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Problem Description
In modelling the behaviour of physical parameters in the vicinity of a borehole, many new tools and
workflows must be developed. StatoilHydro Research Centre Trondheim develops workflows
integrating knowledge on the cm-scale from geology into the mathematical modelling of
subsurface properties.

This results in complex geometries that are representative for the observed geology in the sub
surface, on which mathematical models for physical parameters must be applied. StatoilHydro
has developed a code for upscaling elastic moduli, making it possible for the first time to be able
to quantify geometric and other effects from small scale geology. The code itself is not limited to
any scale, and can be integrated into numerous other workflows.

Challenges to be solved in this work includes integrating knowledge in rock mechanics and
reservoir engineering. The mathematical similarities between elasticity and permeability will be
pursued. The upscaling procedure will yield a 21-element general elasticity tensor, for which
workflows need to be developed to ensure applicability. There is a need of comparing the general
elasticity tensors to tensors with 5 degrees of freedom arising from existing Backus upscaling,
which is basically the only previous tool available for elasticity upscaling. Voigt and Reuss bonds
are analogs to harmonic and geometric means in permeability upscaling, and a comparison with
those upscaling procedures will similary be pursued.
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Abstract

Petrophysical properties in general and elasticity in particular have
heterogeneous variations over many length scales. In a reservoir
model, on which one for example can simulate fluid flow, seismic
responses and resisitivity, it is necessary that the petrophysical pa-
rameters represent all these variations, even though the model is at
a scale to coarse to capture all these properties in detail. Upscal-
ing is a technique to bring information from one scale to a coarser
in a consistent manner. Thus one upscaled model can be seen as
homogeneous with a set of effective properties for its scale.

For elastic properties, upscaling has traditionally been done by dif-
ferent volume weighted averaging methods such as Voigt, Reuss or
Backus averages which utilize limited or no information about the
geology of the rock. The objective here is to do upscaling based on
a technology where geological information is taken into account.

This thesis considers different aspects governing elasticity upscal-
ing in general and general geometry upscaling in particular. Af-
ter the theory part it considers verification of the general geometry
method and the implementation of this, projection of an elasticity
tensor onto a certain symmetry and visualization of elastic moduli.
Next the importance of including geological information is studied
and upscaling is done on examples of realistic reservoir models. Fi-
nally elasticity upscaling utilized in a bottom-up approach to model
4D seismic is considered.
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Chapter 1

Introduction

Geological structures occur at many different length scales [1]. One
knows that for fluid flow, geological structures at all length scales
can be important, therefore it is natural to assume that seismic
waves could also be affected by features at many different scales.
Ideally reservoir models should regard geological characteristics at
all length scales. However, such a model would be to big for compu-
tations. One solution to this is to discretize with respect to scale by
identifying the most important scales. The representative elemen-
tary volume concept (REV) is used to identify these scales. Within
each REV, the physical properties in question, such as elastic mod-
ulus and density, are assumed constant. Figure 1 shows an exam-
ple of models at different scales in a reservoir from pore scale, at
which the models can be on the size of a sugar lump, to models
which are several kilometers long.

Figure 1: Various scales in a reservoir.

In order to utilize information from many different scales simulta-

1



2 CHAPTER 1. INTRODUCTION

neously, one needs a tool to bring these together in a consistent
manner. This can be done by upscaling the small scale information
by using different homogenization techniques.

In this thesis, upscaling of elastic parameters by utilizing a method
based on homogenization theory is considered. One possible appli-
cation of this is for example forward modelling of 4D seismic which
can be used in history matching or for comparison to sonic logs.
Given models at all scales, one can compute the effective wave ve-
locities at seismic scale for adjustments done at pore scale. If one
for example knows the elastic parameters as function of the fluid
saturations on pore scale, these could be upscaled to seismic scale
and compared with sonic log data in order to determine the reser-
voir fluid saturations.

In one particular upscaling step, one has a composition of cells
where the physical parameters are assumed constant in each cell.
Such a composition represents a certain geometry which imitates
a geological feature for example a special deposition pattern. One
question is whether the geometry is important for the effective phys-
ical parameters, or if these are equal for all compositions with the
same volume fractions of each rock type. In the latter case a much
cheaper upscaling could be done by some kind of wolume weighted
average. This is addressed in chapter 7.

An elastic modulus has 81 components. Due to equilibrium of the
medium and thermodynamical laws, only 21 of these are indepen-
dent. Symmetries in the compositions of the rocks may result in
even fewer independent components yielding different symmetries
of the elastic moduli. The most general symmetry with 21 free com-
ponents is called triclinic. The upscaled result will nearly always
be triclinic either due to the model just being close to the higher
symmetry or due to numerical errors. To establish the existence of
higher symmetries, projections of the elasticity tensor onto the sym-
metries isotropy (directional independence) and transverse isotropy
(layering symmetry) are presented in chapter 5.

It may be hard to interpret a general elastic modulus directly, es-
pecially if it has 21 free components. A perhaps more intuitive way
to express it is in terms of corresponding wave velocities. Thus, to
ease interpretation of the moduli in this thesis, visualizations of the
corresponding wave velocities in both 3D and 2D are considered in
chapter 6.

Chapter 3 presents traditional upscaling methods such as Voigt,
Reuss and Backus averaging and the methology based on mathe-
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matical homogenization used here for upscaling of general geome-
tries. The correctness of the general geometry method is verified in
chapter 4.

In chapter 8 and 9 upscaling is utilized on real reservoir models,
i.e. on models which are built by a geologist based on an actual
reservoir. Chapter 8 deals with models at lithofacies scale but fine
scale elastic parameters are not related to a particular reservoir.
Chapter 9 considers channel infill facies models where the fine scale
properties originate from a sonic log. Here the channel infill facies
is the scale above lithofacies, i.e. the cells in a channel infill facies
model are at lithofacies scale.

An important purpose of upscaling elastic properties in a reservoir,
is to use the result to determine the amounts of hydrocarbon re-
serves within the reservoir. One utilization of the upscaling could
be to do forward seismic modelling by adjusting fluid properties at
cell scale, upscale to find the corresponding effective moduli and
use this to predict the seismic velocities. An example of one step of
how this can be done is presented in chapter 10.
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Chapter 2

Background theory

2.1 Seismology and rock physics

In the oil industry, seismology is one of the most important geophys-
ical fields to find and monitor petroleum reservoirs. The methodol-
ogy is to send elastic waves through the subsurface and analyze the
reflections of these that emerge to the surface again. To interpret
these reflection data into knowledge of the geological structures in
which the waves have travelled, one needs a physical model that
describes how waves act in different media.

A material is defined as continuous if it contains no empty spaces
and its properties can be described by spatially continuous func-
tions. Rock is a collection of minerals, which again consist of atoms.
Most rocks, especially sedimentary rocks which are common in
petroleum reservoirs, contain pores. However, at a scale larger than
the atomic and larger than grain scale, rocks can be considered to
have no voids [8] and instead porosity is introduced as a physical
parameter. Also, the properties are assumed continuous at this
scale and hence rock is considered continuous. Rock formations
built up of different rock types can be described as piecewise contin-
uous regions separated by interfaces where the physical properties
are discontinuous.

Deformations in rocks due to seismic waves are often assumed to be
linearly elastic. The definition of an elastic medium is that after de-
formation, it returns to equilibrium. For linearly elastic materials,
the relationship between force and deformation is linear. The linear-
ity assumption is valid when forces, deformation and the gradients
of deformation are small. These assumptions are good enough for

5



6 CHAPTER 2. BACKGROUND THEORY

most rock formations when they are exposed to seismic waves [8].

If at each point the physical properties, for example wave velocity,
of a material are equal in all directions, the material is denoted
isotropic, while in the opposite case, it is denoted anisotropic. In
rock physics, different rocks are often assumed isotropic for sim-
plicity and in lack of software to handle anisotropy. The isotropy
assumption is valid for non viscous liquids and approximately valid
at a macroscopic scale for some rock formations.

If the physical properties of a material are equal at all points, the
material is homogeneous. Otherwise it is denoted heterogeneous.

The isotropy and homogeneity characterizations of a material are
independent and should not be confused with each other.

2.2 Generalized Hooke’s law

Many of the physical quantities in this thesis are described in terms
of tensors. A tensor is a mulitilinear differential form, invariant
with respect to a group of permissible coordinate transformations
in n-space [4]. Tensors with orthonormal bases are called cartesian
tensors. Tensors can be represented by algebraic structures, i.e. a
zero order tensor can be represented by a scalar, a first order tensor
by a vector, a second order tensor by a matrix and so on. Note
however that a matrix not necessarily is a representation of a second
order tensor or that a vector is not necessarily a first order tensor.
A second order tensor T with components Tij i = 1, ...,m, j = 1, ..., n
can also be represented by a vector V by for example

V =
(
T11 ... T1n ... Tm1 ... Tmn

)T
.

If a tensor has a certain symmetry, the representation only needs
as many components as the number of independent components
in the tensor. Second and fourth order tensors enter Hooke’s law.
Due to symmetries these are represented by vectors and matrices
respectively.

A seismic wave is local particle motions in the material that propa-
gate through space. The internal forces in the medium that restore
equilibrium after an external force has disrupted the particle posi-
tions are called stresses. A nice definition of stress is given by [13],
“Stress, defined as force per unit area, is a measure of the intensity
of the total internal forces acting within a body across imaginary
internal surfaces, as a reaction to external applied forces and body
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forces.” A way of envisioning this is to consider the particle in the
position at which the stress acts. By describing the particle as a
volume, the stress can be described as a set of surface forces acting
on a volume element. Two and two opposite faces of this volume
element are perpendicular to three unit vectors spanning the space
(not necessary perpendicular to each other). The different stress
components are shown in figure 2. The stress acting on each of

x

z

y

τyz

τzz

τxz

τzx

τyx

τxy

τyy

τzy

τxx

Figure 2: The stress acting on a volume element.

these face pairs is in general not perpendicular to the faces and is
described by a three component vector. In total a nine component
second order tensor is needed to describe the stress at each point,

τ =

τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 ,

where τij is the i-component of the stress vector acting on the sur-
face perpendicular to the j-direction.

For a medium in equilibrium, the stress tensor must be symmet-
ric [8],

τij = τji,

hence there are six independent stress components and by using
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Voigt notation [14], the stress can be represented by a vector

τ =



τxx

τyy

τzz

τyz

τxz

τxy

 =



σ1

σ2

σ3

σ4

σ5

σ6

 . (1)

When a material is subject to force, for example if a wave propagates
through a material, the particles are moving relative to each other,
i.e. the material deforms. The deformability of the material can be
described by a nine component strain tensor consisting of relative
displacements within the material. If u(x, t) is the displacement at
time t for the particle in position x before the wave was transmitted,
i.e. at time t = 0, the deformability of the material is given by

e =

exx exy exz

eyx eyy eyz

ezx ezy ezz

 ,

where

eij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (2)

From this it follows that strain is displacement per length unit thus
dimensionless. This is illustrated in figure 3. Since eij = eji ∀i, j,
there are only six independent strain components and strain can be
represented by a six component vector,

ε =



exx

eyy

ezz

2eyz

2exz

2exy

 =



ε1

ε2

ε3

ε4

ε5

ε6

 . (3)

The factor 2 which is multiplied to the off diagonals in this definition
can be motivated by Hooke’s law in Voigt notation given in equation
(8).

The generalized Hooke’s law,

τ = C e, (4)

descibes the linear relationship between stress and strain. Since
both stress, τ , and strain, e, are second order tensors, C must be a
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Figure 3: Example of displacement of a volume element. Here the
strain component exz is given by exz = 1

2

(
δz
Lx

+ δx
Lz

)
.

fourth order tensor with elements [cijkl]
3
i,j,k,l=1, thus Hooke’s law can

be written

τij(x, t) =
∑

k

∑
l

cijkl(x)ekl(x, t) (5)

on component form where x is spatial localization and t is the time.
The tensor C is called the stiffness tensor, or elastic modulus. For
elastic media, C is independent of time. The symmetries in stress,
τij = τji, and strain, ekl = elk, result in corresponding symmetries in
C,

ekl = elk ⇒ cijkl = cijlk

τij = τji ⇒ cijkl = cjikl.

From thermodynamics one obtains one additional symmetry [2],

cijkl = cklij ,

and the total number of independent components in C are 21 in the
most general case. The symmetry from thermodynamics is equiva-
lent to requiring that the wave speeds are non-negative. Thus, by
using Voigt notation [14], C can be represented as a 6× 6 symmetric
matrix C with components CIJ ,

CIJ = cijkl = cklij = CJI , (6)

I = iδij + (9− i− j)(1− δij), (7)

J = kδkl + (9− k − l)(1− δkl),
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where δij is the Kronecher-delta. Hooke’s law can thus be expressed
as

σI =
∑
J

CIJεJ . (8)

Throughout this thesis, the elastic modulus on tensor form will be
denoted C with components cijkl while the matrix representation of
this will be denoted C with components CIJ .

2.3 Wave velocities

Newton’s equation of motion, force equals mass times acceleration,
leads to the wave equation [8]

ρ(x)
∂2ui(x, t)

∂t2
=
∑

j

∂τij(x, t)
∂xj

.

Combining this with Hooke’s law given in equation (5) yields

ρ(x)∂2
t ui(x, t) =

∑
j

∂xj

(∑
k

∑
l

cijkl(x)∂xl
uk(x, t)(x, t)

)

where ρ is the density and ∂x = ∂
∂x . For a homogeneous medium, C

and ρ are independent of spatial position and the equation become

ρ∂2
t ui(x, t) =

∑
j

∑
k

∑
l

cijkl∂xj∂xl
uk(x, t)(x, t). (9)

If u is the velocity field and U is the polarization vector, the kth
component of u can be written as

uk = Uk e

−iω

t−
∑

j

njxj

V (n)


.

Here ω is the angular frequency, V (n) is the wave propagation ve-
locity and n is a unit vector in the wave propagation direction. Sub-
stituting this into the wave equation (9) results in the Christoffel
equation ∑

k

(
Γik − ρV 2δik

)
Uk = 0 (10)

Γik =
∑
j,l

cijklnjnl.
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Hence ρV 2 are the eigenvalues of the Christoffel matrix Γ and the
polarization vectors U = [Uk]

3
k=1 are the corresponding eigenvectors.

Together these defines an eigenvalue-eigenvector problem,

Γ U =
(
0 0 0

)T
For practical calculations D is defined such that

DT =

n1 0 0 0 n3 n2

0 n2 0 n3 0 n1

0 0 n3 n2 n1 0

 .

Then Γ is equal to

Γ = DTCD (11)

in Voigt notation.

