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Problem description

The candidate is to study the special number �eld sieve and the mathematical
background of this integer factorization algorithm.
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Abstract

Integer factorization is a problem not yet solved for arbitrary integers. Huge
integers are therefore widely used for encrypting, e.g. in the RSA encryption
scheme. The special number �eld sieve holds the current factorization record
for factoring the number 21039 + 1. The algorithm depends on arithmetic in
an algebraic number �eld and is a further development from the quadratic
sieve factoring algorithm. We therefor present the quadratic sieve as an in-
troduction to the ideas behind the special number �eld sieve �rst. Then the
special number �eld is described. The key concepts is evaluated one bye one.
Everything is illustrated with the corresponding parts of an example factor-
ization. The running time of the special number �eld sieve is then evaluated
and compared against that of the quadratic sieve. The special number �eld
sieve only applies to integers of a special form, but a generalization has been
made, the general number �eld sieve. It is slower but all estimates suggests
it is asymptotically faster than all other existing general purpose algorithms.
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1 Introduction

Integer factorization is a simple mathematical concept, yet it is still a subject
far from solved. That is, anyone can create(with the help of a computer) a
composite integer large enough so that not even the brightest mathematicians
can factor it. This makes large composite integers very useful in the world of
cryptography, e.g. the RSA crypto system depends totally on the fact that
it is impossible to factor the number n that encrypts the message.

During the years there has been proposed several algorithms for factoring
composite integers in a more or less e�cient way. The continued fraction
method was introduced by Lehmer and Powers, and later in the 1970's re-
�ned for implementing by Brillhart and Morrison [9]. This algorithm allowed
complete factorization of integers up to about 50 digits. Carl Pomerance in-
troduced the quadratic sieve algorithm in the early 1980's, this algorithm
pushed the limit for integer factorization up above 100 digits. Then in 1988
John Pollard introduced the idea for the number �eld sieve. This idea was
further developed, and in 1990 A.Lenstra, H.Lenstra, Manasse, and Pollard
introduced the special number �eld sieve. The algorithm relies heavily on
arithmetic in number �elds and traditional sieving techniques, hence the
name number �eld sieve. Then in 1993 Buhler, H.Lenstra, and Pomerance
introduced the general number �eld sieve which generalizes the special num-
ber �eld sieve to all integers.

The above described algorithms are in the group of index calculus algorithms
for integer factorization. That is they all use the same idea and approach
to achieve a non trivial factorization. They follow a three step procedure to
�nd two integers that will give a factorization. Consider a number n that is
composite, and has two factors a and b, then the number n can be written
in the following way:

n = a · b =
(
a+ b

2

)2

−
(
a− b

2

)2

.

Now replace a+b
2 by x and a−b

2 by y, this gives

n = x2 − y2 = (x− y)(x+ y)

x2 ≡ y2 (mod n) (1)

(x− y)(x+ y) ≡ 0 (mod n).

The last equation implies n|(x − y)(x + y). So either x ± y = 1(and the
other is n) or x ± y contains a non trivial factor of n. If we then use the
Euclidean algorithm to compute the greatest common divisor(gcd) of n and
x± y maybe we can �nd that non-trivial factor of n.
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This means if x and y are known and we compute the gcd, we have two
possible results, either the gcd(n, x ± y) is 1 and n, or we get a non-trivial
factor of n. That is there is approximately a 50% chance to factor n if x and
y that satisfy (1) are known.

The three steps the index calculus algorithms use to �nd the proper integers
x and y are, �rst �nd a suitable factor base, second use a sieving technique
to search for integers of a special form that factors in the factor base. Then
the third step is to use linear algebra to �nd a set of integers, from the set
found during the sieving, that can be combined to be on the form of (1)

The di�erence of the quadratic sieve and the number �eld sieve is mostly
in the sieving step. The sieving of the number �eld sieve is more e�ective
than the technique of the quadratic sieve when the integer to factor gets
large. The special number �eld is the asymptotically fastest algorithm, but
it only applies to integers of a special form. The general number �eld sieve
uses the same ideas as the special number �eld sieve but it must take several
precautions due to the generality of n which causes the running time to
be slower. The quadratic sieve also applies to general integers but is again
slower than the other two. The record for the general number �eld sieve is
the factorization of the RSA-200 number which has 663 bits . This is the
largest integer factored by a general purpose algorithm [3].

The special number �eld sieve is constructed to factor large integers on the
form re − s where r and s are relatively small and e is large. To �nd inte-
gers that satisfy (1) the algorithm uses an irreducible polynomial, number
�elds, and a homomorphism. The �rst major and perhaps the most famous
factorization by the special number �eld sieve was the factoring of the ninth
Fermat number 2512 + 1 [8]. The current record factorization by the special
number �eld sieve is the factoring of the integer 21039 − 1 (313 digits), into
3 primes each with 7, 80, and 227 digits [3].

In section 2 there will be an introduction to the quadratic sieve, the algorithm
will be described and a heuristic time estimate is analyzed. Then in section
3 the mathematical background of the special number �eld sieve will be
described, before section 4 introduces the idea of the special number �eld
sieve. How to construct the factor base and the sieving techniques is then
described with corresponding results from section 3. Then the running time
estimates proposed for the special number �eld sieve are presented. Section
5 discusses di�erent aspects of the algorithm and section 6 concludes with a
summary of the thesis.
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2 Quadratic Sieve

When the quadratic sieve algorithm was introduced in the early 1980's it
was the fastest integer factorization algorithm available. It still is the pre-
ferred(and fastest) algorithm to factor numbers up to about 100 digits.

2.1 The quadratic sieve algorithm

The quadratic sieve starts it search for the integers x and y that will satisfy
(1) by computing squares of integers and their residues modulo n. Then it
hopes that the residues modulo n is composed by relatively small primes, or
at least that the residue has few prime factors. If the integers one chooses
are close to

√
kn k ∈ Z, their residues will be small modulo n when they are

squared and then have a better chance of having smaller prime factors. In
practice one sets an upper bound and try to �nd residues that are composed
by primes less than this bound. Let's say B is the bound we have set, and
we try to �nd integers on this form

x2
i ≡ ai (mod n). (2)

In which the ai's have all its prime factors less than B. When a number has
all prime factors less than some integer B we say it is B-smooth, e.g. the
quadratic sieve wants to �nd squares that modulo n are B-smooth.

What we now want is to �nd several relations like (2) and combine them to
get a square on both sides of the congruence, then we could just �nd the gcd
and hopefully it will be a non-trivial factor of n as described in section 1.

The idea is to �nd a combination of the ai's that is a square when multiplied
together. This means when added up each prime factor of the ai's appears
an even number of times. The other side (x2

i ) is already a square and will of
course stay that way when they are multiplied together.

