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Abstract

We will evaluate forward contracts in the electricity market. A thorough
presentation of stochastic analysis for processes with discontinuous paths
are provided, and some results concerning these from mathematical finance
are stated.

Using a Feynman-Kac-type theorem by Pham [Pha98] we derive a partial
integro-differential equation giving the forward price from the spot dynam-
ics taken from Geman and Roncoroni [GR06]. This spot model is regime
switching, so we get two equations.

These equations are then attempted solved numerically.
We suggest the following approach: When implementing boundary-conditions

numerically we use values obtained from a Monte Carlo simulation of the
spot dynamics to calibrate the boundary.
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Introduction

Our mission is to derive the forward dynamics of a contract with the elec-
tricity spot as the underlying.

For some stochastic spot-models the forward-dynamics can not be found
analytically, due to the complexity of the model. Hence numerical simula-
tions, such as Monte Carlo simulations, are called for. Although accurate
and straightforward to implement, Monte Carlo simulations are often com-
putational inefficient, in that large number of random numbers must be
generated.

We propose an alternative approach, by using a partial integro-differential
equation.

Mean reverting jump diffusions have been used as a model for the elec-
tricity spot for some while. It is well-known that for such a jump-diffusion
we can derive an associated partial integro-differential equation giving the
conditional expectation of the spot value. However, solving such equations
may pose a problem. In the case for partial differential equations we would
argument for some boundary condition, and simply implement it using some
discretization. Values outside the domain, such as those occuring from Neu-
mann condition, could then be eliminated using “ghost” points for instance.

For integro-differential equations matters are worse. So, we will use the
knowledge of the dynamics to find the missing values using Monte Carlo
simulation.

The presentation is as follows: The first chapter is devoted to deriving
the stochastic integral for semimartingales. Chapter two will present some
relevant results from mathematical finance, and chapter three will give a
short and heuristically introduction to means of solving equations occurring
in finance.

The presentation is devoted to presenting ideas, and not proofs. These
can be found in any of the references listed in the back.

Lastly, some notational issues, common in this field, is to be found in
the appendix together with program code.

vii
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Theoretical Preliminaries
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Chapter 1

Stochastic analysis

“The theory of probability as a mathematical discipline can and
should be developed from axioms in exactly the same way as
geometry and algebra.”

A. N. Kolmogorov, Foundations of the Theory of Probability, 1933.

In this chapter our main concern is to develop the stochastic integral,
but other results connected to our work in later chapters will be represented.

The main source is Protter [Pro05]. Since nearly every result in the
sections to come can be found in [Pro05, Chapters I, II, III, IV] we make
precise references only if results are found elsewhere.

1.1 Measure- and integration theory

Lp-spaces. We start with a measure space (X,M, µ). For a measurable f
on X and for 0 < p <∞ we define the norms and corresponding spaces

‖f‖p =
( ∫
|f |pdµ

) 1
p
, and

Lp(X,M, µ) = {f : X → R : f measurable and ‖f‖p <∞}.
For the case p =∞ we define the norm

‖f‖∞ = inf
{
a ≥ 0 : µ({x : |f(x)| > a}) > 0

}
= ess supx∈X |f(x)|,

and the space

L∞(X,M, µ) =
{

measurable functions bounded µ-a.e.
}
.

Remark 1.1. Actually, for 1 ≤ p ≤ ∞, ‖·‖p is only a seminorm unless we
identify all the functions equal a.e. in equivalence classes. For the case p < 1
it is not a norm, indeed the triangle inequality is not valid.
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It is a well-known fact that the spaces Lp with the associated norm ‖·‖p
are Banach-spaces for the case 1 ≤ p ≤ ∞.

Radon-Nikodym’s Theorem. From integration theory we recall that for
a signed measure ν and positive measure µ defined on some measure-space
(X,M), we say that ν is absolutely continuous with respect to µ, if µ(E) = 0
implies ν(E) = 0 for every E ∈ M, and write ν � µ. If the opposite
implication also hold, then the measures are equivalent. Also recall that
two measures ν, µ are mutually singular if there exist E,F ∈ M such that
E ∩ F = ∅, E ∪ F = X and ν(E) = µ(F ) = 0.

Theorem 1.2 (Lebesgue-Radon-Nikodym [Fol99]). Let ν be a σ-finite signed
measure and µ a σ-finite positive measure on (X,M). Then there exist
unique σ-finite signed measures λ, ρ on (X,M) such that λ and ν are mu-
tually singular, ρ� µ and ν = λ+ ρ. Also, there is a µ-integrable function
f : X → R such that dρ = fdµ, and such functions are equal up to a set of
measure zero.

The function f is referred to as the Radon-Nikodym derivative, and we
write

dρ
dµ

= f.

As a matter of fact, the Radon-Nikodym theorem can be use to define the
conditional expectation and, as we shall see later, there are other applica-
tions of this theorem.

1.2 Stochastic analysis

Throughout this section assume that we are given a probability space (Ω,F ,P).

1.2.1 Basic definitions

Stochastic processes. We know the stochastic processes well from the
discrete-time case. In the continuous time setting the construction is highly
technical, and we shall not pursue it. We just state the usual definition:

Definition 1.3. Given a probability space (Ω,F ,P), a stochastic process is
a parametrized collection of stochastic variables {Xt(ω) : t ∈ T}, where T is
the parameter set.

Fixing an ω ∈ Ω, we refer to Xt(ω) as the path, and interpret this as one
possible outcome, out of many, from our experiment.

The parameter set T can be N, R+ or subsets thereof. Later we con-
centrate on the case T = [0, Tmax], with Tmax bounded, but for now, we
take T = R+. No generality is lost in this assumption, since we can embed
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[0, Tmax] in R+ by setting the stochastic process in question to zero outside
the set of interest in a suitable fashion. Recall that all stochastic variables
are by definition (Ω,F)-measurable, and so we will refer to measurable pro-
cesses as the ones that are measurable with respect to the sigma-algebra

B(R+)⊗F ,

where, as usual, B(R+) is the Borel sigma-algebra on R+.

The usual hypothesis. To our probability space (Ω,F ,P) we add a filtra-
tion (Ft)t∈R+ , i.e. an increasing family of sigma-algebras such that

Fs ⊂ Ft if s ≤ t.

We usually omit the parenthesis, and just write Ft when we refer to (Ft)t∈R+ .
Having introduced this concept, we say that a process is adapted to a filtra-
tion if it is Ft-measurable for all times.

Filtrations play an important part in mathematical finance since they
keep track of information: intuitively this means we can decide if an event
has occurred by the time t by looking at Ft.

Any stochastic processX generates the natural filtration FXt = σ(Xs|s ≤
t) by its pre-images. The process is obviously adapted to this filtration, and
furthermore this is the smallest filtration making X adapted. Hence to say
that a process is Ft-adapted is equivalent with saying that we have the
inclusion FXt ⊂ Ft. Interpreting this as a statement on the information
available to the market, then the information available is not give solely by
the process, i.e. the price history, but also other information is available.

Augmenting the natural filtration of a process with the P-null sets of F
thus completing Ft we can state

Assumption 1 (The ususal hypothesis). Assume we are given a filtered
probability space (Ω,F ,Ft,P), where (Ft)t∈R+. The filtration Ft satisfy the
usual hypotheses if

� F0 contains all the P- null sets of F and

� ∩s>tFs = Ft.

Again interpreting this from an financial perspective, the first property
in Assumption 1 states that already at time zero, we know which events that
will not happen and the second property states that an observer can “see”
into the immediate future.

Really, the filtrations play an essential part in much of this theory, as
can be seen from the fact that they occur many definitions, e.g. martingales:
recall from basic stochastic analysis that a martingale is an Ft-adapted
stochastic process X ∈ L1(P) with the property E[Xs|Ft] = Xt for t ≤ s.
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Stopping times. We say that the map T : Ω → R+ is a stopping time if
{T ≤ t} ∈ Ft for all t ∈ R+.

Stopping times are very useful in stochastic analysis, for instance to
“tame the continuum of time”as Chung so nicely put it, in order to make the
transition from uniform to local properties. They play an essential part for
instance in defining the stochastic integral, but are also useful to determine
when some process reach a specific level, for instance in path-dependent
options, e.g. Asian options.

Levy-processes. For our purposes, we shall be working with the following
class of stochastic processes:

Definition 1.4. A Levy-process is a stochastic process Xt adapted to the
filtered probability space (Ω,Ft,F ,P) with X0 = 0, satisfying the following:

(i) It has stationary increments, Xs −Xt ∼ Xs−t for 0 ≤ s ≤ t <∞

(ii) It has increments independent of the past, Xs − Xt independent of
Ft for 0 ≤ s ≤ t <∞

(iii) It is continuous with probability one

An important result is that for a Levy-process X we can always find an
unique modification1 which is càdlàg and also a Levy-process. We take this
modification by default.

The Levy-processes posses some nice mathematical properties, as we will
see, and allows for the introduction of jumps in the paths of the financial
asset. On the other side, it can be challenging to valuate assets with Levy
driving processes, and finding the precise jump-properties can be difficult.

These processes include relatively familiar ones from basic courses in
stochastic processes, as the following short example show:

Example 1.5 (Levy processes). Perhaps the two most famous Levy-processes
are the Brownian motion and the Poisson process. F

The third property in Definition 1.4 is the one to take special notice of,
and the following French acronyms are often used to describe processes that
are continuous a.s.: A càdlàg function is right-continuous functions with
left limits, and a càglàd function is left-continuous functions with right
limits. We put D and L for the for the space of càdlàg and càglàd processes
respectively. It can readily be shown that these processes may have at most
a countable number of jumps by property (iii) of Definition 1.4.

1Recall the stochastic processes X and Y are modifications if Xt = Yt a.s. for each
t ≥ 0.
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Characterization of Levy-processes. For any càdlàg stochastic process we
can use the left limit Xt− = lims↑tXs to define the jump

∆Xt = Xt −Xt−

at time t and say that the process has bounded jumps if supt |∆Xs| < M
for some constant M ∈ R. Now let X be Levy, and take Λ ∈ B(R) with a
closure not intersecting zero. Then we can define the sum of all jumps of
size belonging to Λ as

N(t,Λ) =
∑

0<s≤t
1Λ(∆Xs)

It is clear that N(t, ·) is a counting process keeping track of the number of
jumps of size in a given interval, and with some reflection we can convince
ourselves that it has inherited the stationary independent increments from
X; thus N(t, ·) must be a Poisson process. Also, from the definition it is
obvious that Λ 7→ N(·,Λ) is countable additive for disjoint sets, and so
it is a measure, or more precisely a Poisson random measure. Now, for a
Borel-measurable function f we can put∫

Λ
f(x)N(t,dx) =

∑
0<s≤t

f(∆Xs)1Λ(∆Xs),

and the integral is well-defined since N is a counting measure.
From the Poisson random measure we can define the expected number

of jumps of any given size in a time-interval of length one:

Definition 1.6. For a Levy-process, and Borel set Λ whose closure do not
intersect zero, we define the Levy-measure

ν(Λ) = E [N(1,Λ)] .

The Levy-measure is a Radon-measure describing the nature the jumps
completely. To simplify notation we make the choice ν({0}) = 0. It also
hold that ∫

R
min(1, x2)dν(x) <∞.

It turns out that the Levy-processes can be described completely by the
triplet (α, σ2, ν):

Theorem 1.7 (Levy-Khintchine formula). Let X be a Levy-process with
Levy-measure ν. Then

E
[
eiuXt

]
= e−tψ(u),

where we have the characteristic exponent

ψ(u) = −iαu+
σ2

2
u2 +

∫
R

(
1− eiux + iux1|x|<1(x)

)
dν(x),
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for α, σ ∈ R. We call (α, σ2, ν) the Levy-triplet, and given any such triplet
the corresponding process is unique in distribution.

If the Levy-measure is finite, we put ν(R) = λ for the expected number
of jumps and define the probability measure f(x) = ν(x)/λ. Assuming that
α = σ = 0, it can be shown that X must be a compound Poisson process:

Example 1.8 (Example 1.5 revisited). We now have the following examples
of Levy-processes:

(i) The drift has characteristic function Φ(u) = exp(−iαu)

(ii) The Brownian motion has characteristic function Φ(u) = exp(−σ2u2t/2)

(iii) The compound Poisson process: Let N be a Poisson process with inten-
sity λ, (Ji)i≥1 a sequence of i.i.d. stochastic variables with distribution
f(x) = ν(x)/λ, for ν a finite Levy-measure. We then put

Mt =
Nt∑
t=0

Ji,

and we have the characteristic function

Φ(u) = exp
(
t

∫
R
(eiux − 1)dν(x)

)
= exp

(
λt

∫
R
(eiux − 1)df(x)

)
.

Adding all these to one we get a Levy jump-diffusion. Figure 1.1 illustrates
the components, for α = 1.2, λ = 10 and the jumps distributed according to
N (0, 5). F

For a compound Poisson process, we could compensate it by subtracting
the Levy-measure in the following manner:

M̃t =
∫

[0,t]×R
z
(
N(ds,dz)− dν(z)ds

)
,

thus making M̃ a martingale.
One result on Levy-processes will prove to be useful:

Theorem 1.9. If X is a Levy-process we can write

Xt = Yt + Zt,

where Y and Z are Levy-processes such that Y ∈ Lp(P) for p ≥ 1 is a mar-
tingale with bounded jumps and Z has paths of finite variation on compact
sets.

8
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Figure 1.1: The components of a jump-diffusion.

1.2.2 Stochastic integration.

In the sections to come we will derive the stochastic integral. Protter [Pro05]
gives a readable account on stochastic integration-theory with respect to
semimartingales, and defines the semimartingales as“good integrators”. This
approach can be justified by the fact that the semimartingales are the largest
collection of processes for which a stochastic integral can be derived from
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simple processes to general ones by continuous extension. We follow Prot-
ter’s approach since it has obvious analogies to the theory of Lebesgue inte-
gration and allow us to present the theory compactly avoiding most of the
functional-theoretic arguments.

Local martingales. In defining the stochastic integral for semimartingales
a great deal of generality has been obtained. Historically, the development
has been from Brownian motion, martingales then local martingales and
lastly semimartingales.

As we will see in the next chapter, the class of semimartingales are the
needed degree of generality concerning mathematical finance.

We know from the general theory on the Itô-integral that for a general
integrand the integral need not be a martingale, but just a local martingale.
We make this notion more precise.

By localization, i.e. finding a sequence of stopping times converging to
infinity and using the stopped process

XT = (XT )t = Xt1t≤T +XT1t>T ,

we can generalize the martingale-property to a local one:

Definition 1.10. Let (Tn)n≥1 be a sequence of stopping times increasing
to infinity a.s., and X an adapted and càdlàg process such that XTn1Tn>0

is a martingale for each n. Then X is a local martingale.

Taking the sequence Tn = n we see that any càdlàg martingale is a
local martingale. The local martingales forms a vector space, and obviously
the martingales are included in this set by the preceding sentence. Local
martingales satisfying E

[
sups≤tXs

]
< ∞ are martingales; however, it is

important to note that the space of local martingales include many examples
that are not martingales.

The stochastic integral for simple predictable processes. Quite analogous
to the simple functions from measure theory, we state:

Definition 1.11. A process H is simple predictable if it can be written as

Ht = H0 +
n∑
i=1

Hi1(Ti,Ti+1](t)

for 0 = T1 ≤ · · · ≤ Tn+1 < ∞ a finite sequence of stopping times and
Hi ∈ FTi such that |Hi| < ∞ a.s. for 0 ≤ i ≤ n. The collection of all such
processes we denote by S.