Since D is a 6× 3 matrix and C is a 6× 6 matrix, Γ is a 3× 3 matrix.
Thus one gets 3 eigenvalues ρV 2 yielding 3 different wave velocities,
thus there are three waves propagating in direction

(
n1 n2 n3

)T .
From (10) one sees that the Christoffel matrix Γ is symmetric, thus
the three eigenvectors (polarization vectors) will be mutually orthog-
onal [8]. The wave with polarization along the propagation direction
is called the P wave (for pressure wave), while the two others with
polarization perpendicular to the propagation direction are called S
waves (for shear waves).

2.4 Symmetries

The most general elasticity tensor is called triclinic and has 21 inde-
pendent components,



c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66

 ,
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and Hooke’s law (8) becomes

σ1

σ2

σ3

σ4

σ5

σ6

 =



c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66





ε1

ε2

ε3

ε4

ε5

ε6

 .

If the material has some kind of symmetry, the number of indepen-
dent components is reduced.

2.4.1 Isotropy

The highest symmetry possible is called isotropy and in this case
the stiffness tensor has only two independent components. There
exists several different parameters to describe an isotropic material,
some of the most common being bulk and shear moduli (K and µ),
Lamè’s λ parameter, Young’s modulus (E), Poisson’s ratio (ν) and
P wave modulus (M ). Any pair of these parameters describes the
elasticity tensor of isotropic materials and the relationship between
them are given in table 1.

(λ,µ) (E,ν) (K,µ)
K λ + 2µ

3
E

3(1−2ν) K

E µ3λ+2µ
λ+µ E 9Kµ

3K+µ

λ λ Eν
(1+ν)(1−2ν) K − 2µ

3

µ µ E
2+2ν µ

ν λ
2(λ+µ) ν 3K−2µ

2(3K+µ)

M λ + 2µ 1−ν
(1+ν)(1−2ν) K + 4µ

3

Table 1: Relation between the different elasticity parameters for
isotropic materials.

In terms of λ and µ, the elastic modulus is given as

λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 . (12)
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Solving the Christoffel equations for an isotropic elasticity tensor
yields eigenvalues µ and λ + 2µ where µ has multiplicity 2 for all
directions. This means that the two S-waves coincide and the wave
velocities in an isotropic medium is independent of propagation di-
rection. The velocities are given by

VP =

√
λ + 2µ

ρ
(13)

VS =
√

µ

ρ

for the P and S waves respectively.

The isotropy assumption is widely used in reservoir modelling. This
is because many materials are approximately isotropic at a macro-
scopic scale, but also for its simplicity.

2.4.2 Transverse isotropy

Another common symmetry used is transverse isotropy, often re-
ferred to as TI. These are materials where the physical parameters
are isotropic along horizons, i.e. it has a unique symmetry axis
around which rotations does not change the physical properties.
This is for example the case for rocks which are composed by per-
fect layers of isotropic rocks.

In the upper crust of the earth, different substances are transported
around due to glacier movements, rivers and winds and the differ-
ent sediments are deposited in sedimentary basins. A basin can
contain layers of different sediments due to different minerals be-
ing transported at different times. Over time these layers can be
cemented and become sedimentary rock types. A great part of the
underburden in the north sea are made up by such processes and
therefore often have a structure where different rock types occurs
in horizontal layers. As will be presented in section 3.2, the elas-
tic moduli of horizontal layered mediums can be found by Backus
averaging, which results in TI symmetric elastic moduli with sym-
metry axis be perpendicular to the layers. Therefore the symmetry
axis of TI mediums are often in, or close to, the vertical direction.

The elastic moduli for transversely isotropic mediums have 5 inde-
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pendent components and has the form

c11 c11 − 2c66 c13 0 0 0
c11 − 2c66 c11 c13 0 0 0

c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

 (14)

when the symmetry axis is parallel to the z-direction.

The wave velocities in a TI medium are given by

VP (θ) =

√
C11 sin2(θ) + C33 cos2(θ) + C44 +

√
M(θ)

2ρ

VSV (θ) =

√
C11 sin2(θ) + C33 cos2(θ) + C44 −

√
M(θ)

2ρ
(15)

VSH =

√
C66 sin2(θ) + C44 cos2(θ)

ρ

M(θ) =
[
(C11 − C44) sin2(θ)− (C33 − C44) cos2(θ)

]2
+ (C13 + C44) sin2(2θ)

where θ is the angle between the symmetry axis and the direction
of propagation [9]. This symmetry class is throughout this thesis
referred to as TI.

2.4.3 Other symmetries

Isotropic and TI are two of the most common symmetries in reser-
voir modelling and are the two considered in this thesis. Other sym-
metries are for example cubic, trigonal and rhombic (orthotropic).

2.5 Norm of an elastic tensor

Since the elastic modulus, C, is a fourth order tensor and the 6 × 6
matrix C is just a way of representing this, all norms used here
deal with the tensor, i.e. a weighting is done on each term in C
according to the number of occurrences this term has in the tensor.
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The Euclidean distance (Frobenius norm) are for example given by

‖C‖2
F =

3∑
i,j,k,l=1

c2
ijkl (16)

=
3∑

i,j=1

C2
ij + 2

3∑
i=1

6∑
j=4

C2
ij + 2

6∑
i=4

3∑
j=1

C2
ij + 4

6∑
i,j=4

C2
ij

=
3∑

i,j=1

C2
ij + 4

6∑
i=1

6∑
j=4

C2
ij (17)

where Cij are the elements of C.

2.6 Orthogonal rotation of tensors

Due to plate tectonically movements of the earth’s upper crust, vol-
canoes and earthquakes, layers do not always have to be horizontal
aligned, see e.g. [11] or [12]. This is also the case for other geological
features, they can occur in many different orientations.

If one knows the stiffness tensor for a certain geological feature, say
layered mediums, then one can find the stiffness tensor for tilted
layers by rotating the known tensor according to a change in basis.

A rotation can be defined by a 3× 3 matrix A with components

Aij =
(
n′i,nj

)
(18)

where n′i, i = 1, 2, 3 are the basis vectors of the new coordinate sys-
tem and nj, j = 1, 2, 3 are the basis vectors of the old coordinate
system and (·, ·) is the inner product.

Let u = [ui]3i=1 be a first order tensor given in the basis {n1, n2, n3}
and u′ = [u′i]

3
i=1 be the same tensor given in the basis {n′1, n′2, n′3}.

These can be written in terms of the basis vectors,

u =
∑

j

ujnj

u′ =
∑

j

u′jn
′
j .

The component of a vector in a certain direction is equal to the inner
product of the vector and a unit vector in that direction. Hence the
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jth component of a vector in a certain basis is equal to the inner
product between the vector and the jth basis vector,

uj = (u,nj) =
(
u′,nj

)
u′j =

(
u,n′j

)
=
(
u′,n′j

)
,

thus one has that

u =
∑

j

(u,nj) nj

u′ =
∑

j

(
u,n′j

)
n′j

u′j =
(
u,n′j

)
=

(∑
k

(u,nk)nk,n
′
j

)
=
∑

k

(u,nk)
(
nk,n

′
j

)
=
∑

k

Ajkuk

⇒ u′ = Au

For a second order tensor σ and a first order tensor u, the product
v = σu is a first order tensor and hence

v′i =
∑

j

Aijvj =
∑

j

Aij

∑
k

σjkuk =
∑

j

Aij

∑
k

σjk

∑
l

Alku
′
l.

By definition we also have

v′i =
∑

l

σ′ilu
′
l,

and hence

σ′il =
∑

j

∑
k

AijσjkAlk

⇒ σ′ = AσAT

For a fourth order tensor C = [cijkl] and a second order tensor e =
[ekl], the product

σ = [σij ] =

[∑
kl

cijklekl

]
is a second order tensor and

σ′ =
[
σ′ij
]

=

[∑
kl

c′ijklekll

]
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defines the rotation. Further

σ′ij =
∑
mn

AimσmnAjn =
∑
mn

AimAjn

∑
pq

cmnpqepq

epq =
∑
kl

AkpAlqe
′
kl

σ′ij =
∑
mn

∑
pq

∑
kl

AimAjnAkpAlqe
′
kl,

hence

⇒ c′ijkl =
∑
mnpq

AimAjnAkpAlqcmnpq (19)

For an elasticity tensor C represented as shown in equation (7), it
can be shown that C′ is given by

C′ = KCKT (20)

K =
(
K(1) K(2)

K(3) K(4)

)
,

where

K
(1)
ij = A2

ij

K
(2)
ij = 2Ai mod(j+1,3)Ai mod(j+2,3)

K
(3)
ij = Amod(i+1,3) jAmod(i+2,3) j

K
(4)
ij = Amod(i+1,3) mod(j+1,3)Amod(i+2,3) mod(j+2,3)

·Amod(i+1,3) mod(j+2,3)Amod(i+2,3) mod(j+2,3)

and

mod(i, 3) =

{
i i ≤ 3
i− 3 i > 3
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Chapter 3

Upscaling of elastic
parameters

Ideally a reservoir model should cover an entire hydrocarbon reser-
voir and have cells small enough to capture all possible geological
features. Such a model could perhaps be 100 m high and have a
horizontal extent of 1 km2, while one cell in a pore scale model,
which is the smallest common modelling scale, can be about 1 mm3.
This model would require 1017 cells and running simulation on such
large models is not possible given the current processing powers of
computers. What one can do instead is to make models at many
different scales. Hence one needs some kind of upscaling of the
physical properties to bring information from one scale to the next.
Examples of different scales are pore scale

(
∼ 10−3 m

)
, core scale

(∼ 10−2 m), geological scale (∼ 10 m) and simulation scale (∼ 1000 m).
These are schematically shown in figure 4.

Figure 4: Various scales in a reservoir.

19
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Consider a heterogeneous block where the elastic parameters vary
throughout the geometry. The velocity of a wave with wave length
much smaller than the size of the block will depend on where the
wave travels. Assume for example that the yellow material at the
bottom of the model in figure 5 is softer than the blue one on top
and that the layers are isotropic. Then the wave will travel faster if
it travels trough the blue area than in the yellow. A wave with wave
length much larger than the size of the layer thickness will on the
other hand have a velocity which will be some kind of average of the
velocities in the two layers.

Figure 5: A simple example formation with two cells

Upscaling of elastic parameters is based on the idea to find an equiv-
alent homogeneous medium which will have the same wave veloci-
ties as the real heterogeneous medium. The upscaling is done in the
static limit, i.e. one assumes infinite wave length which for practical
purposes means that the results are valid when the wave length is
much larger than the typical size of the heterogeneities.

Classical homogenization is a mathematical method to upscale dif-
ferential equations. An important concept when this theory is ap-
plied on porous media is the representative elementary volume,
REV. If a physical parameter is constant over an interval of scale,
then the volumes representing scales within that interval are REVs.
Let u be a real valued function in space with rapidly spacial oscilla-
tions which represents a physical quantity. An example is porosity
which will oscillate between 0 and 1 according to whether the spatial
coordinate is in a void (pore) or not. To smoothen u, one looks at
the average of this function over a volume V (x) of the size of a REV,

〈u〉 (x) =
∫

V (x)
u(y)dV.

While u represent the fine scale physical quantity, 〈u〉 represent the
same physical quantity at coarse scale. As long as V (x) is on a
REV, 〈u〉 is constant. This means that when one is on a REV, the
volume over which one smoothes the function can change relatively
radically without changing the quantity at coarse scale.
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For a general rock formation, the effective elastic modulus is depen-
dent on the elastic moduli of the different rock types, on the volume
fractions of the different rocks and on the geometry of the rock com-
position, i.e. of how the various rock types are arranged relatively to
each other. Without geometrical information, the best one can do is
compute bounds, e.g. Voigt and Reuss, in which the real modulus
lies.

For perfectly layered mediums where the different rocks have TI
symmetry or higher, the Backus average gives an analytical solution
which is based on the effective medium theory presented by Backus.

3.1 Voigt and Reuss averages

In 1928 Voigt approximated the effective elastic moduli by assum-
ing uniform strain throughout the composition and averaging the
relations for stress [7]. One year later Reuss proposed averaging
the expressions for strain assuming uniform stress. The Voigt and
Reuss averages are given as

MV =
∑

i

fiMi (21)

MR =
1∑

i fi
1

Mi

, (22)

where fi = Vi
V , i.e. the volume portion of medium i and M is either

the bulk or shear modulus.

In the next, it will be proven that the Voigt and Reuss averages are
upper and lower bounds for the bulk and shear moduli. The idea
behind the proof is taken from [7].

If σ and ε are the fine scale stress and strain, the composition
is macroscopically homogeneous and contains a sufficiently large
number of cells, the average energy density, stress times strain,
has to be equal in terms of the coarse and fine scale parameters,
i.e.

ST E =
1
V

∫
σT ε dV

where S and E are the coarse scale stress and strain. ST E is equal
to twice the energy density.

Assume that Hooke’s law (8) is valid at fine scale, i.e. σ = cε. Let σ∗

be the stress in a fine scale element corresponding to strain E and
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ε∗ be the strain in a fine scale element caused by the stress S, i.e.

σ∗ = c E

S = c ε∗.

In terms of σ∗, the the fine scale (double) energy densities, σT ε, can
be written as

σT ε = 2σT ε− σT ε + (σ∗T E − σ∗T E) + 2(σT E − σT E)

= 2εT cε− εT cε + (ET cE − ET cE) + 2(εT cE − εT cE)

= ET cE + 2εT cε− 2ET cε− εT cε + εT cE + ET cε− ET cE

= σ∗T E + 2
(
εT σ − ET σ

)
−
(
σT ε− σT E − σ∗T ε + σ∗T E

)
= σ∗T E + 2 (ε− E)T σ − (σ − σ∗)T (ε− E) .

Similarily σT ε can be written in terms of ε∗

σT ε = 2σT ε− σT ε + (ST ε∗ − ST ε∗) + 2(ST ε− ST ε)

= 2εT cε− εT cε + (ε∗T cε∗ − ε∗T cε∗) + 2(ε∗T cε− ε∗T cε)

= ε∗T cε∗ + 2εT cε− 2ε∗T cε− εT cε + εT cεast + ε∗T cε− ε∗T cε∗

= ST ε∗ + 2
(
σT ε− ST ε

)
−
(
σT ε− σT ε∗ − ST ε + ST ε

)
= ST ε∗ + 2 (σ − S)T ε− (σ − S)T (ε− ε∗) .

The scalar product between stress and strain is related to the energy
and therefore always positive, hence

(σ − σ∗)T (ε− E) = (ε− E)Tc(ε− E) ≥ 0

(σ − S)T (ε− ε∗) = (ε− ε∗)Tc(ε− ε∗) ≥ 0.