To achieve this combination(a square) we will use theorems from basic linear
algebra. If we let β denote the number of primes less than B, that is the
number of primes in the factor base, each ai that are B-smooth are on the
form

ai =
β∏
j=1

p
kj
j , k ∈ Z

where pj ≤ B and prime. Our relations can be written as

x2
i ≡

β∏
j=1

p
ki,j
j (mod n)
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For each integer x2
i let εi = (ki,1, ki,2, ..., ki,β). If we now reduce each εi

modulo 2, we only need to �nd a combination of these vectors that sums to
the zero vector in Fβ2 . This is the same as �nding a linear dependent set of

vectors in Fβ2 , and to be guaranteed a linear dependent set we need at least
β + 1 vectors, that is β + 1 B-smooth residues.

If we can �nd at least β + 1 smooth residues we reduce the corresponding
εi's modulo 2, and put them into a matrix. This matrix will have β columns
and at least β + 1 rows. Then it is just to start row reducing until a zero
row is obtained. If we now call the set of residues that results in a zero row
in the matrix S, the corresponding ε vectors for the residues in S will satisfy∑

pj≤B
εi(pj) ≡ 0 (mod 2). (3)

εi(pj) is the exponent of pj for the corresponding ai. Then let e denote the
sum of all the εi, i ∈ S, that is e =

∑
i∈S εi. And because of (3) the vector

1
2e will still have integers on all coordinate positions.

We can now write the product of all relations in the set S as:

∏
ai∈S

ai =
β∏
j=1

p
ej
j

And the the integer y in (1) is

y =
β∏
j=1

p
1
2
ej

j .

Then we can combine the values found to achieve

x2 ≡
∏
xi∈S

x2
i ≡

β∏
j=1

p
ej
j ≡ y

2 (mod n)

Since we know all the factors of the x2
i 's and the factors p of the ai's it

is straight forward to �nd the square roots x and y. Then use Euclid's
algorithm to �nd the gcd(n, x± y), which hopefully gives a nontrivial factor
of n, if not get another set S and try again.

2.2 Example

Factor the number n = 260101 using quadratic sieve.

We chose the factor base to be the primes below 14.
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Then we sieved for smooth integers, starting with b
√
nc+ 1(the least integer

greater than
√
n) and the next 40 integers, then

√
2n and so on. We did

Gaussian elimination on the exponent vectors of the smooth integers and
found two integers that multiplied together is a square:

5392 ≡ 30240 ≡ 22 · 32 · 5 · 132 (mod 260101)

10232 ≡ 6125 ≡ 53 · 72 (mod 260101)

This gives

x2 ≡ (539 · 1023)2 ≡ 5513972 ≡ 311952 (mod 260101)

and
y2 ≡ (2 · 3 · 52 · 7 · 13)2 ≡ 136502 (mod 260101)

gcd(n, x− y) = gcd(260101, 31195− 13650) = 29

gcd(n, x+ y) = gcd(260101, 31195 + 13650) = 8969

29 · 8969 = 260101

2.3 Running time

There are two major steps that the quadratic sieve running time is a�ected
by.

1. Searching for squares with residues that are B-smooth modulo n

2. Finding a linear dependent set

The running time depends of course on the size of n, but there is nothing we
can change about n. The only thing we can change in the algorithm is the
size of the factor base. So we will try to �nd the optimal choice of the factor
base depending on the size of n. We will �rst analyze the time it takes to �nd
the smooth integers, then the running time of the linear algebra. Both will
only be rough heuristic estimates where we will make many simpli�cations.
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Sieving

First consider the probability to �nd a number that is B-smooth. It is
customary to denote ψ(n,B) as the number of integers less than n that is
only divisible by primes less than B. We are now looking for integers on the
form

β∏
i=1

pi
αi ≤ n

where pi ≤ B is prime. By taking logarithms on both sides we get

β∑
i=1

αi · log pi ≤ log n

The primes pi are in fact not that much smaller than the number B, and
their logarithms will be about the same, that is B and the pi have almost
the same number of digits. Therefore we make the simpli�cation to replace
log pi by logB. And then if we denote the ratio logn

logB by u(which gives u a
much smaller value than B) we achieve

β∑
i=1

αi ≤ u

Then as our last simpli�cation we replace β by B. This means we put in
non-trivial terms but they actually cancel out to make no di�erence. We
then �nd that the number of integers less than n that factors by the primes
less than B are roughly the number of integer solutions to the inequality

B∑
i=1

αi ≤ u

This number can be computed from the fact that the number of nonnegative
integer B-tuples αi such that

∑B
i=1 αi ≤ u is the binomial coe�cient ( [u]+B

B ),
where [ ] denotes the greatest integer function[7].

So the probability that a number less than n factors by primes less than B
is

ψ(n,B)
n

≈

(
[u]+B
B

)
n

=
([u] +B)!

[u]!B!n

If we then take logarithms, replace log n by u logB and use the fact that
log (n!) ≈ n log n− n [7], we can estimate the probability to
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log
(

([u]+B)!
[u]!B!n

)
= log ([u] +B)!− log([u]!B!n) = ([u] +B) log([u] +B)− ([u] +

B)− [u] log [u] + [u]−B logB +B − u logB
≈ [u] log([u] +B) +B log([u] +B)− [u] log [u]−B logB − u logB

If we now replace [u] by u, and because u is assumed to be much smaller
than B we replace log(u+B) by logB we get
u logB +B logB − u log u−B logB − u logB = −u log u

log
(
ψ(n,B)

n

)
≈ −u log u

ψ(n,B)
n

≈ u−u

So to �nd one B-smooth number we have to check approximately uu integers
on average.

The next question is how much time will be spend on checking each integer?
To check one integer we can do trial division to see if the integer is completely
factored by the factor base. If the integer is k bits and the integer to divide
by is l bits(l ≤ logB), each division will take O(kl), so the whole test for
each integer will take O(klB)

Then to �nd at least (β + 1) smooth integers the sieving step will take
uu(β + 1)O(klB). Using the prime number theorem that β ≈ B

logB we get
that the running time of the sieving will be

O(uukB2)

Finding a linear dependent set

The second part to row reduce a matrix, assuming a size of approximately
B2, can be done in at most O(B3) with Gaussian elimination, but there
are faster methods available. We know k is at most log n, combining the
relations to get the desired squares can be done in time O(kr), so the second
part will be done in time O(krBj) for appropriate choices r and j.

