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Abstract

Keyword search is one of the key components of the Cyber Crime Investigations. It
has a direct influence on precision and relevance of the data found on seized data carriers.
However, many of the digital forensics tools developers do not reveal the actual under-
lying algorithms or source code of their search engines. Therefore, there is a challenge
to verify their accuracy and efficiency. On the other hand, open-source search engines
are an alternative to using proprietary keyword search tools, where they have extensive
functionality and perform well on large-scale datasets. The goal of this paper is to ex-
plore the applicability of such search engines in forensics search. The contribution of the
paper is two-folded. First, a thorough literature review and comparison of the supported
functionality documented by open-source search engines and open-source digital forensic
tools was performed. In addition, a survey of existing publicly-available digital forensics
datasets was conducted. Second, out of reviewed search engines, Solr and Elasticsearch
were selected and compared by their functionality, efficiency in searching and indexing,
and effectiveness of search results with respect to digital forensic search using relevant
datasets. Our findings should assist those in the digital forensic community when choosing
the appropriate open source search engines for keyword search in large-scale datasets.

1 Introduction

The current Big Data digital landscape has provided digital forensic investigations with massive
amounts of structured and unstructured data to analyze and search for relevant evidence,
and the quantity of data to analyze only continues to grow [32]. Such circumstances lead to
important considerations such as how forensic practitioners should search through their collected
data for investigations in a reasonable amount of time. Another challenge is how to best handle
the storage requirements of the data. The use of relational databases to process the data has
been already found to be inappropriate for digital investigations years ago. The reason for this
is that the majority of the data retrieved is unstructured (for example, human written text)
and, therefore, require other approaches that relational storage [31].

Information retrieval systems, such as search engines, are often used to help locate enterprise
data where these enterprises oftentimes have to manage large volumes of heterogeneous data
structures and formats [15]. For the digital forensic practitioner, the processing of the data must
be reliable, forensically sound, and ideally the search engines and forensic tools supporting these
ends should utilize algorithms with low memory and time complexities. On the other hand, we
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have to take into consideration so-called Forensic Search that may put specific restrictions of
the keyword search process. These include lack of standardized approach to data preprocessing
and formatting (for subsequent search needs), and the heterogeneous nature of the data (varied
file types). In addition, the digital forensics practitioner may experience new data formats
that also put demand on quality of the search results, which additionally have to follow Digital
Forensics Process guidelines.

The problem with proprietary digital forensic tools is that developers do not reveal the un-
derlying algorithms or source code. Therefore, we examine open-source search engines as an
alternative method to using proprietary keyword search tools, where they have extensive func-
tionality and perform well on large-scale datasets. There is a little chance to perform equivalent
analysis of proprietary software due to license and source code availability limitations. In par-
ticular, the goal of this paper is to evaluate the performance of selected open source search
engines and search functionality on forensic data.

Our first contribution is the comparison of the supported functionality documented by open-
source search engines and open-source tools. The different search features of several popular
open-source search engines and forensic tools are accounted for in an easy to read checklist.
Additionally, we conducted a survey on existing publicly-available digital forensic datasets, six of
which were used for testing. Our second contribution is an experimental comparison of Solr and
Elasticsearch. This benchmark experiment tests how well they perform at indexing, searching
and memory consumption during searching. Our results indicate Elasticsearch was generally
better then Solr at index creation time, minimizing index size and response time for the first run
of search terms. Solr outperformed Elasticsearch on second run of search terms. The difference
between the search engines with respect to memory performance during searching was negligible.
Information regarding which open-source search engines are available, their search features, and
their searching and indexing capabilities is valuable for forensic practitioners when choosing to
utilize an open source-search engine for performing keyword search in large-scale datasets.

The paper has the following structure. Section 2 presents the documented functionality of open-
source search engines and existing publicly available forensic-related datasets. Experiment
approach motivation, data selection and computing environment are given in the Section 3.
Analysis of efficiency and effectiveness of the selected open-source search engines on given
digital forensics data follow in the Section 4. Finally, Section 5 discusses implications of the
study and concludes the paper.

2 Open Source Digital Forensic Tools, Search Engines,
and Datasets

In this section we describe the results of a survey of the search functionality of open-source
search engines and open-source forensics tools. In addition, an overview of the publicly-available
digital forensics-related datasets is given.

