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Abstract

In this master thesis we analyse medical ultrasound images using the wavelet
transform. Mathematical theory is introduced for both one-dimensional and
two-dimensional functions. Three edge detectors based on the mathematical
theory introduced are given. Two of the three edge detectors are suggested
by the author and one is an implementation of a known edge detector often
refered to as the Canny edge detector. Our implementation will di�er slightly
from the original Canny edge detector since in our implementation we use
the wavelet transform. All three edge detectors are applied on several images
and the result is discussed.

The multiscale behavior of the wavelet transform makes it usefull for edge
detection. For small scales it is sensitive to noise, but with good localisation
of edges. For large scales it is not as sensitive to noise, but with poorer
localisation. One problem when designing an edge detector is to �nd the
scale that have the best trade-o� between localisation and noise sensitivity.
We suggest an algorithm that automatic selects this scale using information
from the wavelet transform across larger scales. The result is an algorithm
that works satisfactorily for a set of images that di�ers in amount of noise
and contrast between objects in the image.

An edge detector for one-dimensional signals are given. This edge detector
works very well for locating singularities and characterising Lipschitz regu-
larity in one-dimensional signals. However, as an edge detector for images it
does not function satisfactorily.

Further investigation should be done on how to use the multiscale infor-
mation carried by the wavelet transform. The author are convinced that
better edge detectors that are less sensitive to noise with good localisation
properties can be derived using the wavelet transform across scales.
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Chapter 1

Introduction

The use of automatic edge detection is versatile and there are much litter-
ature about edge detectors. However, automatic edge detection is not an
easy task and often a speci�c problem needs a speci�c solution. An edge de-
tector simplify the analysis of images by reducing the amount of data to be
processed, while usefull structural information is preserved. For a landscape
photograph a di�erent edge detector should be used than if the image to be
analysed is an ultrasound image. Also for an ultrasound image di�erent edge
detectors should be used depending on what we are interested in �nding. For
example if we are looking for round objects maybe we should �nd an edge
detector that specializes on �nding round objects.

The main goal for this thesis is to use the wavelet transform for edge detection
in noisy ultrasound images. We look at three edge detectors using the wavelet
transform and see how well they perform on a set of images. Optimally we
want an edge dector that are able to outline the border between healthy
tissue and tumors based on ultrasound images. We have no foreknowledge
about the shape of the tumor, also the contrast between healthy tissue and
tumors may vary. Sometimes a tumor distinguish clearly from the healthy
tissue while other times it is very hard to see the tumor contour.

Ultrasound images are often used in situations where the surgeon cannot
observe the tumor directly. In such cases observations are performed using
ultrasound and the surgeon must make decisions based on ultrasound images.
For example when there are disturbing elements like blood or other tissue
preventing visual observations of the tumor itself an ultrasound image may be
used to locate the tumor. Ultrasound images tend to be very noisy and it can
be di�cult deciding what are tumor cells and what are not. Edge detectors
can help the surgeon making such descisions by outlining the important
structures in the ultrasound image.

1



2 CHAPTER 1. INTRODUCTION

Ultrasound does not a�ect the patient worth mentioning and it is realative
easily performed compared to other methods such as MR. However, ultra-
sound images are very noisy which makes it di�cult to seperate objects
in the image. Most of the noise is due to interference between echoes of
the sound waves sendt by the ultrasound probe, this is called speckle noise.
Also, the electronic instruments adds some noise to the image. Therefore
edge detection in ultrasound images are not an easy task.

In general the intensity changes in ultrasound images due to noise have a
shorter duration than the ones corresponding to important objects. One
might say that the noise are small structures in the image. The word struc-
ture has no precise meaning here, but it is to be understood intuitively. For
example we may have an image of a chessboard lying on top av a table in
which we would like to locate the chessboard. There will be high intensity
changes between each square on the chessboard as well as in the transition
between the chessboard and the table. In this case the chessboard is a larger
structure than the texture of the chessboard. The wavelet transform is a
multiscale transform and for large scales it is mainly sensitive to intensity
changes caused by large structures, while at smaller scales it is also sensitive
to intensity changes caused by smaller structures. This multiscale behavior
makes the wavelet transform usefull for edge detection.

This thesis has three main chapters: Chapter 2, Chapter 3 and Chapter 4.
Chapter 2 introduce the mathematical theory that will be the basis for the
�nal edge detectors described in Chapter 4. Lipshictz regularity is introduced
and related to edges. We see how Lipschitz regularity may be characterized
from the decay of the wavelet transform. Therefore, the wavelet transform
can be used both to locate edges and to characterize edges. We will look at
theory for both one-dimension and two-dimensions.

Chapter 3 is a survey of some articles concerning reconstruction of signals
from samples of the wavelet transform at local extremum positions. Also
we glance at how the wavelet transform may be used in an edge detection
similar to the one given by Canny[3].

In Chapter 4 we give a 1-D multiscale edge detector which both locate edges
and characterize Lipschitz regularity for 1-D signals. The 2-D single scale
edge detector inspired by the edge detector given by Canny is implemented.
One disadvantage with this edge detector is that a �xed set of input param-
eters will only �t a small class of images. Lastly we suggest a 2-D multiscale
edge detector such that a �xed set of input parameters will �t a bigger class
of images. All of the discussed edge detectors are tested on a set of images.
Thomas Langø and Sébastien Muller at SINTEF Helse have kindly supplied
us with both real ultrasound images and phantom images with simulated
noise.



Chapter 2

Matemathical approach

When designing an edge detection algorithm one should be familiar with
the theory one want to apply in the algorithm. In this report we will use
the wavelet transform for edge detection and therefore start by introducing
wavelets.

An image may be represented as a set of one-dimensional functions or as a
two-dimensional function. In the one-dimensional case each function corre-
spond to some stripe of the image while in the two-dimensional case one
function correspond to the whole image. Both representations have it's
advantages and disadvantages when it comes to edge detection. The one-
dimensional representation tend to have algorithms that are easier to im-
plement than in the two-dimensional case, but in general it gives poorer
detection. In the two-dimensional case one can combine image informa-
tion in both x-direction and y-direction when detecting edges. In the one-
dimensional case we only analyse one direction at a time. In Chapter 4 an
edge detector for each representation is given.

We start by introducing the wavelet transform in one-dimension so the num-
ber of parameters don't obscure the ideas. Then, in the next section, we
extend the theory into two-dimensions.

2.1 1-D analysis

2.1.1 Some notations

In this subsection we introduce some notations and de�nitions we will use
throughout this report.

3



4 CHAPTER 2. MATEMATHICAL APPROACH

For any function g(t) write

gs(t) =
1√
s
g(
−t
s

) and gu,s(t) = gs(u− t)

The parameter s dilates the function while u is a translation parameter. The
factor 1√

s
preserves the energy when dilating the function.

In this report a 1-D signal is any function from the space L2 (R) speci�ed in
De�nition 2.1.

De�nition 2.1. L2 (R) is the space of functions

f : R 7→ C

such that ∫ ∞

−∞
|f(t)|2dt <∞ (2.1)

with the inner product and norm

< f, g > =
∫ ∞

−∞
f(t)g(t)dt (2.2)

‖f‖ =
(∫ ∞

−∞
|f(t)|2dt

) 1
2

(2.3)

De�nition 2.2. The energy of a signal f is given by

E = ‖f‖2 =
∫ ∞

−∞
|f(t)|2dt (2.4)

2.1.2 The wavelet transform

A well known tool in signal processing is the Fourier transform which gives
global information about the frequency spectrum f̂ of a 1-D signal f .

De�nition 2.3. Let f ∈ L2 (R), then

f̂(ω) =
∫ ∞

−∞
f(t)e−2iπωtdt (2.5)

is called the Fourier transform of f .
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From now f̂ will always denote the Fouriere transform of f . We will use the
word frequency domain when we talk about f̂(ω) and time domain about
f(t)

In edge detection it is not enough to be able to say if an edge exists some-
where or not, we need to �nd the position of the edge as well. The wavelet
transform is a multiscale transform which is suitable for edge detection. In
this subsection we see that the wavelet transform contains localized infor-
mation of f in both time and frequency domain.

We de�ne a wavelet in terms of the admissibility condition (2.6):

De�nition 2.4. A wavelet is a function ψ (t) ∈ L2 (R) satisfying

0 <
∫ ∞

0

|ψ̂(ω)|2

ω
dω <∞ (2.6)

This de�nition ensures that dilation of ψ̂ will cover the whole frequency
domain and that f may be reconstructed from it's wavelet transform. These
assertions will be stated more precisely later in this subsection.

For continuous ψ̂ the admissibility condition implies that ψ̂(0) = 0.

ψ̂ (0) =
∫ ∞

−∞
ψ (t) dt = 0

So a wavelet has zero average and therefore must have some oscillations and
might be associated with a wave. We also want ψ and ψ̂ to be well localized,
i.e they should both converge to zero quite rapid, hence the word "wavelet".
It should be mentioned that Heisenberg's uncertainty principle A.2 gives a
lower bound on how well localized ψ and ψ̂ can be. Better localisation in
time will give worser localisation in frequency.

De�nition 2.5. A wavelet atom is a dilated and translated wavelet ψ de-
noted by

ψu,s (t) =
1√
s
ψ

(
t− u

s

)

The wavelet transform will be de�ned in terms of wavelet atoms and in
that context ψ is refered to as the mother wavelet. The factor 1√

s
is a

normalization factor such that a wavelet atom and it's mother wavelet has
the same energy.

‖ψu,s‖2
2 =

∫ ∞

−∞
|ψu,s (t) |2dt = ‖ψ‖2

2



6 CHAPTER 2. MATEMATHICAL APPROACH

The parameter u translates the wavelet by a distance u while the parameter
s dilates the wavelet proportional to s.

De�nition 2.6. Let f ∈ L2 (R) and {ψu,s}u,s∈R,s>0 be a family of wavelet
atoms, then the wavelet transform of f with respect to ψ is de�ned as

Wf(s, u) =< f, ψu,s >=
∫ ∞

−∞
f(t)

1√
s
ψ

(
t− u

s

)
dt (2.7)

The wavelet transform of f is the inner product between a dilated and shifted
mother wavelet ψ and f . Let us take a closer look at what the parameters
u and s mean for Wf(u, s), but �rst we remember Parseval's equality.

Parseval's equality 2.1. If f, g ∈ L2 (R) then∫ ∞

−∞
f (t) g (t)dt =

∫ ∞

−∞
f̂ (ω) ĝ (ω)dω

Using Parseval's equality we get

Wf(u, s) =
∫ ∞

−∞
f̂ (ω) ψ̂u,s (ω)dω

If for some (u, s) ψu,s(t) is neglectible for all t 6∈ (a, b) thenWf (u, s) contains
information about f (t) only when t ∈ (a, b). The behavior of f (t) outside
the intervall does not a�ect Wf (u, s).

Also, if for some (u, s) ψ̂u,s (ω) is neglectible for all ω 6∈ (η, ξ) then Wf (u, s)
contains information about f̂ (ω) only when ω ∈ (η, ξ). The behavior of
f̂ (ω) outside the intervall does not a�ect Wf (u, s).

We would like Wf to contain information about f(t) for all t and f̂(ω) for
all ω. It is clear that {ψu,s}u∈R covers the whole time domain. As promised

earlier in this subsection we now show that {ψ̂u,s}s∈R+ covers the whole fre-
quency domain. First we notice the following properties:

Property 2.2. Let f ∈ L2 (R) then

(i) f̂s(ω) = −
√
sf̂(−sω)

(ii) f̂u,s(ω) =
√
se−2iπuωf̂(sω)
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Proof.

f̂u,s(ω) =

∫ ∞

−∞

1√
s
f(
x− u

s
)e−2iπxωdx (2.8)

=

∫ ∞

−∞

1√
s
f(τ)e−2iπsωτe−2iπωusdτ (2.9)

=
√
se−2iπuω f̂(sω) (2.10)

The other statement is proved using the same procedure.

From Property 2.2 we know |ψ̂u,s(ω)| = |
√
sψ̂(sω)|. If the frequency domain

is covered by dilations of ψ̂ then for each ω ∈ R there must exist some s > 0
such that |ψ̂(sω)| > 0. This can be formulated as follows. For each ω ∈ R
we have

0 <
∫ ∞

0

|ψ(sω)|2

s
ds <∞ (2.11)

Using substitution τ = sω this is exactly the same as the admissibillity
condition (2.6) and therefore satis�ed by every wavelet.

So now we know thatWf contains information about f from the whole time
domain and frequency domain. Actually, since dilation and translation are
done continuously it might be that Wf contains too much information. In
the next chapter we look into some algorithms reconstructing an approxi-
mation of f using only the value of Wf at extremum points or zero crossing
positions.

We notice that in the frequency-domain the parameter s dilates the mother
wavelet proportional to s and in the time-domain proportional to s−1. This
means that if we decrease s then we get a better localization in time, but a
worser localization in frequency. It is this property which makes the wavelet
transform usefull for multiscale edge detection. For large s the transform is
not very sensitive to noise, on the other hand the detected edge might be
far away from the real edge. By using information for several values of s we
might better detect edges in noisy images.

Let us look at another property of the wavelet transform.

De�nition 2.7. f ∈ L2 (R) is said to have n vanishing moments if∫ ∞

−∞
tkf(t)dt = 0 for k = 0, . . . , n− 1

If a wavelet ψ has (n + 1) vanishing moments the corresponding wavelet
transform is zero for any polynomial of degree n. In the next subsection we
see that this property makes it possible to characterize the regularity of f .
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It is time to introduce the reconstruction formula. Theorem 2.3 states that
any f ∈ L2 (R) can be reconstructed fromWf and thatWf preserves energy.

Theorem 2.3. Let ψ ∈ L2 (R) be such that

Cψ =
∫ ∞

0

|ψ̂(ω)|2

ω
dω <∞ (2.12)

Then, for each f ∈ L2 (R)

f(t) =
1
Cψ

∫ ∞

0

∫ ∞

−∞
Wf(u, s)

1√
s
ψ

(
t− u

s

)
du
ds

s2

and

‖f‖2 =
1
Cψ

∫ ∞

0

∫ ∞

−∞
|Wf(u, s)|2duds

s2
(2.13)

[6, p. 81]

De�nition 2.8. A smoothing function is any function θ(t) ≥ 0 whose inte-
gral is equal to one and that converges to zero at in�nity.

