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Abstract

Porosity and water saturation in a horizontal top-reservoir are estimated from seismic
AVO (Amplitude Versus Offset) data and Controlled Source Electromagnetic (CSEM)
data jointly. A model connecting porosity and saturation to both AVO effects and to the
phase shift of electromagnetic signals is constructed. In this model, Gassmann’s equations,
Archie’s law, Zoeppritz’ equations and ray-tracing is involved. We use a Bayesian approach
to solve the inversion problem, and the solution is given as posterior distributions for the
parameters of interest. We also investigate the noise levels in the two types of data,
and how these affect the estimates of the reservoir properties. Gaussian assumptions and
linearizations are made to ensure analytically tractable posterior distributions for porosity
and saturation, and a Gibbs sampler is used to explore the joint posterior for porosity,
saturation and noise levels. The method is applied to both synthetic data, and field data
from the Troll gas field. The results from the joint inversion are compared to results from
using seismic data exclusively and a clear improvement is found in the estimates of the
synthetic case. The results from the Troll data are more ambiguous, probably caused by
the problem of picking seismic data along the top-reservoir and inaccuracies in the fixed
parameters in the geophysical forward model.
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1 INTRODUCTION

1 Introduction

When performing a geophysical survey with hydrocarbon exploration in mind, the two
most crucial properties to estimate are the porosity φ and the water saturation sw. The
porosity is important as it tells us the the amount of fluid in the rock, and the water
saturation tells us what this fluid consists of, as the hydrocarbon saturation equals 1−sw.
Unfortunately there is currently no method for measuring these properties directly, and
the relation between what we can measure and what we are interested in is in most cases
far from obvious.

Except for drilling wells, seismic gathers have until recently been the only alternative
in geophysical exploration. In a situation with a horizontally layered exploration area,
a seismic gather can after processing give information about the reflection coefficients
between the different layers, and also how the amplitude of the seismic signal varies with
the distance between source and receiver, the so-called Amplitude Versus Offset(AVO)-
gradient. To obtain the reflection coefficient and the AVO-gradient it is necessary to
process the data from the seismic gather. This involves removing of the direct wave,
guided wave and multiples, common midpoint gathers and stacking. Picking the signal
which is reflected from the transition between cap-rock and anomaly and disregarding all
other signals is also part of the pre-processing. The pre-processing is a complex procedure
entailed with a lot of uncertainty, and it can therefore introduce systematic error in the
data. This is unfortunate, but difficult to avoid. Both the reflection coefficient and the
AVO gradient are determined by the rock’s elastic parameters. An elastic and isotropic
rock is fully described by three different elastic parameters. The three most commonly
used are p-wave velocity, s-wave velocity and density. Gassmann’s equation [16] relates
the elastic parameters to sw and φ, but the dependency on sw is weak, and even for very
low noise levels most of the information about sw is lost in a seismic gather.

A property that is highly dependent on sw, however, is the electrical conductivity.
Conductivity and water saturation are related through Archie’s law [3], and the conductiv-
ity can be measured by performing a Controlled Source Electromagnetic Signal(CSEM)
gather. CSEM gathers are a relatively new addition to the geophysicists toolbox, and
are still very much a developing technology, even though it has already been used for
commercial purposes. Its strength lies in the ability to gather information not obtain-
able by traditional seismic investigations, though the accuracy of this information is low
compared to seismics. The EM-signals emitted during a CSEM-gather has a very low
frequency, usually in the range of 0.25Hz − 2Hz. This means that the wavelengths are
large, and our image of the subsurface will be fairly coarse compared to seismics, where
the frequency typically is around 40Hz. A combination of these two techniques would
therefore seem like the natural next step in geophysical exploration, and attempts og this
have already been made ([13],[12]). Until now the focus has, however, been on layered
models with uniform layers, i.e only variation along the vertical axis. In this paper we will
concentrate on a model with uniform overburden, but an anomaly where both saturation
and porosity varies within the same layer. This is a more suitable approach for exploring
a large area as it is not confined to one single spot.

Combining the information from both a seismic and a CSEM gather enables us to
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1 INTRODUCTION

achieve more accurate estimates of the rock-properties than we would get from any one
of them alone. We will run a comparison between our results and estimates obtained
from using seismic exclusively, to see how large the improvement actually is. Performing
a CSEM gather is expensive, and it is therefore important that the relative size of the
improvement is large enough to validate the cost associated with further investigations.
The calculation of the reservoir properties in the subsurface poses a complex inverse
problem, which does not have a deterministic solution due to large amounts of noise and
uncertainty. This lack of deterministic solutions validates a statistical approach to the
problem, as this enables us not only to find good estimates, but also to quantify the
uncertainty of these. In addition to φ and sw, we will also estimate the noise levels in the
two different types of data. This is an important aspect of our model, as the result of the
inversion is very sensitive to these parameters.

Section 2 introduces the theory behind seismic gathers and the relations needed to
link the seismic data to rock properties. In section 3 the same is done for the CSEM
gather. In 3.1 we develop the relations needed for linking the CSEM-signals traveltime
to the conductivity in the anomaly, while we in 3.2 introduce Archie’s law. Section 4
starts by summarizing the complete forward model, i.e. all the physical relations we will
utilize in the transition from reservoir properties to measured data. The section is further
divided in three parts. In 4.1 we develop the statistical model for sw and φ, and calculate
their posterior distribution. In 4.2 we describe a fully Bayesian method including priors
for the covariance parameters in the model, and 4.3 gives a brief introduction to Markov
Chain Monte Carlo methods and the Gibbs sampler. Section 5 presents the results from
running the method. In 5.1 we investigate a synthetic dataset where the true underlying
reservoir properties are known, while we in 5.2 use data gathered at the Troll field outside
of Bergen. We evaluate the strengths and weaknesses of the inversion method in section 6,
both from a theoretical viewpoint, and by considering its performance on the two datasets.
We also make suggestions for further improvements on the method.
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2 MODEL FOR SEISMIC DATA

2 Model for seismic data

When seismic signals are shot into the ground, an echo is created. This echo consists
of signals that have been reflected by transitions between different types of layers in the
underground. The idea behind using seismic as a tool for geological exploration, is that
the amplitude and traveltime of the signal echoed back to the surface is dependent on
the properties of the rock through which it has propagated. An off-shore seismic gather
is performed by a boat towing one or more cables with multiple hydrophones attached
to them. At regular time intervals a seismic signal is emitted, and the hydrophones
register the resulting echo. Since all areas of the subsurface are hit by seismic signals
several times during the gather, we get the opportunity to investigate the relation between
the amplitude of the echo and the distance between source and receiver, so called AVO
analysis.

When the offset increases, the amplitude of the received signal usually decreases,
due to the geometrical spreading and attenuation, but for reflections from hydrocarbon
saturated rocks we have the opposite effetct, and the amplitude increases with offset
[16]. So the AVO-relation contains a lot of information about the rock properties in the
sub-surface, and it is actually one of the key components in seismic investigations. The
preprocessing of seismic data is a well explored subject, and a more thorough study can be
found in for example [16] or [4]. In the following we focus on reflections at top-reservoir.
These data are usually obtained by careful picking from a stack of offset gathers, and play
a crucial role in reservoir characterization and for drilling purposes. Here we will suffice
to say that by utilizing both AVO characteristics and traveltimes it is possible to find the
zero-offset reflection coefficients RPP from the reflection between the cap-rock and the
anomaly plus the corresponding AVO-gradients GAV O.