2.1 Functionality of Open Source Digital Forensic Tools and Search
Engines

Our choices of open source search engines to analyze was based on popularity of use (Google
Trends) and mentions within the scientific literature. To narrow down our selection of open
source forensic tools and search engines we selected them based on their degree of documentation
and tool category. The inspection process was performed as a combination of targeted manual
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inspection, keyword searching of technical documentation and source code comments of the
software being inspected. By targeted manual inspection, we mean looking at portions of
the documentation more likely to include relevant information. Some documentation pages
might be very old or indicate that the documented feature is experimental, and as such were
excluded from our review. One issue with the inspection process is that inferences often had
to be made on out of context images and text that describes the search capabilities. Moreover,
the description was often quite short. Ideally, the software capabilities would be confirmed
by practical tests, but perhaps this can be done as future work. Ultimately, Sleuth Kit -
Autopsy, Volatility, Mozilla InvestiGator, and Hachoir were the forensic tools selected based
on their degree of documentation and catalogue of tools. Elasticsearch, Solr, and Sphinx were
the search engines selected based on popularity. Table 1 shows a summary of the open source
forensic tool and search engine functionality analysis. A checkmark indicates that the given
program has the capability and an empty cell means that it does not. This Table is a result of
extensive literature review aimed at understanding of all possible search functionalities existing
in digital forensics tools.

While we do not define every capability of each forensic tool and search engine, we do go over the
one we utilized for our experiments. Full text search is suitable for finding relevant documents
in a large set of unstructured data [14, 16]. A document in full text search is considered a list
of searchable terms (e.g. words and numbers) [16]. The terms are usually indexed in order to
have faster subsequent searches.

2.2 Publicly available digital forensics-related databases

To support this study, an overview of the publicly-available datasets related to digital forensic
was performed. In contrast to the overview of all possible Digital Forensics datasets performed
in 2017 [9], this work focuses only on publicly-available, which means that anybody can fetch
them and repeat the experiments. It is important to understand that there is no way of
getting real-world data from crime investigation, however, there are plenty of datasets created
by researchers for data analysis purposes. The systematic literature review included following
the iterations:

1. Search digital libraries, scan scientific articles for names, direct links or sources related
to the datasets below, and use this information on the Google search engine to identify
individual datasets or repositories of datasets.

2. Document search phrases that resulted in identifying new datasets.
3. Repeat step 1 and 2 with other resources like github, Kaggle and figshare to locate more

datasets.

Table 2 is a summary of review process to identify datasets candidates to be part of the experi-
ment set in the next section. We identified 83 datasets that are publicly available and attributed
to Digital Forensic. This number excludes biometric datasets such as images of fingerprints,
hand signature, gait, voice recognition and iris. However, the review will include authorship
attribution corpus. To our knowledge, there has not been performed any comprehensive enu-
meration of forensics-related datasets.
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Table 1: Comparison of search capabilities and functionality
Source: [2, 6, 10,19,20,23,25,27]

Capability Sleuthkit Volatility Mozilla
Invest-
Gator

Hachoir ElasticsearchSolr Sphinx

Regular expression X X X X X X X

Decide/Insensitive case X X X X X X

Concurrent search X X X

Automate search, with respect to keywordlist X

Import keywords X

Export keywords X

Periodical search X

Substring matching X X X X

Export search results X X X

Match highlighting X X X X

UTF-8 Encoding support X X X ? X X

UTF-16 Encoding support X X ?
ISO-8859-1 Encoding support X ?
Deduplication support X X

