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Abstract

Anti-collision calculations are done during the planning of a new petroleum
well. These calculations are required in order to control the risk of having
a well-collision, which is an unwanted event at any cost. The risk of having
a well-collision is closely related to the position uncertainty both of the well
that is planned and of the existing wells in the given region. Earlier literature
has indicated that the distribution of the position errors are more heavy-tailed
than a normal distribution, which leads to the question whether the current
methods are accurate enough. The currently used industry standard calculates
the standard deviation of the centre to centre distance by an approximation,
and assumes that the centre to centre distance is normally distributed. In this
thesis we use a heavy-tailed Normal Inverse Gaussian (NIG) distribution for
the declination error source in MWD magnetic directional surveying, which
lead to a position uncertainty that is heavy-tailed relative to the multivariate
normal distribution. The parameters of the NIG-distribution are estimated
from processed magnetic field data from the Tromsø geomagnetic observation
station. The NIG-distribution requires the use of Monte Carlo simulations in
order to apply the currently used industry approach. Other error sources are
also included in the error model to give a more realistic position uncertainty.

Three different anti-collision cases demonstrate the differences in using the NIG
error model and the normal error model. We compare the simulation based
results against the currently used methodology. The results are very dependent
on the well geometries. The results differ significantly, and the NIG error model
is the most conservative distribution in most cases, with respect to whether a
wellplan should be realized or not. However, there are cases where a normally
distributed declination error gives more conservative decisions than the NIG-
distribution. As an alternative to change the distribution of the declination
error, we propose two corrective actions to improve the existing anti-collision
methodology. One action is to exchange one of the approximations in the current
methodology with simulations or analytical computations. The other action is
to correct for bias in the expected position, which is caused by the NIG error
model.
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Chapter 1

Introduction

1.1 Introduction

The wells which were drilled in the early ages of the petroleum industry were
usually vertical. As the technology has improved, the petroleum industry has
been able to drill non-vertical wells. The term ”directional drilling” is used for
drilling of non-vertical wells. The need of non-vertical wells is important in order
to maximize production from a reservoir. An example of non-vertical wells are
offshore wells. A stationary oil platform must be able to drill wells on different
locations in order to maximize the production of oil and gas from a reservoir.
Both production- and injection-wells often end up with horizontal sections in
the reservoir. This leads to wells that have complex geometry.

If all wells were drilled perfectly vertical, it would be impossible for two wells
to collide. But since most wells that are drilled today are non-vertical, there
will be a risk that a well under construction may collide with an existing well in
a reservoir. A collision of two wells is a major safety risk, and would probably
cause both environmental- and economical costs, such as damage of equipment
and production down-time. If we were able to know the position of the wellbore
with absolute certainty, there would be no risk of having a well-collision. In
order to avoid well-collisions it is important to have both accurate position cal-
culations, and the most realistic uncertainty estimates as possible. It is equally
important to know the position and the uncertainty when considering the prob-
ability of hitting the desired target in the reservoir, which is an important factor
for economical success.

Measurement while drilling (MWD) is a procedure which is used to compute the
position of the wellbore while drilling. MWD-measurements consist of measure-
ments of the Earth’s magnetic field and gravity field for positioning purposes,
and various other parameters used in for example geosteering and detection of
water and oil. The different measurements are made of different tools, which
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1.1. INTRODUCTION

are mounted behind the wellbore. We focus only on the Earth’s gravity- and
magnetic field measurements in this thesis. The MWD directional surveying in-
struments measure orthogonal components of the Earth’s magnetic- and gravity
field. A sequence of MWD directional measurements in a given part of a well is
called an MWD-survey. From now on, when mentioning MWD, it is implicitly
meant the MWD directional surveying.

The industry standard of today uses the normal distribution for all error sources
concerning MWD-surveys. The normal distribution has the property that it is
closed under linearity. The calculation of the wellbore position is done with a
set of non-linear equations. These non-linear equations can be linearized, so the
position uncertainty is a linear combination of the error uncertainties. Estimates
of the uncertainty in the error sources are empirically achieved. Williamson [25]
and Ekseth [9] summarize many of the uncertainty estimates which are used
as an industry standard today. With the uncertainty estimates of the error
sources, under the assumption that the error sources are normally distributed,
the position uncertainty also becomes (multivariate) normally distributed. We
limit ourselves to use 19 different error sources in this thesis. ”The normal error
model” is the model where all the 19 error sources are normally distributed, and
it represents the model that is currently used as a industry standard.

If a new statistical distribution is used on the error sources in MWD-surveys, we
lose the nice properties which follow with the normal distribution. The analyt-
ical computation of the position uncertainty is much harder, if not impossible.
In this thesis we present methods which allow us to analyze the position un-
certainty with non-normal distributions on the error sources. More specific we
analyze the use of a Normal Inverse Gaussian (NIG) distribution as an error dis-
tribution on the magnetic declination error. There are literature ([22] and [23])
which indicate the need of a heavy-tailed distribution for the declination error.
The NIG-distribution is a skewed and heavy tailed statistical distribution which
has sufficiently nice properties which make it easy to simulate NIG-distributed
realizations and estimate the statistical parameters of the NIG-distribution. The
final position uncertainty is not a know statistical distribution, but we are able
to numerically evaluate the distribution through an approximation, and we are
able to simulate it. The error model with a NIG-distributed declination error
and the rest of the error sources normally distributed is denoted the ”NIG error
model” in the rest of the thesis.

The common practice of anti-collision calculations today is to use the normal
error model ([5] and [26]). In the anti-collision setting we denote the planned
well as the reference well. All the existing wells around the reference well are
offset wells. Anti-collision calculations are done between a point in the reference
point, and a candidate point in one of the offset wells. The distance between
these points, and the uncertainty of this distance, are important estimates in
anti-collision calculations. The common practice is also to approximate the
distribution of the distance with a normal distribution. We apply the NIG error
model to anti-collision calculations by simulating the distribution of the well-
positions, and compare the results against the results we get by using the normal
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CHAPTER 1. INTRODUCTION

error model. We will use the empirical distribution of the distance between the
wells, and not approximate the distance distribution with a normal distribution.

The only computer software used for implementation is MATLAB. Since our
purpose is to have comparable results, we need to have full control of the im-
plementation. Real welldata is gathered from other computer software [14] and
applied in MATLAB. The computer time of the methods used in this thesis is
usually within range of seconds.

1.2 Overview

Chapter 2 gives a summary of MWD magnetic directional surveying. The
Earth’s magnetic field is introduced, and we discuss models which are used to
predict the Earth’s magnetic field. We show how measurements of the Earth’s
magnetic- and gravity field from MWD-surveys are used to compute the posi-
tion of the wellbore with the minimum curvature method. The methodology in
Chapter 2 is established as the industry standard, and this thesis gives no new
supplements regarding this theory.

Chapter 3 summarizes the statistical theory which is needed for this thesis.
Higher order statistical moments are introduced, and we discuss important
properties of the normal distribution and the NIG-distribution. Algorithms for
parameter estimation and simulation regarding the NIG-distribution are pre-
sented.

Chapter 4 introduces all the error sources which define our error models. The
magnitudes of the error sources are used as industry standard, and we use the
same magnitudes of the error sources. The normal error model is defined as the
error model where all the error sources are normally distributed. The methods
for calculating the position uncertainty given that the error sources are normally
distributed are discussed in Chapter 4. Chapter 4 is considered as a review of
existing theory, as no previous literature have presented it in a statistical setting.

Chapter 5 introduces the use of a NIG-distributed declination error. The NIG
error model is introduced as the model where the declination error is NIG-
distributed, and the other error sources are normally distributed. We suggest
a skewed and heavy-tailed NIG-distribution for the declination error, and we
discuss different analytical properties that are preserved under the NIG error
model. The parameters of the suggested NIG-distribution are estimated from
processed geomagnetic field data from the Tromsø geomagnetic observatory [18].
We compare the position uncertainty of the NIG error model against the normal
error model. The contents in Chapter 5 are not found in any previous published
literature.

Chapter 6 gives a statistical review of anti-collision calculations, as it is cur-
rently used in the oil- and gas-industry. A modification of the existing theory is
suggested in order to use the contents of Chapter 5 in anti-collision calculations.

3



1.2. OVERVIEW

Chapter 7 analyzes the results of this thesis. We analyze three different anti-
collision cases which are illustrative for extracting the differences between the
error models. The main focus of the results are the differences between the
normal error model and the NIG error model.

Chapter 8 gives the closing remarks regarding the conclusions and the need of
further work on the subject.
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Chapter 2

MWD magnetic directional
surveying

2.1 Introduction

This chapter gives a theoretical introduction to Measurement While Drilling
(MWD) magnetic directional surveying. We show how to compute the position
of a wellbore based on measurements from MWD-surveys.

In the early years of the petroleum industry, most wells were drilled vertically to
reach the reservoir. The next generation of wells had more advanced geometry
in order to hit specific targets in the reservoir. There is often a requirement that
the target shall be hit in a specific direction of the well. ”Directional drilling”
is a term which is used to describe the drilling of advanced wells. Accurate
determination of the wellbore position is important for both safety-, economical-
and reliability purposes. There are often numerous wells around a reservoir, and
the reservoir targets of the wells are often close to eachother. It is of critical
importance to avoid well-collision. A collision with an active well could cause
a blowout, which put human lives on risk. The economical costs with a well-
collision are also large, since the drillstring most likely has to be pulled out after
a collision. It is also important to know the exact location of a well in order to
follow the optimal strategy of a production plan.

To determine the position of the wellbore, directional surveys are made dur-
ing the drilling operations. Directional surveying can be done on a wireline
or while drilling (MWD). In MWD-surveys one can measure the gravity with
accelerometers and the magnetic field with magnetometers. The accelerome-
ters and magnetometers are equipped in a MWD-tool, which is located behind
the wellbore. The Earth’s rotation can be measured on a wireline with gyro-
scopic instruments, but it is not measured while drilling. Usually both MWD-
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2.2. COORDINATE SYSTEMS

E

V

N

A

I

Figure 2.1: Definition of azimuth angle A and the inclination angle I in the
NEV coordinate-system. The measured depth D is the ”along-hole distance”.

surveys and wireline-surveys are done on the same well. But MWD-surveys is
the most important survey when considering the risk of having a well-collision,
since MWD-surveys are done while the well is drilled. Wireline-surveys are
done after the well is drilled, when there is no risk of colliding. We focus only
on directional MWD-surveys in this thesis.

Section 2.2 defines the coordinate systems which are used to describe the position
and orientation of a wellbore. Section 2.3 introduces the Earth’s magnetic field,
which is important for directional MWD-surveying. Section 2.4 introduces a
model for predicting the Earth’s gravity field. Section 2.5 shows how we can
calculate the inclination angle I and the azimuth angle A from measurements
Gx, Gy, Gz, Bx, By, Bz from MWD-surveys. Section 2.6 shows how to calculate
the position of a wellbore based on the inclination angle I and the azimuth angle
A. We can summarize the framework of Chapter 2 with the following scheme:

⎡
⎢⎢⎢⎢⎢⎢⎣

Gx

Gy

Gz

Bx

By

Bz

⎤
⎥⎥⎥⎥⎥⎥⎦

Section 2.5−−−−−−−→
⎡
⎣ D

I
A

⎤
⎦ Section 2.6−−−−−−−→

⎡
⎣ N
E
V

⎤
⎦ = P
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X

Z

Y

Upward

V

High-side

τ

Figure 2.2: Definition of toolface angle τ and the high-side direction in the
instrument based coordinate-system, which is defined by the way the sensors
are mounted. The z-direction is the down-hole direction, and it is orthogonal to
the plane spanned by x and y. The high-side direction is defined as the negative
V -direction (upward-direction) perpendicular to the z-axis.

2.2 Coordinate systems

The most common way to describe the position of a wellbore is by using the
NEV coordinate-system. NEV is an abbreviation for North-East-Vertical. The
NEV coordinate-system allows us to determine a position in latitude, longitude
and depth, absolutely or relatively to a platform or a template. To describe
the orientation of a wellpath, we introduce two angles: The azimuth angle A
and the inclination angle I. The azimuth is the angle between the geographic
north and the horizontal projection of the wellpath. The inclination is the angle
between vertical axis and the arc of the wellpath. The measured depth D is the
”along-hole distance” of the drillstring, which can be interpreted as the length
of the arc of the well. Figure 2.1 shows how the angles are defined in the NEV
coordinate-system. The magnetic azimuth Am is also commonly used in MWD-
surveys. This angle is defined in the same way as the azimuth, except that Am

is the angle between the magnetic north and the horizontal projection of the
wellpath.

We now have sufficient information to describe a wellpath properly. In order
to calculate the azimuth A and the inclination I, we need measurements from
the MWD-tool. The accelerometer and magnetometer packages in a MWD-tool
normally consist of 3 sensors each. They are orthogonally placed, spanning
an instrument based coordinate-system. The z-axis in the instrument based
coordinate-system defines the down-hole direction, which is the drilling direc-
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E

V

N Nm

B

θ

δ

Figure 2.3: Definition of the magnetic field vector in the NEV coordinate-system.
The field strength defines the length of B, and the direction of B is defined by
the magnetic dip angle θ and the magnetic declination angle δ.

tion. The sensor packages rotate during drilling. In order to keep track of how
much the MWD-tool have rotated between each measurement, the high-side di-
rection is defined. The high-side direction is defined as the negative V -direction
perpendicular to the z-axis. The angle from the high-side direction to the y-
axis is called the toolface angle τ . τ is used to determine the orientation of the
sensor packages. Figure 2.2 shows the instrument based coordinate-system and
the high-side direction. Note that the toolface angle is undefined for vertical
wells, when the z-axis are parallel with the V -axis. An alternative toolface an-
gle, the north toolface τn, is used in cases like this. τn is the angle between
the geographic north and the y-axis. For small inclination angles, we have that
τn ≈ A+ τ .

2.3 Magnetic reference system

The Earth’s magnetic field has a central role in directional MWD-surveys. We
can describe the Earth’s magnetic field, which we denote B, as a vector field.
The most common way to describe the vector field is shown in Figure 2.3. All
compasses point toward the magnetic north pole, whose direction we denote
Nm. The angle between the geographic north and the projection of the Earth’s
magnetic field vector in the horizontal plane (which is on the line Nm) is called
the declination angle δ. The dip angle θ is the angle between the magnetic
north and the direction of the magnetic field. The magnetic field strength of B
is measured in units Tesla (T ).

The Earth’s magnetic field can roughly be divided into three different magnetic
fields: The main field, the crustal field and the external field. For more details

8
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about the magnetic fields, see [16] or [10]. There exists models of how to predict
both the main field and the crustal field. Prediction of the Earth’s magnetic
field is necessary for quality assurance of the MWD-surveys. These models are
however only approximations of the reality, so one must expect these models
to have uncertainties. The external field is the most unpredictable field, with
high-frequent variations of relatively large magnitude. These variations can be
observed on stationary geomagnetic observatories [18]. Throughout this thesis
we have used (B = 50000 nT, θ = 75 and δ = 1) as our reference values for the
Earth’s magnetic field, which is typical values in the Norwegian sea.

2.4 Gravity reference system

Similar to the magnetic field, we have a model for the Earth’s gravity field.
There are no common standards in the oil and gas industry how to model
the Earth’s gravity field. The Earth’s gravity field varies much less than the
Earth’s magnetic field. The presented formula, which is a modification of the
International Gravity Formula [24], can be used as reference value for the Earth’s
gravity field. Let ϕ be the latitude (in degrees), DV be the vertical depth (in
meters), h0 be the height of the installation above the mean sea level, and �
be the bulk density of the drillstring from the drilling installation to DV (in
g/cm3). The general formula for predicting the Earth’s gravity field is: [17]

G = 978030 + 5186 sin2 ϕ+ 0.309(DV − h0)− 0.084�DV (2.1)

The predicted gravity G is measured in mGal, where 1 mGal = 10−5 m/s2.
Equation (2.1) is usually simplified into two formulas:

Offshore formula:

G = 978030 + 5186 sin2 ϕ+ 0.14DV

Onshore formula:

G = 978030 + 5186 sin2 ϕ+ 0.10DV − 0.31h0

2.5 Connection between the instrument based-
and the magnetic reference coordinate sys-
tem

The NEV coordinate-system and the instrument based coordinate-system are
connected through a set of equations. From the accelerometer and magnetome-
ter readings we can calculate the inclination angle I and the magnetic azimuth
angle Am. Measurements in MWD-surveys are typically done approximately
every 30 meter. This is because the typical well segment is 30 meters long.
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2.5. CONNECTION BETWEEN THE INSTRUMENT BASED- AND THE
MAGNETIC REFERENCE COORDINATE SYSTEM

During coupling of two well segments, the sensors have time to transmit the
sensor measurements to the installation. When measuring the magnetic field
and the gravity field in the x, y, z-directions of the tool coordinate system, we
need to have a connection between these measurements and the parameters I
and Am which allow us to compute the relative position change since the last
measurement station in the survey. The formulas derived in this section are geo-
metrically derived in [6]. We consider the measurements Gx, Gy, Gz, Bx, By, Bz.
The total magnetic field strength B and the gravity field G are found as the
total length of the respective vector:

B =
√
B2

x +B2
y +B2

z

G =
√
G2

x +G2
y +G2

z

The accelerometer sensors are directly connected with the inclination angle I of
the well, and the toolface angle τ of the MWD-tool. The geometric connection
between the accelerometer sensors, the inclination angle I and the toolface angle
τ is as follows:

Gx = −G sin I sin τ (2.2)
Gy = −G sin I cos τ (2.3)
Gz = G cos I (2.4)

The inclination angle I is found from the accelerometer vectors, as G always
points in the V-direction:

I = arctan

⎛
⎝
√
G2

x +G2
y

Gz

⎞
⎠ (2.5)

We see that I = 0 if G = Gz, which means that the down-hole direction is
vertical. The toolface angle τ can be calculated from the accelerometer vectors
since the accelerometer sensors are orthogonal to eachother:

τ = arctan
(−Gx

−Gy

)
(2.6)

As we mentioned in Section 2.2, we see that the toolface angle τ must be modi-
fied for vertical wells. This is seen from (2.6) as Gx and Gy are zero for vertical
wells. For vertical wells, we use the north toolface τn ≈ A+ τ . We see that the
inclination angle I and the toolface angle τ are fully defined from the accelerom-
eter sensors. It can be shown [9] that the magnetic sensors can be interpreted
in the following way:

Bx = B (cos θ cos I cosAm sin τ − sin θ sin I sin τ + cos θ sinAm cos τ) (2.7)
By = B (cos θ cos I cosAm cos τ − sin θ sin I cos τ − cos θ sinAm sin τ) (2.8)
Bz = B (cos θ sin I cosAm + sin θ cos I) (2.9)
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pk−1

κ

•

•
pk

tk−1

tk

•p�

t�

Figure 2.4: Schematic illustration of the notation used in the minimum curvature
method. pk−1, p� and pk are positions along the wellpath. MWD-measurements
are made in pk−1 and pk, where tk−1 and tk are the direction vectors. p� is the
position at a desired measured depthD�, which we must interpolate the position
to.