Best choice of B

The above results give a total running time of

O(kuuB2 + krBj) = O(kruuBj) = O(kr
(
k

l

) k
l

ejl). (4)
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We would like to �nd the optimal choice of B, or equivalently the choice of
l for which this estimate is minimal. Since k is constant there is nothing we
can do about it so we will just ignore it and calculate the derivative of the
logarithm of the expression involving l:

0 =
d

dl

(
k

l
log k − k

l
log l + jl

)
= − k

l2
log k +

k

l2
log l − k

l2
+ j

0 = − k
l2

(log
k

l
+ 1) + j ≈ − k

l2
(log

k

l
) + j (5)

If we then choose l such that lj is equal to k
l log k

l , that is the two factors

of
(
k
l

) k
l ejl are approximately equal. j is still constant so we can take l2 to

have the same order of magnitude as k(log k − log l), which means l has a
value between

√
k and

√
k · log k. That gives log l ≈ 1

2 log k. Which gives us
the optimal value of B,

B ≈ e
√

logn (6)

Substituting this value for log l into (5) gives

j =
k

2l2
log k

l ≈

√
k

2j
log k

Using this value of l, and the approximation that ejl ≈ k
l log

k
l , our time

estimate from (4) comes to O(e2jl) = O(e2j
√

k
2j
log k) = O(e

√
2jk·log k)

Substituting the constant
√

2j with C gives us the �nal running time ap-
proximation for the quadratic sieve to be

O(eC
√
k log k)

Remarks

This estimate for the running time of the quadratic sieve was a very rough
one, there are several aspects in the above argument which can be improved.

The sieving part assumes all integers has the same probability of being
smooth, that is the smooth integers are uniformly spread out in the interval
[1,Y], and that one has to check all integers in no special order. The sieving
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step is done more e�ectively by only checking values that are close to
√
kn

for small integer values of k as described in section 2.2. These integers will
have small residues modulo n and then a bigger chance of being B-smooth.
One will then in practice having to check far less than the calculated uu

integers to �nd a smooth integer. This will play a signi�cant role in the
running time of the algorithm as it will �nd the relations much faster than
the time estimate suggests.

As for the linear algebra part, there are faster algorithms than the method of
Gaussian elimination, e.g. the conjugate gradient method and the Lanczos
method which will speed up things at this stage of the algorithm [2]

The choice of factor base is what we can adjust here, and the consequences
of a to small/large factor base are as follows: A small factor base will make
it very hard to �nd the relations in the �rst step, it might not even �nd
enough of them. But when it does the second step of linear algebra will be
very fast as the matrix will be small. A large factor base will make sure the
relations will be easy to �nd, you'll need more of them but as they come in
fast you'll probably get enough of them. But the linear algebra will be time
consuming since the matrix will be very large. So the time gained in step
one might be lost in step two.

We found something that seemed like a reasonable choice for B in our time
estimate but other aspects should be considered to. E.g. the choice should
also be made according to what resources one has available. The linear
algebra will require more fast memory on a computer than the sieving part.
So if the resources says less memory, more hard disk space one can to avoid a
bottleneck in step two, shift some of the workload over to step 1 by choosing
the factor base smaller, or vice versa.

3 Mathematical background

Before we describe the special number �eld sieve we will go through some
mathematical results that the special number �eld sieve rely upon.

Let f(x) = xd− t be an irreducible polynomial over Q, t ∈ Z. Let α be such
that f(α) = 0. K = Q(α) is then an algebraic extension, a number �eld,
and Z[α] is a subring of K

Norm

The elements in Q(α) can be expressed as
∑d−1

i=0 qiα, where qi ∈ Q. If
we associate each element with a vector consisting of the d components
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q0, q1, ..., qd−1, then addition and subtraction is just vector addition and vec-
tor subtraction. From the fact that αd = z, z ∈ Z we can interpret multiply-
ing an element in the �eld by an element δ =

∑d−1
i=0 qiα as multiplying the

column vector by a d × d matrix ∆ with rational entries, corresponding to
δ. See [8, 4.1] for an example of this. The norm N(δ) is then de�ned to be
the determinant of this matrix ∆. We can then easy see that the norm is
multiplicative, let κ ∈ Q(α), N(δκ) = N(δ)N(κ) since δκ is the product of
two matrices belonging to δ and κ.

If we use the fact that the norm is multiplicative, set δ = κ−1 and the fact
that N(1) = 1 we see that N(δ) 6= 0 whenever δ 6= 0

Considering an element δ in Z[α], the associated matrix ∆ will have integer
entries, and the determinant will be an integer as well. Note also that the
|N(δ)| can be interpreted as the index of the subgroup δZ[α] = {δρ : ρ ∈
Z[α]} in Z[α] which is �nite when δ 6= 0. That is

|N(δ)| = #(Z[α]/δZ[α]). (7)

This is for δ ∈ Z[α] and δ 6= 0. For further reference on this result see [8, 4].
De�nition 1. The norm of an ideal I ⊂ Z[α], I 6= (0) is the positive integer
#(Z[α]/I).

From the above it follows that this is �nite, and that the norm of an ideal is
equal to the norm of the element generating the ideal.

We recall that an ideal I is a prime ideal if

∀xy ∈ I⇔ x ∈ I ∪ y ∈ I. (8)

De�nition 2. A �rst degree prime ideal, is a prime ideal I with norm p,
where p is prime.

Let I be a �rst degree prime ideal of norm p, then it is possible to construct
a ring homomorphism

θ : Z[α]/I→ Z/pZ (9)

α→ c mod p

Where c is a root of f(x) in Z/pZ, equivalently f(c) ≡ 0 (mod p)

The pair (p, c mod p) corresponds to the �rst degree prime ideal I, in fact
the �rst degree prime ideals and the pairs (p, c mod p) are in bijective cor-
respondence with each other. This follows from two lemmas.
Lemma 1. Let p be a prime integer. If f(c) ≡ 0 (mod p)⇒ I = 〈p, c− α〉
is a �rst degree prime ideal
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Proof. Let φ be a mapping de�ned as follows

φ : Z[α]/I→ Z/pZ

α→ c

z → z (mod p)

for α ∈ Z[α], z ∈ Z, and c ∈ Z/pZ such that f(c) ≡ 0 (mod p)

We now want to show that φ is an isomorphism, which will prove the lemma.
First let x, y ∈ Z[α]/I. Then we see that φ(x+ y) = (x+ y) +p = (x+p) +
(y+p) = φ(x) + φ(y) and φ(xy) = xy+p = (x+p)(y+p) = φ(x)φ(y). So
we have that φ is a ring homomorphism

Now let y ∈ Z/pZ, we want to �nd an x ∈ Z[α]/I such that φ(x) = y.
We know that 1 ∈ Z[α]/I and since φ is a homomorphism φ(1) = 1. Then
φ(y) = φ(1 · y) = yφ(1) = y so x = y will do the job and φ is onto.

Again let x ∈ Z[α]/I but assume that φ(x) = 0. Since x ∈ Z[α]/I it is of
the form a0 + a1α + a2α

2 + . . . + anα
n, ai ∈ Z. If we then take an element

x′ = a0 + a1c + a2c
2 + . . . + anc

n ∈ Z[α]/I, add and subtract it from x we
see that x = x− x′ + x′ = k1p+ k2(c− α) for k1, k2 ∈ Z[α] is an element of
I, and we can conclude that φ is 1-1.

