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Problem description

Let k be a field and Λ a finitely generated k-algebra, say generated by n elements
x1, . . . , xn. Consider the space of d-dimensional Λ-modules. This space can be
identified with a subspace of the space Md(k)n, where Md(k) denotes the space
of d× d-matrices with entries from k. Determine when the ranks of matrices in
Mm(Λ) applied to Mm will determine the isomorphism type of the Λ-module
M . Especially, look at this for the path algebras of Dynkin quivers.
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Abstract

In this paper we investigate some partial orders used in representation theory
of algebras. Let K be a commutative ring, Λ a finitely generated K-algebra and
d a natural number. We then study partial orders on the set of isomorphism
classes of Λ-modules of length d. The orders degeneration, virtual degeneration
and hom-order are discussed.

The main purpose of the paper is to study the relation ≤n constructed by
considering the ranks of n× n-matrices over Λ as K-endomorphisms on Mn for
a Λ-module M . We write M ≤n N when for any n × n-matrix the rank with
respect to M is greater than or equal to the rank with respect to N . We study
these relations for various algebras and determine when ≤n is a partial order.
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Chapter 1

Introduction and Notation

1.1 Introduction

In this paper we will look at some partial orders used in the representation theory
of algebras. Specifically, for a finitely generated algebra Λ over a commutative
ring K and a natural number d, we are interested in partial orders on the set of
isomorphism classes of Λ-modules of length d.

In chapter 2 the three most important such orders are described. These
are called degeneration, virtual degeneration and the hom-order. The notion
of degeneration originally comes from algebraic geometry, and there it only
applies to finite-dimensional algebras over algebraically closed fields. Thanks to
a theorem by Grzegorz Zwara we can also define degeneration in purely algebraic
terms. After giving the geometric definition of degeneration, we state Zwara’s
theorem without proof in section 2.1. The new definition that this theorem
gives us is easier to work with, and it also allows us to expand the notion of
degeneration to finitely generated algebras over commutative rings. In section
2.2 we give the definitions of virtual degeneration and the hom-order, and briefly
discuss the connections between these three orders.

Recently a new order was discovered, or rather a set of relations, some of
which are partial orders. These relations come from considering n× n-matrices
over Λ as K-endomorphisms on Mn for a module M , and looking at the ranks.
When for all n×n-matrices the rank with respect toM is greater than or equal to
the rank with respect to N we write M ≤n N . Chapter 3 is devoted to studying
these relations, which is the main purpose of this paper. A precise definition
of ≤n is given in section 3.1. In the following sections we try to determine for
which n ≤n is a partial order for various algebras. The central problem in this
is to find out when the ranks completely determine the isomorphism class of a
module M .
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1.2 Notation

Throughout this paper, all rings have unity, and all modules are unitary. All
modules are left modules unless otherwise noted.

For a ring R, modR denotes the category of finitely generated R-modules.
The subcategory indR ⊆ modR consists of exactly one representative of each
isomorphism class of indecomposable modules in modR. If indR is finite, R
is said to be of finite representation type. Mn(R) denotes the ring of n × n-
matrices with entries from R.

An R-module M is called artin if every descending chain of proper submod-
ules M ) M1 ) M2 ) . . . is finite. A ring is called artin if it is artin as a module
over itself.

Let K be a commutative ring. A K-algebra Λ is a K-module which is also
a ring such that

a(xy) = (ax)y = x(ay)

for all a ∈ K and x, y ∈ Λ.
A subset X ⊆ Λ is said to generate Λ if any element in Λ can be written as

a sum of products of elements from X and elements from K (the products may
contain several copies of each element). The elements of X are called generators
of Λ. If there exists a finite set that generates Λ, Λ is said to be finitely generated.

Similarly, for a Λ-module M , a subset Y ⊆ M is said to generate M if every
element in M can be written as a sum

∑
y∈Y ayy with ay ∈ Λ. If there exists a

finite set that generates M , M is called finitely generated.
For a commutative artin ring K, a K-algebra Λ is called an artin algebra if

it is finitely generated as a K-module.
Let Λ be an artin algebra and let Λ '

⊕n
i=1Pi be a decomposition of Λ as a

Λ-module into indecomposable projective modules. If Pi 6' Pj whenever i 6= j,
Λ is called basic.

For a module X, D(X) and TrX denote the dual of X and the transpose of
X respectively (see chapter IV in [1] for details).

Examples: Let K be a commutative ring.

1. Λ = K is a K-algebra. It is generated by {1K} both as a K-algebra and
as a K-module, so it is a finitely generated algebra, and if K is artin, Λ
is also an artin algebra.

2. Λ = K[X], the ring of polynomials in one variable over K, is a K-algebra.
It is generated as an algebra by {1K, X}, so it is a finitely generated
algebra. However, it is not finitely generated as a K-module, and hence
it is not an artin algebra even if K is artin.

3. Λ = K〈X,Y 〉, the free algebra in two non-commuting variables over K, is
a K-algebra. Again, this is finitely generated as an algebra, but not as a
module.
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Another important example is the path algebra over a quiver. A quiver Γ is
an oriented graph, i.e. it consists of a set of vertices, denoted Γ0, and a set of
arrows between the vertices, denoted Γ1.

A vertex i is called a sink if there are no arrows starting in i. A vertex j is
called a source if there are no arrows ending in j.

Example:
Q : 1 α→ 2

β→ 3

In Q we have Q0 = {1, 2, 3} and Q1 = {α, β}. The only sink is 3, and the
only source is 1.

A path in the quiver is a concatenation of arrows that obeys the orientation.
There is also for each vertex i a trivial path ei, which is the path of length zero
in the vertex i. Q has six paths: e1, e2, e3, α, β and βα.

Given a quiver Γ and a field k we construct the path algebra kΓ in the
following way: Let kΓ be a k-vector space with the paths in Γ as basis. For two
paths x and y let the product y · x be x concatenated with y when x ends in
the vertex y starts in, and zero otherwise. The multiplication is then expanded
linearly to the rest of kΓ.

Using the quiver Q from above, we then see that kQ is a six-dimensional
k-algebra. We have

e1 · e1 = e1

e2 · e2 = e2

e3 · e3 = e3

α · e1 = α

βα · e1 = βα

β · e2 = β

β · α = βα

e2 · α = α

e3 · β = β

e3 · βα = βα.

Any other product of two paths is zero.
For a field k and a finite quiver Γ, it is easy to see that kΓ is a finitely

generated k-algebra. If furthermore Γ has no oriented cycles, kΓ is also finitely
generated as a k-module, and since all fields are artin kΓ is then an artin algebra.
All quivers considered in this paper will be finite.