Assuming that we know τ and I from the accelerometer measurements, we can
solve (2.7)-(2.9) for the magnetic dip angle θ and the magnetic azimuth Am:

θ = arctan

(
Bz cos I − [Bx sin τ +By cos τ ] sin I√

([Bx sin τ +By cos τ ] cos I +Bz sin I)2 + (By sin τ −Bx cos τ)2

)

(2.10)

Am = arctan
(

Bx cos τ −By sin τ
[Bx sin τ +By cos τ ] cos I +Bz sin I

)
(2.11)

Equations (2.10) and (2.11) are geometrically derived in [6]. The true azimuth
angle can be found when we know the declination angle δ of the magnetic field
(See Figure 2.3). We can achieve an estimate of the predicted declination angle
from the models of the Earth’s magnetic field. This estimate, together with
the a grid correction which is caused by the meridian convergence, we use a
correction value δcorr as an estimate for the declination angle to estimate the
true azimuth angle:

A = δcorr +Am (2.12)

For our purposes, δcorr is always given prior to MWD-surveys from magnetic
reference values. δcorr is usually the same value for all surveys in a well, even
though the model of the Earth’s magnetic main field is time- and position-
dependent, and the crustal field is position-dependent.
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2.6. MINIMUM CURVATURE METHODS

2.6 Minimum curvature methods

When we have computed the inclination I and the azimuth A for a set of new
measurements, we are able to compute the relative position change since the
last set of measurements. The most commonly used method is the minimum
curvature method, and it is thoroughly discussed in [20]. The minimum curva-
ture method has emerged as the accepted industry standard for calculating the
well-position. Figure 2.4 shows an illustration of the notation used in the mini-
mum curvature method. Let pk−1 be the position of the previous measurements
(In NEV-coordinate system). New MWD-measurements are done in position
pk, which is currently unknown. From the measurements in pk−1 and the new
measurements, we are able to compute the new position pk. Let Ik−1 and Ik
denote the two inclination angles derived from the measurements in pk−1 and
pk. Let Ak−1 and Ak denote the respective azimuth angles. A direction vector
tk−1 can be calculated from the inclination Ik−1 and the azimuth Ak−1:

tk−1 =

⎡
⎣ sin Ik−1 cosAk−1

sin Ik−1 sinAk−1

cos Ik−1

⎤
⎦ , (2.13)

and likewise for tk. Let ΔD = Dk −Dk−1 be the difference in measured depth.
We define κ to be the measure of the change in inclination angle in a well, which
is called the dogleg angle. An expression for the dogleg angle can be computed
[20]:

κ = 2 arcsin

{√
sin2
(Ik − Ik−1

2
)

+ sin Ik−1 sin Ik sin2
(Ak −Ak−1

2
)}

(2.14)

We see from Figure 2.4 and (2.14) that κ is zero if the well has constant incli-
nation and azimuth. Thorogood and Sawaryn [20] derives the following formula
for computing pk:

pk = pk−1 +
ΔDf(κ)

2

⎡
⎣ sin Ik−1 cosAk−1 + sin Ik cosAk

sin Ik−1 sinAk−1 + sin Ik sinAk

cos Ik−1 + cos Ik

⎤
⎦ , (2.15)

where f(κ) = tan κ
2

κ
2

. Another minimum curvature formula which is important
for our purposes is to calculate the position p� on a given measured depth
D�. This is a minimum curvature interpolation method which is important if
we want to compute the position of a well on a equidistant grid in measured
depth. Let pk−1 and pk be two calculated positions along the wellpath. Let
ΔD� = D� − Dk−1 be the distance between pk−1 and p�, and let κ� be the
dogleg angle between pk and p�. The direction vector t� can be calculated from
the following formula [20]:

t� =
sin
(
[1− ΔD�

ΔD ]κ
)

sinκ
tk−1 +

sin
(

ΔD�

ΔD κ
)

sinκ
tk
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In a similar manner as in (2.15), we can now compute the position vector p� at
the desired measured depth:

p� = pk−1 +
ΔD�f(κΔD�

ΔD )
2

(tk−1 + t�)
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Chapter 3

Statistical distributions

3.1 Introduction

This chapter summarizes the statistical distributions which are used in this the-
sis. The properties of the statistical distributions which are used in the thesis are
also shown. Section 3.2 explains the theory behind statistical moments, which
are important for this thesis. Section 3.3 introduces the normal distribution.
Section 3.4 introduces the NIG-distribution, and algorithms for estimating the
NIG-parameters and simulation of NIG-distributed random variables are pre-
sented. Section 3.5 reflects over other possible statistical distributions than the
NIG-distribution which could have been applied in this thesis.

3.2 Statistical moments

The statistical moments are an important class of expectations of a distribution
[7]. Let X be a random variable with density function fX(x), expectation μ
and variance σ2. The k’th central moment, which is the k’th moment about the
mean μ, is defined as:

μk =
∫ ∞
−∞

(x− μ)kfX(x)dx ; k = 1, 2, ... (3.1)

We see from (3.1) that the first central moment μ1 = 0. For k = 2, we recognize
(3.1) as the definition of the variance σ2. The higher order central moments are
used to describe other properties of a statistical distribution. We define the k’th
standardized moment γk:

γk =
μk

σk
; k = 1, 2, ... (3.2)
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Figure 3.1: Three different probability density functions. The dashed red line is
a standard normal distribution, the green line is a symmetric distribution with
heavy tails, and the blue line is a right-skewed distribution.

We see from (3.2) that the first standardized moment γ1 = 0 since μ1 = 0. For
k = 2, the standardized moment γ2 = 1. The third and fourth standardized
moments are called the skewness and kurtosis, respectively. The skewness and
kurtosis are important properties of a statistical distribution. If the skewness
γ3 > 0, the distribution is called positive-skew, or right-skewed. The blue distri-
bution in Figure 3.1 is an example of a right-skewed distribution. A symmetric
distribution, such as the normal distribution, has γ3 = 0. The kurtosis γ4 is a
measure of the peakedness or the flatness of a distribution [7]. A high kurtosis
results in a sharp peak and heavy tails of a distribution. The green distribution
in Figure 3.1 is an example of a distribution with γ4 = 30. The normal distri-
bution (the dashed red line in Figure 3.1) has γ4 = 3, and a kurtosis larger than
this results in heavier tails than the normal distribution. We can estimate the
k’th central moment from a sample X1, .., Xn with the sample estimator mk of
μk:

mk =
1
n

n∑
i=1

(xi − x̄)k k = 1, 2, .. (3.3)

From (3.3) follows the estimators of sample skewness γ̂3 and sample kurtosis γ̂4:

γ̂3 =
m3

m
3/2
2

(3.4)

γ̂4 =
m4

m2
2

(3.5)
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3.3 The normal distribution

The normal distribution is by far the most widely used statistical distribution.
It has a wide range of applications, and is a limit distribution in many cases. A
random variable X is normally distributed with expectation μ and variance σ2

if X has the following density function:

fX(x;μ, σ2) =
1√
2πσ

exp
{
− (x− μ)2

2σ2

}
, x ∈ R (3.6)

A commonly used abbreviation for ”X is normally distributed with expectation
μ and variance σ2” is X ∼ N(μ, σ2). The univariate normal distribution is a
member of the location-scale family of univariate probability distributions. If
Z ∼ N(0, 1), we have the property that X = μ+ σZ. From this property, μ is
often called the location parameter, and σ is often called the scale parameter.

If we have n independent random variables X1, .., Xn, which we assume are nor-
mally distributed with expectation μ and variance σ2, we can use the maximum
likelihood estimators (MLE) of μ and σ2 to fit a suitable normal distribution.
These estimators are available in every basic statistical software, and are as
follows:

μ̂ =
1
n

n∑
i=1

Xi (3.7)

σ̂2 =
1
n

n∑
i=1

(Xi − μ̂)2 (3.8)

Sometimes the maximum likelihood estimator σ̂2 (3.8) is replaced by the sam-
ple variance estimator s2 = 1

n−1

∑n
i=1(Xi − μ̂)2, if it is preferable to have an

unbiased estimator of σ2. The normal distribution is closed under linearity. If

Y =
n∑

i=1

aiXi + b ,

where Xi ∼ N(μi, σ
2
i ) and the Xi’s are uncorrelated, we have that

Y ∼ N

(
b+

n∑
i=1

aiμi,
n∑

i=1

a2
iσ

2
i

)

The normal distribution can be extended to a multivariate distribution. Let
X = [X1, .., Xk]T be a random vector with k elements. If the elements of X are
normally distributed with known expectation and variance, and the covariance
structure between the elements is known, we can describe the statistical dis-
tribution of X with a multivariate normal distribution. The random vector X
of dimension k is multivariate normal with parameter vector μ and covariance
matrix Σ, X has the following density function:

φk(x;μ,Σ) =
1

(2π)k/2
|Σ−1/2| exp

{
−1

2
(x− μ)T Σ−1(x− μ)

}
, x ∈ R

k (3.9)
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We use the abbreviationX ∼ Nk(μ,Σ) ifX is multivariate normally distributed.
The multivariate normal distribution is a member of the location-scale family
of multivariate distributions. If Z ∼ Nk(0, I), where I is the identity matrix,
we have the property that X = μ+ Σ1/2Z. Σ1/2 is the Cholesky-decomposition
of Σ. If we have n independent random vectors X1, .., Xn, which we assume are
multivariate normally distributed with expectation μ and covariance matrix Σ,
we have the following maximum likelihood estimators:

μ̂ =
1
n

n∑
i=1

Xi (3.10)

Σ̂ =
1
n

n∑
i=1

(Xi − μ̂)(Xi − μ̂)T (3.11)

As in the univariate case, the maximum likelihood estimator Σ̂ (3.11) can be
replaced by the sample variance estimator S2 = 1

n−1

∑n
i=1(Xi− μ̂)(Xi− μ̂)T , if

it is preferable to have an unbiased estimator of Σ. As for the univariate case,
the multivariate normal distribution is also closed under linearity. If

Y =
n∑

i=1

AiXi + b ,

where Xi ∼ Nk(μi,Σi), Ai ∈ R
m×k and b ∈ R

m, we have that

Y ∼ Nm

(
b+

n∑
i=1

Aiμi,

n∑
i=1

AiΣiA
T
i

)

3.4 The normal inverse gaussian distribution

3.4.1 Density function

The normal inverse gaussian (NIG) distribution is a distribution which can
describe data with skewness and fat tails. Most of the literature about the
NIG distribution can be found in [1], [13] or [11]. It is a special case of the
generalised hyperbolic (GH) distribution. The parameters of a univariate NIG
are Λ = (μ, ρ, α, β). The density function of X ∼ NIG(μ, ρ, α, β) is:

fX(x) =
αρK1

(
α
√
ρ2 + (x− μ)2

)
π
√
ρ2 + (x− μ)2

exp
{
ρ
√
α2 − β2 + β(x− μ)

}
, x ∈ R

(3.12)
We have the restrictions μ ∈ R, α > 0, ρ > 0 and 0 < |β| ≤ α on the parameters
of this distribution. For easier parametrization, one can use γ =

√
α2 − β2,

and let γ > 0. Both γ and α are used in this thesis, although it is important
to remember that the NIG-distribution only has 4 parameters. K1(·) is the
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modified Bessel function of the third kind and of order 1. The modified Bessel
function of the third kind with order λ is the following function:

Kλ(x) =
1
2

∫ ∞
0

wλ−1 exp
{
−1

2
(xw − x

w
)
}

dw

The NIG distribution is a member of the location family of univariate distri-
butions. If Z ∼ NIG(0, ρ, α, β), we have that X = μ + Z ∼ NIG(μ, ρ, α, β).
μ is often called the location parameter, also for the NIG distribution. The
mean, variance, skewness and kurtosis of a NIG distribution can be found by
the following formulas:

E[X] = μ+
ρβ

γ
(3.13)

Var[X] =
ρα2

γ3
(3.14)

Skew[X] =
3β

α
√
ργ

(3.15)

Kurt[X] = 3
(

1 + 4
β2

α2

)
1
ργ

(3.16)

ρ is often called a scale parameter, even though the NIG distribution is not a
member of the location-scale family. We see that ρ occurs in all the expressions
(3.13)-(3.16). If β = 0, we see that the skewness (3.15) becomes 0. Of this
reason, β is often called the asymmetry parameter. If β > 0, the distribution
is right-skewed, and if β < 0, the distribution is left-skewed. α and β occur
both separately, and together in γ, in (3.13)-(3.16). Together they determine
the heaviness of the tails. The heaviest tail decays as:

fX(x) ∝ |x|−3/2 exp {−α|x|+ |βx|}
{
β < 0 and x→ −∞
β > 0 and x→ +∞

The lightest tail decays as:

fX(x) ∝ |x|−3/2 exp {−α|x| − |βx|}
{
β < 0 and x→ +∞
β > 0 and x→ −∞

The normal distribution is closed under linearity. The NIG distribution is
only closed under linearity for special cases of linear transformations. If Y =∑n

i=1Xi, where Xi ∼ NIG(μi, ρi, α, β), we have that

Y ∼ NIG

(
n∑

i=1

μi,
n∑

i=1

ρi, α, β

)

If Y = aX + b, where a and b are scalars, and X ∼ NIG(μ, ρ, α, β), we have
that

Y ∼ NIG

(
aμ+ b, |a|ρ, α|a| ,

β

a

)
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The proofs of these properties are shown in Appendix A, as we failed to find
them in other literature.

The density function (3.12) involves the modified Bessel function, which com-
plicates all calculations regarding X. We can avoid the modified Bessel function
by introducing a new random variable. Suppose we have a random variable Z
which is inverse gaussian distributed, Z ∼ IG(ρ, γ), i.e.:

fZ(z) =
1√

2πz3
ρ exp
{
ργ − 1

2
(
ρ2

z
+ γ2z)

}
(3.17)

Let the conditional distribution X|Z be normal distributed,
X|Z = z ∼ N(μ+ βz, z). The joint density of (X,Z) is:

f(x, z) = f(x|z)× f(z)

∝ ρ

z2
exp
{
ργ − β(μ− x) + μ

x

z
− 1

2
(β2 + γ2)z − 1

2
(μ2 + ρ2)z−1

}
(3.18)

If we compute the marginal distribution of X from (3.18), we get that X is
marginally NIG-distributed, X ∼ NIG(μ, ρ, α, β). The proof is shown in Ap-
pendix B. We can observe that the joint density (3.18) is also an exponential
family:

f(x, z) = g(Λ)h(x, z) exp

{
4∑

k=1

ξk(Λ)tk(x, z)

}
(3.19)

Here g(Λ) = ρeργ−βμ, t1(x, z) = x, t2(x, z) = x
z , t3(x, z) = z

2 , t4(x, z) = 1
2z , and

the ξi(·)’s are:

ξ1(Λ) = β

ξ2(Λ) = μ

ξ3(Λ) = −(β2 + γ2)

ξ4(Λ) = −(μ2 + ρ2)

The sufficient statistics for (X,Z) can be easily obtained by (3.19). They are
given by tk(X,Z) (k = 1, 2, 3, 4). We can use the property that the joint density
of (X,Z) is an exponential family when we estimate the parameters by the EM-
algorithm.

3.4.2 Parameter estimation by EM-algorithm

We must use numerical, iterative methods to estimate the parameters in this
distribution. One of the most reasonable methods to use is the Expectation-
Maximization-algorithm (EM-algorithm). Details of the EM-algorithm in gen-
eral can be found in [7] and [8]. The specific EM-algorithm applied to the
NIG-distribution is found in [1]. The EM-algorithm converges to the MLE, and
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is suitable for situations where we have missing data. We use the property that
X|Z = z ∼ N(μ+ βz, z), and consider Z as our missing data.

