.5 around time 0.6 s do not appear very clearly
for φ = 0 and φ = 0.4. However, for φ = 0.8 in the bottom panel, this layer show
at least in the middle part of the line between trace number 450 and 650.

6.2.2 Blocky inversion

The estimation of the parameters in the blocky inversion, even for the synthetic
example, appeared to be very difficult. The model itself might cause some
problems because of the assumption of correlation only in the lateral direction.
Anisotropic properties then are not taken into account. The wavelet and the
estimation of the wavelet also often cause problems and uncertainties. A com-
bination of parameters which gave good results was found simply by trial and
error. Figure 6.7 shows the inversion result for the same 26 traces near the bore-
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Figure 6.3: Inversion result for the Gaussian inversion of Kvitebjørn data with
φ = 0.4 and Σ0 estimated from well logs.
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Figure 6.4: Gaussian inversion of Kvitebjørn data with φ = 0.4 and Σ0 estimated
from well logs for the trace nearest the borehole location with 95% prediction
intervals (red) and borehole data (black dots).
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Figure 6.5: Gaussian inversion of Kvitebjørn data for the whole line with φ = 0.4
and Σ0 estimated from well logs.
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Figure 6.6: Comparison of the Gaussian inversion result for vp for different φ
values, from top: φ = 0, φ = 0.4 and φ = 0.8.
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hole location as in Figure 6.3 for κ = 0.7 and φ = 0.4. This combination of
parameters provides inversion results in the right order of magnitude, and the
layered structure is comparable to the Gaussian result in Figure 6.3.

In order to provide an estimate of the uncertainties in the blocky inversion,
importance sampling was performed for the MAP solution with κ = 0.7 and
φ = 0.4. Figure 6.8 shows an estimate of the variance of the MAP solution calcu-
lated from 100 simulated realizations from the approximate Gaussian posterior
using the algorithm described in Section 3.4. These intervals are unrealistically
large. Figure 6.9 shows the importance weights for 100 simulated realizations
calculated by the algorithm described in Section 4.4. Figure 6.10 shows the ex-
pected values of m calculated by importance sampling and the weights from
Figure 6.9. The weights are very similar for all the simulated realizations. This
should mean that the posterior is not very different from a Gaussian distribu-
tion. Figure 6.11 shows the variance estimate for one of the inverted traces,
shown as 95% prediction intervals around the MAP solution. The intervals are
very wide, with ranges around 6000 for vp, 3500 for vs and 4500 for ρ. Both the
intervals calculated from the simulated realizations and by importance sam-
pling show unrealistically large values, and can not be used as a direct estimate
for the uncertainties in the model.
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Figure 6.7: Inversion result from the blocky inversion for 26 traces around the
borehole with κ = 0.7 and φ = 0.4.
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Figure 6.8: 95% prediction interval for the last trace used in the importance
sampling with κ = 0.7 and φ = 0.4, calculated from simulated realizations.
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Figure 6.9: Importance weights for the MAP solution of the Kvitebjørn data
calculated with κ = 0.7 and φ = 0.4.
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Figure 6.10: Expected m created by importance sampling and the weights from
Figure 6.9.
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Figure 6.11: MAP solution from the blocky inversion for (from left) vp, vs and ρ
with κ = 0.7 and φ = 0.4. 95% prediction intervals calculated from importance
sampling are included in cyan.
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Figures 6.12, 6.13, 6.14 and 6.15 show inversion results for vp, vs and ρ from
blocky inversion of the whole line (1110 traces) with different κ and φ values
for comparison. Figure 6.12 shows the result by using the estimated κ values
from maximum likelihood estimation of well log data and φ = 0.4. The estima-
tion method described in Section 4.2 was used with well log data rescaled to a
similar range as the seismic data. The results from this estimation was

κvp = 0.0101

κvp = 0.0146

κρ = 0.0045.

(6.1)
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Figure 6.12: Inversion result with κ from MLE estimation and lateral correlation
φ = 0.4.