In this paper we will focus in particular on the path algebras of Dynkin
quivers, i.e. quivers where the underlying graph is one of the following:

An : 1 · · · n n ≥ 2
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Dn : 3 · · · n n ≥ 4
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E6 : 1 2 4 5 6

3

E7 : 1 2 4 5 6 7

3

E8 : 1 2 4 5 6 7 8

For a field k and a quiver Γ, a representation (V, f) of Γ over k consists of a
k-vector space Vi for each vertex i in Γ0 and a linear map fφ : Vi → Vj for each
arrow φ from vertex i to vertex j. For example

0 → k
1→ k

is a representation of Q.
A representation (V,f) of Γ gives rise to a kΓ-module M in the following

way: Let M =
⊕

i∈Γ0
Vi as a k-vectorspace. For each trivial path ei and

x = (x1, . . . , xn) ∈M let eix = x′ where x′i = xi and x′h = 0 for h 6= i. For each
arrow φ : i → j and y = (y1, . . . , yn) ∈ M let φy = y′ where y′j = fφ(yi) and
y′h = 0 for h 6= j. This completely determines the kΓ-multiplication on M .

Conversely, from a kΓ-module M we can construct a representation (V, f).
Let Vi = eiM for all i ∈ Γ0. For each arrow φ : i → j let fφ be given by
fφ(x) = φx for all x ∈ eiM . The maps given in this way are k-linear, so (V, f)
is a representation.

In fact, the above constructions are inverse equivalences between the cate-
gory of k-representations of Γ and the category of finite dimensional kΓ-modules
(see section III.1 in [1] for details). From now on we will identify modules over
a path algebra with the correponding representations through this equivalence.
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Chapter 2

Partial Orders

2.1 Degeneration

Definition 2.1.1. Let k be an algebraically closed field and let Λ be an artin
k-algebra. Then repdΛ is the set of k-algebra-homomorphisms from Λ to Md(k).

To every f ∈ repdΛ we can associate a d-dimensional module Mf ∈ mod Λ
in the following way:

Let Mf = kd as k-vector spaces, and define Λ-multiplication by λ ·x = f(λ)x
for all λ ∈ Λ and x ∈Mf .

Conversely, from a d-dimensional Λ-module M we can obtain a function
fM ∈ repdΛ by fixing a k-basis for M and identifying M with kd through this
basis, and letting fM (λ) be the matrix where the ith column is λ times the ith
basis vector. It is easily verified that fM becomes a k-algebra homomorphism.

Example: Let Λ = k(1 α→ 2
β→ 3) and let M be the Λ-module (0 → k

1→ k).
M is 2-dimensional and we identify its elements with column vectors in k2

through φ : M → k2 where (0, a, b) 7→ (a, b)tr. Then we have

e1 ( 1
0 ) = ( 0

0 ) , e1 ( 0
1 ) = ( 0

0 ) ⇒ fM (e1) = ( 0 0
0 0 )

e2 ( 1
0 ) = ( 1

0 ) , e2 ( 0
1 ) = ( 0

0 ) ⇒ fM (e2) = ( 1 0
0 0 )

e3 ( 1
0 ) = ( 0

0 ) , e3 ( 0
1 ) = ( 0

1 ) ⇒ fM (e3) = ( 0 0
0 1 )

α ( 1
0 ) = ( 0

0 ) , α ( 0
1 ) = ( 0

0 ) ⇒ fM (α) = ( 0 0
0 0 )

β ( 1
0 ) = ( 0

1 ) , β ( 0
1 ) = ( 0

0 ) ⇒ fM (β) = ( 0 0
1 0 ) .

Then fM is expanded linearly to all other elements in Λ.
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Any f ∈ repdΛ is completely determined by its values on the generators of Λ.
Since Λ is finitely generated, we can then identify f with an element in Md(k)n,
where n is the number of generators of Λ. The set repdΛ then becomes a subset
of Md(k)n.

Let Gld(k) be the group of invertible d × d-matrices over k. This group
acts on Md(k)n by conjugation, i.e. for G ∈ Gld(k) and (A1, A2, . . . , An) ∈
Md(k)n we have G∗(A1, A2, . . . , An) = (GA1G

−1, GA2G
−1, . . . , GAnG

−1). For
f ∈ repdΛ with f = A ∈ Md(k)n, the map G ∗ f = G ∗ A again is a k-
algebra homomorphism, so repdΛ is closed under this action. In fact, for each
f ∈ repdΛ and G ∈ Gld(k) the module corresponding to f is isomorphic to the
module corresponding to G∗f . Hence we have a 1-1 correspondence between the
isomorphism classes of d-dimensional modules and the Gld(k)-orbits in repdΛ.

A polynomial p in nd2 variables over k can be interpreted as a function p :
Md(k) → k in the following way: For each A = ((x1

ij), (x
2
ij), . . . , (x

n
ij)) ∈ Md(k)

let p(A) = p(x1
11, x

1
12, . . . , x

1
1d, x

1
21, . . . , x

1
dd, x

2
11, . . . , x

n
dd).

Definition 2.1.2. Let f ∈ repdΛ and let Gld(k)f be its Gld(k)-orbit. The
Zariski closure of Gld(k)f is

Gld(k)f = {g ∈ repdΛ|p(g) = 0 for all polynomials p such that p(Gld(k)f) = 0}

Definition 2.1.3. Let M and N be d-dimensional Λ-modules, and let fM
and fN be the corresponding elements in repdΛ. M degenerates to N , written
M ≤deg N , if Gld(k)fN ⊆ Gld(k)fM .

As a relation on the set of isomorphism classes of d-dimensional Λ-modules,
≤deg is obviously reflexive. If M ≤deg M ′ and M ′ ≤deg N then Gld(k)fM ′ ⊆
Gld(k)fM and hence Gld(k)fN ⊆ Gld(k)fM ′ ⊆ Gld(k)fM , so M ≤deg N and
hence ≤deg is transitive.

That the relation is also antisymmetric is easier to see using an alternative
charachterization of degeneration given by the following theorem by Grzegorz
Zwara:

Theorem 2.1.4. Let k be an algebraically closed field, Λ an artin k-algebra and
M and N finite-dimensional Λ-modules. M ≤deg N if and only if there exists
a module X ∈ modΛ and an exact sequence

0 → X → X ⊕M → N → 0.

A proof of this theorem can be found in [5].

If M ≤deg N and N ≤deg M we have the exact sequences

0 → X → X ⊕M → N → 0

0 → Y → Y ⊕N →M → 0.

For any A ∈ mod Λ we then have the exact sequences

0 → HomΛ(N,A) → HomΛ(X ⊕M,A) → HomΛ(X,A)
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0 → HomΛ(M,A) → HomΛ(Y ⊕N,A) → HomΛ(Y,A)

from which we get

dimk(HomΛ(M,A))+dimk(HomΛ(X,A)) ≤ dimk(HomΛ(X,A))+dimk(HomΛ(N,A))

⇒ dimk(HomΛ(M,A)) ≤ dimk(HomΛ(N,A))

dimk(HomΛ(N,A))+dimk(HomΛ(Y,A)) ≤ dimk(HomΛ(Y,A))+dimk(HomΛ(M,A))

⇒ dimk(HomΛ(N,A)) ≤ dimk(HomΛ(M,A))

and hence dimk(HomΛ(M,A)) = dimk(HomΛ(N,A)) for any A ∈ mod Λ. But if
M andN are nonisomorphic there exists a moduleB with dimk(HomΛ(M,B)) 6=
dimk(HomΛ(N,B)), as will be shown in Corollary 3.4.3.