E-step In the E-step, we compute the expected value of the sufficient statistics
for the missing data conditioned on the observed data. From the joint density
(3.18), it can be shown that Z|X ∼ GIG(−1,

√
ρ2 + (x− μ)2, α), where GIG is

short for the generalised inverse gaussian distribution. Of the joint density (3.19)
being an exponential family, and f(z|x) ∝ f(x, z), we see that the sufficient
statistics of a GIG-distribution are Z and Z−1. The moments of a GIG(λ, a, b)
are given by [12]:

E[Zr] =
(a
b

)r Kλ+r(ab)
Kλ(ab)

Our GIG-distribution has λ = −1. Hence, we set Zi and Z−1
i equal to their

expected value in the E-step, which are:

E[Zi|Xi = xi] =

√
ρ2 + (xi − μ)2

α

K0(α
√
ρ2 + (xi − μ)2)

K1(α
√
ρ2 + (xi − μ)2)

; i = 1, .., n

E[Z−1
i |Xi = xi] =

α√
ρ2 + (xi − μ)2

K2(α
√
ρ2 + (xi − μ)2)

K1(α
√
ρ2 + (xi − μ)2)

; i = 1, .., n

M-step In the M-step, we know the current values of the missing data from
the E-step, and can compute estimates for the parameters. From the property
that f(x, z;μ, ρ, α, β) = f(x|z;μ, β)f(z; ρ, α, β) the likelihood can be split into
two separate likelihoods. From X|Z = z ∼ N(μ+ βz, z) we can easily compute
β(k+1) and μ(k+1). This likelihood is:

L1(μ, β|x, z) =
n∏

i=1

1√
2πzi

exp
{
− 1

2zi
(xi − μ− βzi)2

}

∝ exp

{
−1

2

n∑
i=1

1
zi

(xi − μ− βzi)2
}

Observe that finding estimates for μ and β is equal to solving a regression
problem. This means that if we have a sample X1, .., Xn, all Xi’s have different
variances Zi. We differentiate the log-likelihood logL1(μ, β) with respect to μ
and β and set to zero:

∂ logL1(μ, β)
∂μ

=
n∑

i=1

1
zi

(xi − μ− βzi) = 0 (3.20)

∂ logL1(μ, β)
∂β

=
n∑

i=1

(xi − μ− βzi) = 0 (3.21)

By solving (3.20) and (3.21) for β and μ we get the updates β(k+1) and μ(k+1):

β(k+1) =

∑n
i=1

xi

zi
− x̄∑n

i=1
1
zi

n− z̄∑n
i=1

1
zi

(3.22)

μ(k+1) = x̄− β(k+1)z̄ (3.23)
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For computation of ρ(k+1) and γ(k+1), we use that Z ∼ IG(ρ, γ). The likelihood
is:

L2(ρ, γ|x, z) =
n∏

i=1

ρ√
2πz3

exp
{
ργ − 1

2
(
ρ2

zi
+ γ2zi)

}

∝ ρn exp

{
nργ − 1

2
(ρ2

n∑
i=1

1
zi

+ γ2
n∑

i=1

zi)

}

We differentiate the log-likelihood logL2(ρ, γ) with respect to ρ and γ, and set
to zero:

∂ logL2(ρ, γ)
∂ρ

=
n

ρ
+ nγ − ρ

n∑
i=1

1
zi

= 0 (3.24)

∂ logL2(ρ, γ)
∂γ

= nρ− γ
n∑

i=1

zi = 0 (3.25)

By solving (3.24) and (3.25) for ρ and γ we get the updates ρ(k+1) and γ(k+1):

ρ(k+1) =
√

n∑n
i=1

1
zi
− n

z̄

(3.26)

γ(k+1) =
ρ(k+1)

z̄
(3.27)

The update for α are given by the variable transformation:

α(k+1) =
√

(γ(k+1))2 + (β(k+1))2 (3.28)

By doing the EM-algorithm iteratively, setting the sufficient statistics Zi and
Z−1

i equal to their expected values, and updating the parameters, the parameter
updates (μ(k+1), ρ(k+1), α(k+1), β(k+1)) converge to the maximum likelihood es-
timates (μ̂, ρ̂, α̂, β̂). Suitable starting values for the parameters are the moment
estimators. Let ml (l = 2, 3, ..) be the sample moment defined in (3.3), and
the sample skewness and the sample kurtosis be defined in (3.4) and (3.5). By
setting the sample mean, sample variance, sample skewness and sample kurtosis
equal to the theoretical values for the mean, variance, skewness and kurtosis
in (3.13)-(3.16), and solve for the parameters, we get the following moment
estimators as initial values in the EM-algorithm:

β(0) =
m3m2ψ

2

3

α(0) =
√
ψ2 + (β(0))2

ρ(0) =
m2

2ψ
3

(β(0))2 + ψ2

μ(0) = m1 − β(0)ρ(0)

ψ
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ψ =
3

m2

√
3m4 − 5m2

3

The experiences with the EM-algorithm is mixed. The convergence can be very
slow in some cases, and in other cases the convergence is fast. In most cases it is
sufficient to have a relatively high tolerance limit, because the estimates after a
few iterations are often sufficiently good. The likelihood function seems to have
very low variability around the maximum, so the estimates can keep changing
for a very long time if the tolerance limit is set too small. In some cases, the
moment estimators are even a sufficiently good parameter choice.

3.4.3 Simulation

Simulation of independent NIG-distributed random variables can be done very
efficiently. In [2], the following algorithm is presented for simulating X ∼
NIG(μ, ρ, α, β):

• Sample Z ∼ IG(ρ, γ)

• Sample Y ∼ N(0, 1)

• Set X = μ+ βZ +
√
ZY

The following algorithm can be used for simulating Z ∼ IG(ρ, γ) if no available
statistical software have this function built in:

• Sample V ∼ χ2
1

• Set τ = ρ
γ and λ = ρ2

• Compute Z1 = τ + τ
2λ

(
τV −√4τV λ+ (τV )2

)
and Z2 = τ2

Z1

• Compute p = τ
τ+Z1

• Set Z =

{
Z1 with probability p

Z2 with probability p

3.5 Other skewed and heavy-tailed distributions

We have focused on the normal inverse gaussian distribution in this thesis.
There are however many alternative distributions that can be used instead of
the NIG-distribution. This section presents other alternative distributions that
can be used to model skewness and kurtosis in different ways, and justifies why
we have chosen to use the NIG-distribution in this thesis.
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The NIG-distribution is a special case of the generalised hyperbolic (GH) dis-
tribution [2], which has the following density function:

fX(x) =
(α2 − β2)λ−1/2Kλ−1/2

(
α
√
ρ2 + (x− μ)2

)
exp {β(x− μ)}

√
2παλ−1/2ρλKλ

(
ρ
√
α2 − β2

)(√
ρ2 − (x− μ)2

)1/2−λ
; x ∈ R

Kj(·) is the modified Bessel function of third kind with order j. We see that the
NIG-distribution is a GH-distribution with λ = − 1

2 . Since the NIG-distribution
is a special case of the GH-distribution, we could have studied the GH-distribution
in detail in this thesis. Many of the properties for the NIG-distribution shown
in Section 3.4 can be generalised for the GH-distribution. But the expressions
for E(X) and Var(X) include the modified Bessel function, and the parameter
estimation becomes more complicated. Since we are interested in a statistical
distribution which flexibly can be set with respect to the four first moments, we
only need four parameters to uniquely determine the distribution. The NIG-
distribution is considered to be sufficiently flexible for our purposes.

If we are not interested in a distribution which models the kurtosis in a flexible
way, the skew-normal distribution (SN) [3] can be used. The SN-distribution is
a non-symmetric normal distribution, which has the following density function:

fX(x;μ, σ, α) = 2φ(x;μ, σ)Φ(α(x− μ)) , x ∈ R

φ(·) is the density function of a normal distribution (3.6), and Φ(·) is the distri-
bution function of a standard normal distribution. α is often called the skewness
parameter. This distribution is not considered to be flexible enough for our pur-
poses, since the parameters μ, σ and α lack to model the kurtosis in a flexible
way. But it can be useful for cases where data are non-symmetric and the tails
decay according to a normal distribution.

In statistical literature there are two different definitions of a Skew-t distribu-
tion. We can introduce a Skew-t distribution (ST) in the same way as for the
SN-distribution if we want to model heavier tails. For more details regard-
ing this distribution, see [4] or [10]. This ST-distribution involves a parameter
regarding the degrees of freedom, which is hard to interpret and harder to esti-
mate. Another Skew-t distribution is introduced in [2] as a special case of the
GH-distribution. A Skew-t distribution can be used for modelling skewness and
tails that are slightly heavier than in the normal distribution.

24



Chapter 4

Normally distributed
position uncertainty in
MWD magnetic directional
surveying

4.1 Introduction

This chapter gives an introduction to the statistics which is commonly used
in the oil and gas industry to describe the position uncertainty in directional
drilling.

The MWD magnetic directional surveys that are made during drilling are ba-
sically measurements of components of the Earth’s magnetic- and gravity field.
The wellbore position are calculated with a set of non-linear equations, as shown
in Chapter 2. But the MWD-measurements are physical measurements which
are affected by several error sources. These error sources propagate through the
non-linear equations and cause an uncertainty in the wellbore position. Accurate
determination of the wellbore position is important for both safety-, economical-
and reliability purposes. Because of this, it is of critical importance to have a
good overview of the error sources that contribute significantly to the position
uncertainty, and it is also important to know how these error sources propagate
through MWD-surveys.

Most of the theory from this chapter is derived from Ekseth [9]. Chapter 2
explained how to compute the position of a wellbore based on measurements
from MWD-surveys. In this chapter we introduce different error sources which
cause significant effect on the uncertainty of the wellbore position. These error
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sources define our error model for directional MWD-surveying. Section 4.2
explains the error sources which we include in our error model. We limit the
number of error sources to the most significant ones. We let ε1, .., ε19 denote the
error sources which we include in this thesis. The weighting functions w, which
explains how an error affect the measured depth D, inclination angle I and
the azimuth angle A, are also introduced in Section 4.2. Section 4.3 explains
how to compute the position uncertainty assuming that all error sources are
normally distributed. The assumption of normally distributed error sources has
become an established industry standard, as the resulting position uncertainty
is normally distributed. This theory is mainly based on linearizations of the
minimum curvature formula (2.15), and these linearizations are valid also for
error sources with other statistical distributions than the normal distribution.
We can summarize the framework of Chapter 4 with the following scheme:⎡

⎢⎢⎢⎣
ε1
ε2
...
ε19

⎤
⎥⎥⎥⎦ Section 4.2−−−−−−−→

w

⎡
⎣ dD

dI
dA

⎤
⎦ Section 4.3−−−−−−−→

(2.15)

⎡
⎣ dN

dE
dV

⎤
⎦ = dP

4.2 Error model

There are numerous sources of error which contribute to the position uncertainty.
Some error sources cause larger uncertainties than other. The chosen error
model must be realistic, and include the most important error sources. The
more error sources that are included in an error model, the more complicated
the model becomes. An important assumption is that all the error sources are
independent of eachother. This section defines the error model which we use in
this thesis. The different error sources are also explained in this section. The
chosen error model includes the most important error sources that contribute to
the position uncertainty, according to Williamson [25] and Brooks & Wilson [5].
Table 4.1 gives an overview of the error sources which are included in the error
model. The standard deviations that are displayed are suggested values from
Williamson [25]. In this section we also introduce weighting functions, which
show how the error sources cause errors in measured depth D, inclination angle
I and azimuth angle A.

4.2.1 Accelerometer bias errors

The accelerometer package consists of 3 sensors that measure components of the
Earth’s gravity field. The sensors are mechanical devices, and need to be recal-
ibrated at regular intervals to secure that the accuracy of the measurements is
within given limits. It is natural to believe that the sensor errors are systematic
within each MWD-survey, but random between different MWD-surveys. The
accelerometer bias error cause the sensor readings to be greater or smaller than
the true value.
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Error Description Standard Propagation
number deviation mode

1 X-Accelerometer bias 0.0039 m/s2 S
2 Y-Accelerometer bias 0.0039 m/s2 S
3 Z-Accelerometer bias 0.0039 m/s2 S
4 X-Accelerometer scale 0.0005 S
5 Y-Accelerometer scale 0.0005 S
6 Z-Accelerometer scale 0.0005 S
7 X-Magnetometer bias 70 nT S
8 Y-Magnetometer bias 70 nT S
9 Z-Magnetometer bias 70 nT S
10 X-Magnetometer scale 0.0016 S
11 Y-Magnetometer scale 0.0016 S
12 Z-Magnetometer scale 0.0016 S
13 Depth reference 0.35 m R
14 Depth scale factor 6 · 10−4 S
15 Depth stretch type 2.5 · 10−7 m−1 G
16 Declination 0.36◦ G
17 Declination BH -dependent 5000◦ nT G
18 Sag 0.2◦ S
19 Axial magnetisation 150 nT S

in drillstring

Table 4.1: Overview of the different error sources used in this thesis. All the
error sources in this table are considered to be uncorrelated. The way these
error sources affect MWD-surveys is shown in the propagation mode column.
(R: Random, S: Systematic, G: Global). The standard deviations in the table
are from [25].

We assume that the 3 sensors have 3 independent biases. Let ε1, ε2 and ε3
denote the accelerometer bias errors, following the numbering from Table 4.1.
The errors ε1, ε2 and ε3 are independent random variables. A bias error ε1
in the X-accelerometer causes an error dGx = ε1 in the sensor reading. The
accelerometer errors caused by the accelerometer bias errors are:

dGx = ε1

dGy = ε2

dGz = ε3

The accelerometer measurements are used both in computation of inclination I
and azimuth A. An error dGx in the X-accelerometer causes the errors dI and
dA in I and A. If we assume that the errors are small, we can approximate dI
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and dA from (2.5) and (2.11):

dI ≈ ∂I

∂Gx
dGx =

∂I

∂Gx
ε1 (4.1)

dA ≈ ∂A

∂I

∂I

∂Gx
dGx =

∂A

∂I

∂I

∂Gx
ε1 (4.2)

The same can be done for the bias errors in the two other accelerometers. We
define a weighting function w1 = [ ∂D

∂Gx
, ∂I

∂Gx
, ∂A

∂Gx
]T for the X-accelerometer bias,

and likewise for the two other accelerometers. It can be shown that the weighting
functions for the accelerometer bias errors are as follows:

w1 =
1
G

⎡
⎣ 0

− cos I sin τ
(cos I sinAm sin τ − cosAm cos τ) tan θ + cot I cos τ

⎤
⎦ (4.3)

w2 =
1
G

⎡
⎣ 0

− cos I cos τ
(cos I sinAm cos τ + cosAm sin τ) tan θ − cot I sin τ

⎤
⎦ (4.4)

w3 =
1
G

⎡
⎣ 0

− sin I
tan θ sin I sinAm

⎤
⎦ (4.5)

4.2.2 Accelerometer scale errors

The accelerometer scale errors are justified in the same way as the accelerometer
bias errors. The scale errors are also assumed to be systematic within each
MWD-survey, but random between different MWD-surveys. Let ε4, ε5 and ε6
denote the accelerometer scale errors. The errors ε4, ε5 and ε6 are assumed
independent. From (2.2)-(2.4) we see that accelerometer errors caused by the
accelerometer scale errors are:

dGx = Gxε4 = [−G sin I sin τ ]ε4
dGy = Gyε5 = [−G sin I cos τ ]ε5
dGz = Gzε6 = [G cos I]ε6

The value G is the gravity reference value shown in Section 2.4. Alternatively
one could useG =

√
G2

x +G2
y +G2

z, but then the scale error would be dependent
of the bias error. For simplicity, we assume that G is the gravity reference value
and that the accelerometer scale errors are independent of the accelerometer
bias errors. An error dGx in the X-accelerometer causes the errors dI and dA
in I and A. If we assume that the errors are small, we can approximate dI and
dA from (2.5) and (2.11):

dI ≈ ∂I

∂Gx
dGx =

∂I

∂Gx
[−G sin I sin τ ]ε4 (4.6)

dA ≈ ∂A

∂Gx
dGx =

∂A

∂Gx
[−G sin I sin τ ]ε4 (4.7)
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It can be shown that the weighting functions for the accelerometer scale errors
are as follows:

w4 =

⎡
⎢⎢⎣

0
sin I cos I sin2 τ

−[tan θ sin I(cos I sinAm sin τ − cosAm cos τ)
+ cos I cos τ ] sin τ

⎤
⎥⎥⎦ (4.8)

w5 =

⎡
⎢⎢⎣

0
sin I cos I cos2 τ

−[tan θ sin I(cos I sinAm cos τ + cosAm sin τ)
− cos I sin τ ] cos τ

⎤
⎥⎥⎦ (4.9)

w6 =

⎡
⎣ 0

− sin I cos I
tan θ sin I cos I sinAm

⎤
⎦ (4.10)

4.2.3 Magnetometer bias errors

The magnetometer bias errors affect the 3 magnetometer sensors in the same way
the accelerometer bias errors affect the accelerometer sensors. The magnetome-
ter bias errors are systematic within each MWD-survey, but random between
different MWD-surveys. Let ε7, ε8 and ε9 denote the magnetometer bias errors.
The errors ε7, ε8 and ε9 are assumed to be independent. The magnetometer
errors caused by the magnetometer bias errors are:

dBx = ε7

dBy = ε8

dBz = ε9

The magnetometer measurements are only used in computation of the azimuth,
and errors in magnetometers do not affect the inclination, as were the case for the
accelerometers. We have the following weighting functions for the magnetometer
bias errors:

w7 =

⎡
⎣ 0

0
1

B cos θ (cosAm cos τ − cos I sinAm sin τ)

⎤
⎦ (4.11)

w8 =

⎡
⎣ 0

0
− 1

B cos θ (cosAm sin τ + cos I sinAm cos τ)

⎤
⎦ (4.12)

w9 =

⎡
⎣ 0

0
− 1

B cos θ (sin I sinAm)

⎤
⎦ (4.13)

29



4.2. ERROR MODEL

4.2.4 Magnetometer scale errors

A magnetometer scale error affect the magnetometer with an error proportional
to the amplitude of the measurement of the sensor. The magnetometer scale
errors are assumed to be systematic within each MWD-survey, but random
between different MWD-surveys. Let ε10, ε11 and ε12 denote the magnetometer
scale errors. From (2.7)-(2.9) we see that magnetometer errors caused by the
magnetometer scale errors are:

dBx = Bxε10 = B
(
[cos θ cos I cosAm − sin θ sin I] sin τ + cos θ sinAm cos τ

)
ε10

dBy = Byε11 = B
(
[cos θ cos I cosAm − sin θ sin I] cos τ − cos θ sinAm sin τ

)
ε11

dBz = Bzε12 = B
(
cos θ sin I cosAm + sin θ cos I

)
ε12

The values B and θ are magnetic reference values shown in Section 2.3. We have
the following weighting functions for the magnetometer scale errors:

w10 =

⎡
⎢⎢⎣

0
0

(cos I cosAm sin τ − tan θ sin I sin τ + sinAm cos τ)
·(cosAm cos τ − cos I sinAm sin τ)

⎤
⎥⎥⎦ (4.14)

w11 =

⎡
⎢⎢⎣

0
0

−(cos I cosAm cos τ − tan θ sin I cos τ − sinAm sin τ)
·(cosAm sin τ + cos I sinAm cos τ)

⎤
⎥⎥⎦ (4.15)

w12 =

⎡
⎣ 0

0
−(sin I cosAm + tan θ cos I) sin I sinAm

⎤
⎦ (4.16)