Approximate hash based matching X

Orphan/deleted file search X

RAM search X X X

Matching memory structures (pre-made) X

Hash database lookups X

Wildcard X X X X

Binary search X X

HTML renderer for search results X

Support for masking sensitive fields X

Exact hash matching X

System provided keyword suggestions X

AND, OR, NOT, GROUP boolean operators X X X

+ boolean operator (term must exist) X

File search filter X

Retrieval of documents not matching filters X

Set max search hits X X X

Stripping senstive metadata X

Increase search priority of important indexes X

Terminate search after a given elapsed time X X

Sorting search results X X X

Customized message/ post-search action X X

Aggregated summary of search results X

Narrow search results with post filter X X

Set relevancy weight for field X X

MoreLikeThisQuery X X

Search result clustering X X

Minimum matching criteria X

Fixed relevancy score X

Field collapsing X X

Support for TF-IDF X X X

Language detection on index time X

Fuzzy matching X X X

Faceted search X X

Phonetic search X

Geospatial search X X

Streamed search X
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Name Catagory
BAC Authorship
CTFAC Authorship
PCSN Authorship
TBGC Authorship
Personae Authorship
PAN-Enron Authorship
PAN/CLEF12 Authorship
PAN13 Authorship
PAN14 Authorship
PAN15 Authorship
RCTAC Authorship
MUD03 Authorship
netre-sec Collection of misc
MTA13-17 Collection of misc
pcapr Collection of misc
PCAPsDB Collection of misc
CAIDA Collection of misc
csmining Collection of misc
AZSecure-data Collection of misc
Digital Corpora Collection of misc
DFCF review Collection of misc

Name Catagory
GIfiles Email
USHCE Email
419 fraud dataset Email
MLE200 Email
Enrondata Email
RAISE Files
SherLock Files
AndroZoo Files
CTD15 Financial fraud
UCSD-FICO-09 Financial fraud
CMS Financial fraud
PaySim Financial fraud
BankSim Financial fraud
MICC Forgery
Brian Carrier Forensic Images
RDC Forensic Images
CFReDS Forensic Images
VirusShare Malware
BIG15 Malware

Name Catagory
Drebin Malware
DroidWare Malware
MILCOM16 Malware
Kharon Malware
Mudflow Malware
ISOT2010 Malware
ECML/PKDD07 Malware
CSIC10 Malware
BlogPcap Malware
Malwarerec Malware
CTU-13 Malware
ISCX Malware
ISCXAB Malware
DAROA98/99 Network
DARPA2000 Network
MAWILab Network
KDD Cup99 Network
UNSW-NB15 Network
NSA-CDX Network
ADFA Network

Name Catagory
Kyoto data Network
crawdad Network
ICS-pcap Network
Common Crawl Network
NSL-KDD Network
ISCXTNT Network
ISCXVNV Network
ISCXIDS Network
YPFC Password
VincentPassword Password
MBT08 RAM
NUSSC SMS
WebbSC11 SPAM
DITSSC SPAM
TREC05-07 SPAM
Hewlett spam SPAM
WEBSPAMUK07 SPAM
microblogPCU SPAM
TREC11 SPAM
SPAM/HAM SPAM
phishtank Phising
millersmiles Phising
PWDS15 Phising

Table 2: Dataset names and category

3 Experiment Methodology

The focus of practical evaluation in this study is to provide understanding of how well the open-
source search engines perform on digital forensics-related data and whether their effectiveness
can be considered acceptable for criminal investigations.

3.1 Experimental Approach

To measure the difference in effectiveness and efficiency for both search engines, the following
experiments were conducted:

• Experiments with fulltext searching
• Experiments performed on a set of search engines (Solr and Elasticsearch).
• Set of keywords based on domain knowledge of datasets and a search for strings that are

not present in the dataset
• Searching within an index (i.e. not searching across all indexes or multiple indexes at the

same time).
• Search time
• Cache temperature
• Memory measurement during search
• Search Accuracy - count of clear cut misses
• Out of box configurations (default values)

There are two main limitations of the experiment. The first being that the experiments are
performed on only one virtual machine. This environment does not allow testing for how well
the search engines perform at distributed search. The second issue is that only the default
configurations was tested (out-of-the-box setup) with Solr [11] and Elasticsearch [7].

3.2 Data selection

When working with and evaluating digital forensics tools it is difficult to obtain a real-world
dataset due to sensitivity of the information, which might be related to criminal cases. Addition-
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ally, digital forensics experts may experience a variety of data formats, even when considering
primarily text datasets. One of the criteria was also to look for large-scale datasets to have
a better performance testing, therefore, the datasets were selected based on dataset size and
forensic category. The list is shown below.

1. Fraud: Enron email dataset [4].
2. Network: Snort IDS log file [26].
3. Email: Hillary Clinton emails [13].
4. Malware: VirusTotal and PE32 reports [21].
5. Spam: DITSSC [3].
6. SMS: NUSSC [5]

3.3 Dataset Pre-processing, Indexing and Search Queries

A short description of the experimental design including the preprocessing, indexing and search-
ing steps in the experiment are given here. As shown in Figure 1, the first step is running the
datasets though a general preprocessing step.