Thanks to Theorem 2.1.4 we can expand the notion of degeneration to al-
gebras over commutative rings. Let K be a commutative ring and let Λ be a
finitely generated K-algebra. We can not use the old definition of repdΛ for
such an algebra, so we simply let repdΛ be the set of isomorphism classes of
Λ-modules which have lenght d as K-modules. Then we use Theorem 2.1.4 as
the new definition of degeneration: M ≤deg N if there exists an X ∈ modΛ and
an exact sequence

0 → X → X ⊕M → N → 0.

2.2 Virtual Degeneration and Hom-order

Virtual degeneration and the hom-order are other important partial orders on
repdΛ.

Definition 2.2.1. For two Λ-modules M and N , M virtually degenerates to N
if M ⊕X ≤deg N ⊕X for some X ∈ mod Λ. We write this as M ≤vdeg N .

Definition 2.2.2. For two Λ-modules M and N we write M ≤hom N if
`K (HomΛ(X,M )) ≤ `K (HomΛ(X,M )) for all X ∈ modΛ.

It’s easy to see that M ≤deg N implies M ≤vdeg N , but the reverse im-
plication does not hold in general. A counterexample was constructed by Jon
Carlson, and this can be found in [3].

Proposition 2.2.3. Let Λ be an artin algebra and let M and N be Λ-modules
such that M ≤vdeg N . Then M ≤hom N .

Proof. M virtually degenerates to N , so there exist Λ-modules A and B and an
exact sequence

0 → A→ A ⊕B ⊕M → B ⊕N → 0

Then for any Λ-module X we have an exact sequence

0 → HomΛ(A,X) → HomΛ(A⊕ B ⊕M,X) → HomΛ(B ⊕N,X)
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From this we get

`(HomΛ(A ⊕B ⊕M,X)) ≤ `(HomΛ(A,X)) + `(HomΛ(B ⊕N,X))

Subtracting (`(HomΛ(A,X)) + `(HomΛ(B,X))) from each side we see that
`(HomΛ(M,X)) ≤ `(HomΛ(N,X)) for any Λ-module X, hence M ≤hom N .

Here it is not known if the reverse implication holds, but it can be shown
that when Λ is of finite representation type, M ≤hom N implies M ≤deg N , so
in that case ≤deg, ≤vdeg and ≤hom are all equivalent. This also holds for the
algebra k[X], where k is a field.
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Chapter 3

A New Order

3.1 The Order ≤n

Let Λ be a finitely generated algebra over a commutative ring K. Throughout
this section, lenght of a module always refers to its length as a K-module.

Definition 3.1.1. For a Λ-module M of finite length and an n×n-matrix (λij)
with entries from Λ, let φM ((λij)) be the length of the K-module (λij)Mn.

Definition 3.1.2. For two Λ-modules M and N with `(M ) = `(N ) we write
M ≤n N if φM((λij)) ≥ φN ((λij)) for all (λij) ∈ Mn(Λ).

Clearly ≤n is a quasiordering on repdΛ, but it is not necessarily antisym-
metric. However, if n is large enough, ≤n is a partial order.

WhenM ≤n N we also haveM ≤m N for allm ≤ n, since anym×m-matrix
(λij)can be expanded to an n × n-matrix (λ′ij) simply by letting λ′ij = λij for
i ≤ m, j ≤ m and λ′ij = 0 otherwise. Consequently, if ≤n is not antisymmetric,
then neither is ≤m for all m ≤ n. Conversely, if ≤m is a partial order, then so
is ≤n for all n ≥ m.

Definition 3.1.3. Let Λ be an artin algebra.

1. For a finitely generated projective Λ-module P , mΛ
Pr(P ) is the maximum

of the multiplicities of the indecomposable Λ-modules in a decomposition
of P into a direct sum of indecomposable modules.

2. For a nonprojective module X ∈ modΛ with minimal projective presen-
tation

P1 −→ P0 −→ X −→ 0

let
mΛ
Pr (X) = max(mΛ

Pr (P0),mΛ
Pr(P1))

3. When Λ has finite representation type let

mPr (Λ) = max
X∈ind Λ

mΛ
Pr (X)
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Example: Let k be a field and let Γ be the quiver

1

3

α

^^>>>>>>>

β����
��

��
�

γ // 4

2

Let Λ = kΓ and let M be the module with representation

k

k2

( 1 0 )

__????????

( 0 1 )����
��

��
��

( 1 1 ) // k

k

.

M has minimal projective presentation

P1 ⊕ P2 ⊕ P4 → P 2
3 →M → 0

where Pi = Λei. We have

mΛ
Pr (P1 ⊕ P2 ⊕ P4) = 1

mΛ
Pr(P

2
3 ) = 2

and hence
mΛ
Pr(M ) = 2

Proposition 3.1.4. Let Λ be an artin algebra over a commutative artin ring
K, and let M , N and X be Λ-modules of finite length, with `(HomΛ(X,M )) 6=
`(HomΛ(X,N )) and let mΛ

Pr(X) = n. Then there exists an n×n-matrix (λij) ∈
Mn(Λ) such that φM ((λij)) 6= φN ((λij))

Proof. First assume that there exists an indecomposable projective module P
with `(HomΛ(P,M )) 6= `(HomΛ(P,N )). We have that P ' Λe for some primi-
tive idempotent e ∈ Λ. Furthermore HomΛ(Λe, Y ) ' eY for any Y ∈ modΛ so
we have φM (e) 6= φN (e).

Then we look at the case where no such P exists, and consequently `(HomΛ(Q,M )) =
`(HomΛ(Q,N )) for any finitely generated projective module Q.

Let
η : P1 → P0 → X → 0

be a minimal projective presentation ofX. For i ∈ {0, 1}, we then have Pi⊕Qi '
Λn for some projective module Qi. Adding the exact sequence Q1

0→ Q0
id→

Q0 → 0 to η we get
µ : Λn f→ Λn → X ⊕Q0 → 0,

14



an exact sequence where f can be expressed by a matrix A ∈ Mn(Λ). Applying
HomΛ(−,M ) and HomΛ(−, N ) to µ we get that

0 → HomΛ(X,M ) ⊕ HomΛ(Q0,M ) →Mn HomΛ(f,M)→ Mn

and
0 → HomΛ(X,N ) ⊕ HomΛ(Q0, N ) → Nn HomΛ(f,N)→ Nn

are exact sequences of K-modules. This gives us

`(Mn) = `(HomΛ(X,M )) + `(HomΛ(Q0,M )) + `(im(HomΛ(f,M )))

`(Nn) = `(HomΛ(X,N )) + `(HomΛ(Q0, N )) + `(im (HomΛ(f,N )))

M and N have the same length, and Q0 is projective so by assumption
`(HomΛ(Q0,M )) = `(HomΛ(Q0, N )). Hence we get

`(HomΛ(X,M )) + φM(A) = `(HomΛ(X,N )) + φN (A)

and since `(HomΛ(X,M )) 6= `(HomΛ(X,N )) we get φM(A) 6= φN (A)

This proposition gives us a nice way to decide if ≤n is a partial order on
repdΛ when Λ has finite representation type.