We have then proved that φ is a homomorphism, onto, and 1-1, hence φ is
an isomorphism

Lemma 2. Let p be a prime integer. If I = 〈p, c− α〉 and I' = 〈p, c′ − α〉 ⇒
either I 6= I'(and c 6≡ c′ (mod p)) or I = I'(and c ≡ c′ (mod p))

Proof. Consider (c − α) − (c′ − α) = c − c′, this has two options, either
c− c′ = 0 or c− c′ 6= 0. First case c− c′ = 0 gives c = c′ and then of course
I = I' and c ≡ c′ (mod p).

Second case c − c′ 6= 0 gives c 6= c′. Then we can evaluate gcd(c − c′, p).
Since p is prime this has to be equal to 1 or p.

First let gcd(c − c′, p) = 1 and assume I = I'. Then p, c − α, c′ − α are all
in the same ideal which also means 1 is in the ideal. This is a contradiction
since I would then be the whole ring. We can then conclude I 6= I' and c 6≡ c′
(mod p) when c 6= c′ and gcd(c− c′, p) = 1.

Now assume gcd(c− c′, p) = p, then c− c′ = (c− α)− (c′ − α) = kp, k∈ Z.
This gives c − α = c′ − α + kp, and since c′ − α + kp ∈ I', c − α is also in
I' and I ⊆ I'. Equivalently c′ − α = c − α + kp, and since c − α + kp ∈ I,
c′ − α ∈ I and I' ⊆ I. We can then conclude that I = I' and c ≡ c′ (mod p)
if c− c′ 6= 0 and gcd(c− c′, p) = p.
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It is now clear that the pairs (p, c mod p) are in bijective correspondence with
the �rst degree prime ideals I, and I is generated by the elements (p, c−α).

We can also use the map θ to check whether a given element in Z[α] is
contained in a �rst degree prime ideal I = 〈p, c− α〉. This is because

d−1∑
i=0

aiα
i ∈ I⇔

d−1∑
i=0

aic
i ≡ 0 (mod p) (10)

It should now be clear that 'an element πp =
∑d−1

i=0 aiα
i ai ∈ Z of Z[α]

generates a �rst degree prime ideal corresponding to a pair (p, c mod p) if
and only if N(πp) = ±p and

∑d−1
i=0 aic

i ≡ 0 mod p [1, 3]'

To describe the factorization of a+ bα in Z[α] we have the following lemma
Lemma 3. Let a,b ∈ Z, gcd(a, b) = 1. Then all prime ideals p that occur

in a+ bα are �rst degree prime ideals.

Proof. Assume that p occurs in a + bα, and let p be the kernel of a ring
homomorphism ψ : Z[α] → F, where F is a �nite �eld. Suppose also that
the characteristic of F is p, such that the �eld Fp is a sub�eld of F.

Since (a+ bα) ∈ p⇒ ψ(a+ bα) = 0 which again gives

ψ(a) = −ψ(b)ψ(α)

Now it is easy to see that since both a, b ∈ Z⇒ ψ(a) ∈ Fp and ψ(b) ∈ Fp

Suppose that ψ(b) = 0, that means ψ(a) = 0 also, which means p|a and p|b,
this implies that p| gcd(a, b) which is a contradiction since gcd(a, b) = 1. So
ψ(b) 6= 0

We can then conclude that the element ψ(α) = −ψ(a)
ψ(b) ∈ Fp

This shows that the ring homomorphism ψ maps all elements from Z[α] to
Fp, and p is the kernel of ψ which by de�nition means it is a �rst degree
prime ideal.

4 Special number �eld sieve

4.1 Introduction

The special number �eld sieve algorithm is roughly described as follows.
Given a large composite integer n = re − s that is not a power of a prime,
start by �nding a monic polynomial f in such a way that it is irreducible
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over Q and that there exist some m ∈ Z such that f(m) ≡ 0 (mod n). This
polynomial can be constructed in the following way, decide the degree d of
the polynomial, let k be the least positive integer such that kd ≥ e. Then let
t = s · rk·d−e. Now f(x) = xd − t, and m = rk satis�es f(m) ≡ 0 (mod n).
Find an element α such that f(α) = 0, and set up an homomorphism φ

φ : Z[α]→ Z/nZ

α→ m (mod n)

Then decide on a factor bound B1 such that the factor base B′ consists
of primes less than B1. A second bound B2 such that the factor base B′′

consists of the primes less than B2 that together with an integer c correspond
to a �rst degree prime ideal in Z[α] as proved by (Lemma1) and (Lemma2).

The idea is to get a relation like (1) by creating a square on one side of the
congruence by means of combining B1-smooth integers. The other side is
to consist of elements in Z[α], and we want to �nd a square composed of
generators of �rst degree prime ideals.

We sieve for smooth integers of the form a+ bm and a+ bα, call this set of
smooth pairs (a, b) T. Then we need to �nd a set of the pairs (a, b) ∈ T that
when multiplied together becomes a square of integers (a+bm) and a square
of elements in Z[α] (a+ bα), call this set S. The set S is found just as in the
quadratic sieve, put the exponents of the pairs (a, b) ∈ T in a vector ε(here
we include exponents of both a + bm and a + bα) and then make a matrix
of all the ε vectors. It is then straight forward to row reduce the matrix to
�nd a zero row, that is a linear dependent set of the vectors. We then get
two equalities

∏
(a,b)∈S

(ai + bim) = x2 ∈ Z

∏
(a,b)∈S

(ai + biα) = y2 ∈ Z[α].

When the set S is found we need to �nd the elements x and y, which means
we need to �nd the square root of the two elements x2 and y2. When that is
done we use the homomorphism φ. Since both a+ bm and a+ bα have the
same image under φ in Z/nZ, we achieve the wanted equality like (1) as

φ(x)2 ≡
∏

(a,b)∈S

φ(ai + bim) ≡
∏

(a,b)∈S

φ(ai + biα) ≡ φ(y)2 (mod n)

Then �nd gcd(φ(x)± φ(y), n), hopefully a non-trivial factor of n.
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In the next subsections we will go into the details concerning the di�erent
parts of the algorithm. We will discuss how the factor base is constructed,
how the sieving is performed, and how to �nd the square roots of an element
in Z[α]. The descriptions will be illustrated with the corresponding parts for
factoring the 6 digit integer n = 5102 + 1 = 260101.

In this description partial relations has not been taken into consideration.
There is also assumed that the number �eld is a principal ideal domain.
No concerns is made about the fact that the number �eld might not even
be a unique factorization domain. These are problems that occur but for
the simpli�cations it does they have not been taken into consideration when
describing the algorithm. Comments will be made in the parts below where
these assumptions are needed.