Since our ultimate goal is to achieve an estimate of the porosity and water-saturation
in the anomaly, it is crucial to find a reliable connection between these parameters and
the data acquired from the seismic gather. Unfortunately this relation is not straight-
forward, and obtaining it necessitates utilizing some empirical relations and assumptions,
as well as an intermediate step calculating the elastic parameters. From Aki and Richards’
simplification of the Zoeppritz equations [1], we have the relations

RPP =
ρAVPA − ρCVPC

ρAVPA + ρCVPC

(2.1)

GAV O =
∆VP

2VP
− 2

V 2
S

V 2
P

{

∆ρ

ρ
+ 2

∆VS

VS

}

(2.2)
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2 MODEL FOR SEISMIC DATA

where

VPC , VPA, VSC, VSA = P- and S-wave velocities in cap-rock(c) and anomaly(a)

ρC , ρA = Density in cap-rock(c) and anomaly(a)

∆VP = VPA − VPC

∆VS = VSA − VSC

∆ρ = ρA − ρC

VP =
VPA + VPC

2

VS =
VSA + VSC

2

ρ =
ρA + ρC

2
.

Thus a forward-model going from density and wave-velocities to RPP and GAV O

has been established. This relation is derived from the wave-equation, and is therefore
fairly accurate under ideal conditions. From VP , VS and ρ we can find two different
elastic parameters, the bulk-modulus K and the shear-modulus G using the following
transformations

K = ρ

(

V 2
P − 4

3
V 2

S

)

(2.3)

G = ρV 2
S . (2.4)

The only reason for performing this transformation is that K and G will be more
suitable than wave velocities when describing the transition from φ and sw to elastic pa-
rameters. Note that working with (ρ,GAV O, K) instead of (ρ, Vp, VS) is nothing more than
a reparameterization of the three dimensional space of elastic constants. The relations
between (sw, φ) and the elastic constants are still not well understood theoretically, and
to a large degree it will be necessary to rely on empirical relations derived from well-logs.
Cross-plotting measurements of φ with K and G shows that these can be approximated
by a linear function of φ. We will rely on a linear relation in this work, but it is worth
noting that the amount of noise in such cross-plots is considerable, and other relations
than linearity have been suggested, see for example [5].

As seen from equation 2.4, the shear-modulus depends only on VS and ρ. Since
shear-waves are unable to propagate through both water and gas alike, G will be virtually
independent of variations in sw. This means that when G is known, φ can easily be
calculated to within the precision of the linear relation found from cross-plotting. The
bulk-modulus on the other hand is highly dependent of both φ and sw, and to get an
estimate of sw we will have to make use of the Gassmann equation. This equation relates
the bulk-modulus for different levels of water saturation, and can be written down in
numerous forms, the following is from [16]

Ksat

K0 −Ksat
=

Kdry

K0 −Kdry
+

Kfl

φ(K0 −Kfl)
(2.5)
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2 MODEL FOR SEISMIC DATA

where

Kdry = Bulk modulus of dry rock.

Ksat = Bulk modulus of the rock with pore fluid.

K0 = Bulk modulus of mineral material making up rock. Tabelized value for quartz.

Kfl = Bulk modulus of pore fluid. Tabelized values for water and gas

Since Kdry and K0 both are independent of the saturation, we have for all levels of
saturation

Ksat

K0 −Ksat

− Kfl

φ(K0 −Kfl)
= C (2.6)

where C is a constant. The bulk modulus for two different saturation levels in the same
rock type are thus related as

Ksat1

K0 −Ksat1
− Kfl1

φ(K0 −Kfl1)
=

Ksat2

K0 −Ksat2
− Kfl2

φ(K0 −Kfl2)
. (2.7)

From well logs we can obtain the bulk modulus for given saturation and porosity values.
Since K0 is known, this enables us to calculate one side of equation 2.7. On the other side
we now have two unknowns, Ksat2 and Kfl2, which both depend on the water saturation
sw2. Assuming that the rock is only filled with water and gas, Kfl2 can easily be calculated
as

1

Kfl2

=
sw2

Kwater

+
1 − sw2

Kgas

. (2.8)

The bulk modulus of water and gas are known values and we now have the following
expression for Ksat2

Ksat2

K0 −Ksat2
=

Ksat1

K0 −Ksat1
− Kfl1

φ(K0 −Kfl1)
+

Kfl2

φ(K0 −Kfl2)

Ksat2

K0 −Ksat2
= A

Ksat2 =
AK0

1 + A
. (2.9)

Figure 2.1 illustrates the relationship between the shear and bulk modulus and the poros-
ity. The multiple lines in the bulk modulus plot signifies different levels of water saturation.
A given value of the bulk modulus can thus represent a number of different combinations
of saturation and porosity. Since water is less compressible than gas, the bulk modulus
will increase with water saturation. The shear modulus on the other hand, is only de-
pendent on the porosity. The relation is linear and the porosity can therefore easily be
calculated when the shear modulus is given. Utilizing this porosity together with the bulk
modulus enables us to get an estimate of the saturation.

The last equation needed to complete our seismic forward-model is one relating φ
and sw to ρ. As both the density of water, gas and the reservoir rock are already known
this is readily identified as

ρ = ρ0(1 − φ) + ρwφsw + ρgφ(1 − sw) (2.10)
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Figure 2.1: Bulk and shear modulus plotted as a function of porosity. The different lines
in the bulk modulus plot illustrates how different water saturation levels causes a shift
in the relation between bulk modulus and porosity, while shear modulus is unaffected by
watersaturation. The saturation levels are (0.9, 0.7, 0.5, 0.3, 0.1) from top to bottom.

where ρ0, ρw and ρg denotes the densities of rock, water and gas respectively. For a given
pair of porosity and saturation, we are now able to compute ρ and the elastic parameters
of the fluid-saturated rock using both the Gassmann equation and our empirical relation.
We can then proceed from these to calculate the zero-offset reflection coefficient and the
AVO-gradient as shown in equations 2.1 and 2.2. We define f1 as the function going from
the space of saturation and porosity and into the space of seismic readings.

(sw, φ)
f1−→ (RPP , GAV O) (2.11)
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3 MODEL FOR CSEM DATA

3 Model for CSEM data

Though the idea of using controlled source electromagnetic (CSEM) signals to investi-
gate conductivity properties below the sea floor has been around for some time [7], the
practical challenges involved have been substantial, and the first survey actually utilizing
this method was performed in 2002 offshore Angola [9]. The procedure used in this sur-
vey is called sea bed logging (SBL), and it has later become the standard technique for
collecting CSEM data, up to the point where the terms CSEM and SBL now are being
used interchangeably. An SBL survey is performed as illustrated in figure 3.1. An electric
dipole is being towed close to the sea floor. On the sea floor multiple receivers have been
deployed, and these record the electromagnetic signal after it has travelled through the
anomaly. The received signal will be highly dependent on the conductivity in seawater,
overburden and anomaly, ϑw, ϑo and ϑ respectively.