As mentioned before, too small κ values give almost just the low frequency
background model after inversion. The κ’s calculated from maximum likeli-
hood estimation of well log data showed this behaviour. Therefore, larger κ
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values were tested in order to get more structure out of the inversion. Figure
6.13, 6.14 and 6.15 show the blocky inversion result for κ = 0.7 and lateral cor-
relation 0, 0.4 and 0.8 respectively. The κ values seems to be in the right order of
magnitude since the structure from the inversion is not very different from the
Gaussian inversion result. However, some more details seem to appear after
blocky inversion. For example the interpreted horizon at about 0.6 s travel-
time appear very clear after blocky inversion, both for vp and vs. Compared to
the Gaussian inversion in Figure 6.5, this horizon is much easier to detect after
blocky inversion. Figure 6.16 shows a comparison between the inversion result
for vp for different κ values (from top: κ = 0.3, κ = 0.7 and κ = 1.2). All these
values give reasonable inversion results and there are very small differences. It
seems as if κ is in the right magnitude, it will not influence the inversion very
much, but too small or too large κ values result in almost no structure and too
large values respectively.
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Figure 6.13: Blocky inversion result with κ = 0.7 and lateral correlation φ = 0.

It is not very easy to conclude on which of the two Bayesian inversion methods
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Figure 6.14: Blocky inversion result with κ = 0.7 and lateral correlation φ = 0.4.

63



Ti
m

e
(s

)

Vp (m/s)

Ti
m

e
(s

)

Vs (m/s)

Trace number

Ti
m

e
(s

)

ρ (kg/m3)

100 200 300 400 500 600 700 800 900 1000 1100

100 200 300 400 500 600 700 800 900 1000 1100

100 200 300 400 500 600 700 800 900 1000 1100

2000

2500

3000
0.2
0.4
0.6
0.8

1

1000

1500

2000

25000.2
0.4
0.6
0.8

1

2500
3000

3500

4000
4500

0.2
0.4
0.6
0.8

1

Figure 6.15: Blocky inversion result with κ = 0.7 and lateral correlation φ = 0.8.
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Figure 6.16: Blocky inversion result for vp with κ = 0.3 (top), κ = 0.7 (middle)
and κ = 1.2 (bottom). The lateral correlation was set to 0.4.
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tested here is the best. In order to perform a comparison of the Gaussian and
the blocky inversion for the Kvitebjørn data, the inversion result from the two
methods for the trace nearest the borehole was plotted together. This is shown
in Figure 6.17. Borehole data are included as black dots. The Gaussian inver-
sion was performed with Σ0 from borehole data, and the scale parameter in the
blocky inversion was set to κ = 0.7. The lateral correlation coefficient was 0.4
for both. For the P-wave velocity and the S-wave velocity, the two inversion
results are quite concurrent, whereas the blocky inversion gives much more big
oscillations for the density. These oscillations are maybe not as reasonable as
the Gaussian curve, but for the P- and S-velocity, both inversion methods seem
to work fairly well.
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Figure 6.17: Comparison of the Gaussian and the blocky inversion result for the
trace near well A. Σ0 for the Gaussian inversion was estimated from borehole
data and the scale parameter κ in the blocky inversion was set to 0.7. Black dots
indicate well observations.
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7 CLOSING REMARKS

This work includes inversion of a synthetic created case and pre-stack real seis-
mic data from the Kvitebjørn field. Both standard Gaussian Bayesian inversion
and blocky inversion are applied to compare the results in terms of achieved
vertical resolution. The two methods differ due to different prior models for
the elastic parameters vp, vs and ρ. The Gaussian inversion assumes a normal
distribution as prior information of the parameters m = ln(ξ), ξ ∈ {vp, vs, ρ},
whereas the blocky inversion assumes a Gaussian lateral correlation model with
Cauchy constraints on the vertical contrasts. This approach is chosen because
the Cauchy distribution has heavier tails than the normal distribution, which
causes greater probability of large contrasts. This again can provide sharper
edges between adjacent layers after inversion. Lateral correlation was included
in the algorithm to provide lateral consistency. The following are attempted es-
timated; the covariance matrix for the Gaussian inversion, the scale parameter
κ in the Cauchy distribution, the lateral correlation coefficient and the variance
of the MAP solution.