We put L0 for the space of all finite-valued stochastic variables, and
equip this space with the topology of convergence in probability. We also

10



need a topology on S and choose the uniform topology, writing Su for this
space. Now we can define the linear map IX : Su → L0, acting on processes
and yielding stochastic variables, by

IX(H) = H0X0 +
n∑
i=1

Hi(XTi+1 −XTi).

Isolate the collection of all the càdlàg adapted processes X that make the
map continuous; then pick all stopped processesXt for t ∈ [0,∞) who belong
to this class and name them semimartingales.

We see that the semimartingales are the processes X that give meaning
to the map IX defined on S for arbitrary finite integration limits.

Theorem 1.12. Properties of semimartingales include:

(i) The semimartingales form a vector space

(ii) They do no depend on the null-sets: for probability-measures Q ∼ P
then a P-semimartingale is a Q-semimartingale

Example 1.13. Elementary examples include adapted càdlàg processes of
finite variation on compact sets, L2-martingales with càdlàg paths and Brow-
nian motion.

The next step is to extend the integral from S to a more general class
of integrands. It can be shown that the space S is dense in the set of all
càglàd functions L where convergence is uniformly on compacts in probability
(ucp), that is for each t ≥ 0 and ε > 0

P( sup
0≤s≤t

|Hn
s −Hs| ≥ ε)→ 0 as n→ 0.

Now we are ready for

Definition 1.14 (Stochastic integral for càglàd adapted processes). For a
semimartingale X we extend IXt : S→ D in a continuous fashion using the
density of S in L, so that we now have the mapping IXt : Lucp → Ducp, and
define the stochastic integral

JXt(H) =
∫
HsdXs. (1.1)

Thus we have defined the stochastic integral for processes with some
smoothness restriction on the paths, that is the number of jumps are at
most countable.

For many applications like Itô ’s formula and Girsanov’s Theorem this
is sufficient, but for stochastic differential equations and some applications
fundamental for mathematical finance, we need a more general integral.

Example 1.15 (The Itô-integral). Taking X = B, for B a standard Brow-
nian motion, we see that we get the Itô-integral, since the integrand is eval-
uated at the left side of the interval.

11



Quadratic variation. Recall the fundamental problem Itô faced [Itô51]
when deriving the stochastic integral for the Brownian motion was the un-
bounded variation of the paths on compact time intervals. His solution was
to restrict the analysis to processes adapted to the filtration generated by
the Brownian motion and to continue in a functional-theoretic manner using
isometries of Hilbert-spaces.

When deriving the stochastic integral for more general processes, the
quadratic variation acts like an inner-product, thus playing an important
role in this theory. We continue our discussion in the spirit of Protter.

Definition 1.16. Take X and Y to be semimartingales. Then the quadratic
co-variation is given by

[X,Y ] = XY −
∫
X−dY −

∫
Y−dX. (1.2)

If Y = X we get the quadratic variation

[X,X] = X2 − 2
∫
X−dX.

The quadratic variation is càdlàg , increasing and of finite variation.

Example 1.17. For the standard Brownian motion we have the quadratic
variation [B,B]t = t2. More generally, for a Levy-process

Lt = µt+ σBt +
∫

[0,t]×R
zN(ds,dz)

where µ, σ ∈ R, B is a standard Brownian motion and N a Poisson random
measure we have

[L,L]t = σ2t+
∫

[0,t]×R
z2N(ds,dz).

F

If we consider the map (X,Y ) 7→ [X,Y ] it is clear that it is symmetric
and bi-linear, so we have the following suggestive polarization identity

[X,Y ] =
1
2
[X + Y,X − Y ]− [X,X]− [Y, Y ],

reflecting the Hilbert-space structure of the inner product [·, ·].

Example 1.18. A well-known result connected to the quadratic variation
is the following: Recall that we have the integral∫ t

0
BsdBs =

1
2
B2
t −

1
2
t,

12



which equals to

f(Bt)− f(B0) =
∫ t

0
f ′(Bs)dBs +

1
2

∫ t

0
f ′′(Bs)ds (1.3)

where f(x) = x2/2. This differs from the ordinary Lebesgue-Stieltjes change
of variables formula for f ∈ C1 and a process A with continuous paths of
finite variation

f(At)− f(A0) =
∫ t

0
f ′(As)dAs. (1.4)

This difference is due to the quadratic variation, which introduces the term

1
2

∫ t

0
f ′′(Bs)d[B,B]s,

to the change of variables formula, and looking to Example 1.17 we see that
d[B,B]s = ds and (1.4) yield (1.3). F

We also note that the quadratic variation of a process of finite variation is
zero, and that by a trivial rearrangement of (1.2) we can find the integration
by parts formula

XY =
∫
X−dY +

∫
Y−dX + [X,Y ].

The stochastic integral for predictable processes. We start with a defi-
nition:

Definition 1.19. We define the predictable sigma-algebra P on R+ × Ω as
the smallest sigma-algebra that make all the processes in L measurable, i.e.

P = σ(H|H ∈ L).

For short we say that X is predictable when X is measurable with respect to
the predictable sigma-algebra. We write bP for the bounded P-measurable
processes.

To relate this definition to the previous measurability-condition stated
in the first paragraph of Section 1.2.1, we see that we have the containment

P ⊂ B(R+)⊗F .

It is a fact that this sigma-algebra is also generated by the continuous
adapted, càglàd adapted and left-continuous processes [RY05, Proposition
5.1]. Our mission in this Section is to define the stochastic integral for such
predictable processes.

With this in mind, we must first state a result describing the semimartin-
gales completely:
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Theorem 1.20 (Bichteler-Dellacherie). A process X is a semimartingale if
and only if it can be decomposed as the sum

Xt = X0 +Mt +At

where M is a local martingale, a process A of finite variation and A0 =
M0 = 0.

For applications we think of this as a deterministic signal A plus a noise-
term M .

This decomposition is not unique as can readily be seen by adding and
subtracting a compensated Poisson process to the two parts above respec-
tively, but if, in addition, A is predictable then this decomposition is unique,
and we say that X is a special semimartingale. As we have noted earlier,
the semimartingales do not depend on the null-sets; however special semi-
martingales do.

Remark 1.21. By unique in this setting, we of course mean unique a.s. This
is valid for all such statements to come also.

Example 1.22. All Levy-processes are semimartingales: By Theorem 1.9
they can be decomposed into the sum of an Lp-martingale, p ≥ 1, with
bounded jumps and a process of finite variation on compact sets. Hence by
Theorem 1.20 they are semimartingales, and even special semimartingales
by the comments preceding this example. F

Now we have positioned ourselves so that we can make some progress.
We assume that X is a special semimartingale with decomposition

Xt = Mt +At,

i.e. M a local martingale and A a predictable process of finite variation.

Remark 1.23. This we can do without loss of generality, since ifX is a general
semimartingale such that Xt = X0 +Mt+At we can put X∗ = Xt−X0 and
continue our discussion with X∗ instead of X.

Next we define the space of semimartingales H2 consisting of all semi-
martingales such that the norm

‖X‖H2 =
∥∥∥[M,M ]1/2∞

∥∥∥
2
+

∥∥∥∥∫ ∞

0
|dAs|

∥∥∥∥
2

is finite.

Theorem 1.24. The space H2 is a Banach space.

We observe that for H ∈ bL and X ∈ H2 then
∫
HsdXs ∈ H2, and given

the decomposition X = M +A then the integral can be decomposed as∫
HsdXs =

∫
HsdMs +

∫
HsdAs.

14



So we have∥∥∥∥∫ ∞

0
HsdXs

∥∥∥∥
H2

=

∥∥∥∥∥
(∫ ∞

0
H2
sd[M,M ]s

)1/2
∥∥∥∥∥

2

+
∥∥∥∥∫ ∞

0
|Hs||dAs|

∥∥∥∥
2

.

This allows us to define a metric on the space of bounded predictable pro-
cesses: for any X ∈ H2 and H,J ∈ bP we put

dX(J,H) =
∥∥∥∥(∫ ∞

0
(Hs − Js)2d[M,M ]1/2s

)∥∥∥∥
2

+
∥∥∥∥∫ ∞

0
|Hs − Js||dAs|

∥∥∥∥
2

.

What remains at this point is to prove the density of bL in bP under dX , and
apply this to approximate the integral for bounded predictable integrands:
For X ∈ H2 and Hn ∈ bL Cauchy with respect to dX , then∫

Hn
s dXs

is Cauchy in H2. Finally, after showing that this limit is well-defined, we
are finally here:

Definition 1.25 (Stochastic integral for bounded predictable processes).
For a semimartingale X ∈ H2 and H ∈ bP and sequence Hn ∈ bL such
that dX(Hn,H)→ 0 we define the unique stochastic integral as

Yt = lim
n→∞

∫ t

0
Hn
s dXs.

Thus the integral for bounded predictable processes is defined as the
limit of stochastic integrals or simple predictable processes.

We note that one could take the point of view that, for a given semi-
martingaleX, the stochastic integral acts like a linear operator

∫
: bP → L0,

and use duality to construct the integral.

The stochastic integral for arbitrary semimartingales. As we have done
before in the definition of local martingales, we could relax our hypothesis
that the integrands are bounded predictable and that the semimartingales
belongs to H2 by finding some local property for which we could still define
the integral. We complete our discussion on the stochastic integral in this
section, having reached the necessary generality.

Definition 1.26. For X = M + A in H2 we say that H ∈ P is (H2, X)-
integrable if

E
[∫ ∞

0
H2
sd[M,M ]s

]
+ E

[
(
∫ ∞

0
|Hs||dAs|)2

]
<∞

15



ForX a general semimartingale andH predictable and (H2, X)-integrable
we put Hn = H1|H|≤n. Then Hn is bounded and predictable for each n,
and ∫

Hn
s dXs

is Cauchy in H2.

Definition 1.27. Let X be a semimartingale in H2 and let H ∈ P be
(H2, X)-integrable and finally Hn = H1|H|≤n. We define the stochastic
integral as ∫

HsdXs = lim
n→∞

∫
Hn
s dXs.

So the stochastic integral for predictable processes is defined as the limit
of stochastic integrals for bounded predictable processes.

Now we can finish off the discussion with this last definition, using the
following version of a stopped processes:

XT− = Xt10≤t<T +XT1t≥T .

Definition 1.28 (The stochastic integral for semimartingales). Assume that
X is a semimartingale and H ∈ P. The stochastic integral exist if there is a
sequence of stopping-times Tn ↑ ∞ a.s. such that XTn− ∈ H2 for each n ≥ 1
and such that H is (H2, XTn−)-integrable for all n.

Supposing that the integral exist for such X and H we define the stochas-
tic integral ∫

HsdXs =
∫
HsdXTn−

s

on [0, Tn), and say that H is X-integrable and write this as H ∈ L(X).

A necessary condition for H ∈ L(X) is that the integral∫ t

0
H2
sd[X,X]s

exist and is finite for all t ≥ 0.

Theorem 1.29. We have the following properties of the stochastic integral,
where X is a semimartingale:

(i) Let H ∈ L(X). Then ∫
HsdXs

is a semimartingale

16



(ii) If X in addition is of finite variation, and H ∈ L(X) such that∫ t

0
|Hs||dXs|,

exist a.s. for each t ≥ 0, then the integral agrees with the Lebesgue-
Stieltjes integral ω − by− ω

(iii) If a, b ∈ R and H,J ∈ L(X) then aH + bJ ∈ L(X) and∫
(aHs + bJs)dXs = a

∫
HsdXS + b

∫
JsdXs

(iv) If Y is another semimartingale, and H ∈ L(X) ∩ L(Y ) then H ∈
L(X + Y ) and∫

Hsd(Xs + Ys) =
∫
HsdXs +

∫
HsdYs

(v) Let H ∈ L(X) and suppose that Q is a probability-measure such that
Q� P. Then the stochastic integral under Q is indistinguishable from
the stochastic integral under P, given that the latter integral exist.

1.2.3 Stochastic analysis

Itô ’s formula. We have already seen the change of variable formula for
processes of finite variation. Itô’s formula generalize this to semimartingales,
and tells us that a semimartingale is still a semimartingale under composition
with a C2-function.

Theorem 1.30 (Itô ’s formula). For X a semimartingale and f ∈ C2(R)
then f(X) is a semimartingale and we have the following formula

f(Xt)− f(X0) =∫ t

0
f ′(Xs)dXs +

1
2

∫ t

0
f ′′(Xs)d[X,X]s

+
∫

[0,t]×R
f(Xs)− f(Xs−)− f ′(Xs−)∆Xs −

1
2
f ′′(Xs−)(∆X2

s )N(ds,dz)

The stochastic exponential. The stochastic exponential can be used, amongst
other things, to solve stochastic differential equations. Here is

Theorem 1.31. For a semimartingale X with X0 = 0 there is a unique
solution of the stochastic differential equation

dZt = Zt−dXt, (1.5)
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and the solution is given by the stochastic exponential

Zt = exp
(
Xt −

1
2
[X,X]t

) ∏
0<s≤t

(1 + ∆Xs) exp
(
−∆Xs +

1
2
(∆Xs)2

)
(1.6)

We sometimes write E(X) for this unique solution.

Looking to (1.6) we see that if we want to model any financial asset by a
stochastic differential equation like (1.5), then for the jumps must we must
have ∆Xs ≥ −1, else X could take negative values.

Girsanov’s theorem. If A is a process of finite variation, A0 = 0 and such
that it has locally integrable total variation, then one could subtract a pre-
dictable process Ã of finite variation such that

A− Ã

is a local martingale. The process Ã is unique, and called the compensator
of A.

Example 1.32. For the Poisson process N with parameter λ we have the
compensator Ñ = λt, which is continuous hence predictable, and so

Nt − λt

is a martingale. F

For a semimartingale X such that [X,X]Tn ∈ L1(P) for the sequence of
stopping-times Tn ↑ ∞, we define the conditional quadratic variation 〈X,X〉
as the compensator of the quadratic variation [X,X]. For X a continuous
semimartingale we have that [X,X]t = 〈X,X〉t, and for a general semi-
martingale we have [X,X]t = 〈X,X〉t +

∑
s≤t(∆Xsm)2.

Girsanov’s theorem is of fundamental importance in mathematical fi-
nance. It states the existence of a measure transformation for absolutely
continuous measures, and we state several versions:

Theorem 1.33 (Girsanov-Meyer Theorem). Let P and Q be equivalent, and
let X be a semimartingale under P, with decomposition

Xt = Mt +At.

Then X is also a semimartingale under Q and has decomposition X = L+C,
where

Lt = Mt −
∫ t

0

1
Zu

d[Z,M ]u

is a Q-local martingale and C = X − L is a Q-FV-process.
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Theorem 1.34 (Girsanov-Meyer for predictable processes). Let X be a P-
local martingale with X0 = 0. Let Q be a probability-measure such that
P ∼ Q, and let

Zt = E
[
dQ
dP

Ft] .
If 〈X,Z〉 exist for P, then under Q we have the decomposition

Xt =
(
Xt −

∫ t

0

1
Zs−

d〈X,Z〉s
)

+
∫ t

0

1
Zs−

d〈X,Z〉s

It is possible to derive similar results for the case when we merely have
Q� P also.