Figure 3.1: Illustration of a typical sea bed logging setup. The electric dipole emits EM-
signals that travel through the overburden and along the anomaly before they are reflected
up to the seabed situated receivers. The image is taken from [2]

The propagation of low-frequent EM-signals can be described both as a wave- and a
diffusion process. A thorough discussion of this can be found in [15]. We will be working
with low-frequent signals registered at great distance from the source, and in this situation
the diffusion approximation will be most suitable. For EM-signals in a homogenous, non-
magnetic medium, we have the relation

∇2ψ = k2ψ (3.1)

where ψ is a scalar potential function. Equation (3.1) has the solution

ψ = ek·r (3.2)

where

k2 = iµ0ω(ϑ+ iωε). (3.3)

Here k represents the wave-vector, r the position-vector, µ0 magnetic permeability in
vacuum, ε permitivity, ϑ conductivity and ω angular frequency. Since we are considering
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3 MODEL FOR CSEM DATA

low-frequency signals in media with high conductivity ϑ� ωε. Neglecting the term ωε in
equation 3.3 gives us

k = ±(1 + i)

√

µ0ϑω

2
. (3.4)

We can now apply the eikonal equation (see [17],[19]) to find the phase difference τ between
source and receiver.

τ =

∫

r

√

µ0ϑ(x)dx (3.5)

where the integration is along the path of an EM-signal from source to receiver. As can be
seen from equation (3.5), the phase difference τ is dependent on both the conductivity and
the ray-path. This implies that calculations of ray-paths, so-called ray-tracing, combined
with the inversion of phase-data can give valuable information about the conductivity in
the media travelled by the EM-signal.

Figure 3.2 shows synthetic data for τ generated by solving the eikonal-equation.
This is a fairly complicated and time-consuming process, which has to be performed for
every source/receiver pair. It is however worth noting that when the offset, i.e. the
distance between source and receiver, becomes large, the phase is approximately a linear
function of offset. From equation (3.5) we know that the slope of this function must be√
µ0ϑ. We can therefore get an estimate of the conductivity by simply plotting phase

against offset and measuring the slope. Unfortunately this will only give us a mean value
of all the different levels of conductivity in the anomaly. To be able to discern these levels
a ray-tracing routine will have to be performed.

Figure 3.2: Synthetic phase data generated with basis in the conditions at the Troll gas
field. The figure is from [18]
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3.1 Traveltime calculations 3 MODEL FOR CSEM DATA

3.1 Traveltime calculations

In geophysics the term traveltime is usually employed in the context of seismic waves, and
then it refers to the actual amount of time that passes from the signal is emitted until it
reaches the receiver. When working with EM-signals however, we are no longer measuring
time, but the phase-shift of the signal which is denominated |√sec|. Likewise the CSEM-
signal’s velocity is actually a pseudo velocity with denomination | m√

sec
|. Even though this

nomenclature, developed for seismics, does not give a stringently correct description of the
physics involved, the analogy with velocity and time makes the model intuitively easier to
understand. It is also sufficiently accurate for our purposes, and we have therefore chosen
to use it.

We will be concentrating on the refraction wave, or so-called guided-wave, as illus-
trated in Figure 3.3. This is the signal that enters the anomaly at the critical angle of
incidence, travels horizontally along the anomaly and then up to the receiver. The total
distance travelled can be expressed as

dtotal = dw + 2do + l (3.6)

=
d0

cos θ0
+ 2

d1

cos θ1
+ l. (3.7)

dw, d0 and l is the distance travelled through water, overburden and anomaly respectively.
Throughout this thesis we will assume that the signal exits the anomaly at the same angle
as it entered, hence the 2 in front of do. From Snell’s law we know that the different angles
of incidence and pseudo-velocities are related as

sin θ0
v0

=
sin θ1
v1

=
sin θ2
v2

= p (3.8)

where vi for i = 0, 1, 2 represent the pseudo-velocities in the three layers. For the refraction
wave we know that θ2 = 90o since it travels horizontally in the anomaly. By using the
relation

cos θi =
√

1 − sin θi
2 =

√

1 − v2
i p

2 (3.9)

for i = 0, 1, we can transform equation 3.7 into

dtotal =
d0

√

1 − v2
0p

2
+ 2

d1
√

1 − v2
1p

2
+ l. (3.10)

The total traveltime will then be

τ =
d0

v0

√

1 − v2
0p

2
+ 2

d1

v1

√

1 − v2
1p

2
+

l

v2
. (3.11)

From equation 3.5 we know that τ also equals
√
µ0ϑ integrated along the ray-path, hence

vi = (
√

µ0ϑi)
−1. (3.12)

Combining equation 3.12 with equation 3.11 provides the necessary link between the
conductivity ϑ and the traveltime τ .

9



3.2 Archie’s law 3 MODEL FOR CSEM DATA

PSfrag replacements
dw

d0

do dod1

θ0

θ1

l

Source

Receiver

Figure 3.3: The measured EM-signal is emitted at an angle θ0. It travels a distance dw

through the water before it is refracted at the ocean floor. It proceeds to travel through
the overburden for a distance do before it encounters the anomaly. θ1 is the critical angle
of incidence, and the signal will therefore move horizontally in the overburden, until it is
refracted up through the overburden and reaches the receiver.

3.2 Archie’s law

As with the seismic data, we will have to establish a connection between the observed
CSEM-data and the parameters we wish to estimate, φ and sw. The transition from
conductivity to φ and sw is found by utilizing Archies law, which is purely empirical, but
often found to be quite accurate [3]. Archies law is stated as follows

ϑ = Csα
wφ

β. (3.13)

α and β are often referred to as the saturation exponent and the porosity exponent. Both
these and the constant C can be calculated from well logs where both sw, φ and ϑ have been
measured. This can be done by using ordinary linear regression on the logarithmic-values.
Figure 3.4 shows how Archie’s law relates conductivity with saturation and porosity when
C = 1.28, α = 1.31 and β = 0.14. In the left plot the saturation is fixed at 0.2, 0.5 and
0.8, and in the right plot the porosity is fixed at 0.2, 0.35 and 0.55. It is clear from this
Figure that variations in conductivity mainly is caused by different levels of saturation.
This completes our CSEM forward model and we now define f2 as the function going

from the space of saturation and porosity into the space of traveltimes.

(sw, φ)
f2−→ τ (3.14)
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Figure 3.4: Conductivity cross-plotted with porosity and saturation using Archie’s law. In
the left plot sw = (0.2, 0.5, 0.8) and in the right plot φ = (0.2, 0.35, 0.55). C = 1.28, α =
1.33 and β = 0.14 in both plots. It is clear from these plots that the conductivity is more
sensitive to changes in saturation than changes in porosity.
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4 STATISTICAL FRAMEWORK

4 Statistical framework

By combining the relations developed in section 2 and 3 we have a fully developed for-
ward model for both seismic and CSEM data, as illustrated in Figure 4.1. Since we are
measuring two very different physical properties, we also focus on different aspects of the
subsurface when modelling. This is illustrated in Figure 4.2. For the seismic gather it
is only the elastic properties of the cap-rock layer directly above the anomaly that are
of interest, while for the CSEM gather the conductivity of the entire overburden and the
seawater strongly affects the measurement. All these parameters are assumed known in
our model. To solve the inversion problem of estimating φ and sw based on seismic and
CSEM data we have chosen to use a Bayesian approach. This means that we view the
parameters we wish to estimate as realizations of stochastic variables with a given distri-
bution. Our aim is thus to calculate these distributions, and to give confidence bounds
on the parameters of interest.PSfrag replacements

φ, sw

VP , VS , and ρ

Seismic data
RPP , GAV O

CSEM data
τ

Conductivity,

ϑ
Gassmann

Zoeppritz

Archie

Ray-
tracingf1 f2

Figure 4.1: Forward model. The figure illustrates which relations are being used to go
from the parameters of interest to the observed data.