Figure 1: Flowchart experimental design

The data pre-processings step includes following sub-steps:

• Remove JSON structure, XML structure and/or dataset specific structure from all the
datasets.

• Removes characters that cannot be processed by the JSON parser in Solr or Elasticsearch.
• Removes junk (e.g. terms that is not interesting, such as many repeated characters)
• Removes unnecessary whitespace
• Removes empty lines
• Separate dataset entries on their own lines.
• Split the dataset into bulk files of 1000 lines each (each line is considered as a document

for importing).

Then after general pre-processing the dataset, bulk files have to go through another two pre-
processing steps, one for Elasticsearch and one for Solr as shown in the Figure 2a and Figure
2b respectively.

A single content field entry is 1 JSON document to be indexed. We call the output from these
steps bulk Elastic and bulk Solr respectively. The next 2 steps are Elastic and Solr specific
bulk indexer. These indexers take the Elastic and Solr bulk files as input and indexes all the
bulk files/the entire dataset. During these steps, the following measurements are taken:

6



Open Source Search Engines for Digital Forensics Search Hansen et al.

{ ” index ” : {} }
{” content ” : ”bulk f i l e l i n e n” }
{ ” index ” : {} }
{” content ” : ”bulk f i l e l i n e n+1” }

(a) JSON format for ElasticSearch

[
{” content ” : ”bulk f i l e l i n e n” }
{” content ” : ”bulk f i l e l i n e n+1” }
]

(b) JSON format for Solr

• The Linux command time is used to capture total elapsed time of indexer.
• QTime in Solr and took in Elasticsearch are used as response time.
• A size command in Elasticsearch are used to get the size of the index. Additionally, the

filesystem in our environment is inspected to find the index size in Solr.

The last two steps are searching with Solr and Elasticsearch. The Solr(OR)/Elastic(OR) and
Solr(AND+)/Elastic(AND+) are similar. The (OR) search queries are using the Boolean OR
operator between multiple search terms. The (AND+) search queries requires that all search
terms in the search string are present in the matching string, and that the terms are in the right
order for them being a match. At these steps, the following measurements are taken: Clear cut
misses, Memory stats are captured with the Linux top command, QTime and took response
time.

3.4 Computing Environment

To perform benchmarking of effectiveness and efficiency of the selected search engines, the
following setup was used: Virtual Machine (6 cores, 40GB RAM and 2TB storage) with Ubuntu
16.04.3 LTS, Openjdk 1.8.0 131, Elasticsearch 6.0.1 and Solr 7.1.0 and Solr Cloud.

4 Results & Analysis

This section is devoted to quantitative comparison of the efficiency in indexing and searching
of Solr and Elasticsearch with subsequent analysis of the obtained results.

4.1 Indexer performance

The benchmark of the indexer considers the change in size starting from the collection of
documents to be indexed to the resulting index size, as well as the real time, response time
and delta (difference between the times) when measuring index creation time. Real time (in
milliseconds) is the total elapsed time by the indexer process measured by the Linux time
command. Response time is the time it takes from the indexer getting the index request until
completion of the indexer, given in milliseconds by QTime (Solr) and took (Elasticsearch).
Delta is the the remaining time when subtracting the response time from real time (i.e. delta
= real time - response time). We measure for delta since the response time and real time may
not be the same. This is because the real time includes I/O overhead (request creation, context
switching, writing to console, etc.). For each benchmark test we run the indexer twice on each
data set, denoted first run and second run respectively. The Figure 3 shows the percentage size
change from “to be indexed” data-set to “indexed data-set” for Solr and Elasticsearch.

Figure 4 shows a comparison of the response time for Solr and Elasticsearch indexer for each
individual dataset. In Figure 6 shows the real elapsed time for indexing and how much time
was spent on I/O for Solr and Elasticsearch.
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Figure 3: The change in index size

Figure 4: Index time Took and QTime
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From our indexing experiments, we find that Elasticsearch is generally much faster than Solr
at indexing (index response time) for both the first and second runs with the exception of
the DITSSC SPAM dataset (as seen in Figure 4). Furthermore, we can see that the index
response time is not static from the first run to the second. So there is no consistent reduction
in response time from run 1 to run 2. From Figure 6 we see that the real time and response
time are proportionally closer in Solr than in Elasticsearch. Therefore, more time is spent on
delta in Elasticsearch than Solr.