4.2.5 Depth errors

We use three independent error sources concerning the measured depth D. The
depth errors are quite complex, and details concerning these errors can be found
in Ekseth [9]. Let ε13 be the depth error concerning the reference depth. The
relative distance between the reference and the wellbore is affected by many error
sources, such as water tides and varying rig ballast. It is sufficient to include all
these errors into ε13. This error source is assumed to be randomly distributed
between the measurement stations in the well. The second depth error is the
scale factor, ε14. It is assumed to be proportional to the measured depth. The
scale errors are assumed to be systematic within each MWD-survey, and random
between different MWD-surveys. The third depth error is the stretch type error,
ε15. The stretch type error is mainly caused by stretch in the drillstring, and
thermal expansion. It is assumed to be proportional to the product of the
measured depth and the vertical depth. It is considered to be systematic for
all wells, i.e. global. This error dominates the other depth errors in deep wells.
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The depth errors affect the measured depth as follows:

dD = ε13

dD = D · ε14
dD = D ·DV · ε15

, where D is the measured depth and DV is the vertical depth. The weighting
functions for the depth errors are quite simple:

w13 =

⎡
⎣ 1

0
0

⎤
⎦ (4.17)

w14 =

⎡
⎣ D

0
0

⎤
⎦ (4.18)

w15 =

⎡
⎣ D ·DV

0
0

⎤
⎦ (4.19)

4.2.6 Declination errors

The uncertainty in the magnetic declination angle is probably the most impor-
tant uncertainty in the error model. As described in Section 2.3, the Earth’s
magnetic field can be roughly divided into three parts. These three magnetic
fields vary both in position and time. It is reasonable to include the errors
from the magnetic fields into our error model. The errors of the field strength
B and the dip angle θ are not considered to be of significant magnitude. But
the declination is considered to be the most significant error source regarding
the position uncertainty in MWD magnetic directional surveying. We separate
the declination errors in two parts: The constant declination error ε16, and the
BH -dependent declination error ε17. Both error sources are considered to have
a global propagation mode. They affect the azimuth as follows:

dA = ε16

dA =
1

B cos θ
· ε17

The weighting functions are:

w16 =

⎡
⎣ 0

0
1

⎤
⎦ (4.20)

w17 =

⎡
⎣ 0

0
1

B cos θ

⎤
⎦ (4.21)
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4.2.7 Sag error

The sag error is caused by misalignment of the sensors in the well. The weight
of the drillstring causes a sag when a well is drilled with a high inclination angle.
The sag error ε18 affect the inclination as follows:

dI = sin Iε18

The weighting function is:

w18 =

⎡
⎣ 0

sin I
0

⎤
⎦

4.2.8 Axial magnetism error in drillstring

Steel in other equipments than the MWD-tool will always cause a magnetic
field around the MWD-tool. This magnetic field can be divided into an axial-
and a cross-axial component. We include only the axial component in our error
model. The use of non-magnetic spacing around the MWD-tool is often required
in order to have control of the axial magnetic field. The axial magnetism error
ε19 affects the azimuth as follows:

dA =
sin I sinAm

B cos θ
· ε19

The weighting function is:

w19 =

⎡
⎣ 0

0
sin I sin Am

B cos θ

⎤
⎦

4.2.9 Excluded errors

The errors that are mentioned so far are believed to be the most significant error
sources in MWD magnetic directional surveying. There are however other errors
that can be included in an error model as easily as the errors that are included.
Random measurement errors on the MWD-tool could have been included, but
they are not considered to be of significant magnitude [9]. The sag error is only
one type of misalignment error. The MWD-tool can be misaligned radially to the
drilling direction. The cross-axial magnetism error caused by other equipments
can also be included in the model.

The non-magnetic spacing between the MWD-tool and other instruments is not
always practiced. The axial magnetic field will then affect the axial measurement
Bz, making Bz too inaccurate. It is possible to correct for the axial magnetism
by ignoring the axial measurement Bz, and introducing the magnetic reference
values from Section 2.3. This leads to a a new set of equations as in Section 2.5,
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which leads to a new set of weighting functions that has to be applied. Since the
main focus of this thesis is not the axial magnetism error, we have not bothered
including this new set of weighting functions in our model as it would complicate
the model implementation. For further details about these weighting functions,
see [25].

4.3 Error propagation theory

Section 4.2 introduces the weighting functions, which show how the error sources
cause errors in the measured depth D, inclination angle I and azimuth angle
A. In this section we show how this cause errors in the position uncertainty,
and we derive a framework for computing the position uncertainty distribu-
tion if the error sources are normally distributed. It is natural to distinguish
the error sources between the different propagation modes. Let R = {13},
S = {1, 2, .., 12, 14, 18, 19} and G = {15, 16, 17} denote the sets of random-,
systematic- and global errors, respectively.

Let wR,k denote the weighting function of a random error εR at measurement
station k in the well. The accumulated error contribution [dD,dI,dA]TR,k from
the random error εR at measurement station k is:⎡

⎣ dD
dI
dA

⎤
⎦

R,k

=
k∑

i=1

wR,iεR,i

We assume that Cov(εR,i, εR,j) = 0 for i 
= j, since the error has a random
propagation mode. If we assume that εR,i ∼ N(0, σ2

R), we can calculate the
statistical distribution for the error contribution:⎡

⎣ dD
dI
dA

⎤
⎦

R,k

∼ N3

(
0, σ2

R

k∑
i=1

wR,iw
T
R,i

)
(4.22)

For simplicity, we write CR,k = σ2
R

∑k
i=1 wR,iw

T
R,i as the covariance matrix at

station k caused by error εR.

In the same way, we can analyze the error contribution from a systematic error
source εS . Let wS,l,k denote the weighting function of a systematic error εS in
MWD-survey l at measurement station k. Let nl be the number of stations in
MWD-survey l. The accumulated error contribution [dD,dI,dA]TS,L,k from the
systematic error εS in MWD-survey L at measurement station k is:⎡

⎣ dD
dI
dA

⎤
⎦

S,L,k

=
L−1∑
l=1

nl∑
i=1

wS,l,iεS,l +
k∑

i∈L

wS,L,iεS,L

We assume that Cov(εS,l, εS,o) = 0 for l 
= o, since the error has a systematic
propagation mode. For simplicity, we write CS,l = σ2

S (
∑nl

i=1 wS,l,i) (
∑nl

i=1 wS,l,i)
T
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and C̄S,L = σ2
S

(∑k
i∈L wS,L,i

)(∑k
i∈L wS,L,i

)T
. If we assume that εS,l ∼ N(0, σ2

S),
we can calculate the statistical distribution for the error contribution:⎡

⎣ dD
dI
dA

⎤
⎦

S,L,k

∼ N3

(
0,

L−1∑
l=1

CS,l + C̄S,L

)
(4.23)

For simplicity, we write CS,L,k = CS,k =
∑L−1

l=1 CS,l + C̄S,L.

Let εG be a global error source, and wG,k denote the weighting function of
the global error at measurement station k. The accumulated error contribution
[dD,dI,dA]TG,k from the global error εG at measurement station k is:

⎡
⎣ dD

dI
dA

⎤
⎦

G,k

=
k∑

i=1

wG,iεG

If we assume that εG ∼ N(0, σ2
G), the statistical distribution for the error con-

tribution is: ⎡
⎣ dD

dI
dA

⎤
⎦

G,k

∼ N3

⎛
⎝0, σ2

G

(
k∑

i=1

wG,i

)(
k∑

i=1

wG,i

)T
⎞
⎠ (4.24)

For simplicity, we write CG,k = σ2
G

(∑k
i=1 wG,i

)(∑k
i=1 wG,i

)T
. To find the

total error [dD,dI,dA]Tk at measurement station k we can sum all the error
contributions. Let Ck =

∑
R CR,k +

∑
S CS,k +

∑
G CG,k, and we get the fol-

lowing error distribution at measurement station k:⎡
⎣ dD

dI
dA

⎤
⎦

k

∼ N3 (0, Ck) (4.25)

Now we have the uncertainty in measured depth D, inclination I and azimuth
A. We use the same approach for computing the position uncertainty. Recall
the minimum curvature formula (2.15):

Pk = Pk−1 +
(Dk −Dk−1)f(κk)

2

⎡
⎣ sin Ik−1 cosAk−1 + sin Ik cosAk

sin Ik−1 sinAk−1 + sin Ik sinAk

cos Ik−1 + cos Ik

⎤
⎦ (4.26)

The position is dependent on the preceding position and the two last measure-
ments of D, I and A. This means that the error contribution from one error
source in the preceding and following measurement station have direct influence
on the position uncertainty. The position uncertainty is obtained by linearizing
the minimum curvature formula. For small dogleg angles, we can simplify the
minimum curvature formula by setting f(κ) = 1. According to Williamson [25]
there is no significant loss of accuracy in using this approximation when we are
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interested in the position uncertainty. This approximation must however not be
used when calculating the position as in Section 2.6. Let

ΔPk+1 =
Dk+1 −Dk

2

⎡
⎣ sin Ik cosAk + sin Ik+1 cosAk+1

sin Ik sinAk + sin Ik+1 sinAk+1

cos Ik + cos Ik+1

⎤
⎦ . (4.27)

An error source εi causes a position error dPi,k at measurement station k. From
the minimum curvature formula, we understand that dPi,k is affected by the
error of εi both on the preceding and following measurement station. We differ-
entiate the expression in (4.27) on the k’th and (k+ 1)’th measurement station
with respect to Dk, Ik and Ak, and define:

Rj,k =
[
∂ΔPj

∂Dk
,
∂ΔPj

∂Ik
,
∂ΔPj

∂Ak

]
; j = k, k + 1

∂ΔPk

∂Dk
=

1
2

⎡
⎣ sin Ik−1 cosAk−1 + sin Ik cosAk

sin Ik−1 sinAk−1 + sin Ik sinAk

cos Ik−1 + cos Ik

⎤
⎦

∂ΔPk+1

∂Dk
=

1
2

⎡
⎣ − sin Ik cosAk − sin Ik+1 cosAk+1

− sin Ik sinAk − sin Ik+1 sinAk+1

− cos Ik − cos Ik+1

⎤
⎦

∂ΔPj

∂Ik
=
Dj −Dj−1

2

⎡
⎣ cos Ik cosAk

cos Ik sinAk

− sin Ik

⎤
⎦ ; j = k, k + 1

∂ΔPj

∂Ak
=
Dj −Dj−1

2

⎡
⎣ − sin Ik sinAk

sin Ik cosAk

0

⎤
⎦ ; j = k, k + 1

Rj,k is a 3 × 3 matrix, with ∂ΔPj

∂Dk
, ∂ΔPj

∂Ik
and ∂ΔPj

∂Ak
along each column. The

position change dPi,k can be written as:

dPi,k = [Rk,k +Rk+1,k]wi,kεi

The position change in the last measurement station k is given by:

dP �
i,k = Rk,kwi,kεi (4.28)

Now we can use the same approach as we did when we derived the uncertainty
of D, I, and A. Let dPR,k be the total error contribution at measurement
station k, caused by the random error source εR during the whole well. It can
be computed as:

dPR,k =
k−1∑
i=1

[Ri,i +Ri+1,i]wR,iεR,i +Rk,kwR,kεR,k

If we assume that εR,i ∼ N(0, σ2
R), and Cov(εR,i, εR,j) = 0 for i 
= j, we have

35



4.3. ERROR PROPAGATION THEORY

the following distribution for dPR,k:

dPR,k ∼ N (0,ΩR,k)

ΩR,k =

[
k−1∑
i=1

[Ri,i +Ri+1,i]wR,iw
T
R,i [Ri,i +Ri+1,i]

T +Rk,kwR,kw
T
R,kR

T
k,k

]
σ2

R

Let dPS,L,k be the total error contribution at measurement station k in MWD-
survey L, caused by the systematic error source εS . It can be computed as:

dPS,L,k =
L−1∑
l=1

nl∑
i=1

[Rl,i,i +Rl,i+1,i]wS,l,iεS,l+

+

[
k−1∑
i∈L

[RL,i,i +RL,i+1,i]wS,L,i +RL,k,kwS,L,k

]
εS,L

The distribution of dPS,L,k can be computed as for dPR,k, and we denote the
resulting covariance matrix of dPS,L,k for ΩS,k.

Let dPG,k be the total error contribution at measurement station k, caused by
the global error source εG. It can be computed as:

dPG,k =

[
k−1∑
i=1

[Ri,i +Ri+1,i]wG,i +Rk,kwG,k

]
εG (4.29)

The distribution of dPG,k can be computed as for dPR,k and dPS,L,k, and we
denote the resulting covariance matrix of dPG,k for ΩG,k. The total error con-
tribution dPk at measurement station k, caused by all the error sources can
now be computed. The position covariance matrix at measurement station k is
simply:

Ωk =
∑
R

ΩR,k +
∑
S

ΩS,k +
∑
G

ΩG,k

If we assume that Pk−1 ∼ N3(pk−1,Ωk−1), we have from (4.26) that the expected
position pk = pk−1 + Δpk. And with the covariance matrix Ωk, derived from
linearization of ΔPk, we have approximated the position distribution in the k’th
measurement station as:

Pk ∼ N3(pk,Ωk)

There are some choices which have to be made when implementing the frame-
work in Section 4.3. We have to decide whether or not there shall exist an initial
uncertainty. We had a special case for dP �

i,K at the last measurement station.
We have the same situation at the first measurement station, concerning the
inital uncertainty. In our implementation of this model, we have set zero initial
position uncertainty.

The uncertainty analysis in this section is often used in well-planning. A planned
well is described by D, I and A. But some of the weighting functions need the
value for the toolface angle τ to be fully evaluated. τ is unknown during well-
planning since the wellbore rotate during drilling, and τ tells how the wellbore
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is oriented when the sensors have made the measurements. There are two ways
to overcome this problem. The first alternative is to draw τ uniformly in the
uncertainty analysis. The computed position uncertainties would then be ran-
dom between two analyses. The uncertainty evolving the randomization of τ is
not significant compared to the total position uncertainty, and can be negligible.
But it is important to know about this process since the numerical results vary
between analyses of the same well which apparently seem to be identical. The
other possibility is to eliminate τ from the weighting functions. This method is
described in [21]. We have implemented the first alternative, where we draw τ
uniformly on every measurement station.
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Chapter 5

The normal inverse
gaussian distribution in
MWD magnetic directional
surveying

5.1 Introduction

This chapter introduces the use of the normal inverse gaussian distribution on
the error sources. Simulations are used to analyze the position uncertainty in
MWD magnetic directional surveying against the established industry standard
from Chapter 4, and an approximation of the new position uncertainty is pre-
sented.

The normal inverse gaussian distribution is a flexible distribution which has 4
parameters (μ, ρ, α, β). The four parameters are connected with the first four
standardized moments through (3.13)-(3.16), which allow us to set the skewness
and kurtosis almost independently of the mean and variance of the distribution.
Williamson [26] suggested a ”candidate distribution” which describes the tails
of MWD error-distributions better than the normal distribution. This distribu-
tion f(x) ∝ 1

1+x4 allows no flexibility regarding the standardized moments and
parameter specification, so it is impossible to use in the way we intend do. But
the work of [26] indicates that the use of a more heavy-tailed distribution than
the normal distribution is needed for directional surveying.

In Chapter 4 we derived a method for computing the position uncertainty under
the assumption that the error sources were normally distributed. The normal
distribution is closed under linearity, and there are simple formulas for com-
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puting the mean and variance of linear combinations of normally distributed
random variables. When we assumed that the error sources were normally dis-
tributed, we could use these properties of the normal distribution to compute
a normally distributed position uncertainty. If we choose to use other statisti-
cal distributions for the error sources we can not use the same approach as in
Chapter 4 as we lose the nice properties which we had when we used the normal
distribution for all the error sources. This forces us to use other approaches
than to analytically compute the position uncertainty. The weighting functions
that are defined in Section 4.2 are however unchanged, and are used extensively
in this chapter.

Section 5.2 explains how we can set the parameters of a NIG-distribution by
interpreting the NIG-parameters. We propose two different NIG-distributions
for the declination error; a symmetric NIG-distribution and a skewed NIG-
distribution. The latter one is used in this thesis, while the first model is a
motivation for heavy-tailed distributions. Section 5.3 shows how we can calcu-
late an approximative density function if we assume that one of the error sources
are NIG-distributed and the rest are normally distributed. The approximative
density function is useful as we are able to evaluate the probability distribution.
In Section 5.4 we explain how to simulate the position uncertainty given any
statistical distribution on the error sources. Simulations are very important for
analyzing the new position uncertainties. Section 5.5 shows all the analytical
calculations we are able to do if some of the error sources are NIG-distributed.
Section 5.6 shows one special well geometry which allows us to calculate ana-
lytically even further. Section 5.7 compares the approximative density function
from Section 5.3 against the established normal error model from Chapter 4.

5.2 Specification of NIG-parameters for the dec-
lination error

In Section 4.2 we defined an error model which includes the most important
error sources. Table 4.1 in Section 4.2 lists the different error sources, with a
suitable standard deviation, i.e. εi ∼ N(0, σ2

i ). If we want to use a skewed- and
heavy-tailed distribution, such as the NIG distribution, on one or more of the
error sources εi ∼ NIG(μi, ρi, αi, βi), we must find a way to set the parameters
(μi, ρi, αi, βi) of the distribution. The ideal approach would be to estimate
the parameters according to Section 3.4.2, but it is hard to obtain datasets of
the error sources. Estimates of the bias- and scale-errors from multi-station
estimation [17] is a possible way to obtain data of the errors ε1-ε12 in Table
4.1. Nyrnes [17] shows some histograms of these errors, which could indicate
that they are non-normally distributed, although these histograms are based on
relatively few datapoints. The declination error ε16 is possible to analyze from
data of the Earth’s magnetic field, which is very easy to obtain datasets from.
One problem is that the declination error is highly dependent both on the time
and the geographic position, [22] and [23].
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Figure 5.1: Choice of NIG-distribution for two of the error sources. The
dashed red lines are the normal distributions proposed in the error model
in Section 4.2. Left: ε1 ∼ NIG(0, 0.03, 1000, 0.07). Right: ε7 ∼
NIG(−196, 2800000, 1000, 0.07).

For the error sources which no data can be obtained from, the parameters of the
NIG-distribution must be set in a way which reflects the desired properties of the
NIG-distribution. The shape of the NIG-distribution can not be immediately
interpreted from given parameters, as for the normal distribution. The μ and
σ in the normal distribution tells us the location and scale of the distribution.
If the scale of a NIG-distribution is large, it would imply that we set the scale
parameter ρ large. If we want the distribution to be centered around 0 (E(ε) =
0), we see from (3.13) that we must set μ = −ρβ

γ .