This is equivalent to the positive definiteness of the elastic modulus.
For the fine scale energy densities one now gets

σT ε ≤ σ∗T E + 2(ε− E)T σ

σT ε ≤ ST ε∗ + 2(σ − S)T ε.

which leads to

ST E =
1
V

∫
σT ε dV ≤

{
1
V

∫ (
σ∗T E + 2(ε− E)T σ

)
dV

1
V

∫ (
ST ε∗ + 2(σ − S)T ε

)
dV.

for the average energy density.
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It can be shown (see e.g. [3]) that∫
(ε− E)T σ dV ≡ 0∫
(σ − S)T ε dV ≡ 0,

hence

ST E ≤

{
ET 1

V

∫
σ∗dV

ST 1
V

∫
ε∗dV.

By requiring that the coarse scale elastic modulus C fulfills Hooke’s
law, S = CE, one gets

ETCE ≤ ET

(
1
V

∫
c dV

)
E

STC−1S ≤ ST

(
1
V

∫
c−1dV

)
S

The expressions to the right are the energy densities that would be
calculated by the Voigt and Reuss theories.

For models built up of piece wise homogeneous rocks, the integral
of elastic modulus over the model can be divided into a sum of
integrals over each cell in which the elastic modulus is constant,

1
V

∫
c dV =

∑
i

1
V

∫
Ωi

ci dVi =
∑

i

ci 1
V

∫
Ωi

dVi =
∑

i

cifi

1
V

∫
c−1 dV =

∑
i

1
V

∫
Ωi

ci−1
dVi =

∑
i

ci−1 1
V

∫
Ωi

dVi =
∑

i

ci−1
fi,

thus

ETCE ≤ ET

(∑
i

cifi

)
E

STC−1S ≤ ST

(∑
i

ci−1
fi

)
S

must hold for all E and S where fi is the volume fraction of the ith
medium.
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Assume the composition is macroscopically isotropic with bulk and
shear moduli K and µ, i.e. having elastic modulus

C =



K + 4
3µ K − 2

3µ K − 2
3µ 0 0 0

K − 2
3µ K + 4

3µ K − 2
3µ 0 0 0

K − 2
3µ K − 2

3µ K + 4
3µ 0 0 0

0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


and let KV , µV , KR and µR be the bulk and shear moduli computed
by the Voigt and Reuss averages respectively.

First let E =
(
1 1 1 0 0 0

)T .

ETCE = 3
((

K +
4
3
µ

)
+ 2

(
K − 2

3
µ

))
= 9K

ET

(∑
i

cifi

)
E = 3

(∑
i

[
fi

(
Ki +

4
3
µi

)]
+ 2

∑
i

[
fi

(
Ki −

2
3
µi

)])

= 3
∑

i

fi

[
Ki +

4
3
µi + 2

(
Ki −

2
3
µi

)]
= 9

∑
i

fiKi = 9KV

⇒ K ≤ KV .

Secondly, let E =
(
0 0 0 1 1 1

)T which yields

ETCE = 3µ

ET

(∑
i

cifi

)
E = 3

∑
i

fiµi = 3µV

⇒ µ ≤ µV .

Next let S =
(
1 1 1 0 0 0

)T . The compliance C−1 is given as

C−1 =



1
9K + 1

3µ
1

9K − 1
6µ

1
9K − 1

6µ 0 0 0
1

9K − 1
6µ

1
9K + 1

3µ
1

9K − 1
6µ 0 0 0

1
9K − 1

6µ
1

9K − 1
6µ

1
9K + 1

3µ 0 0 0
0 0 0 1

µ 0 0
0 0 0 0 1

µ 0
0 0 0 0 0 1

µ


,
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and one gets

STC−1S = 3
((

1
9K

+
1
3µ

)
+ 2

(
1

9K
− 1

6µ

))
=

1
K

ST

(∑
i

ci−1
fi

)
S = 3

(∑
i

[
fi

(
1

9Ki
+

1
3µi

)]

+ 2
∑

i

[
fi

(
1

9Ki
− 1

6µi

)])

= 3
∑

i

[
1

9Ki
+

1
3µi

+ 2
(

1
9Ki

− 1
6µi

)]
=
∑

i

fi
1
Ki

=
1

KR

⇒ 1
K
≤ 1

KR
⇒ K ≥ KR

Finally let S =
(
0 0 0 1 1 1

)T .

STC−1S = 3
1
µ

ST

(∑
i

ci−1
fi

)
S = 3

∑
i

fi
1
µi

= 3
1

µR

⇒ 1
µ
≤ 1

µR
⇒ µ ≥ µR

From the preveious one now has that

KR ≤ K ≤ KV

µR ≤ µ ≤ µV ,

thus the Voigt and Reuss averages defines upper and lower bounds
for the true bulk and shear moduli.

3.1.1 Upper and lower bounds

For some models the Reuss and Voigt averages are close, for ex-
ample if the contrasts between the different rock types are small
and the model is close to isotropy at the macroscopic scale. Since
upscaling techniques which take general geometric information into
account, such as the method to be presented in section 3.3, requires
both time and computer power, one may in some cases want to use
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a simpler upscaling, such as Voigt, Reuss or the average of these
two called Voigt-Reuss-Hill. The latter of these, Voigt-Reuss-Hill,
have no other physical meaning other than that since one knows
that Voigt and Reuss defines the upper and lower bounds, this min-
imizes the error if one do not have any information about where
the true value lies. To check if it is necessary to do a more precise
upscaling, one should have some kind of upper and lower bounds
of the elasticity also when the elasticity at microscopic scale is not
isotropic. Since the elastic modulus is primarily used to compute
wave velocities, the bounds CUpper and CLower are isotropic and rep-
resents the maximum and minimum velocities through the material
in the static limit (infinite wave length).

For materials which are isotropic at fine scale, upper and lower
bounds for the bulk and shear moduli for the effective composition
is given by the Voigt and Reuss averages given in equations (21)
and (22) respectively [7]. Since µ = ρV 2

S and K = ρ
(
V 2

P −
4
3V 2

S

)
(equa-

tion (13) and table 1), the Voigt and Reuss bounds can can be writ-
ten as

µV =
∑

i

fiµi =
∑

i

fiρiV
2
iS

µR =
1∑

i fi
1
µi

=
1∑

i fi
1

ρiV 2
iS

KV =
∑

i

fiKi =
∑

i

fiρi

(
V 2

iP
− 4

3
V 2

iS

)
KR =

1∑
i fi

1
Ki

=
1∑

i fi
1

ρi

(
ViP

− 4
3
V 2

iS

)

In non-isotropic rock types, there are two different shear waves (in
isotropic materials these coincide). The wave velocities VSV , VSH and
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VP are in general direction dependent and one has that

ρ̂V 2
S ≤

∑
i

fiρi max(ViS )2 = µUpper

ρ̂V 2
S ≥ 1∑

i

fi
1

ρi min(ViS )2

= µLower (23)

ρ̂

(
V 2

P −
4
3
V 2

S

)
≤
∑

i

fiρi max
(

V 2
iP
− 4

3
V 2

iS

)
= KUpper

ρ̂

(
V 2

P −
4
3
V 2

S

)
≥ 1∑

i

fi
1

ρi min
(
V 2

iP
− 4

3V 2
iS

) = KLower.

where the min and max are over all possible directions and over
both S waves. KUpper, µUpper, KLower and µLower thus define bulk
and shear moduli of imaginary isotropic materials that represents
the upper and lower limits for wave speed velocity. Note that for a
certain rock composition, the velocities do not neccessarily have to
be equal to these for any direction since the bounds take all internal
orientations of the internal cells into consideration.

Rocks modelled at cell scale are assumed either isotropic or TI sym-
metric in this thesis, therefore these two symmetries will be consid-
ered here. In a TI medium the two shear waves are called SV and
SH.

If the ith medium in equation (23) is isotropic, there is no cell-level
direction dependence and min and max are equal,

ρi max
(
V 2

iS

)
≡ ρi min

(
V 2

iS

)
≡ µ

ρi max
(

V 2
iP
− 4

3
V 2

iS

)
≡ ρi min

(
V 2

iP
− 4

3
V 2

iS

)
≡ K +

4
3
µ,

and if it is TI, then max
(
V 2

iP
− 4

3V 2
iS

)
, min

(
V 2

iP
− 4

3V 2
iS

)
, max

(
V 2

iS

)
and

min
(
V 2

iS

)
has to be found using the direction dependent TI wave

velocities in equtaion (15). To do this, V 2
iS

and V 2
iP
− 4

3V 2
iS

are differ-
entiated with respect to the direction, θ, and set equal to zero to find
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the extremal points, i.e.

∂

∂θ
V 2

SV (θ) = 0

∂

∂θ
V 2

SH(θ) = 0 (24)

∂

∂θ

(
V 2

P (θ)− 4
3
V 2

SV (θ)
)

= 0

∂

∂θ

(
V 2

P (θ)− 4
3
V 2

SH(θ)
)

= 0

where VP , VSV and VSH are the TI velocities.

Equation (24) is fulfilled for θ = nπ
2 , n ∈ N, but have additional

solutions which are harder to find analytically.

For mediums where the anisotropy is weak, the TI wave velocities
can be approximated by Thomsen’s weak anisotropy approximation,

VP (θ) ≈
√

c33

ρ

(
1 + δ sin2(θ) cos2(θ) + ε sin4(θ)

)
VSV (θ) ≈

√
c44

ρ

(
1 +

c33

c44
(ε− δ) sin2(θ) cos2(θ)

)
(25)

VSH(θ) ≈
√

c44

ρ

(
1 + γ sin2(θ)

)
where

ε =
c11 − c33

2c33

γ =
c66 − c44

2c44
(26)

δ =
(c13 + c44)2 − (c33 − c44)2

2c33(c33 − c44)
.

ε, γ and δ are called the Thomsen parameters and are indicators
of anisotropy. As a rule of thumb, the Thomsen approximation is
acceptable if all the Thomsen parameters are below 0.1 in absolute
value, i.e. if |ε| ≤ 0.1, |γ| ≤ 0.1 and |δ| ≤ 0.1.

By comparing the exact TI wave velocities in equation (15) with the
Thomsen approximation in (25), it is obviously easier to find the
extremal points of Thomsens approximation than of the exact ve-
locities since the derivative of the first will clearly give an easier
expression. The remaining extremal θ points are therefore approxi-
mated by the extremal points of (25).
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The additional approximate extremal θs found by using Thomsen’s
approximation are

θ ≈ arcsin±

√√√√√ 4
3

√
c33
c44

(ε− δ)− δ

2
(

4
3

√
c33
c44

+ 1
)

(ε− δ)

for V 2
P −

4
3V 2

SV ,

θ ≈ arcsin±

√√
c44

c33

4
3

γ

δ + 2(ε− δ)

for V 2
P −

4
3V 2

SH and

θ ≈ π

4

for V 2
SV .

max(ViS ) in equation(23) is now approximately given by

max(ViS ) = max(ViSV max , ViSHmax)

ViSV max = max



ViSV (0) ,

ViSV

(
π
2

)
,

ViSV

(
arcsin

√
4
3

√
c33
c44

(ε−δ)−δ

2
(

4
3

√
c33
c44

+1
)
(ε−δ)

)
,

ViSV

(
arcsin−

√
4
3

√
c33
c44

(ε−δ)−δ

2
(

4
3

√
c33
c44

+1
)
(ε−δ)

)

ViSHmax = max



ViSH (0) ,

ViSH

(
π
2

)
,

ViSH

(
arcsin

√√
c44
c33

4
3

γ
δ+2(ε−δ)

)
,

ViSH

(
arcsin−

√√
c44
c33

4
3

γ
δ+2(ε−δ)

)

and analogous for min(ViS ), max
(
ViP − 4

3ViS

)
and min

(
ViP − 4

3ViS

)
.

Here the exact velocity formulas in equation (15) are used, the ap-
proximation lies only in the way of finding the θ’s.

Since the bounds are approximate, inequality (23) does not hold,
but the “bounds” will hopefully give an idea of the speed variation
possible with the prevailing volume composition of rock types.
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One could improve the bounds by using the extremal θ points found
by Thomsen’s approximation as starting values in a Newton itera-
tion to find the exact extremal points. This is however out of scope
for this thesis.

3.2 Backus averaging

In 1962 Backus presented an analytical formula for the effective
elastic modulus for mediums made up by perfect layers of isotropic
materials. The theory assume infinite wave length which for prac-
tical purposes means that Backus’ formula is valid when the wave
length is much larger than the thickness of each layer.

Elastic moduli computed with Backus’ average are TI symmetric.
Consider a material which is made up by perfect layers of TI ma-
terials all with symmetry axis perpendicular to the bedding. Then
each layer will have an equivalent of layered isotropic materials, i.e.
there exists a material made up by isotropic layers with the same
effective elastic modulus as the TI layer. Thus the whole model
has an equivalent of isotropic layers and there exists an analytical
solution.

Backus averaging is based on the effective medium theory, i.e. the
effective elastic modulus represents an equivalent homogeneous
medium which have the same elastic properties, i.e. give the same
wave velocities, as the real medium. Figure 6 illustrates the idea
behind effective medium theory. Since the medium here is layered,
Backus averaging can be used to find the effective elastic modulus
if each layer is isotropic or TI with perpendicular symmetry axis.

The effective stiffness tensor components according to Backus are

c11 = c22 =
〈
a− f2c−1

〉
+
〈
c−1
〉−1 〈

fc−1
〉2

c12 = c21 =
〈
b− f2c−1

〉
+
〈
c−1
〉−1 〈

fc−1
〉2

c33 =
〈
c−1
〉−1

c13 = c23 = c31 = c32 =
〈
c−1
〉−1 〈

fc−1
〉−1

c44 = c55 =
〈
d−1
〉−1

c66 = 〈m〉 ,

where the brackets 〈·〉 is the volume weighted average of the en-
closed properties and a, b, c, d, f and m are the components of the
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Figure 6: The idea behind the effective medium theory is to find
an equivalent homogeneous medium with the same physical prop-
erties as the real heterogeneous one. The model to the right, where
fine scale heterogeneities are smoothed away, represents a homo-
geneous version of the layered heterogeneous medium to the left.

stiffness tensors for the different layers given as

a b f 0 0 0
b a f 0 0 0
f f c 0 0 0
0 0 0 d 0 0
0 0 0 0 d 0
0 0 0 0 0 m

 .

If each of the layers are isotropic, the formula above simplifies to

c11 = c22 =
〈

4µ(λ + µ)
λ + 2µ

〉
+
〈

1
λ + 2µ

〉−1〈 λ

λ + 2µ

〉2

c12 = c21 =
〈

2λµ

λ + 2µ

〉
+
〈

1
λ + 2µ

〉−1〈 λ

λ + 2µ

〉2

c33 =
〈

1
λ + 2µ

〉−1

c13 = c23 = c31 = c32 =
〈

1
λ + 2µ

〉−1〈 λ

λ + 2µ

〉−1

c44 = c55 =
〈

1
µ

〉−1

c66 = 〈µ〉

where λ and µ are given as in (12).