The use of Cholesky factorization as a computational tool for inverting a large
sparse matrix was very appropriate for this purpose. It was quite fast, and the
size of the matrices to invert was N ×N instead of NM ×NM as it would have
been for the direct solution. Due to memory problems in MATLAB, storage of
the non-zero elements of the L matrix for all traces was a problem. For the
Kvitebjørn data with 251 time samples, this problem arose when the number of
traces was 30 or more. To invert the complete seismic line, the L matrix had to
be saved piecewise to keep the lateral dependency for the forward and back-
ward iterations. This problem could be solved by using a computer with more
memory. Compared to the direct solution by setting up the whole G matrix for
all traces and inverting a matrix of size NM × NM , the Cholesky factorization
still is a much better choice.

The results from the synthetic created example show satisfactory inversion re-
sults for both the Gaussian and the blocky inversion by using appropriate val-
ues for the parameters. For the Gaussian inversion, the estimation method for γ
and φ described in Section 3.3 was working, whereas for the blocky model, pa-
rameter estimation did not work so well. The results for specified parameters
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seem to recreate the truth satisfactory for both methods. It is not easy to decide
which one is the best from these results because there are no major differences.
The Gaussian result look more stable without the small rapid oscillations that
appeared in the blocky inversion. The synthetic example also shows that the
blocky inversion can provide results in the right magnitude even though the
constraints were applied to the contrasts and not on the parameters themselves.
The results recreate the blocky structure in the input model well, but with small-
scale fluctuations in between. These may be because the posterior distribution
when using a Cauchy constraint for the prior, is multimodal. A completely flat
model between the layers might be just as likely. Estimation of uncertainties
gave proper results for the Gaussian case, but the variances for the blocky in-
version were unreasonable large.

For the Kvitebjørn data, problems regarding parameter estimation were experi-
enced, for both the Gaussian and the blocky model. This might occur because of
the scales of the real data caused by wavelet or prior levels, and the estimation
possibly attempts to take this out with extreme sets of parameters. Appropri-
ate parameters were found by trial and error. Then the inversion results for
both the Gaussian and the blocky inversion were qualitatively compared to the
recorded seismic amplitude data. The interpreted horizons were easier to detect
from the inversion results than from the seismic data themselves, which could
be an indicator of satisfactory results. Introducing the lateral correlation did not
provide the expected differences, but some parts of the section appeared clearer
with higher correlation coefficient.

After working with this inversion method, several challenging topics for further
research stood out. Some of the issues are listed below.

• One possibility to improve the lateral correlation, could be to extend the
neighbourhood in the Markov model from the nearest neighbours

• Estimation of parameters in the blocky inversion model was very demand-
ing

• Estimation of uncertainties could be tested on other sampling based ap-
proaches besides importance sampling, which seemed to give unrealisti-
cally large uncertainties

• The Cauchy constraint seems to cause instabilities in the inversion results

• Other probability distributions could possibly be used in order to stabilize
the inversion results and facilitate for estimation of uncertainties and other
parameters
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• The Cauchy assumption led to a weak non-linear problem, and well known
numerical methods were easy to apply. This may not be the issue for e.g.
the Laplace distribution
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Methods for Blocky
Theoretical considerationsIntroduction

Fig.1: Illustrative 
example of the blocky 
inversion method. The 
black line indicates a 
property profile along 
with a sketch of 
inversion with 
substantial artefacts 
(blue line) and an 
inversion with reduced 
side-lobes (red line).
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m

e

One of the important challenges in seismic 
inversion is to resolve finer structures from band-
limited seismic data. The resolution of seismic 
inversion is dominantly limited due to a) the lack of 
necessary high frequencies in the seismic data and 
b) artefacts introduced by mathematical inversion 
algorithms that are based on optimization 
techniques. Such artefacts can be smoothing or 
introduction of side lobes (Figure 1). Our work 
concentrates on an inversion scheme that aims at 
reducing the appearance of such artefacts and 
thereby improves the vertical resolution.