One way to set μ and ρ is to solve E(ε) = 0 and Var(ε) = σ2 from (3.13)-
(3.14), where σ is the suggested standard deviation of ε from Table 4.1. The
skewness is determined by the sign and size of β. The kurtosis is determined
by the size of α and β together. Of (3.16) we see that if α is small relative
to β, or if α and β are close such that γ is small, the kurtosis becomes large,
and the distribution becomes very peaked and heavy-tailed. If α � β, β 
= 0,
and μ balanced compared to ρ, we get distributions which are skewed and more
heavy-tailed than the normal distribution. Let Λi = [μi, ρi, αi, βi] be the set
of parameters for the NIG-distribution for εi ∼ NIG(μi, ρi, αi, βi). Figure 5.1
shows examples of two different NIG-distributions with the same choice of α and
β. But since the magnetometer bias error has a proposed standard deviation of
70 nT, and the accelerometer bias error has a proposed standard deviation of
0.0039 m/s2, the chosen μ and ρ are different.

We now introduce two different NIG-distributions for the declination error ε16.
The declination error is probably the largest error source in MWD magnetic
directional surveying, which [22] and [23] show is likely to follow a skewed- and
heavy-tailed distribution.
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5.2.1 Symmetric NIG-distributed declination error

A report of Torkildsen, Sveen and Bang [23] shows a study of the variation
of the declination angle in the geomagnetic field. The main result of [23] is
that the statistical distribution of the declination error deviates strongly from
the normal distribution. The empirical 99.5-percentiles deviate with a factor
2, and the empirical 99.9-percentiles deviate with a factor 3. The report does
not focus on the skewness of the statistical distribution. If we want to model
the declination error with a heavy-tailed symmetric distribution, we can use a
symmetric NIG-distribution. It is reasonable for us to set μ = β = 0, which
makes E(ε16) = 0 and Skew(ε16) = 0. We choose ρ and α from Var(ε16) = σ2

16

and the main result from [23] regarding the percentiles. σ16 is the suggested
standard deviation in Table 4.1. If we set ρ = 0.00275 and α = 70, we have a
NIG-distribution which fulfils the main result of [23].

5.2.2 Skewed NIG-distributed declination error

In the project thesis [10], several datasets from geomagnetic observatories [18]
were analyzed. Although these datasets are both time- and location-dependent
it is possible for us to center each dataset and remove any linear trend in the
dataset to analyze the declination variability. We have chosen the annual dec-
lination series of Tromsø in 2001 as our dataset. It is important to make notice
that the model we present is only based on data from one location in one year.
We process the dataset by centering it, removing the linear trend, and scaling
it such that Var(ε16) = σ2

16. It is of interest for our thesis to analyze a non-
central error source E(ε16) 
= 0. Of the original time series with a resolution of
1 minute, we calculate the following moment estimators of a random sample of
size 1

100 of the processed time series:

μ̂ = −5.43 · 10−4

ρ̂ = 0.0021
α̂ = 58.33

β̂ = 14.6

Of the reasons explained in Section 3.4.2 we have chosen to use the moment
estimators as our parameter values. The moment estimators of the processed
dataset will be the parameters of the skewed NIG-distribution which we use in
the NIG error model in this thesis. Table 5.1 shows a summary of the choice
of parameters for the NIG-distributions. Figure 5.2 displays the histogram of
the processed dataset Tromsø 2001, the two NIG-distributions and the corre-
sponding normal distribution. Figure 5.2 only show the centre of the dataset,
so it is possible to see the difference between the models. We see that the
NIG-distributions are more peaked than the normal distribution. But the NIG-
distributions also have heavier tails than the normal distribution.
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μ ρ α β γ
Symmetric NIG 0 0.00275 70 0 70

Skewed NIG −5.43 · 10−5 0.0021 58.33 14.6 56.47

Table 5.1: A summary of the choice of NIG-parameters for the two NIG-
distributions of the declination error. The symmetric NIG-distribution is partly
obtained from [22], while the skewed NIG-distribution is obtained from real
processed data [10].

Figure 5.2: The two proposed NIG-distributions for the declination error. The
blue line is the symmetric NIG-distribution, and the green line is the skewed
NIG-distribution. The histogram is the centre of the processed dataset Tromsø
2001, as the range of the processed dataset is 0.26 radians. The dashed red line
is the normal distribution. The NIG-parameters of the models are shown in
Table 5.1.

5.3 Approximative density function

We now consider the declination error ε16 to be the only error that is NIG-
distributed. The declination error is considered to be the most significant error
source in MWD magnetic directional surveying, and it is shown in [23] that it
has heavy-tailed behaviour. The other error sources (Table 4.1) are normally
distributed. We can partition the position uncertainty dPk in two independent
parts as we assume that the error sources are independent of eachother:

dPk = dPN,−16,k + dPNIG,16,k

dPN,−16,k is the position uncertainty at measurement station k based on all error
sources except the declination error and dPNIG,16,k is the position uncertainty
at measurement station k based only on the declination error, which is NIG-
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distributed. We recall the following property of the NIG-distribution:

ε16 ∼ NIG(μ, ρ, α, β)
{ε16|Z = z} ∼ N(μ+ βz, z)

Z ∼ IG(ρ, γ)

We condition on the auxiliary variable Z in the position uncertainty:

{dPk|Z = z} = dPN,−16,k + {dPNIG,16,k|Z = z}
The uncertainty from the NIG-distributed error source is normally distributed
when conditioned on Z. From (4.29) the following can be shown:

dPNIG,16,k =

(
k−1∑
i=1

[
∂ΔPi

∂Ai
+
∂ΔPi+1

∂Ai

]
+
∂ΔPk

∂Ak

)
ε16

= vkε16

For simpler expressions we denote the sum of vectors for vk. The position
uncertainty distribution, conditioned on the auxiliary variable Z is then:

{dPk|Z = z} = dPN,−16,k + {dPNIG,16,k|Z = z}
∼ N3

(
vk(μ+ βz),ΩN,−16,k + zvkv

T
k

)
ΩN,−16,k is the covariance matrix calculated from the method in Section 4.3
with the declination error excluded. The calculated position at measurement
station k is pk. The statistical distribution on measurement station k is:

{Pk|Z = z} ∼ N3

(
pk + vk(μ+ βz),ΩN,−16,k + zvkv

T
k

)
From now on, we drop the k-notation. Until now, we have conditioned on the
auxiliary variable Z. We want to find the statistical distribution of P . It is
defined as

fP (p) =
∫
fP |Z(p|z)fZ(z)dz

where fZ(z) ∼ IG(ρ, γ). This integral is not possible to solve analytically, so
we use the following numerical approximation of this integral:

fP (p) ≈
∑
zi

fP |Z(p|zi)P (zi) (5.1)

P (zi) is the discretization of fZ(z), and it is important to normalize P (zi) so
that
∑

zi
P (zi) = 1. If we discretize fZ(z) with a large enough grid, the ap-

proximation converges against the true distribution. From the discretization,
we are able to numerically evaluate the statistical distribution in any position.
This method can in general be done for all error sources being NIG-distributed.
But for each error source being NIG-distributed, we must condition on an aux-
iliary variable. This result in as many sums as there are NIG-distributed error
sources in (5.1), which require a lot of computer time for one evaluation of the
approximative density function.
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5.4 Simulating the position uncertainty with the
NIG error model

The simplest way to see the effect of one error source being NIG-distributed
is to calculate the normal error model in Section 4.2 with the NIG-distributed
error source excluded. We use the following notation:

Pk = PN,−i,k + PNIG,i,k

Pk is the position uncertainty at measurement station k, PN,−i,k is the normal
distributed position uncertainty at measurement station k based on all error
sources except error source nr. i. It is easily simulated once the covariance
matrix is calculated. PNIG,i,k is the position uncertainty at measurement station
k based only on error source nr. i, which is NIG-distributed. PNIG,i,k is not a
known distribution, which implies that we must use simulations in order to study
the distribution of Pk. PNIG,i,k is easily simulated from (4.29) if it is a global
error, and we are free to choose any statistical distribution on the error sources.
It can easily be done for several of the error sources being NIG-distributed as
well.

We visualize the simulations in one plot containing several subplots. Figure 5.3
is an example of a simulation result. The three subplots in the right column in
Figure 5.3 shows the wellpath projected onto the NE-, NV - and EV -plane. The
well which is analyzed in this figure is a synthetic well. A blue star indicates
the station of interest, which is the point in the well where the simulation is
performed. The upper subplot in the second column from the right visualizes
the NIG-distribution which is used for the error source. In this case, we have
used the skewed NIG-distribution on the declination error, as in Section 5.2.2.
The blue distribution shows the corresponding normal distribution from Chapter
4. Under this subplot, the parameters of the NIG-distribution is displayed, and
the statistical moments are calculated. The simulations are shown in the lower
triangular subplots, projected onto the NE-, NV - and EV -plane and the N -,
E- and V -axis. The reader must not be confused by the fact that the N - and
E- axes have switched place in the bivariate subplots compared to the subplots
describing the wellpaths. The axes are set in this way to be consistent with the
histogram-axes.

In the 2D-projections we have plotted a 99.9% confidence ellipse, which is com-
puted from the marginals of the normal error model. We count the amount of
realizations in the simulation that is inside different confidence ellipsoids. This
can help us compare the simulations against the normal error model from Chap-
ter 4. The 2D-projections are hard to visually compare against a multivariate
normal distribution, since we use many realizations. But non-normality is eas-
ily discovered in the histograms, since we know that marginals of a multivariate
normal distribution are normally distributed. In Figure 5.3 we see that the po-
sition uncertainty is highly non-normally distributed, since there are heavy tails
both on the N - and E-axis.
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5.5 Some analytical calculations

The NIG-distribution is closed under linearity only for special linear trans-
formations. In this section we show how far it is possible to use the NIG-
distribution in an analytical approach, assuming that the NIG-distribution is
suitable for all error sources. Recall the weighting functions defined in Sec-
tion 4.2. (w = [wD, wI , wA]T ) For an error source εR of random propagation
mode, we look at the error in measured depth, dDR,k, that is caused by εR on
measurement station k:

dDR,k =
k∑

i=1

wD,iεR,i (5.2)

If we assume that εR,i ∼ NIG(μ, ρ, α, β), we know that

wD,iεR,i ∼ NIG

(
wD,iμ, |wD,i|ρ, α

|wD,i| ,
β

wD,i

)
from the properties of the NIG-distribution. Since Cov(εR,i, εR,j) = 0 for i 
= j,
all the terms in the sum in (5.2) are independent. But the distribution of dDR,k

is in general unknown, since the NIG-distribution only is closed under linearity
for a sum of independent random variables with the same skewness parameters.
But there is only one value which wD,i can have. In Section 4.2 we defined
only one error source with random propagation mode, the reference depth ε13.
And since w13 = [1, 0, 0]T , we see that wD,i = 1 for every measurement station
i. This makes us able to compute the statistical distribution of the measured
depth error (5.2) that is caused by the NIG-distributed random error ε13:

dD13,k ∼ NIG(kμ, kρ, α, β) (5.3)

For error sources with systematic propagation mode it is harder to obtain any
analytical result. For an error source εS of systematic propagation mode, we
look at the error in inclination, dIS,L,k, that is caused by εS on measurement
station k in survey L:

dIS,L,k =
L−1∑
l=1

nl∑
i=1

wI,l,iεS,l +
k∑

i∈L

wI,L,iεS,L (5.4)

The weighting functions for the systematic error sources are more complicated
than the one for the random depth error ε13. We are not able to find any element
in the weighting functions for the systematic error sources which can be equal
to 1 in general. For the sag error, ε18, we have wI = sin I. For horizontal wells,
we have that wI = 1 for this error. But of dIS,L,k in (5.4) we see that the
systematic error from each survey is weighted with the number of elements nl in
each survey. We are not able to analytically compute the statistical distribution
of dIS,L,k or dAS,L,k from any systematic error source.

For an error source εG of global propagation mode, we look at the error in
azimuth, dAG,k, that is caused by εG on measurement station k:

dAG,k =
k∑

i=1

wA,iεG (5.5)
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If εG ∼ NIG(μ, ρ, α, β), it is possible to analytically compute the statistical
distribution of dAG,k. This computation is possible for every element in all the
weighting functions for the error sources that have global propagation mode.
We get the following distributions:

dD15,k ∼ NIG

(
μ

k∑
i=1

DiDV,i, ρ
k∑

i=1

DiDV,i,
α∑k

i=1DiDV,i

,
β∑k

i=1DiDV,i

)

(5.6)

dA16,k ∼ NIG

(
kμ, kρ,

α

k
,
β

k

)
(5.7)

dA17,k ∼ NIG

(
μk

B cos θ
,

ρk

B cos θ
,
αB cos θ

k
,
βB cos θ

k

)
(5.8)

The distributions from (5.3), (5.6)-(5.8) are the only ones that we are able to
compute analytically. We can not sum together these error contributions with
other error contributions, and still know the statistical distribution of the sum.
But these distributions can be useful for comparing choices of NIG-distributions
against the normal distribution to see how one of these error sources contribute
to the error in measured depth or azimuth.

5.6 Approximations for special well geometries

In Section 5.5 we showed some special cases where we were able to compute
the distribution of the error in measured depth and azimuth from one of the
error sources being NIG-distributed. For certain well geometries, it is possible
to use some approximation to obtain marginal distributions of the position that
are NIG-distributed. We use dA16 from (5.7) as an example. We look at the
azimuth error at measurement station k and k − 1 from the declination error
ε16:

dA16,k−1 ∼ NIG

(
(k − 1)μ, (k − 1)ρ,

α

k − 1
,

β

k − 1

)

dA16,k ∼ NIG

(
kμ, kρ,

α

k
,
β

k

)

We look at the azimuth error in the deeper sections of a well, and assume that
k is large so that α

k−1 ≈ α
k and β

k−1 ≈ β
k . Then dA16,k−1 and dA16,k have

approximately the same statistical distribution. From linearizations of the min-
imum curvature formula (2.15), we have the following formulas for computing
the error in the north- and east-direction at measurement station k, dNk and
dEk respectively:

dNk = −Dk −Dk−1

2
(sin Ik−1 sinAk−1dA16,k−1 + sin Ik sinAkdA16,k)

dEk =
Dk −Dk−1

2
(sin Ik−1 cosAk−1dA16,k−1 + sin Ik cosAkdA16,k)
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The error contribution in the vertical-direction is always zero for the declina-
tion error source. The distance between two measurement stations is usually
approximately 30 meters. If we assume that Dk − Dk−1 = 30, and the well
is straight (Ik−1 = Ik = I and Ak−1 = Ak = A), and that the well geometry
satisfies sin I sinA = sin I cosA = 1

15 , we see that dNk = −(dA16,k−1 + dA16,k)
and dEk = dA16,k−1 +dA16,k. If all these conditions hold, we have the following
approximate distributions for the marginal position uncertainties:

dNk ∼ NIG

(
−(2k − 1)μ, (2k − 1)ρ,

α

k
,−β

k

)
(5.9)

dEk ∼ NIG

(
(2k − 1)μ, (2k − 1)ρ,

α

k
,
β

k

)
(5.10)

Judging by all the conditions that must hold for this approximation to be valid,
it is fair to believe that this approximation can only be done on synthetic wells.
Of sin I sinA = sin I cosA, we understand that A = 45. For wells in this
direction, an azimuth error causes an equal amount of error in the north- and
east-direction, independent of the statistical distribution of the error source. The
condition sin I cosA = 1

15 implies that the theoretical inclination angle must be
I = 5.4099. From simulations we have concluded that this approximation is
only valid for A = 45, I = 5.4099± 1, and k > 100.

5.7 Comparing the discretized approximative den-
sity function with the normal error model

The normal error model ensures that the expected position always is the posi-
tion calculated from the minimum curvature formula (2.15). The skewed NIG-
distribution from Section 5.2.2 causes a deviation between the calculated posi-
tion from the minimum curvature formula and the expected position of the NIG
error model. From the parameters of the skewed NIG-distribution in Table 5.1
we can compute the expected value E(ε16) = 4.88 · 10−4 radians. Recall (4.29)
from Section 4.3, for the declination error:

dP16,k =

[
k−1∑
i=1

[Ri,i +Ri+1,i]w16,i +Rk,kw16,k

]
ε16

=

[
k−1∑
i=1

[
∂ΔPi

∂Ai
+
∂ΔPi+1

∂Ai

]
+
∂ΔPk

∂Ak

]
ε16

The error source ε16 with global propagation mode results in a total error con-
tribution dP16,k at measurement station k. By calculating the expected value of
dP16,k, we can calculate the expected deviation of the position between the NIG
error model and the normal error model. This deviation is highly dependent on
the well geometry.

We want to visualize the position uncertainty from the NIG error model. This
can either be done with simulations, or we can use the approximative den-
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sity function (5.1). We look at the 2D-marginals of the approximative density
function (5.1) and compare it against the 2D-marginals of the normal error
model. We evaluate (5.1) in every point in a 3D-grid, and compute approxi-
mative 2D-marginal distributions by summing over one of the dimensions. The
2D-marginals can be displayed with contours, which can be compared against
the corresponding 2D-marginals from the normal error model. Figure 5.4 shows
the 2D-marginals (unscaled) of the approximative density function of a case.
The contours of the 2D-marginals are highly non-normally distributed. The
NE-marginal has very heavy tails along the N -coordinate. The contours of the
NV - and EV -marginals are onion-shaped, with the V -marginal being normally
distributed (since unchanged from Section 4.2). This case is a well that has
moved relatively along the E-coordinate from the starting position, which is
why the uncertainty is largest along the N -coordinate.

Figure 5.5 shows the NE-marginal of the corresponding multivariate normal
distribution of the same case as Figure 5.4. By comparing Figure 5.5 with the
upper plot in Figure 5.4, we see that the approximative density function has a
higher mode than the multivariate normal distribution. But the approximative
density function decays faster than the normal distribution around the mode.
The tails of the approximative density function is much wider than the corre-
sponding normal tails.