We finish off with a result by Chan [Cha99], more suitable for our pur-
poses. Suppose that we have the dynamics

dSt = µtSt−dt+ σtSt−dBt + dNt

where B is a standard Brownian motion, N a compound Poisson process
with intensity λ and i.i.d. jumps Ji. µt, σt are continuous and deterministic.
We incorporate the “drift” originating from the compound Poisson process
into µ by putting

dSt =
(
µt +

∫
R
zdν(z)

)
St−dt+ σtSt−dBt + dMt,

where M is the compensated N . Note that
∫

R zdν(z) = λE [J ].

Proposition 1.35. Assume θt is predictable and

E
[∫ t

0
θ2
sds

]
<∞,

Then

Zt = exp
(
−

∫ t

0
θsdBs −

1
2

∫ t

0
θ2
sds

)
(1.7)

is a non-negative local martingale with Z0 = 1, and Z is positive.

Remark 1.36. In Chan’s paper we have chosen the H = 1 and h = 0, since
this is sufficient for our application of this result.

Theorem 1.37 ([Cha99]). Let Q and P be measures such that Q� P. Then
we have

dQ
dP

= ZT ,

for Z given by (1.7), for some θ for which E [Zt] = 1.
Under Q

Wt = Bt +
∫ t

0
θsds
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is a Brownian motion, and the Levy-measure is unchanged. θ is given by the
relation

σtθt = µt +
∫

R
zdν(z)− rt,

for r a continuous deterministic function.

1.3 The connection between stochastic- and differen-
tial equations

The connection between stochastic differential equations and partial differ-
ential equations have been known for a long time. Since an Itô diffusion
is a strong Markov process, we can identify its transition semi-group, and
study the semi-group to gain insight in the process itself. To study the
semi-group one can look at its infinitesimal generator, which is a partial
integro-differential operator.

1.3.1 The infinitesemal generator.

Assume we have a stochastic differential equation

dXt = µ(Xt)dt+ σ(Xt)dBt +
∫

R
γ(Xt−, z)Ñ(dt,dz), (1.8)

i.e. jump-diffusion or Levy-diffusion, with µ, σ : R→ R and γ : R× R→ R
such that:

(i) There is a constant C <∞ such that

|µ(x)|2 + |σ(x)|2 +
∫

R
|γ(x, z)|2dν(z) ≤ C(1 + |x|2),

for all x ∈ R.

(ii) There is a constant K <∞ such that

|µ(x)−µ(y)|2 + |σ(x)−σ(y)|+
∫

R
|γ(x, z)− γ(y, z)|dν(z) ≤ K|x− y|2.

Then we define the infinitesemal generator of (1.8), for u ∈ C2
0 (R), as

Au = µ(x)ux(t, x) +
1
2
σ2(x)uxx(t, x)

+
∫

R

(
u(t, x+ γ(t, x, z))− u(t, x)− 1|z|≤1γ(t, x, z)ux(t, x)

)
dν(z). (1.9)
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1.3.2 The Feynman-Kac formula

While developing his path integral Feynman“discovered”what we now know
as the Feynman-Kac formula, later proven by Kac. It states that for a given
partial differential equation, we can find a solution as the expectation of an
Itô-diffusion like

X(t,x)
s = x+

∫ s

t
b(u,X(t,x)

u )du+
∫ s

t
σ(u,X(t,x)

u )dWu (1.10)

for t ≤ s < ∞. We state not the Theorem itself, but a analogue result, to
be found in [KS98]. First we must make some assumptions:

Assumption 2. Assume that b, σ : [0,∞) × Rn → R are continuous and
satisfies the linear growth condition

‖b(t, x)‖2 + ‖σ(t, x)‖2 ≤ K2(1 + ‖x‖2)

for every (t, x) ∈ [0,∞) × Rn and K > 0. For fixed T > 0 and constants
L > 0, λ ≥ 1 consider the continuous functions g(x) : Rn → R, f(t, x) :
[0, T ]× Rn → R and k(t, x) : [0, T ]× Rn → R. Assume that they satisfy

|g(x)| ≤ L(1 + ‖x‖2λ) or g(x) ≥ 0 ∀ x ∈ Rn

and

|f(t, x)| ≤ L(1 + ‖x‖2λ) or f(t, x) ≥ 0 ∀ (t, x) ∈ [0, T ]× Rn.

Theorem 1.38 (Feynman-Kac formula [KS98]). Assume that all assump-
tions listed in Assumption 2 hold. Let A be the infinitesimal generator of
the Itô-diffusion (1.10). Suppose that u(t, x) : [0, T ] × Rn → R belongs to
C1,2([0, T )× Rn), and that u solves the partial differential equation{

−ut + ku = Au+ f in [0, T )× Rn

u(T, x) = g(x) x ∈ Rn.

In addition assume that

max
0≤t≤T

|u(x, t)| ≤M(1 + ‖x‖2κ) x ∈ Rn

for some constants M > 0 and κ ≥ 1. Then u(x, t) has the unique solution

u(x, t) = Et,x
[
g(XT ) exp

(
−

∫ T

0
k(u,Xu)du

)
+

∫ T

0
f(u,Xu) exp

(
−

∫ s

t
k(u,Xu)du

)
ds

]
on Rn × [0, T ].
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Proof. See [KS98, Theorem 5.7.6, p. 366].

The Feynman-Kac formula is frequently used, for instance when we want
to valuate exotic options, in which case finding a solution by analytical
methods can be quite difficult.

For the more general case of jump-diffusions Pham [Pha98] have given a
similar result. Again there are several assumptions that must hold, but first
we make some general remarks on the setting. Assumption 1 holds. We are
given a Brownian motion B and a homogeneous Poisson random measure
N with intensity measure dν(z)dt, where ν is the Levy measure, and the
compensated Poisson random measure is given by Ñ(dt,dz) = N(dt,dz)−
dν(z)dt. The jump-diffusion has dynamics given by

dXt = b(t,Xt−)dt+ σ(t,Xt−)dBt +
∫

Rn

γ(t,Xt−, z)Ñ(dt,dz). (1.11)

We have the infinitesemal generator A associated with (1.11). As earlier
we are looking for a classical solution u : [0, T ] × Rn → R to the Cauchy
problem{

−ut + ku = Au+ f for all (t, x) ∈ [0, T )× Rn

u(T, x) = g(x) for all x ∈ Rn.
(1.12)

We now state the conditions that must hold.

Assumption 3. First, assume that the functions b, σ, γ, c, f and g are con-
tinuous. In addition the following must hold:

(P1) There exists β > 0 such that for all t ∈ [0, T ] and x, ζ ∈ Rn then

ζTσσT(t, x)ζ ≥ β|ζ|2.

(P2) b and σ are bounded and locally Lipschitz in (x, t).

(P3) There exists a function ρ : Rn → R with∫
Rn

ρ2(z)dν(z) <∞,

such that

|γ(t, x, z)| ≤ ρ(z) for all (t, x) ∈ [0, T ]× Rn

|γ(t, x, z)− γ(t, y, x)| ≤ ρ(z)|x− y| for all (t, x, y) ∈ [0, T ]× Rn × Rn.

Also, we demand that

(t, x)→
∫

Rn

γ(t, x, z)dν(z)

is locally Lipschitz in (t, x).
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(P4) There exists a constant K > 0 such that for all (t, x, y) ∈ [0, T ]×Rn×
Rn

|b(t, x)− b(t, y)| − |σ(t, x)− σ(t, y)| ≤ K|x− y|.

(P5) There exists a constant K > 0 such that for all (t, x, y) ∈ [0, T ]×Rn×
Rn

|f(t, x)− f(s, y)| − |g(x)− g(y)| ≤ K
(
|t− s|+ |x− y|

)
.

(P6) k is bounded and locally Hölder-continuous in (t, x).

(P7) The measure ν is bounded

We can finally state Pham’s result:

Proposition 1.39 ([Pha98]). If the conditions in Assumption 3 holds, then
there exists a unique solution

u ∈ C1,2([0, T )× Rn) ∩ C0([0, T ]× Rn)

of the Cauchy problem (1.12). The solution satisfies

|u(t, x)| ≤ C(1 + |x|q) for all (t, x) ∈ [0, T ]× Rn,

for some q ∈ [0, 2]. The solution is given by

u(t, x) = Et,x
[
exp

(
−

∫ T

t
k(u,Xu)du

)
g(XT )

+
∫ T

t
exp

(
−

∫ s

t
k(u,Xu)du

)
f(s,Xs)ds

]
. (1.13)

Proof. The proof is given in Pham [Pha98].
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Chapter 2

Mathematical finance

A finance professor and a mathematics student are walking down
a street. Suddenly the student spots a 100 $ bill lying on the
sidewalk. As the student bends down to pick up the bill, the
professor says: “Don’t pick it up. It is quite impossible that a
100 $ bill is lying on the sidewalk – indeed if it were, somebody
else would already have picked it up.”

Ad.lib. after Schachermeyer [Sch04].

This chapter will be devoted to a brief introduction to mathematical
finance. We will give some definitions and examples, and state some impor-
tant result. From there we shall continue with a description of the electricity
market, and it’s fundamental characteristics. Lastly we will look at some of
the existing models of the electricity spot.

2.1 Historical background and some concepts

The early history. The history of mathematical finance can be traced back
to the year 1900 when Bachelier defended his doctoral thesis, in where the
Brownian motion was treated rigorously and applied in a financial context
for the first time. He proposed to use the Brownian motion as the driving
term in the stock dynamics

dSt = σS0dBt.

Some fifty years later Samuelson was the next to make progress, and sug-
gested that one should use the exponential of Bachelier’s model, since negative-
valued stocks had yet to be observed:

dSt = σStdBt.

Meanwhile mathematicians like Kolmogorov, Itô, Meyer and Levy had placed
the theory of probability on a solid foundation and invented the stochastic
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calculus. Several attempts had been made to solve the question on the
pricing of options during this time.

The pricing of options. An option is an example of a derivative security,
something we will define later, but for now we just describe it as a financial
contract whose value is derived from some underlying security, for instance
stocks, commodities or bonds. The option gives the holder the right to sell
the underlying security at a specific time and price, regardless of the actual
value the security may have at the time.

In the mid-sixties, Black and Scholes were working on the problem of
pricing an option, considering a portfolio consisting of a stock, bond and an
option, applying

dSt = αStdt+ σStdBt

as the stock-dynamics [BS73]. After some time they arrived at the paramount
insight that it was the risk that was the key to the problem. A couple of
years later Merton joined them, and brought with him tools from stochas-
tic analysis and the understanding of continuous time stochastic processes.
Merton realized that by continuously adjusting the portfolio consisting of
one bond, stock and option he could make the risk vanish.

In 1997 Merton and Scholes earned the Nobel Price in economics due
to their result. Black had passed away in 1995, so he was ineligible for the
prize.

Empirical objections. The application of stochastic analysis by Black &
Scholes is often thought of as the pinnacle of mathematical finance. However,
the Black & Scholes model has flaws, and can not capture the empirical facts
observed. Observed skewness and leptokurtic properties are not replicated,
but also path-wise properties like abrupt changes (jumps) in the prices are
hard to replicate without using large volatilities in this continuous model.
Trying to remedy these flaws, Merton was the first to propose a model
including jumps [Mer76]:

dSt = αSt−dt+ σSt−dBt + St−dNt.

Here we have the additional process N , representing the jumps. Depending
on the application, N could for instance be a Poisson or compound Poisson
process. Merton choose Gaussian distributed jumps.

Remark 2.1. Black & Scholes ran into problems when they wanted to publish
their result, presumably because of Black’s non-academic line of work as a
consultant. They had to try three times to get the article now so famous
published. Merton had on his own hand written a more general version, but
graciously delayed his publication until Black & Scholes article appeared.
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2.2 Arbitrage-free pricing

For semimartingales, the stochastic integral has been developed. As we will
see later, semimartingales are the natural degree of generalization.

Price process. Assuming the usual conditions described in Assumption 1,
we will in the following sections use the following notation: We let St =
(S0
t , S

1
t , . . . , S

n
t ) be a n+ 1-dimensional semimartingale, with

Sit : [0, T ]× Ω→ R, for i ∈ {0, 1, . . . , n},

denoting the price process of our securities. Following the usual practise,
we let S0

t be our riskless investment, and we assume that S0
t > 0 for all

t ∈ [0, Tmax], and S0
0 = 1. We assume that there are no cash flows associ-

ated with this security, such as dividends and that the market is frictionless.
Recalling that L(S) denote the collection of all predictable processes inte-
grable with respect to S, we shall refer to (S,L(S),P) as a model.

Remark 2.2. To have some boundedness, we assume that S is locally bounded,
i.e. there is some sequence of stopping times Tn converging to infinity almost
surely, such that St∧Tn <∞ uniformly for all n ∈ N. For instance, we could
take a Levy-process with bounded jumps.

We have already mentioned options, which is one example of the follow-
ing class:

Definition 2.3. A derivative security, or equivalently a contingent claim,
is a FT -adapted function F (ω) ∈ L2(P) where T is the strike time.

Let us start with a simple example, illustrating the idea:

Example 2.4 (An European option). An European call option written on
a stock S is a contingent claim giving its owner the right to buy stocks at
the time T for the price K. Is has the pay-off function

H(ω) = max{S(T )−K, 0},

with K the strike price.
Let the initial value of the stock be 100e. We assume the simple case

Ω = {ω1, ω2} with corresponding probabilities P = (1
2 ,

1
2), as illustrated in

Figure 2.1. Also, let there be an option written on this stock with strike
price K = 100e at time T . Reasoning according to classical probability
analysis we find the value of the option as

Vcl = EP[H] = (150− 100)p = 25e.

Assuming that there is is no price connected to borrowing, consider the
following actions by a trader at time zero:
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omega2

start

omega1

q

p

Figure 2.1: The possible values of the stock

1. She borrows 41.67e from the bank, at no cost

2. Then sell one option valued Vcl = 25e with strike time T and strike
price 100e

3. Buy 2
3 of a stock

To recapitulate, she commits herself to supply one stock at the price 100e
at time T to the buyer of the option, and she has bought two thirds of a
stock.

Case Up (ω1) Down (ω2)
Loan −41.67e −41.67e

Option −50e 0e
Stock 2

3150e 2
375e

Difference 8.33e 8.33e

Table 2.1: Summary of the investors profit at time t = T .

At the strike time one out of two things happen. If the stock goes up
she has stock holdings worth 100e(= 2

3 150e) and must supply one stock
to the buyer of the option, at the cost 50e. After paying her debt to the
bank she is left with a profit of 8.33e. If the stock is down she is left with
50e(= 2

375e) in stocks, and the buyer of the option does not exercise his
right. She makes a profit of 8.33e after repaying the bank. Thus she is
guaranteed to make a profit regardless of the value the stock takes at the
time T . A summary of the investors profit is shown in Table 2.1.

However, according to Black and Scholes’ reasoning we find another value
for the option. This involves replacing the probability P with another prob-
ability Q so that S is a martingale under this new probability, or more in-
tuitively, transforming the probability measure so that we have a fair game.
Since the stock initially is worth 100e we want to have q such that

EQ [ST ] = 150q + 75(1− q) = 100,
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under this new probability measure. Solving for q gives

q =
1
3
,

and so
Vbs = EQ[H] = (150− 100)q = 16.67e

is the true value of the option at time zero. F

This example introduced two fundamental concepts in pricing deriva-
tives: Pricing a claim by transforming the measure so that the price process
becomes a martingale under this new measure, and the concept of arbitrage.
As we saw, if the option was incorrectly priced then a clever arbitrageur
could make an arbitrary large profit without any risk.