Proposition 3.1.5. Let Λ be a basic artin algebra of finite representation type.
Then ≤n is a partial order on repdΛ for all d if and only if n ≥ mPr (Λ).

Proof. It follows from Proposition 3.1.4 that ≤n is a partial order when n ≥
mPr (Λ). Now assume that mPr(Λ) = n + 1 and ≤n is a partial order. Then
there exists an indecomposable Λ-module X with mΛ

Pr(X) = n + 1. Since X is
indecomposable with mΛ

Pr (X) ≥ 2 it can’t be projective, and so there exists an
almost split sequence

ν : 0 → DTrX
f→ E

g→ X → 0.

Let Z = DTrX ⊕X. Since ≤n is a partial order there exists an n × n-matrix
A with φZ(A) 6= φE(A). This matrix gives us the Λ-module Y = Λn/(ΛnA)
which has projective presentation

Λn ·A→ Λn → Y → 0

and since Λ is basic we havemΛ
Pr(Y ) ≤ nApplying HomΛ(−, E) and HomΛ(−, Z)

to the presentation of Y we get

0 → HomΛ(Y,E) → HomΛ(Λn, E) → HomΛ(Λn, E)

0 → HomΛ(Y, Z) → HomΛ(Λn, Z) → HomΛ(Λn, Z)

This gives us `(HomΛ(Y,E)) = `(En) − φE(A) and `(HomΛ(Y, Z)) = `(Zn) −
φZ(A). Since `(E) = `(Z) and φE(A) 6= φZ(A) we then have `(HomΛ(Y,E)) 6=
`(HomΛ(Y, Z)).

15



If X is not a direct summand in Y , any homomorphism from Y to X will
factor through g, since ν is almost split. This means that HomΛ(Y, g) is an
epimorphism, and thus

0 → HomΛ(Y,DTrX) → HomΛ(Y,E) → HomΛ(Y,X) → 0

is exact. But then `(HomΛ(Y,E)) = `(HomΛ(Y,DTrX)) + `(HomΛ(Y,X)) =
`(HomΛ(Y, Z)). Hence X must be a direct summand in Y . On the other hand
we have mΛ

Pr(X) = n + 1 > n = mΛ
Pr(Y ), so X can’t be a direct summand in

Y . Hence ≤n is not a partial order.

3.2 Hereditary Algebras of Finite Type

We will now apply Proposition 3.1.5 to some path algebras. First we look at
the algebra kQ where k is a field and Q is the quiver

Q : 1 α→ 2.

As in section 1.2, we identify kQ-modules with representations. The only non-
projective indecomposable kQ-module up to isomorphism is (k → 0) which has
projective presentation

(0 → k) −→ (k 1→ k) −→ (k → 0) −→ 0

Thus we have mPr (kQ) = 1 and ≥n is a partial order for any n ∈ N. In fact
this holds for any quiver where the underlying graph is An.

Lemma 3.2.1. Let k be a field, Q a quiver without oriented cycles and X an
indecomposable kQ-module. Then

mkQ
Pr (X) = max

1≤i≤n
(max{dimk ei(X/radX), dimk ei(TrX/radTrX)})

where n is the number of vertices in Q and ei is the trivial path in the ith vertex.

Proof. Let P ′ → P → X → 0 be a minimal projective presentation of X. Then
P → X is a projective cover of X, and we have P/radP ' X/radX. The mul-
tiplicity of an indecomposable summand Pi in P is equal to the multiplicity of
the corresponding simple summand Si in P/radP , and thus to its multiplicity in
X/radX. Since X/radX is semisimple, this is again equal to dimk ei(X/radX).
Hence we have mkQ

Pr (P ) = max1≤i≤n(dimk ei(X/radX)).
By the definition of the transpose, P ′∗ → TrX is a projective cover of TrX,

and as above we get mkQop

Pr (P ′∗) = max1≤i≤n(dimk ei(TrX/radTrX)).
(−)∗ : P(kQ) → P(kQop) is a duality, so we have mkQ

Pr (P
′) = mkQop

Pr (P ′∗).
This means that

mkQ
Pr (X) = max{mkQ

Pr (P ),mkQop

Pr (P ′∗)}

= max
1≤i≤n

(max{dimk ei(X/radX), dimk ei(TrX/radTrX)})
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Proposition 3.2.2. Let Q be a quiver with underlying graph An, n ∈ N, and
let k be a field. Then ≤1 is a partial order on repdkQ for any d.

Proof. For any indecomposable kQ-module X we have that dimk eiX ≤ 1 for
any vertex i in Q (2.2 in [2]). This obviously implies dimk ei(X/radX) ≤ 1.
kQop also has underlying graph An, and thus we get mPr (kQ) = 1 from Lemma
3.2.1. The proposition then follows from Proposition 3.1.5.

Similarly we can show that ≤2 is a partial order for repdkQ when Dn is the
underlying graph of Q. But for some orientations even ≤1 is a partial order, for
example the quiver Q:

1

α
��>

>>
>>

>>

3
γ // 4

2
β

@@�������

Computing the minimal projective presentations for the 12 indecomposable
modules we find that mPr (kQ) = 1 On the other hand the quiver Q′:

1

α
��>

>>
>>

>>

3 4γ
oo

2
β

@@�������

has the indecomposable representation X:

k

1 ��>
>>

>>
>>

k k
1oo

k

1

@@�������

.

Denoting the projective module corresponding to the ith vertex by Pi, X has
minimal projective presentation

P 2
3 → P1 ⊕ P2 ⊕ P4 → X → 0

so mPr (kQ′) = 2.
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Now consider the representations M:

k2

(
1 0
0 1
0 1

)
  A

AA
AA

AA

k3 k2

(
1 0
0 1
0 0

)

oo

k2

(
1 0
0 0
0 1

)

>>~~~~~~~~

'

k

1 ��>
>>

>>
>>

k k
1oo

k

1

@@�������

⊕

k

( 1
0 ) ��?

??
??