4.1 Model for saturation and porosity

In order to make our model analytically tractable it is desirable to have a Gaussian prior
distribution. Since φ and sw both have an upper and lower limit they cannot be directly
modeled as Gaussian variables, and it is therefore necessary to perform a transformation
of these variables. We define

mφ = log
φ− φmax

φmin − φ
(4.1)

msw
= log

sw − sw,max

sw,min − sw
(4.2)

12
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PSfrag replacements

V c
P , V

c
S and ρc (known)

Seawater, ϑw (known)

Overburden, ϑo (known)

Anomaly, sw and φ (estimated)Seismic data
CSEM data

Figure 4.2: Inversion domain for seismics on the left and for CSEM on the right

with inverse functions

φ(mφ) =
emφφmax + φmin

1 + emφ
(4.3)

sw(msw
) =

emssw,max + sw,min

1 + ems
(4.4)

where sw,min, sw,max, φmin and φmax must be tuned in the context of an application. We
obviously have 0 ≤ sw,min, φmin and sw,max, φmax ≤ 1, but prior information about the
subsurface may enable us to decrease the intervals. These transformed variables are called
the logit values of the porosity and saturation, and their support is the entire real line.
Hence they can be modeled as realizations from a Gaussian distribution. Let m be a
vector containing logit values for all our target parameters. If we divide the anomaly into
p sections, each with a different porosity and saturation, m will be a vector of length 2p.

m = (msw ,1, mφ,1, msw ,2, . . . , msw ,p, mφ,p) (4.5)

where msw ,i and mφ,i denote the logit values of the saturation and porosity in the i’th
segment of the anomaly. m is now a realization of the stochastic variable M and has the
distribution

m ∼ πM(m) = N (µm,Σm) . (4.6)

Let dS denote the observations from the seismic gather and dC the observations from
the CSEM gather. We denote the length of dS and dC with nds and ndc respectively. Then
we construct a vector d = (dS, dC) and the values of d will be a function of m plus noise,

d = F (m) + ε where ε ∼ N(0, T ). (4.7)

F is the forward model developed in the previous chapters, and consists of the two func-
tions, f1 which returns the seismic data dS, and f2 which returns the CSEM-data dC .
Since both f1 and f2 are deterministic functions, the distribution of d conditioned on m

is

d|m ∼ πD|M(d) = N (F (m), T ) . (4.8)
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ε is the noise that explains the discrepancy between the observations and the values
calculated from the forward model. This discrepancy arises both from actual noise in the
data, and the fact that our forward model does not give an exact description of what
happens in reality. Since our model is a simplification, the assumption that E(ε) = 0 may
not be entirely correct. This is however always the case when working with simplified
models, and can only be remedied by describing physical reality exactly, which in turn
would be mathematically infeasible. But as long as the random noise dominates the
systematic error, the model is sufficiently accurate. The covariance matrix of ε, T , will be
discussed in closer detail later on in this section.

To find the distribution of m conditioned on d we apply Bayes theorem, which states

πM |D(m|d) =
πD|M(d|m)πM(m)

∫

S
πD|M(d|m)πM(m)dm

(4.9)

where S = R
2p is the support of M . Since the denominator on the right hand side of

equation 4.9 is a constant with respect to m, the kernel of the posterior distribution for
m|d lies wholly within the numerator. This means that πM |D(m|d) can be analytically
calculated as long as πD|M(d|m) and πM(m) are conjugate distributions. πM (m) is already
chosen to be Gaussian, so it is sufficient too ensure that d can be expressed as a linear
combination of the logit varibles m. Unfortunately the forward model developed in the
previous sections and equations 4.1 and 4.2 is far from linear with respect to m, so in
order to obtain an algebraically convenient posterior distribution it is necessary to use a
linearized version of our forward model.

d = F (m) + ε

' F (m∗) +
dF

dm
|m∗(m−m∗) + ε

=

[

f1(m
∗)

f2(m
∗)

]

+

[

df1

dm
df2

dm

]

m∗

(m−m∗) + ε

= d∗ + ε (4.10)

where m∗ is a linearization point and d∗ consists of values calculated from the linearized
forward model. Using d∗ instead of F (m) as the expectation of d|m gives us a approximate
posterior distribution which has the advantage of being Gaussian. The exponent in this
distribution is on the following form

log
(

πM |D(m|d)
)

∼ log
(

πD|M(d|m)πM(m)
)

∼ −1

2
(d− d∗)TT−1(d− d∗) − 1

2
(m− µ)T Σ−1(m− µ)

= −1

2

{

d− F (m∗) − dF

dm
|m∗(m−m∗)

}T

T−1

{

d− F (m∗) − dF

dm
|m∗(m−m∗)

}

−

1

2
(m− µ)T Σ−1(m− µ). (4.11)
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Ignoring terms independent of m gives us

− 1

2
mT

{

(

dF

dm
|m∗

)T

T−1 dF

dm
|M∗ + Σ−1

}

m

+mT

{

(

dF

dm
|m∗

)T

T−1(d− F (m∗) +
dF

dm
|m∗m∗) + Σ−1µ

}

. (4.12)

The mean and variance for the approximate posterior distribution can be calculated as

µm|d =

{

(

dF

dm
|m∗

)T

T−1 dF

dm
|m∗ + Σ−1

}−1 {

(

dF

dm
|m∗

)T

T−1(d− F (m∗) +
dF

dm
|m∗m∗) + Σ−1µ

}

(4.13)

Σm|d =

{

(

dF

dm
|m∗

)T

T−1 dF

dm
|m∗ + Σ−1

}−1

. (4.14)

From equation 4.13 we see that µm|d is highly dependent on m∗. Since the approximate
posterior distribution is Gaussian µm|d should be the vector with highest probability den-
sity, i.e.

arg max
m

πM |D(m|d) = µm|d. (4.15)

Finding this µm|d is equivalent to finding the m that maximizes − 1
2
(d− F (m))TT−1(d−

F (m))− 1
2
(m− µ)T Σ−1(m− µ). This can be done numerically using the following simple

iterative algorithm

• Choose a starting point mo

• Calculate t0 = −1
2
(d− F (m0)

TT−1(d− F (m0)) − 1
2
(m0 − µ)T Σ−1(m0 − µ)

• While ∆ > TOL

– set mi = µm|d where µm|d is calculated using mi−1 and equation 4.13.

– calculate ti

– ∆ = |ti − ti−1|
∆ is a variable measuring how much closer to max πM |D(m|d) the last iteration has brought
us. When the progress for a single iteration is smaller than the preset tolerance value TOL,
we terminate the process.