Figure 5: One iteration of the indexer

Figure 6: Index real time and delta

Figure 5 shows a single iteration of the Solr or Elasticsearch indexer. The indexer would run
i=(number of bulk files for dataset d) times. The indexer is still working but the actions is not
part of the request handler. It is assumed that delta is composed of some actions that is done
both before and after the actions of the request handler [1,8,30]. The second assumption is that
the actions that can be attributed to delta and response time is similar for Elasticsearch and
Solr, with some minor exceptions. Possible actions that could contribute to the delta time are
reading the bulk Elasticsearch/Solr files to be indexed, transferring with curl, sending request
to the request handler, writing to console, etc. Furthermore, the request handler is responsible
for creating the index structure, creating ID automatically for the JSON document, commit
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(Solr specific command), and writing index to disk.

The two main reasons were identified as to why Elasticsearch uses more time with Delta than
Solr. The first is that the JSON bulk index file format in Elasticsearch, with the { ”index”:{}
} lines, resulted in a ”Elastic bulk index file” that was about twice as large as in the case of
Solr. The second is that it has been observed that Elasticsearch writes far more information to
the console than Solr during indexing. We consider the latter to be the highest contributing
factor.

Elasticsearch outperformed Solr on index creation time as more emphasis was put on the
request handler actions as opposed to I/O. One aspect that influences indexing creation time is
the frequency of commits. The commit operation was performed at every iteration of the indexer
script and may therefore be partially responsible for slowing down the overall indexing process.
While the commit operations are needed in Solr in order to make the documents available for
search, the operation is not free [17,30]. It was recommended to limit the frequency of commits
to improve indexer performance with respect to index creation time. Another influencing factor
is the document size and their line lengths. Large gaps in response time between Solr and
Elasticsearch may be seen in Figure 4, but in particular the largest gaps occurred when there
are many lines with low character counts (for example the PE32 dataset). So, if Elasticsearch is
slightly faster at indexing smaller documents over Solr (where there are many of these smaller
documents), then it can explain the gap. Given the big difference in size between the indexes
in Solr and Elasticsearch (see Figure 3), the longer index creation time in Solr can partly be
explained by having to write more to disk and more processing of the documents to create the
index.

Solr cloud has a dependency on a server/program called Apache ZooKeeper and its database
[24]. In our experiment where the Zookeper server and Solr was located on the same virtual
machine, it might cause Solr and Zookeper to fight over I/O resources and therefore trigger a
Zookeper timeout [24]. This could explain the gap in indexing performance.

There is a consideration to be made in Solr, if the segment count is set to a low number, then
more merges will occur when indexing, that negatively effects indexing performance [22]. On
the upside, queries will be faster as there are fewer places to search. If on the other hand
the segment count is high, then we get the opposite situation with improved indexed speed
and degraded search performance. A low segment count can be the reason why Solr seems to
perform badly with indexing yet be good at searching.

4.2 Search performance

Search performance was evaluated with three different cases on both cold (first run) and warm
search phrases (second run). The meaning of “cold” is the use of search phrase for the first
time against a given data set, while “warm” infers that the query has been run before. The
search cases for evaluation is described below.

1. Single term search (e.g. a word or sequence of symbols)
2. Multiple term search (for AND+ and OR queries)
3. Searching for something that is not present in the dataset (i.e. MD5 hash of the string

”Joachim Hansen” = ”02edbd94746bc69677e969a89c4eb0d8”).

Figure 7 shows the aggregated search hits and Figure 8 presents the aggregated search time for
the three search cases, where the timings and hits for the different dataset experiments were
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aggregated with respect to the different search cases.

Figure 7: Aggregated search hits

Figure 8: Search time aggregated

From Figure 7 we can see that for the majority of the search categories that there is only
a small difference between the number of search hits between Solr and Elasticsearch. The
exception to this finding is the single term search where Elasticsearch had 7,598% more search
hits over Solr. The reasons for this was either that the search queries do not behave the same
way, parsing index data was done differently in the search engines, or one search engine parses
more information (more exhaustive search) than the other. It was also assumed that OR and
AND operators did not affect single terms search. However, this assumption could be incorrect
and can be the reason for the large difference between the number of search hits in Solr and
Elasticsearch with respect to single term search. Interestingly, both Solr and Elasticsearch
has 2 clear cut misses, meaning that no search hits were returned when there is at least one
matching occurrence of the search string present in the dataset.