??
?

k2 k
( 1
1 )

oo

k
( 0
1 )

??��������

and N:

k2

(
0 0
1 0
0 1

)
  A

AA
AA

AA

k3 k2

(
1 0
0 1
0 0

)

oo

k2

(
1 0
0 0
0 1

)

>>~~~~~~~~

'

k

1 ��>
>>

>>
>>

k k
1oo

0

@@�������

⊕

0

��>
>>

>>
>>

k k
1oo

k

1

@@�������

⊕

k

1 ��>
>>

>>
>>

k 0oo

k

1

@@�������

Here we have
φM(0) = φN (0) = 0

φM(e1) = φN (e1) = 2

φM(e2) = φN (e2) = 2

φM(e3) = φN (e3) = 3

φM(e4) = φN (e4) = 2

φM(α) = φN (α) = 2

φM(β) = φN (β) = 2

φM(γ) = φN (γ) = 2

For any nonzero a ∈ k and any x ∈ kQ′ we have φM (ax) = φM(x) and φN (ax) =
φN (x). For a general x ∈ kQ′ given by

x = a1e1 + a2e2 + a3e3 + a4e4 + a5α+ a6β + a7γ

we then have

φM(x) =
4∑

i=1

φM(aiei) + max{3, φM(a3e3) + φM (a5α) + φM (a6β) + φM (a7γ)}

φN (x) =
4∑

i=1

φN (aiei) + max{3, φN(a3e3) + φN (a5α) + φN (a6β) + φN (a7γ)}

18



Thus we get that φM (x) = φN (x) for any x ∈ kQ′, but since their decomposi-
tions into direct sums of indecomposable modules are different, they are clearly
nonisomorphic. Hence ≤1 is not a partial order on rep9kQ

′.
In general we have the following:

Proposition 3.2.3. Let Q be a quiver with underlying graph Dn :

1

>>
>>

>>
>

3 · · · n

2

�������

n ≥ 4, and let k be a field. Then ≤2 is a partial order on repdkQ for any d.
Furthermore, ≤1 is a partial order if and only if when 3 ≤ i ≤ n − 1 the ith
vertex is neither a sink nor a source.

Proof. Similarly to the case with An we have that for any kQ-module X,
dimk(eiX) ≤ 2 for all i (3.2 in [2]). The first part of the proposition then
follows from Lemma 3.2.1 and Proposition 3.1.5.

Now we look at the special case where sinks and sources only occur in the
endpoints. Let X be an indecomposable kQ-module and let i be a vertex in Q.
Assume that dimk(eiX) = 2. Since X is indecomposable, the vector spaces in
the endpoints have dimension at most one. Therefore i is not an endpoint and
consequently not a source. This means that in the representation of X there is
a linear map ending in i. Since X is indecomposable this map must be non-zero,
and since radX is generated by the linear maps in the representation, we have
that dimk ei(radX) ≥ 1, and thus dimk ei(X/radX) ≤ 1.

i is not a sink in Q, and thus not a source in Qop. Similar to the above we
then get dimk ei(TrX/radTrX) ≤ 1.

The proposition then follows from Lemma 3.2.1 and Proposition 3.1.5.

For quivers with underlying graphs E6, E7 and E8 the minimal i that makes
≤i a partial order depends on the orientation of the quiver, just like it does for
Dn. For a given orientation one can find the minimal i by computing mPr(kQ).
We give a summary in the following proposition:

Proposition 3.2.4. Let k be a field.

1. For a quiver Q with underlying graph E6, ≤3 is a partial order on repdkQ
for any d. For some orientations of Q, ≤2 is also a partial order, but ≤1

is not an order for any orientation.

2. For a quiver Q′ with underlying graph E7, ≤4 is a partial order on repdkQ′

for any d. For some orientations of Q′, ≤3 and even ≤2 are also partial
orders, but ≤1 is not an order for any orientation.
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3. For a quiver Q′′ with underlying graph E8, ≤6 is a partial order on
repdkQ′′ for any d. For some orientations of Q′′, lower i, down to i = 3,
make ≤i a partial order. ≤1 and ≤2 are not partial orders for any orien-
tations.

Proof. That ≤3, ≤4 and ≤6 are always partial orders for the respective quivers
follows from 4.2, 4.3 and 4.4 in [2], Lemma 3.2.1 and Proposition 3.1.5. Com-
puting the projective presentations we see that for the quivers
Q:

3

��
1 // 2 // 4 // 5 // 6

Q′:
3

��
1 // 2 // 4 // 5 // 6 // 7

Q′′:
3

��
1 // 2 // 4 // 5 // 6 // 7 // 8

we have mPr (kQ) = 2, mPr(kQ′) = 2 and mPr(kQ′′) = 3, and hence ≤2,
≤2 and ≤3 respectively are partial orders.

To see that ≤1 is not a partial order for any path algebra over E6 consider
the indecomposable module X

k2

γ

��
k k2 k3 k2 k

Regardless of the rest of the orientation, the projective cover of X must contain
two copies of P3, the indecomposable projective module corresponding to the
third vertex.

If γ has the opposite direction, the indecomposable module Y :

k

k k2 k3

γ

OO

k2 k

must have two copies of P3 in the syzygy.
Similarly for E7 and E8 consider the indecomposable modules
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k2

k2 k3 k4 k3 k2 k

and
k3

k2 k4 k6 k5 k3 k2 k

respectively.

Assuming that k is algebraically closed, we have now investigated all the
representation-finite, hereditary artin k-algebras, and conclude this section with

Corollary 3.2.5. Let k be an algebraically closed field and let Λ be a basic
hereditary k-algebra of finite representation type. Then ≤6 is a partial order on
repdΛ for any d.

Proof. Follows from Propositions 3.2.2, 3.2.3 and 3.2.4.

3.3 Trivial Extensions

Let R be a basic hereditary artin algebra of finite representation type, let Q =
D(R) as an R-R-bimodule, and let Λ = Rn Q be the trivial extension of R by
Q. In this section we show that when ≤n is a partial ordering on repdR, it is
also a partial ordering of repdΛ.

The additive structure of Λ is just the direct sum of R and Q, and the
multiplication is defined as follows: For r, r′ ∈ R and f, f ′ ∈ Q let (r, f)(r′, f ′) =
(rr′, fr′ + rf ′).

Proposition 3.3.1. Λ is self-injective.

Proof. First we need to find the top of Λ. Let r be the radical of R. By
Proposition I.3.3 in [1] an ideal J in a left artin ring R is the radical if and only
if it is nilpotent and R/J is semisimple. Let n be the smallest number such
that rn = 0. Clearly (r, Q) = {(r, q) ∈ Λ|r ∈ r, q ∈ Q} is an ideal in Λ. We
have that (r, Q)n ⊆ (0, Q), and thus (r, Q)2n = 0 so (r, Q) is nilpotent. Further,
Λ/(r, Q) ' R/r is semisimple, so (r, Q) is the radical of Λ. Then

Λ/radΛ = (R,Q)/(r, Q) ' R/r

Next we find the socle of Λ. Assume that (U, V ) is a semisimple submodule
of Λ. (0, V ) is a submodule of (U, V ), and since (U, V ) is semisimple, (0, V ) is a
direct summand. Then (U, 0) is also a submodule. Since (r, f)(u, 0) = (ru, fu)
for (r, f) ∈ Λ, (u, 0) ∈ (U, 0) we must have fu = 0 for all f ∈ Q, u ∈ U , hence
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U = 0. It follows that soc Λ = (0, socQ) ' socQ. Since Q = D(R) we have
socQ ' R/r.