4.2 Covariance matrices

Estimation of the covariance matrices Σ and T is an important aspect of this model,
which we have yet to deal with. The likelihood covariance matrix T actually consists of
two separate matrices one for the seismic data, Tseis and one for the CSEM data, TCSEM ,
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and these are assumed to be independent. This is a natural assumption since they are
related to different data collection methods. T can consequently be written as

T =

[

Tseis 0
0 TCSEM

]

. (4.16)

A lot of work have been done on seismic data, and the structure of Tseis is therefore
relatively well known. We will make use of estimates of Tseis found in [8], as this seems
to be appropriate for our situation. What is not known however, is the impact of the
uncertainty in the seismic data relative to the CSEM data. We will therefore multiply the
seismic covariance matrix with a factor σ2

S, such that

Tseis = σ2
STS (4.17)

where TS is a block-diagonal matrix consisting of 2 × 2-matrices on the form

[

0.025 −0.05
−0.05 0.0225

]

, (4.18)

giving a correlation coefficient of -0.7 between RPP and GAV O.

When it comes to the CSEM-data the prior knowledge is much more limited. We
make the simplified assumption that the noise on the CSEM data is white, and we can
write TCSEM = Iσ2

C . Hence, estimating the likelihood covariance matrix means finding
appropriate σ2

C and σ2
S. In accordance with our bayesian line of thought, we start by

applying probability distributions to both σ2
C and σ2

S. Since our only prior knowledge
about these parameters is that they are positive, an inverse gamma-distribution with a
large variance would seem a fitting choice for a prior. When σ2

C and σ2
S are inverse gamma

distributed, σ−2
C and σ−2

S will be gamma distributed. It will be more convenient to work
with the inverted variances since they appear naturally in the likelihood expression. Let
both σ−2

C and σ−2
S be gamma distributed with parameters (αC , βC) and (αS, βS), i.e.

σ−2
C ∼ G(σ−2

C ;αC , βC) =
1

βαC

C Γ(αC)
(σ−2

C )αC−1e
−σ

−2

C
βC

σ−2
S ∼ G(σ−2

S ;αS, βS) =
1

βαS

S Γ(αS)
(σ−2

S )αS−1e
−σ

−2

S
βS .

We can now calculate the posterior distributions for σ−2
C and σ−2

S .

π(σ−2
C |d,m, σ−2

S ) ∝ π(d|m, σ−2
S , σ−2

C )π(m|σ−2
S , σ−2

C )π(σ−2
S )π(σ−2

C )

∝ π(d|m, σ−2
S , σ−2

C )π(σ−2
C )

∝ (σ−2
C )

ndc
2 e

−1

2
(dC−f2(m))T TCSEM (dC−f2(m))(σ−2

C )αC−1e
−σ

−2

C
βC

= (σ−2
C )

ndc
2

+αC−1e
−1

2
(dC−f2(m))T σ−2

C
I(dC−f2(m))+

−σ
−2

C
βC

= (σ−2
C )

ndc
2

+αC−1e
−σ−2

C
{ 1

2
(dC−f2(m))T I(dC−f2(m))+ 1

βC
}
. (4.19)

16



4.3 MCMC methods 4 STATISTICAL FRAMEWORK

From equation 4.19 it is clear that the posterior distribution for σ−2
C is the gamma-

distribution with parameters

ασ−2

C
= αC +

ndc

2

βσ−2

C
=

{

1

2
(dC − f2(m))T I(dC − f2(m)) +

1

βC

}−1

. (4.20)

Similarly σ−2
S |d,m will also be gamma-distributed with parameters

ασ−2

S
= αS +

nds

2

βσ−2

S
=

{

1

2
(ds − f1(m))TT−1

S (ds − f1(m)) +
1

βS

}−1

. (4.21)

Since the full conditional distributions are known for both σ−2
C , σ−2

S and m, we can use a
Gibbs sampler to explore the postrior distributions. A Gibbs sampler is a special instance
of the Metropolis-Hastings algorithm, which is a Markov Chain Monte Carlo(MCMC)
method. More on MCMC-methods in section 4.3.

In our prior distribution of m we assume that saturation and porosity are indepen-
dent, and that the covariance between the porosity or saturation in two different segments
of the anomaly is a decreasing function of distance. We create a Σ that can be written as

Σ = σ2
pΣ1

(4.22)

where Σ1 consists of 2 × 2-matrices on the form
[

ρ|i−j| 0
0 ρ|i−j|

]

. (4.23)

|i− j| is the distance between anomaly segments i and j. We will for most parts of this
paper let ρ and σ2

P be fixed. We could attempt to estimate these parameters analogous to
what we did with σ−2

C and σ−2
S , but from experience we know that letting all parameters

be a priori undecided, often causes problems with convergence in the Markov chain used
to explore the posterior distribution.

4.3 MCMC methods

According to general Markov chain theory (see for example [10]) every irreducible and
ergodic Markov chain will converge to a limit distribution. This distribution is determined
by the transition function used to simulate the Markov chain, so the challenge is to create
a transition function that makes the markov chain converge to precisely our posterior
distribution. One way of doing this is using the Metropolis-Hastings algorithm [11]. A
move is proposed by drawing from a proposal distribution q(xt, x̃). This move is accepted
with probability α, where α is defined as

α = min

{

1,
π(x̃)q(x̃, xt)

π(xt)q(xt, x̃)

}

(4.24)
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and π(·) is the posterior distribution. If the move is accepted xt+1 = x̃, and if it is
rejected xt+1 = xt. When the full conditional distributions are known, these can be used
as proposal distributions, and the acceptance rate α will always be 1. This is what is
known as the Gibbs sampler, and is the method we will be using in this paper. The
parameters we are trying to estimate are σ−2

C , σ−2
S and m and their distributions are given

in equations 4.13,4.14,4.20 and 4.21. Our sampling algorithm will then become

• for t in 1:L

– Draw (σ−2
C )t from G(σ−2

C |d,mt−1) as described in section 4.2

– Draw (σ−2
S )t from G(σ−2

S |d,mt−1) as described in section 4.2

– Draw mt from N
(

µm|d,(σ−2

C
)t,(σ

−2

S
)t
,Σm|d,(σ−2

C
)t,(σ

−2

S
)t

)

utilizing the iterative algo-

rithm outlined in section 4.1.

• end

Here L is a large number. After a sufficient burn-in time the Markov chain is run for
several iterations to ensure a good approximation of the posterior distribution.
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5 RESULTS

5 Results

In this section we will present results from two different dataset. The first one is synthetic,
which means that we have created a model of the subsurface where all parameterts are
known, and then used this model to generate data, both with and without noise. The
second dataset is compiled of a seismic- and a CSEM gather, that has been performed on
the Troll gas field.

5.1 Synthetic data

To investigate the accuracy of our model, we have chosen to apply it on a synthetic case
where the true values for porosity and saturation are known. The target horizon is located
1200 meters below the sea floor, and divided into 241 segments of length 100 meters. Each
segment i has a unique saturation and porosity, denoted sw,i and φi. We generate logit
values for sw and φ by drawing from a multinormal distribution with expectation zero
and covariance matrix Σsynt. The elements of Σsynt are

σi,j =

{

ρ
|i−j|

ξ if both i and j are even or both are odd
0 else

. (5.1)

ρ = 0.9 and ξ = 20. Looking back to equation 4.23 we see that the parameter ξ was
not included in our prior model. This means that the generated values will be smoother
than we anticipated in our prior distribution. When working with real data the prior
assumptions are never exactly correct, and it is therefore interesting, also in the synthetic
case, to see how the estimates are affected when the data have not been generated quite
as expected.