De�nition 2.9. A function θ is said to have fast decay if

lim
t→±∞

|t|kθ(t) → 0 for each k ∈ N

Theorem 2.4. A wavelet ψ with fast decay has n vanishing moments if and
only if there exists a θ with a fast decay such that

ψ(t) = (−1)n
dnθ (t)
dtn

(2.14)

[6, p. 167]

We end this subsection with an example of two wavelets ψ1 and ψ2 having
1 and 2 vanishing moments respectively. In chapter 4 ψ1 is used in an one-
dimensional edge detection algorithm.

Example 2.1. De�ne ψ1 and ψ2 as the �rst- and second-order derivative of
the normalized Gaussian function θ.

θ(t) =
1√
π
e−t

2

ψ1(t) = (−1)
d

dt
θ(t) =

2√
π
te−t

2

ψ2(t) =
d2

dt2
θ(t) =

2√
π
e−t

2
(t2 − 1)
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Since θ is a smoothing function with fast decay then from Theorem 2.4 we
know that ψ1 and ψ2 has 1 and 2 vanishing moments respectively. Let us
evaluate ψ̂1 and ψ̂2. Since θ is a Gaussian function then θ̂ is also Gaussian.

θ̂(ω) = e−π
2ω2

(2.15)

For the interested reader an evaluation of (2.15) is given in [2, p. 159].
Using Proposition A.4 we get

ψ̂1(ω) = ̂(−1)θ(1)(ω) = −2iπωe−π
2ω2

ψ̂2(ω) = θ̂(2)(ω) = −4π2ω2e−π
2ω2

Figure 2.1 shows θ, ψ1 and ψ2 togheter with their Fourier transforms.

Let us verify that ψ1 and ψ2 ful�l (2.6) and thus are wavelets.∫ ∞

0

|ψ̂1(ω)|2

ω
dω =

∫ ∞

0
4π2ωe−2π2ω2

dω

= lim
a→∞

[
− e−2π2ω2]a

0

= lim
a→∞

(
−e−2π2a2 − (−e0)

)
= 1

Using substitution τ = ω2 and integration by parts we verify ψ2.∫ ∞

0

|ψ̂2(ω)|2

ω
dω =

∫ ∞

0
16π4ω3e−2π2ω2

dω

=
∫ ∞

0
8π4τe−2π2τdτ

= lim
a→∞

[
− 4π2τe−2π2τ

]a
0

+
∫ ∞

0
4π2e−2π2τdτ

= 0 + lim
a→∞

[
− 2e−2π2τ

]a
0

= 2

So by De�nition 2.4 ψ1 and ψ2 are wavelets.

From Figure 2.1(d) and (f) we see that ψ̂1 and ψ̂2 attenuate frequencies
outside some intervalls (a, b) and (c, d) of the frequency domain. The Fourier
transform of two wavelet atoms ψ2s1,u and ψ2s2,u is plotted in Figure 2.2 for
scales s1 = 0.8 and s2 = 1 in colors green and red respectively. The size of
the intervalls (a, b) and (c, d) depends on s. As s increases the intervalls gets
more compact and closer to zero. As s decreases the intervalls get bigger and
cover more of the frequency domain. This means that for large s the wavelet
transform get contribution from f at low frequencies and for small s at high
frequencies. It should be mentioned that by high/low frequencies we mean
large/small value of ω in the Fourier transform.
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Next we see how the wavelet transform acts as an di�erential operator on the
smoothed signal. Use τ = t−u

s

Wf(u, s) =
∫ ∞

−∞
f(t)

1√
s

(−1)n
dn

dτn
θ (τ) dt (2.16)

dn

dτn
θ (τ) =

dn

dun
θ (τ)

(
du

dτ

)n

= (−1)n sn
dn

dun
θ (τ) (2.17)

Substitute the right hand side of equation (2.17) into (2.16):

Wf (u, s) =
∫ ∞

−∞
f(t)(−1)nsn−

1
2
dn

dun
θ

(
t− u

s

)
dt

= sn−
1
2
dn

dun

∫ ∞

−∞
f(t)θs(u− t)dt

So, we can write the wavelet transform as the derivative of the convolution
with the smoothing function.

Wf(u, s) = sn−
1
2
dn

dun
(f ? θs)(u) (2.18)

Thus, depending on which wavelet we use Wf is proportional to the �rst-
order or second-order derivative of (f ? θs).
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(a) θ(t) = 1√
π
e−t2 (b) |θ̂(ω)|

(c) ψ1 = 2√
π
te−t2 (d) |ψ̂1(ω)|

(e) ψ2 = 2√
π
e−t2(t2 − 1) (f) |ψ̂2(ω)|

Figure 2.1: Smoothing function θ with corresponding wavelets togheter with
their Fourier transforms.

Figure 2.2: The Fourier transform of two wavelet atoms; ψ2s1,u and ψ2s2,u ,
for scales s1 = 0.8 and s2 = 1 plotted with colors green and red respectively.
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2.1.3 Lipschitz regularity

In this subsection we introduce Lipschitz regularity and see why it makes
sense to use Lipschitz regularity as a measure of local regularity of functions.

The regularity of a function f re�ects how smooth f is. If f(t) has many
derivatives, then it is a smooth signal. Let f ∈ Cn(R) then the larger n the
smoother we say f is. If f is discontinuous at t0 then it's derivative at t0
does not exist. This discontinuous appears as large frequency components
in f̂ . The regularity α of f is related to the decay of f̂(ω) and given as the
largest α such that ∫ ∞

−∞
|f̂(ω)|(1 + |ω|α)dω <∞ (2.19)

If (2.19) holds for some n ≤ α < n + 1 then f̂(ω), (2iπω)nf̂(ω) ∈ L1(R)
which means that their inverse Fourier transform exists in L1(R). Assuming
f ∈ Cn(R) ∩ L1(R) and all the derivatives f (k), k = 1, . . . , n are in L1(R)
then from Proposition A.4 we know that f̂ (n)(ω) = (2iπω)nf̂(ω). Thus if
α = n in (2.19) we know that f is n times continuously di�erentiable. We
say that (2.19) gives a global regularity condition over the whole real line,
but one can not determine wether the f is locally more regular at a point t0
from this condition. The Fourier transform is not well adapted to measure
local regularity of functions.

As discussed earlier Wf(u, s) is a multiscale transform and for smaller s

|ψ̂u,s(ω)| 6= 0 for larger ω. In addition, for smaller s ψ(t) gets a better local-
ization in time domain. Thus, one might wonder if the decay of |Wf(u, s)|
as s decrease can be used to measure local regularity of f . This is the case
and later we see how local regularity of f can be measured from the decay
of |Wf(u, s)| through s.

To get a precise de�nition of what we mean by regularity of functions we
introduce Lipschitz regularity.

De�nition 2.10. Let n ≥ 0 be an integer α > 0 and n ≤ α < n + 1. A
signal f(t) is said to be Lipschitz α at the point t0 if there exists a constant
C > 0 and a polynomial Pt0(t) =

∑n
k=0 ak(t− t0)k of degree n such that for

all t in a neigbourhood of t0

|f(t)− Pt0(t)| ≤ C|t− t0|α (2.20)

De�nition 2.11. A signal f(t) is uniformly Lipschitz α over (a, b) if it is
Lipschitz α at the point t0 for every t0 ∈ (a, b) and the constant in (2.20)
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may be chosen independent of t0.

De�nition 2.12. The Lipschitz regularity of f(t) at t0 (or over (a, b)) is the
supremum of all α such that f(t) is Lipschitz α at t0 (or over (a, b)).

One can prove that if f is Lipshictz α over R then (2.19) is satis�ed. Later
in this subsection we relate the Lipschitz regularity of f at t0 to the number
of derivatives of f at t0.

De�nition 2.13. A signal f is said to be singular at a point t0 if there
exists an integer n > 0 and ε > 0 such that f is Lipschitz n at t whenever
t ∈ {t0 − ε, t0 + ε}\{t0} and f is not Lipschitz n at t0.

If f(t) is Lipschitz α0 at t0 then it is also Lipschitz α at t0 for all α < α0.

Let us try to be more intuitive on what it means when a function is Lipschitz
α. Assume f is singular at t0 with 0 < α < 1. then there exists a polynomial
of degree zero, Pt0(t) ≡ Ct0 , such that for some h > 0 we have

|f(t)− Ct0 | ≤ C1|t− t0|α, whenever t ∈ (t0 − h, t0 + h) (2.21)

Using a new variable τ = t− t0 and de�ning g(τ) = f(τ + t0)− Ct0 we get

|g(τ)| ≤ C1|τ |α whenever τ ∈ (−h, h) (2.22)

As we can se in Figure 2.3 |τ |α is changing very fast near zero when α is
small. Thus f(t) may change very fast near t0 when α is small.

Let us see what it means when f is Lipscithz α for α > 1. First assume
there exists a h > 0 such that f(t) has exactly n + 1 derivatives for all
t ∈ (t0 − h, t0 + h). Then we can write the Taylor polynomial of degree n
for f(t) about t = t0.

Pt0(t) =
n∑
k=0

f (k)(t0)
k!

(t− t0)k

Taylor's formula gives an error estimate [5]

|f(t)− Pt0(t)| ≤
supu∈(t0−h,t0+h) |f (n+1)(u)|

(n+ 1)!
|t− t0|n+1

= Ct0,n|t− t0|n+1,∀t ∈ (t0 − h, t0 + h)

So the function f(t) is at least Lipschitz n+ 1 at t = t0.

It can be helpful to relate Lipschitz regularity to the number of derivatives.
In general Lipschitz regularity tells us how many derivatives a function has
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Figure 2.3: f(τ) = ±|τ |α when τ is near zero

at t0 and what type of singular point the last derivative has at t0. Denote
by [α] the nearest integer of α rounded down and {α} = α − [α]. Then if
f(t) is Lipschitz α at t0 then f(t) has [α] derivatives at t0 and f ([α])(t) is
Lipschitz {α} at t0.

2.1.4 The wavelet transform and Lipschitz regularity

Now we will see how the decay of the wavelet transform modulus through
scales is related to the local regularity of the signal being transformed. With
some conditions on the wavelet both the uniform Lipschitz regularity and
the Lipschitz regularity at a point can be revealed.

Assuming ψ has n vanishing moments and n derivatives having fast decay
the following theorem relates the decay of the wavelet transform modulus to
the Lipschitz regularity at a point.

Theorem 2.5. If f ∈ L2 (R) is Lipschitz α ≤ n at u0, then there exists a
constant A such that for every (u, s) ∈ R× R+

|Wf(u, s)| ≤ Asα+ 1
2

(
1 +

∣∣∣∣u− u0

s

∣∣∣∣α)
(2.23)

Conversly, if α < n is not an integer and there exists a constant A and
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α
′
< α such that for every (u, s) ∈ R× R+

|Wf(u, s)| ≤ Asα+ 1
2

1 +
∣∣∣∣u− u0

s

∣∣∣∣α
′ (2.24)

then f is Lipschitz α at u0.
[6, p. 171]

Assuming f is uniformly Lipschitz α on [a, b] the term
∣∣u−u0

s

∣∣α in theorem 2.5
is zero for every u ∈ (a, b). This is true because for every u ∈ [a, b] we can
choose u0 = u. The next theorem states the same as theorem 2.5 on an
intervall [a, b] instead of a point u0.

Theorem 2.6. If f ∈ L2 (R) is uniformly Lipschitz α ≤ n over [a, b], then
there exists A > 0 such that

|Wf(u, s)| ≤ Asα+ 1
2 ,∀(u, s) ∈ [a, b]× R+ (2.25)

Conversly, suppose that f is bounded and that Wf(u,s) satis�es (2.25) for an
α < n that is not an integer. Then f is uniformly Lipschitz α on (a′, b′)
whenever a′ < a and b′ < b.
[6, p. 169]

If f is Lipschitz α at u0 then by Theorem 2.5 we know

log |Wf(s, u0)| ≤ logA+ (α+
1
2
) log s (2.26)

Conversly, if inequality (2.26) is satis�ed then f is Lipschitz α at u0.

De�nition 2.14. The cone of in�uence of u0 is every point (u, s) in the
scale-space plane such that |u− u0| ≤ s.

Let f be Lipschitz α ≤ n at u0 where n > 0 is an integer. Then (2.23) states

that |Wf(u, s)| = O(sα+ 1
2 ) inside the cone of in�uence of u0. Conversly if

|Wf(u, s)| = O(sα+ 1
2 ) inside the cone of in�uence of u0 then (2.24) states

that f is Lipschitz α < n at u0.

The decay of the wavelet transform inside the cone of in�uence of u char-
acterize the Lipschitz regularity of f at u. If for some s0 > 0 |Wf(·, s)|
has one local maximum point inside the cone of in�uence for s0 > s > 0
then the decay of |Wf(u, s)| inside the cone of in�uence is bounded above
by the decay of |Wf(u1(s), s)| where u1(s) is the local maximum point at
scale s. The curve (u1(s), s) in the scale-space plane is called a maximum
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line. The Lipschitz regularity α of f at t0 can be measured from the decay
of |Wf(u, s)| along the maximum line inside the cone of in�uence of t0.

Theorem 2.7. Let n be a positive integer. Let ψ(t) be a wavelet with compact
support, n vanishing moments and be n times continuously di�erentiable. Let
f(t) ∈ L1 ([a, b]).

• If there exists a scale s0 > 0 such that for all scales s < s0 and u ∈ [a, b],
Wf(s, u) has no modulus maximum points, then for every α < n, f(t)
is uniformly Lipschitz α on (a, b)

[8, section 4]

Theorem 2.7 reassures us that if a function is singular at t0 with α < n then
every neighbourhood of t0 contains at least one modulus maximum point
for small s. This is true because if there exist a neighbourhood of t0 not
containing a modulus maximum point for �ne scales, then Theorem 2.7 states
that it cannot contain any points where the function is Lipschitz α for a �xed
α < n. All singular points of f can be located by following the maximum
lines as the scale approach zero. However the theorem does not imply that
if there exists at least one modulus maximum in every neighbourhood of t0,
then f(t) is singular at t0, i.e a maximum line does not necessarily point
towards a singularity.

Using theory from this section singularities can be located and characterized
using the wavelet transform. All singularities are located by following the
maximum lines, then characterized by the decay of |Wf(u, s)| through scales.
Since |Wf(u0, s)| decays as sα+ 1

2 when f is Lipschitz α at u0 then α = a− 1
2

where a is the slope of log |Wf(u0, s)| versus log s.