50



CHAPTER 5. THE NORMAL INVERSE GAUSSIAN DISTRIBUTION IN
MWD MAGNETIC DIRECTIONAL SURVEYING

East

N
or

th

−1110 −1105 −1100 −1095 −1090 −1085 −1080 −1075 −1070
0

20

40

60

80

100

120

140

160

0.5

1

1.5

2

2.5

x 10−3

North

D
ep

th

0 20 40 60 80 100 120 140 160

4195

4200

4205

4210

4215

4220

4225

4230

4235

4240
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10−3

East

D
ep

th

−1110 −1105 −1100 −1095 −1090 −1085 −1080 −1075 −1070

4195

4200

4205

4210

4215

4220

4225

4230

4235

4240
0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10−3

Figure 5.4: Contour plots of the approximative marginal distributions of the
NIG error model. The approximative density function is evaluated on a 3D-grid
and the 2D-marginals are computed by summing over the last dimension. The
contour lines are manually chosen. We see that the contours of the approxima-
tive density function is non-normal, especially in the tails.
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Figure 5.5: The NE-marginal of the corresponding multivariate normal dis-
tribution from the normal error model of anti-collision case II. The figure is
comparable with the upper plot in Figure 5.4, and the contour lines have the
same values as in Figure 5.4.
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Chapter 6

Anti-collision calculations

6.1 Introduction

Well-collisions are a major risk to casualties, environmental- and economical
costs, such as damage of equipment and production down-time. In order to
avoid well-collisions there are different types of collision avoidance techniques
that can be applied during the well-planning process. We use a quantitative anti-
collision method involving a separation factor ω. Other anti-collision methods
are described in [15]. The separation factor is a calculated test statistics in a
statistical hypothesis test where the significance level is the tolerance probability
of collision. We use a significance level α = 1

500 = 0.002 in this thesis. In the
anti-collision setting we denote the planned well as the reference well. All the
existing wells around the reference well are offset wells. In this thesis we look
at cases where we have only one offset well. The analyses are without loss
of generality with only one offset well, as the separation factor is calculated
between a point in reference well and the closest point in any of the offset wells,
which is called the candidate point. The candidate point is found by a chosen
scanning method. Since the separation factor is calculated between two points,
it is needed to calculate a separation factor for many points along the reference
well. If any of the calculated separation factors result in probabilities of collision
larger than the tolerance probability, the reference well has to be replanned in
a way such that all the calculated separation factors result in probabilities of
collision smaller than the tolerance probability.

Section 6.2 presents the most common scanning methods that can be used to find
a candidate point in the offset wells. Section 6.3 gives a brief comparison of the
different scanning methods. It is important that the same scanning method is
used on all anti-collision calculations in order to have consistent results. We have
chosen the 3D Closest approach as our default scanning method. Section 6.4
presents the anti-collision theory that the separation factor is based upon. We
present two different hypothesis tests in Section 6.4.1 and 6.4.2. Test I in Section
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•Reference well

◦

Travelling cylinder plane

Horizontal plane

•
p2

Offset well
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•
p1

•
•

◦ ◦

Figure 6.1: Schematic illustration of the different scanning methods which are
commonly used for classifying the closest point in an offset well. The filled
points in the reference well are points where anti-collision calculations have been
performed. p1 is the candidate point of the 3D Closest approach method, p2 is
the candidate point of the travelling cylinder method, and p3 is the candidate
point of the horizontal plane method.

6.4.1 is the established industry standard today, while test II in Section 6.4.2
is an empirical hypothesis test which we have to use when we use simulations
of the NIG error model. In Section 6.5 we highlight the term probability of
collision, and discuss how this probability is connected with the hypothesis test.

6.2 Scan methods

Anti-collision calculations are done in several points in the reference well, which
we denote scanning points. In order to do anti-collision calculations we are
dependent on knowing how much the offset wells are separated from the scan-
ning point in the reference well. The anti-collision calculations are always done
with respect to the ”closest” point in an offset well. The distance between the
scanning point in the reference well and the closest point in the offset well is
called the centre to centre distance. There are several scanning methods for
determining the closest point in an offset well. The different scanning methods
result in different results of the anti-collision calculations, which implies that
anti-collision calculations done with different scanning methods are incompa-
rable. We present four different scanning methods which, in general, lead to
different candidate points in the offset well. Details of these methods are found
in [14]. The 3D Closest approach scanning method in Section 6.2.1 is our de-
fault scanning method. This is the most intuitive scanning method, and the only
method that is guaranteed to find a candidate point in an offset well. Figure
6.1 illustrates the difference between the scanning methods.
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6.2.1 3D Closest approach

The 3D closest approach is the most intuitive method of determining the closest
point on an offset well. This method calculates the minimal Euclidean distance
between the scanning point and any point in the offset wells. This method can
be thought of as an expanding sphere centered in the scanning point. The sphere
stops expanding when a point in an offset well is initially touched. This point
is the closest point in the offset well. The 3D Closest approach method is the
only scanning method that guarantees that a candidate point in the offset well
will be found. This is the most commonly used scanning method in the oil and
gas industry, and we also do our analyses with this scanning method.

6.2.2 Travelling cylinder

The travelling cylinder method is dependent on path of the reference well. This
method uses the plane orthogonal to the wellpath, the travelling cylinder plane,
to find the closest point in the offset well. We can calculate the minimal distance
in the travelling cylinder plane to the intersection of some offset well. This
intersection defines the closest point. The distance between the scanning point
and the closest point can be thought of as a maximum scanning radius. Since
there are many scanning points along the reference wellpath, we can imagine a
cylinder which moves along the wellpath with varying radius, which is the reason
why the method is called the travelling cylinder method. Note that this method
does not guarantee that we find a candidate point in the offset well. This occurs
if the offset well never crosses the travelling cylinder plane. If we include a
statistical model of the position uncertainty into the scanning methods, we are
able to do a modification of this method. The uncertainty in the scanning point
is usually represented by a covariance matrix. The two largest eigenvectors
of the covariance matrix (which are usually almost orthogonal to the wellbore
direction) can be used to define a modified travelling cylinder plane.

6.2.3 Modified travelling cylinder

This method is also called ”High side + Azimuth”in some literature, but we have
not chosen to use this name, as the method is a modification of the travelling
cylinder method. The modified travelling cylinder uses the plane orthogonal
to the wellpath in the same way as the travelling cylinder method. The only
difference is that this method defines the toolface orientation as the high-side
angle plus the direction of the wellpath. This method is prefered instead of
the travelling cylinder method for wells with low inclination angles where the
azimuth angle changes rapidly. For more details concerning this method, see
[14]. We can modify this method also in the same way as the travelling cylinder
method by defining the plane from the two largest eigenvectors of the covariance
matrix in the scanning point.
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Scan method Comments
3D Closest approach + The true closest point is found,

unaffected by the well geometries.
+ Guaranteed to find a candidate point.
− Can find a point that is behind

the reference well.
Travelling cylinder + Finds the closest point ahead

of the reference well.
− The same candidate point can be found

from several scanning points.
− Misinterpretation when the reference

well crosses vertical [14].
Modified travelling + Avoids the misinterpretation of the

cylinder travelling cylinder diagram.
− Hard to understand the modification.

Horizontal plane + Easy to understand.
− Should only be used for (almost) vertical wells.

Table 6.1: Summary of the advantages (+) and disadvantages (−) of the different
scanning methods.

6.2.4 Horizontal plane

The horizontal plane method calculates the horizontal distance from the path
of the reference well to the offset wells. The shortest distance defines the closest
point. This method is equivalent to the travelling cylinder method, except that
the cylinder expands horizontally instead of orthogonal to the wellbore direction.
This method is only recommended to use for wells with low inclination angles.
Neither this method is guaranteed to find a candidate point in the offset well. If
two wells are drilled horizontally paralell to eachother, this method is not able
to compute a closest point. The method is neither applicable for reference wells
that are drilled deeper than the offset wells.

6.3 Comparison of the scanning methods

We have summarized some of the advantages and disadvantages of the different
scanning methods in Table 6.1. Most of this table is found in [14]. It is important
that one scanning method is chosen for all analyses, so the anti-collision results
can be comparable. We have chosen the 3D Closest approach as our default
scanning method throughout the thesis.

56



CHAPTER 6. ANTI-COLLISION CALCULATIONS

Reference well

•u0

v0
•

Offset well

D0

Figure 6.2: Schematic illustration of the calculated coordinate u0 in the reference
well, the calculated coordinate v0 in the offset well, and the calculated minimum
centre to centre distance D0.

6.4 Anti-collision hypothesis testing

When we have found the closest point in an offset well and we have chosen a
statistical model, we must check if there is a significant risk of collision between
the offset well and the planned reference well. This is initially done with a
hypothesis test, which allows us to control the type I error; the probability of
accepting a wellplan given that we have a well-collision. We set the significance
level α = 1

500 = 0.002. At first, we look into the theory which is currently used
today by the oil and gas industry.

We assume that the reference well and the offset well are uncorrelated, as it is
currently practised in the industry standard. This is in general not the case, as
global error sources influence both wells. The correlation between the wells are
very dependent on the well geometries, as we can see of (4.29). The wells are
often similar in some sections. Examples are when both wells are drilled from
the same seabed template, or when the reference well is a sidestep of the offset
well. Let u0 be the calculated coordinate of the scanning point in the reference
well, and v0 be the calculated coordinate of the closest point in an offset well.
Likewise, let u and v denote the true positions of the points. Let r be the
difference vector between u and v, i.e. r = u − v. Likewise, let r0 = u0 − v0
denote the calculated difference vector. Let us first assume that the positions
are multivariate normally distributed, as in Section 4.3:

u ∼ N3(u0,Σu)
v ∼ N3(v0,Σv)

Σu and Σv are the covariance matrices of u and v, respectively. From the
properties of the multivariate normal distribution, we can obtain a statistical
distribution of r:

r ∼ N3(r0,Σr) ,

where Σr = Σu + Σv, since we assumed that the wells are uncorrelated. The
distance D between u and v is defined as the Euclidean distance between u and
v, i.e. D =

√
rT r. The calculated distance is then D0 =

√
rT
0 r0. Figure 6.2
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shows a schematic illustration of u0, v0 and D0. Since we know the distribution
of r, we are able to approximate the variance of D. Assume that small changes
du and dv occur in u and v. Since the changes are small, we can use a linear
approximation to see how these changes result in a change dD in D:

dD ≈ ∂D

∂u
du+

∂D

∂v
dv

=
rT

√
rT r

du− rT

√
rT r

dv

=
rT

√
rT r

[du− dv]

We compute an approximation of the variance σ2
D of D:

σ2
D ≈

rT

√
rT r

Cov(du− dv)
(

rT

√
rT r

)T

(6.1)

=
1
rT r

rT (Σu + Σv) r (6.2)

We can perform statistical hypothesis testing on the distance D. For every
point in the reference well, we have a maximum tolerance probability, which
is the significance level α, of accepting the wellplan given that the wellplan
results in a well-collision. We set the null hypothesis to be a well-collision,
versus a non-collision as the alternative hypothesis. The wellplan can not be
realized if we can not reject all null hypotheses for all the points in the reference
well. We now present two different hypothesis tests which can be used in anti-
collision calculations. Test I in Section 6.4.1 is the current practice in the oil
and gas industry. Test II in Section 6.4.2 is a generalization of test I which uses
empirical distributions from simulations. An alternative hypothesis test on the
difference vector r is shown in Appendix D, but this test is not applicable when
the wellbore diameters are included in the model.

6.4.1 Hypothesis test on the distance D: Test I

We can approximate the distribution of D with the normal distribution, i.e
D ∼ N1(μD, σ

2
D). μD is the unknown expected value of D. We have the

following hypothesis test:

H0 : μD = 0
H1 : μD > 0

Under H0 we have that D ∼ N(0, σ2
D). Even though σD is unknown, we can

estimate it from (6.2). We reject H0 on significance level α if D0
σ̂D

> kα,1,
where kα,1 is the 100(1−α)-quantile of the standard normal distribution. With
α = 1

500 , we have kα,1 = 2.878. The separation factor ω is connected to the
hypothesis test as follows:

ω =
D

kα,1σD
(6.3)
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Figure 6.3: Histogram of D ∼ fD(d) with E(D) = μD and Var(D) = σ2
D

from a typical simulation (left). Histogram of D−μD

σD
(right). The empirical

99.5%-quantile k2 is found from the distribution of the standardized distance in
hypothesis test II.

Rejection of H0 is equivalent of calculating a separation factor ω > 1. This test
can easily be extended when we introduce the wellbore diameters. Let du and
dv be the wellbore diameters at u and v, respectively. The hypothesis test is
then:

H0 : μD ≤ du + dv

2

H1 : μD >
du + dv

2

In the same matter, we can extend the separation factor of (6.3):

ω1 =
D − du+dv

2

kα,1σD
(6.4)

The normality assumption on the distribution of D can be discussed. A normal
distribution is defined on R, whileD only can have non-negative values. We have
discussed the normality assumption in Appendix C. The appendix indicates
that the a normal distribution is a good approximation to the distribution of D,
especially for large distances D. ”Large distance” is relative to the uncertainty
of the distance, so that there is a very small risk of well-collision, which usually
is the case.

6.4.2 Hypothesis test on the empirical distance D: Test II

We assumed that the distribution of D was normally distributed in Section
6.4.1. This was based on normally distributed position uncertainties in the
wells. Let now u ∼ fU (u) and v ∼ fV (v), where fU (u) and fV (v) are general
statistical distributions, which we are to simulate from. We can then use Monte
Carlo simulations to simulate D ∼ fD(d), since D =

√
(u− v)T (u− v). The

difference between this test and the test in Section 6.4.1 is that fD(d) is now
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a general statistical distribution, which we are capable of simulating from. We
denote E(D) = μD and Var(D) = σ2

D, and can use the same hypothesis test as
in Section 6.4.1:

H0 : μD ≤ du + dv

2

H1 : μD >
du + dv

2

Let D1, .., Dn denote n independent realizations from fD(d) simulated by Monte
Carlo simulations. We look at the transformation:

Zi =
Di − du+dv

2

σD

We have that E(Zi) = μD− du+dv
2

σD
, and Var(Zi) = 1. Under H0, we have that

E(Zi) = 0. If n is large, d̄ = 1
n

∑n
i=1Di ≈ μD. We can calculate kα,2 from the

empirical distribution of Wi = Zi − d̄− du+dv
2

σD
, as E(W ) ≈ 0 and Var(W ) = 1.

Figure 6.3 shows an example of how kα,2 is estimated from the simulations. The
separation factor is calculated as in (6.4), and we reject H0 if

ω2 =
D0 − du+dv

2

kα,2σ̂D
> 1

6.5 The probability of collision

The hypothesis tests in Section 6.4 allow us to control the probability of accept-
ing a wellplan given that the wellplan results in a well-collision. If ω > 1, we are
100(1− α)% certain that the expected value of D, μD, is greater than the sum
of the radii, where α is the significance level of the test. The conclusion is based
on the assumption that the computed centre-to-centre distance from the mini-
mum curvature formulas is an unbiased estimate of μD. This decision criterion
is extensively used in the industry today ([5] and [26]). A second alternative in
anti-collision calculations is to compute the probability of collision, pc. We can
calculate pc from either the statistical distribution of the difference vector r or
from the statistical distribution of the separation distance D. Let r ∼ fr(r) and
D ∼ fD(d). pc can be computed from fr(r) as follows:

pc =
∫
||r||≤ du+dv

2

fr(r)dr (6.5)

(6.5) is a three-dimensional integral which usually is impossible to solve ana-
lytically, even for the multivariate normal distribution. The computation of pc

from fD(d) has a simpler expression:

pc = P (D ≤ du + dv

2
) =
∫ du+dv

2

0

fD(x)dx (6.6)
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It is important to know the difference between the probability of collision, pc,
and the significance level which is chosen in the hypothesis tests, as they are
two different risk interpretations in anti-collision theory. Neither (6.6) is possi-
ble to solve analytically, since we lack the analytical expression of fD(d). But
both (6.5) and (6.6) are possible to solve numerically if we know the statistical
distributions. If we do not know the analytical expressions of the statistical
distributions, we can always estimate pc from simulations by Monte Carlo inte-
gration. But pc is very small even for wells that are designed to crash, especially
if the position uncertainties are quite large. This means that Monte Carlo in-
tegration, even for a large number of realizations, gives a poor estimate of the
probability of collision. Variance reduction techniques, as importance sampling
[19], may give better estimates of the probability of collision. But the Monte
Carlo estimates of the probability of collision are often very small (∼ 10−5)
even for wells that are designed to crash. The hypothesis tests, which lead to
the separation factors, are intuitive methods which perform statistical tests on
the wellplan. If the probability of collision, as it is presented in (6.6), were
to be used in anti-collision calculations, one would have to have a logical in-
terpretation of what the maximum tolerance probability would be. It is much
more intuitively interpreted through a hypothesis test where you control the
probability of accepting a wellplan given that it results in a well-collision.
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Chapter 7

Results of the anti-collision
calculations

7.1 Introduction

In Chapter 7 we present the results the anti-collision calculations. We focus on
comparing the separation factor from the NIG error model against the separation
factor from the normal error model. We restrict ourselves to wells of equal
diameters du = dv = 8.5 inches. Our choice of diameter is not critical with
respect to the conclusions derived from the results. In the cases where we use
synthetic wells, we restrict ourselves to straight well-geometries. It is probably
easier to interpret the results from straight wells than from complex wells. We
set the significance level to α = 0.002. Section 7.2 explains how we plan to
present the anti-collision calculations. Since we deal with a three-dimensional
distribution, we have challenges in visualizing the results in a proper manner.
An illustrative anti-collision figure is also presented in Section 7.2. Section 7.3-
7.5 show three anti-collision cases which we analyze thoroughly in this thesis.
Section 7.6 summarizes some of the general results which we have obtained
during the anti-collision calculations.

7.2 Presentation of anti-collision simulations

In Section 5.4 we presented a figure which summarized the position uncertainty
simulation, with Figure 5.3 as an example. Our anti-collision calculations are
also simulation based, and we need to present the simulations in a similar figure
as Figure 5.3. In every result, we present three different separation factors.
The separation factors are presented in Table 7.1. ”Normal calculated” is the
calculations which are common in the oil- and gas industry today, using the
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Case Separation factor ε16 fD(d) σ̂D

Normal calculated ω1 Normal Normal Normal
Normal simulated ω2 Normal Empirical Empirical

NIG simulated ω3 NIG Empirical Empirical

Table 7.1: Overview of the different separation factors that are analyzed in the
anti-collision calculations.

normal error model. ω1 is calculated from hypothesis test I (Section 6.4.1).
”Normal simulated”is also based on the normal error model, but we use empirical
distributions of D to compute ω2, as in hypothesis test II (Section 6.4.2). ”NIG
simulated” is based on the NIG error model. The computation of ω3 is also
based on hypothesis test II. The only difference between the separation factors
is how σ̂D and kα are calculated. When we compare the separation factors,
we use the term ”conservative”. If ω3 < ω1, ω3 is considered more conservative
than ω1 with respect to the conclusions that are made based on the separation
factors. The general formula for calculating the separation factor is:

ωi =
D0 − du+dv

2

kiσ̂D,i
i = 1, 2, 3 , (7.1)

where D0 is the calculated minimum centre to centre distance, ki is the desired
quantile of the distribution of D under H0 and σ̂D,i is the estimate of the
standard deviation of D.