4.2 The special form of n

Why does the number �eld sieve require the integer to factor to be of the
special form n = re − s? The answer is quit simply the procedure to �nd
the polynomial and consequently the size of the number �eld. As described
in section 4.1 there is a simple way to construct an irreducible polynomial
given n = re − s, and subsequently the number �eld, the number �eld is
small and then easier to control.

Example

For the number n = 5102 + 1 = 260101 we chose the polynomial to have
degree 2, that is d = 2. n has r = 510 , e = 2, s = −1 which gives the values
k = 1, t = −1, f(x) = x2 + 1, and m = 510. A root α of f(x) is then the
complex number

√
−1 = i, the number �eld K is Q[i], where the subring Z[i]

is the ring of integers of Q[i]. Notice Z[i] is in fact a principal ideal domain.
The norm of an element a+ bi ∈ Z[i] is the positive integer a2 + b2. We set
up the homomorphism φ

φ : Z[i]→ Z/260101Z

i→ 510

4.3 Factor base

The factor base is to consist of three parts, the �rst part is all the prime
numbers up to some limit. The second and third part of the factor base is
to consist of generators for all the �rst degree prime ideals that have norm
less than some chosen bound, and a set of generators for the group of units
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of Z[α]. Since the subring Z[α] is assumed to be a principal ideal domain we
know there exists a generator for all the ideals in Z[α].

The �rst part of the factor base is practically the same as the factor base the
quadratic sieve uses, set a bound B1 and we want to �nd B1-smooth integers
(a+ bm).

a+ bm =
∏

pj≤B1

p
ε(pj)
j

where ε(pj) ∈ Z≥0 is the corresponding exponent of each pj ≤ B1

The second and third part works just as the �rst part in Z[α], it factorizes
elements in the extension. It does this by means of the �rst degree prime
ideals that occur in the ideal generated by the element. Call the set of
generators for the �rst degree prime ideals of norm ≤ B2, G, and the set of
generators for the units U . Then we will look for elements that factors by G
and U , that is elements on the form:

a+ bα =
∏
ui∈U

u
ε(ui)
i

∏
gi∈G

g
ε(gi)
i .

Finding generators

To �nd the set G start by making a list of all �rst degree prime ideals of
norm less than the preset bound B2. As proved in section 3 this amounts
to making a list of pairs (p, c mod p). p (prime) is the norm of the ideal
and c ∈ Z such that f(c) ≡ 0 mod p. To �nd the pairs, as described in [1],
a probabilistic root �nder for polynomials over �nite �elds can be used [5,
4.6.2]

In practice the search for both U and G are performed at the same time. The
search can be carried out like this. Fix a multiplier bound M and a search
bound C, see [1, 3.6] for references on how to best determine the bounds. For
all the ideals I we want to �nd generators, �x the numberm(I) = M+1. This
number is holding the status of I, if no generator is found then m(I) > M , if
a generator π̄p with N(π̄p) = ±m(I)I has been found then m(I) < M . And
the �rst degree prime ideal generated by π̄p is I times an ideal of norm m(I)

The search goes like this. For all elements λ =
∑d−1

i=0 aiα
i ∈ Z[α] that satisfy∑d−1

i=0 a
2
i |ζ|2i < C compute the norm N(λ) to check if the norm is of the

form kp for some p from the list of pairs (p, c mod p), k a non-zero integer

with absolute value ≤M . The number |ζ| denotes the real number |t|
1
d

For all the elements λ where N(λ) = kp identify the �rst degree prime
ideal, the pair (p, c mod p) that λ correspond to by checking if

∑d−1
i=0 aic

i ≡
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0 mod p. Then if |k| < m(I) update the data for I by setting π̄p = λ and
m(I) = |k|.

If M and C has been chosen properly one should have generators for all the
ideals after searching through all λ's. For all �rst degree prime ideals where
m(I) = 1 set πp = π̄p, where m(I) > 1 �nd the generator πp by dividing
π̄p by a generator of the appropriate ideal of norm m(I). This requires the
computation of the generators and their inverses of the ideals of norm< M .
But there are not many of these ideals and one may hope to encounter them
during the search described above[1, 3.1]

While searching for the generators πp, all units that are encountered can be
stored as well. These are of course the elements λ where N(λ) = ±1 but
also quotients of elements with the same absolute value of their norm, and
generate the same ideal. The set of units we are left with will then very often
be the set U of generators for the group of units we are looking for[1, 3.1]

Remark

In this part of the algorithm the assumption of Z[α] being a principal ideal
domain guarantees the existence of the generators for the ideals. However
this is not so easy in a general case where the number �eld might not be a
principal ideal domain.

Example

In our example we chose the limit B1 = 40 this resulted in the factor base

B′ = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}

For the ideals we chose the �rst degree prime ideals with norm less than
B2 = 55. We performed the above described search withM = 5, C = 55, and
found generators for all the �rst degree prime ideals, that is the value m(I)
was equal to 1 for all the ideals when the search was done. The generators
are presented with the corresponding pair (p, c mod p) for the �rst degree
prime ideal that they generate.

(p, c mod p) Generator (p, c mod p) Generator

(2, 1 mod 2) (1 + i) (29, 12 mod 29) (5 + 2i)
(5, 2 mod 5) (1 + 2i) (37, 6 mod 37) (1 + 6i)

(13, 5 mod 13) (3 + 2i) (41, 9 mod 41) (5 + 4i)
(17, 4 mod 17) (1 + 4i) (53, 23 mod 53) (7 + 2i)

The units of Z[i] are the set {i,−i, 1,−1}, a generator for this set is i

16



4.4 Sieving

When sieving for relations, we want to �nd integers of the form a+ bm and
a+ bα, a, b ∈ Z, α and m roots of f in Z[α] and Z/nZ. The pairs (a, b) we
are looking for need to satisfy three conditions to be smooth.

1. gcd(a, b) = 1

2. |a+ bm| is B1-smooth

3. a+ bα is B2-smooth

This is for suitable bounds B1 and B2. The second condition ensures that
(a+ bm) is B1-smooth in the same way as the factor base in quadratic sieve
does.

The �rst and third conditions will give us elements that has only generators
of �rst degree prime ideals with norm less than B2 as factors(and perhaps
a unit). In the same way as we search for smooth integers, we search for
smooth elements, that is elements that is completely factored by U and G.