By inserting the logit values into our forward model, we can calculate reflection
coefficients, AVO-gradients and traveltimes for our synthetic case. In Archie’s law we use
parameters estimated in [6]. These parameters have been found by fitting of log-data
collected from well 31/2-1 which is located on the Troll site outside of Bergen. Numerical
values for all fixed parameters can be found in table 5.1. Going from left to right, eleven
CSEM-receivers have been placed at 7km to 17km with a 1km interval, and CSEM-signals
have been emitted with 100m intervals starting 6km left of receiver 1 and ending 6km right
of receiver 11. So for every receiver we have traveltime data for offsets ranging from -6km
to 6 km. Between receiver 1 and 11 there has also been performed a seismic gather, where
the zero-offset reflection coefficient and AVO-gradient has been calculated for every 100m.
The situation is illustrated in Figure 5.2.

We have estimated the logit values of sw and φ for two different noise levels in the
data generation, for zero noise and for σ2

C , σ
2
S = 0.3. The results are plotted in Figures

5.3-5.8. The hyperparameters in the prior distributions for σ2
C and σ2

S are αC , αS = 0.001
and βc, βS = 1000 in both the synthetic example, and for the Troll data in the next
subsection.

In Figure 5.3 we see that for the zero noise data the estimated porosity matches the
true values nearly perfect, and the variance in the posterior distribution of φ is close to
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Figure 5.1: True logit values for the synthetic saturation and porosity. The values are a
realization of M ∼ N(0,Σsynt)

Archie Gassmann
C 1.28 K0 38 Gpa
α 1.33 Kwater 2.25 Gpa
β 0.14 Kgas 0.08 Gpa

Conductivity Cap-rock properties
ϑw 3.2 Ωm V C

P 2475 m
sec

ϑo 0.67 Ωm V s
P 1275 m

sec

ρC 2500 kg
m3

Table 5.1: Model parameters for both synthetic and real data.
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zero. Using only seismic data to estimate φ also yields good results in this situation, but
the accuracy is considerably increased when the information from the CSEM data is being
taken into account. The saturation estimates gives a fairly precise image of the true values,
but the variance is much larger here than for the porosity estimates. The estimates of sw

are also more spikey than the true solution, and they seem to be oscillating around the
real values. This could be due to the lack of a smoothing parameter ξ in our prior model.
The estimate of sw based only on the seismic date misses the solution completely, and is
very close to the a priori assumption sw = 0. Figure 5.4 shows that outside the bounds
of the seismic gather, all information about porosity is lost, while the saturation estimate
still follows the true values closely, although with a substantial increase in variance. The
estimates of σ2

C and σ2
S are shown in Figure 5.5. The Markov chain seems to converge

almost immediately, and the mean values of σ2
C and σ2

S are small, although not zero. For
all practical purposes however, noise levels of this magnitude are equal to zero noise.

We now add some noise to our data to see how the inversion estimates are affected.
Figure 5.6 and 5.7 shows the estimates for sw and φ when σ2

C = 0.3 and σ2
S = 0.3.

For both sw and φ the expected value of the posterior distribution still coincides closely
with the true values, but the confidence intervals have broadened considerably for both
parameters. Another thing worth noting is the variance of the saturation estimate in
Figure 5.7. Outside of the dotted lines we have no seismic data, but this does not seem to
affect neither the precision nor the variance in the saturation. This is in contrast to the
zero noise case in Figure 5.4, where the variance increased significantly without seismic
information. This indicates that information about saturation contained in the seismic
data is easily lost when noise is added. In Figure 5.8 we see that our Gibbs sampler
converges almost immediately. The posterior distributions for σ2

C and σ2
S have expected

values 0.31 and 0.24 respectively.

PSfrag replacements

s1
w, φ

1 s2
w, φ

2 s3
w, φ

3 s241
w , φ241

Cap-rock

0km 24kmRec1 Rec2 Rec11

· · ·

· · ·

· · ·

Figure 5.2: Synthetic data for porosity and saturation
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Figure 5.3: σ2
C = 0 and σ2

S = 0. No noise has been added to the data. The black lines
show the true values, and the red lines are the estimated values. The blue lines are 95%
confidence bounds, and the green line shows estimates based only on seismic data.
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Figure 5.4: This is the same situation as in Figure 5.3 only with a broader perspective.
Just outside the dotted lines we only have CSEM data, and to the far left and right we
have no information at all.
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Figure 5.5: Convergence plot and posterior distributions for σ2

C and σ2
S. The true value

for both of them is zero.
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Figure 5.6: σ2
C = 0.3 and σ2

S = 0.3. The black lines show the true values and the red lines
estimates from the joint inversion, with 95% confidence bounds in blue. The results from
seismic data only rea showed in green.
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Figure 5.7: This is the same situation as in Figure 5.6 only with a broader perspective.
Just outside the dotted lines we only have CSEM data, and to the far left and right we
have no information at all
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From the previous examples it would seem like the seismic data are the main con-
tributor to information about porosity, while the CSEM data are mostly affected by the
saturation exponent. To test this we have performed two additional runs of our inversion
algorithm, one where (σ2

C , σ
2
S) = (0, 2) and one where (σ2

C , σ
2
S) = (2, 0).

Figures 5.9-5.11 shows the outcome of the simulation with (σ2
C , σ

2
S) = (0, 2). The

estimate of sw is almost identical to the estimate from the zero noise case shown in Figure
5.3, while the porosity estimate is much more inaccurate, and with a large variance. It
is also worth noting the the porosity estimate from the joint inversion, and the estimate
based solely on seismics are almost identical, in contrast to the zero noise situation, where
porosity estimates from the joint inversion were better. This indicates that even though
the CSEM data carries some information about the porosity, its impact is completely
overridden by the noise-filled seismic data. The seismic estimate of the saturation is
actually better here than ever before. This is most likely pure coincidence, and two other
estimations with similar noise levels did not give saturation estimates nearly as accurate
as here. The plots for σ2

C and σ2
S in Figure 5.11 indicate that they both converge almost

immediately. The estimate of σ2
C stabilizes at 4.3 · 10−5 which is as close to the true value

of as we can hope to get. The seismic variance is, however, a bit undrestimated. σ2
S

stabilizes at around 1.3, while the true value is 2. This might be due to the discrepancy
between how the data are generated and our prior covariance matrix. Also, a σ2

S value of
2 equals an enormous amount of noise, which may cause some instability in the inverson.

In Figures 5.12-5.14, noise has been added to the CSEM data, while the seismic data
are exact. Here we see the complete opposite of what happened in 5.9, the estimate of φ is
very accurate, while the estimate of sw has a large variance. This further strenghtens our
initial assumption that the seismic data depends mostly on porosity, while the CSEM data
depends on saturation. However, in figure 5.13 we see the the confidence bounds increases
when we get outside the range of the seismic data. This indicates the when the seismic
noise is low, some information about saturation can be extracted from seismic gathers.
This was also seen in the example with zero noise, specifically in Figure 5.4. Figure 5.14
displays plots of the variances, and both σ2

C and σ2
S have been fairly accurately estimated.