For mediums with non-horizontal layering, the analytical elastic
modulus can be found by using tensor rotation (see section 2.6)
of the Backus average. First find the effective modulus in a coor-
dinate system where the vertical (n3) axis is perpendicular to the
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layering (Backus average). Then do a basis change of this tensor
where the new vertical axis is, in fact, vertical, i.e. n3 =

(
0 0 1

)
.

The form of the resulting tensor will not have the same form as the
one presented in (14), but the number of independent coefficients
are still 5.

For approximately layered media, Backus averaging is often used
as an approximation of the effective elasticity tensor. The usability
of this approximation is directly related to how perfect the layering
is.

3.3 Upscaling method for general geometries

For general geometries, no known analytical formula exists for an
equivalent elasticity tensor. One should take note that periodicity
of the medium is a common assumption behind classical homoge-
nization theory and therefore the method will in general give best
results for approximately periodic models. This section is mainly
taken from [15] and is included for completeness.

3.3.1 Preserving physical expressions

The method is based on preservation of Hooke’s law from fine to
coarse scale when requiring that the expressions for stress diver-
gence and strain are preserved. If ui and Ui denote the displace-
ments at fine and coarse scale respectively, one should have

Ui = 〈ui〉
∂iUj = 〈∂iuj〉

⇒ Eij = 〈εij〉 =
〈

∂iuj + ∂jui

2

〉
=

∂iUj + ∂jUi

2

where εij and Eij are the fine and coarse scale strains and 〈·〉 is the
volume wighted average.

For stress divergence one requires

Sij = 〈σij〉
⇒ ∂iSij = ∂i 〈σij〉 = 〈∂iσij〉

where S is the effective (coarse scale) stress and σ is the fine scale
stress.
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It is also preferable to preserve the expression for energy,

ET S =
〈
εT σ

〉
.

Unfortunately, the expressions for energy, stress divergence and
strain can not be preserved simultaneously in a general case. Nu-
merically this over specifies the problem. However, if the model is
periodic or perfectly layered, the three expressions can be upscaled
simultaneously. Here the periodicity is taken care of by the bound-
ary conditions. This will be explained in section 3.3.3.

Physically stiffness tensors for mediums in equilibrium are at least
triclinic (see chapter 2). For models which are either periodic or
perfectly layered, this property is preserved through the upscaling.

3.3.2 Basic equation

Many of the results in classical homogenization theory is based on
a periodic medium assumption. In reservoirs, the rocks are not
perfectly periodic, but often distinct regions can be approximately
periodic. The derivation of the equations can be done either in a
classical mathematical or in a physical approach, and these give
the same result. Here a physical approach on equating the net fine-
scale force is presented.

The fine scale force working on a domain with closed boundary is
equal to the coarse scale force working on the same domain [15],

{
niσijdS +

y
bjdV =

{
niSijdS +

y
BjdV

where bj and Bj are the fine and coarse scale body forces. Defining
Bj = 1

V

t
bjdV = 〈bj〉 yields

t
bjdV =

t
BjdV and

{
niσijdS =

{
niSijdS.

Using Gauss’ integral theorem
y

V

(∇ · F) =
{

dV

F · ndS

yields
y

V

∂iσijdV =
y

V

∂iSijdV

⇒ ∂iσij = ∂iSij
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For a periodic medium, S = [Sij ]
3
i,j=1 and C = [cijmn]3ijkl=1 are con-

stant with respect to the fine scale, hence according to Hooke’s
law (8), so is E. This means that ∂iSij = 0. Substituting Hooke’s
law in equation (5) and equation (2) one gets

∂iσij = ∂i

(∑
mn

cijmn (∂mun + ∂num)

)
= 0

which is the equation that has to be solved in order to determine
the fine scale displacements. In addition, one needs boundary con-
ditions.

3.3.3 Boundary conditions

Recall that the coarse scale strain E = [Eij ]
3
i,j=1 is constant for pe-

riodic mediums. Therefore, as one sees from (2), the coarse scale
displacement Ui is linear in x, i.e.

U(x) = U0 + Ax

E =
1
2
(A + AT ).

The fine scale displacement is equal to the coarse scale displace-
ment plus a periodic function χ with the same periodicity as the
fine scale elastic modulus,

u(x) = u0 + Ax = U0 + χ(x) + Ax,

i.e. the displacement difference between two corresponding points
on opposite boundaries is constant.

The system that has to be solved in order to determine the fine scale
displacements is thus

∂i

(∑
mn

cijmn (∂mun + ∂num)

)
= 0 (27)

ui(x) = U0i + χi(x) +
∑

j

Aijxj .

The boundary conditions can be chosen orthogonally as 9 different
load cases. Stretch (or compression) in each direction plus shear
displacement in the two other directions in each direction, alto-
gether three different displacements in each direction as shown in
figure 7. Since the strain and stress are symmetric, Eij = Eji and
Sij = Sji, it is enough to compute for the 6 of these corresponding to
the Voigt notation, i.e. the upscaling can be done for E11, E22, E33,
E23 or E32, E31 or E13 and E12 or E21.
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Figure 7: The nine different load cases corresponding to orthogo-
nal boundary conditions. Due to the symmetries in stress, strain
and stiffness tensor, it is enough to compute for the three stretch
cases, [Eii]

3
i=1 and for example the upper half, E23, E31 and E12. The

illustration is taken from [15].

3.3.4 Numerical procedure

Roughly the procedure to compute the upscaled elastic modulus C
is as follows

• Choose a load case, i.e. set one Eij 6= 0 and Ekl = 0, kl 6= ij

• Compute the displacements in all cells by solving (27)

• Compute the strain ε for all cells from the displacements

• Compute the stress σ in each cell by using Hooke’s law (4)

• Compute the coarse scale stress S = 〈σ〉 =
∑

Cells
VCell

V σCell

• Compute the column of C corrsponding to the chosen load
case by using Hooke’s law (4). Since E has only one non-
zero component, say the kth component, one gets Si = CikEk

⇒ Cik = Si
Ek

, i ∈ {1, .., 6}
(Here E and S are represented in the 6 component vector rep-
resentations).

The computations in this thesis is done with a finite element based
implementation of this method which is made by Sintef Applied
Mathematics for StatoilHydro.

The upscaling is independent of scale, i.e. it can be used to upscale
from 1 mm to 10 m and it can be used to upscale from 100 m to



36 CHAPTER 3. UPSCALING OF ELASTIC PARAMETERS

10 km. What one should keep in mind, is that many results within
homogenization theory are based on the assumption of periodicity
of the medium. The applicability and validity of the result, taken
the periodicity and whether both the cell sizes and the model size
are representative elementary volumes (REVs) into account, are up
to the user.



Chapter 4

Verification of the general
upscaling method

No proper verification of the general geometry upscaling method has
preveiously been done. Hence it first had to be verified with analyt-
ical cases. Different cases where the effective elastic modulus is
known are used. First the method is tested on a two cell model
where each cell is isotropic. The exact solution for this model can
be computed by using Backus averaging, section 3.2. The next test
is a simpler case, namely setting the elastic parameters equal in
all cells. This test is run on several models, expecting the error to
be larger the more cells there are in the model. The final test is
to find the exact elastic modulus for a perfectly layered model with
Backus averaging in 3.2, and then rotate the model and change the
basis of the elasticity tensor accordingly. This creates a non trivial
upscaling problem with an analytical solution.

4.1 A two cell model

The model shown in figure 5 has two equally thick layers. Populat-
ing these two layers with isotropic rock should yield results equal to
Backus averaging since each layer is isotropic (and hence also TI).
The rock properties, given by lamè parameter λ and shear modulus
µ, are set equal to

λ1 = 3, µ1 = 10
λ2 = 8, µ2 = 15.

37
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By Backus, the effective stiffness tensor components are

c11 = c22 =
〈

4µ(λ + µ)
λ + 2µ

〉
+
〈

1
λ + 2µ

〉−1〈 λ

λ + 2µ

〉2

= 30.295

c33 =
〈

1
λ + 2µ

〉−1

= 28.656

c12 =
〈

2µλ

λ + 2µ

〉
+
〈

1
λ + 2µ

〉−1〈 λ

λ + 2µ

〉2

= 5.2951

c13 = c23 =
〈

1
λ + 2µ

〉−1〈 λ

λ + 2µ

〉
= 4.8852

c44 = c55 =
〈

1
µ

〉
= 12

c66 = 〈µ〉 = 12.5

In the upscaled result for this model,

CUpscaled =



30.2951 5.29508 4.88525 0 0 0
5.29508 30.2951 4.88525 0 0 0
4.88525 4.88525 28.6557 0 0 0

0 0 0 12 0 0
0 0 0 0 12 0
0 0 0 0 0 12.5

 ,

all coefficients coinside with the theoretical values up to a factor of
10−3. The errors that are present are due to rounding errors in the
computations.

4.2 Homogeneous isotropic materials

If a model is populated with the same isotropic elasticity tensor in all
cells, the result should be isotropic and equal to the input elasticity.
This was done on several models with elasticity parameters

λ = 5, µ = 10

which corresponds to the elasticity tensor

Cexact =



25 5 5 0 0 0
5 25 5 0 0 0
5 5 25 0 0 0
0 0 0 10 0 0
0 0 0 0 10 0
0 0 0 0 0 10

 .
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The relative error is given by

‖Cupscaled − Cexact‖F

‖Cexact‖F
,

and these are given in table 2 for the different models. The first
model is shown in figure 5, the second is shown in figure 8 and the
lithofacies models numbered 1 to 6 are the ones in figure 24. Mod-
els 7 to 9 are also lithofacies models. The errors for the lithofacies
models 1 to 6 are of order O(10−2), while for lithofacies models 7 to
9 the errors vary more and are for example not increasing with the
number of cells. This is due to the way the models are built. For the
periodic model the error is of order O(10−3) while for the simple two
cell model the error is zero (up to data precision). Thus both the size
and geometry of the model affect the error. The implementation is
based on a finite element method to solve the differential equation
for the displacements. The cells on two opposite sides are matched
and if the cells do not correspond completely, this can cause nu-
merical errors. This may be the reason why the errors are not only
dependent on model sizes.

Model Error Number of cells
TwoCells 3.6 · 10−36 2

PeriodicTilted 2.6 · 10−3 3760
1 1.02 · 10−2 40847
2 2.75 · 10−2 149794
3 1.98 · 10−2 234156
4 1.85 · 10−2 50033
5 1.78 · 10−2 247972
6 1.91 · 10−2 209280
7 1.5 · 10−3 2217600
8 2.2988 · 10−5 45667
9 3.13 · 10−2 249298

Table 2: Relative upscaling error for isotropic populated models.
Model 1 to 9 are lithofacies models, while the two first are simple
test models.

4.3 Rotation of symmetric model upscaled by
Backus

For a perfectly layered model with two different rock types, one in
every other layer, and where each rock type is isotropic and ho-
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mogeneous, the effective elasticity tensor can be found by Backus
averaging (see section 3.2). An isotropic material is also TI since the
set of isotropic elasticity tensors is a subset of the set of TI elasticity
tensors. Then, to find the elasticity tensor of a model of the same
size where the layers are rotated around the y-axis as shown in fig-
ure 8, one changes the basis of the original tensor correspondingly
(see section 2.6). The model in figure 8 is made such that it is pe-

Figure 8: A fully periodic model with two different rock types

riodic, i.e. if one puts two of these together either in the vertical or
in one of the horizontal directions, the layers are continuous also
in the composition. This means that by using the general geome-
try upscaling method with periodic boundary conditions, the result
should be equal to the rotated Backus average.

If the layers are too similar, i.e. the contrast between the elastic
properties of the two layers is too small, the composition will be
close to isotropy. Therefore the elastic properties of the two different
layers are set such that there is a high contrast, not considering
whether these numbers are realistic or not in a geological setting,
but for the sake of verification only. With elastic properties of the
layers equal to

K1 = 5, µ1 = 5
K2 = 30, µ2 = 30,

the elasticity tensor before rotation become

CHorizontal =
40.4080 5.4080 2.8570 0 0 0
5.4080 40.4080 2.8570 0 0 0
2.8570 2.8570 20.0000 8.5710 0 0

0 0 0 0 8.5710 0
0 0 0 0 0 17.5000

 .

Rotation of this tensor by 26.656◦ counter clock wise around the y-
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direction results in

CRotated =

33.0608 4.8978 6.1226 0 −6.5308 0
4.8978 40.4080 3.3672 0 −1.0204 0
6.1226 3.3672 20.8160 0 −1.6324 0
0.0000 0 0 10.3568 0 −3.5716
−6.5308 −1.0204 −1.6324 0 11.8366 0

0 0 0 −3.5716 0 15.7142


while the upscaling method gives

CUpscaled =

33.0655 4.8957 6.0987 0.0000 −6.5343 0.0000
4.8957 40.5448 3.3497 0.0000 −1.0204 0.0000
6.0987 3.3497 20.6972 0.0000 −1.6290 0.0000
0.0000 0.0000 0.0000 10.3054 0.0000 −3.5775
−6.5343 −1.0204 −1.6290 0.0000 11.7807 0.0000
0.0000 0.0000 0.0000 −3.5775 0.0000 15.7314

 .

The relative difference between upscaled and rotated Backus solu-
tion in Frobenius norm is

‖CUpscaled − CRotated‖F

‖CRotated‖F
= 0.0033.

The reason why there is a difference between the upscaled and an-
alytically computed tensor, is due to numerical truncation errors in
the computations and lack of perfect periodicity in the model (visi-
ble for an observant eye in figure 8).The error is undoubtedly small
enough to conclude that the upscaling method predicted the elastic
tensor correctly for this model.

From these tests it is inferred that the method also will upscale
more complex geometries correctly.
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Chapter 5

Projection onto a higher
symmetry

The outputs from the numerical implementation have in general
triclinic symmetry, e.g. 21 free parameters. In some cases one
may assume that the result has a higher symmetry, i.e. the elastic
modulus can be described by fewer free parameters. An example
of this is for a layered medium with TI or isotropic layers where
the result should be TI symmetric (or close to TI symmetric for
non perfect layering). In such cases, one can find the projection
of the elasticity tensor onto a certain symmetry, i.e. the closest
elastic tensor of arbitrary symmetry to an elasticity tensor of lower
symmetry. The projections are done with respect to the Frobenius
norm given in equation (17).

As shown in [10], the Frobenius norm is not invariant under inver-
sion, i.e. ‖C‖F 6= ‖C−1‖F . However, this norm is simple to work with
and in this case good enough since the purpose is just to get an
idea if the result is (approximately) of a higher symmetry than the
seemingly triclinic. Projections with respect to other norms are for
example presented in [10].

In rock physics, isotropy and transverse isotropy are widely used
assumptions/approximations and projections onto these are there-
fore considered here.