It is common to refer to P as the physical probability measure, and Q as
the financial probability measure.

To make the notion of arbitrage more precise, we must introduce new
terminology:

Definition 2.5. A trading strategy is a real-valued n+1-dimensional process
φ ∈ L(S).

This is a natural definition since any trader should only be allowed to
adjust his portfolio by the information given up to time t reflected by the
fact that φ must be adapted to the filtration Ft.
Remark 2.6. To allow for some diversity in our language, we use portfolio
interchangeably with strategy.

We interpret the value of φi at any time as our holdings of security i in
our portfolio at the time T . The requirement that our strategies should be
predictable is equivalent with the fact that the content of this portfolio is
determined on the basis of our knowledge up to the time t.

Example 2.7. A buy-and-hold strategy could be represented as

φt = f1(T1,T2]

for stopping-times T1, T2 such that T1 ≤ T2 and f is FT1-measurable. F

Straightforwardly we can define the gain process generated by φ and the
corresponding price process S as the integral

G(t) =
∫ t

0
φu dSu.

To illustrate the need of having predictable strategies, we look to the fol-
lowing example:
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Example 2.8. Let the price process be be given as the negative of a com-
pensated Poisson process, i.e.

St = λt−Nt.

Denoting the first time N makes a jump by T1, we consider the strategy of
buying one unit of the security at t = 0 and selling it just before the price
falls, i.e. we have φt = 1[0,T1)(t). Since φ is not left-continuous it is not
càglàd and hence not predictable either. From this strategy we have the
gain ∫ t

0
φu dSu =

{
λt, if t < T1

λT1, if t ≥ T1,

and thus we have an arbitrage opportunity. We see that we must restrict
the possible strategies to predictable ones. F

One wonder why not simple predictable processes, cf. Definition 1.11
with the obvious interpretation as linear combination of buy-and-hold strate-
gies, are used to represent the actions taken by an investor. The answer is
partly connected to the use of replicating portfolios and the continuous up-
dating used in the Black & Scholes analysis, and the more mathematically
argument that we can approximate the integrand by simple ones.

Definition 2.9. A trading strategy φ is called self-financing if at time t it
can be written as

d(φtSt) = φtdSt

in the differential notation.

This translates to the investor placing an initial investment at time zero,
and with any increased value of the portfolio at any time t > 0 is due solely
to the gain, and no additional infusion of cash. We are now able to be
mathematical precise in the characterization of arbitrage:

Definition 2.10. A model is arbitrage free if there are no self-financing
trading strategies a such that

� φ0S0 = 0

� φTST ≥ 0 a.s, with

� P(φTST > 0) > 0.

Going back to Example 2.4, the we recall the fundamental idea of switch-
ing between measures to find the correct value of the claim. This relationship
between P and Q is such a fundamental one in mathematical finance, that
it has its own name:
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Definition 2.11. A probability measure Q on F equivalent to P is called an
equivalent local martingale measure (EMM) if S is a local martingale under
Q.

Remark 2.12. The probability measure Q is also known as the risk-neutral
measure.

Now the question is on the existence of an equivalent martingale mea-
sure. From Radon-Nikodym’s theorem we know that given equivalent mea-
sures P and Q then we can find the Radon-Nikodym derivative, i.e. random
variable in this case, Z ∈ L1(P) such that

dQ
dP

= Z =⇒ Q(Λ) = E [1ΛZ] ,

and put

Zt = E
[
dQ
dP

Ft] .
To show that Z is a martingale, we could use the Novikov condition

E
[
exp

(1
2
[Z,Z]∞

)]
<∞.

By equivalence of Q and P we can apply Girsanov’s Theorem to the price-
process. Anticipating the events somewhat, recall the technique for the
continuous case:

Example 2.13. Let us look at the model proposed by Black & Scholes. We
are given a probability-space (Ω,F ,Ft,P), and the following dynamics:

dSt = µStdt+ σStdBt (2.1)

We have the constants µ, σ, r ∈ R, and standard Brownian motion B. Now
we postulate the existence of Q, and must somehow find a measure-transform
so to make S a Q-martingale. According to the discussion above, the Radon-
Nikodym derivative is then given by

dQ
dP

= ZT ,

and our task is to find this Z. From Girsanov’s Theorem we know that the
semimartingale S = A + M there is a decomposition S = L + C for S a
semimartingale under Q with L a local martingale and C a finite variation
process. We seek to find such a decomposition such that C = 0. We have
that

σ

∫ t

0
SudBu −

∫ t

0

1
Zu

d[Z, σ
∫ ·

0
SudBu]
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is a Q-local martingale. Writing

Zt = 1−
∫ t

0

µ

σ
ZudBu, Z0 = 1

we find that ∫ t

0

1
Zu

d[Z, σ
∫ ·

0
SudBu] = −µ

∫ t

0
Sudu

since [B,B]t = t and hence that

σ

∫ t

0
SudBu + µ

∫ t

0
Sudu (2.2)

is a Q-local martingale and

dSt = θStdLt

with Lt = Bt + µt/σ from (2.2), and θ = µ/σ. F

Remark 2.14. The constant θ in Example 2.13 is frequently referred to as
the market price of risk.

As noted earlier the question on which strategies to consider is an im-
portant one, and we have seen mathematical and economical arguments to
choose predictable processes. However, not all predictable processes should
be considered and strong economical arguments imply that we should make
some restrictions on the strategies.

To disallow trading strategies like the doubling strategy, where a profit
can be guaranteed if only enough money can be borrowed, we must place re-
strictions on the trading strategies, and so we say that a predictable trading
strategy is admissible if there is a lower bound K ∈ R such that∫ t

0
φudSu ≥ −K

a.s. for all t ≥ 0. That is to say that there is a finite line of credit for an
investor.

Before we proceed, we note that it is of great importance to make the
right choice when defining strategies. As we have pointed out, one easily
could rationalize the simple predictable processes as our choice of strate-
gies. This choice, however, make the mathematics quite unappealing from
an economical viewpoint, for instance in the definition of no-arbitrage con-
ditions (no free lunch), so in search for a more economically pleasing theory
predictable strategies are the proper choice.

Remark 2.15. Some more trivia: The French phrase “la martingale” is used
to refer to this doubling strategy. An example illustrating the doubling
strategy is presented in [KS98, Example 2.3, p.8].
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The question of the connection between arbitrage and equivalent mar-
tingale measures for semimartingales have been resolved by Delbaen and
Schachermeyer, who give a disposition in [DS06]. The theory is quite tech-
nical for the general case, i.e. for unbounded semimartingales, and beyond
our scope. We are quite happy to restrict ourselves to the case for bounded
semimartingales, and will only try to make some general remarks, since we
now are on the edges of our knowledge considering the powerful interplay of
analysis, topology and functional analysis.

With this in mind, let us define the following:

K =
{∫ ∞

0
φu dSu |φ admissible and lim

t→∞

∫ t

0
φu dSu exists a.s.

}
, (2.3)

C = {f ∈ L∞(P) | there is g ∈ K such that f ≤ g} . (2.4)

We interpret K as all the claims available through admissible predictable
strategies at the prize zero.

These spaces let us define a more general arbitrage condition:

Definition 2.16. We say that a semimartingale S satisfies the no free lunch
with vanishing risk (NFLVR) condition if C ∩ L∞+ = {0}.

The closure of C is taken with respect to the topology induced by ‖·‖∞,
i.e. the norm associated with L∞.

Theorem 2.17 (The fundamental theorem of asset pricing [DS06]). For a
locally bounded semimartingale S there exists a equivalent local martingale
measure Q if and only if S satisfies the NFLVR criterion.

The NFLVR-property will be used in the following manner: We hypoth-
esize that the market arbitrage-free, which imply the NFVLR-property and
thus the existence of an equivalent local martingale measure. Then we can
apply Girsanov’s theorem to find such a measure.

Remark 2.18. The most general case has yet to be achieved in our discussion.
For the case where the semimartingale is not necessarily bounded, there
is an equivalent probability measure Q equivalent to P such that S is a
sigma-martingale under Q. A sigma martingale is, with some degree of
simplification, a process that can be written as the integral of a strictly
positive predictable process, with respect to a local martingale.

Delbaen and Schachermeyer [DS06] are able to show that for a locally
bounded process S satisfying the NFLVR-property, then S must be a semi-
martingale, thus our a priori assumption that the price process must be a
semimartingale is justified.

Contrary to the continuous case, we do not have uniqueness in the equiv-
alent martingale measure, so given any semimartingale there are several
choices of equivalent martingale measures.
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Example 2.19. As in the previous example, we take real coefficients: let
µ, σi ∈ R for i = 1, 2, 3. Assumption 1 applies. Suppose we have the follow-
ing price process

dSt = µSt−dt+ σ1St−dWt + σ2St−dBt + σ3St−dMt,

where W and B are independent Brownian motions, and M is a compen-
sated Poisson process, i.e. Mt = Nt − λt for N a Poisson process with
intensity λ independent of both W and B. We let M̃ be the sum of the
three martingales. To find a equivalent martingale measure, all we have to
do is to eliminate the drift, and we show four possibilities:

a) We can proceed as shown in Example 2.13, and choose one of the Brow-
nian motions to be our starting point:

Z1
t = 1−

∫ t

0
µZ1

uSudBu with Z1
0 = 1.

Then by the following∫ t

0

1
Z1
u

d〈Z1, M̃〉u = −µ
∫ t

0

1
Z1
u

Z1
uSud[B,B]u = −µ

∫ t

0
Sudu

and Girsanov’s Theorem we see that S has no drift under Q, and change
of measure given by dQ1 = Z1

TdP.

b) Similarly, we can take use W to find a change of measure dQ2 = Z2
TdP

precisely as above, with W in place of B.

c) If we put

Z3
t = 1− µ

∫ t

0
Z3
u

1
λ
SudMu, with Z3

0 = 1

we find∫ t

0

1
Z3
u

d〈Z3, M̃〉u = −µ
∫ t

0

1
Z3
u

Z3
u

1
λ
Sud〈M,M〉u = −µ

∫ t

0

1
λ
Suλdu.

Again, we see that S has no drift under Q, and we have the relationship
dQ3 = Z3

TdP.

d) Lastly, any linear combination of the above:

Z4
t = 1− µ

∫ t

0
Z4
u

(
αSudBu + βSudWu + γ

1
λ
SudMu

)
with Z4

0 = 1

where α, β and γ are non-negative and such that α+ β + γ = 1.

We have still not exhausted the possible choices. In part d) we can replace
the deterministic combinations with random ones, and obtain several other
possibilities. F
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2.3 The electricity market

In the beginning of the nineties, a world-wide process to deregulate the na-
tional power started. Since then the electricity system has been open for
competition, and this in turn have led to the introduction of power markets,
where power is traded; both the spot itself and derived products such as
futures and forwards. Examples of such markets include the European En-
ergy Exchange (EEX), The New York Mercantile Exchange (NYMEX) and
the Nordic Power Exchange (NordPool). In addition there is a significant
over-the-counter (OTC) market. We shall be concerned with the forward
contract only:

Definition 2.20. A forward contract is an agreement between a seller, tak-
ing the short position, and a buyer, taking the long position, that a trans-
action of an asset is to take place at some future time T for a certain price
F (t, T ). This agreed upon price is called the forward price.

In mathematical terms we can write the arbitrage-free forward price from
Definition 2.20 as

EQ

[
e−

R T
t r(u)du

(
ST − F (t, T )

)Ft] = 0, for t ≤ T ≤ Tmax,

where Q is an equivalent martingale measure. Being a contingent claim
F (t, T ) must be adapted, so this relation simplifies to

F (t, T ) = EQ

[
ST

Ft] .
In contrast to other commodities, the electricity stands out in several

important ways. The electricity can not be stored once produced, at least
in some financial satisfying way, so the spot is not tradeable. Also, it is pro-
duced for immediate consumption, and only useful for any practical purposes
if delivered during a period of time. In addition the lack of any practical
means to transport the electricity over any greater distance, make the de-
mand inelastic and also dependent on local conditions, such as supply and
demand or for given weather conditions. For instance the spot-price in-
crease after weather-forecasts predicting colder weather. This is the origin
of a powerful mean-reverting behavior.

A common way to hedge the risk is to use a simple buy-and-hold strategy,
illustrated in the following example.

Example 2.21. Assume we have the spot price S(0) = 100e, at the initial
time, and that there risk free interest rate is 10% per annum, continuously
compounded. Suppose that the one-year forward price written on this com-
modity is F (0, 1) = 130e. The following strategy would then yield a profit:

1. Borrow 100e
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2. Buy one item of the commodity

3. Enter into a forward contract to sell the commodity at the time t = T
for a amount of 130e

At the time T the trader would sell the commodity and receive 130e, repay
the loan (with interest) of 110e and make a profit of 20e. F

However, this simple buy-and-hold strategy does not apply, due to the
non-storability of the electricity. So, in contrast to other commodities mar-
kets where participants could store the commodity to hedge the risk from
price-variations, the non-storability of electricity make the price closely con-
nected to the supply and demand at any given time.

For a further discussion of the electricity market, the articles by Lucia
and Schwartz [LS02] and Benth and Koekebakker [BK05] give a thorough
discussion - in particular they discuss the NordPool. Information of a more
pragmatic nature is also readily available on the respective web-sites.

2.3.1 Modelling the electricity spot

There are generally two approaches one could take when valuating financial
derivatives: One could derive a model of the underlying security and from
this valuate the claim, or one could alternatively try to model the dynamics
for the claim directly. This latter approach shall be of no interest to us in
this thesis; we shall only consider the former method. We note that the
former method tend to give more analytical tractable expressions though,
so it is not without interest.

Any sound model must try to capture as much of the properties of the
spot as possible. This is to say that both path-wise and statistical properties
should be taken into account. For the electricity spot observed path-wise
properties include seasonality at three levels: annually, monthly and intra-
day, and in addition the spot demonstrates large jumps, and a strong rever-
sion to a mean level. Obviously we can not say something specific about the
statistics of the spot model without an empirical study of time series.

We shall discuss two of the proposed spot models in some detail in the
following sections.

2.3.2 The Schwartz model

Schwartz proposed the model holding his name for general commodities in
[Sch97], and later he applied it to the electricity spot in cooperation with
Lucia [LS02]. Originally the model did not include jumps, but we have
chosen to include them to capture the influence of jumps in the spot price
and statistics. Due tho the mean-reverting nature of the electricity spot, the
dynamics are given as an Ornstein-Uhlenbeck process:

dS̃t =
(
µ− αS̃t−

)
dt+ σdBt + dNt. (2.5)
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We use the notation S̃ = logS. In the stochastic differential equation (2.5)
µ ∈ R denotes a mean level, α ∈ R the speed of which we have mean
reversion and σ ∈ R the volatility. Further, we have that B is a standard
Brownian motion and the representation

Nt =
∫

[0,t]×R
zN(ds,dz),

for the Poisson random measure N .

2.3.3 Geman & Roncoronis model

The spot model proposed by H. Geman and A. Roncoroni are presented in
[GR06], and really only differs from (2.5) in the last term:

dS̃t =
(
µ− αS̃t−

)
dt+ σdBt + h(St−)dNt. (2.6)

The function h represent some threshold c ∈ R where the jumps are allowed
take on negative values, i.e. the jumps can now also be negative to inflict
an abrupt fall in the spot price

h(St−) =

{
1, if St− ≤ c,
−1, if St− > c.