Thus we have Λ/radΛ ' soc Λ, which means that Λ is self-injective.

LetX be a Λ-module. We identifyQwith the ideal (0, Q) and let U = X/QX

and V = QX. X can be described by an R-homomorphism Q⊗R U
ψ→ V . This

is called the canonical expression of X. We have that X ' U⊕V as R-modules.
The Λ-multiplication in X is then defined by

(r, f)(u, v) = (ru, rv + ψ(f ⊗ u))

where r ∈ R, f ∈ D(R), u ∈ U and v ∈ V .
A Λ-homomorphism can be described by a 2×2-matrix ofR-homomorphisms

in the following way:

(Q⊗R U
ψ→ V )

(
f 0
g h

)

−→ (Q ⊗R U ′ ψ
′

→ V ′)

(u, v) 7→ (f(u), g(u) + h(v))

where f : U → U ′, g : U → V ′, h : V → V ′ and the diagram

Q⊗R U
ψ //

1Q⊗f
��

V

h

��
Q⊗R U ′ ψ

′
// V ′

commutes.
We will need the following propositions from [4]:

Proposition 3.3.2. Let (ψ : Q⊗R U → V ) be the canonical expression of a Λ-
module X. When ψ 6= 0, X is indecomposable if and only if one of the following
conditions hold:

1. ψ is an isomorphism and U is indecomposable and projective. In this case,
X is a projective and injective Λ-module.

2. ψ is an epimorphism, U is projective and kerψ is indecomposable and is
an essential submodule of Q⊗R U .

Proof. First we show that when X is indecomposable, U is projective and ψ is
an epimorphism.

The R-homomorphism
φ :

⊕

x∈X

Q→ QX

(qx)x∈X 7→
∑

x∈X

qxx
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is an epimorphism and Q is injective. Thus V = QX is a factor of an injective
R-module, and since R is hereditary, V is also injective. Applying HomR(Q,−)

to Q⊗R U
ψ→ V we get

HomR(Q,Q⊗R U )
HomR(Q,ψ)−→ HomR(Q, V ).

By the adjoint isomorphism we have

HomR(Q,Q⊗R U ) ' HomR(HomR(Q,Q), U ) ' HomR(R,U ) ' U

so U ′ = imHomR(Q,ψ) is a factor of U . It is also a submodule of HomR(Q, V ),
which is projective since V is injective. R is hereditary so U ′ is also projective.
Therefore U ′ is a direct summand of U . Since ψ 6= 0 we have U ′ 6= 0. Let
V ′ = ψ(Q⊗RU ′). Since U ′ is projective, Q⊗RU ′ is injective, and so is its factor

module V ′. Therefore V ′ is a direct summand in V , and hence (Q⊗RU ′
ψ|Q⊗RU′

→
V ′) is a direct summand of X. If X is indecomposable we then have U = U ′

and V = V ′ and the claim follows.
Now assume that ψ is an isomorphism. If U ' U1 ⊕ U2 is a decomposition

of U then (Q ⊗R U1
1→ Q⊗R U1) ⊕ (Q ⊗R U2

1→ Q⊗R U2) is a decomposition
of X.

Conversely assume that X ' X1 ⊕X2 is a decomposition of X. Let (Q⊗R
Ui

ψ|Q⊗RUi→ Vi) be the canonical expression of Xi. If U is indecomposable either
U1 or U2 must be zero, but if Ui = 0 then Vi = ψ(Q⊗RUi) = 0 and consequently
Xi = 0. Hence, when ψ is an isomorphism, X is indecomposable as a Λ-module
if and only if U is indecomposable as an R-module.

Since U is an indecomposable and projective R-module, it is a direct sum-
mand of R. Thus X = (Q ⊗R U

1→ Q ⊗R U ) is a direct summand of Λ =
(Q ⊗R R → Q), so X is a projective Λ-module. Since Λ is self-injective by
Proposition 3.3.1, X is then also injective.

Now we look at the case where ψ is not an isomorphism. Assume first
that kerψ is not essential. Then there exists a submodule Y ⊆ Q ⊗R U with
kerψ∩Y = 0. Let U ′ = HomR(Q, Y ) and V ′ = ψ(Y ). Since Y does not intersect
kerψ, ψ restricted to Y is a monomorphism, and by the definition of V ′ it is also
an epimorphism. Hence it is an isomorphism and (Q⊗RU ′ → V ′) is an injective
submodule of X, and therefore a direct summand. If X is indecomposable this
contradicts the assumption that ψ is not an isomorphism.

Now assume that kerψ is essential and letX ' (Q⊗RU1
ψ1→ V1)⊕(Q⊗RU2

ψ2→
V2) be a proper decomposition of X. Then kerψ ' kerψ1⊕kerψ2. If kerψi = 0
then kerψ ∩ (Q⊗R Ui) = 0 but this is impossible since kerψ is essential. Hence
kerψ is decomposable.

Conversely, let kerψ ' Y1 ⊕ Y2 be a proper decomposition. Since Q⊗R U is
injective and kerψ is an esential submodule, Q ⊗R U is the injective envelope
of kerψ. Hence Q ⊗R U ' I1 ⊕ I2 where Ii is the injective envelope of Yi. Let
Ui = HomR(Q, Ii) and Vi = ψ(I). Then X ' (Q⊗RU1

ψ1→ V1)⊕(Q⊗RU2
ψ2→ V2)

is a proper decomposition of X.
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Proposition 3.3.3. 1. For an indecomposable R-module X let ρ : P → X
be the projective cover. Then

(Q⊗R P
1→ Q⊗R P )

(
ρ 0
0 0

)

−→ (Q ⊗R X → 0) → 0

is the projective cover of X as a Λ-module.

2. For an indecomposable Λ-module (Q ⊗R U
ψ→ V ) with ψ 6= 0

(Q⊗R U
1→ Q⊗R U )

(
1U 0
0 ψ

)

−→ (Q⊗R U
ψ→ V ) → 0

is the projective cover.

Proof. Let Y = (Q⊗RP
1→ Q⊗RP ). Then we have Y/(r, Q)Y ' P/rP ' X/rX.(

ρ 0
0 0

)
is clearly an epimorphism, so it is the projective cover ofX as a Λ-module.

In case 2., let Y ′ = (Q ⊗R U
1→ Q ⊗R U ). Then we have Y ′/(r, Q)Y ′ '

U/rU ' X/(r, Q)X. Again,
(

1U 0
0 ψ

)
is an epimorphism, so it is the projective

cover of X.

Any module over Λ is also a module over R. Thus the indecomposable
Λ-modules can be divided into two cases, those that decompose over R and
those that don’t. First we look at the indecomposable Λ-modules that are also
indecomposable over R. For such a module X we have that QX = 0 and hence
the canonical expression is (Q⊗R X → 0).