2.1.5 Lipschitz regularity and edgepoints

We may say that the edges of an images are the set of points having sharp
intensity change. In images of physical objects the edges should consist of
curves and the points having sharp intensity change should line up accord-
ingly. In 1-D signals we de�ne edge points in terms of Lipschitz regularity.

De�nition 2.15. For f ∈ L2 (R) x0 is called an edge point of f if f is sin-
gular at x0 with 0 ≤ α ≤ 1.

Then every edge point of f can be located and characterized by analysing
the decay of the wavelet transform through scales.

Let us visualize some constructed edge points. Let the Lipschitz regularity
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of f at u0 be α. We plot f in an image plot letting f(t) correspond to the
brightness of the image at position t resulting in an image consisting of one
pixel row. Figure 2.4 depicts �ve such image plots for di�erent α. Each
image is drawn using tall but narrow pixels to better see the edges.

Figure 2.4: Edges in images that are Lipschitz α at u0.

Figure 2.4 shows that an edge point corresponding to a large α is less visible
than an edge corresponding to a small α. When α is small f gives a good
representation of a jump at u0 corresponding to a sharp edge in its image
plot.

In chapter 4 we give an edge detector which detectes edge points for each
row and column of an image by following maximalines and we calculate The
Lipschitz regularity for some edge points.

2.2 2-D analysis

2.2.1 De�nitions, notation and properties

In this section we introduce some notations and de�nitions that are used
later in this report.

For any 2-D function g(x, y) write

gs(x, y) =
1
s2
g(
−x
s
,
−y
s

) and gu,v,s(x, y) = gs(u− x, v − y)
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s is a scaling parameter which dilates the function. If we want di�erent
scaling parameter for each direction, then we write

g(sx,sy)(x, y) =
1

sxsy
g(
−x
sx
,
−y
sy

) and gu,v,(sx,sy)(x, y) = g(sx,sy)(u− x, v− y)

The factor 1
s2
and 1

sxsy
keeps the energy unchange when dilating the function.

The parameters u and v translates the function in the x- and y-direction
respectively.

Throughout the text when we talk about 2-D signals we will mean functions
from the space L2

(
R2

)
given by the following de�nition:

De�nition 2.16. L2
(
R2

)
is the space of functions

f : R2 7→ C

such that ∫ ∞

−∞

∫ ∞

−∞
|f(x, y)|2dxdy <∞

with the inner product and norm

< f, g >2 =
∫ ∞

−∞

∫ ∞

−∞
|f(x, y)g(x, y)|2dxdy

‖f‖2 =
(∫ ∞

−∞

∫ ∞

−∞
|f(x, y)|2dxdy

) 1
2

This space contains all 2-D functions with �nite energy. Any image can be
represented with a function from L2

(
R2

)
.

The 2-D Fourier transformation is given in De�nition 2.17.

De�nition 2.17. Let f ∈ L2
(
R2

)
. Then

f̂(ωx, ωy) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−2iπ(xωx+yωy)dxdy

is called the 2-D Fourier transform of f

De�nition 2.18. For f, g ∈ L2
(
R2

)
the convolution (f ? g) is given by

(f ? g)(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f(u, v)g(x− u, y − v)dudv
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Property 2.8.

(̂f ? g)(ωx, ωy) = f̂(ωx, ωy)ĝ(ωx, ωy) (2.27)

Proof.

(̂f ? g)(ωx, ωy) =

∫ ∞

−∞

∫ ∞

−∞

[∫ ∞

−∞

∫ ∞

−∞
f(u, v)g(x− u, y − v)dudv

]
e−2iπ(xωx+yωy)dxdy

(2.28)

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(u, v)g(τx, τy)e−2iπ((τx+u)ωx+(τy+v)ωy)dudvdτxdτy

(2.29)

=

∫ ∞

−∞

∫ ∞

−∞
f(u, v)e−2iπ(uωx+vωy)dudv

∫ ∞

−∞

∫ ∞

−∞
g(τx, τy)e−2iπ(τxωx+τyωy)dτxdτy

(2.30)

= f̂(ωx, ωy)ĝ(ωx, ωy) (2.31)

Property 2.8 say that a convolution in the time-domain corresponds to a
product in the Fourier-domain.

Property 2.9. Let f(x, y) ∈ L2
(
R2

)
∩L1(R2) such that ∂nf(x,y)

∂xn , ∂
nf(x,y)
∂yn ∈

L1(R2) for n = 1, .., N . Then for each n = 1, ..N

(i) ∂̂nf
∂xn (ωx, ωy) = (2iπωx)nf̂(ωx, ωy)

(ii) ∂̂nf
∂yn (ωx, ωy) = (2iπωy)nf̂(ωx, ωy)

Property 2.10. Let f̂(ωx, ωy) ∈ L2
(
R2

)
∩L1(R2) such that ∂

nf̂(ωx,ωy)
∂ωn

x
,
∂nf̂(ωx,ωy)

∂ωn
y

∈
L1(R2) for n = 1, .., N . Then for each n = 1, ..N

(i) ∂nf̂
∂ωn

x
(ωx, ωy) = ̂[(−2iπx)nf ](ωx, ωy)

(ii) ∂nf̂
∂ωn

y
(ωx, ωy) = ̂[(−2iπy)nf ](ωx, ωy)

2.2.2 The wavelet transform

The 2-D wavelet transform use dilated and transleted 2-D wavelets. Since
a 2-D function may be dilated both in the x-direction and y-direction the
wavelet transform may be de�ned with two scaling parameters, one for each
direction. However for simplicity we de�ne it using one scaling parameter. In
Appendix A.4 we look at the wavelet transform using two scaling parameter.
In both cases a reconstruction formula is given.
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2-D wavelet transform with one scaling parameter

Here we de�ne the 2-D wavelet transform in terms of one scaling parameter.

De�nition 2.19. Let Ψ = {ψk}nk=1 be a set of functions ψ
k(x, y) ∈ L2

(
R2

)
∩

L1(R2). Ψ is called a 2-D wavelet if there exists a constant KΨ ∈ R such
that

0 < KΨ =
∫ ∞

0

n∑
k=1

|ψ̂k(sωx, sωy)|2

s
ds <∞ (2.32)

In this case (2.32) are called the 2-D admissibillity condition. A 2-D wavelet
is a set of functions such that their dilations by s togheter cover the Fourier
plane and translations by (ux, uy) cover R2. As in one-dimension we will see
that this de�nition of a 2-D wavelet give rise to a reconstruction formula.

De�nition 2.20. Let f(x, y) ∈ L2
(
R2

)
∩ L1(R2) and Ψ be a 2-D wavelet.

The 2-D wavelet tranform of f with respect to Ψ is the set of functions

Wf(u, v, s) = {W kf(u, v, s)}nk=1 (2.33)

with

W kf(u, v, s)}nk=1 =< f, ψku,v,s >

=
∫ ∞

−∞

∫ ∞

−∞
f(x, y)

1
s2
ψk(

x− u

s
,
y − v

s
)dxdy (2.34)

The 2-D wavelet transform of f is a set of inner products between f and
ψku,v,s. Each ψ

k
u,v,s can be constructed to have some desired properties. In Ex-

ample 2.2 we look at a 2-D wavelet Ψ(x, y) = {ψ1(x, y), ψ2(x, y)} such that
W 1f(u, v, s) is sensitive to intensity changes in x-direction whileW 2f(u, v, s)
is sensive to intensity changes in y-direction. Those properties makes Ψ(x, y)
suited for edge detection.

Theorem 2.11 states Parseval's equality in two-dimensions.

Theorem 2.11. If f, g ∈ L2
(
R2

)
then∫ ∞

−∞

∫ ∞

−∞
f(x, y)g(x, y)dxdy =

∫ ∞

−∞

∫ ∞

−∞
f̂(ωx, ωy)ĝ(ωx, ωy)dωxdωy
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From now on we will use the more compact inner product notation < f, g >
instead of integral signs. Parseval in two-dimensions gives

Wf(u, v, s) = {< f̂, ψ̂ku,v,s >}nk=1

If for some (u, v, s) and open set D ψku,v,s(x, y), k = 1, . . . , n is neglectible for
all (x, y) /∈ D, thenWf(u, v, s) contains information about f(x, y) only when
(x, y) ∈ D. The behavior of f(x, y) outside D does not a�ect Wf(u, v, s).

Also, if for some (u, v, s) and open set B ψ̂ku,v,s(ωx, ωy), k = 1, . . . , n, is
neglectible for all (ωx, ωy) /∈ B, then Wf(u, v, s) contains information about

f̂(ωx, ωy) only when (ωx, ωy) ∈ B. The behavior of f̂(ωx, ωy) outside B does
not a�ect Wf(u, v, s).

Next we show that {ψ̂ku,v,s}s∈R+,k=1,...,n covers the Fourier plane. First we
notice the following properties:

Property 2.12. Let ψ(x, y) ∈ L2
(
R2

)
∩ L1(R2) then

(i) ψ̂u,v,s(ωx, ωy) = e−2iπ(uωx+vωy)ψ̂(sωx, sωy)

(ii) ψ̂s(ωx, ωy) = ψ̂(−sωx,−sωy)

(iii) ̂ψu,v,(sx,sy)(ωx, ωy) = e−2iπ(uωx+vωy)ψ̂(sxωx, syωy)

(iv) ψ̂(sx,sy)(ωx, ωy) = ψ̂(−sxωx,−syωy)

Proof.

ψ̂u,v,s(ωx, ωy) =

∫ ∞

−∞

∫ ∞

−∞

1

s2
ψ(
x− u

s
,
y − v

s
)e−2iπ(xωx+yωy)dxdy (2.35)

=

∫ ∞

−∞

∫ ∞

−∞

1

s2
ψ(τx, τy)e−2iπ(τx(sωx)+τy(sωy))s2e−2iπ(uωx+vωy)dτxdτy

(2.36)

= e−2iπ(uωx+vωy)ψ̂(sωx, sωy) (2.37)

The other statements are proved using the same procedure as above.

From Property 2.12 we know |ψ̂ku,v,s(ωx, ωy)| = |ψ̂k(sωx, sωy)|. If the Fourier
plane is covered by dilations then for each (ωx, ωy) there must exist k such

that |ψ̂k(sωx, sωy)| > 0. for some s > 0. Thus, from (2.32) any 2-D wavelet
covers the Fourier plane by dilations of s.

Proposition 2.13. Let f ∈ L2
(
R2

)
∩ L1(R2), Ψ be a 2-D wavelet and

Wf(u, v, s) be the 2-D wavelet transform of f with respect to Ψ. Then

f(x, y) =
1
KΨ

∫ ∞

0

n∑
k=1

∫ ∞

−∞

∫ ∞

−∞
W kf(u, v, s)ψku,v,s(x, y)dudv

ds

s
(2.38)
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with

KΨ =
∫ ∞

0

n∑
k=1

|ψ̂k(sωx, sωy)|2
ds

s
(2.39)

Proof. We start with the function

Jk(x, y, s) =

∫ ∞

−∞

∫ ∞

−∞
W kf(u, v, s)ψk

u,v,s(x, y)dudv (2.40)

Property 2.12 and Parseval gives

W kf(u, v, s) =< f, ψk
u,v,s > (2.41)

=< f̂, ψ̂k
u,v,s > (2.42)

=

∫ ∞

−∞

∫ ∞

−∞
f̂(ωx, ωy)e2iπ(uωx+vωy)ψ̂k(sωx, sωy)dωxdωy (2.43)

= F−1[f̂(ωx, ωy)ψ̂k(sωx, sωy)](u, v) (2.44)

The we can write (A.16) as

Jk(x, y, s) =

∫ ∞

−∞

∫ ∞

−∞
F−1[f̂(ωx, ωy)ψ̂k(sωx, sωy)](u, v)ψs(u− x, v − y)dudv (2.45)

=< F−1[f̂(ωx, ωy)ψ̂k(sωx, sωy)](u, v), ψs(u− x, v − y) > (2.46)

Using Parseval and Proposition 2.12 again we get

Jk(x, y, s) =< f̂(ωx, ωy)ψ̂k(sωx, sωy), e−2iπ(xωx+yωy)F−1[ψ(τx, τy)](sωx, sωy) > (2.47)

Assuming ψk(x, y) is real we get

Jk(x, y, s) =

∫ ∞

−∞

∫ ∞

−∞
f̂(ωx, ωy)e2iπ(xωx+yωy)|ψ̂k(sωx, sωy)|2dωxdωy (2.48)

De�ne the function

g(x, y) =

∫ ∞

0

n∑
k=1

Jk(x, y, s)
ds

s
(2.49)

By interchange of integration and sum we get

g(x, y) =

∫ ∞

−∞

∫ ∞

−∞
f̂(ωx, ωy)e2iπ(xωx+yωy)

∫ ∞

0

n∑
k=1

|ψ̂k(sωx, sωy)|2

s
dsdωxdωy (2.50)

=

∫ ∞

−∞

∫ ∞

−∞
f̂(ωx, ωy)e2iπ(xωx+yωy)KΨ(ωx, ωy)dωxdωy (2.51)

(2.52)

From De�nition 2.19 we know that KΨ(ωx, ωy) is constant. Then we get

f(x, y) =
1

KΨ
g(x, y)

The following proposition will be used in the next example.
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Proposition 2.14. For any function f, g ∈ L2
(
R2

)
such that g(x, y) =

∂nθ(x,y)
∂xn then < f, gu,v,s >= (−1)nsn ∂

n(f?θs)(u,v)
∂un

Proof. Let τx = x−u
s

and τy = y−v
s

then g(τx, τy) =
∂nθ(τx,τy)

∂τn
x

First we notice the

following

∂nθ(τx, τy)

∂un
= (

∂nτx

∂un
)n ∂

nθ(τx, τy)

∂τn
x

= (−1)n(
1

s
)n ∂

nθ(τx, τy)

∂τn
x

thus we can write
∂nθ(τx, τy)

∂τn
x

= (−1)nsn ∂
nθ(τx, τy)

∂un
(2.53)

Use (2.53) in the inner product

< f, gu,v,s > =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)

1

s2
g(
x− u

s
,
y − v

s
)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
f(x, y)

1

s2
∂nθ(τx, τy)

∂τn
x

dxdy

= (−1)nsn

∫ ∞

−∞

∫ ∞

−∞
f(x, y)

1

s2
∂nθ(τx, τy)

∂un
dxdy

= (−1)nsn
∂n

(∫∞
−∞

∫∞
−∞ f(x, y)θs(u− x, v − y)dxdy

)
∂un

= (−1)nsn ∂
n(f ? θs)(u, v)

∂un

Example 2.2. Let us look at a 2-D wavelet we will use later. We de�ne the
2-D wavelet Ψ = {ψ1, ψ2} to be the partial derivatives of the normalized 2-D
Gaussian θ(x, y) = 1

πe
−(x2+y2)

ψ1(x, y) =
∂θ(x, y)
∂x

ψ2(x, y) =
∂θ(x, y)
∂y

In Figure 2.5 ψ1, ψ2 and θ are plotted.