Figure 7.1 is an example of how we present results of anti-collision calculations.
The three subplots in the right column in Figure 7.1 show the wellpaths pro-
jected onto the NE-, NV - and EV -plane. The reference well is plotted in blue,
and the offset well is plotted in black. A position uncertainty simulation is per-
formed on a given station in the reference well, and the 3D Closest approach
scanning method is used for finding the closest point in the offset well. A similar
position uncertainty simulation is performed in the closest point in the offset
well. Both simulations are projected onto the NE-, NV - and EV -plane and
the N -, E- and V -axis, as in Figure 5.3. If both simulations overlap in every
projection, there may be a high risk of collision. The risk is considered signifi-
cant under a given model, as in Table 7.1, if ω < 1. The upper subplot in the
second left column shows the simulated distribution fD(d). The middle sub-
plot in the second right column is unchanged since Figure 5.3, and shows the
NIG-parameters that are chosen on the declination error source.

The upper subplot in the second right column displays the calculations for the
cases explained in Table 7.1. ”Normal calculated centre to centre distance” is the
minimum distance between the reference- and offset well, calculated from the
minimum curvature formulas. The ”Normal calculated centre to centre st.dev.”
is the estimate of σD based on the error model in Section 4.2, which is calculated
from (6.2). These two estimates are directly comparable with the simulations
results displayed beneath. Figure 7.1 shows two synthetic wells with high risk
of colliding. We see that the normal calculated centre to centre distance differs
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7.3. ANTI-COLLISION CASE I

much from the simulated distances. The reason why they differ is that the
normal approximation of fD(d) is poor for so small distances relative to the
uncertainty, as we discussed in Section 6.4.

We focus on analyzing the difference between ω1 and ω3 given that the wells are
separated in the NE-plane. As we saw in Section 4.2, the declination error only
affects the azimuth angle, which leads to differences between the error models
in the NE-plane. Given a candidate point in the offset well, we can shift the
reference well on a grid in the NE-plane, and perform the anti-collision calcu-
lations as in Figure 7.1 for each point in the grid. Then we are able to analyze
how the separation factor changes in the NE-plane. Since the declination error
only affects the NE-coordinates, we see no need for analyzing the difference
between separation factors along the V -axis. We will connect the results to the
directions of the empirical eigenvectors of the simulations.

7.3 Anti-collision Case I

Reference well 845 36.13 30.65
N 0 0.707 0.707
E -1 0 0
V 0 0.707 -0.707

Offset well 21.65 15.27 1.38
N 0.166 -0.148 0.975
E 0.984 0.095 -0.153
V -0.070 0.984 0.162

Table 7.2: The empirical eigenvalues (top) and eigenvectors (below) for the
reference well and offset well of anti-collision case I.

We analyze the case where the offset well is a real well and the reference well is
a synthetic well. The reference well is a straight well with constant inclination
angle I = 45 and azimuth angle A = 0. In this case we look at the collision
risk in a given point in the offset well (D = 3200, I = 7.5, A = 274) when we
shift the reference well in different positions in the NE-plane. Figure 7.2 shows
this case where the reference well is calculated to be separated from the offset
well with 80 meters to the east. The reference well is directed to the north,
and has most uncertainty along the E-coordinate. The offset well is almost
directed to the west at this point, but it has been directed southwards almost
up to this point. Therefore, the uncertainty is largest along the E-coordinate.
Table 7.2 shows the empirical eigenvectors and eigenvalues of anti-collision case
I. The first eigenvector of the reference well (eigenvalue 845) is dominating in
the analyses, which is also easily seen from Figure 7.2.

We see that ω1 > 1 in Figure 7.2, indicating that there is no significant risk of
well-collision given that the normal error model is the true model. But ω3 < 1
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7.3. ANTI-COLLISION CASE I

indicates the opposite conclusion given that the NIG error model is the true
model. σ̂D,3 is smaller than σ̂D,1 which is expected since the NIG-distribution
has a larger mode than the corresponding normal distribution. We also see that
μ̂D,3 = 82.03, which indicates that there is 2 meter bias between the minimum
centre to centre distance and the simulated distributions. The difference can
be explained by the deviation in expected position, as discussed in Section 5.7.
μ̂D,2 = 80.36 indicates that there is 36 cm difference between the calculated and
simulated centre-to-centre distance. This small difference is most likely caused
by random effects from the simulation.

We perform the same type of analysis as shown in Figure 7.2 several times, but
now we shift the reference well on a equidistant grid in the NE-plane. The offset
well is kept in the same position the whole time. In this way, we can control the
separation of the wells in the NE-plane. With this type of analysis we can see
what directions that yield different results between the two error models. Figure
7.3 shows the analyses. We see from Figure 7.3 that there are large differences
between the two separation factors ω1 (upper) and ω3 (centre). We see that the
difference is largest if we shift the reference well along the north coordinate. ω1

is symmetrical with respect to the shift direction, while this is not the case for
ω3. This is explained by the skewness of the NIG error model. ω1 has a distinct
cusp [24] shape along shifts in the north coordinate, which we will see can be
explained by the normal approximation.

The contour plots in Figure 7.3 can be further explained by the corresponding
estimates of σ̂D and the quantile value k3. Figure 7.4 shows contour plots of
these estimates. Recall that the quantile value for the normal error model is
k1 = 2.878. We see that k3 is greater than k1 everywhere in our analyses. This
is explained from the NIG-distribution which makes the distribution fD(d) more
heavy-tailed, as shown in Figure 6.3. The contour plot of k3 and σ̂D,3 are non-
symmetric, as ω3, with higher values for eastern shifts than for western shifts.
k3 is largest for shifts along the N -coordinate. Both wells have heavy tails along
the E-coordinate. A shift in the N -coordinate results in a more heavy-tailed
distribution fD(d) than in the E-coordinate, which results in a larger quantile
k3.

Figure 7.5 shows the contour plots of the normal simulated ω2, and the relative
differences ω2−ω1

ω2
and ω2−ω3

ω2
. From these contour plots we see that the normal

approximation in ω1 makes a large difference along the N -axis. The relative
difference between ω2 and ω3 is not so big as between ω1 and ω3 in Figure 7.3.
The cusp in the contour plot of ω1 causes large differences between ω1 and ω3,
but the cusp is not apparent in the contour of ω2. The cusp is a direct effect
of the normal approximation of fD(d). We see that ω2−ω3

ω2
is smallest for shifts

along the E-axis, which is the axis of largest uncertainty (Largest eigenvector
in Table 7.2). It is also worth noticing that ω2−ω3

ω2
> 0, which implies that

ω2 > ω3. ω3 is then the most conservative separation factor of the ones that
are calculated. Regarding the normal approximation, we see that ω2−ω1

ω2
< 0,

indicating that ω2 is more conservative than ω1. This indicates that occasions
may occur when a wellplan is accepted (ω1 > 1), but the real distribution of D
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Figure 7.3: A thorough analysis of the anti-collision case I, where the straight
reference well (I = 45, A = 0) is shifted on a grid in the NE-plane and the anti-
collision calculations are performed against the point (D = 3200, I = 7.5, A =
274) in the offset well. Contour plot of ω1 is shown in the upper figure, ω3 is
shown in the middle figure, and the relative difference ω3−ω1

ω3
is shown in the

lower figure. We see that there are large differences between ω1 and ω3, where
ω3 is the most conservative separation factor with respect to the hypothesis
tests.

69



7.3. ANTI-COLLISION CASE I

3.5

3.5 44

4

4

4

4

4.5

4.5

4.5

4.5

4.5

4.5

5

5

5
5

5

5

5

5.
5

5.5

5.5

5.5

5.
5

5.5

5.5 6

6

6

6

6

6

6

6.5

6.
5

6.5
6.5

6.5

6.
5

7

7

7
7

7
7

7.
5

7.
5 7.5

7.
5

7.5

8

8

8

8

8

4

5

5

East shift

N
or

th
 s

hi
ft

k3, Case I

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

6

6
6

8

8

88

8

8

10

10

10

10

10

10

12

12

12

12

12

12

14

14

14

14

14

14

16

16

16

16

16

16

16

16 18

18

18

18

18

18

18

18 20

20

20

2020

20

20

20

22

22

22

22 22

22

22

22

24

24

24

2424

24

24

24

26

26

26 26

26

26

East shift

N
or

th
 s

hi
ft

σD,1, Case I

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

8

8

10

10

10

10
12

12

12

12

14

14

14

14

14

14

16

16

16

16

16

16

16

18

18

18

18
18

18

18

18 20

20

20

20

20

20

20

22

22

22
22

22

22

24

24

24

24

24

24

East shift

N
or

th
 s

hi
ft

σD,3, Case I

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

Figure 7.4: Contour plots of the empirical quantile k3 (upper), the empirical
estimate σ̂D,1 (middle) and σ̂D,3 (lower) for the anti-collision case I where the
reference well is shifted on a grid in the NE-plane. The dashed line indicates
where ω1 = 1.

70



CHAPTER 7. RESULTS OF THE ANTI-COLLISION CALCULATIONS

1.
5

1.5 1.5

1.
5

1.51.5

1.5

22
2

2

2
2

2

2

1

1

1

1
1

2.52.52.5
2.5

2.5
2.5 2.5 2.5

3
3

33

3 3 3
3

0.5 0.
5

3.5

3.5 4
4

3.5 3.5

4.5

4

5

4.5

5.5

5

6

East shift

N
or

th
 s

hi
ft

ω2, Case I

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

−0.4

−0.4

−0
.4−0.4

−0
.4

−0
.4

−0.3

−0.3

−0
.3−0.3

−0
.3

−0
.3

−0.2

−0.2

−0
.2

−0.2

−0.2

−0
.2

−0.1

−0.1

−0.1

−0.1 −0.1

−0.1

−0.1

−0
.1

−0.5

−0
.5

−0.5

−0.5

−0
.5

−0.5
−0.6

−0
.6 −0.6

−0
.6

−0.6

−0
.7

−0.7

−0.7
−0.7

−0.8

−0
.8

−0.8
−0.8

00

0

0
0

−0.9

−0
.9

−0.9

−0.9

−1

−1
−1

0

0

0

−1
.3

−1.3

−1.3

0

00

−1.6
−1.6

0 −1.9

0

0.1

0

0.1

0

0

0

0

0

−2
.20

0

East shift

N
or

th
 s

hi
ft

Rel. diff.: (ω2−ω1)/ω2 , 

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

0

0.1 0.1

0.1
0.20.2

0.2

0.
2

0.2

0.2

0.2

0.30.3

0.3
0.3

0.3 0.3

0.4

0.4

0.4

0.
4

0.
4

0.4
0.4

0.4

0.5

0.5

0.5

0.5

0.5

0.
5

0.4

0.2

0.4

0.4

0.4

0

0.4

0.
4

0.2

0.4

0.4

0.
4

0.4

East shift

N
or

th
 s

hi
ft

Rel. diff.: (ω2−ω3)/ω2 , 

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

Figure 7.5: Contour plots of the normal simulated ω2 (upper), and the relative
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is so different from the normal distribution that ω2 < 1.

7.4 Anti-collision Case II

Both wells 172 38 17
N -0.980 0.080 -0.182
E -0.199 -0.356 0.913
V 0.009 0.931 0.365

Table 7.3: The empirical eigenvalues (top) and eigenvectors (below) of anti-
collision case II.

Anti-collision case II is a case where we look at two wells that are identical and
parallel. The case that the wells are identical is not a realistic scenario, but for
the purpose of this thesis we are able to study the effects of having identical
position uncertainties. We perform our analysis in the point (D = 5000, I ≈
66, A ≈ 305) in the offset well, and shift the other well in a grid in the NE-plane,
as we did in case I. Figure 7.6 shows the position uncertainty at the approximate
position which we perform our analyses. We see that the N -coordinate is the
axis with the largest uncertainty. This is intuitive since the well has travelled
most in the western direction relatively to the starting position. Table 7.3 shows
the empirical eigenvalues and eigenvectors of the well. The first principal axis
is approximately directed N-S. The second principal axis is directed most along
the V -axis, while the third principal axis is directed most along the E-axis. We
have used the same position uncertainty earlier in the thesis.

We shift one of the wells in a equidistant grid in the NE-plane and compute
the separation factors for each grid-node, as we did in case I. Figure 7.7 shows
contour plots of ω1, ω3 and ω3−ω1

ω3
. In case I we saw that ω3 < ω1 in the whole

grid. In most of the contour plot of Figure 7.7 we see that ω3 > ω1, but the
most interesting parts of the plot is around the contour where ω1 = 1, where the
decisions are made by today’s standards. Here we observe that we have shift
directions where ω3 < ω1 and other shift directions where ω3 > ω1. We see that
ω1 > ω3 along the third principal axis, and ω1 < ω3 along the first principal
axis. We are not able to see the effects along the second principal axis since it
is directed mostly along the V -axis. We see the same symmetry in the contour
plot of ω1 in Figure 7.7 as we did in Figure 7.3 for case I. The cusp which we
saw in case I is seen in the contour of ω1 along the third principal axis. A shift
along the first principal axis gives the largest change in ω1. The same effect is
seen for ω3 too, but the change in ω3 is not that big as for ω1.

Figure 7.8 shows contour plots of k3, σD,1 and σD,3. In case I we saw that
ω3 < ω1, which indicates that k3σD,3 > k1σD,1. In the areas where ω3 > ω1

in case II we have that σD,3 is much smaller than σD,1, and it decays faster
with increased separation distance. The difference is largest with a shift along
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Figure 7.7: A thorough analysis of the anti-collision case II where one of the
wells are shifted in a grid in the NE-plane. Contour plot of ω1 (upper), ω3

(middle), and the relative difference ω3−ω1
ω3

(lower). We see that the relative
difference is both greater and smaller than 0, which gives no certain answer for
which error model is the most conservative for this case.
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Figure 7.8: Contour plots of the empirical quantile k1 (upper), the empirical
estimate σ̂D,1 (middle) and σ̂D,3 (lower) for the anti-collision case II where one
of the wells are shifted in a grid in the NE-plane. The dashed line indicates
where ω1 = 1.
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Figure 7.9: Contour plots of the normal simulated ω2 (upper), and the relative
difference ω2−ω1

ω2
(lower) for anti-collision case II.
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the first principal axis. Both σD,1 and σD,3 show that a shift along the third
principal axis gives the largest uncertainty in D.

Figure 7.9 shows the contour plot of the normal simulated ω2 and the relative
difference ω2−ω1

ω2
. The normal approximation causes deviations between ω1 and

ω2 along the first principal axis with ω1 > ω2, but along the third principal axis
the normal approximation of fD(d) seem to be good. As in case I, we see that
ω2−ω1

ω2
< 0, making ω2 more conservative than ω1.

When we shift one of the identical position uncertainty distributions in case II,
the distributions in the wells are parallel. A sample from a NIG-distribution have
a higher frequency of realizations close to the mean than a sample from a normal
distribution. The same effect is seen in the position uncertainty distributions,
as shown in Figure 5.5. Two normal distributions (with different mean and
equal variances) which overlap relatively much, overlap more than two NIG
distributions with the same mean and variance as the normal distributions.
This is the reason why σD,3 < σD,1 and ω3 < ω1 for most kinds of shift in case
II.

7.5 Anti-collision Case III

Reference well 644 33.15 6.22
N -0.708 -0.352 0.612
E 0.706 -0.355 0.612
V 0.002 0.866 0.5

Offset well 658 33.15 6.22
N -0.708 -0.352 -0.612
E -0.706 0.355 0.612
V 0.002 0.866 -0.5

Table 7.4: The empirical eigenvalues (top) and eigenvectors (below) for the
reference well and offset well of anti-collision case III.

Anti-collision case I analyzed a point in the offset well where the well had been
pointed southwards up to this point. The reference well was a well pointing
northwards. This gave us largest uncertainty along the E-axis for both wells.
In anti-collision case II we analyzed two identical well geometries, which result
in identical principal axes in both wells. In anti-collision case III we analyze
two wells that intersect orthogonally to eachother in the NE-plane. The offset
well is a straight well with A = 315 and I = 60. The reference well is a straight
well with A = 45 and I = 60. Figure 7.10 shows an example of this case.
The calculations are performed at D = 3000 in the offset well. In Figure 7.10
the wells are calculated to be separated by 70.71 meters. It is worth noting
that the estimated normal simulated centre-to-centre distance is over 5 meters
different from the normal calculated. Table 7.4 shows the empirical eigenvectors
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and eigenvalues of this case. We see that all eigenvectors of the offset well are
orthogonal to the eigenvectors of the reference well in the NE-plane. The first
principal axis of both wells indicate that the uncertainty is equally large along
both the N - and E-axis. We shift the reference well in a grid in the NE-plane
and analyze the differences between the separation factors ω1 and ω3.

Figure 7.11 shows the contour plots of ω1, ω3 and ω3−ω1
ω3

for anti-collision case
III. The cusp which we saw in both case I and case II is not apparent in case
III. This can only be explained by the largest eigenvectors which are orthogonal
to eachother in the NE-plane. We see that ω3 < ω1 for the whole contour,
making ω3 the most conservative separation factor. In the relative difference
contour ω3−ω1

ω3
we notice an area where the relative difference is large. Since

both wells have I = 60, the uncertainty in depth becomes large, as we can see
of the second eigenvectors in Table 7.4. The second principal axis is mostly
directed along the V -axis. The large relative difference is then caused by the
normal approximation which becomes poor along this principal axis. The cusps
we saw in case I and II are now placed along this principal axis, and we observe
the cross-section between the NE-plane and this axis.
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Figure 7.11: A thorough analysis of the anti-collision case III. Contour plot of
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Figure 7.12: Simulation results of the deviation along the N - (left) and E-
coordinate (right) between the expected position from the NIG error model and
the calculated position from the minimum curvature formula. The simulation
results are made on different measured depths from synthetic straight wells of
different inclination angles and azimuth angles. The values along the x-axis are
(Di−Ds) sin Ii| sinAi| (left) and (Di−Ds) sin Ii| cosAi| (right), where Ds is the
measured depth at seabed, and Di, Ii, Ai are the measured depth, inclination
and azimuth of the wells. The green lines are fitted regression models.