This is an example of a regime switching model.
The jump size distribution is given as

p(x) =
γ exp(−γx)

1− exp(−γ∆max)
,

for 0 ≤ x ≤ ψ, where γ,∆max, ψ ∈ R.
From [GR06] we find the parameters of (2.6) we shall use for the three

different regions.
All relevant constants are listed in Table 2.2.

Parameters
Model µ α σ ∆max γ c λ

ECAR 3.0923 38.8938 1.8355 3.3835 0.3129 5.5923 9.0
COB 2.8928 42.8844 1.3631 1.0169 1.0038 3.8928 2.0
PJM 3.2002 13.3815 1.4453 1.6864 0.5016 4.7002 9.667

Table 2.2: Listing of parameters for the spot model (2.6), taken from [GR06].
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2.3.4 Pricing in the electricity market

We saw in Example 2.19 that there are several ways one can find an equiva-
lent martingale measure. The approach taken by Merton, who first proposed
jump diffusions, are shown in the next example.

Example 2.22. For the classical jump-diffusion price process{
dRt = rRtdt, R0 = r

dSt = St−

[
µdt+ σdBt + dNt

] (2.7)

proposed by Merton [Mer76], we have the constants µ and σ, B a stan-
dard Brownian motion and N a compound Poisson process with intensity
λ. Merton did not price the risk premium associated with jumps:

θ =
µ+

∫
R zdν(z)− r
σ

.

The risk-neutral dynamics are then given by

dSt = St

[
rdt+ σdWt + dMt

]
,

where M is the compensated N and W is a Q-Brownian motion, as follows
from Theorem 1.37.

This is to say that the risk can be diversified away, and to let the price
of jumps be propagated to the price of the claim in question. F

Several authors have adopted Merton’s approach and applied it to the
electricity market: For our purposes Cartea and Figueroa [CF05] and Benth
et al. [BEHN03] are relevant applications of Merton’s choice in the electricity-
market.
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Chapter 3

Numerical methods in finance

“At that time, the notion of partial differential equations was
very, very strange on Wall Street”

R. C. Merton, Derivative Strategies, 1998.

In this chapter we review some of theory of numerical solution of partial
differential equations, extend this theory to the integro-differential case, and
finish off with a discussion of Monte Carlo simulations.

3.1 Introduction

The complexity of the models occurring in mathematical finance have in-
creased steadily over the last century and, in many cases, to the point where
purely analytical insight is hard to obtain. For the two stochastic models
we are concerned with in this thesis, only one of them are tractable by pen
and paper solely when we want to valuate derivatives. And so, we have no
option but to resort to numerical simulations.

In mathematical finance two numerical approaches occur frequently: One
exploits the connection between partial differential equations and stochastic
differential equations, and the other exploits the ability to generate large
amounts of random (actually, pseudo-random) numbers by computers.

Remark 3.1. In this chapter we will use the notation u(x, t) as opposed to
u(t, x) used in Chapter 1, so to keep in line with current notation used in
textbooks. We are confident that this small change of notation will present
no challenge to our readers.

3.2 Partial differential equations

In this section we will motivate the study of integro-differential equations in
finance. The theory on this subject is quite extensive, so we will not go into
details.
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3.2.1 Parabolic differential equations

A linear operator on Rn is said to be semi-elliptic if it is given by

L =
n∑

i,j=1

aij(x, t)∂xixj +
n∑
j=1

bj(x, t)∂xj + c(x, t), (3.1)

where the coefficients aij , bj and c are all bounded and real, L satisfy the
ellipticity condition yTa(x, t)y ≥ ξ|y|2 for some non-negative real ξ and
y ∈ Rn. Operators of the form

∂t + L (3.2)

are then parabolic. This brings us to parabolic partial differential equations{
ut + Lu = 0 on U × (0, T ]
u(x, 0) = h(x) for x ∈ Rn,

(3.3)

for U ⊂ Rn, not necessarily bounded. We often restrict h to, say, the class
of continuous functions with at most polynomial growth.

Examples of parabolic equations include diffusion equations like the heat
equation and convection-diffusion equations like the Black-Scholes equation.

For our purposes the typical example of a parabolic equation is the Black-
Scholes equation:

Example 3.2 (Black-Scholes PDE). We recall the dynamics used by Black
& Scholes in their derivation of the option price, illustrated in Example 2.13:{

dRt = rRtdt, R0 = r

dSt = µStdt+ σStdBt.
(2.1)

We let the interest-rate r ∈ R be constant, i.e. we assume that the large
investor do not get any benefits of being large. First we write the risk-neutral
dynamics of this equation, which we can find from Girsanov’s Theorem:
Under the risk-neutral measure Q

dWt = dBt + θdt

is a Brownian motion, and upon inserting we find the risk-neutral dynamics

dSt = (µ− σθ)Stdt+ σdWt = rStdt+ σStdWt

and θ = (µ− r)/σ. Next, we find the infinitesimal generator

Au = rxux +
1
2
σ2x2uxx.
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for u ∈ C2,1(R× [0, T ]). Assuming that h is continuous and such that

|h(x)| ≤ L(1 + |x|2) or h(x) ≥ 0,

for L ≥ 0 we can apply the Feynman-Kac formula. Now it is straightforward
to see that the degenerate backward parabolic equation{

ut + rxux + 1
2σ

2x2uxx − ru = 0, on R× [0, T )
u(T, x) = h(x), x ∈ R

(3.4)

known as the Black-Scholes partial differential equation, has the unique
solution

u(x, t) = Et,x
[
e−rth(St)

]
.

F

We note that (3.4) is backwards but can easily be turned into a forward
equation by the transformation τ = T − t.

Initial- and boundary conditions. From Example 3.2 we learned that Feynman-
Kac’s formula only provide us with one condition, and since the equation is
of second order in x we need additional conditions.

Consider for instance an European call in Example 3.2: Then

h(x) = max{x−K, 0}.

We see that if St is zero in (2.1) then dSt is zero, and so S must be constant.
This is a deterministic, and the only such, solution of (2.1). If S is zero at
the terminal time T then from the pay-off function we see that there is zero
payoff, and so the call option is worthless on S = 0. Hence we could put

u(0, t) = 0.

Considering the other extreme, when the asset price increases without bounds,
it will become more likely that the option will be exercised, regardless of the
actual value of the option. Hence, as x approaches infinity, we have

u(x, t) = x.

Localization. Neither from a financial nor numerical perspective is an un-
bounded domain, as we have in Example 3.2, satisfying. The limitations on
storage in computers imply that we must localize the problem to a bounded
domain before we can solve it. Later we will introduce an integral term into
the parabolic equation (3.2) and form a parabolic partial integro-differential
equation, but we leave this for now and return to the subject in a moment.
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3.2.2 Parabolic integro-differential equations

Now, what is the case for price-processes with jumps?

Example 3.3. Let us take a closer look at Merton’s model, briefly encoun-
tered in Section 2.1 and Example 2.22:{

dRt = rRtdt, R0 = r

dSt =
(
µ+

∫
R zdν(z)

)
St−dt+ σSt−dWt + St−dMt,

with Mt the compensated Poisson process. We can appeal to Theorem 1.37
by Chan, and find a change of measure such that

dWt = dBt + θdt

is a Q-martingale with the price of risk

θ =
µ+

∫
R zdν(z)− r
σ

.

Inserting we find the risk-neutral dynamics

dSt = rSt−dt+ σSt−dWt + St−dMt,

and the infinitesemal generator

Au = rxux +
1
2
σ2x2uxx +

∫
R

(
u(x+ zx)− u(x)− zxux

)
dν(z)

defined for C2,1 functions on R× [0, T ). Now we can use the result by Pham,
Proposition 1.39, and find that the solution of the partial integro-differential
problem{

ut + rxux + 1
2σ

2x2uxx +
∫

R

(
u(x+ zx, t)− u(x, t)− zxux(x, t)

)
dν(z),

u(x, T ) = h(x)

is given as
u(x, t) = Et,x[e−r(T−t)h(ST )],

with Lipschitz pay-off function h. For example, we could take h(x) =
max{x−K, 0} for the European call option. F

Hence, by introducing jumps into our price process, we get a partial
integro-differential equation{

ut + Lu+ Iu = 0 on U × (0, T ]
u(x, 0) = h(x) for x ∈ Rn,

(3.5)
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for I some integral operator. Typically, I is of the type

Iu =
∫

Rn

(
u(x+ γ(t, x, z), t)− u(x, t)− 1|z|≤1γ(t, x, z)ux(x, t)

)
dν(z),

with ν the Levy-measure of the associated price process. Often this measure
is finite and compactly supported, for instance for all jump-diffusions with
bounded jumps, and so the problem simplifies to

Iu =
∫
E

(
u(x+ γ(t, x, z), t)− u(x, t)

)
dν(z)

for E compact, after moving the ux-term from the integral- to the differential
operator. In many cases the simplification can be taken even further, so we
could take for instance γ(t, x, z) = z and we are left with the integral

Iu =
∫
E

(
u(x+ z, t)− u(x, t)

)
dν(z)

= λ

∫
E
u(x+ z, t)dp(z)− λu(x, t),

after using the relations p(z) = ν(z)/λ and
∫

dp(z) = 1. So, for the simplest
non-trivial scenario we are left with the integral operator

Iu =
∫
E
u(x+ z, t)dp(z). (3.6)

Localization and truncation. Suppose that the domain U = R in the
parabolic integro-differential equation (3.5). To have a tractable problem,
we must localize the problem to a bounded subset of the real numbers, and
so we define {

ūt + Lū+ Iū = 0 on [−A,A]× (0, T ]
ū(x, 0) = h(x) for x ∈ (−A,A)

as the solution of this localized problem.
Needless to say, this introduce some error, and analysis of this matter

should be performed.

Boundary conditions. Another issue is due to the non-locality of the inte-
gral term. To find the integral for some inner point x ∈ (−A,A) we must
know u for the values x + y with y ∈ supp{ν}. Obviously, difficulties arise
when we try to compute u outside [−A,A]. The remedy is to introduce some
auxiliary numerical boundary condition

ū(x, t) = g(x, t) for x 6∈ (−A,A)

to the localized problem. Possible choices for could be g = 0 or g = h, for h
the pay-off function of the given problem.
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3.3 Finite difference methods

Definitions and notation. Assume that we have the two-dimensional case
and the domain Ω = [−A,A] × [0, T ]. We partition the domain with N
points in the space coordinate, and M in the time coordinate. Let the step
sizes in t and x-direction be given as ∆t = T/M and ∆x = 2A/N . we put

tm = m∆t, for m = 0, . . . ,M and
xj = −A+ j∆x for j = 0, . . . , N.

We approximate u at the points listed above, and write

vmj = u(xj , tm).

From the definition of the derivative we have

ut(x, t) = lim
∆t→0

u(x, t+ ∆t)− u(x, t)
∆t

= lim
∆t→0

u(x, t)− u(x, t−∆t)
∆t

.

This motivates the forward- and backward difference approximations

ut ≈
vm+1
j − vmj

∆t
, ut ≈

vmj − v
m−1
j

∆t
,

and the central difference

ut ≈
vm+1
j − vm−1

j

2∆t
.

Analogously we define the differences for the x-partial derivative, and in
addition the second derivative central difference

uxx ≈
vmj−1 − 2vmj + vmj+1

∆x2
.

3.3.1 The differential case

For the purely differential case, we look at the parabolic equation given by
(3.3), for some elliptic differential operator L given by (3.1). Applying the
difference approximations stated above we can derive the following discrete
operator:

Ldv
m
j = amj

vmj−1 − 2vmj + vmj+1

∆x2
+ bmj

vmj+1 − vmj
∆x

+ cmj v
m
j , (3.7)

where amj = a(xj , tm) and likewise for bmj and cmj for 0 < j < N and 0 ≤
m ≤M . Trivial rewriting yields

Ldv
m
j =

1
∆x2

amj v
m
j−1 +

1
∆x2

(
∆x2cmj −∆xbmj − 2amj

)
vmj

+
1

∆x2

(
amj + ∆xbmj

)
vmj+1. (3.8)
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From this we see that we get a tri-diagonal sparse matrix.
Now we define the θ-scheme1:

−
vm+1
j − vmj

∆t
= θLdv

m
j + (1− θ)Ldvm+1

j

for θ ∈ [0, 1]. This enables us to define the following schemes:

� For θ = 1 we have the explicit Euler scheme: vm+1
j = (I −∆tLd)vmj

� For θ = 0 we have the implicit Euler scheme: (I + ∆tLd)vm+1
j = vmj

The explicit scheme is potentially unstable so stringent conditions must be
met to ensure stability, but on a positive note the scheme is computationally
efficient since Ld is the origin of a tri-diagonal matrix. For the implicit
scheme there are no stringent stability condition, however the scheme is
computational inefficient in that for each iteration a system of equations
must be solved.

Other methods exist, like the Crank-Nicolson scheme where θ = 1/2.

3.3.2 The integro-differential case

Numerical evaluation. To evaluate the integral (3.6) we could apply any
numerical method for integration. For instance, we could use the trapezoid
rule: We partition [Bl, Bu] into intervals of size ∆x as we have used in the
finite difference approximation earlier, and choose integers Kl,Ku such that

[Bl, Bu] ⊂ [(Kl − 1/2)∆x, (Ku + 1/2)∆x].

The integral is then given by

∫ Bu

Bl

u(xj + z, tm)dp(z) ≈
Ku∑
i=Kl

piv
m
i+j

for

pi =
∫ (i+1/2)∆x

(i−1/2)∆x
dp(z)

and vmi+j = u(xj + zi, tm). Hence we have the discrete integral operator

Idv
m
j =

Ku∑
i=Kl

piv
m
i+j , (3.9)

1This θ is not to be mistaken with the price of risk
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so for each vmj we get a sum of Ku −Kl terms. Clearly, this operator is the
origin of a dense matrix: For j ∈ {0, . . . , N} we get

Idv
m
j =

Ku∑
i=Kl

vmj+ipi

= vmKl+j
pKl

+ · · ·+ vmKu+j pKu .

Since j varies in 0, . . . , N we need the values vKl
, . . . , vN+Ku , hence we get

the (N +Ku −Kl)× (N +Ku −Kl) band-matrix

pKl
· · · pKu

. . . . . .

pKl+j · · · pKu+j

. . . . . .

pKl+N · · · pKu+N


.