Proposition 3.3.4. Let X be an indecomposable non-projective R-module. Then

mR
Pr (X) = mΛ

Pr (X)

Proof. Let
0 → P1

f1→ P0
f0→ X → 0

be a minimal projective resolution of X as an R-module. Then the sequence

0 → (Q⊗RP1
1Q⊗f1→ Q⊗RP0)

(
f1 0
0 1P0

)

−→ (Q⊗RP0
1→ Q⊗RP0)

(
f0 0
0 0

)

−→ (Q⊗RX → 0) → 0

is exact, and by Proposition 3.3.3
(
f0 0
0 0

)
is a projective cover of X as a Λ-

module. Since (Q ⊗R P1
1Q⊗f1→ Q ⊗R P0) is a canonical expression, we know

from Proposition 3.3.2 that 1Q ⊗ f1 is an epimorphism. Thus

(Q⊗R P1
1→ Q⊗R P1)

(
1P1 0

0 1Q⊗f1

)

−→ (Q⊗R P1
1Q⊗f1→ Q⊗R P0)
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is an epimorphism, and then

(Q⊗RP1
1→ Q⊗RP1)

(
f1 0
0 1Q⊗f1

)

−→ (Q⊗RP0
1→ Q⊗RP0)

(
f0 0
0 0

)

−→ (Q⊗RX → 0) → 0

is a projective presentation of X as a Λ-module.
For any direct sum of projective R-modules P1 ⊕ P2 we have

(Q⊗R(P1⊕P2)
1→ Q⊗R(P1⊕P2)) ' (Q⊗RP1

1→ Q⊗RP1)⊕(Q⊗RP2
1→ Q⊗RP2)

Together with Proposition 3.3.2 this shows that for any projective R-module P ,
mR
Pr (P ) = mΛ

Pr(Q⊗R P
1→ Q⊗R P ). Hence we have

mR
Pr (X) = mΛ

Pr (X)

Proposition 3.3.5. Let P be an indecomposable projective R-module. Then

mΛ
Pr(P ) ≤ mPr (R)

Proof.

0 → (Q⊗RQ⊗RP → 0)

(
0 0

1Q⊗P 0

)

−→ (Q⊗RP
1→ Q⊗RP )

(
1P 0
0 0

)

−→ (Q⊗RP → 0) → 0

is an exact sequence of Λ-modules, and by Proposition 3.3.3
(

1P 0
0 0

)
is a projec-

tive cover of P .
Let

f : P ′ → Q⊗R P

be a projective cover of Q⊗R P as an R-module. Again by Proposition 3.3.3

(Q⊗R P ′ 1→ Q⊗R P ′)

(
f 0
0 0

)

→ (Q⊗R Q⊗R P → 0)

is a projective cover of (Q⊗R Q⊗R P → 0), and hence

(Q⊗R P ′ 1→ Q⊗R P ′)

(
0 0
f 0

)

−→ (Q⊗R P
1→ Q⊗R P )

(
1P 0
0 0

)

−→ (Q⊗R P → 0) → 0

is a projective presentation of P as a Λ-module. (Q ⊗R P
1→ Q ⊗R P ) is

indecomposable, so we have

mΛ
Pr(P ) = mΛ

Pr((Q ⊗R P ′ 1→ Q⊗R P ′)) = mR
Pr(P

′) ≤ mPr(R)

since Q⊗R P is an indecomposable R-module.

Now we turn to the indecomposable Λ-modules that decompose over R. For
such a module (Q⊗R U

ψ→ V ) we have that ψ is non-zero.
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Proposition 3.3.6. Let X = (Q ⊗R U
1→ V ) be an indecomposable Λ-module

with ψ 6= 0. Then
mΛ
Pr (X) ≤ mPr(R)

Proof. Let i : kerψ → Q⊗R U be the inclusion. Then

0 → (Q⊗R kerψ → 0)
( 0 0
i 0 )
−→ (Q⊗R U

1→ Q⊗R U )

(
1U 0
0 ψ

)

−→ (Q⊗R U
ψ→ V ) → 0

is an exact sequence of Λ-modules where
( 1U 0

0 ψ

)
is a projective cover by Propo-

sition 3.3.3. Let (Q ⊗R P
1→ Q ⊗R P )

(
f 0
0 0

)

−→ (Q ⊗R kerψ → 0) be a projective
cover of kerψ as a Λ-module. Then

(Q⊗R P
1→ Q⊗R P )

(
0 0
if 0

)

−→ (Q ⊗R U
1→ Q⊗R U )

(
1U 0
0 ψ

)

−→ (Q⊗R U
ψ→ V ) → 0

is a projective presentation of X as a Λ-module. By Proposition 3.3.2 kerψ is
an indecomposable R-module, and so by Proposition 3.3.5 (if it is projective) or
Proposition 3.3.4 (if it is not) we have mΛ

Pr ((Q⊗R P
1→ Q⊗R P )) ≤ mPr(R).

Q⊗RU is an injectiveR-module, and by Proposition 3.3.2 kerψ is an essential
submodule of Q⊗R U , hence i : kerψ → Q⊗R U is an injective envelope. Then
by Proposition IV.1.12 in [1] (D(Q ⊗R U ))∗ → TrD kerψ → 0 is a projective
cover. Thus we get

mΛ
Pr(Q ⊗R U

1→ Q⊗R U ) = mR
Pr(D(Q ⊗R U )∗) ≤ mR

Pr(TrD kerψ) ≤ mPr(R).

Now we have checked all non-projective indecomposable Λ-modules and can
conclude with

Corollary 3.3.7. Let R be a basic hereditary artin algebra of finite representa-
tion type with mPr (R) = n and let Λ = Rn D(R) be a trivial extension. Then
≤n is a partial order for repdΛ for any d.

Proof. From Propositions 3.3.4, 3.3.5 and 3.3.6 it follows thatmPr (R) = mPr (Λ).
The statement then follows from Proposition 3.1.5.

3.4 Algebras of Infinite Representation Type

For an algebra Λ of infinite representation type there is of course no n such that
≤n is a partial order on repdΛ for all d. However, for a given d one can still find
an n that makes ≤n a partial order. In [3] it was stated without a proof that
≤d5 always is a partial order on repdΛ. In this section we will prove this result.