To verify that Ψ is a 2-D wavelet we calculate KΨ. First we calculate the
Fourier transform of θ(x, y) and then use Property 2.10 to get the Fourier
tranform of ψ1 and ψ1.

θ̂(ωx, ωy) =
∫ ∞

−∞

∫ ∞

−∞

1
π
e−(x2+2iπωxx)e−(y2+2iπωyy)dxdy (2.54)

=
1
π

∫ ∞

−∞
e−(x2+2iπωxx)

[∫ ∞

−∞
e−(y2+2iπωyy)dy

]
dx (2.55)

=
1
π

√
πe−(πωx)2√πe−(πωy)2 (2.56)

= e−(πωx)2−(πωy)2 (2.57)
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By Property 2.10 we get

ψ̂1(ωx, ωy) = (2iπωx)e−(πωx)2−(πωy)2

ψ̂2(ωx, ωy) = (2iπωy)e−(πωx)2−(πωy)2

KΨ =
∫ ∞

0

2∑
k=1

|ψ̂k(sωx, sωy)|2

s
ds

=
∫ ∞

0

2∑
k=1

ψ̂k(sωx, sωy)ψ̂k(sωx, sωy)
s

ds

=
∫ ∞

0
4π2(ω2

x + ω2
y)s

2e−s
22π2(ω2

x+ω2
y)ds

=
[
−e−s2(4π2ω2

x+4π2ω2
y

]∞
0

= ( lim
s→∞

−e−s2(4π2ω2
x+4π2ω2

y)− (−1)

= 1

So Ψ is a 2-D wavelet and the reconstruction formula in Proposition 2.13 for
the single scale 2-D wavelet transform is valid.

From Proposition 2.14 we see that Wf(u, v, s) can be written as the gradient
vector of the convolution (f ? θs)(u, s).

Wf(u, v, s) =
(
W 1f(u, v, s)
W 2f(u, v, s)

)
=

(
−s ∂

∂u(f ? θs)(u, v)
−s ∂∂v (f ? θs)(u, v)

)
= −s∇(f ? θs)(u, v)

The 2-D wavelet transform is proportional to the partial derivatives of the
smoothed signal, and the parameter s dilates θ.

One di�erence between the 2-D and 1-D wavelet transform is that Wf(u, s)
has both magnitude |Wf(u, s)| and direction Af(u, v, s) = Arg{Wf(u, s)}
with 0 ≤ Af(u, v, s) < 2π. So, Af(u, v, s) gives the direction where the
smoothed signal changes the most.
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(a) θ(x, y) = 1
π
e−(x2+y2) (b) ψ1(x, y) = ∂θ(x,y)

∂x

(c) ψ2(x, y) = ∂θ(x,y)
∂y

Figure 2.5: θ, the normalized 2-D Gaussian, and it's corresponding mother
wavelets

2.2.3 Lipschitz regularity

In this section we introduce Lipschitz regularity in R2. We will se the con-
nection between Lipschitz regularity and edges.

De�nition 2.21. Lipschitz at a point Let 0 ≤ α ≤ 1. A function f(x, y) ∈
L2

(
R2

)
is said to be Lipschitz α at a point (x0, y0) if there exists a

K > 0 such that for all (x, y) ∈ R2

|f(x, y)− f(x0, y0)| ≤ K(|x− x0|2 + |y − y0|2)
α
2 (2.58)

[6]

Lipschitz over an open set A function is said to be Lipschitz α over an
open set D ∈ R2 if it is Lipschitz α at (x0, y0) for every (x0, y0) ∈ D.

Lipschitz regularity The Lipschitz regularity of f(x, y) at (x0, y0) (or over
an open set D) is the supremum of all α such that f(x, y) is Lipscithz
α at (x0, y0) (or over an open set D).
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Lipschitz regularity of f(x, y) at (x0, y0) is an estimate on how fast a function
change in a neigbourhood of (x0, y0). If f(x, y) is discontinuous at (x0, y0)
in the x-direction, but perfectly smooth in the y-direction then the Lipschitz
regularity of f at (x0, y0) is zero. One might say that the worst estimate is
used.

In one-dimension we saw how Lipschitz regularity was characterised by the
wavelet transform. It is possible to extend Theorem 2.5 to be valid also in
the two-dimensional case, i.e Lipschitz regularity for a function f ∈ L2

(
R2

)
may be characterised from the decay of the 2-D wavelet transform of f .
However, the proof will require much work and we will not use the result in
this report. Therefore we do not elaborate more on this subject.

2.2.4 Lipschitz regularity and edges

To show the connection between Lipschitz regularity and edges we construct
some edges corresponding to di�erent singular points. Let the Lipschitz
regularity of f at (u, v) be α for every (u, v) on the circle

√
u2 + v2 = r0.

We plot f in an image plot letting f(x, y) correspond to the brightness of
the image at position (x, y). Figure 2.6 depicts four such image plots for
di�erent α. The bottom half of the circle with radius r0 is drawn so the
reader more easily can see where the singular points are located.

Figure 2.6 shows that an edge corresponding to large α is less visible than an
edge corresponding to small α. When α is small f gives a good representation
of a jump at (u, v) corresponding to a sharp edge in its image plot.
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(a) α ∼ 0 (b) α = 0.3

(c) α = 0.7 (d) α ∼ 1

Figure 2.6: Images where all points on a circle are Lipschitz α. The bottom
half of the circle is marked red.
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Chapter 3

Survey

3.1 Introduction

This chapter is a survey of some articles concerning reconstruction of signals
from samples of the wavelet transform at local extremum positions. We also
see how the edge detector given by Canny in [3] might be expressed using
the wavelet transform.

The survey includes the following articles: [1, p. 83-94] [7] [4] [9].

3.2 Multiscale framework

3.2.1 Multiscale edge detection

Mallat and Zhong shows how the wavelet transform is a multiscale di�erential
operator.[7] For wavelets de�ned as the �rst and second order derivative of
a smoothing function θ(x) it is shown that the wavelet transform of f is the
�rst and second order derivative of (f ? θs)(u) respectively. The de�nition
for a smoothing function is given in De�nition 2.8.

W af(u, s) = −s d
dx

(f ? θs)(u) (3.1)

W bf(u, s) = s2
d2

dx2
(f ? θs)(u) (3.2)

The local extrema ofW af(u, s) correspond to the zero crossings ofW bf(u, s)
and to in�ection points of (f ? θs)(u).

29
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J. Canny derived a optimal detector optimizing a localization and detection
criteria. In 1-D the optimal detector have an approximate implementation
in which edges are marked at local maximum points of the �rst derivative of
a Gaussian convolved with f .[3] This particular case correspond to locating
maxima of W af(u, s) when θ(x) is Gaussian.

Detecting zero crossings of W bf(u, s) or extrema of W af(u, s) are similar
procedures, but the extrema approach have some advantages. With the ex-
trema approach we can distinguish between minima and maxima. In�ection
points of (f?θs)(u) corresponding to minima of |W af(u, s)| are slow variation
points, whereas the maxima correspond to sharp variation points. Thus we
select all sharp variation points by detecting maxima points of |W af(u, s)|.
Also, the values of |W af(u, s)| at each maxima characterize Lipschitz regu-
larity at the in�ection points. The zero crossing approach only gives position
information.

J. Canny gave a 2-D approach where the image I is convolved with a symmet-
ric 2-D Gaussian G and the zeros of the directional second order derivative
∂2

∂n2 (G ? I) is marked as edges. The direction is given by n = ∇(G?I)
|∇(G?I)| . A

similar approach is given in terms of wavelets by Mallat and Zhong [7]. They
de�ne two wavelets as the partial derivatives of a 2-D smoothing function.

ψ1(x, y) = −∂θ(x, y)
∂x

and ψ2(x, y) = −∂θ(x, y)
∂y

The 2-D wavelet transform has two components

W 1
s f(u, v) = (f ? ψ1

s)(u, v) and W
2
s f(u, v) = (f ? ψ2

s)(u, v)

One can show that

Wsf(u, v) =
(
W 1
s f(u, v)

W 2
s f(u, v)

)
=

(
−s ∂

∂u(f ? θs)(u, v)
−s ∂∂v (f ? θs)(u, v)

)
= s∇(f ? θs)(u, v)

All maxima points of |Wsf | in the direction which Wsf points are marked
as edges.

These two approches di�ers slightly. For each point (u, v) Wsf(u, v) gives a
weighted sum of the values at some neighbouring points from the image. For
the method given by J. Canny this sum will be a di�erence between local
averages on di�erent sides of the edge. For the latter method the sum will
also be a�ected by di�erences in other directions than normal to the edge.
The average parallell to the edge do not contribute to the localization of the
edge.
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3.2.2 Analysis of the multiscale information

As we have seen in Chapter 2 the evolution across scales of the wavelet trans-
form characterize the local Lipschitz regularity of the signal and Lipshictz
regularity were de�ned for functions. Mallat and Zhong extended Lipschitz
regularity to distribution by saying that a distribution has a uniform Lips-
chitz regularity equal to α on (a, b) if and only if its primitive has a uniform
Lipschitz regularity equal to α + 1 on (a, b). For example, Dirac's delta
function centered at t0 is uniformly Lipschitz −1 in a neigbourhood of t0
since it's primitive, a step edge, has uniformly Lipschitz regularity 0 in a
neighbourhood of t0.

It has been proved that if a signal is singular at a point t0, there exists a
sequence of wavelet transform modulus maxima that converge to t0 when the
scale decreases. Hence, we detect all the singularities from the positions of
the wavelet tranform modulus maxima. Moreover, the decay of the wavelet
transform is bounded by the decay of these modulus maxima, and we can
thus measure the local uniform Lipschitz regularity from this decay.

Smooth variation at t0 is modelled by a singularity smoothed with a Gaussian
of variance σ2. If the smoothing function is close to a Gaussian, then the
wavelet transform at the scale s of the smoothed singularity is equal to the
wavelet transform of the nonsmoothed singularity at the scale s0 =

√
s2 + σ2.

It is shown

|Wsf(x)| ≤ Ksα−1
0 with s0 =

√
s2 + σ2 (3.3)

If the signal is multiplied with a constant, then α0 and σ are not a�ected. If
the signal is smoothed by a Guassian, then α0 is not a�ected, but σ increases.

3.2.3 The dyadic wavelet transform

To allow fast numerical implementations, the scales are choosen only along
the dyadic sequence {2j}j∈Z.

De�nition 3.1. Let ψ(x) be a wavelet, f ∈ L2 (R) and Wf the sequence of
functions {W2jf(x)}j∈Z given by

W2jf(x) = (f ? ψ2j )(x) (3.4)

Then W is called the dyadic wavelet transform operator and Wf the the
dyadic wavelet transform of f .

Mallat and Zong proved that if the whole frequency axis is covered by dila-
tions; {2j}j∈Z, of ψ̂(ω) then the dyadic wavelet transform is complete and
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stable, i.e for any function f ∈ L2 (R) Wf characterize f uniquely and f
may be reconstructed from Wf . The reconstruction wavelet χ(x) is any
function whose Fourier transform satis�es

∞∑
j=−∞

ψ̂(2jω)χ̂(2jω) = 1 (3.5)

Denote by W−1 the operator de�ned by

W−1{gj(x)}j∈Z(u) =
∞∑

j=−∞
(gj ? χ2j )(u) (3.6)

Then W−1 recover the function f(x) from Wf

f(x) = W−1{W2jf}j∈Z =
∞∑

j=−∞
(W2jf ? χ2j )(x) (3.7)

3.2.4 discussion

The wavelet transform can be expressed as a di�erential operator and used
as an edge detector by locating it's local extrema or zero-crossings. Also
the dyadic wavelet transform is a complete and stable representation of any
function f ∈ L2 (R). In the next section we see how sampling of the dyadic
wavelet transform at local extremum points or zero-crossings can be used to
reconstruct an approximation of f .

3.3 Reconstruction from multiscale edges

Any function f ∈ L2 (R) can be reconstructed from it's dyadic wavelet trans-
form. However Wf contains "to much information" and one would like to
minimize the amount of information necessary to have a stable and complete
representation of f .

In [7, sec. 5] Mallat and Zhong introduce an algorithm to reconstruct
f ∈ L2 (R) from the extrema of Wf . More accurate, the algorithm re-
constructs an approximation of Wf from the modulus maxima of W2jf(x)
from each scale j via an alternate projection iteration procedure. Then
W−1 is used on the approximated dyadic wavelet transform to reconstruct
an approximation of f . An alternative algorithm reconstructing f directly is
given by Carmona in [1, Page 83]. Both algorithms are based on continuous-
time theory while implementation takes place in the discrete-time domain.
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With implementation in mind Cvetkovic and Vetterli; in [9], introduced two
reconstruction algorithms based on discrete-time theory. Their reconstruc-
tion algorithms use alternate projection iteration procedure in `2(Z), one
based on the wavelet zero crossings representation and the other based on
the wavelet extrema representation. In this section we take a look at the
above mentioned algorithms starting with the one introduced by Mallat and
Zhong.

For any representation of f the reconstruction set of f denotes the set of
functions having the same representation as f .

3.3.1 The wavelet modulus maxima representation

The decay of the wavelet transform modulus maxima through scales charac-
terize Lipschitz regularity and thus the modulus maxima contains important
information about the signal. Mallat and Zong introduced a signal repre-
sentation using the position and values of the local modulus maxima of the
dyadic wavelet transform of f .