Several approaches have been taken to achieve 
this goal. On this poster, we discuss a stochastic 
approach to an improved vertical resolution, whose 
idea has been inspired by image processing 
algorithms (e.g., Charbonnier et al., 1997). Figure 1 
illustrates this approach schematically. The 
principle idea of this approach is to enforce a 
sparse distribution of the model gradients, thereby 
sharpening the contrast of boundaries between 
adjacent layers. This is based on the assumption 
that mainly intermediate gradients contribute to the 
apparent smoothing in seismic inversion. In theory, 
the inverted properties of a layer have then 
sharper, flatter boundaries at the top and bottom, 
while they are constant within the layer. We may 
therefore name this inversion scheme a “blocky 
seismic amplitude inversion method”.

The Cauchy norm can be characterized mathe-
matically as a probability distribution with “heavier 
tails”, which gives higher probability to larger 
gradients, whilst suppressing intermediate values. 
Figure 2 shows a comparison between the well-
known normal distribution and the Cauchy 
distribution.

Using the Cauchy norm in an inversion scheme 
leads to a non-linear problem that can only be 
solved numerically. The “blocky” inversion 
algorithm can be derived as an optimum solution of 
Bayes’ theorem. We will show different ways of 
determining the controlling statistical parameters of 
the blocky inversion. In order to stabilize the 
inversion, we also include a local lateral correlation 
into the inversion scheme.
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Fig. 2: Schematic comparison between normal (blue) and 
Cauchy distribution (red).

The Cauchy norm

Ingrid Østgård Jensås (NTNU and StatoilHydro R&D, Trondheim, 
Norway), Jo Eidsvik (NTNU Trondheim, Norway), Ulrich Theune 
(StatoilHydro R&D, Trondheim, Norway)

In order to determine the posterior solution P(m|d), 
we  calculate the maximum posterior estimate mMAP
by the means of optimization. This leads to
mMAP=(GTΣ-1G+4DTB(m)D)-1(GTΣ-1d+4DTB(m)Dmp)

where the matrix B(m) contains the contribution to 
the solution that enforces blockyness:

.
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Solution of the inverse problem

Note, that this matrix depends on the solution itself, 
and hence we are dealing with a non-linear inversion 
problem. However, the non-linearity is weak and we 
can treat the blocky inversion as a quasi-linear 
problem, for which solution algorithms exist.

Model

d = G·m + n
with
· d: seismic angle stacks 
· G: the modelling operator
· m: model of the subsurface (P and S velocity, 

and density), and
· n: the omnipresent random noise

As usual, we assume a linear relationship between the 
observed data d and the model of the subsurface 
properties m:

Data and model are statistically linked by Bayes’
theorem

)P()|P()|P( mmddm ⋅∝
In here, we assume a normal distribution for the data 
likelihood P(d|m) and a Cauchy distribution for the 
gradients of m as the a priori model assumption

Where mp is an aptly chosen low frequency or back-
ground model and κ is the so called scale parameter 
of the Cauchy distribution.

Lateral correlation along a 2D line
In order to provide lateral consistency and robust 
results in the inversion, spatially coupling of the 
model parameters m is included in the algorithm. 

Markov properties are assumed for simplicity,  
implying that the inversion result for one trace is only 
dependent on the neighbouring traces. In this case, 
we can impose lateral correlation by including a 
precision matrix Q, which has a sparse structure and 
is defined as

We can now use φ as a parameter that controls the 
lateral correlation between neighbouring traces.

The MAP solution for the blocky inversion in 2D can 
then be found by solving

The precision matrix Q is implemented in 2D by 
multiplying each entry with an identity matrix. 

With this formulation, the prior model P(m) is a joint 
Gaussian in the lateral direction, with Cauchy 
constraints in the vertical direction to ensure sharp 
layer contrasts. Q equal to zero gives a blocky trace 
by trace solution, while κ equal to infinity implies no 
Cauchy constraint.