Finite difference solution. We now extend the methods outlined in Sec-
tion 3.3.1, and find the following θ-scheme for the partial integro-differential
equation:

−
vm+1
j − vmj

∆t
=θ1Ldvmj + (1− θ1)Ldvm+1

j

+θ2Idvmj + (1− θ2)Idvm+1
j ,

again for θ1, θ2 ∈ [0, 1]. We define explicit and implicit solutions as before.
A natural choice would be to use an implicit scheme for the differential

term, since a sparse matrix arise from Ld. From the operator Id, however,
a dense arise so an explicit scheme is preferred for this term since solving
a large system of linear equations at each time step is computational de-
manding. Hence we choose θ1 = 0 and θ2 = 1, and get an implicit-explicit
(IMEX) scheme

(I + ∆tLd)vm+1
j = (I −∆tId)vmj ,

after trivial rewriting. Assuming we have the initial auxiliary boundary
condition u(x, t) = g(x, t) for x 6∈ (−A,A) we get:

3.4 Monte Carlo simulations

The idea. The Monte Carlo method exploits the fact that we can take
volume as an analogy for probability. If we think of the integral∫ 1

0
f(x)dx
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Algorithm 1 Finite difference solution
1: if i = 1, . . . , N then
2: v0

j ← xj
3: else if i 6= 1, . . . , N then
4: v0

j ← g(xj , 0)
5: end if
6: for m = 0, . . . ,M − 1 do
7: if i = 1, . . . , N then
8: vm+1

j ← (I + ∆tLd)−1(I −∆tId)vmj
9: else if i 6= 1, . . . , N then

10: vm+1
j ← g(xj , tm+1)

11: end if
12: end for
13: Apply boundary conditions

as an expectation with x some random variable, then the strong low of large
numbers imply

1
n

n∑
i=1

f(Ui) −→
∫ 1

0
f(x)dx

as n → ∞ a.s. if Ui ∼ Unif(0, 1). One of the advantages of Monte Carlo
simulations is immediate: we can relax the regularity restrictions on f .

Generation of random numbers. To generate random numbers from any
given distribution there are several alternatives. For instance, the inverse
method is useful: If F is the cumulative distribution function of the proba-
bility distribution we want to draw numbers from, we set

X = F−1(U), for U ∼ Unif(0, 1).

Obviously, the requirement is that it is possible to obtain the inverse of
F . This method is often applied when it comes to generate exponentially
distributed numbers.

Generation of sample paths. The solution of stochastic differential equa-
tions are indeed a large subject in it’s own right. We shall not give any
detailed treatment, just mention the bare minimum so that our application
are justified.

The problem is to approximate processes such as

XT = xt +
∫ T

t
µ(s,Xs−)dSt +

∫ T

t
σ(s,Xs−)dBs +

∫ T

t
γ(s,Xs−)dNs,
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where xt ∈ R, for B a Brownian motion and N a compound Poisson process
with intensity λ. The coefficients

σ : R2 → R, γ : R2 → R

are taken to be continuous, for instance, but other alternatives exist.
Given a partition t = τ0 < τ1 < · · · < τM = T of the time interval [t, T ],

we define the iterative Euler approximation, for the case γ = 0 initially:

Xn+1 = Xn + µ(τn, Xn)(τn+1 − τn) + σ(τn, Xn)(Bτn+1 −Bτn),

for n = 0, . . . ,M − 1. We have the initial value X0. We have

E
[
Bτn+1 −Bτn

]
= 0, and

E
[
B(τn+1

−Bτn)2
]

= (τn+1 − τn),

from the usual properties of the Brownian motion. A thorough treatment
of this case is given in Kloeden and Platen [KP92].

Turning to the case γ 6= 0, we must incorporate the jumps. Recall that
the compound Poisson process is given by

N(t)∑
j=0

Yj ,

where the Y ’s are i.i.d. and N a Poisson process with intensity λ.
The discrete version reads

Xn+1 = Xn + µ(τn, Xn)(τn+1 − τn) + σ(τn, Xn)(Bτn+1 −Bτn) +
N(τi+1)∑

j=N(τi)+1

Yj .

(3.10)
The implementation is mostly straightforward, but some issues are con-
nected with the simulation of the jumps. Especially, some authors suggest
that one should simulate the jump times and sizes upfront, and then insert
them into the partition t = τ0 < · · · < τn = T . This is not convenient, for
instance, when doing Monte Carlo simulations, since we want to take the
sum of vectors with the same size.

We shall therefore apply another approach, taken from Glasserman [Gla04]

As a final comment, we note that the independent increments of the
Poisson process have been used, and that

Nτi+1 −Nτi ∼ Poisson

with mean
E

[
Nτi+1 −Nτi

]
= λ(τi+1 − τi)

.

48



Algorithm 2 Solution of (3.10)
1: Initialize
2: Generate B ∼ N (0, 1)
3: Generate N ∼ Poisson(λ(τn+1 − τn))
4: if N = 0 then
5: Set Y = 0
6: else if M ≥ 1 then
7: Generate M = Y1, . . . , YM
8: end if
9: Set Xτn+1 = Xτn + µ(τn, Xn)(τn+1 − τn) + σ(τn, Xn)

√
τi+1 − τi B +M
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Part II

Results and discussion
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Chapter 4

Results

4.1 Analytical results

This chapter will present our results. The methods we use are outlined
earlier, so the chapter contain calculations mainly.

4.1.1 The Forward Price w.r.t. Schwartz’ model

Let the usual hypothesis listed in Assumption 1 be satisfied. Assuming that
the electricity market satisfy the no free lunch with vanishing risk crite-
ria, we know that there exist an equivalent local martingale measure Q by
the fundamental theorem of asset pricing and can apply the arbitrage-free
pricing method illustrated in a previous chapter.

Recall the modified Schwartz model (2.5)

dS̃t =
(
µ− αS̃t−

)
dt+ σdBt + dNt,

with the short hand notation S̃ = logS. For a discussion of the model, look
to Section 2.3.2.

We shall employ the ideas outlined in Section 2.3. We know from Theo-
rem 1.37 that there is a θ ∈ R such that

dWt = dBt + θdt,

is a Q-martingale, and use the Girsanov theorem to find the measure-
transformation. As as illustrated in Example 2.22 we get the risk-neutral
dynamics

dS̃t =
(
µ+

∫
R
zdν(z)− σθ − αS̃t−

)
dt+ σdWt + dMt, (4.1)

where we use the compensated compound Poisson process. Now we put
µ̂ = µ+

∫
R zdν(z)− σθ.
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Result 1. The forward price with respect to Lucia and Schwartz’ model, is
given by

F (t, T ) = Se
−α(T−t)

t exp
( µ̂
α

(1− e−α(T−t))
)

exp
(σ2

4α
(1− e−2α(T−t))

)
exp

( ∫ T

t
ψ(e−α(T−s))ds

)
. (4.2)

We have the following:

(i) The price of risk is given by the relation θ = µ+
R

R zdν(z)
σ = µ+λ

R
R dp(z)

σ

(ii) F (T, T ) = ST as should be expected

Proof. To solve the stochastic differential equation (4.1) we multiply by a
suitable integrating factor and integrate by parts:

d(eαtS̃t) = eαtdS̃t + S̃td(eαt) + d[eαt, S̃]t
= eαtµ̂dt+ eαtσdWt + eαtdMt.

Now we integrate over [t, T ] and multiply by e−αT to arrive at

S̃T =e−αT
(
S̃te

αt +
∫ T

t
eαsµ̂ds+

∫ T

t
eαsσdWs +

∫ T

t
eαsdMs

)
=e−α(T−t)S̃t +

∫ T

t
e−α(T−s)µ̂ds

+
∫ T

t
e−α(T−s)σdWs +

∫ T

t
e−α(T−s)dMs.

Taking the exponential leads to

ST = exp
(
e−α(T−t) logSt +

∫ T

t
e−α(T−s)µ̂ds

+
∫ T

t
e−α(T−s)σdWs +

∫ T

t
e−α(T−s)dMs

)
= Se

−α(T−t)

t exp
( ∫ T

t
e−α(T−s)µ̂ds

)
exp

( ∫ T

t
e−α(T−s)σdWs

)
exp

( ∫ T

t
e−α(T−s)dMs

)
.
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At this point we take expectations with respect to the risk-neutral measure.

F (t, T ) =EQ

[
ST

Ft]
=EQ

[
Se
−α(T−t)

t exp
( ∫ T

t
e−α(T−s)µ̂ds

)
exp

( ∫ T

t
e−α(T−s)σdWs

)
exp

( ∫ T

t
e−α(T−s)dMs

)Ft]
=Se

−α(T−t)

t exp
( ∫ T

t
e−α(T−s)µ̂ds

)
EQ

[
exp

( ∫ T

t
e−α(T−s)σdWs

)
exp

( ∫ T

t
e−α(T−s)dMs

)Ft].
Next we appeal to the independence of the W - and N -integrals, and use the
following two results: Since W is a Brownian motion under Q we have that

EQ

[
exp

( ∫ T

t
e−α(T−s)σdWs

)]
= exp

(1
2

∫ T

t
e−2α(T−s)σ2ds

)
.

We also have the the following relation, justified in Section A.3 in the Ap-
pendix:

EQ

[
exp

( ∫ T

t
e−α(T−s)dMs

)]
= exp

( ∫ T

t
ψ(e−α(T−s))ds

)
.

Continuing our proof, we find

F (t, T ) = Se
−α(T−t)

t exp
( ∫ T

t
e−α(T−s)µ̂ds

)
exp

(1
2

∫ T

t
e−2α(T−s)σ2ds

)
exp

( ∫ T

t
ψ(e−α(T−s))ds

)
,

and after calculating the integrals we are done.

4.1.2 An PIDE for the forward price

In this section we shall find a partial integro-differential equation giving the
forward curve. By the Markovian property for Levy-processes we know that

E [Xt|Ft] = E [Xt|Xt = x] ,

supposing the process is adapapted to a suitable filtered probability-space
and such that the integral exist. We will use this fact implicitly.
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The partial integro-differential equation. We recall the model proposed
by Geman and Roncoroni, which we restate for convenience:

dS̃t =
(
µ− αS̃t−

)
dt+ σdBt + h(S̃(t−))dNt, (2.6)

with the notation S̃ as before and

h(S̃t−) =

{
1 if S̃t− ≤ c,
−1 if S̃t− > c.

We will make use of Proposition 1.39 due to Pham. Setting aside ques-
tions of regularity for the moment, we shall continue with our derivation
of the partial integro-differential equation, and arguing as in the previous
section we rewrite (2.6) on the risk neutral form

dS̃t =
(
µ̂− αS̃t−

)
dt+ σdWt + h(S̃t−)dMt.

Here we have used the same price of risk as in the previous section, so
µ̂ = µ +

∫
R zdν(z) − σθ. Then we have the corresponding infinitesemal

generator with u ∈ C2
0 :

Au(x, t) =
(
µ̂− αx

)
ux +

σ2

2
uxx

+
∫

R

(
u(x+ zh(x), t)− u(x, t)− zh(x)ux

)
dν(z), (4.3)

defined on [0, T ]× R.
Before we present out second result, we let A∗ denote the generator

we find after we have applied Itô on (2.6). Since we never actually need
this generator, we do not write it out. Equivalently, we could have made
the appropriate transformations on the integro-differential equation, but the
calculations are messy and not informative so we leave them out.

Result 2. The price F = F (t, T, s) ∈ C2
0 [R × [0, T ]] of a forward con-

tract with (2.6) as the underlying spot-model, is given as the solution of the
Cauchy problem {

Fτ = A∗F on R× (0, T ]
F (0, T, s) = exp(s) for s ∈ R.

(4.4)

We have the unique solution

F (t, T, s) = Et,s
Q [ST ] (4.5)

Here the integro-differential operator A∗ is the one shortly described in the
text before the result. It is defined on [0, T ]×R, and τ is the time to maturity,
that is τ = T − t.
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Proof. We look at (2.6). First, note that since all the conditions in Assump-
tion 3 hold for constant and linear coefficients, we find by a straightforward
application of Proposition 1.39 that the solution to the problem{

−ut = Au on R× [0, T )
u(x, T ) = g(x) for x ∈ R

(4.6)

is given by
u(x, t) = Et,x

Q [g(S̃T )]

after making the choices f = k = 0 and g(x) = exp(x). This gives the
price of the forward contract with initial values given by S̃. The integro-
differential operator A is defined by (4.3) on the domain (x, t) ∈ R× [0, T ).

Next, we apply the transformation τ = T − t to transform (4.6) into a
forward equation. Since it is more convenient to have the solution in terms
of St instead of S̃t, we change variables

S̃t = logSt = x⇔ S(t) = ex

we can rewrite (4.6) to a partial integro-differential equation giving the for-
ward price by putting F (t, T, y) = u(log x, t):

F (t, T, y) = EQ [g(ST )|St = y] ,

and we see that u gives the price of the forward contract after the transfor-
mation.

The equation we will be solving is (4.6), since it is easier to solve problems
with constant coefficients numerically. We will then transform it back to our
problem afterwords. It is therefore our object of study in the following.

Since ν is a compactly supported on E = [0,∆max], and a bounded
measure, we can rewrite the integral term of A in the fashion outlined in
Section 3.3.2, and find∫

E

(
u(x+ z h(x), t)− u(x, t)− zh(x)ux(x, t)

)
dν(z)

=
∫
E
u(x+ z h(x), t)dν(z)− λu(x, t)− h(x)ux(x, t)

∫
R
xdν(z).

Also, we put µ̂∓ := µ̂∓
∫

R zdν(z) depending on h(S̃t−), and insert back into
(4.3) to find that

Au =
σ2

2
uxx +

(
µ̂∓ − αx

)
ux − λu(x, t) + λ

∫
E
u(x± z, t)dp(z).

57



Boundary conditions. Since we have a parabolic problem, we must apply
boundary conditions on both boundaries. Keep in mind that the original
problem is not stated on a bounded domain; this only occurs after we have
truncated the domain for numerical solution. Hence the introduction of
boundary conditions are motivated by the numerical implementation.

One possibility would be to assume that the asymptotics follow some
real function f so that

ux(x, ·) ≈ f(x) as x→ ±∞,

and possibly taking f as the payoff-function, so to “extend” our solution
[BNR07]. Some take the function f equal to zero, thus specifying a Neumann
type boundary condition.

Another approach would be to apply convexity-restrictions, and use the
second-derivative of the forward price with respect to the underlying, FSS =
0, which after the usual transformation yields

uxx + ux = 0 as x→ ±∞.

In effect, we are assuming that the solution is linear for large values of S.
This is the boundary condition we will use.

One last condition, on x = 0, is Fτ = 0, representing an absorbing state.
We get uτ = 0.

4.2 Numerical implementation

The forward price with respect to Schwartz model. Implementation of
the analytical forward price with respect to the dynamics by Schwartz is
relatively straightforward. The main issue is the integral∫

R
Ψ(e−α(T−s))ds,

which has to be solved numerically due to complexity. Actually, this is
a frequently occurring problem in exp-Levy models. Several approaches
can be applied to this end; we choose a relatively simple method found in
[DPS00] known as the tanh-rule. The method is first order accurate O(h),
and has the nice property that it is robust with respect to singularities in
the integrand. The precise formula is given as

∫ b

a
f(x)dx ≈ 2 tanh

[∆x
2
f
(a+ b

2

)]
. (4.7)
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4.2.1 Solution by finite differences

As we have noted earlier, it is beneficial to solve the transformed problem
(4.6) instead of the problem (4.4) yielding the forward-price for reasons of
stability.

Recall that we are working on the convection-diffusion problem including
an integral-term{

uτ +
(
µ̂± + αx

)
ux = σ2

2 uxx − λu+ λ
∫
E u(x± z, t)dp(z),

u(x, 0) = exp(x)
(4.6)

given on R× [0, T ). Even for small values of x the advection term dominates
the diffusion term.

We recall that µ̂± = ±
∫

R zdν(z) = ±λE [z], where the expectation is
with respect to the jump-probability density.

Differential operators. The differential operators are implemented in the
same manner for both cases, i.e. small and big x-values, so we conclude the
discussion on these matters at this point.