Correctly pinpointing the size of the CSEM noise causes the expected value of sw to be
very close to the true value even though the confidence bounds are rather wide. The large
amount of noise also produces a smoother estimate than in previous simulations, which
is more in line with the nature of the true values.
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Figure 5.9: σ2
C = 0 and σ2

S = 2. Noise in the seismic data, but not in the CSEM data.
The porosity estimate from the joint iversion is almost identical the estimate obtained
from seismics only.
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Figure 5.10: σ2
C = 0 and σ2

S = 2. Outside of the dotted lines the large value for σ2
S has no

effect, as no seismic data has been gathered in this area.
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Figure 5.11: σ2
C = 0 and σ2

S = 2. The posterior distribution of σ2
S seems to be too far left,

with a mean value of approximately 1.3. σ2
C behaves as expected.
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the confidence bounds are wide.
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Figure 5.13: σ2
C = 2 and σ2

S = 0. The uncertainty in the saturation estimate expands
considerably immediately outside of the seismic range.
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For all the simulations above, the prior covariance matrix has been fixed, with
ρ = 0.9 and σ2

P = 1. These are the same numbers that were used when we generated the
synthetic data and this may make our inversion algorithm appear more accurate than it
is in reality. The reason for fixing the prior covariance matrix is that the Gibbs sampler
will not converge to any meaningful values when no parameters have been set a priori.
Instead it will tend to extreme solutions where one or more of the parameters increases
indefinitely. It is, however, still of interest to find out how our prior assumptions affect the
results, so in order to check our model’s sensitivity to the prior covariance parameters, we
have run 4 simulations where these parameters are either higher or lower than their real
values. Table 5.2 summarizes the accuracy of the confidence bounds and size of standard
deviations for these four simulations. S̄D is the mean size of the variance of the logit
values for both sw and φ, while Error is the amount of true values that lie outside our
estimated 95% confidence bounds. Both ¯SD and Error have been calculated based on
estimations of logit-values horizontally located between 7000 meters and 17000 meters,
i.e. in the area where we have both seismic and CSEM data.

In the middle of the table, numbers for a simulation with the correct prior values
are displayed. The two simulations performing worst are the ones where σ2

P = 0.5. This
is not surprising, because a low value for σ2

P indicates that we are fairly certain about
the interval which the logit values lie within. Since this is not the case, we are imposing
wrong information on our estimates, which in turn results in large standard deviations.

Setting σ2
P = 2, which is much higher than necessary, does not seem to have the

same negative effect on our parameters, as this leaves most of the estimation up to the
acquired data. In the simulation where (σ2

P , ρ) = (2, 0.3) the standard deviation is slightly
larger than for the correct values, but this is most likely due to ρ being so low. Assigning
ρ with too low a value means that we do not make full use of all the information we
acquire, and this leads to higher uncertainty. This is also confirmed by the low Error in
this simulation, which indicates that the confidence bounds should be narrower than our
estimates. What is interesting to note is that for (σ2

P , ρ) = (2, 0.99) the results are better
than when we use the correct parameters (1, 0.9). The ¯SD is significantly lower, and the
Error is close to 5%. This is most likely due to the smoothing parameter ξ that was used
in the generation of data, but not included in the prior. Raising the value of ρ counters
the effect of not including ξ and gives a better description of the true situation.

σ2
P \ ρ 0.3 0.9 0.99

0.5
¯SD = 0.89

Error'1.5%

¯SD = 0.67
Error'3%

1
¯SD = 0.48

Error'2.5%

2
¯SD = 0.54

Error'1%

¯SD = 0.32
Error'4%

Table 5.2: ¯SD is the mean standard deviation in the area where we have both seismic and
CSEM data. Error denotes the amount of values that lie outside of the 95% confidence
bounds. Ideally this should be around 5%. (σ2

C , σ
2
S) = (1, 1) in all the simulations.

29



5.2 Troll data 5 RESULTS

5.2 Troll data

The setup for collection of CSEM Troll data is very similar to that of the synthetic case
discussed in the previous section. 24 receivers were placed on the seafloor in a straight
line as illustrated in Figure 5.15. The sea-depth in this area is approximately 325 meters,
and an electric dipole transmitter was lowered to 100meters, and towed along the line of
the receivers, starting 10km southwest of receiver 1, and ending up 10km northeast of
receiver 24. The transmitter emitted a signal for every fiftieth meter that was registered
by the receivers within a range of 10km. So every receiver has registered signals from
10km southwest to 10km northeast of its position with 50 meter intervals, aproximately
400 signals per receiver. Unfortunately only 18 of the 24 receiver functioned as they were
supposed to. Measurements were made for signals with frequencies of 0.25Hz, 0.75Hz and
1.25Hz, but we will only focus on data from the 0.25Hz signal. The received CSEM data

Figure 5.15: The figure indicates the location of the 24 CSEM receivers. Only 18 of
the receivers functioned properly, and for receiver 3, 7, 10, 13, 17 and 21 no data were
recorded. A seismic gather has also been performed in the same area, and we will be
working with seismic data collected on the line segment between receiver 1 and receiver
24. The figure is from [18]

were not given on the same form that we have been working with and a data transforma-
tion was therefore necessary before applying the inversion method. This transformation is
described in appendix A. Figure 5.16 shows the transformed data as a function of offset.
For most of the receivers the recorded data are far from symmetrical for positive and
negative offsets. This indicates rather large conductivity variations in the anomaly.

Figure 5.17 shows an image of the subsurface created from the full 2D seismic gather
along the EM line. Our seismic model concentrates on transition between cap-rock and
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anomaly, which is illustrated by a yellow line in the figure, and we will be working with
seismic data picked along this line. Selection of these data are considered part of the
pre-processing, and will not be further examined here, but it is worth noting that this
is a difficult process which potentially introduces a lot of noise, especially because of the
two large faults in the cap-rock. From the seismic data we find the depth of the anomaly,
which is approximately 1200 meters below the seafloor. Figure 5.18 displays the values of
RPP and GAV O picked along the yellow line in Figure 5.17.

The dimension of our datasets were nds = 326 and ndc = 1116. For the seismic data
we picked every third datapoint along the line between receiver 1 and 24, while for the
CSEM data we only used data from offsets between 6.5km and 8km. When the offset
becomes to small, the linear relation between offset and traveltime is no longer valid,
while large offsets causes more noise in the data. The interval 6.5km-8km was chosen
to balance these two considerations. The correlation coefficient ρ in our prior covariance
matrix was set to 0.7. The other fixed model parameters were the same here as in the
synthetic example. These are listed in table 5.1.

In Figure 5.19 and 5.20 we see the estimate of sw and φ on the Troll site. The
porosity estimate in Figure 5.20 confirms the results from the synthetic data. Outside the
range of the seismic gather, all information about porosity is lost, and the estimate tends
to its a priori expectation, which is 0. In the area where we do have seismic data, the logit
values of the porosity ranges between 0.5 and 4. This corresponds to porosities between
0.29 and 0.11. The lowest porosity is found between 13.5km and 17km. This corresponds
with the dark area in Figure 5.17. One would not expect this area to have such a low
porosity, since a large part of the gas reservoir is located here. One explanation might be
that the seismic data for this area are recording of the transition between the overburden
and the cap-rock, and not between the cap-rock and the anomaly. This might be the
case due to the prominent cap-rock feature seen in 5.17, and we have thus estimated the
porosity in the cap-rock, and not the anomaly.