Let f ∈ L2 (R) and {xjn}n∈Z be the abscissas where |W2jf(x)| is locally
maximum. Denote by H the reconstruction set of f consisting of functions
from L2 (R) having the same modulus maxima representation as f , i.e for
each j and h ∈ L2 (R) ∩H

1. W2jh(xjn) = W2jf(xjn)

2. The local maxima of |W2jh(x)| is located at the abscissa {xjn}n∈Z

In general H \ {f} 6= ∅, i.e the wavelet modulus maxima representation does
not characterize f uniquely.

Let K be the space of all sequences of functions {gj}j∈Z such that

|{gj}j∈Z|2 =
∞∑

j=−∞

(
‖gj‖2 + 22j‖dgj

dx
‖2

)
<∞ (3.8)

Then K together with the above norm |·| is a Hilbert space. In Appendix A.1
we list some de�nitions for the spaces we talk about in this section.

It is shown that if there exists two constants A2 > 0 and B2 such that for
all ω ∈ R

A2 ≤
∞∑

j=−∞
|ψ̂(2jω)|2 +

∞∑
j=−∞

| ψ̂(x)
dx

(2jω)|2 ≤ B2 (3.9)

Then for any h ∈ L2 (R) with the norm | · | in (3.8)

A2‖h‖2 ≤ |Wh|2 ≤ B2‖h‖2 (3.10)
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As in last section W denotes the dyadic wavelet transform operator. Not
every sequence from K is the dyadic wavelet transform of some function from
L2 (R). Denote by V the space of all dyadic wavelet transforms of functions
from L2 (R). From (3.10) we know that V is a subset of K, V ⊆ K.

Let Γ be all sequences of functions {gj}j∈Z ∈ K such that

gj(xjn) = W2jf(xjn) (3.11)

Then the dyadic wavelet transforms that satis�es Condition 1 are the se-
quence of functions that belong to

Λ = V ∩ Γ (3.12)

The wavelet modulus maxima representation does not contain all extrema of
Wf and Condition 2 is approximated by the problem of �ndingWh ∈ Λ such
that |Wh|2 is minimum. This minimazation generally creates local modulus

maxima at the positions {xjn}n∈Z. The second term; 22j‖dhj

dx ‖
2, is minimized

to have as few local modulus maxima possible outside the abscissas {xjn}n∈Z.

Since K is a Hilbert space, V ⊆ K and Γ an a�ne space the orthogonal
projection of {gj}j∈Z ∈ K on Λ is given by iterating alternate projections on
V and Γ.

PRΛ{gj}j∈Z = lim
n→∞

(PRV ◦PRΓ)n {gj}j∈Z (3.13)

If we start with the zero element of K the alternate projections converge
to the element of Λ which is closest to zero, and thus whose norm | · | is
minimum.

The orthogonal projector operator from K on V is given by

PRV = W ◦W−1 (3.14)

With W as in De�nition 3.1 and W−1 as (3.6). It may be proved that
PRV is an orthogonal projection if and only if the wavelet is symmetrical or
antisymmetrical.

The orthogonal projector operator on Γ transforms any sequence {gj(x)}j∈Z ∈
K into the closest sequence {hj(x)}j∈Z ∈ Γ with respect to the norm | · |.
This is done by chosing {hj(x)}j∈Z such that the sequence of error functions

{εj(x)}j∈Z = {hj(x)− gj(x)}j∈Z (3.15)

is minimum with respect to the norm | · |.
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Let xji and x
j
i+1 be two consecutive modulus maxima ofW2jf(x). It is shown

that for x ∈ (xji , x
j
i+1) the solution of this minimization is

εj(x) = αije
2−jx

+ βije
−2−jx

(3.16)

Since {hj(x)}j∈Z ∈ Γ we know

hj(x
j
i ) = W2jf(xji ) (3.17)

hj(x
j
i+1) = W2jf(xji+1) (3.18)

thus the constants αij and β
i
j are calculated using

εj(x
j
i ) = W2jf(xji )− gj(x

j
i ) (3.19)

εj(x
j
i+1) = W2jf(xji+1)− gj(x

j
i+1) (3.20)

The convergence of the alternate projection may be very slow and in the case
where {

√
2jψ2j (xjn − x)}(n,j)∈Z2 is a frame of U the stability depends on the

value of the frame constants. Here U ⊆ L2 (R) denote the space of functions
that are linear combinations of functions in the family {ψ2j (xjn−x)}(j,n)∈Z2 .

3.3.2 The discrete wavelet transform representation

In [9] Cvetkovic and Vetterli look at the zero crossings and extrema repre-
sentation in `2(Z). They cover wavelet design, reconstruction and implemen-
tation. In this section we look at the two latter subjects.

The wavelet transform is de�ned as a linear operator

W : `2(Z) → `2(I) with I = {1, 2, . . . , J + 1} × Z (3.21)

consisting of J + 1 linear operators Wj : `2(Z) → `2(Z), j = 1, 2, . . . , J + 1.
Denote by F = Wf and F j = Wjf the j'th column vector of F , j =
1, 2, . . . , J + 1.

The discrete wavelet transform zero crossing representation

The wavelet zero crossings representation of f is de�ned as:

Ezf = {ZWjf, SWjf, j = 1, 2, . . . , J + 1} (3.22)
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with

Zf = {k : f(k)f(k − 1) ≤ 0} (3.23)

Sf = {Sf(k) : Sf(k) =
zk−1∑
j=zk−1

f(j), k = 1, . . . , |Zf |+ 1} (3.24)

Here |Zf | denote the total number of zero crossings of f , and zk its kth zero
crossing. Sf provides the sum of points between all pairs of consecutive zero
crossings and is necessary to improve the stabillity of the representation. A
large familiy of functions with the same zero crossings was found by Meyer.
Adding Sf to the representation will not, in general, give a unique charac-
terisation of f . However, it then seems like two functions having the same
representation di�er only at high frequency.

The discrete wavelet transform extrema representation

The discrete wavelet extrema representation of a signal f ∈ `2(Z) is de�ne
as:

Eef = {MaWjf,MiWjf,MWjf, j = 1, 2, . . . , J + 1} (3.25)

with

Maf = {k : f(k + 1) ≤ f(k), f(k − 1) ≤ f(k)} (3.26)

Mif = {k : f(k + 1) ≥ f(k), f(k − 1) ≥ f(k)} (3.27)

Mf = {f(k) : k ∈Mif ∪Maf} (3.28)

HereMf plays the role Sf does in Esf . Actually there is a relation between
these two representations

Eef = Ez∆f (3.29)

where ∆f is the �rst di�erence of f ,

∆f(n) = f(n+ 1)− f(n) (3.30)

In the case where the wavelet is the �rst derivative of some smoothing func-
tion the modulus maxima correspond to sharp variation points in the signal
while the modulus minima correspond to slow variation points. When the
wavelet is the second order derivative a zero crossing corresponds either to a
sharp variation point or a slow variation point of f . Using Eef we can dis-
tinguish between these two types of points, this is not possible from Ezf . In
addition, furhter characterization of the variation points of f is possible from
Mf . Therefore, for further analysis of f , the wavelet extrema representation
is prefered.
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As the reconstruction algorithm given by Mallat and Zhong, the following
algorithm also recovers, from the representation of f , the wavelet transform
Wh for some h in the reconstruction set of f . Then h is reconstructed using
the inverse wavelet transform.

The algorithm use alternating projections on the sets V, E and (∩i,jCi,j)
starting with any initial point F0 ∈ `2(I). With

• V is the range of the wavelet transform;

V = {G : G = Wg, g ∈ `2(Z)} (3.31)

• E is the set of all G ∈ `2(I) having the same value as MWjf at all
local extrema of Wjf across all scales j:

E = {G ∈ `2(I) : Gj(k) = Wjf(k)∀k ∈MiWjf∪MaWjf, j = 1, 2, . . . , J+1}
(3.32)

• Ci,j is the set of allG ∈ V∩E such thatGj(i) is nonincreasing/nondecreasing
if F j(i) is decreasing/increasing.

The intersection V ∩ E contains all G ∈ `2(I) such that G is the wavelet
transform of some g ∈ `2(Z) and its values matches with the values of Wf
at each extrema point of Wf . The intersection with the set Ci,j makes sure
these matching points are the only extremum points of G.

The projections; GV ∈ V, GE ∈ E and GCi,j ∈ Ci,j , of G ∈ `2(I) on V, E and
Ci,j respectively are given by

•
GV = WW−1G (3.33)

•

GjE(k) =

{
F j(k) k is an extremum of F i

Gj(k) otherwise
(3.34)

•

GjE(k) =

{
F j(k) k is an extremum of F i

Gj(k) otherwise
(3.35)

3.3.3 discussion

We have seen how an approximation of a signal may be reconstructed from
the extremum points or zero-crossings of it's wavelet transform. Really this
is an irregular sampling of the wavelet transform where the set of samples
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contains most of the information of the signal. Therefore the wavelet trans-
form is suitable for compression of signals. Mallat and Zhong gives examples
of image reconstruction from multiscale edges with a compression ratio over
30 [7]. The recovered images have lost some small details, but is visually of
good quality.



Chapter 4

Edge detectors

4.1 Introduction

In this chapter we look into and implement some edge detectors to see how
well they function on the images shown in Figure 4.1 refered to as I1, I2, I3,
I4, I5 and I6 throughout this chapter.

The images I1, I2 and I3 are constructed images where I1 has no noise, I2
is after addition of white noise and I3 is after addition of simulated speckle.
The edges we would like to detect are the contour round the bright areas in
I1.

The image I4 is an ultrasound image of a brain tumor. It is not easy to
determine the contour of the tumor. The image I5 is also an ultrasound
image of a brain tumor, but in this case the contrast between the tumor and
brain-cells are high. Image I6 shows some object shaped as an egg and is
included to have a variety of images to test our edge detectors for.

In Chapter 2 we looked at some theory which we would like to use in some
edge detection algorithms. The introduced theory deals with continuous
functions, but our algorithms are implemented on a computer. When we
analyse a function f on a computer the value of f is only know for a discrete
set of points {tk}k∈Z and the integral in Wf must be approximated. Since
the Lipschitz regularity of f is characterized from the decay of the wavelet
transform as the scale approaches zero we cannot detect Lipschitz regularity
of f based on it's samples. It might seem that f is discontinuous even though
it is continuous having a very sharp transition between two samples.

In practice we say that f behaves as if it is Lipschitz α at k up to its sam-
ple resolution. When we talk about discontinuity and Lipschitz regularity
of samples of signals we mean that the samples behave as if the signal is

39
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discontinuous an so on.

Denote by R(m×n) all matrices having m rows and n columns with elements
from R. Let I ∈ R(m×n) and denote by I(i, j) the element from the i'th
column and j'th row of I. Denote by C = {Ii·}ni=1 the family of sequences
corresponding to the columns of I. Denote by R = {I·j}mj=1 the family of
sequences corresponding to the rows of I. All images we analyse in this
chapter are greyscale images; this means that they are represented by some
I ∈ R(m×n) such that the value I(i, j) gives the brigthness at position (i, j)
in the image. The values zero and one correspond to black and white respec-
tively. When we use the word pixel we mean some element I(i, j).
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(a) I1 ∈ R(275×437) (b) I2 ∈ R(275×437)

(c) I3 ∈ R(275×437) (d) I4 ∈ R(278×343)

(e) I5 ∈ R(362×512) (f) I6 ∈ R(240×256)

Figure 4.1: The six greyscale images we will use throughout this chapter.
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From now WI(i, j, sk) (or WI(i, sk)) with I ∈ R(m×n) means an approxi-
mation of Wf(x, y, sk) (or Wf(x, sk)) where I is a sampling of f(x, y) (or
f(x)) at points (i, j) (or i). The scale sk ≥ 1 are integers deciding the
support of the wavelet atom used to calculate WI(i, j, sk) (WI(i, sk)). For
example, we may determine that for sk = 1 the support of the wavelet atom
covers �ve pixels. Then the WI(i, sk) are approximated using the points
{i− 2, i− 1, i, i+ 1, i+ 2}. As sk increase, the support of the wavelet atom
increase. For each edge detector in the following sections we will state the
support for each sk used.

When we say that two pixels are neighbours using 8-connectivity we mean
that they are positioned next to each other either in orthogonal directions or
diagonal directions. If two pixels are neighbours using 4-connectivity they
are positioned next to each other in orthogonal directions. Both cases are
shown in Table 4.1.

1 1 1

1 X 1

1 1 1

0 1 0

1 X 1

0 1 0

Table 4.1: All neighbours for pixel X are marked with 1. In the left table we
use 8-connectivity and in the right table 4-connectivity.

4.2 1-D Multiscale edge detector

In this section we give a 1-D multiscale edge detector which detects singu-
larities in 1-D signals. We see how edges in an image may be detected by
applying the 1-D multiscale edge detector on each rown and column of the
image.

To avoid using many indices we will in this section denote by I the greyscale
image I6 ∈ R(240×256) shown in Figure 4.1(f). The edges of I is detected by
analysing each row and column of I independently. First we look in details
how row I·120 is analysed, then the edge detector is applied for every row
and column of I.

4.2.1 Application on row I·120

Let ψ ∈ L2 (R) be the �rst-order derivative of the normalized Gaussian
function θ from Example 2.1. Denote by WI·120(i, sk) the wavelet transform
of I·120 with respect to ψ given in De�nition 2.6.
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Since ψ has one vanishing moments Theorem 2.7 ensures that every singular
point of I·120 with α < 1 can be located by following the maximum lines
of WI·120(i, sk) as sk decrease. Also, using Theorem 2.5 α ≤ 1 may be
characterised from the decay of WI·120(i(sk), sk) along the maximum line
(i(sk), sk) in the scale-space plane as sk decrease.

We start by calculatingWI·120(i, sk) for scales {sk = k}50
k=1 and i = 1, . . . , 256.

The calculation is done using the wavelet toolbox in Matlab. When sk = 1
the support of the wavelet atom is �ve pixels and as sk gets larger the sup-
port increases. In Figure 4.2 I·120 andWI·120(i, sk) are plotted. From (b) we
see that the intensity changes of I·120(k) at i = 43, 59, 172, 202 contributes
with highest value of |WI·120(i, sk)|. The intensity increase at i = 43 and
i = 172 correspond to negative values of WI·120 while the intensity decrease
at i = 59 and i = 202 correspond to positive values.

(a) (b)

Figure 4.2: (a)The uppermost graph plots I·120(i) as a function. Below it
is plotted as an image. (b)WI·120(i, sk) for {sk = k}50

k=1 and i = 1, . . . , n.
Black, white and grey correspond to values that are respectively negative,
positive and zero.