Numerical aspects
The solution of the inverse problem cannot be ob-
tained analytically. We used an iteratively reweighted
method to determine the solution m:

Assume initial
solution mo=0

Calculate
Bo=B(mo)

for k=1, …, kmax

Solve
mk=(GTΣ-1G+Q+4DTBk-1D)-1 (GTΣ-1d+Qmp+4DTBk-1Dmp)

k<kmax

Calculate
Bk=B(mk)

Yes

Done

No

Fig. 3: Generalized workflow of the blocky inversion scheme.

Parameter estimation
Maximum likelihood estimation of κ

from well logs

In order to estimate the controlling parameters of the 
inversion (κ, and φ in case of laterally correlated 
data) we suggest two statistical methods. If we are 
only interested in estimating κ, we can make use of 
borehole data. For a range of κ-values, we 
determine a maximum likelihood function L(Dm) and 
choose the optimum κopt as that one, which 
maximizes L:

Estimation of the scale parameter κ from 
seismic data 

Because of the completely different scales for well 
log data and seismic data, the scale parameter κ
may be better estimated from seismic data than well 
log data to achieve consistency in the results. One 
alternative method is to determine an estimate of 
P(d) and maximize this with respect to the scaling 
parameter κ and the lateral correlation coefficient φ. 
From Bayes’ rule, an approximation of P(d) can be 
written as

where the notation P(d;κ,φ) is used to highlight that 
this probability distribution has been determined for 
a certain κ,φ pair.
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Choose an a priori  range 
for parameters κ and φ.

Take a small subset of 
the data cube and invert 
it for every κ−φ combina-
tion.

Determine P(d;κ,φ)

Use that κ−φ combina-
tion, which maximizes 
P(d,κ,φ) and apply it to 
the inversion of the entire 
cube.
Fig 4.: Inversion workflow
with initial parameter esti-
mation
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• The Cauchy norm applied to the gradients of the 
model parameters as stochastic a priori 
assumption can lead to inversion results with 
improved contrasts at layer boundaries.

• The formulation of the solution of the inverse 
problem leads to a non-linear solution that can 
only be calculated numerically.

• However, a solution based on the Cauchy norm 
can be transformed such that it allows us to use 
standard solution algorithms for the optimization of 
l2-problems using iterative solvers.

• Our experience shows that two iterations in the 
IRLS loop are sufficient to obtain a stable 
solution.

• We included a local lateral correlation in the 
algorithm to enhance the stability of the inversion. 
If required, we can vary the lateral correlation 
weight within the cube to be inverted.

• Determination of the parameters κ and φ may be a 
challenge. We presented two statistical methods 
to estimate these parameters from log and seismic 
data, respectively.

• These parameter estimations are notably noise 
sensitive.

• The method is computationally demanding, mainly
because of the iterative solution approach.

•The synthetic example demonstrates that the 
blocky inversion method indeed is able to create 
inversion results with sharp layer contrasts.

• Inversion tests for different correlation parameters  
φ for the field data example showed that this value 
influences the inversion considerably.

• Posterior uncertainties are difficult to assess 
directly. The posterior curvature at the inversion 
result carries some information about the uncer-
tainty, but the posterior is not Gaussian, and the 
usual 5 and 95 percentiles are not directly 
available.
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Synthetic example
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Fig 6.: Velocities and density of the synthetic model.
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Inversion results

Fig 7.: Inversion results. Top: Line display, bottom: 
detailed comparison between model and inversion 
result.

From inversion tests we found that the following 
values for the parameters κ and φ gave satisfactory 
results:

κ = 1.2 φ = 0.4.
In order to demonstrate the significance of the 
correlation parameter, we compare the inversion 
results for these parameters also with inversions for 
φ=0 and φ=0.8.

Field data example from the 
Norwegian North Sea
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Fig 8.: Seismic data used in the example. Top: near angle 
stack, middle: mid angle stack, bottom: far angle stack. 
The estimated noise is shown above the panels.
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Fig 9.: Results of the blocky inversion (only the P-
velocity is shown). Top: no lateral correlation (φ=0), 
middle: intermediate correlation (φ=0.4), bottom: 
strong lateral correlation (φ=0.8).
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