43
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5.1 Isotropic projection

The isotropic projection CIso of an arbitrary elasticity modulus C is
given by

CIso(κ, µ) =



κ + 4
3µ κ− 2

3µ κ− 2
3µ 0 0 0

κ− 2
3µ κ + 4

3µ κ− 2
3µ 0 0 0

κ− 2
3µ κ− 2

3µ κ + 4
3µ 0 0 0

0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


with CIso being the 6 × 6 matrix representation of CIso and where κ
and µ minimize

‖C− CIso(κ, µ)‖F ,

where ‖·‖F is the Frobenius norm (17).

Given an elastic modulus C with 6× 6 representation C of arbitrary
symmetry, κ and µ are found by setting the derivatives of

‖C− CIso(κ, µ)‖F (28)

with respect to κ and µ equal to zero

∂

∂κ
‖C− CIso(κ, µ)‖F = 0

∂

∂µ
‖C− CIso(κ, µ)‖F = 0.

to find the extremal points. In terms of a1, a2 and a3 defined as

a1 = C11 + C22 + C33

a2 = C12 + C13 + C23

a3 = C44 + C55 + C66.

where [Cij ]
3
i,j=1 are the entries of C,

∂

∂κ
‖C− CIso(κ, µ)‖F = −2 (a1 − 3κ− 4µ)− 4 (a2 − 3κ + 2µ)

∂

∂µ
‖C− CIso(κ, µ)‖F = −8

3
(a1 − 3κ− 4µ) +

8
3

(a2 − 3κ + 2µ)

− 8 (a3 − 3µ)
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and the extremal points are given by the equations

−2 (a1 − 3κ− 4µ)− 4 (a2 − 3κ + 2µ) = 0

−8
3

(a1 − 3κ− 4µ) +
8
3

(a2 − 3κ + 2µ)− 8 (a3 − 3µ) = 0.

Solving these yields

κ =
C11 + C22 + C33 + 2 (C23 + C13 + C12)

9
(29)

µ =
C11 + C22 + C33 − C23 − C13 − C12

15
+

C44 + C55 + C66

5
.

Given an elasticity tensor C, ‖C− CIso(κ, µ)‖F is continuous in both
κ and µ. It is obvious from equation (17) that

lim
κ→∞

‖C− CIso(κ, µ)‖F = ∞

lim
µ→∞

‖C− CIso(κ, µ)‖F = ∞,

hence the values for κ and µ found above are the global minima
of (28) and represent an isotropic projection of C.

The wave velocities corresponding to C are given by the Christoffel
equation (10) and are in general direction dependant. The velocities
corresponding to the isotropic projection CIso of C are given by

VPIso
=

√
κ + 4

3µ

ρ

=

√
1
15 [3(C11 + C22 + C33) + 2(C23 + C31 + C12) + 4(C44 + C55 + C66)]

ρ

VSIso
=
√

µ

ρ

=

√
1
15 [C11 + C22 + C33 − C23 − C31 − C12 + 3(C44 + C55 + C66)]

ρ
.

Another possibility could be projection with respect to minimizing
the mean square difference in velocities, i.e. minimizing the dis-
tances between the Christoffel matrices for C and CIso. This has
been done by Fedorov [10] and the resulting velocities are equal to
those one gets by averaging the velocities over all directions. These
are also exactly equal to those found here by Euclidean projection
of the stiffness tensor.
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5.2 TI projection

The transversely isotropic projection CTI of an arbitrary C can be
expressed in terms of 5 independent components

CTI (A,B, C, D, E) =



A A− 2E B 0 0 0
A− 2E A B 0 0 0

B B C 0 0 0
0 0 0 D 0 0
0 0 0 0 D 0
0 0 0 0 0 E


where A, B, C, D and E are such that

‖C− CTI (A,B, C, D, E)‖F (30)

is minimized, ‖·‖F being the Frobenius norm and the connection
between this to the 6× 6 representation C is given in equation (17).

As for the isotropic projection, one wants to find the extremal points
of ‖C − CTI (A,B, C, D, E)‖F in order to determine the parameters A
to E.

Differentiating ‖C − CTI (A,B, C, D, E)‖F with respect to A, B, C, D
and E and setting these to zero yields

0 =
∂

∂A
‖C− CTI (A,B, C, D, E)‖F

⇒ 0 = −2(C11 −A)− 4(C12 −A + 2E)− 2(C22 −A)

0 =
∂

∂B
‖C− CTI (A,B, C, D, E)‖F

⇒ 0 = −4(C13 −B)− 4(C23 −B))

0 =
∂

∂C
‖C− CTI (A,B, C, D, E)‖F

⇒ 0 = −2(C33 − C)

0 =
∂

∂D
‖C− CTI (A,B, C, D, E)‖F

⇒ 0 = 4 (−2(C44 −D)− 2(C55 −D))

0 =
∂

∂E
‖C− CTI (A,B, C, D, E)‖F

⇒ 0 = 8(C12 −A + 2E)− 8(C66 − E).
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Solving these yields the extremal points A to E

A =
1
2
c66 +

1
4
C12 +

3
8
(C11 + C22)

B =
C13 + C23

2
C = C33

D =
c44 + C55

2

E =
1
2
c66 +

1
4
C12 +

1
8
(C11 + C22).

As for the isotropic case, the same argument yields according to
whether the found TI constants correspond to the global minimum
of ‖C− CTI (A,B, C, D, E)‖F . For a given elastic tensor C, the dis-
tance in (30) is continuous in A, B, C, D and E respectively (when
keeping the others fixed) and (30) tends to infinity when either one
of A to E tends to infinity. Hence one knows that the constants
found minimize the Euclidean distance between the original triclinic
tensor C and the TI projection CTI .

The velocities corresponding to the TI projection become

VP (θ) =

√
A sin2(θ) + C cos2(θ) + D +

√
M(θ)

2ρ

VSV (θ) =

√
A sin2(θ) + C cos2(θ) + D −

√
M(θ)

2ρ

VSH =

√
E sin2(θ) + D cos2(θ)

ρ

M(θ) =
[
(A−D) sin2(θ)− (C −D) cos2(θ)

]2 + (B + D) sin2(2θ).

A generalization of Fedorov’s approach by minimizing with respect
to the average for all propagation directions of the Christoffel equa-
tions is identical to the Euclidean minimization [10].

5.3 Basis dependent projection

The projections above are for elasticity tensors C in their original
basis. One could imagine that there is another basis that would
give a smaller ‖C− CProj ‖F , i.e. one could minimize

‖C(d)− CProj (d,X)‖F
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with respect to d and X where d is the basis in which C and CProj

are given and X represents the free parameters of the projection,
i.e. κ and µ for isotropic projection and A to E for TI projection. In
Voigt notation this is eqivalent to minimize

‖KCKT −KCProj (X)KT ‖F = ‖KCKT −C∗
Proj (X)‖F (31)

with respect to K and X, where K is the rotation matrix defined
in (20). The projection C∗

Proj then has to be rotated back to the
original basis to obtain CProj which will alter the initial form of the
tensor, but it will have the same number of free parameters.

5.3.1 Isotropic projection is independent of basis

For the isotropic case,

KCIso(X)KT = CIso(X), ∀K,

i.e. the isotropic projection is invariant under rotation. Euclidean
minimization of the Christoffel matrix is equivalent to Euclidean
projection of the elastic modulus [10], i.e.

CIso =

ρ̂



V 2
Pavg

V 2
Pavg

− 2V 2
Savg

V 2
Pavg

− 2V 2
Savg

0 0 0
V 2

Pavg
− 2V 2

Savg
V 2

Pavg
V 2

Pavg
− 2V 2

Savg
0 0 0

V 2
Pavg

− 2V 2
Savg

V 2
Pavg

− 2V 2
Savg

V 2
Pavg

0 0 0
0 0 0 V 2

Savg
0 0

0 0 0 0 V 2
Savg

0
0 0 0 0 0 V 2

Savg


where VPavg and VSavg are the average wave velocities over all direc-
tions (VSavg being the average of the two S waves). Since the average
is over all directions, VPavg and VSavg are invariant under rotation of
C, i.e.

argmin
K,µ

‖KCKT −CIso(K, µ)‖2
F = argmin

K,µ
‖C−CIso(K, µ)‖2

F

for all possible rotation matrices K.

A perhaps easier way to see this, is by realizing that changing the
propagation direction and rotating the tensor is invariant. Keeping
the tensor fixed and changing the propagation direction is relatively
the same thing as keeping the propagation direction fixed and ro-
tating the tensor (physically rotating the medium). Then since Eu-
clidean isotropic projection is equal to averaging velocity over all
orientations, this must be invariant under tensor rotation.
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5.3.2 A basis dependent TI projection

The analytical procedure to find the minimum of (31) with respect
to both direction K and projection variables X, would be to differen-
tiate (31) with respect to all the variables in K and X and set these
to zero in order to determine the extremal points. Then one could
compare the value of (31) for all these extremal points to find the
global maximum and minimum.

It is however easier to do this numerically by discretizing with re-
spect to space. First one finds the TI projection described in sec-
tion 5.2 for a discrete set of rotations of C. The projection from
the rotation that yields the closest CTI is then chosen as the final
projection.

The set of rotated elasticity tensors KCKT can be seen in light of the
set of rotation matrices A (18). A rotation matrix can alternatively
be described in terms of three angles (for example Euler angles) [8].
A regular “grid” of rotations is therefore defined by a regular grid in
the space of the three Euler angles.

Since TI symmetric elasticity tensors have a symmetry axis, here
n3, a basis change with fixed n3 will not change the projected CTI .
Thus it is enough to look at a discrete set of n3 basis vectors.

To find this set, one can discretize the surface of a unit sphere and
let the set of n3 vectors be equal to the set vectors from the origin to
the nodes on the discrete sphere surface. Here the sphere surface
was discretized into triangles by starting with a icosahedron and
then subdivide each triangle face by a factor of 4 a suitable number
of times. A discritization of the unit sphere is shown in figure 9.

Figure 9: Discretization of the surface of a unit sphere.
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Chapter 6

Elastic moduli
visualization

From the Christoffel equation (10) one can see that there is a close
relationship between the elasticity tensor and the wave speeds. The
elastic moduli can therefore be visualized through their correspond-
ing wave velocities. A 3D visualization of the wave speeds for the
periodic model where the layers are isotropic with bulk and shear
moduli

KBlue layer = 5, µBlue layer = 5
KRed layer = 30, µRed layer = 30,

is shown in figure 10. The blue surface is the P -wave velocities at
the different directions, while the green and red surfaces are the S-
wave velocities. In this case it is easy to see the connection between
the shape of the surfaces in figure 10a and the orientation of the
layers in the model 10b.

On paper, a projection (in for instance the xz or yz plane) of the
3D surfaces in figure 10a can be easier to interpret. An example
of this for the periodic model is shown in figure 11 with and with-
out the corresponding Voigt and Reuss bounds in the background.
Here both rock types are isotropic so the bounds are valid (see sec-
tion 3.1.1), and one sees that the velocities are always between the
bounds. Vertically the P wave velocitiy is equal to the Reuss bound
while horizontally in the xz projection, i.e. for propagation direction(
1 0 0

)
, it is equal to the Voigt bound. For propagation direction(

1 0 0
)

one of the S waves are equal to the Voigt bound while the
other is equal to the Reuss bound. In the yz plane at an angle ∼ π

4
one of the S waves is equal to the Reuss bound while the other is
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equal to the Voigt bound and for an angle ∼ 3π
4 both S waves are

equal to the Reuss bound.

(a) The blue surface is VP , the red and
green are the two S waves.

(b) Periodic model

Figure 10: 3D visualization (a) of the wave velocities for the model
in (b).

In both the 2D and 3D visualizations, it may seem like the S wave
velocities are not always smooth. This is purely a plotting artifact
as the surfaces should cross, not just touch. In the plotting routine
the velocities are found by finding the eigenvalues of the Christoffel
matrix for discrete directions. The method to separate the different
waves is by sorting the eigenvalues by size. VP is always the fastest
while it changes which of the S waves is the fastest.

For a TI medium with symmetry axis in the vertical direction (z), the
projection in any hz plane, where h is an axis lying in the xy plane, is
equal. For approximately TI symmetric models, the visualization is
done by averaging over the azimuth angle. (This would be identical
to computing the velocity for the TI projection). An example of this
is shown in figure 12. This kind of plot shows the vertical versus
horizontal anisotropy. Note that the plots in figure 12 are with a
different model and with different microscopic elasticity data than
the previous plots.
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(a) xz (uppermost) and yz projections (b) Same as figure (a) but with the Voigt
and Reuss bounds in the background.

Figure 11: 2D projections of figure 10a in the xz and yz planes. In
(b) these are shown together with the Voigt and Reuss bounds. The
blue graph is VP while the two others are the two S wave velocities.
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(a) Wave velocities as a funciton of dip
angle

(b) Same as in (a) but with Voigt and
Reuss bounds.

Figure 12: Example of wave velocity in the hz plane, i.e. in the
vertical vs an average in the horizontal plane. Blue graph is P wave
velocity, the other two are S wave velocities.



Chapter 7

Geometrical effects

For permeability, geometrical effects play an important role in the
upscaled result [5], i.e. if a low permeable shale layer with no holes
goes through an entire model, the model is close to impermeable
across the layer, while if the shale is scattered throughout the model
in non-connected patches, fluids can easiliy flow around the shale.
Mathematically permeability upscaling is a corner case of elasticity
upscaling when all components but the upper left 3 × 3 submatrix
are 0. Analogue to Hooke’s law (4) one has Darcy’s law

u = −K∇P

where u is the phase filtration velocity and ∇P is the pressure gra-
dient for permeability. With strain ε analogue to pressure gradient
∇P and stress σ analogue to phase filtration velocity, the elasticity
modulus C is analogue to permeability K. Therefore it is interest-
ing whether the same geometrical effects make similar impact for
elasticity. Mathematically the answer is yes, but there is a ques-
tion whether the realistic magnitudes are important, and if there
exists additional effects due to the generalization from permeability
to elasticity.

First in this section, three models with the same shale amount (50%)
but different geometries are compared. The first model is an imita-
tion of the rock formation created by tides shown in figure 13b.
The second is a model with two layers, all the shale on top and all
the sand at the bottom illustrated in figure 13a. The last one is a
model with regular cells and where each cell has a probability of
50% to contain shale. The last model is highly unrealistic, but it is
interesting to compare the results on this model with realistic ones.
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Next the ratio between shale versus sand is investigated by deter-
mining the anisotropy as function of shale content. This is also
done for three different geometry types, imitation of tidal composi-
tion, perfectly layered and random.