For the discrete differential operators, there are a variety of choices. Since
both a first- and second derivative are present, we must use a second-order
central scheme to approximate the first-order term in order to have O(∆x2).

Implicit-explicit formulation. Convection-diffusion problems are often dif-
ficult to approximate using finite differences. So, to solve (4.10) we apply
an implicit-explicit method in combination with time stepping.

Based on these remarks, and those earlier, we make the choices

� G(u,Du,D2u) = (µ̂∓ − αx)ux + σ2

2 uxx − λu, and

� H(Du, Iu) = λ
∫
E u(x± z, t)dp(z).

G will be solved implicitly, and H explicitly.
In addition using time splitting, we arrive at the implicit-explicit scheme

vm+1
j − vmj

∆t
= Gdv

m+1
j +Hdv

m
j .

Rearranging we find that we have to solve the problem

vm+1
j = (I −∆tGd)−1(I + ∆tHd)vmj , (4.8)

and apply Algorithm 3.
Let us proceed and discuss the cases for 0 ≤ x ≤ c and c ≤ x ≤ A

separately, i.e. the cases for small- and large initial S̃ values.
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Algorithm 3 Solution of (4.10) by finite differences
1: if m = 0 then
2: for j = 0, . . . , N − 1 do
3: v0

j ← xj
4: end for
5: for j = N, . . . , N +K do
6: vm+1

j ← exp(xj)
7: end for
8: else if m = 1, . . . ,M then
9: for j = 0, . . . , N − 1 do

10: vm+1
j ← (I + ∆tId)vmj

11: vm+1
j ← (I −∆tDd)−1vmj

12: end for
13: for j = N, . . . , N +K do
14: vm+1

j ← exp(xj)
15: end for
16: Insert boundary conditions using Monte Carlo simulation
17: end if

4.2.2 Small x-values.

Starting with the case 0 ≤ x ≤ c, we find that the we must solve the problem{
uτ +

(
µ̂+ + αx

)
ux = σ2

2 uxx − λu+ λ
∫
E u(x+ z, t)dp(z)

u(x, 0) = exp(x)
(4.9)

on the x-interval [0, c], and, by the convolutional effect of the integral we
need values for u on the strictly larger domain [0, c+ ∆max].

Next we partition the domain [0, c] into N parts, and put ∆x = c/N . We
also chooseK ∈ N such thatK = b∆max/∆xc, and hence have (N+K)∆x ≈
c+ ∆max.

Numerical evaluation of the integral. The integral deserves some spe-
cial attention. As noted earlier, we make the choice ∆x = ∆z so as to simply
things somewhat. For any j ∈ {1, . . . , N − 1} we have to find the integral

Idv
m
j =

∫ ∆max

0
v(xj + z)dp(z)

=
∫ xj+∆max

xj

v(y)p(y − xj)dy,

where we have left out the time dependency. We may also do this in the
following without any warning.
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Since we have taken K ∈ N such that K∆x ≈ ∆max, applying the
Trapezoidal rule, we find the numerical approximation

Idv
m
j =

K−1∑
i=0

∫ xj+yi+1

xj+yi

v(y)p(xj − y)dy,

and since ∆y = ∆x we get xj + yi = xi+j and thus, putting pi = p(xi), we
have

Idv
m
j =

1
2
∆x

K−1∑
i=0

(
vmi+jpi + vmi+j+1pi+1

)
=

1
2
∆x

(
vmj p0 + vmj+KpK + 2

K−1∑
i=1

vmi+jpi

)
, for j = 1, . . . , N − 1.

Writing out the sum and collecting terms, we can identify the linear system

Idv
m
j = Pvmj ,

for all j ∈ 1, . . . , N − 1 where

P =


p0 2p1 · · · 2pK−1 pK 0 . . . 0

. . . . . .

p0 2p1 · · · 2pK−1 pK

 ∈ RN−1,N+K−2,

acting on all the points of the domain [0, c+ ∆mac] yielding results in [0, c].

Boundary conditions. To approximate the boundary-conditions we use

uτ (0) =
vm+1
0 − vm0

∆t
⇔ vm+1

0 = vm0 ,

and the approximation

uxx(c, τ) + ux(c, τ) = 0⇔ vmN =
1
2
(1 +

∆x
2

)vmN−1 + (1− ∆x
2

)vmN+1,

which is O(∆x2) since we have used the second order central difference
scheme to approximate the first derivative.

The unknown values, for instance vmN+1, will be found using a Euler dis-
cretization and Monte Carlo simulation of the stochastic differential equation
(2.6). This is accomplished using the methods described in Section 3.4.
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4.2.3 Large x-values

For large values the discussion is mostly as in the previous Section. Some
exceptions, however are present.

This time the problem we seek to solve is{
uτ +

(
µ̂− + αx

)
ux = σ2

2 uxx − λu+ λ
∫
E u(x− z, t)dp(z)

u(x, 0) = exp(x)
(4.10)

We take the interval [c, A] and partition it in N intervals. As before, we
choose K = b∆max/∆c. We notice the slight difference in the coefficient for
the convection term; for large values of x it is to be regarded as unimportant.

Numerical evaluation of the integral. In precise manner as before we find

Idv
m
j =

∫ ∆max

0
v(xj − z)dp(z)

=
∫ xj

xj−∆max

v(y)p(xj − y)p(y)dy,

by changing variables. This we evaluate using the Trapezoidal rule and find

Idv
m
j =

K−1∑
i=0

∫ yi+1

yi

v(y)p(xj − y)dy,

where yi = xj −∆max + i∆x. Calculating the inner integral yields

Idv
m
j =

1
2
∆x

K−1∑
i=0

(
vj+i−KpK−i + vj+i−K+1pK−i+1

)
=

1
2
∆x

(
vj−KpK + vjp0 + 2

K−1∑
i=1

vj+i−KpK−i

)
, for j = 1, . . . , N − 1.

For instance, taking j = 1, we find

v1−KpK + 2v2−KpK−1 + · · ·+ 2v0p1 + v1p0,

and we see that the order of the p’s are reversed in comparison to the
previous case.

The linear system can be derived in the same manner as in the previous
section.
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Boundary conditions. Fort this case, we apply the boundary condition

uxx(c, τ) + ux(c, τ) = uxx(A, τ) + ux(A, τ) = 0,

and as before we arrive at

vm0 =
1
2
(1 +

∆x
2

)vm−1 + (1− ∆x
2

)vm1 ,

vmN =
1
2
(1 +

∆x
2

)vmN−1 + (1− ∆x
2

)vmN+1.

4.3 Numerical results

Using the values listed in Table 2.2 find the forward prices with respect to
Schwartz’ model, shown in Figure 4.1 for the initial spot-value of $ 0.5.

Plots of the forward curves with respect to the model proposed by Geman
and Roncoroni are shown in Figure 4.2, and Figure 4.3 respectively, for the
COB model.
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Figure 4.1: Forward price in $/MWh versus the time to maturity in years.
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Chapter 5

Discussion

In this Chapter we will discuss the results, and point to possible errors and
improvements.

5.1 Results

The forward-price with respect to Schwartz’ model. Looking to Fig-
ure 4.1 we see that as the time to maturity τ increases the forward curve
flattens out. This is in line with what one should expect, since there is no
seasonality present. The fact that F (T, T ) = S validates for the model, is
another indication that the calculated results are valid.

The forward-price with respect to Geman and Roncoroni’s model. Fig-
ures 4.2 and 4.3 illustrate the forward curves for small- and large initial
values respectively. We would expect the same kind of behaviour as ob-
served in the results from the Schwartz case.

Given that we have an convection-diffusion including an integral term,
we should also be able to observe some convection. For small values of x,
i.e. for small spot-values the convection term is not very dominating, so for
this case diffusion should be the major force. Looking to Figure 4.2 this is
indeed the case; we have strong diffusion and the value decreases rapidly to
just above zero.

For the case of larger spot-price, the convection should be more promi-
nent. This is not the case. The suspicion is that this part of the imple-
mentation is not correct; be it due to boundary conditions or some error in
the dicretization and the question has not been resolved for this case. We
therefore focus on the case for small spot-values in the following.

Comparison of the forward prices. A comparison of the forward-prices
calculated by the two model studied are shown in Figure 5.1, for a initial
value of S̃ = 1. From the figure we see that there is a large discrepancy
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between the two prices. As the time-to-maturity increases, the price become

0.0 0.1 0.2 0.3 0.4 0.5
Time to maturity

0

50

100

150

200

F
o
rw

a
rd

-p
ri

c
e

Schwartz
Geman/Roncoroni

Figure 5.1: Forward prices in $/MWh versus time for the COB model and
for the Schwartz and Geman/Roncoroni models respectively.

more similar, but still there is a significant difference.
The large discrepancy as τ → 0 is surely due to the singularity of the

integral occurring in the Schwartz model. This singularity, as we briefly have
mentioned, cases problems for implementation and make the forward-price
inaccurate at τ = 0.

5.2 Numerical implementation

The implementation of the finite differences for the differential operators are
straightforward. Some care must be taken so to avoid oscillations, a frequent
problem in when approximating convection-diffusion equations with finite
differences, but this is resolved by taking small enough increments.
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The integral operator. We recall that Merton chose log-normal distributed
jumps in his original proposal (2.7), and was able to derive a closed-form
expression for the option price. This is due to his choice of jump-size distri-
bution. This is to be kept in mind when choosing jump-size distribution.

Alternatively, one could approximate the probability-distribution p de-
fined on a compact interval, with another distribution with matching mo-
ments up to a given order on the whole of R. From a numerical point of
view this is beneficial: when truncating the domain on which the integro-
differential is defined, the integral then is to be taken over this same interval.
Thus a dense n× n-matrix, instead of a n× k-matrix, for k 6= n, arise.

Of course other numerical methods to evaluate the integral could be
applied. This may lead to simpler numerical algorithms, or, more likely, to
higher complexity of the implementation. Also, accuracy could be increased.

Monte Carlo simulations. The first thing to take notice of, is that we
simulate the paths on intervals, say [0, 0.5] and use the same grid-size as
the partition in the finite difference implementation. Obviously this is for
simplicity. However, to have convergence we must perform a great number
iterations since, typically, we have N = 100 intervals and so we would need
to repeat this process perhaps one million times ideally.

The importance of convergence is another issue. The calibration of the
boundary inevitably leads to the introduction of error.

5.3 Unresolved issues

Large spot-values: As we have already mentioned, the issue for large spot-
values have not been completely resolved, and so further work on this
case are advised

Boundary conditions: Some investigations on the importance of conver-
gence in the Monte Carlo simulations

Generalize: The next natural step would be to introduce seasonality, and
inhomogeneous Poisson processes
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Appendix A

Appendix

A.1 Notation

We use the notation ∂xu = ux for the first partial derivative in x, and
analogous for higher order derivatives and time-derivatives.

The expectation operator is defined as

E [X] =
∫

Ω
XdP,

and occasionally we will write

Et,x[X] = E [X|Xt = x] .

We define the floor operator b·c as the integer part of any real number.

A.2 Derivation of Schwartz model

Let us assume that the logarithm of the spot price can be written as a
sum of some deterministic function f of time, which represent the seasonal
variation, and a stochastic process X. Regarding the choice of X we want
to allow for the event of jumps, so we shall take X to be a Levy process.
Also, from the discussion in Section 2.3, we know that there is a strong
mean reversion present in the electricity market, and thus X should be a
Ornstein-Uhlenbeck Levy process:

dXt = −α(t)Xtdt+ σtdBt + dNt.

α and σ are continuous functions of time, and represent the speed of mean
reversion and volatility respectively. B is a Brownian motion, and N is
a compound Poisson process. Recall from Levy-Khintchine that we can
represent N as the integral N =

∫
R zN(dt,dz), where, with some horrific
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abuse of notation, N is the random Poisson measure associated with the
process N .

Since the log-price of the spot is given by the relation

logSt = f(t) +Xt, (∗)

we have that
St = exp (f(t) +Xt) ,

and an application of Itô on this relation yields

dSt =ḟ(t)Stdt+
(
− α(t)Xtdt+ σ(t)dBt

)
St

+
1
2
σ2(t)Stdt+

∫
R

(
St−e

z − St−
)
N(dt,dz)

=
(
ḟ(t) +

1
2
σ2(t)− α(t)X(t)

)
Stdt+ σ(t)StdBt

+
∫

R
(ez − 1)St−N(dt,dz),

where ˙ = d
dt denotes derivation with respect to time. Inserting for Xt =

logSt − f(t) from (∗) we find

dSt =
(
ḟ(t) +

1
2
σ2(t)− α(t)(logSt − f(t))

)
Stdt

+ σ(t)StdBt +
∫

R
St− (ez − 1)N(dt,dz)

=
(
µ(t) +

1
2
σ2(t)− α(t) logSt

)
Stdt+ σ(t)StdBt

+
∫

R
St− (ez − 1)N(dt,dz),

where we have written µ(t) = ḟ(t) − α(t)f(t). A second application of Itô,
but now on S̃ = logSt, gives

d(logSt) =
1
St

(
(µ(t) +

1
2
− α(t) logSt)Stdt+ σ(t)StdBt

)
− 1

2
σ2(t)S2

t

1
S2
t

dt

+
∫

R
log (St− + St−(ez − 1))− log(St−)N(dt,dz)

=
(
µ(t)− α(t) logSt

)
dt+ σ(t)dBt +

∫
R

log
(
ezSt−
St−

)
N(dt,dz)

=
(
µ(t)− α(t) logSt

)
dt+ σ(t)dBt +

∫
R
zN(dt,dz).

Putting S̃ = logS, we have arrived at the dynamics

dS̃t =
(
µ(t)− α(t)S̃t

)
dt+ σ(t)dBt + dNt. (A.1)
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A.3 A messy integral

In the derivation of the forward-price with respect to Lucia and Schwartz’
model, we run into

EQ[exp
( ∫ T

t
e−α(T−s)dNs

)
] = exp

( ∫ T

t
ψ(e−α(T−s))ds

)
.

We complete the calculations now, but first some justification is appropriate.
From Lemma 15.1 in [CT04] we have:

Lemma A.1. Let f : [0, T ] → R be left continuous, and Z a Levy-process.
Then

E
[
exp

(
i

∫ T

0
f(s)dZs

)]
= exp

( ∫ T

0
ψ(f(s))ds

)
(A.2)

where ψ is the characteristic exponent of Z.

Proof. Consider first the case for f a simple predictable integrand:∫
f(s)dZs =

N∑
j=1

fi(Zj − Zj−1).

Then we have

E
[
exp

(
i

∫
f(s)dZs

)]
=

N∏
j=1

E
[
exp

(
ifj(Zj − Zj−1)

)]

=
N∏
j=1

E
[
exp

(
i(sj − sj−1)ψ(fj)

)]
= exp

( ∫
ψ(f(t))ds

)
.

The result follows now since any left-continuous integrand can be approxi-
mated by simple integrands.

Recalling the given jump size distribution from Section 2.3.3, we have
the Levy-measure

ν(dz) = λ
γ exp(−γz)

1− exp(−γ∆max)
dz, 0 ≤ z ≤ ∆max,

and we also have the characteristic function for a compound Poisson process

ψ(u) =
∫

R
(eiuz − 1)ν(dz).