Let K be a commutative ring and let Λ be a finitely generated K-algebra.
Throughout this section, lenght of a module always refers to its length as a
K-module. We need the following lemma:
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Lemma 3.4.1. Let K be a commutative ring, and let M and N be K-modules
of length m and n respectively, m,n ∈ N. Then

`(HomK(M,N )) ≤ mn

Proof. We prove this by induction on the lengths of M and N . First we show
that `(HomK(S′, S)) ≤ 1 where S and S′ are simple K-modules. Since S and
S′ are simple any morphism between them is either 0 or an isomorphism. Thus
if HomK(S′, S) 6= (0) we have S ' S′ ' K/I where I is a maximal ideal in K.
Then we have

HomK(S′, S) ' HomK(K/I,K/I) ' HomK/I(K/I,K/I) ' K/I

so it has length 1.
Then we use induction on the length ofM to show that `(HomK(M,S)) ≤ m

for any simple module S. We have that M/M ′ ' S′ for some M ′ of length m−1
and a simple module S′. This gives us the exact sequence

0 →M ′ → M → S′ → 0

Applying HomK(−, S) we get the exact sequence

0 → HomK(S′, S) → HomK(M,S) → HomK(M ′, S)

We assume by induction that `(HomK(M ′, S)) ≤ m − 1, so

`(HomK(M,S)) ≤ `(HomK(S′, S)) + `(HomK(M ′, S)) ≤ m

Similarly we have N/N ′ ' S for a submodule N ′ of length n−1 and a simple
module S. The exact sequence

0 → N ′ → N → S → 0

gives us that

0 → HomK(M,N ′) → HomK(M,N ) → HomK(M,S)

is also exact. `(HomK(M,N ′)) ≤ m(n − 1) by the induction hypothesis, so

`(HomK (M,N )) ≤ `(HomK(M,N ′)) + `(HomK(M,S)) ≤ m(n− 1) +m = mn

Proposition 3.4.2. Let Λ be a finitely generated algebra over a commutative
ring K. For n ≥ d5 the relation ≤n is a partial order on repdΛ.

Proof. We need to show that ≤n is antisymmetric when n ≥ d5. Let M and
N be non-isomorphic Λ-modules of length d. First we want to show that there
exists a Λ-module X with `(HomΛ(X,M )) 6= `(HomΛ(X,N )) and `(X) ≤ d3.
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Let {f1, f2, . . . , fm} be a generating set for HomΛ(M,N ) as a K-module.
Then we have an exact sequence

M
(f1,f2,...,fm)tr

→ Nm → C → 0

where C is the cokernel of (f1, f2, . . . , fm)tr. We have HomΛ(M,N ) ⊆ HomK(M,N )
as a K-module, so m ≤ d2 by Lemma 3.4.1. Hence `(C) ≤ `(Nm) ≤ d3. Apply-
ing HomΛ(−,M ) and HomΛ(−, N ) to the above sequence we get

µ : 0 → HomΛ(C,M ) → HomΛ(Nm,M )
HomΛ((f1,f2,...,fm)tr,M)→ HomΛ(M,M )

and

ν : 0 → HomΛ(C,N ) → HomΛ(Nm, N )
HomΛ((f1,f2,...,fm)tr,N)→ HomΛ(M,N )

HomΛ((f1, f2, . . . , fm)tr, N ) is an epimorphism by construction. Now we
assume

`(HomΛ(C,M )) = `(HomΛ(C,N )) (3.1)

`(HomΛ(M,M )) = `(HomΛ(M,N )) (3.2)

`(HomΛ(N,M )) = `(HomΛ(N,N )) (3.3)

From the sequences µ and ν we then get

`(imHomΛ((f1, f2, . . . , fm)tr,M )) = `(HomΛ(Nm,M )) − `(HomΛ(C,M ))

= `(HomΛ(Nm, N )) − `(HomΛ(C,N )) = `(HomΛ(M,N )) = `(HomΛ(M,M ))

and hence HomΛ((f1, f2, . . . , fm)tr,M ) is an epimorphism. In particular the
identity on M factors through (f1, f2, . . . , fm)tr, so (f1, f2, . . . , fm)tr must be
a split monomorphism. Then M and N must have common nonzero direct
summand. Consequently, if M and N have no common nonzero summands,
one of the assumptions (3.1), (3.2) and (3.3) must fail and we have found the
desired X. If M and N have a common summand then for some Y we have
M ' M ′ ⊕ Y and N ' N ′ ⊕ Y where M ′ and N ′ have no common nonzero
direct summands, and we can use the above argument on M ′ and N ′ to obtain
X.

We now show that there exists a d5 × d5-matrix (λij) with φM((λij)) 6=
φN ((λij))

If annM 6= annN there is a λ ∈ Λ with φM (λ) 6= φN (λ), so we assume
annM = annN . We have HomΛ(X,M ) ' HomΛ(X/(annM )X,M ), so we
may assume that X is annihilated by annM . Then we have HomΛ(X,M ) '
HomΛ/annM (X,M ).
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We have Λ/annM ⊆ EndKM and thus `(Λ/annM ) ≤ d2. We can now
make a free resolution of X as a Λ/annM -module:

(Λ/annM )d
2x → (Λ/annM )x → X → 0

where x = `(X), and from this we get the exact sequence

(Λ/annM )d
2x (λij )→ (Λ/annM )d

2x g→ X ⊕ (Λ/annM )(d
2x−x) → 0

Applying the functors HomΛ/annM (−,M ) and HomΛ/annM (−, N ) to this se-
quence we get

0 // HomΛ/annM (X,M ) ⊕Md2x−x // Md2x
(λij) // Md2x

and

0 // HomΛ/annM(X,N ) ⊕Nd2x−x // Nd2x
(λij) // Nd2x

and this gives

φM(λij) = `(Md2x) − (`(Md2x−x) + `(HomΛ(X,M ))) = dx− l(HomΛ(X,M ))

φN (λij) = `(Nd2x) − (l(Nd2x−x) + `(HomΛ(X,N ))) = dx− `(HomΛ(X,N )).

Since `(HomΛ(X,M )) 6= `(HomΛ(X,N )) we have φM (λij) 6= φN (λij).

Corollary 3.4.3. Let M and N be non-isomorphic Λ-modules. Then there
exists a Λ-module X such that `(HomΛ(X,M )) 6= `(HomΛ(X,N )).

Proof. Follows from the first part of the preceding proof.

The result in Corollary 3.4.3 was first proved by Maurice Auslander, and
later generalized by Klaus Bongartz (see comments on p. 223 in [1]).
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Chapter 4

Summary

Proposition 3.4.2 ensures that for any finitely generated algebra and a number
d we can find an n such that ≤n is a partial order on repdΛ, namely n = d5.
However, in all the examples we have computed, the smallest n that makes ≤n
a partial order is much smaller than d5, except of course when d = 1. For
the hereditary algebras of finite representation type over an algebraically closed
field, we have that ≤6 is always a partial order regardless of d, and for many of
these algebras even lower values of n do the trick. The same goes for the trivial
extensions of these algebras by their dual. This suggests it might be possible to
find a better bound for when ≤n is a partial order.

Other questions that have yet to be answered:

• Does Proposition 3.1.5 hold also for non-basic algebras?

• Hilbert’s basis theorem ensures that when n is large enough, ≤n is equiv-
alent to ≤hom. How large must n be for this to happen?

• Does there exist a Λ, repdΛ and n such that ≤n is a partial order but not
equivalent to ≤hom?
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