7.1 Comparing three different geometries

Three models with the same amount of shale (50%), but with differ-
ent geometries were used to investigate the geometric effects. One
model is simply two layers with equal thickness where one layer
is shale and the other is sand. Another is a regular model where
the shale is spread randomly, i.e. each cell has a probability of
50% to contain shale. The last is a model composed using geologi-
cal “rules”, i.e. the model imitates a realistic deposition caused by
tides. The models are shown in figure 13.

(a) Shale layer on top of a
sand layer.

(b) Composition caused by
tides.

(c) Randomly spread shale.

Figure 13: Three different models which all contain 50% sand and
50% shale.

7.1.1 Isotropic shale

First the upscaling is done on these models with isotropic input
for both sand and shale with the following elasticity and density
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parameters

KSand = 13
µSand = 5
ρSand = 2.33 (32)

KShale = 11.27
µShale = 9.93
ρShale = 2.4.

The relative Euclidean distances between the upscaled elasticity
tensors for the geological model and the two others became

‖CGeological − CRandom‖F

‖CGeological‖F
= 0.0876

‖CGeological − CLayered‖F

‖CGeological‖F
= 0.0546,

which is not much, but there is a difference. One sees that the
elasticity for the layered model, figure 13a, is closer than for the
random one, figure 13c, which is reasonable since the geological
one, figure 13b, seems to have some kind of (imperfect) layering.
One could expect that this result could be extrapolated to similar
models, i.e. that models with a layering trend would yield similar
results as a perfectly layered model, i.e. one can get fairly good
results by using Backus averaging for such models.

The wave velocities for the three models are shown in figure 14.
VP /VS as a function of angle for the random model, figure 14d,
is nearly a straight line which means that this model is almost
isotropic. This is confirmed by Euclidean distance between the elas-
tic modulus CRandom and its isotropic projection CRandomiso

,

‖CRandom − CRandomiso
‖F

‖CRandom‖F
= 0.0029.

which is also expected since any geometrical effect is meant to
be smeared out by the randomization. For the other models, one
sees a disturbance in the VP /VS ratio for about 40° dip angle. (For
anisotropic mediums the VP /VS ratio uses the fastest of the two S
waves since this is the one being recorded when measurements are
conducted in the laboratory and in sonic logs). The distances for
these to isotropy are

‖CGeological − CGeologicaliso
‖F

‖CGeological‖F
= 0.0187

‖CLayered − CLayerediso
‖F

‖CLayered‖F
= 0.0341,



58 CHAPTER 7. GEOMETRICAL EFFECTS

(a) Two layer model (b) VP /VS versus angle

(c) Random model (d) VP /VS versus angle

(e) Geological model (f) VP /VS versus angle

Figure 14: Wave velocities and VP /VS as function of angle for the
layered model in 13a, the random model in 13c and the geologi-
cal model in 13b with one sand stone type and where the shale is
assumed isotropic.
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thus both these models are further from isotropy than the random.
The wave velocities for the random model in 14c are close to the
upper bound, i.e. the Voigt average would be a good estimate for
the elastic modulus in this case.

As one sees in figure 14a, the layered model reaches both bounds
and the velocities are being equal to the Reuss average in the verti-
cal direction and equal to the Voigt average for VP and one of the S
waves and equal to the Reuss average for the other in the horizontal
direction. Considering VP and the green S wave, these are exactly
analogous to permeability in the vertical and horizontal direction.
For permeability one has that this is equal to the arithmetic aver-
age (Voigt) along layers and to the harmonic average (Reuss) across
layers.

The wave velocities for the geological model is shown in figure 14e
and tend to follow the same trends as the layered model, but not
as strong since VP do not reach the upper bound at any point and
none of the S wave velocities reach the lower bound.

Since the bounds are computed based on volume fractions only,
these are expected to be equal in all three cases. If one looks closely
at the bounds in figure 14e compared to figure 14a and 14c, one
sees that these do not coincide completely. This is due to the sand
fraction in the geological model not being exactly 50% but 50.17%.

The contrasts in properties for the cells is too small to cause any sig-
nificant impact and for many practical purposes, all three models
might be considered approximately isotropic and an averaging tech-
nique omitting geometrical differences, for example Voigt, Reuss or
the average of these two; Voigt-Reuss-Hill, would often give good
enough results.

7.1.2 Anisotropic shale

In reservoirs, shale is usually anisotropic. (All real rocks are usu-
ally anisotropic, but for sand for example, the anisotropy is often
so weak that this is assumed isotropic). Therefore the upscaling of
the three models is also done when the shale is assumed TI sym-
metric to see if there are any interaction effects between cell scale
anisotropy and geometry that affects the upscaled result. In addi-
tion there are two different sands. The elastic and density parame-
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ters are given by

K1 = 13 K2 = 18
µ1 = 5 µ2 = 10 (33)

ρ1 = 2.33 ρ2 = 2.11
(34)

for the sands and

CShale =



32 8 13 0 0 0
8 32 13 0 0 0
13 13 29 0 0 0
0 0 0 9 0 0
0 0 0 0 9 0
0 0 0 0 0 12

 (35)

ρShale = 2.4,

for the shale. The velocities and VP /VS ratio for the shale are shown
in figure 15. The relative Euclidean distances between the upscaled

(a) Wave velocities (b) VP /VS versus angle

Figure 15: The wave velocities (a) and VP /VS as function of angle
(b) for the elastic modulus used as input for shale when this is
assumed TI.

elastic moduli become

‖CGeological − CRandom‖F

‖CGeological‖F
= 0.0273

‖CGeological − CLayered‖F

‖CGeological‖F
= 0.0173,
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which is smaller than for the case where the shale was assumed
isotropic. It seems that the cell scale anisotropy overshadows the
geometrical effects. One can still see that the layered model is closer
than the random one. The wave speeds for the different models are
shown in figure 16. Even though there is a small difference in the
wave speeds, this will in many applications be much smaller than
the uncertainty in the input data. The VP /VS ratio versus angle
plots all shows anisotropy, although, as expected, the anisotropy
seems smaller for the random model. VP /VS ratio versus angle for
the shale is shown in figure 15b. By comparing VP /VS for shale in
figure 15b and VP /VS for the three models in 16a, 16c and 16e, it
is evident that the anisotropy introduced on cell level has a strong
effect on the upscaled result.
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(a) Two layer model (b) VP /VS versus angle

(c) Random model (d) VP /VS versus angle

(e) Geological model (f) VP /VS versus angle

Figure 16: Wave velocities and VP /VS as function of angle for the
layered model in 13a, a random model and the geological model
in 13b with two different sands and where the shale is assumed TI.
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7.2 Shale sensitivity

In section 7.1 one saw that with 50% shale, there were geometrical
effects, but that these were not significant enough for many prac-
tical objectives. One may want to know if this is the case for all
amounts of shale or if this occurs at a certain amount of shale.
It would also be interesting to investigate the relationship between
anisotropy and shale amount, i.e. the relationship between effective
anisotropy and anisotropy of input rock types.

In this section, upscaling on 11 different geological models, 11 lay-
ered models and 11 regular models with randomly distributed shale
is done with both isotropic and anisotropic shale on cell level. The
geological models are shown in figure 17. For the layered models,
Backus averaging is used by adjusting the thickness of each layer
corresponding to the amount of shale. In the case where the shale
is assumed isotropic, there is only one sand type (i.e. the parame-
ters of the two sand types are set equal) and the elastic parameters
are those given in (32). When the shale is assumed TI, the two sand
types differ and the physical parameters for the rock types in this
case are given in (33) and (35).

One common measure for anistotropy is the Thomsen’s parame-
ters (26). These can however only be used on TI symmetric elas-
ticity tensors. Another and perhaps more general, suggestion is to
measure anisotropy by

max(VP
VS

)−min(VP
VS

)
1
2

(
max(VP

VS
) + min(VP

VS
)
) , (36)

i.e. the biggest VP /VS ratio discrepancy divided by the average of the
maximum and minimum VP /VS ratio. The max and min are over all
directions. Here the distance from isotropy, i.e. ‖C−Ciso‖F

‖C‖F
, (36) and

Thomsen parameters of the TI projection of the elasticity tensor are
used as measures of anisotropy. The reason for introducing both
distance from isotropy and the measure in equation (36) is because
the VP /VS ratio is something that geophysisits is familiar with, while
mathematicians are more familiar with norms.

7.2.1 Isotropic shale

For the random models with isotropic shale, figure 18 shows the
anisotropy as function of sand percentage. Maximum anisotropy
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occurs when there is 60% sand and 40% shale. If the sand and
shale have had equal elastic parameters, the maximum would have
occurred at 50%, but since shale is stiffer, the maximum is at a lower
shale ratio. All anisotropy parameters are small which is reasonable
since the models are randomly composed.

Figure 19 shows anisotropy as function of sand percentage for the
geological composed models when the shale is assumed isotropic.
In this case the anisotropy is in general largest for about 10% sand
and 90% shale. γ, which considers shear anisotropy, is largest for
about 70% sand and 30% shale. While the anisotropy only depends
on volume fractions of the different rock types for random models,
there seems to be additional effects in the geological models. Thus,
geometry has an impact on anisotropy. It is also interesting to see
if the geological models are similar to perfect layered volume equiv-
alents. The anisotropy measures as function of sand percentage
for these are shown in figure 20. Also for these it seems that the
anisotropy only depend on volume fractions. The anisotropy mag-
nitudes for the layered and geological models are of order O(10−2)
while for the random models these are of order O(10−3).

For the geological model, one may notice that the anisotropy is not
zero for 100% sandstone even though the sandstones are equal and
isotropic. The divergence from zero is of the same order as the errors
found in chapter 4.2, thus this happens because of numerical erros
due to non matching cells at the boundaries. The random model
has regular cells and the layered has perfect layers, hence these
have matching cells at the boundaries and there are no errors due
to non periodicity on these.
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(a) 0% sand (b) 10% sand (c) 20% sand

(d) 30% sand (e) 40% sand (f) 50% sand

(g) 60% sand (h) 70% sand (i) 80% sand

(j) 90% sand (k) 100% sand

Figure 17: The geolocical tide models for the different amounts of
shale.
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(a) ‖C−Ciso‖F
‖C‖F

(b) VP /VS ratio anisotropy (36)

(c) ε (d) γ

(e) δ

Figure 18: Anisotropy as function of sand fraction for random dis-
tributed shale when this is assumed isotropic. (a) is the distance
from isotropy, (b) is the measure in (36) while (c), (d), and (e) are the
Thomsen parameters for the TI projection.
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(a) ‖C−Ciso‖F
‖C‖F

(b) VP /VS ratio anisotropy (36)

(c) ε (d) γ

(e) δ

Figure 19: Anisotropy as function of sand fraction for geological
distributed shale, figure 17, when this is assumed isotropic. (a) is
the distance from isotropy, (b) is the measure in (36) while (c), (d)
and (e) are the Thomsen parameters for the TI projection.
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(a) ‖C−Ciso‖F
‖C‖F

(b) VP /VS ratio anisotropy (36)

(c) ε (d) γ

(e) δ

Figure 20: Anisotropy as function of sand fraction for perfectly
layered shale and sand layers when the shale is assumed isotropic.
(a) is the distance from isotropy, (b) is the measure in (36) while (c),
(d) and (e) are the Thomsen parameters for the TI projection.
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7.2.2 Anisotropic shale

Figures 21, 22 and 23 show the anisotropy as function of sand
fraction when there are two different sand types and the shale is
assumed TI. For the random model, the Thomsen parameters
in figures 21c, 21d and 21e are approximately linear while the
relative VP /VS ratio (36) has a little curvature. This means that
the anisotropy is approximately linearly dependent of shale con-
tents in this case and there exists no distinguished shale amount
above which the general geometry upscaling is more needed than
for example Voigt averaging. The opposite would have been if the
anisotropy made a jump at some shale content point, making the
geometrical impact more influental above this point.

For the geological model, the anisotropy as function of sand con-
tent is shown in figure 22. In all these plots one sees that there
is something happening for 90% shale and 10% sand. The maximal
VP /VS discrepancy is largest for this amount of sand, γ and δ are
almost constant for 10% and 20% sand while ε increases from 10%
to 20% sand. This behavior may be due to the whole block being
TI for 0% sand while when sand is introduced, the elastic modu-
lus is triclinic. From 20% to 100% sand, relative VP VS, γ and δ are
approximately linear.

For the perfectly layered models, with results shown in figure 23,
the anisotropy looks smooth and monotonic. When the amount
of sand increases, the effective elasticity tensor comes closer to
isotropy. VP /VS, ε and γ decrease faster when the amount of sand
increases, δ decreases slower when the sand amount increas, while
the Frobenius distance between the elasticity tensors is approxi-
mately linear. The elastic modulus is however always (at least) TI
(see section 3.2) which means that one does not get the same dis-
turbances as for the geological model when the elastic modulus goes
from TI to triclinic when sand is added.

By comparing the results from the case when the shale was as-
sumed isotropic and the sands where equal with the case where
there where two different sands and the shale was TI, i.e. com-
paring figures 18, 19 and 20 with figures 21, 22 and 23, one sees
that the anisotropy is much larger for the second case and that the
shapes of the anisotropy measures are completely different. For
the geological model it looks like the geometrical effects one sees in
figure 19 could be added to some linear decreasing function to get
figure 22. Thus the small scale anisotropy has much larger signifi-
cance than geometrical differences, at least in this particular case.
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(a) ‖C−Ciso‖F
‖C‖F

(b) VP /VS ratio anisotropy (36)

(c) ε (d) γ

(e) δ

Figure 21: Anisotropy as function of sand fraction for random dis-
tributed shale when the shale is assumed anisotropic. (a) is the
distance from isotropy, (b) is the measure in (36) while (c), (d) and
(e) are the Thomsen parameters for the TI projection.
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(a) ‖C−Ciso‖F
‖C‖F

(b) VP /VS ratio anisotropy (36)

(c) ε (d) γ

(e) δ

Figure 22: Anisotropy as function of sand fraction for geological
distributed shale, figure 17, when this is assumed anisotropic. (a)
is the distance from isotropy, (b) is the measure in (36) while (c), (d)
and (e) are the Thomsen parameters for the TI projection.
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(a) ‖C−Ciso‖F
‖C‖F

(b) VP /VS ratio anisotropy (36)

(c) ε (d) γ

(e) δ

Figure 23: Anisotropy as function of sand fraction for perfectly lay-
ered shale and sand layers when the shale is assumed anisotropic.
(a) is the distance from isotropy, (b) is the measure in (36) while (c),
(d) and (e) are the Thomsen parameters for the TI projection.



Chapter 8

Upscaling from lamina to
lithofacies

In this chapter, the upscaling method is utilized on real reservoir
models with realistic input data to get a hint of how large the mag-
nitudes of the geometrical effects are in real reservoirs.

Six lithofacies models from a reservoir at a scale which extends from
20 to 60 cm horizontally from 10 to 30 cm vertically are considered.
These models are shown in figure 24 and with data given in table 3.