Figure 8 shows the aggregated sum of the search time for all datasets categorized by search
case. Our experiments show that Elasticsearch is better than Solr for 3 out of the 4 search
categories for the first run, but Solr proved to be much better than Elasticsearch for the second
run. For instance, Elasticsearch has a 6,980% increase of search time as an aggregate for the
second run over Solr. We believe more importance should be placed on the second run, as it is
more like a real operating environment with a warm cache.

As mentioned before, a high segment count could negatively affect search performance and that
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both Solr and Elasticsearch emphasize search performance over compression as their default
behavior. If multiple shards are present on the same node/host/computer (not distributed)
then search performance can be negatively affected according to [12]. This is the case with
Elasticsearch where 5 shards are on the same host machine. Elasticsearch outperforms Solr in
4 out of 5 search categories but Solr performs better at the second run. We argue that the
latter observation was because Solr is better (e.g. caching more items or caching the right set
of items) at using the cached items from the previous search then Elasticsearch [29].

The memory statistics in Table 3 are captured just prior to initiating a search query, during first
and second attempt of the same search and the capturing process is ended just seconds after
the searches complete. There was in total 84 searches (44 for Solr and 44 for Elasticsearch)
that contribute to the statistics in the table below.

Table 3: Memory stats Elasticsearch and Solr during search

Elasticsearch Solr
Virtual memory(VIRT): Size in GiB Virtual memory(VIRT): Size in GiB

Average Max Min Delta Mode Average Max Min Delta Mode
42.831 42.831 42.831 0 42.831 29.144 29.144 29.144 0 29.144

Physical memory (not swappable) - RES:size in GiB Physical memory (not swappable) - RES: size in GiB
2.807 2,898 2.666 0.232 2.898 2.936 2.964 2.881 0.083 2.964

shared memory (SHR): size in GiB (rounded up) shared memory (SHR): size in GiB
0.34 0.43 0.2 0.23 0.43 2.296 2.323 2.241 0.082 2.323

While there are differences in memory performance, they are not significant. One question that
had arisen is what was considered when the memory was measured. The code should have
summed up all threads for the process under question. But what about forking short lived sub
processes that are helping with a search task, and furthermore, what part of Solr are captured.
Solr can be divided into Solr, Solr Cloud and Zookeper. So, which one of these was parts of the
memory summary? Solr did perform better, but if not all of these processes were taken into
account, then the memory performance might not favour Solr after all.

5 Discussions & Conclusion

In this work we performed a review of the functionality of popular and well documented open
source forensic tools and search engines, conducted a literature review of publicly-available
forensic datasets, and then performed a benchmarking experiments. These included memory
and time consumption comparison of the indexing and fulltext searching processes of Elastic-
search and Solr.

Solr and Elasticsearch supported much of the same functionality, but there were some im-
portant distinctions. From one side Solr has support of deduplication [28], approximate hash
based matching, keyword suggestions, and search results clustering [18]. On the other hand,
Elasticsearch has support for capabilities such as phonetic search. All of these functions are
important for digital forensic search, but Solr has more unique capabilities that would assist
search in large-scale datasets.

The benchmarking experiments show that Elasticsearch index creation time was faster than Solr
for 11 out of 12 trials of the indexer. The one exception was the first run of the smallest dataset.
Furthermore, in Elasticsearch the resulting index size is reduced from the original dataset by
around 99%, while we see an increase in index size in Solr ranging from a few percentage to up
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to around 240%. Our experiments indicate that Elasticsearch is favorable over Solr regarding
both index size and index creation time.

Elasticsearch was better than Solr at 3 out of 4 search test categories for the first run, but
Solr was performed better than Elasticsearch for the second run. There was also the same
number of clear cut misses for both search engines. The second run should be more like a real
operating environment with a warm cache. With respect to memory consumption, there was
a big difference between Elasticsearch and Solr usage of Virtual memory. Elasticsearch uses
around 13 more GiB on Virtual memory than Solr.

Future work can improve our results in the following ways. A comparison on specific search
algorithms should be performed on the specific indexing and search methods used by Elastic-
search and Solr. What would greatly assist our results are performing our experiments in a
multi-virtual machine environment and spread the databases, shards and servers amongst the
hosts. This environment would be suitable for testing how well the search engines perform at
distributed search. The experiments could also test different import methods, importing using
multiple threads and using different bulk sizes to test which approach minimizes index creation
time.
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