Next all maximum points {mnk = (n, sk)} of |WI·120(·, sk)| are located for
each sk. Then each maximum point mnk is classi�ed as either belonging
to some maximum line lp or not belonging to any maximum line. Each
mnk can only belong to one or none maximum line. This classi�cation is
done such that WI·120(n, sk) has constant sign for all mnk from the same
maximum line. We have implemented both the location of maximum points
and classi�cation of maximum points in Matlab.

In Figure 4.3(a) the maximum points {mnk} are plotted in the uppermost
graph. All mnk such that WI·120(n, sk) < 0 and WI·120(n, sk) > 0 are
plotted in blue and red respectively. Each line plotted in the lowermost graph
connects all maximum points classi�ed as belonging to the same maximum
line. In (b) I·120 is plotted and each point that a maximum line converges
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towards is marked with a red dot.

(a) (b)

Figure 4.3: (a)The uppermost graph plots all maximum points (n, sk). Blue
and red dots correspond to negative and positive value of WI·120(n, sk) re-
spectively. In the lowermost graph the corresponding maximum lines are
plotted. (b)Plot of I·120. Each point which a maximum line ends at sk = 1
is marked with a red dot.

Denote by up as up = n such that (n, s1) ∈ lp, i.e up is the point which
the maximum line lp ends up at the lowest scale s1. The Lipschitz regular-
ity αp of I·120 at up are calculated using the decay of |WI·120(n, sk)| along
the maximum line lp. Since |WI·120(n, sk)| decays as s

αp+ 1
2

k when I·120 is
Lipschitz αp at up then αp = a − 1

2 where a is the slope of log |Wf(n, sj)|
versus log sk. In Figure 4.4 a histogram of the calculated αp for each up is
shown. Most of the points up have Lipschits regularity between −0.5 and
0.5. Lipschitz regularity αp tells us something about the behaviour of I·120
in a neighbourhood of up, but not the amplitude of the intensity change. A
step edge with small amplitude has the same regularity as a step edge with
high amplitude. Therefore Lipschitz regularity is not usefull for determine
which up correspond to high intensity change in I·120. On the other hand
Lipschitz regularity may be used to distinguish types of singularities. For
example, from Table 4.2 we see that the points up = 43 and up = 202 behave
as step edges.

The irregular signal yields many maximum lines pointing towards non-important
points up. We are not interested in detecting the small signal �uctations since
they are mainly caused by noise. In this case we are interested in detect-
ing the edge around the dark area in Figure 4.1(f) shaped as an egg. The
points of interest in I·120 is up = 43, 59, 172, 202. As we saw in Figure 4.2(b)
these are the points corresponding to the intensity change in I·120 that con-
tributes most to the value of |WI·120(up, sk)|. We suggest thresholding on
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Figure 4.4: Histogram of the calculated α.

the summation of |WI·120(n, sk)| over maximum lines {lp}p∈Z:

Slp =
∑

(n,sk)∈lp

|WI·120(n, sk)|

Denote by S the mean value of all Slp . We suggest setting the threshold

T = CS where C > 0 is some constant. For images with little noise C
should be chosen between zero and one. For images with substantial amount
of noise C should be greater than one. All maximum lines lp such that
Slp < T are classi�ed as non-important, the rest as important. In Figure 4.5
(a) the important maximum lines are plotted for C = 1.5. In (b) the points
{up}p corresponding to important maximum lines {lp} are marked with red
circles.

(a) (b)

Figure 4.5: (a) The important maximum lines for I using C = 1.5. (b)
Detected edgepoints plotted as red circles.
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up αp
43 0.0134
59 0.3566
172 0.4357
202 -0.0072

Table 4.2: The calculated α's
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4.2.2 Application on images

In this subsection we present the result of the 1-D multiscale edge detector
applied on each row and column of some images.
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(a) I6 with edges using C = 0.9 (b) Edges for I6 using C = 0.9

(c) I5 with edges using C = 6.0 (d) Edges for I5 using C = 6.0

(e) I3 with edges using C = 2.5 (f) Edges for I3 using C = 2.5

(g) I4 with edges using C = 1.8 (h) Edges for I4 using C = 1.8

Figure 4.6: The 1-D multiscale edge detector applied on the images I3, I4,
I5 and I6.
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4.2.3 Discussion

The 1-D multiscale edge detector works well on one-dimensional signals. By
connecting maximum modulus points through scales we get good localiza-
tion of singular points. For each singular point Lipschitz regularity may be
estimated using the value of the wavelet transform modulus along the cor-
responding maximum line. From both the length of the maximum line and
the value of the wavelet transform we may determine if the singular point is
subject to a high amplitude change or not. Both step edges up1 = 43 and
up2 = 202 in I·120 plotted in Figure 4.5(b) have high amplitude change and
the corresponding maximum lines lp1 and lp2 are long. Lipschitz regularity
is estimated to be αp1 = 0.0134 and αp2 = −0.0072. From the values Slp1

,
Slp2

, αp1 and αp1 we determine that I·120 has step edges of high amplitude

at positions up1 and up2 . The threshold T = CS works well in the cases
where the important singularities have high amplitude compared to the sin-
gularities due to noise. However, it is not possible to �nd one C that works
optimal for each signal. When the 1-D multiscale edge detector is applied
on each row and column of some image the result varies depending on the
image. For an image where most of the singular points are due to noise a
high value of C > 1 should be chosen. If the image has little noise and most
of the intensity changes are due to important structures then a low value of
0 < C < 1 should be chosen.

The image I6 shown in Figure 4.1(f) has quite distinct jumps and the singular
points corresponding to noise have low amplitude change. As we see from the
Figure 4.6(b) the choice C = 0.9 results in output for each row and column
consisting of mostly important edges. For the images I3 and I4 the edges are
plotted in Figure 4.6(f) and (h) using C = 2.5 and C = 1.8 respectively. The
result is not nearly as good since both images have much noise with vague
contoures. For the image I5 the edges are plotted in Figure 4.6(d). The hazy
edges at the bottom of the object are not detected successfully. The points
are spread and it is not obvious from those points how the contour of the
objects looks like.

In the 1-D multiscale edge detector edges are detected by rows and columns
independently. When the edge is weak in both directions it wont be detected
well using this method. Instead we should combine the information from
both direction to better detect weak edges. In the next section we look at
a 2-D edge detector which combines information from both directions when
detecting edges in an image.
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4.3 2-D single scale edge detector

In this section we look at a wavelet transform edge detector inspired by the
detector suggested by Canny [3]. We take advantage of the fact that the 2-D
wavelet transformation acts as a di�erential operator on a smoothed image
where the amount of smoothing is given by scale s.

We use the 2-D wavelet discussed in Example 2.2

ψ1(x, y) =
∂θ(x, y)
∂x

(4.1)

ψ2(x, y) =
∂θ(x, y)
∂y

(4.2)

where θ(x, y) is a normalized 2-D Gaussian.

We have seen that the 2-D wavelet transform of f ∈ L2
(
R2

)
then can be

written as the gradient of (f ? θs)(u, v):

Wf(u, v, s) =
(
W 1f(u, v, s) =< f, ψ1

u,v,s >

W 2f(u, v, s) =< f, ψ2
u,v,s >

)
= −s∇(f ? θs)(u, v)

ThusWf(u, v, s) points in the direction where (f?θs)(u, v) changes the most,
i.e where it's partial derivatives are maximum. Actually, since the gradient
is multiplied with −s then Wf(u, v, s) points in the direction where the
smoothed function decrease most.

Three distinct edges f1, f2 and f3 are depict in Figure 4.7 (a), (d) and (g). For
each edge fi, i = 1, 2, 3 the corresponding (fi ? θs0)(u, v) and |Wfi(u, v, s0)|
are plotted.

The 2-D wavelet Ψ = {ψ1, ψ2} is designed such that ψ1 and ψ2 feels edges
in the x-direction and y-direction respectively.

Let us look at the step edge in the x-direction f1(x, y) depict in Figure 4.7(a).
From Figure 4.7(b) we see that the gradient of (f1 ? θs0)(u, v) is zero in the
v-direction. Thus W 2f1(u, v, s0) = 0, i.e W 2f1(u, v, s0) ignores step edges
in the x-direction. However, the step edge is felt by W 1f1(u, v, s0) which
has one local modulus maximum point in the u-direction for each v. The
important observation is that Wf(u, v, s0) points in the direction normal to
the step edge and |Wf(u, v, s0)| is local maximum in that direction for all
points along the step edge.

The edge f2 depict in Figure 4.7(d) is of short duration. This results in
(f2 ?θs0)(u, v) having a sharp intensity increase followed by a sharp intensity
decrease. Then W 1f2(u, v, s0) has two local modulus maximum points in
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(a) f1(x, y) (b) (f1 ? θs0)(u, v) (c) |Wf1(u, v, s0)|

(d) f2(x, y) (e) (f2 ? θs0)(u, v) (f) |Wf2(u, v, s0)|

(g) f3(x, y) (h) (f3 ? θs0)(u, v) (i) |Wf3(u, v, s0)|

Figure 4.7: Edges and how they are smoothed

the u-direction for each v. In this case when (u, v) lies on either side of
the edge Wf2(u, v, s0) points in the direction normal to the edge such that
(f2 ? θs0) decreases most. So, for the edge of short duration |Wf2(u, v, s0)|
has two local maximum points, one corresponding to the increase and the
other corresponding to the decrease in f2.

The last f3 is normalized with very small support and intend to simulate
Dirac's delta function in two-dimensions. Since a convolution with Dirac's
delta yields the function itself we get (f3 ? θs0) = θs0 . Using substitution
τx = −x

s0
and τy = −y

s0
we get

W 1f3(x, y, s0) = −s∂θs0(x, y)
∂x

=
−s
s20

∂θ(τx, τy)
∂τx

∂τx
∂x

=
1
s20

∂θ(x, y)
∂x

=
1
s20
ψ1(x, y) (4.3)

The same procedure can be used to show W 2f3(x, y, s0) = 1
s20
ψ2. Then we
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get

|Wf3(u, v, s0)| =
√
s−4
0 (ψ1(u, v)2 + ψ2(u, v)2)

≤ As−2
0 with A = max

(u,v)∈R2

√
ψ1(u, v)2 + ψ2(u, v)2 (4.4)

Thus as the scale decreases the value of |Wf3(u, v, s0)| increases.

For a greyscale image I ∈ R(m×n) we would like to detect the points (i, j)
where I has sharp intensity change. Let AI(i, j, sk) = Arg{WI(i, j, sk)}
where −π < AI(i, j, sk) ≤ π. Denote by a provisional edge point of I at
scale sk as any point (i, j) such that |WI(i, j, sk)| is local maximum in the
direction given by AI(i, j, sk).

The 2-D single scale edge detector in this section consists of locating all
provisional edge points of I at scale sk and then thresholding with hysteresis
is employed on those points. In the following subsection we explain what we
mean by thresholding with hysteresis.

4.3.1 Thresholding with hysteresis

Some of the provisional edge points of I might correspond to noise and
we would like to seperate them from the ones corresponding to important
intensity changes. Assuming that the noise contributes with low energy in
WI(·, ·, sk) we threshold on |WI(·, ·, sk)|. Suppose we have a single threshold
T1 and that an edge exists such that the mean value of |WI(·, ·, sk)| along
the edge equals T1. The value |WI(·, ·, sk)| may vary along the edge due to
noise which leads to a broken edge contour. This is called streaking and is a
common problem with edge detectors using a single threshold.

As suggested by Canny [3] we will employ thresholding with hysteresis to
reduce the probabillity of streaking. Two thresholds are set; Tlow and Thigh,
such that Tlow < Thigh. All provisional edge points {(i, j)} of I such that
|WI(i, j, sk)| > Tlow are classi�ed as candidate edge points. Then all sets of
8-connected candidate edge points containing at least one point (l, q) such
that |WI(l, q, sk)| > Thigh are classi�ed as edge points.

If isolated weak provisional edge points were to be removed using a single
threshold then weak provisional edge points connected to strong provisional
edge points would also be removed. Thresholding with hysteresis allows
the value along connected edge points to vary, but not lower than Tlow. In
addition at least one of the connected edge points must have value higher
than Thigh. This way the probabillity of streaking is reduced while isolated
weak provisional edge points are removed.
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We select Thigh so that a given fraction 0 < Pne < 1 of |WI| has value
greater than zero and lower than Thigh. Then we chose Tlow to be some
fraction 0 < R < 1 of Thigh.

Algorithm 1 describes the 2-D single scale edge detector for an image I ∈
R(m×n) at scale sk.

Algorithm 1 2-D single scale edge detector at scale sk

Require: I ∈ R(m×n), sk ≥ 1, 0 < R < 1 and 0 < Pne < 1
Ensure: {(i, j) : (i, j) is an edge point of I}

1: Calculate |WI(·, ·, sk)| and AI(·, ·, sk).
2: P ⇐ ∅
3: for (i, j) ∈ {[1, 2, . . . ,m]× [1, 2, . . . , n]} do
4: if |WI(i, j, sk)| is local maximum in direction AI(i, j, sk) then
5: P ⇐ P ∪ {(i, j)}
6: end if

7: end for

8: Calculate Thigh such that
count({(i,j) : 0<|WI(i,j,sk)|<Thigh})

mn = Pne
9: Tlow ⇐ RThigh
10: W = {(i, j) ∈ P : |WI(i, j, sk)| > Tlow}
11: S = {(i, j) ∈ W : |WI(i, j, sk)| > Thigh}
12: E ⇐ S
13: for all 8-connected set of pixels Oq = {(i, j)} ∈ W do

14: if S ∩Oq 6= ∅ then
15: E ⇐ E ∪ (Oq \ S)
16: end if

17: end for

18: return E
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Implementation

We have implemented Algorithm 1 in Matlab. The Matlab routine "conv2.m"
was used to calculate (I ? θsk

) and "grad.m" to calculate −sk∇(I ? θsk
).