Condition one ensures that all ideals containing a+ bα are �rst degree prime
ideals, as proved by Lemma(3)

We do not have to use the generators of each �rst degree prime ideal to
check if the elements is B2-smooth. The idea is as follows, due to (10)
we know exactly when a + bα is contained in the �rst degree prime ideal
corresponding to (p, c (mod p)). Since the extension is assumed to be a
principal ideal domain and since the norm is multiplicative this implies that
the prime ideal factorization of 〈a+ bα〉 corresponds to the factorization of
the norm of 〈a+ bα〉. That is each �rst degree prime ideal that is a 'factor'
of 〈a+ bα〉 corresponds to a factor of the norm. So one can simply check the
factorization of the norm N(a + bα) = ad − t(−b)d [1] to see if the element
a+ bα factors in the factor base. This means that the second and third part
of our factor base(U and G) will during the sieving be replaced by all primes
less than a limit B2 that together with an integer c have a corresponding
�rst degree prime ideal in Z. This means in the context of condition 3 that
an element a+bα is B2-smooth if the norm N(a+bα) only has prime factors
less than B2

Remark

In the sieving step partial relations play out their role. One could allow
the smooth elements to have one factor above the limits B1 and B2, but
below some other limits B3 and B4. These relations would be called partial
relations and would increase the amount of relations greatly, but also increase
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the size of the matrix in the next step of linear algebra. One partial relation
would also require at least one more partial relation to be of any use.

One factor base

Instead of two factor bases, there is a practical way to let B′ and B′′ be
equal(remember to check that the p's have corresponding �rst degree prime
ideals). In this way it is enough to check if |(a+ bm)N(a+ bα)| is factored
by the factor base. This does not change the algorithm, as one can freely
choose the primes to put in the factor base.

Obstruction

The technique described above using the norm of a+bα to check for smooth-
ness is not bulletproof. The problem is that for each p there can be several
corresponding c's. Still there is one �rst degree prime ideal for each pair (p, c
(mod p)) but the norm does not distinguish between the di�erent ideals as
they have the same norm p. As an example of this consider the polynomial
f = x2 + 1(α = i), now the prime p = 13 has two corresponding c's, that is
the pairs (13, 5 (mod 13)), (13, 8 (mod 13)).

Consider the relations (a,b): (2,3), (3,2)

N(2 + 3i) = 13

N(3 + 2i) = 13

Multiplying the norm of these together gives a square 13 · 13 = 169 but the
element (2 + 3i)(3 + 2i) we get by multiplying the generators for the �rst
degree prime ideals is not a square in Z[α].

The reason for this is of course that the relation (2, 3) with the factor 13
correspond to the pair (13, 8 (mod 13)), but the relation (3, 2) with the
factor 13 correspond to the pair (13, 5 (mod 13))(Here both elements are
generators for two di�erent �rst degree prime ideals of norm 13). This means
no square of an element when they are multiplied together, and we can't use
these relations alone together.

The easiest way to get around this is of course to not use the primes that
have several corresponding c's in the factor base.

Example

In the example all but the prime 2 has two di�erent integers c such that
f(c) ≡ 0 (mod p). We then chose the smallest c value for each of them and
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tested each smooth integer if it corresponded to the c we wanted. This would
be very time consuming for a larger n, but was satisfying for the purpose of
our example and made sure all the relations that contained the same factor
corresponded to the same �rst degree prime ideal.

Sieving Technique

Here we describe a technique to perform the sieving in practice. This tech-
nique uses two separate sieves, and combines their results to use the relations
which both sieves �nd it likely to be smooth.

First decide what range of a's to search from, [amin, amax] and a start value
for b, in practice there is no real need for a maximum b value as one can
just continue until the desired number of relations is achieved.

Start the �rst sieve by �xing the value of b, and search for a values that are
−bm (mod p), for all the p's in you factor base B′. This gives you a's that
have a reasonable chance of being B1-smooth.

In practice one will have an array with amax − amin + 1 columns for each b,
and every time a number a is −bm (mod p) one adds log p to the a's place
in the array. Then after sieving through all p's the a's that have a value on
its place in the array that are close to log(a + bm) will be the most likely
candidates to be B1-smooth.

In the second sieve �x the value for b again and start looking for a values
that are −bc (mod p), this to �nd the pairs (a, b) in which �rst degree prime
ideals occur in the ideal generated by a + bα. And a + bα is contained in
an ideal if and only if a ≡ −bc (mod p). In the same way as the �rst sieve
one would arrange an array and add log p to a's location every time it is −bc
(mod p), and when you are �nished the locations that have a value close to
logN(a+ bα) are the most likely candidates to be B2-smooth

After the two sieving parts are done combine the candidates that both sieves
�nd it likely to be smooth, check them for gcd and do trial division to �nd
the integers that are completely factored by the factor bases. If after the
�rst sieve, the number of relations that most likely are B1-smooth aren't
that high it can be preferable to just use trial division to check if they also
are B2-smooth, but in a realistic scenario that number will be considerable
so it will be more e�cient to apply the second sieve right away. The two
sieves can then be executed simultaneously.
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Remark

In this sieving technique prime powers can be overlooked, but as they are
very rare this is a minor problem and will not be of any great consequence in
�nding enough smooth relations. The process to �nd the few relations that
have prime powers would be very time consuming and it is actually just a
step to speed up the algorithm to overlook prime powers.

Example

We sieved with the values as follows, −amin = amax = 200, and b = 1 up to
b = 54, when we had a total of 23 smooth pairs (a, b), which is just enough
to be sure a of square as the number of primes in the factor base B′ is 12,
G has 8 elements and U has 2.

4.5 Linear algebra

Once enough relations have been found it is straight forward to put the
exponent vectors into a matrix(modulo 2) and start row reducing to �nd a
zero row. As mentioned in the run time analysis of quadratic sieve there are
di�erent algorithms that are more e�ective than Gaussian elimination, for
the current record factorization by the special number �eld sieve(21039 + 1),
the block Wiedemann algorithm[10] was used to �nd the right combination
of the smooth relations[3]

Example

We used ordinary Gaussian elimination to �nd a combination of the smooth
relations that were a square. The smooth pairs (a, b) we ended up with were:
S = {(34, 19), (−70, 1), (−4, 1), (−2, 5), (3, 1), (−5, 7), (3, 2), (−59, 2), (−102, 23)}
This gives the two products in Z and Z[α] for (ai, bi) ∈ S

9∏
(i=1)

(ai + bim) = 115326340391581443052222694400

9∏
i=1

(ai + biα) = (12028960768− 34623604674i)
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4.6 Square roots

When all the problems with �nding the factor base and, the right combina-
tion of relations during the sieving and linear algebra step has been overcome
one is left with a set S with the relations that combined are squares both in
Z and Z[α].

x2 =
∏

(a,b)∈S

(ai + bim) ∈ Z

y2 =
∏

(a,b)∈S

(ai + biα) ∈ Z[α]

The square root of x is straight forward to compute. We know all exponents
of each relation in the product and it is therefore not even necessary to
calculate x2. We just use the prime factorization and compute x straight
away.