It is difficult to draw any clear conclusions about the gas reservoir from the saturation
plot. Remember that to the far left and far right we have no data and the estimates
therefore tends to the a priori values. Hence results earlier than 3km and after 27km
might not be trusted. Figure 5.22 shows the saturation and porosity estimates, and also
indicate the true gas saturated areas, while Figure 5.23 displays the true situation at the
Troll field. Some features of the true situation are recognized in the saturation plot in
Figure 5.22. The saturation has a spike between 22km and 24km which corresponds to
low gas saturation in precisely this ares. Also, the genally low saturation values between
13km and 22km corresponds well with the true situation. However, the spike between
16km-17km and the low saturation values between 5km and 8km can not be related to
any features seen in Figure 5.23.

Figure 5.21 shows convergence plots and histograms for σ2
C and σ2

S. While they
both stabilize almost immediately, the estimated level of the seismic variance is very high.
Combined with the tendency to underestimate the seismic variance experienced in the
synthetic case, we are left with seismic data with a lot of noise. σ2

S was multiplied with
the a priori known seismic covariance matrix in 4.18. Setting σ2

S = 9 gives us a 95%
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confidence interval for RPP of magnitude 0.6 and 2.0 for GAV O. In Figure 5.18 we see
that typical values for RPP are in the interval [-0.1,0.3] and for GAV O [-0.4,0.4]. Thus
the estimated noise levels indicate that a lot of the infomation in the seismic data are
drowned in noise. σ2

C has a mean of approximately 0.42 which gives confidence intervals
of magnitude 2.5. The size of the CSEM data ranges between [3,5] for appropriate offsets,
and while the noise is still considerable, it is significantly less than in the seismic data.
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Figure 5.16: Phase as a function of offset for the 18 receivers used in the Troll CSEM
gather.
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Figure 5.17: Image of the subsurface based on seismic date. A yellow line is drawn along
the cap-rock/anomaly transition. The discontinuities in the line indicate faults.
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Figure 5.18: Values for RPP and GAV O picked along the yellow line in Figure 5.17.
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Figure 5.19: Estimates of logit values for water saturation and porosity at the Troll field.
The red lines are the expected values, and the blue lines are the 95% confidence bounds.
Estimates based solely on seismics are shown in green.
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Figure 5.20: Logit values for saturation and porosity over the entire exploration area. The
thick black lines marks the areas which are known to be gas saturated.
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Figure 5.21: Histograms and convergence plots for σ2
C and σ2

S from the Troll data. Both
parameters seem to converge rapidly. The expected value for σ2
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Figure 5.22: Saturation and porosity over the entire exploration area. The prior correla-
tion coefficient ρ = 0.7. The thick black lines indicate gas saturated areas.

Figure 5.23: Actual situation at the Troll gas field. The main gas reservoir begins at
around 14km and ends at 23km. There are also some gas concentrations between 25km
and 27km. The figure is from [18].

37



6 CONCLUSION AND SUGGESTIONS FOR FURTHER WORK

6 Conclusion and suggestions for further work

In this paper we have studied the estimation of water saturation and porosity in the
subsurface based on measurements of seismic and CSEM signals. An inversion method
has been developed based on Bayesian statistics, and this method has been tested on a
synthetic dataset where the true values were known, and a real dataset from the Troll field
outside of Bergen. Both empirical and analytical relations have been utilized to link the
observed data to sw and φ. For the seismic data this involved Gassmann’s and Zoeppritz’
equations. The elastic constants used in Zoeppritz’ equations were relatively insensitive
to changes in sw and when working on the synthetic dataset it proved difficult to get a
reliable estimate of sw based on seismic data. The porosity was, however, very accurately
estimated by the seismic data, though the addition of CSEM lead to a slight increase in
the precision. For the CSEM data we used Archie’s law and ray-tracing to connect sw

and φ to traveltimes or phase. The constants in Archie’s law were estimated from well
logs, which gave us a very low porosity exponent. Because of this the CSEM data were
mainly dependent on sw, and the two data gathers complemented each other in regards
to information about sw and φ.

We have found that the parameters in both the prior- and the likelihood covariance
matrix are crucial for the method’s performance. Since estimation of all these parame-
ters simultaneously leads to extreme solutions, we fixed the prior covariance using prior
information about sw and φ, and estimated two parameters in the likelihood covariance
matrix utilizing a Gibbs sampler. In the synthetic case the noise in the CSEM data was
accurately estimated for several different noise levels, while the parameter for the seismic
variance was somewhat underestimated when the noise grew large.

The synthetic example showed a clear improvement in estimation accuracy when
seismic and CSEM data where used in a joint inversion. This indicates that the theoretical
foundation of the method is sound, and wothy of a more thorough analysis, For real
data the results show some similarity with previous results from the Troll field, but not
in all respects, and the uncertainty is large. There are many reasons for this possible
misfit when applying our method on a real life situation. One of them being the large
amount of error in the seismic data, which arises from difficulties in picking data along the
cap-rock/anomaly transition. Also, we assume that the empirical relations, which have
been calculated in one well, are correct outside of this well. This will not be completely
accurate, and further increases the noise levels in our data. For the CSEM data it would
be beneficial to implement a more realistic model for the CSEM signals behaviour in
the overburden and anomaly, and to include all frequencies in the processed phase data.
This would involve more complicated physics, but can be done without having to solve
time-consuming diferential equation. A lot of deterministic work on this have been done
in [14]. Another problem is that we are working in 1D and ignoring the two-dimensional
lateral and vertical effects this simplification causes.

As mentioned in the introduction, previous works on this subject have focused on
a vertical model where φ and sw only varies with depth. A reliable 2D model combining
variations horizontally and vertically would be a useful tool in the continuing search for
offshore hydrocarbon reservoirs.
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Appendices

A Phase scaling

The derivations in this appendix is largely based on [17]. An electric field E is given as

E = −iωµ0I
K0(γr)

2π
(A-1)

where ω is the angular frequency, I is a line current, r is the distance to I, K0 is a
modified Bessel function, γ = (iµ0ωσ)1/2 and σ is the conductivity. When |γr| � 1 the
Bessel function can be approximated to

K0(γr) ∼ e−γr

√

π

2γr
(A-2)

Inserting this into A-1 gives us

E ∼ −iµ0ωI

2π

√

π

2γr
e−γr. (A-3)

From the CSEM experiment at the Troll-field we have measurements of the elctric fields
amplitude α and the phase ξ.

αeξ = E

αeξ =
−iµ0ωI

2π

√

π

2γr
e−γr

ξ = −5π

8
− r

√

µ0ωσ

2

− r
√
µ0σ = (ξ +

5π

8
)

√

2

ω

− τ = (ξ +
5π

8
)

√

2

ω
. (A-4)

Since we are only interested in the phase-shift from source to receiver we can ignore the
sign. Hence our expression for the travel-time is

τ = (ξ +
5π

8
)

√

2

ω
. (A-5)
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