7.6 General results

In Section 5.7 we discussed how a skewed declination error with E(ε16) 
= 0
results in a deviation between the expected position in the NIG error model and
the normal error model. Equation (4.29) allows us to compute the deviation in
expected position between the NIG error model and the normal error model. We
verify (4.29) by simulating the position from the NIG error model in synthetic
straight wells of different inclination and azimuth. This is done on different
measured depths in the straight wells. Figure 7.12 shows the simulation results,
where we can see a significant trend in the deviations along both the N - and
E-coordinate. Let ΔN be the deviation in expected N -coordinate, ΔE be the
deviation in expected E-coordinate, and Ds be the measured depth at seabed
where we assume zero uncertainty. The following predictors are estimated from
the regression models of the simulation results:

ΔN̂ = −4.89 · 10−4(D −Ds) sin I sinA

ΔÊ = 4.87 · 10−4(D −Ds) sin I cosA

We recall from Section 5.7 that E(ε16) = 4.88 ·10−4, which coincide with the es-
timated regression parameters. The covariates of the regression model is chosen
this way because of the analytical form of (4.29). As an example, let D = 5000
m, Ds = 300 m, I = 30, A = 60. We expect a deviation in expected position of
ΔN̂ = −0.9942 m, and ΔÊ = 0.5721 m, resulting in a total deviation of 1.1471
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Figure 7.13: Contour plot of ω1 for anti-collision case I, with the reference well
having azimuth angle A = 60 instead of A = 0. By comparing with Figure 7.3
we see that our results look rotational invariant with respect to the azimuth
angle of the reference well.

m in the NE-plane. For non-straight wells, one would have to compute the
deviation in expected position from (4.29). Straight wells are considered to give
the largest deviation. These results indicate that if E(ε16) 
= 0 there will be a
deviation in expected position. The deviation is usually not that big, but it may
cause significant differences in the results, especially between the calculated and
simulated centre to centre distances.

As we have seen, the position uncertainty from MWD magnetic directional
surveying is highly dependent on the well geometry. The results are therefore
highly dependent on the well geometries. We have chosen three illustrative cases
which highlight this subject. Case I, in Section 7.3, is a typical example of two
wells with different well geometries that collide. Even though it is not realistic
to believe the the reference well is a straight well, the well is approximately
straight in the section where there is a significant risk of well-collision. Case
II, in Section 7.4, highlights what problems that might arise if we have parallel
wells with approximately same geometry prior to the point of analysis. Figure
7.13 shows a contour plot of ω1 when a straight reference well with I = 45 and
A = 60 encounters the same point in the same offset well as in case I. We see
the same effects occuring as in case I, except that the results are rotated. The
results seem to be relatively rotational invariant with respect to the azimuth
angle, although the numerical values are not the same. The cusps are slightly
changing the shape, from being sharp when the eigenvectors are directed in
the same direction in the NE-plane, to more curved when the eigenvectors are
orthogonal to eachother in the NE-plane.

If we look at anti-collision case I, Figure 7.2, we see that the uncertainty in the
reference well is greater than in the offset well. By changing the azimuth, we
rotate the statistical distribution of the reference well. And since it is the largest
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distribution in magnitude, it ensures us that the results are rotated without any
significant change. By looking at the eigenvector-directions of the reference well
as we did in Section 7.3 from Table 7.2, we would easily could explain the results
through the eigenvector-directions.

If we decrease the inclination angle I, the differences between the results de-
crease. This is because the declination error only affects theN - andE-coordinate
with a factor proportional to sin I. And if the reference well is close to vertical,
the declination error has no effect on the total position uncertainty, and we are
not able to see any significant difference between the two error models.

The normal approximation of fD(d) were discussed in Section 6.4.1 and Ap-
pendix C. The approximation is sufficiently good when there is a small risk of
well-collision. Our results show large relative differences between ω1 and ω2 for
small shifts along the largest principal axes. A shift along the largest principal
axis is the direction where the risk of well-collision is reduced the least. We have
seen that ω1 > ω2 especially along the largest principal axes. Given that the
normal error model is the true error model, this may lead to situations where
ω1 > 1 indicates that a wellplan can be built, while the true distribution of D
would result in ω2 < 1 and the opposite conclusion.

Of our results we also observe that σ̂D,1 < σ̂D,3 for all cases. A NIG-distribution
has a larger area close to the mean compared to a normal distribution, and
simulations of one well of the NIG error model give more dense realizations near
the expected value than simulations of the normal error model. This results
in a smaller variation of the distance between points in each simulation. The
NIG-distribution has heavier tails than the normal distribution. This results in
a heavier tail on the distribution of D, which results in a larger quantile value
which is used in computing the separation factor ω.
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Chapter 8

Closing remarks

8.1 Conclusions

There are obvious differences in the position uncertainty between the chosen
normal error model and the chosen NIG error model. The declination error is
the only difference between the error models. The declination error affects only
the azimuth angle A, which again affects only the uncertainty in the NE-plane.
There is no difference between the error models along the V -axis. A skewed
and heavy-tailed statistical distribution on the declination error results in a
skewed and heavy-tailed statistical distribution on the position uncertainty. A
heavy-tailed declination error will in general affect all three principal axes of the
position uncertainty. Our analyses do not conclude that the NIG error model
have principal axes directed in other directions than the normal error model.
The skewness of the position uncertainty is very dependent on the well geometry.
When the declination error model has a small non-zero expectation there is a
small deviation between the expected positions of the two error models.

Our results show that the use of the NIG error model usually gives a more
conservative result than the use of a normal error model. The exceptions are
seen for wells with similar geometries. When both the reference well and the
offset well have equal geometries, they have equal position uncertainties. In
these cases the normal error model is more conservative than the NIG error
model. It is very hard to derive any general conclusion from our results, as the
position uncertainties are very dependent on the well geometry.

By approximating the distribution of the minimum centre to centre distance
D with a normal distribution, there may occur situations where a wellplan is
accepted when the true distribution of D would result in the conclusion that
the wellplan should not be accepted. These situations are most likely to occur
when two wells are separated along an axis of large uncertainty, i.e. σD is
large relative to the calculated minimum centre to centre distance D0. Our
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results show a maximum relative difference in separation factor of 2 between
the normal calculated separation factor and the normal simulated separation
factor. In the same cases, the relative difference between the normal calculated-
and the NIG simulated separation factor is even higher than 2. This results in
a higher risk of well-collision than the chosen maximum tolerance probability
when the distribution of D deviates from a normal distribution.

Given that the chosen NIG-distribution for the declination error is the true
distribution, it may be wise to consider other approaches for anti-collision cal-
culations than the normal theory which is currently practised. If two wells are
separated in certain directions we have seen that there may be large differ-
ences in the results between the two error models. The normal approximation
that is currently used in the hypothesis test of the anti-collision calculations
becomes poor when the separation factor is close to 1, i.e. in the situations
where we start to have a significant risk of well-collision. The arguments for
the use of the current method is that it is easy to understand, easy to calculate
analytically, and the statistical distribution used under the null hypothesis is an-
alytically tractable. The use of an empirical distribution in the hypothesis test,
which we are forced to use under the NIG error model, leads to quantile-values
which change between every analysis. The simulation approach is also more
time-consuming than the analytical approach, without this being a significant
argument for the current method. An argument against the use of the current
method is that it may cause us to accept a wellplan on a given significance level
when the true probability of type I error is larger than the significance level.
But as we have seen in this thesis, the normal error model is in some cases the
most conservative method.

Corrective actions on the existing method may be an easier alternative than
changing the declination error distribution. Our results indicate that the most
important change would be to simulate the distribution of the minimum centre
to centre distance, i.e. calculate the position uncertainties from the normal
error model, and simulate the centre to centre distance distribution fD(d). An
alternative to simulation of fD(d) would be to analytically compute fD(d) given
the position uncertainties. Even though simulation of fD(d) does not correct for
the heavy-tailed behaviour of the declination error, we have seen that the results
are improved by avoiding the normal approximation of fD(d). The differences
between the normal simulated- and the NIG simulated results are smaller than
the difference between the normal calculated- and the NIG simulated results. If
the declination error is believed to be non-central, it is possible to correct for by
introducing a bias in the expected position. This bias can easily be calculated
from the well geometry and the expected value of the declination error.

Given that the declination error is heavy-tailed, as earlier published literature
confirms, the conclusions based on the work in this thesis is that there is need
for corrective actions regarding the existing methods. Whether or not these
corrective actions are to change the statistical distributions on the error sources
or they are minor changes in the existing methods will be a subject of further
work.
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8.2 Further work

If the work of this thesis should be a subject for further work, it must be done
a more general analysis of the declination error. This thesis has focused on
the effects of a heavy-tailed declination error, and not so much on finding a
global declination error model. The chosen NIG-distribution for the declination
error is based only on one processed annual serie of observations of the Earth’s
magnetic field on one location. The chosen annual serie has the characteristical
properties of the declination error source which we seek, but there is need for
further work on finding a more globally valid declination error model with focus
on the heavy-tailed behaviours.

The errors in MWD magnetic measurements have been observed to be heavy-
tailed. Based on published literature, we assumed that the declination error was
the only error that had heavy tails. The declination error is in most cases the
most significant error source, and it is also one of few error sources that it is
possible to analyze directly from observations. If the error model should include
other heavy tailed error sources, we need datasets of these errors in order to
find a suitable NIG-distributions. Bias- and scale errors of accelerometers and
magnetometers are possible to analyze by multi-station estimation. But there
is no literature which indicate the need of heavy-tailed statistical distributions
for these errors. Other error sources are hard, if not impossible to analyze, since
there does not exist any data of these error sources.

The number of error sources that are included in our error models can easily be
increased. An improved error model should include the use of correction algo-
rithms for the axial magnetism in the drillstring. An apparent axial magnetism is
corrected for by a new set of equations which connects the MWD-measurements
with the measured depth, inclination and azimuth. This results in a new set of
weighting functions which we, for implementation purposes, chose not to include
in our model.

In our analyses we have assumed that the reference well and the offset well are
uncorrelated. This is not the case in general, as a global error source influences
both wells. We have seen that the well geometry is very important for the
position uncertainty. Wells have often the same geometry in some sections as
they can be drilled from the same template. In the case where the reference well
is a sidestep of an offset well, we have a total correlation of both wells until the
sidestep is made. Estimating the correlation between wells may be of interest
for further work.

MWD magnetic directional surveying is a drilling operation which gives us infor-
mation about the position while drilling. Between MWD-surveys or after drilling
completion, it is possible to position the well using other surveying methods,
such as with gyroscopic instruments. This gives us another error model of the
position uncertainty than the one used in this thesis. In this thesis we have used
the same error model on offset wells as on reference wells. Further work on this
subject should also include the possibility to have other error models than the
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one we have used in this thesis.
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Appendix A

Proof: Linearity formulas of
the normal inverse gaussian
distribution

Let X ∼ NIG(μ, ρ, α, β). The moment-generating function of X is:

MX(t) = exp
{
μt+ ρ(γ −

√
α2 + (β + t)2)

}
(A.1)

Let Y = aX + b. From the properties of the moment-generating functions, we
can calculate the moment-generating function of Y :

MY (t) = ebtMX(at)

= exp
{
bt+ μat+ ρ(γ −

√
α2 − (β + at)2)

}
= exp

{
(aμ+ b)t+ ρ(γ −

√
α2 − (β + at)2)

}
= exp

{
(aμ+ b)t+ |a|ρ( γ|a| −

1
|a|
√
α2 − (β + at)2)

}

= exp

{
(aμ+ b)t+ |a|ρ( γ|a| −

√
α2

a2
− 1
a2

(β + at)2)

}

= exp

{
(aμ+ b)t+ |a|ρ( γ|a| −

√
α2

a2
− (

β

a
+ t)2)

}

= exp

⎧⎨
⎩(aμ+ b)t+ |a|ρ( γ|a| −

√(
α

|a|
)2

− (
β

a
+ t)2)

⎫⎬
⎭

We see that the moment-generating function of Y is of the same form as (A.1),
i.e. Y ∼ NIG(aμ+ b, |a|ρ, α

|a| ,
β
a ).
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Let now Y =
∑n

i=1Xi, where Xi ∼ NIG(μi, ρi, α, β). The moment-generating
function of Y can be expressed by the moment-generating functions of Xi:

MY (t) =
n∏

i=1

MXi
(t)

= exp

{
n∑

i=1

(
μit+ ρi[γ −

√
α2 − (β + t)2]

)}

= exp

{(
n∑

i=1

μi

)
t+

(
n∑

i=1

ρi

)
[γ −
√
α2 − (β + t)2]

}

We see that Y ∼ NIG(
∑n

i=1 μi,
∑n

i=1 ρi, α, β).
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Appendix B

Proof: The normal inverse
gaussian distribution as a
normal variance
mean-mixture

Let Z be a Inverse Gaussian (IG) distributed random variable, Z ∼ IG(ρ, γ).
The density function of Z is:

fZ(z) =
1√

2πz3
ρ exp
{
ργ − 1

2
(
ρ2

z
+ γ2z)

}

Let X|Z = z ∼ N(μ+ βz, z). The joint density of (X,Z) is:

f(x, z) = f(x|z)× f(z)

=
1√
2πz

exp
{
− 1

2z
(x− (μ+ βz))2

}
× 1√

2πz3
ρ exp
{
ργ − 1

2
(
ρ2

z
+ γ2z)

}

=
1

2πz2
ρ exp
{
ργ − 1

2z
(x− (μ+ βz))2 − 1

2
(
ρ2

z
+ γ2z)

}
(B.1)

∝ ρz−2eργ−βμ exp
{
βx+ μ

x

z
− 1

2
(β2 + γ2)z − 1

2
(μ2 + ρ2)z−1

}
(B.2)
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We compute the marginal density of X from the joint density (B.1):

fX(x) =
∫ ∞

0

f(x|z)f(z)dz

=
∫ ∞

0

1
2πz2

ρ exp
{
ργ − 1

2z
(x− (μ+ βz))2 − 1

2
(
ρ2

z
+ γ2z)

}
dz

=
1
π
ρ exp {ργ + β(x− μ)}×

× 1
2

∫ ∞
0

1
z2

exp
{
−1

2
[
ρ2

z
+ γ2z +

1
z
(x2 − 2μx+ μ2 + β2z2)]

}
dz

=
1
π
ρ exp {ργ + β(x− μ)}1

2

∫ ∞
0

1
z2

exp
{
−1

2
[
ρ2

z
+ α2z +

1
z
(x− μ)2]

}
dz

=
1
π
ρ exp {ργ + β(x− μ)}1

2

∫ ∞
0

1
z2

exp
{
−1

2
[
1
z
(ρ2 + (x− μ)2) + α2z]

}
dz

We substitute u =
√

ρ2+(x−μ)2

αz :

fX(x) =
1
π
ρ exp {ργ + β(x− μ)}×

× 1
2

∫ ∞
0

exp
{
−1

2
α
√
ρ2 + (x− μ)2[u+

1
u

]
}

α√
ρ2 + (x− μ)2

du

=
αρ

π
√
ρ2 + (x− μ)2

exp {ρ
√
α2 − β2 + β(x− μ)}K1

(
α
√
ρ2 + (x− μ)2

)

The last expression is in fact the NIG density function (3.12) with parameters
(μ, ρ, α, β), as we recognize that the last integral is the modified Bessel function
of order 1.
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Appendix C

Normal approximation in
anti-collision hypothesis
testing

The hypothesis test in Section 6.4.1 approximate the distribution of D with
a normal distribution. The standard deviation of D, σD, is approximated as
shown in (6.2). σD is dependent on the covariance structure in both wells,
which makes it hard to prove in general if the normal approximation is good.
We can use simulations to check the normal approximation. From Section 6.4
we have the following difference vector of interest:

r ∼ N3(u0 − v0,Σu + Σv)

For different u0, v0, Σu and Σv, we can simulate realizations of r, and compute
realizations of the distance D =

√
rT r. We show three different simulations in

Figure C.1. The conclusion of these simulations is that the normal approxima-
tion is good when the true μD is large relative to the standard deviation σD,
as shown in the middle simulation in Figure C.1. In the case where we have a
relatively high risk of well-collision, the left tail of the fitted normal distribution
is defined for negative values of D, which is the case for the upper and lower
simulation in Figure C.1. The probability of well-collision is usually small in
practice, which would result in a simulation with few small values of D. So the
normal approximation is valid when it is not a high risk of well-collision.
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Figure C.1: Three different simulations of the distance D. The upper simulation
has large expected value and large variance. The middle simulation has large
expected value and small variance. The lower simulation has small expected
value and large variance. The normal distribution is a good approximation
when D is not too small relative to the uncertainty in D.
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Appendix D

An alternative hypothesis
test in anti-collision
calculations

An alternative hypothesis test to the tests in Section 6.4.1 and 6.4.2 can be used
in anti-collision calculations. Under the assumption that the position uncertain-
ties are multivariate normally distributed, u ∼ N3(u0,Σu) and v ∼ N3(v0,Σv),
we also know the distribution of the difference vector r. r ∼ N3(r0,Σr), where
r0 = u0− v0 and Σr = Σu + Σv. We can use the following hypothesis test when
we neglect the wellbore diameters:

H0 : r0 = 0
H1 : r0 
= 0

In this hypothesis test, 0 means the null vector. Under H0 we have that r ∼
N(0,Σr). We can then use rT (Σr)−1r ∼ χ2

3 as our test statistic. We reject H0

on significance level α if rT
0 (Σr)−1r0 > k′α, where k′α is the 100(1− α)-quantile

of the χ2
3-distribution. This hypothesis test is not easily applicable when we

introduce the wellbore diameters. Then we would have to do a test on the
length of r0, as follows:

H0 : ||r0|| ≤ du + dv

2

H1 : ||r0|| > du + dv

2

This hypothesis test is not as easily practiced as the hypothesis tests in Section
6.4.1 and 6.4.2, since we can not say anything about the expected vector of r
under H0, as we could in the special case of ||r0|| = 0. This test may be used
where there are large position uncertainties relative to the wellbore diameters.
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