Now we have that f(s) = −i exp(−α(T − s)) in Lemma A.1, and hence by
substituting this into (A.2) we must find

λγ

1− exp(−γ∆max)

∫ T

t

∫ ∆max

0

(
exp(e−α(T−s)z)− 1

)
exp(−γz)dzds

=
λγ

1− exp(−γ∆max)

∫ T

t

∫ ∆max

0
exp(e−α(T−s) − γ)z − exp(−γz)dzds.
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Straightforward calculations yields:∫ T

t

1
e−α(T−s) − γ

[
exp

(
(e−α(T−s)−γ)∆max

)
−1

]
+

1
γ

(
e−γ∆max−1

)
ds.

Now the first part of the integral has a singularity when s is such that
exp(−α(T − s))− γ = 0. This causes problems for integration, so we must
use some sort of numerical integration to evaluate the integral, and we could
choose from a range of methods that are able to cope with such singularities.
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Appendix B

Fortran and Python code
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Calculation of the Schwartz forward price

!
! Calculation of the forward-price
! Author: Bjørn Waage Skogtrø
!
module ecar
! parameters for the ECAR model
implicit none
save
real :: alpha=38.8938
real :: gamma=0.3129
real :: delta_max=3.3835
!real :: mu=3.0923
real :: mu=12.58806
real :: sigma=1.8355
real :: lambda=9.0

end module ecar

module pjm
! parameters for the PJM model
implicit none
save
real :: alpha=42.8844
real :: gamma=0.5016
real :: delta_max=1.6864
!real :: mu=3.2002
real :: mu=7.01529
real :: sigma=1.3631
real :: lambda=9.6667
end module pjm

module cob
! parameters for the COB model
implicit none
save
real :: alpha=13.3815
real :: gamma=1.0038
real :: delta_max=1.0169
!real :: mu=2.8928
real :: mu=0.84683
real :: sigma=1.3631
real :: lambda=2.0

end module cob
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module forw_ecar
use ecar
implicit none
! Other variables
integer :: n=10E3

! Functions
contains

! The integrand from the jump-term
real function f(x)
implicit none
real, intent(in) :: x
f=(exp((exp(-alpha*x)-gamma)*delta_max)-1)/(exp(-alpha*x)-gamma)

end function f

! Numerical integration
subroutine tanh_rule(x0,x1,n,res)
implicit none
!
real, intent(in) :: x0,x1
integer, intent(in) :: n
real, intent(out) :: res
!
real, dimension(n) :: x
real :: dx=0.0, mid=0.0
integer :: i=0

dx=(x1-x0)/(n-1)
do i=0,n-1

x(i+1)=i*dx
end do
do i=1,n-1

mid=(x(i+1)+x(i))/2.0
res=res+2*tanh(0.5*dx*f(mid))

end do
end subroutine tanh_rule

! The part of the forward associated with jumps
real function jmppris(t0,t1)
implicit none
real :: integral
real, intent(in) :: t0,t1
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integer :: n=1E3
call tanh_rule(t0,t1,n,integral)
jmppris=gamma*(integral + (t1-t0)*(exp(-gamma*delta_max)-1)/gamma)&

/(1-exp(-gamma*delta_max))
end function jmppris

! The part of the forward associated with BM
real function bmpris(t0,t1)
implicit none
real, intent(in) :: t0,t1
bmpris=(sigma**2)*(1-exp(-2*alpha*(t1-t0)))/(4*alpha)

end function bmpris

! The part of the forward associated with the drift
real function driftpris(t0,t1)
implicit none
real, intent(in) :: t0,t1
driftpris=mu*(1-exp(-alpha*(t1-t0)))/alpha

end function driftpris

! The forward itself
subroutine forward(pris,x,t0,t1)
implicit none
real, intent(out) :: pris
real, intent(in) :: x,t0,t1
real :: res
res=x**exp(-alpha*(t1-t0))*exp(jmppris(t0,t1) + bmpris(t0,t1))
pris=res

end subroutine forward
end module forw_ecar

module forw_cob
use cob
implicit none
! Other variables
integer :: n=10E3

! Functions
contains

! The integrand from the jump-term
real function f(x)
implicit none
real, intent(in) :: x
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f=(exp((exp(-alpha*x)-gamma)*delta_max)-1)/(exp(-alpha*x)-gamma)
end function f

! Numerical integration
subroutine tanh_rule(x0,x1,n,res)
implicit none
!
real, intent(in) :: x0,x1
integer, intent(in) :: n
real, intent(out) :: res
!
real, dimension(n) :: x
real :: dx=0.0, mid=0.0
integer :: i=0

dx=(x1-x0)/(n-1)
do i=0,n-1

x(i+1)=i*dx
end do
do i=1,n-1

mid=(x(i+1)+x(i))/2.0
res=res+2*tanh(0.5*dx*f(mid))

end do
end subroutine tanh_rule

! The part of the forward associated with the jumps
real function jmppris(t0,t1)
implicit none
real :: integral
real, intent(in) :: t0,t1
integer :: n=1E3
call tanh_rule(t0,t1,n,integral)
jmppris=gamma*(integral + (t1-t0)*(exp(-gamma*delta_max)-1)/gamma)&

/(1-exp(-gamma*delta_max))
end function jmppris

! The part of the forward associated with the jumps
real function bmpris(t0,t1)
implicit none
real, intent(in) :: t0,t1
bmpris=(sigma**2)*(1-exp(-2*alpha*(t1-t0)))/(4*alpha)

end function bmpris

! The part of the forward associated with the jumps
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real function driftpris(t0,t1)
implicit none
real, intent(in) :: t0,t1
driftpris=mu*(1-exp(-alpha*(t1-t0)))/alpha

end function driftpris

! The forward itself
subroutine forward(pris,x,t0,t1)
implicit none
real, intent(out) :: pris
real, intent(in) :: x,t0,t1
real :: res
res=x**exp(-alpha*(t1-t0))*exp(jmppris(t0,t1) &

+ bmpris(t0,t1))! + driftpris(t0,t1))
pris=res

end subroutine forward
end module forw_cob

module forw_pjm
use pjm
implicit none
! Other variables
integer :: n=10E3

! Functions
contains
! The integrand from the jump-term
real function f(x)
implicit none
real, intent(in) :: x
f=(exp((exp(-alpha*x)-gamma)*delta_max)-1)/(exp(-alpha*x)-gamma)

end function f

! Numerical integration
subroutine tanh_rule(x0,x1,n,res)
implicit none
!
real, intent(in) :: x0,x1
integer, intent(in) :: n
real, intent(out) :: res
!
real, dimension(n) :: x
real :: dx=0.0, mid=0.0
integer :: i=0
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dx=(x1-x0)/(n-1)
do i=0,n-1

x(i+1)=i*dx
end do
do i=1,n-1

mid=(x(i+1)+x(i))/2.0
res=res+2*tanh(0.5*dx*f(mid))

end do
end subroutine tanh_rule

! The part of the forward associated with the jumps
real function jmppris(t0,t1)
implicit none
real :: integral
real, intent(in) :: t0,t1
integer :: n=1E3
call tanh_rule(t0,t1,n,integral)
jmppris=gamma*(integral + (t1-t0)*(exp(-gamma*delta_max)-1)/gamma)&

/(1-exp(-gamma*delta_max))
end function jmppris

! The part of the forward associated with the jumps
real function bmpris(t0,t1)
implicit none
real, intent(in) :: t0,t1
bmpris=(sigma**2)*(1-exp(-2*alpha*(t1-t0)))/(4*alpha)

end function bmpris

! The part of the forward associated with the jumps
real function driftpris(t0,t1)
implicit none
real, intent(in) :: t0,t1
driftpris=mu*(1-exp(-alpha*(t1-t0)))/alpha

end function driftpris

! The forward itself
subroutine forward(pris,x,t0,t1)
implicit none
real, intent(out) :: pris
real, intent(in) :: x,t0,t1
real :: res
res=x**exp(-alpha*(t1-t0))*exp(jmppris(t0,t1) &

+ bmpris(t0,t1))! + driftpris(t0,t1))
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pris=res
end subroutine forward

end module forw_pjm

Solving the PIDE for small values

#!/usr/bin/python
"""
Solving the pide
"""
## Modules
from numpy import *
import scipy.linalg

from pylab import plot,show

## Self-implemented modules
import viz
from cob import *
from funcs import *

# Want 2 significant digits, and tiny numbers supressed
set_printoptions(precision=3, suppress=True, linewidth=220)

## Partition-size
N=40
NX=N-2
NT=250

## Spacedomain
x_start=0.0; x_stop=2.71

## Increments
dt=(t_stop-t_start)/float(NT)
dx=(x_stop-x_start)/float(N)
print "dx=",dx,"\tdt=",dt

## Arrays
t=linspace(t_start,t_stop,NT)
x_inner=linspace(x_start+dx,x_stop-dx,NX+1)
x=hstack((x_start,x_inner,x_stop))

# The overlap caused by the integro-operator
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K=int(floor(delta_max/dx))
x_add=x_stop+dx*array(range(1,K+1))
x_full=hstack((x,x_add))
print "N=",N,"\t\tK=",K

# Coefficients
a=-lam*mu - alpha*x[1:N-1]
b=sigma**2/float(2)

## Initial condition
u=zeros((NT,N+K+1))
u[0,:]=x_full

## generate the bondries:
u1=sde(NT,x_full[N+1])
u[0,N]=0.5*(1-0.5*dx)*u[0,N-1]+0.5*(1+0.5*dx)*u1[0]

for i in range(1,NT):
## Solving
u[i,1:N-1]=u[i,1:N-1]+dt*J_small(dx,u[i-1,1:N+K-1],N,NX,K)
M=eye(NX)-dt*H(a,dx,N,K,NX)-dt*G(b,dx,NX)
u[i,2:N]=linalg.solve(M,u[i-1,2:N])
## Outside the domain
#u[i,N:]=forward(log(x_full[N:]),i*dt)
u[i,N:]=x_full[N:]
## Bondary conditions
u[i,0]=u[i-1,0]
u[i,N]=0.5*(1-0.5*dx)*u[i,N-1]+0.5*(1+0.5*dx)*u1[i]

Solving the PIDE for large values

#!/usr/bin/python
"""
Solving the pide
"""
## Modules
from numpy import *
import scipy.linalg

## Self-implemented modules
import viz
from cob import *
from funcs import *
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from pylab import plot,show,figure,subplot

# Want 2 significant digits, and tiny numbers supressed
set_printoptions(precision=3, suppress=True, linewidth=200)

## Partition-size
N=60
NX=N-2
NT=250

## Timedomain
t_start=0.0; t_stop=0.1
## Spacedomain
x_start=c; x_stop=2*c

## Increments
dt=(t_stop-t_start)/float(NT)
dx=(x_stop-x_start)/float(N)
print "dx=",dx,"\tdt=",dt

## Arrays
t=linspace(t_start,t_stop,NT)
x_inner=linspace(x_start+dx,x_stop-dx,NX+1)
x=hstack((x_start,x_inner,x_stop))

# The overlap caused by the integro-operator
K=int(floor(delta_max/dx))
x_add=x_start-K*dx+dx*array(range(K))
x_full=hstack((x_add,x))
print "N=",N,"\t\tK=",K

# Coefficients
a=lam*mu - alpha*x[1:N]
b=sigma**2/float(2)

## Initial condition
u=zeros((NT,N+K+1))
u1=sde(NT,x_full[K-1])
u2=sde(NT,(N+K+1)*dx)
u[0,:]=x_full

for i in range(1,NT):
## Solving
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u[i,K+1:-1]=u[i,K+1:-1]+dt*J_big(dx,u[i-1,1:-1],N,NX,K)
M=eye(NX+1)-dt*H_big(a,dx,N,K,NX)-dt*G_big(b,dx,NX)
u[i,K+1:-1]=linalg.solve(M,u[i-1,K+1:-1])

## Outside the domain
u[i,:K]=x_full[:K]
## Bondary conditions
u[i,K]=0.5*(1-0.5*dx)*u1[i]+0.5*(1+0.5*dx)*u[i,K+1]
u[i,N+K]=0.5*(1-0.5*dx)*u[i,N+K-1]+0.5*(1+0.5*dx)*u2[i]

Functions used in calculation

#!/usr/bin/python
from numpy import *
import scipy.linalg
import numpy.random as ran

from cob import *
import forw

## The Schwartz forward price (Fortran module)
def forward(x,t):

return forw.forw_cob.forward(x,0.0,t)

## The probability-distribution
def p(x):

if x<0 or x>delta_max:
return 0

else:
return gamma*exp(-gamma*x)/(1-exp(-gamma*delta_max))

## Second order
def G(b,dx,NX):

# Diagonals
ld=ones(NX-1)
d=-2*ones(NX)
ud=ones(NX-1)

# Second-order differential term:
D=b*(diag(d,k=0)+diag(ld,k=-1)+diag(ud,k=1))/dx**2 - lam*eye(NX)
# assembling the matrix
return D

def G_big(b,dx,NX):
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# Diagonals
ld=ones(NX)
d=-2*ones(NX+1)
ud=ones(NX)
# Second-order differential term:
D=b*(diag(d,k=0)+diag(ld,k=-1)+diag(ud,k=1))/dx**2 - lam*eye(NX+1)
# assembling the matrix
return D

## First order
def H(a,dx,N,K,NX):

# Diagonals
ld=ones(NX-1)
d=ones(NX)
ud=ones(NX-1)
# First-order differential term
D=a*(diag(ud,k=1)-diag(ld,k=-1))/dx
return D

## First order
def H_big(a,dx,N,K,NX):

# Diagonals
ld=ones(NX)
d=ones(NX+1)
ud=ones(NX)
# First-order differential term
D=a*(diag(ud,k=1)-diag(ld,k=-1))/dx
return D

def J_big(dx,u,N,NX,K):
# Integral-operator
res=[]
for i in range(K+1):

if i==0 or i==K:
res.append(p(dx*i))

else:
res.append(2*p(dx*i))

res.reverse()
prob=hstack((res,zeros(NX)))
I=zeros((NX+1,N+K-1))
for i in range(0,NX+1):

I[i,:]=roll(prob,i)
# return the product
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#print I.shape,u.shape
return 0.5*dx*lam*dot(I,u)

def J_small(dx,u,N,NX,K):
# Integral-operator
res=[]
for i in range(K+1):

if i==0 or i==K:
res.append(p(dx*i))

else:
res.append(2*p(dx*i))

prob=hstack((res,zeros(NX-1)))
I=zeros((NX,N+K-2))
for i in range(0,NX):

I[i,:]=roll(prob,i)
# return the product
return 0.5*dx*lam*dot(I,u)

def sde(NT,x0):
# number of bathces
n=NT
m=100

t=linspace(t_start,t_stop,n)
dt=(t_stop-t_start)/float(n+1)

## generate p-distributed numbes
jmp=zeros(n)

y=zeros((m,n),float)
gjsnitt=zeros(n,float)
for i in range(m):

y[:,0]=x0
jmp=ran.poisson(lam*dt,n)
dx=ran.normal(0,1,n)*sqrt(dt)
for j in range(0,n-1):

y[i,j+1]=y[i,j]*exp((mu_mc - alpha*y[i,j])*dt + sigma*dx[j]\
+jmp[j]*jmpprob(1))

for i in range(n):
_gjn=sum(y[:,i])/float(m)
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gjsnitt[i]=_gjn
return gjsnitt

def jmpprob(n):
r=[]
for i in range(n):

r.append(-log(1-ran.uniform(0,1)*(1-exp(-gamma*delta_max)))/gamma)
return array(r)
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