As for the product of the elements in the number �eld it is much the same
thing. We represent each relation a+ bα ∈ S by it factors in G and U.This
leaves us with a factorization where each �rst degree prime ideal is repre-
sented an even number of times with their generator. Each unit will also
occur an even number of times, and the square root is found just as the
integer square root, from the exponent vectors. The square root can be
represented as

y =
∏
ui∈U

ui
1
2
e(ui)

∏
πp∈G

π
1
2
e(πp)

p .

Then applying φ gives two integers, that squared are congruent modulo n.

φ(x)2 ≡
∏

(a,b)∈S

φ(ai + bim) ≡
∏

(a,b)∈S

φ(ai + biα) ≡ φ(y)2 (mod n)

Remark

Here we again see the importance of the extension being an principal ideal
domain, being able to �nd the generators for each ideal makes the process
of �nding the square roots in Z[α] a simple task.

Example

As we have now seen it was not necessary to compute the squares as we
could just use the already known factorizations. We found the squares of
the product of the elements in S to be:

21



9∏
(i=1)

(ai + bim) = 115326340391581443052222694400 = 3395973209428802

9∏
i=1

(ai + bii) = (12028960768− 34623604674i) = (−156017 + 110961i)2

4.7 Example summary

We summarize the factoring of the integer n = 260101 = 5102 + 1 before we
present the factors.

The polynomial is f(x) = x2 + 1, the root α = i, m = 510, the number
�eld is K = Q[i], and we have used the subring Z[i] of K. The norm of an
element in Z[i] is N(a+ bi) = a2 + b2 The factor bases was created using the
limits B1 = 40 and B2 = 55. The homomorphism φ : Z[i] → Z/nZ sends i
to 510

The sieving was performed for −amin = amax = 200, for b = 1 up to b = 54
when we reached a total of 23 smooth pairs (a,b). That is just enough to be
guaranteed a linear dependent set as there are 22 elements in the factor base.
After doing Gaussian elimination on the exponent vectors, the following set
S of pairs where found to be a square when multiplied together

(a,b) a+bm factors N(a+ bi) factors ideal factorization

(34,19) 9724 22 · 11 · 13 · 17 1517 37 · 41 (−1)(i)(1 + 6i)(5 + 4i)
(-70,1) 440 23 · 5 · 11 4901 132 · 29 (i)(3 + 2i)2(5 + 2i)
(-4,1) 506 2 · 11 · 23 17 17 (i)(1 + 4i)
(-2,5) 2548 22 · 72 · 13 29 29 (i)(5 + 2i)
(3,1) 513 33 · 19 10 2 · 5 (−1)(i)(1 + i)(1 + 2i)
(-5,7) 3565 5 · 23 · 31 74 2 · 37 (1 + i)(1 + 6i)
(3,2) 1023 3 · 11 · 31 13 13 (3 + 2i)
(-59,2) 961 312 3485 5 · 17 · 41 (1 + 2i)(1 + 4i)(5 + 4i)
(-102,23) 11628 22 · 32 · 17 · 19 10933 13 · 292 (i)(3 + 2i)(5 + 2i)2

This gives us the following squares in Z and Z[i]∏
(a,b)∈S

(ai+bim) = (25 ·33 ·5 ·7 ·112 ·13 ·17 ·19 ·23 ·312)2 = 3395973209428802

∏
(a,b)∈S

(ai+biα) = (i3(−1)(1+i)(1+2i)(3+2i)2(1+4i)(5+2i)2(1+6i)(5+4i))2

= (−156017 + 110961i)2
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Applying φ upon both squares will give us a relation like (1) in Z/nZ

φ(339597320942880)2 = (339597320942880 (mod 260101))2 = 1513282

φ(156017−110961i)2 = ((−156017+110961·510) (mod 260101))2 = (−7824)2

1513282 ≡ (−7824)2 mod 260101

This gives us the results we wanted and by using the Euclidean algorithm to
�nd the greatest common divisor we achieve two factors of 260101

gcd(260101, 151328− 7824) = 8969

gcd(260101, 151328 + 7824) = 29

8969 · 29 = 260101

4.8 Running time

In the same way as for the quadratic sieve there has not yet come a rigor-
ous proof of the actual running time of the special number �eld sieve. All
estimates are based on careful heuristic analysis with plausible assumptions.
The conjectured running time of the number �eld sieve to factor n = re − s
is usually denoted in the notation Ln[ν, λ] where:

Ln[ν, λ] = e(λ(logn)ν(log logn)1−ν)

The expression Ln[ν, λ + O(1)] is also abbreviated to Ln[ν, λ], here O(1) is
for n→∞

Analysis and arguments for the running time results presented below can be
found in[1, 6] and [6, 10-11]

The probability for the smoothness of integers is described by the following
result: Let C ⊂ R4 be a compact set such as that for all (λ, µ, ω, ν) ∈ C one
has λ > 0, µ > 0, 0 < ω < ν < 1. Then the probability that a random
positive integer≤ Ln[ν, λ] is Ln[ω, µ]-smooth equals Ln[ν−ω, −λ(ν−ω)

µ +O(1)]
for n→∞, uniformly for (λ, µ, ω, ν) in C

One can further derive from the above argument optimal choices for the
parameters(we assume amax = −amin), amax, bmax, B1, B2 and d as functions
of n. The optimal choice for amax, bmax, B1 and B2 is obtained if they are
all taken to be equal to

e

(
( 1
2
+O(1))

(
d·log d+

√
(d log d)2+2 log(n

1
d ) log log(n

1
d )

))
(11)
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here the O(1) is for e→∞, the r and s are bounded by an upper limit, and
1 < d2d2 < n. The size of the factor base and the number of relations one
expects to �nd is given by the same argument.

This then gives an estimate of the size of the numbers |(a+ bm)N(a+ bα)|
which one wants to be smooth of

e

(
( 1
2
+O(1))

(
d2 log d+2 log(n

1
d )+d

√
(d log d)2+2 log(n

1
d ) log log(n

1
d )

))

The expected running time for the sieving and the linear algebra part is then

e

(
(1+O(1))

(
d log d+

√
(d log d)2+2 log(n

1
d ) log log(n

1
d )

))

The rest of the algorithm takes less time and is therefore not considered. To
�nd the optimal choice of d we want to minimize the above expression. This
we can see will be when the two factors (d log d)2 and log(n

1
d ) log log(n

1
d )

are of the same order of magnitude, the optimal choice for d will then be
approximately.

d =
(

(3 +O(1)) log n
2 log log n

) 1
3

, for e→∞

Using this value for d in the expressions for amax, bmax, B1 and B1 as sug-

gested in (11) will give a value of Ln[13 ,
(

2
3

) 2
3 ] for the sieving bounds. If we

assume the typical size of (a+ bm) and |N(a+ bα)| to be Ln[23 ,
(

2
3

) 1
3 ], then

the size of the numbers |(a+ bm)N(a+ bα)| that we want to be smooth will

be Ln[23 ,
(

16
3

) 1
3 ]