Model Area Height Sand1 Sand2 Shale Cells
(cm2) (cm) (%) (%) (%)

1 1600 20 46.5 53.5 0 40847
2 400 30 49.7 47.9 2.4 149794
3 1600 14 31.46 66.88 1.66 234156
4 400 9.8 50.03 48.76 1.21 50033
5 3600 15 13.73 75.17 11.10 247972
6 1600 10 8.12 7.97 83.91 209280

Table 3: Properties of the lithofacies models in figure 24

In these models there are three different rock types, two sands and
one shale type. In absence of rock data that origin from laboratory
measurements or logs, synthetic data are used. These are data that
in a geophysicist opinion could occur in a reservoir. Since this is not
a field study of a special production field, it does not matter if the
data comes from measurements of the rock compositions that was
used to build the models, as long as the data are realistic enough
to imitate a real reservoir.
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(a) Model 1 (b) Model 2 (c) Model 3

(d) Model 4 (e) Model 5 (f) Model 6

Figure 24: 6 lithofacies models. Blue color indicates shale, while
the light and dark yellow indicates two different sand stones.

Often sands are very close to isotropy [8] and they are assumed
isotropic here. Shales are in general anisotropic to some degree and
determining the anisotropy of these has been a problem for many
years [6]. In lack of general elasticity data for the shale, this is fre-
quently assumed isotropic in applications. However, there is reason
to believe that micro scale heterogeneity in shale causes anisotropy
which may have impact on wave velocities. Here shale is assumed
TI symmetric. The rock properties chosen are grounded on statisti-
cal data on realistic rocks and are given by equations (33) and (35).
ρ denotes the densities given in g/cm3 while the elastic constants are
given in GPa (109 Pascal). Since the sands are isotropic they have
constant P velocities, constant and congruent S wave velocities and
hence the VP /VS ratio is constant. For Sand1 these are

VP1 = 2905.3m/s
VS1 = 1464.9m/s(

VP

VS

)
1

= 1.9833,
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for Sand2

VP2 = 3853.6m/s
VS2 = 2177.0m/s(

VP

VS

)
2

= 1.7701

and for Shale these vary with angle between propagation direction
and vertical axis (TI symmetry axis). Plots of the wave velocities and
VP /VS ratios for the three input rock types are shown in figures 25,
26 and 27. For anisotropic materials, the VP /VS ratio is defined by

VP
max(VS1

,VS2
) since it is the fastest S wave that is recorded in sonic

logs and laboratory measurements.

(a) Blue = VP , red = VS (b) VP /VS versus angle

Figure 25: Wave velocities as radius for different propagation direc-
tions in (a) and VP /VS ratio as a function of angle (b) for Sand1. As
one sees there is no angular dependence since the sand is assumed
isotropic.

For model 1, which only consists of sandstone, the resulting wave
velocities are shown in figure 28. In figure 28a one sees that the
wave velocities lie within the upper and lower bounds indicated by
the light blue and pink sectors. This should also be the case since
these bounds are valid, i.e. no approximation is done since there
are only isotropic components (only sands) in this model. The VP /VS

ratio shown in figure 28b is nearly a straight line which means
that the result is close to isotropic. The Eulidean distance to the
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(a) Blue = VP , red = VS. (b) VP /VS versus angle

Figure 26: Wave velocities as radius for different propagation di-
rections in (a) and VP /VS ratio as a function of angle (b) for Sand2.
The velocities are independent of angle since the elastic modulus is
isotropic.

isotropic projection is 2.52 · 10−2 and the velocities for the projection
are VP = 3.3547 km/s and VS = 1.8095 km/s. Since the results are
close to isotropic and the upper and lower bounds are not too sep-
arated, one could discuss whether it is necessary to do time and
computer consuming upscaling which take geometry into account,
or if a volume weighted average upscaling is good enough.

Model 2, 3 and 4 have more or less the same amount of clay, but
have very different geometries. Model 2 have few thick horizontal
shale layers with mixed sandstone in-between, model 3 have shale
drapes and model 4 has thin shale layers with wholes and sand in
between. From the upscaled results for these models shown in fig-
ure 29, 30 and 31, one sees that the velocities are very similar in
these models and also very similar to the velocities in model 1 which
have no shale at all. This indicates that for low shale contents, geo-
logical effects are not significant. This is an interesting phenomenon
since this is opposite of what is the case for permeability.

Model 5 has about ten times more shale than the previous discussed
models, but as seen from figure 32, the result is still very close
to isotropy. The Euclidean distance form isotropy is 0.0215. One
difference from the above models is that the (estimated) bounds are
now wider.
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(a) Blue = VP , green = VS2 , red = VS1 . (b) VP /VS versus angle

Figure 27: Wave velocities as radius for different propagation di-
rections in (a) and VP /VS ratio as a function of angle between prop-
agation direction and vertical axis (b) for the input shale. Since the
shale is assumed anisotropic, there are two S waves.

Figure 33 shows the upscaled results for model 6, which mainly
consists of shale. Here one sees a significant anisotropy. The rel-
ative Euclidean distance from isotropy for this model is 0.1081, i.e.
over 10%, while the same distance from TI symmetry is only 0.0131.
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(a) Wave velocities with upper and lower
bounds.

(b) VP /VS vs. dip angle.

Figure 28: Wave velocities (in km/s) corresponding to upscaled re-
sult for model 1 given in table 3. Figure (a) shows the three velocities
on top with the corresponding upper and lower bounds for these in
the background. Figure (b) is the VP /VS ratio versus dip angle (angle
between propagation direction and vertical axis).

(a) Wave velocities with upper and lower
bounds.

(b) VP /VS vs. dip angle.

Figure 29: Wave velocities (in km/s) corresponding to upscaled re-
sult for model 2 given in table 3. Figure (a) shows the three velocities
on top with the corresponding upper and lower bounds for these in
the background. Figure (b) is the VP /VS ratio versus dip angle (angle
between propagation direction and vertical axis).
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(a) Wave velocities with upper and lower
bounds.

(b) VP /VS vs. dip angle.

Figure 30: Wave velocities (in km/s) corresponding to upscaled re-
sult for model 3 given in table 3. Figure (a) shows the three velocities
on top with the corresponding upper and lower bounds for these in
the background. Figure (b) is the VP /VS ratio versus dip angle (angle
between propagation direction and vertical axis).

(a) Wave velocities with upper and lower
bounds.

(b) VP /VS vs. dip angle.

Figure 31: Wave velocities (in km/s) corresponding to upscaled re-
sult for model 4 given in table 3. Figure (a) shows the three velocities
on top with the corresponding upper and lower bounds for these in
the background. Figure (b) is the VP /VS ratio versus dip angle (angle
between propagation direction and vertical axis).
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(a) Wave velocities with upper and lower
bounds.

(b) VP /VS vs. dip angle.

Figure 32: Wave velocities (in km/s) corresponding to upscaled re-
sult for model 5 given in table 3. Figure (a) shows the three velocities
on top with the corresponding upper and lower bounds for these in
the background. Figure (b) is the VP /VS ratio versus dip angle (angle
between propagation direction and vertical axis).

(a) Wave velocities with upper and lower
bounds.

(b) VP /VS vs. dip angle.

Figure 33: Wave velocities (in km/s) corresponding to upscaled re-
sult for model 6 given in table 3. Figure (a) shows the three velocities
on top with the corresponding upper and lower bounds for these in
the background. Figure (b) is the VP /VS ratio versus dip angle (angle
between propagation direction and vertical axis).



Chapter 9

Upscaling from lithofacies
to channel infill facies

The previous computations have been on models with characteristic
lengths from 15 to 35 cm which represent small pieces of a reservoir.
Since the method is scale independent, it can also be used on facies
models that try to model geology at a larger scale. Here two such
models, channel infill facies, are considered and these are shown
in figures 34 and 35. Model 34 is an idealized model of a river,
while model 35 is more realistic and imitates several rivers that
have existed at different times. The cells in these models are at the
same scale as the models in chapter 8, thus input in the models
here could have origined from a lamina to lithofacies upscaling.

(a) Horizontal cut (b) 3D model

Figure 34: Model 1 which models a river channel. The colors rep-
resent different rock types, the blue background color representing
“background” shale.

Here, the elasticity and density data for each rock type origin from
sonic logs and they are all assumed isotropic (also the “background”
shale due to lack of enough data to estimate the anisotropy). There
are 7 different rock types in addition to the “background” shale and
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(a) Horizontal cut (b) 3D model

Figure 35: Model 2. The colors represent the different rock types
where the blue represent “background” shale, i.e. shale that is not
part of, but surrounds, the actual reservoir.

the physical properties for these are given in table 4. Note that the
“background” shale is what lies around the structures that defines
the actual reservoir and must not be confused with shale and clay
deposits in for example the models in figure 24. The upscaled result

Rock type Bulk moduli, K Shear moduli, µ Density, ρ
(GPa) (GPa) (g/cm3)

1 13.96 5.73 2.42
2 18.57 6.38 2.40
3 11.00 8.67 2.42
4 19.97 9.19 2.44
5 16.54 7.61 2.41
6 11.24 6.21 2.29
7 11.97 6.59 2.30
8 13.39 6.16 2.42

Table 4: Elasticity and density data for the different rock types in
the two facies models in figures 34 and 35. Rock type 1 is the
“background” shale.

for the first model is shown in figure 36. The VP /VS ratio as function
of angle is very close to constant which means that the upscaled
result is very close to isotropy, again confirmed by the isotropic
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projection and the distance from this to the original tensor,

‖C− Ciso‖F

‖C‖F
= 0.0020.

(a) Wave velocities with upper and lower
bounds.

(b) VP /VS vs. dip angle.

Figure 36: Wave velocities with upper and lower bounds in (a) and
VP /VS as function of angle in (b) for the model in figure 34. As one
sees, by for example comparing with figure 11b, the bounds are so
close that they are almost invisible.

From the velocities with the corresponding bounds in figure 36a one
also sees that the Voigt and Reuss bounds are very close together,
indicating that volume weighted upscaling is sufficient and geologi-
cal modelling of elastic properties is unnecessary in this case. Since
all rock types are assumed isotropic, the bounds are exact in this
case (see section 3.1.1). For the second model in figure 35, the re-
sulting velocities and VP /VS are shown in figure 37. Here the VP /VS

has slightly more variation than for the first model, but still very
close to constant. The Voigt and Reuss bounds are a little, but
almost invisibly, more separated than for the other model. The dis-
crepancy that this represent in for example VP velocity is

VPVoigt − VPReuss = 0.0361 km/sec

which in most practical applications will be much smaller than the
uncertainty in for example seismic data.
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(a) Wave velocities with upper and lower
bounds.

(b) VP /VS vs. dip angle.

Figure 37: Wave velocities with upper and lower bounds in (a) and
VP /VS as funciton of angle in (b) for the model in figure 35.

The models considered here are made for fluid flow simulations and
from the elasticity results obtained here one may question whether
modelling as fine as this is necessary for elasticity. From the in-
put data, which origin from sonic logs and are given in table 4,
one sees that the contrasts between the different rock types are
very small. In addition the background shale is modelled isotropic
which is probably incorrect. By getting input to these models from
lamina to lithofacies upscalings instead, one may capture the litho-
facies scale anisotropy and maybe also get larger contrasts between
the different rocks. From the previous chapters, there is reason to
believe that the cell level anisotropy will have the most significant
impact of these two.



Chapter 10

Elasticity upscaling in 4D
seismic

In order to model seismic velocities as function on fluid saturations,
one should preferably start at the smallest scale on which geological
features have effects. A future goal in reservoir simulation could
then be a “bottom-up” approach where one has information about
elasticity as function of fluid saturations at the smallest scale at
which modelling currently seems possible and then upscale this
information up to seismic resolution scale. Further, the upscaled
elasticity as function of fluid saturations could be used to compute
wave velocities as function of fluid saturations and compare these
to seismic data in order to determine the amount of hydrocarbon
reserves.

Since all the data needed to do this are not currently available, one
step in this procedure, going from lamina to lithofacies scale, is
demonstrated here for two phases, water and oil. The input elastic
parameters at lamina scale are therefore synthetic but one could
pretend that these origin from some upscaling or modelling tech-
nique from for example pore scale. The purpose of this chapter is
to test a possible workflow for one single step in a forward seismic
modelling procedure.

For each cell, the upscaling method only does not require informa-
tion about the fluid compound in the cell, only a stiffness tensor
which should represent the effective stiffness given all other phys-
ical conditions. If the model is populated with elasticity data for a
certain fluid compound, the result is valid under the same condi-
tions. Thus to upscale effective elasticity as function of fluid satura-
tions, one needs stiffness tensors as function of fluid saturation for
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each cell. One could for example have effective elastic parameters
as a function of fluid saturations directly, coming from a previous
upscaling step, or one could model the rock and the fluid filled pore
space separately and use a model that combines the properties of
these two to find the effective elasticity for the rock and fluid to-
gether. The latter is used to produce the input data used in this
case.

The rock is assumed to have certain elastic properties that are in-
dependent of fluid saturations. Kfr is the bulk modulus of the rock
structure when the pores are empty (or approximately air filled), Ks

is the bulk modulus of the solid rock, i.e. the bulk modulus the
rock structure would have if it had no pores, µfr is the shear mod-
ulus of the empty rock, φ is the porosity, i.e. the volume fraction of
the rock structure that is not solid rock and ρs is the density of the
solid rock.

The effective properties of the fluid varies with the proportion of the
different fluids. If the fluid consists of pure oil, the elastic properties
are equal to those of oil et.c. The effective bulk modulus of the fluid,
Kfl is dependent on at which scale the different fluids are mixed.
Under the infinite wave length assumption, the fluid can be seen as
completely mixed (no patchiness) and the effective modulus in this
case is given by the Reuss average [9]

Kfl =
1∑
i

Si
Ki

. (37)

where Ki and Si are the bulk modulus and saturation of fluid i.
Physically this denote that the fluids are in a suspension and each
fluid particle will experience the same stress. For relatively non-
viscous fluids, the shear modulus is zero as shear waves cannot
travel through such fluids. The effective density is trivial to compute
and is given by

ρfl =
∑

i

ρiSi (38)

where ρi is the density of fluid i.

Given the fluid saturations, the effective elastic moudlus of each cell
is computed by utilizing the Biot–Gassmanns relations,

Keff = Kfr +

(
1− Kfr

Ks

)2

φ
Kfl

+ 1−φ
Ks

− Kfr
K2

s

(39)

µeff = µfr.
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As one can see, the shear modulus is constant for all saturations,
i.e. not dependent on fluid saturations which is reasonable since
the fluids have zero shear modulus and do not contribute to make
the effective medium more torsion resistant.