The support of θsk
(i, j) = (πs2k)

−1e−(i2+j2)s−2
k includes all (i, j) such that

θsk
(i, j) > 0.0001. In Table 4.3 the support of θsk

for each sk = 1, · · · , 10 is
listed. For example when sk = 4 then (I ? θsk

)(i, j) is a weighted sum of I
over the 361 = (9+9+1)2 pixels {(q, l)} located in the 19×19 square centered
at (i, j). In the case when (q, l) /∈ {[1,m]× [1, n]} we de�ne I(q, l) = 0.

sk support of θsk

1 [−2, 2]× [−2, 2]
2 [−5, 5]× [−5, 5]
3 [−7, 7]× [−7, 7]
4 [−9, 9]× [−9, 9]
5 [−11, 11]× [−11, 11]
6 [−12, 12]× [−12, 12]
7 [−14, 14]× [−14, 14]
8 [−15, 15]× [−15, 15]
9 [−17, 17]× [−17, 17]
10 [−18, 18]× [−18, 18]

Table 4.3: The support of θsk
for sk = 1, · · · , 10

The non-maximum supression method used to locate the provisional edge
points is not a standard function in Matlab, but the sub-function "can-
nyFindLocalMaxima" located in the function �le "edge.m". For each pixel
(i, j) the method estimates values of |WI| between pixels using interpola-
tion. Then these estimates are used to check if (i, j) is a local modulus
maximum point in direction AI(i, j, sk).

4.3.2 Result

In this subsection we look at the output of Algorithm 1 for di�erent inputs.
For each of the four images I2, I3, I4 and I5 shown in Figure 4.1 the Al-
gorithm 1 is applied at scales sk = 4, 6, 8. The parameters Pne = 0.7 and
R = 0.3 are used in all twelve cases.

For each twelve cases we plot the provisional edge points and the edge points
after thresholding. The edge points after thresholding is plotted both as an
binary image and as red pixels in the smoothed image (I ? θsk

)(i, j).
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(a) Provisional edgepoints
for I2

(b) Edge points for I2 (c) (I2 ? θ4) where edge
points are marked as red
pixels.

(d) Provisional edgepoints
for I3

(e) Edge points for I3 (f) (I3 ? θ4) where edge
points are marked as red
pixels.

(g) Provisional edgepoints
for I4

(h) Edge points for I4 (i) (I4 ? θ4) where edge
points are marked as red
pixels.

(j) Provisional edgepoints
for I5

(k) Edge points for I5 (l) (I5 ? θ4) where edge
points are marked as red
pixels.

Figure 4.8: Algorithm 1 applied on the images I2, I3, I4 and I5 shown in
Figure 4.1 at scale sk = 4. The parameters used are Pne = 0.7 and R = 0.3.
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(a) Provisional edgepoints
for I2

(b) Edge points for I2 (c) (I2 ? θ6) where edge
points are marked as red
pixels.

(d) Provisional edgepoints
for I3

(e) Edge points for I3 (f) (I3 ? θ6) where edge
points are marked as red
pixels.

(g) Provisional edgepoints
for I4

(h) Edge points for I4 (i) (I4 ? θ6) where edge
points are marked as red
pixels.

(j) Provisional edgepoints
for I5

(k) Edge points for I5 (l) (I5 ? θ6) where edge
points are marked as red
pixels.

Figure 4.9: Algorithm 1 applied on the images I2, I3, I4 and I5 shown in
Figure 4.1 at scale sk = 6. The parameters used are Pne = 0.7 and R = 0.3.
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(a) Provisional edgepoints
for I2

(b) Edge points for I2 (c) (I2 ? θ8) where edge
points are marked as red
pixels.

(d) Provisional edgepoints
for I3

(e) Edge points for I3 (f) (I3 ? θ8) where edge
points are marked as red
pixels.

(g) Provisional edgepoints
for I4

(h) Edge points for I4 (i) (I4 ? θ8) where edge
points are marked as red
pixels.

(j) Provisional edgepoints
for I5

(k) Edge points for I5 (l) (I5 ? θ8) where edge
points are marked as red
pixels.

Figure 4.10: Algorithm 1 applied on the images I2, I3, I4 and I5 shown in
Figure 4.1 at scales sk = 8. The parameters used are Pne = 0.7 and R = 0.3.
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4.3.3 Discussion

In general, most of the edges detected for small sk are dominated by noise.
For example from Figure 4.8(e) it is very hard to get an impression of the im-
portant structures in the image. Most of the detected edges follows the small
structures caused by simulated speckle noise. However, in Figure 4.10(e) the
edges follows larger and, in this case more, important structures. This be-
havior was expected since larger sk means that the noise is smoothed away
more. The cost of this smoothing is worser edge localisation.

For which scale sk the edge detection should be performed depends on the
image analysed. If an image has high contrast structures and small amount
of noise, then small sk should be used to get best localisation of edges. The
image I5 is such an image. In comparison, the image I3 has low contrast and
quite heavily noise, therefore larger sk should be used.

In all four cases the thresholding only removed edges located at low contrast
areas of the image. However, for some images and scales there are still
detected edges which should be removed. For example image I5 has quite
high contrast edges, but as we see in Figure 4.9(k) edges in low contrast
areas are detected.

In the next section we suggest a method using information across scales to
determine at which scale sk we should detect the provisional edge points. In
addition we suggest a thresholding method rewarding both length and high
contrast edges.

4.4 2-D Multiscale edge detector

In this section we suggest an edge detector which estimates the smallest scale
sc for which the provisional edge points at sc are not dominated by noise.
Then thresholding on the provisional edge points of I at sc is employed. An
alternative to the thresholding with hysteresis is suggested.

Let I1, I2, I3, I4, I5 and I6 be the images from last section shown in Fig-
ure 4.1.

4.4.1 Edge curves

Using 8-connectivity the provisional edge points of an image I at scale sk
are connected to form a set of edge curves; {eqk}

Nec(sk)
q=1 where Nec(sk) is the

number of edge curves at scale sk.
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All but two points along an edge curve must have exactly two neighbours be-
longing to the same edge curve, i.e an edge curve has exactly two endpoints.

Let us de�ne a function giving the smallest angle between two vectors with
angles α and β:

De�nition 4.1. Let −π < α, β <= π. Then the distance d(α, β) is given
by

d(α, β) =


|α|+ |β| if αβ < 0 and |α|+ |β| <= π

2π − |α| − |β| if αβ < 0 and |α|+ |β| > π

|α− β| otherwise

(4.5)

Let d(α, β) be the distance function from De�nition 4.1. Each provisional
edge point (i, j) at scale sk can only belong to the edge curve eqk containing
it's neighbour (p, l) of shortest distance d (A(i, j, sk), A(p, l, sk)) and (p, l)
cannot have any neighbour (a, b) from another curve en such that

d (A(p, l, sk), A(a, b, sk)) < d (A(i, j, sk), A(p, l, sk))

This criteria makes sure that a 8-connected set of provisional edge points
having more than two endpoints are seperetad into two or more edge curves
such that the gradient direction changes minimum along the edge curves.

a b

c

(a) Connected set having
three endpoints

a

bd

c

(b) Corresponding edge
curves

Figure 4.11: (a) A connected set of provisional edge points with three end-
points a,b and c. (b) The corresponding set of edge curves. Each edge curve
is drawn in one color.
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In Figure 4.12 all edge curves at scales sk = 4, 8 for the images I3 and I4 are
plotted such that the color does no change along an edge curve.

(a) sk = 4 (b) sk = 4

(c) sk = 8 (d) sk = 8

Figure 4.12: The images show all edge curves from scale sk = 8 and sk = 4.
The edge curves are plotted on top of the corresponding image such that the
color does not change along an edge curve.
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4.4.2 Deciding which scale to use for �nal edge detection

As the scale sk decreases WI(i, j, sk) gets more sensitive to intensity changes
in I of short duration and if I has many small structures then I has many
provisional edge points. From Figure 4.8, Figure 4.9 and Figure 4.10 we
can see that the number of provisional edge points increase as sk decrease.
Specially in noisy image the increase is quite large. For comparison all provi-
sional edge points of an image without noise at scales sk = 8, 6, 4 are plotted
in Figure 4.13. We can see that the number of points is almost constant
across the three scales.

(a) I1 (b) sk = 4 (c) sk = 6 (d) sk = 8

Figure 4.13: Algorithm 1 applied on an image whithout noise at scales sk =
4, 6, 8

Denote by NepI(sk) the number of provisional edge point of I at scale sk
and NecI(sk) the number of edge curves of I at scale sk. As we see from
Figure 4.12 NecI3(4) > NecI3(8) and NecI4(4) > NecI4(8), i.e there are more
edge curves at scale sk = 4 than sk = 8.

Let us see if the increase of NepI(sk) or NecI(sk) as sk decrease is usefull for
deciding at which scale sk thresholding on the provisional edge points should
be done.

In Figure 4.14 (d) - (i)NepIi(sk) andNecIi(sk) (i = 2, 3, 4) and sk = 1, . . . , 10
are plotted. For all three images NecIi(sk) has a distinct increase in growth
starting at some sk. This is not the case for NepIi(s) which has a more
evenly increase as the scale decrease.

For a noisy image an edge curve at large scale will at some lower scale be di-
vided into shorter edge curves. This means that at the scale in which the edge
curves are dominated by noise we will see an increase in NecIi(sk) re�ecting
both the addition of new edge curves due to smaller structures/noise and the
dividing of edge curves into shorter edge curves due to noise. On the other
hand, the increase of NepIi(sk) only re�ects the addition of new provisional
edge points due to smaller structures/noise. When NecIi(sk) increase by one
then NepIi(sk) increase by n where n is the number of points along the added
edge curve. Thus | ddsk

NepIi(sk)| > | ddsk
NecIi(sk)| as shown in Figure 4.14 (j)

- (l). Based on these observations we suggest choosing the smallest scale sc
such that for some chosen TNec > 0 we have (−1) d

dsk
NecIi(sk) < TNec for
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sk ≥ sc. Then employ thresholding on the provisional edge points of Ii at
sc.

In the next subsection we suggest thresholding using edge curves.



4.4. 2-D MULTISCALE EDGE DETECTOR 63

(a) I4(n,m) (b) I2(n,m) (c) I3(n,m)

(d) NecI1(sk), sk = 10, . . . , 1 (e) NecI2(sk), sk = 10, . . . , 1 (f) NecI3(sk), sk = 10, . . . , 1

(g) NepI1(sk), sk = 10, . . . , 1 (h) NepI2(sk), sk =
10, . . . , 1

(i) NepI3(sk), sk = 10, . . . , 1

(j) d
dsk

NepI1(sk) plotted in

green. d
ds
NecI1(s) plotted in

blue.

(k) d
dsk

NepI2(sk) plotted in

green. d
ds
NecI2(s) plotted in

blue.

(l) d
dsk

NepI3(sk) plotted in

green. d
ds
NecI3(s) plotted in

blue.

(m) d2

ds2
k
NepI1(sk) (n) d2

ds2
k
NepI2(sk) (o) d2

ds2
k
NepI3(sk)

Figure 4.14: For each image (a), (b) and (c) the corresponding number of
edge curves and edge points VS sk are plotted below.
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Figure 4.15: Histogram of {Sqk}
NecI2(sk)
i=1 for a �xed sk = 8. The height of

each bar shows the number of edge curves having values Sqk in the intervall
along the horisontal axis covered by the bar.

4.4.3 Thresholding

In this subsection we suggest a thresholding method which rewards both
long edge curves and high intensity changes across the edge. In addition the
threshold should also adapt to the image analysed.

Denote by Sqk the sum of |WI(·, ·, sk)| over edge curve eqk:

Sqk =
∑

(i,j)∈eqk

|WI(i, j, sk)|

Figure 4.15 shows a histogram of {Sqk}
NecI2(sk)
i=1 with sk = 8.

As we see, most of the Sqk are located in the bins close to zero and are most
likely a result of noise. We want to determine a threshold Tk > 0 such that
if Sqk < Tk then eqk is removed from the family of edge curves.

There are several methods for choosing Tk. For example Tk can be chosen
such that the number of edge curves with Sqk < Tk are a given fraction
0 < Pec < 1 of the total number of edge curves NecI(sk). This means
that we assume PecNecI(sk) number of edge curves are non-important while
(1− Pec)NecI(sk) are important. Then the quality of the output will depend
on the image since a �xed Pec will not �t every image. For an image with

one large structure and little noise {Sqk}
NecI(sk)
q=1 are concentrated around

some value. In this case it is a better suggestion to say that most of the
edge curves are important edges. A �xed Pec will only �t one small class of
images.

We suggest chosing Tk depending on which scale sk the thresholding is done.
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Denote by Sk as the mean value of {Sqk}
NecI(sk)
q=1

Sk =
1

NecI(sk)

NecI(sk)∑
q=1

Sqk

As discussed in the previous subsection assume sc is the smallest scale such
that for some chosen TNec > 0 we have (−1) d

dsk
NecIi(sk) < TNec for sk ≥ sc.

If sc is large this means that the image is subjected to noise of signi�cant
structure size and only edge curves eqk with Sqk that have a signi�cant higher
value than Sk should be trusted to be important edges. If sk is small, then
the image have little noise and edge curves eqk with Sqk close to Sk should
be trusted to be important edges. We suggest chosing Tk = CkSk for some
�xed Ck. A set {Ck}k should be choosen such that the thresholding works
optimal on a given test set of ultrasound images.

Algorithm 2 describes the edge detector for an image I.
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Algorithm 2 Edge Detector

Require: I ∈ R(m×n), {sk}k=1,...,N with sk < sk+1, TNec > 0 and
{Ck}k=1,...,N

Ensure: {(i, j) : (i, j) is an edge point of I}

1: for k = N, . . . , 1 do
2: Calculate |WI(·, ·, sk)| and AI(·, ·, sk).
3: Pk ⇐ ∅
4: for (i, j) ∈ {[1, 2, . . . ,m]× [1, 2, . . . , n]} do
5: if |Wf(i, j, sk)| is local maximum in direction AI(i, j, sk) then
6: Pk ⇐ Pk ∪ {(i, j)}
7: end if

8: end for

9: Generate {eqk}
NecI(sk)
q=1 from the set Pk

10: if k = 1 then
11: Skip to the next iteration in the FOR-loop
12: else if k = 2 then
13: d

dsk
NecI(sk−1) ⇐ Nec(sk−1)−Nec(sk)

sk−1−sk

14: else

15: d
dsk
Necf(sk−1) ⇐ Nec(sk−2)−Nec(sk)

sk−2−sk

16: end if

17: if (−1) d
dsk
Necf(sk−1) > TNec then

18: Jump out of FOR-loop
19: end if

20: end for

21: c⇐ k − 1
22: Calculate {Sqc}Necf(sc)

q=1 and Sc

23: Tc ⇐ CcSc
24: E ⇐ ∅
25: for all q such that Sqc > Tc do
26: E ⇐ E ∪ {(i, j) : (i, j) ∈ eqc}
27: end for

28: return E
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4.4.4 Result

Below are some results after using the edge detector on �ve di�erent images
using TNec = 100, C = [0, 0.1, 0.6, 1.3, 1.5, 1.8, 2.2, 2.5, 2.5, 2.5] and sk = k
for k = 1, . . . , 10.
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(a) Image I5 with edges plotted as red pix-
els.