In terms of this notation, and with the above values the expected run time
for the special number �eld sieve with r, |s| below a �xed upper bound is

Ln

[
1
3
, c

]

c =
(

32
9

) 1
3

= 1, 5263

this is irrespectively of the size of the factors of n

The reason for not having a rigorously proved result for the running time is
the same as for the quadratic sieve, no one has managed to prove accurately
how fast one will be able to �nd the relations needed, and a consequence of
this is that both algorithms run faster in practice, as the estimates are for
worst case n→∞
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Comparing the running times for the special number �eld sieve and the
quadratic sieve we see that the special number �eld sieve has a signi�cantly
lower estimate than the quadratic sieve. The running time for quadratic
sieve is

eC
√

logn log logn = Ln[
1
2
, C]

The most signi�cant parameter in the estimates of the form Ln[ν, λ] is ν [1].
The special number �eld sieve has a much lower value than the quadratic
sieve, 1

3 against 1
2 , this is a cube root against a square root.

5 Discussion

The di�erence in the various index calculus algorithms for integer factoriza-
tion is the choice of factor base and the sieving step. The linear algebra is
the same for all of them. The di�erence comes down to how fast one can
�nd the smooth integers, and of course if the smooth integers can be found
at all? This is illustrated by the quadratic sieve as it �nds enough relations
for integers up to about 100 digits, but when the integer gets larger it just
takes to much time to �nd the smooth integers as there are fewer of them.

The interesting thing about these di�erences is that each algorithm has its
own intervals where it is fastest, but since the 'fastest/best' algorithms most
often refers to which can factor the largest integers in a reasonable amount
of time the special number �eld sieve is considered the best at the current
moment.

The special number �eld sieve is the asymptotically fastest algorithm when
the number n to factor is assumed as n → ∞. But there are many techni-
calities and aspects of the algorithm that do not make it practical for the
factoring of a random integer. The most obvious is of course that the special
number �eld sieve only applies to integers of the form n = re − s. There
has been a generalization, the general number �eld sieve and it will be com-
mented on below. In this section some of the aspects that makes the special
number �eld sieve not so practical will be addressed..

The special number �eld sieve cannot take advantage of already known small
factors in an integer n. This seems very odd, but is due to the algorithms
use of the integers form n = re − s. Since the polynomial and then the
number �eld is constructed from the integers r,e, and s, it cannot use the
quotient, as this integer probably will not be of the special form. And then
there would not be such a nice number �eld to work with, and the algorithm
would lose its best advantages.
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The size of the factor base and the interval of a's to sieve in has to be set
before one starts the algorithm. This makes the job harder as one must
mostly rely on experience when deciding the sizes of the factor bases and
the interval to sieve over. This also applies to the degree of the polynomial
that must be chosen without any real help from the integer to factor. These
choices can result in doing a lot more work than is necessary, but the wrong
choice can also result in failure for the algorithm. These choices would not
be di�cult if there were better estimates for the running time.

The special number �eld does not factor 'small' integers fast. As mentioned
the quadratic sieve is preferred for integers of up to about 100 digits. This is
due to all the work that has to be done in the sieving and linear algebra step
of the special number �eld sieve. This work still has to be done for small
n, it does not decrease that much as n gets smaller. Then again for really
small integers neither quadratic sieve nor the special number �eld sieve are
e�ective as the steps they go through are not really necessary. Even though
they are asymptotically fast, it does not make them faster all the time. The
special number �eld sieve is an algorithm only practical for huge integers,
and for those huge integers there is no better algorithm.

5.1 General number �eld sieve

The general number �eld sieve is in practice the same algorithm as the special
number �eld sieve, but when using a general n, that is n of no special form,
there are several problems that arise through the steps of the algorithm. It
starts already in the �rst step when the polynomial is to be constructed,
this was real easy in the case of n = re − s, but for a general n it is worse.
However the method described in [6, 3] gives a suitable polynomial with a

little work. It is based on n and the choice of d. One sets m = n
1
d , writes

the number n in base m, and the coe�cients from this number will be the
coe�cients in the polynomial f. That is

n = cdm
d + cd−1m

d−1 + · · ·+ c0

f(x) = cdX
d + cd−1X

d−1 + · · ·+ c1X + c0.

But this gets further consequences for the number �eld, which will be bigger,
harder to control, and it will be unrealistic to �nd the generators of the �rst
degree prime ideals. This gives a huge problem later as one is stuck with a
square of an element that is the product of many small ones in a number
�eld without an easy option to �nd the square root. This was a task that
at �rst seemed like a giant bottleneck, to big of task for the algorithm to be
of any practical use at all. But due to Couveigne there is a method to �nd
the square roots in a reasonable amount of time. This method is based on
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a careful use of the Chinese remainder theorem, but works only when the
degree of the number �eld is odd [4].

These obstructions, especially the problem of �nding square roots in a num-
ber �eld causes the general number �eld sieve to be signi�cantly slower than
the special number �eld sieve. The general number �eld sieve has according
to [1, 1] a worst case running time

Ln[
1
3
, c]

c =
(92 + 26

√
13)1/3

3
= 1, 9019

The di�erence in the running times of the special and general number �eld
sieve is illustrated in the big gap in the size of the two algorithms record
factorizations. The special number �eld sieve has factored an integer that
has a size which is 376 bits more than what the general number �eld sieve
has.

6 Concluding remarks

The special number �eld sieve(and quadratic sieve) is in the group of index
calculus algorithms for integer factorization. The index calculus algorithms
follows the same recipe, that is �nd a suitable factor base, search for smooth
integers of some form, do linear algebra to �nd the right set of the smooth
integers, then use Euclid's algorithm to �nd a factor.

The special number �eld sieve uses a irreducible polynomial, a number �eld
and an homomorphism on its way to factor an integer n. It searches for
smooth integers of the form a + bm and a + bα in Z and Z[α], uses linear
algebra to �nd a set of relations that together is a square. The square roots
are found from the factor base, and via the homomorphism a relation in
Z/nZ like (1) is achieved. A factor can then hopefully be found by applying
the Euclidean algorithm on n and the di�erence of the square roots.

The special number �eld sieve is faster than the quadratic sieve and is the
asymptotically fastest algorithm for integer factorization known today. But
the special number �eld sieve works only for integers of the special form
n = re − s. The quadratic sieve works for 'all' integers. The running time
estimates however are not deterministic for neither of the algorithms. This
is mostly due to the di�culty of computing the probability of �nding smooth
integers in a given interval accurately. It means the algorithms run faster in
practice than what is approximated for the worst case running time. Cur-
rently the largest integer factored by the special number �eld sieve is 21039−1,
a 1039 bit composite integer, that is 313 digits.
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