Combining equations (39) and (37) yields the following relationship
between effective bulk modulus and water saturation, Sw,

Keff(Sw) = Kfr +

(
1− Kfr

Ks

)2

φ
(

Sw
Kw

+ 1−Sw
Ko

)
+ 1−φ

Ks
− Kfr

K2
s

(40)

where Kw and Ko are the bulk moduli for water and oil and these are
the only fluid phases present. Note that there exist more complex
relationships for effective bulk modulus as function of saturations.
Here however this relationship only serve as a function to generate
synthetic input and not as a model to describe the actual condi-
tions.

The fluid distributions in a reservoir are determined by several fac-
tors. In a steady-state situation, i.e. when the physical parameters
are not time dependent, there are a finite set of forces acting on
the fluids to keep the saturations constant. In many fluid simu-
lations models, such as the black-oil model, three such forces are
considered, capillary forces, gravitational forces and viscous forces.
The balance between these is sensible to scale and other reservoir
properties and different balances give rise to different steady-state
methods to determine the fluid distributions [1].

In this example a capillary equilibrium method is used, i.e. the cap-
illary forces are assumed to dominate the viscous and gravitational
forces. Now to find upscaled elasticity, one starts by choosing a
capillary pressure, pC , which is constant in all cells due to the cap-
illary equilibrium assumption. For each rock type, one needs a
relation between fluid saturations and pressure in order to deter-
mine the fluid saturations in each cell. This is obtained by providing
laboratory data for a Leverett J-function as function of water sat-
uration to each rock type. These lab data are for real rocks, but
used here only as example input data. The Leverett J-function is
a scaling of saturation-dependent capillary pressure. Now with the
saturations in each cell, the elastic parameters can be computed by
Biot–Gassmanns equations (39), (40). A more detailed description
of this procedure is presented in [5].

The upscaling as function of water saturation was done on the
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model shown in figure 24e with sand and shale properties

KfrSand
= 5.14 GPa KfrShale

= 10.0 GPa
KsSand

= 26.5 GPa KsShale
= 11.31 GPa

µfrSand
= 3.15 GPa µfrShale

= 2.3 GPa
φsand = 0.3 φShale = 0.05

where φ is the porosity. The elastic properties for the fluids are set
to

Kw = 2.25 GPa Ko = 1 GPa
µw = 0 GPa µo = 0 GPa

for water and oil. Note that the shear moduli are set to zero, which
is the valid for non viscous fluids. The densities of the different
materials in question are

ρs = 2.3 g/cm3

ρw = 1.0 g/cm3

ρo = 0.9 g/cm3

for the solid rock, water and oil respectively. Thus upscaled density
become

ρ̂ = φ(Swρw + (1− Sw)ρo) + (1− φ)ρs

where φ is the porosity and Sw is the water saturation.

(a) Keff(Sw) (b) (λ + 2µ)(Sw) (c) λ(Sw)

Figure 38: Elasticity as function of water saturation. The blue
graphs are for sand, while the red graphs are for shale. (a) is the
effective bulk modulus Keff while (b) and (c) are K + 4

3µ and K − 2
3µ,

i.e. the components corresponding to P wave modulus λ + 2µ and λ
in equation (12) on page 12.
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Effective input bulk modulus K as function of water saturation is
shown in figure 38a where the red graph corresponds to shale and
the blue graph corresponds to sand stone. Figure 38 also shows the
components corresponding to [Cii]

3
i=1 and [Cij ]

3
i,j=1
i6=j

in the stiffness

matrix for comparison with the upscaled result.

(a) C11 (b) C22 (c) C33

(d) C23 (e) C31 (f) C12

(g) C44 (h) C55 (i) C66

Figure 39: The coefficients of the elastic modulus with magni-
tude greater than 10−2 as function of water saturation. The com-
ponents are related to those in the isotropic elastic modulus in (12)
on page 12 where (a) to (c) corresponds to λ + 2µ, (d) to (f) corre-
sponds to λ and (d) to (f) corresponds to µ. The input values for
λ + 2µ and λ are shown in figure 38b and 38c. The variation in (g)
to (i) are probably due to numerical errors.

Figure 39 shows the elasticity tensor components that are larger
than 10−2 in magnitude, as function of water saturation. One can
see that the components which depend on the bulk modulus, shown
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in figures 39a to 39f, vary with water saturation, while those that
only dependent of shear modulus, shown in figures 39g to 39i,
are almost constant. Figures 39a to 39c represent λ + 2µ in (12)
on page 12 and the shape and magnitude of these are obviously
closer to those for sand stone than for shale in figure 38b. The
same yields for the off diagonals in the upper 3×3 part of the elastic
moduli which correspond to λ, i.e. the shape and magnitude of
the components in figures 39d to 39f are more similar to the sand
stone input than the shale input in figure 38c. For the components
corresponding to the shear modulus in figures 39g to 39i, it seems
like these vary with water saturation. However, the magnitudes
of these variations are smaller than the upscaling error found in
section 4.2 and they are therefore attributed to numerical errors.

The components of the effective elastic modulus as functions of wa-
ter saturation are a lot closer to the input for sand stone than to
the input for shale. This is reasonable since the model consists
of approximately 90% sand stone and 10% shale, moreover it shows
that fluid saturations have an significant impact on the upscaled re-
sult. It is reasonable to believe that if the input shear moduli were
also dependant on fluid saturations, the effective shear parameters
would also be fluid dependant.

(a) VP (b) VS1 (c) VS2

Figure 40: Velocities as function of water saturation for the model
in figure 24e. The blue graphs is for horizontal propagation while
the red corresponds to vertical propagation.

From equation (13), one sees that the velocities decrease for in-
creasing density and increase for increasing stiffness. Since the
shear modulus is independent of water saturation and the density
increases with water saturation, the S wave velocities should de-
crease with increased water amount. From figures 40b and 40c,
which show the S wave velocities in the horizontal direction (blue
graph) and vertical direction (red graph), one sees that this is cor-
rect. Note however that this is because the input shear moduli at
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cell scale are assumed independent of water saturation. This may
not always be the case.

(a) VP (b) VS1 (c) VS2

Figure 41: Velocities as function of water saturation for the model
in figure 24f. The blue graphs is for horizontal propagation while the
red corresponds to vertical propagation. In (c) the wave velocities
are approximately equal in the horizontal and vertical direction.

VP as function of water saturation, which is shown in figure 40a,
increase with water saturation. This means that the increase in
bulk modulus is stronger than the increase in density when the
pore space goes from oil filled to water filled.

The model has some kind of imperfect layering (see figure 24e)
which can be approximated by perfect layering (chapter 7). One
saw that for perfect layering, the velocity trends corresponded to
permeability (chapter 7) which is largest along the layers. Here one
sees that in all cases, the velocities are higher in the horizontal di-
rection, i.e. along the layers, than in the vertical (across the layers)
for all saturations.

Since the model considered here contains a lot more sand stone
than shale, the upscaling is also run on the model in figure 24f
which contain about 84% shale and 16% sand stone to see if the
saturation effects have an impact here. The rock data used is the
same as above. The effective velocities for this model in shown in
41 and as one can see that fluid saturation variations is much less
significant in this case. While the horizontal wave velocity for the
model in figure 24e spans from about 2.44 to 2.59 km/s, it spans from
2.57 to 2.60 km/s for model 24f.

In permeability upscaling, one can distinguish between single phase
effects and multiphase effects, i.e. one can see geometrical effects
on the anisotropy of the upscaled relative permeability which is not
visible on the single phase permeability [5]. For the P wave velocity
in figure 40a, one sees that the differences between horizontal and
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(a) VPHorizontal − VPVertical (b) VS1Horizontal
− VS1Vertical

(c) VS2Horizontal − V2SVertical

Figure 42: Differences between horizontal and vertical wave veloc-
ities.

vertical wave propagation seem to be constant as function of water
saturation. These differences, i.e. horizontal wave velocity minus
vertical wave velocity, are shown in figure 42. Because one knows
that the shear moduli are constant as functions of saturations in
this case and the magnitudes of the differences for the S waves are
very small, these are not investigated further here.

The difference between horizontal and vertical velocity for the P
wave is bigger than those for the S waves in magnitude and it
has, yet not monotonic, some similarities to relative permeability
as function of water saturation (see e.g. [5]). To see if this really is a
trend, difference in P wave velocity as function of water saturation
is computed for the geological models shown in figure 17. These are
shown in figure 43 and one sees that for all sand stone fractions, the
difference between horizontal and vertical P wave velocity, i.e. the
anisotropy, is decreasing for increasing water saturation. As one
can see on the input values in figure 38, shale is stiffer than the
sand stone for all water saturations. Since water is stiffer than oil,
the sand stone, which is the most porous rock and therefore most
sensitive to fluid saturation variations, gets stiffer with increased
water saturation and the contrast between the sand stone and shale
decrease. This contrast decrease results in a less anisotropic effec-
tive stiffness modulus, thus the anisotropy decrease as function of
water saturation.

In addition to the fluid saturation dependence, figure 43 also show
that the anisotropy is dependent on sand and shale fractions. Fig-
ure 44 shows the difference as function of sand fraction for water
saturation equal to 0.1, 0.5 and 0.9. As the plot shows, the rock
type fractions are more important than the saturation variations.
When analyzing figure 42, 43 and 44, one should keep in mind
that the magnitude of the velocity differences are small (for exam-



93

(a) 10% sand stone (b) 20% sand stone (c) 30% sand stone

(d) 40% sand stone (e) 50% sand stone (f) 60% sand stone

(g) 70% sand stone (h) 80% sand stone (i) 90% sand stone

Figure 43: Differences between horizontal and vertical P wave ve-
locity for the geological models in figure 17.

ple compared to the errors found in chapter 4) and may therefore
be strongly influenced by numerical errors. Therefore, these should
only be used to look for trends, not to extract numeric values.



94 CHAPTER 10. ELASTICITY UPSCALING IN 4D SEISMIC

Figure 44: Difference in horizontal and vertical P wave velocity
as function of sand fraction for water saturation equal to 0.1 (red
graph), 0.5 (blue graph) and 0.9 (black graph).



Chapter 11

Concluding remarks

The composition of the different rock types has an influence on the
effective elastic moduli, i.e. the results depend on the geometry of
the rock. Volume weighted averages, which constitute the upscal-
ing methods for elasticity today, do not account for these effects
as they do not incorporate all information about how the different
rock types are arranged relatively to each other. The geometrical
effects, which here represents different geological features, show
similar trends on elasticity as they do on permeability, but the mag-
nitude of the deflections from volume averaging are much smaller
for elasticity than for permeability upscaling. In some cases the
geometric effects are seemingly very small.

The contrast between the different rock types determine the mag-
nitude of the deflections one sees between simple volume averaging
methods and the general geometry upscaling method used here. As
elastic parameters are commonly used in seismics, it is natural to
evaluate the findings by comparing the results to what is visible in
seismics. A typical contrast seen in seismics, is between sandstones
and shales. For water saturated sandstones the P wave velocity can
be around ∼ 4 km/s, while for shale it can be ∼ 3.5 km/s, thus one
can expect that contrasts of ∼ 0.5 km/s are visible on seismics.

In chapter 7.1 the effective velocities differ up to ∼ 0.1 km/s between
three compositions with different geometries when all rock types are
assumed isotropic. When the shale in the same compositions was
assumed anisotropic, the velocity deviations between the estimated
bounds go up to ∼ 0.3 km/s. (In theory there exists a model with
the same volumetric amounts of rocks that reaches these bounds.
To obtain this geometry the different rock types may have to be re-
arranged and rotated.) These deviations are of the same order as
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the difference in wave velocity between sandstone and shale, thus
it is probable that the influence due to geometry is visible on seis-
mics. Also, these differences being of the same order as the velocity
contrast between sandstones and shales support the significance of
geometrical impact on the effective elasticity.

In the upscaling from lamina to lithofacies in chapter 8, where the
input parameters are based on actual measurements but chosen
deliberately with a fairly high contrast, the fluctuations from volume
averaging are of the same order as the velocity contrast between
sandstone and shale and thus has an impact on seismic. From
lithofacies scale to channel infill scale in chapter 9 however, where
the input comes from logs, the difference from volume averaging is
barely visible in the velocity plots. Even though this indicates that
geometry is not important for the effective elastic parameters at this
scale, one should notice that the models used here are built for fluid
flow simulations and dominated by background shale. Therefore
geometrical effects are not to be discounted at this scale despite of
the results shown here.

For the lithofacies scale the geometrical effects seem to be overshad-
owed by other effects for example effects due to modelling the rock
isotropic instead of anisotropic at cell scale. The input elasticity
data on cell level are very uncertain, especially on anisotropic rock
types. The upscaling result is highly dependent on the anisotropy
within each cell, i.e. the resulting anisotropy when the shale is as-
sumed anisotropic is completely different from when it is assumed
isotropic. This result should encourage more research on getting
accurate elastic input of the different rock types, both when it comes
to magnitude of the different parameters and on anisotropy.

The input rock types have here been assumed either isotropic or
transversely anisotropic with vertical symmetry axis and the results
in these two cases differ significantly. Other anisotropy symmetries
representing different rock types with varying orientations should
therefore be investigated as these may show other effects. A sce-
nario one could imagine is local compressions of the earth’s upper
crust causing originally horizontal layers to merge together and be-
come tilted. If these layers are for example transversely isotropic
with symmetry axis perpendicular to the layer, this would yield non
vertical symmetry axes with different orientations for each layer.
Thus geometry, which captures the orientation of each layer, would
perhaps have a profound effect in this case.

When upscaling elasticity for different fluid saturations in chap-
ter 10, it seems like the volumetric amounts of the different rock
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types play a more important role than the fluid saturations. How-
ever, given a specific model with a relatively large fraction of porous
rocks, the wave velocity has a significant dependence on fluid sat-
urations. To get a consistent bottom-up approach for use in 4D
seismic, one should start modelling elasticity (preferably as func-
tion of fluid saturations), at the smallest modelling scale and bring
these data up to seismic scale. Thus research and modelling at
pore scale, which is currently the smallest modelling scale in this
context, should be prioritized.

In all applications of the general geometry upscaling method, the
end user must carefully assess the uncertainties, and use this in-
formation when evaluating the upscaled results. Even though some
of the geometrical effects seen here is large enough to influence
seismic results, these seem to be small compared to the differences
when the elasticity is modelled differently at cell level. Geometry is
thus to be regarded as a second order effect.

Up until now, the tools available to upscale elastic moduli have been
methods which take only limited or no geological information into
consideration. Examples of such are Voigt, Reuss, Backus, Hashin–
Shtrikman and others. In the future, geology will be modelled finer
and finer, and an upscaling tool which also considers geology is a
must-have tool in workflows modelling rock physics in a bottom-up
approach. The value in the general geometry upscaling method lies
in being able to tell precisely when geology is important, and also
being able to handle anisotropic input.
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