(b) Edges for image I5. sc = 7, Sc = 272.6,
Cc = 2.2 and Pec = 0.9251

(c) Image I3 with edges plotted as red pix-
els.

(d) Edges for image I3. sc = 7, Sc = 438.8,
Cc = 2.2 and Pec = 0.9171

(e) Image I4 with edges plotted as red pix-
els.

(f) Edges for image I4. sc = 6, Sc = 105.3,
Cc = 1.8 and Pec = 0.8597

Figure 4.16: The edge detector used on di�erent images. The same thresh-
olding parameters was used for each image
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(a) Image I6 with edges plotted as red pix-
els.

(b) Edges for image I6. sc = 4, Sc = 396.7,
Cc = 1.3 and Pec = 0.9862

(c) Image I2 with edges plotted as red pix-
els.

(d) Edges for image I2. sc = 6, Sc = 366.7,
Cc = 1.8 and Pec = 0.9592

Figure 4.17: The edge detector used on di�erent images. The same thresh-
olding parameters was used for each image
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4.4.5 Discussion

As we see in Figure 4.16 and Figure 4.17 the result is acceptable for the quite
di�erent images I2, I3, I4, I5 and I6. The image I6 has distinct intensity
changes and little noise. The 2-D multiscale edge detector therefore detects
edges at the small scale sc = 4. Only 1.38 percent of the intially detecte
edge curves was not removed in the thresholding procedure. For the image
I3 having not as distinct edges and more noise than I6 the edge detector
uses the larger scale sc = 7 and 8.29 percent of the initially detected edge
curves was not removed in the thresholding procedure. It seems like thresh-
olding on d

dsk
Nec(sk) works well for determine the scale sc. For all images

the important edges are retained after thresholding on Sqc while keeping a
low number of edges corresponding to low contrast areas. For the image
I5 our thresholding method results in fewer low contrast edges than after
thresholding with hyseterias using Pne = 0.7 and R = 0.3 at sk = 8. The
parameters Pne, sk and R could be adjusted to give better result for image
I5, but then result might not be very good for the other images.
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Conclusion

The wavelet transform of an image acts as a di�erential operator on the
smoothed image and the amount of smoothing increases as the scale s in-
creases. Therefore small s should be used for best localisation of edges.
However, for small s the wavelet transform is sensitive to noise.

The 1-D multiscale edge detector works very well for locating singularities
and characterising Lipschitz regularity in 1-D signals. However, as an edge
detector for images the 1-D multiscale edge detector does not function satis-
factory. The result is poor escpecially for noisy images containg low contrast
edges. Also edges that are weak in both x-direction and y-direction wont be
detected well. For images with quite distinct edges and little noise the 1-D
multiscale edge detector yields edge points where most of the edge points
correspond to important intensity changes in the image. For most of the im-
ages the edge points did not lie nicely aligned as curves, but they were spread
with high consentration near high intensity areas in the image. Lipschitz reg-
ularity is not suited for determine which singular points are corresponding
to high intensity changes. For example a step edge of low amplitude have
the same Lipschitz regularity as a step edge of high amplitude.

The 2-D single scale edge detector and the 2-D multiscale edge detector
di�ers in how thresholding is performed and that the 2-D multiscale edge
detector automatically choose the scale to use when detecting the edges. The
threshold Tk = CkSk has an overall better performance for the images in this
report than the threshold with hysteresis.

The parametersN , TNec and {Ck}k=1,...,N in the 2-D multiscale edge detector
may be chosen to �t a large class of images. After the parameters are chosen
the 2-D multiscale edge detector only takes as input the image to be analysed.
Thus the 2-D multiscale edge detector is an user-friendly edge detector. In
comparison for �xed parameters Pne, sk and R the 2-D single scale edge

71
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detector will not function as satisfactory for a large class of images as the
2-D multiscale edge detector will.

Since the 2-D multiscale edge detector does calculations for several scales it
will use longer time detecting edges than the 2-D single scale edge detec-
tor. However the running time for the 2-D multiscale edge detector may be
shortened by choosing a smarter order which the calculations in Algorithm 2
is performed. For example if (−1) d

dsk
NecI is small for some sj then we can

skip to scale sj+n for some n > 1 and check the value at that scale instead
of sj+1. If (−1) d

dsk
NecI has to high value at sj+n then we go back and check

some scale between sj and sj+n.

The wavelet transform is also well adapted for other image analysis. For
example image compression and noise removal can be done e�ectively using
the wavelet transform. Mallat and Zhong gives examples of image recon-
struction from multiscale edges with a compression ratio over 30 [7]. The
recovered images have lost some small details, but is visually of good qual-
ity. This means that most of the important information of an image can be
represented by it's edges.

5.1 Further work

To derive edge detectors that are less sensitive to noise with good localisa-
tion properties further investigation on how to use the multiscale information
carried by the wavelet transform should be performed. For example in the
1-D single scale edge detector we connect maximum points through scales.
Maybe this can be done in the two-dimensional case as well by connecting
provisional edge points through scales. Another suggestion is to connect edge
curves through scales as well. Neither of these suggestions are easy to im-
plement and more details on how points or edge curves should be connected
must be derived.
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Appendix

A.1 Some de�nitions

De�nition A.1. vector space V is a set that is closed under �nite vector
addition and scalar multiplication.

De�nition A.2. A metric space is a set S with a metric g that, for every
two points x, y ∈ S, gives the distance between them as a nonnegative real
number g(x, y). A metric space must also satisfy

1. g(x, y) = 0 if and only if x = y

2. g(x, y) = g(y, x)

3. The triangle inequality g(x, y) + g(y, z) >= g(x, z)
De�nition A.3. A Cauchy sequence is a sequence a1, a2, . . . such that the
metric d(am, an) satis�es

lim
minm,n→∞

d(am, an) = 0 (A.1)

De�nition A.4. A complete metric space is a metric space in which every
Cauchy sequence is convergent.

De�nition A.5. A Hilbert space is a vector space H with an inner product
< f, g > such that the norm de�ned by

‖f‖ =
√
< f, f > (A.2)

turns H into a complete metric space.
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De�nition A.6. Let V be a vector space over a �eld K, and let A be a
nonempty set. Now de�ne addition p + a in A for any vector a ∈ V and
element p ∈ A subject to the conditions

1. p+0=p

2. (p+a)+b=p+(a+b)

3. For any q in A, there exists a unique vector a in V such that q=p+a

Here, a, b ∈ V. Then A is an a�ne space and K is called the coe�cient �eld.

Proposition A.1. Any closed subspace V of a Hilbert space H is itself a
Hilbert space.

A.2 Heisenberg's uncertainty principle

Let f(t) be a function in L2 (R) and denote

u =
1

‖f‖2

∫ ∞

−∞
t|f(t)|2dt (A.3)

ξ =
1

‖f‖2

∫ ∞

−∞
ω|f̂(ω)|2dω (A.4)

Since
∫∞
−∞

|f(t)|2
‖f‖2 dt = 1 the integrand can be interpret as a probability density

function with u as it's expected value. Using the same reasoning we interpret

ξ as the the expected value for |f̂(t)|2
‖f‖2 . Denote the variances around u and ξ

to be

σ2
t =

1
‖f‖2

∫ ∞

−∞
(u− t)2|f(t)|2dt (A.5)

σ2
ω =

1
‖f‖2

∫ ∞

−∞
(ξ − ω)2|f̂(ω)|2dω (A.6)

σt and σω is a measure of how much f(t) spreads around u and ξ respectively.
We say that f(t) is well localized in time if σt is small enough and well
localized in frequency if σω is small enough.

Heisenberg's uncertainty principle gives a lower bound on how well a func-
tion from L2 (R) can be localized in time and frequency.
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Heisenberg's uncertainty principle A.2. With σ2
t and σ2

ω as above for
f ∈ L2 (R) the following inequality is satis�ed

σ2
t σ

2
ω ≥

1
4

(A.7)

This inequality is an equality if and only if there exists (u, ξ, a, b) ∈ R2 ×C2

with b > 0 such that

f(t) = a expiξt−b(t−u)
2

(A.8)

[6, p. 31]

A Heisenberg box is a graphical view of the limitations given by Heisenberg's
uncertainty principle. Figure A.1 shows the Heisenberg box for a function f
with u, ξ, σ2

t and σ
2
ω as above.

A.3 One-dimensional de�nitions and properties

De�nition A.7. For f, g ∈ L2 (R) the convolution denoted by (f ? g) is
given by

(f ? g)(x) =
∫ ∞

−∞
f(u)g(x− u)du (A.9)

Property A.3. For f, g ∈ L2 (R) we have

(̂f ? g)(ω) = f̂(ω)ĝ(ω) (A.10)

[2, P. 313]

Property A.3 says that a convolution in the time-domain corresponds to a
product in the Fourier-domain.

Proposition A.4. If f ∈ Cn (R) ∩ L1 (R) and if all derivatives f (k), k =
1, . . . , n are in L1 (R), then

f̂ (k)(ω) = (2iπω)kf̂(ω) for k = 1, . . . , n

[2, P. 157]
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σω

t

σtσω ≥
1

2

σt

u

ξ

ω

Figure A.1: The Heisenberg box for a function f .

A.4 2-D wavelet transform with two scaling param-

eters

As in one-dimension we de�ne the 2-D wavelet in such a way that dilations of
the 2-D wavelet cover the Fourier plane and a reconstruction formula exists.
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De�nition A.8. Let Ψ = {ψk}nk=1 be a set of functions ψ
k(x, y) ∈ L2

(
R2

)
∩

L1(R2). Ψ is called a 2-D wavelet if there exists constants A > 0, B <∞ ∈ R
such that

A ≤ CΨ =
∫ ∞

0

∫ ∞

0

n∑
k=1

|ψ̂(ωx, ωy)|2

ωxωy
dωxdωy ≤ B (A.11)

In this case (A.11) are called the 2-D admissibillity condition. A 2-D wavelet
is a set of functions such that their dilations by (sx, sy) togheter cover the
Fourier plane and translations by (ux, uy) cover R2.

De�nition A.9. Let f(x, y) ∈ L2
(
R2

)
∩L1(R2) and Ψ a 2-D wavelet. The

2-D wavelet tranform of f with respect Ψ is the set of functions

Wf(u, v, su, sv) = {W kf(u, v, su, sv)}nk=1 (A.12)

with

W kf(u, v, su, sv)}nk=1 =< f, ψku,v,(su,sv) > (A.13)

Reconstruction - two scaling parameters

Proposition A.5. Let f ∈ L2
(
R2

)
∩ L1(R2), Ψ be a 2-D wavelet and

Wf(u, v, s) be the 2-D wavelet transform of f with respect to Ψ. Then

f(x, y) =
1
CΨ

∫ ∞

0

∫ ∞

0

n∑
k=1

[∫ ∞

−∞

∫ ∞

−∞
W kf(u, v, su, sv)ψku,v,(su,sv)(x, y)dudv

]
dsudsv
susv

(A.14)
with

CΨ =
∫ ∞

0

∫ ∞

0

n∑
k=1

|ψ̂(ωx, ωy)|2

ωxωy
dωxdωy (A.15)

Proof. We start with the function

Jk(x, y, su, sv) =
∫ ∞

−∞

∫ ∞

−∞
W kf(u, v, su, sv)ψku,v,su,sv

(x, y)dudv (A.16)
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Proposition 2.12 and Parseval gives

W kf(u, v, su, sv) =< f, ψku,v,su,sv
> (A.17)

=< f̂, ψ̂ku,v,su,sv
> (A.18)

=
∫ ∞

−∞

∫ ∞

−∞
f̂(ωx, ωy)e2iπ(uωx+vωy)ψ̂k(suωx, svωy)dωxdωy

(A.19)

= F−1[f̂(ωx, ωy)ψ̂k(suωx, svωy)](u, v) (A.20)

The we can write (A.16) as

Jk(x, y, su, sv) =
∫ ∞

−∞

∫ ∞

−∞
F−1[f̂(ωx, ωy)ψ̂k(suωx, svωy)](u, v)ψ(su,sv)(u− x, v − y)dudv

(A.21)

=< F−1[f̂(ωx, ωy)ψ̂k(suωx, svωy)](u, v), ψ(su,sv)(u− x, v − y) >
(A.22)

Using Parseval and Proposition 2.12 again we get

Jk(x, y, su, sv) =< f̂(ωx, ωy)ψ̂k(suωx, svωy), e−2iπ(xωx+yωy)F−1[ψ(τx, τy)](sωx, sωy) >
(A.23)

Assuming ψk(x, y) is real we get

Jk(x, y, su, sv) =
∫ ∞

−∞

∫ ∞

−∞
f̂(ωx, ωy)e2iπ(xωx+yωy)|ψ̂k(suωx, svωy)|2dωxdωy

(A.24)
De�ne the function

g(x, y) =
1
CΨ

∫ ∞

0

∫ ∞

0

n∑
k=1

Jk(x, y, su, sv)
dsudsv
susv

(A.25)

By interchange of integration and sum we get

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f̂(ωx, ωy)e2iπ(xωx+yωy)

[∫ ∞

0

∫ ∞

0

n∑
k=1

|ψ̂k(suωx, svωy)|2

susv
dsudsv

]
dωxdωy

(A.26)

=
1
CΨ

∫ ∞

−∞

∫ ∞

−∞
f̂(ωx, ωy)e2iπ(xωx+yωy)

[∫ ∞

0

∫ ∞

0

n∑
k=1

|ψ̂k(τx, τy)|2

τxτy
dτxdτy

]
dωxdωy

(A.27)

=
∫ ∞

−∞

∫ ∞

−∞
f̂(ωx, ωy)e2iπ(xωx+yωy)dωxdωy (A.28)

= f(x, y) (A.29)
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