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Abstract

Finding unknown reservoir properties based on observations of well-logs, pro-
duction and 4-D seismic, known in the petroleum literature as reservoir char-
acterisation and production history matching, is a very complicated task. In
recent years, technological advancements has led to an increase in the amount
of available data regarding a reservoir under production. Thus, development
of methods that solves the history matching problem, both automatically and
sequentially as new data becomes available, has been given a lot of attention.

The Ensemble Kalman Filter is a Bayesian method for performing reservoir
history matching which has shown promising results. However, this method
requires multiple realisations of the reservoir, obtained through �uid �ow simu-
lation. When considering very large reservoir models represented on a �ne scale,
repeated �uid �ow simulation will be computationally too expensive. Therefore,
the reservoir has to be represented on a coarser scale before �uid �ow simula-
tion can be performed. This approximation is, however, known to introduce
bias in the history matched reservoir, which should be accounted for in the
model formulation. Moreover, inclusion of 4-D seismic data, requires a �ne
scale representation of the reservoir.

In this Thesis, we present a Hierarchical Bayesian solution to the challenges
outlined above, requiring only �uid �ow simulations on a coarse scale. Fur-
ther, we outline a linearised Bayesian seismic AVO inversion technique, that �ts
into the Ensemble Kalman Filter methology. The complete method, which we
have called the Hierarchical Scale-Corrected Ensemble Kalman Filter, is demon-
strated on a case study inspired by the Troll �eld in the North Sea, where we
have included both observations of production, and 4-D synthetic seismic data.
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1 Introduction
Evaluation and prediction of the properties in a petroleum reservoir, such as
permeability, hydrocarbon saturation and porosity, based on production history,
well-logs and seismic data, is a very important task when the goal is to extract
as much hydrocarbons as possible. This task, however, requires solutions to
a complex, ill-posed and non-linear inverse problem. Traditional methods for
performing this task has been based on a deterministic approach.

The statistical approach to solving this problem is Bayesian inversion, which
in recent years has gained a strong popularity when solving geophysical inverse
problems (Scales & Snieder 1997). In Bayesian inversion a priori knowledge of
the model, before any observations have been made, is re�ected through a prob-
ability distribution. By further assigning a probabilistic term, the likelihood,
connecting observations to the model, a posteriori knowledge of the model can
be obtained through a probability distribution.

Technological advancements has in recent years made permanent monitoring
of a reservoir possible through production data and 4-D seismic. The use of a
traditional history matching method will in such a case be too time consuming,
since the whole process has to be repeated as new observations become available.
Thus, methods that are able to assimilate the model to observed data, both
continuously and sequentially, has in recent years been given much attention.

The Kalman Filter (Kalman 1960) is a Bayesian method that can solve
space-time inversion problems sequentially. The key assumption in this method,
however, is that the model connecting previous observations to future observa-
tions is a linear Gaussian function. Such an assumption will not be valid for the
�uid �ow of a petroleum reservoir, which is a highly non-linear, non-Gaussian
process.

The Ensemble Kalman Filter (EnKF), introduced by Evensen (1994) and
later modi�ed by Evensen et al. (1998), is a method inspired by the Kalman
Filter that has shown promising results within �elds such as weather forecast-
ing, oceanography, ground water hydrology and petroleum engineering (Evensen
2003). When the function connecting the future observations to past observa-
tions is non-linear, the model will be analytically intractable in a stochastic
setting. The idea of the EnKF is therefore to use a set of realisations called
an ensemble, such that relevant statistics such as the mean and the covariance
can be estimated. As new observations are available, the EnKF also provides a
sequential method for updating the ensemble members.

Evaluation of the �uid �ow in a reservoir involves solving a system of partial
di�erential equations, refered to as �uid �ow simulation. This is known to
be a computational demanding process when the dimension of the problem
increases. In very large reservoir evaluation problems, containing up to 109 grid
blocks, repeated �uid �ow simulation may take weeks or months to complete.
Approximate models, that reduces the dimension of the problem is therefore
required. Usually, this involves representing the very �ne scale reservoir on a
coarser scale such that repeated �uid �ow simulation can be performed. This
approximation is, however, known to introduce bias, which should be accounted
for (Omre & Lødøen 2004).
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Lødøen & Omre (2005) presented an extension to the EnKF, the Scale-
Corrected EnKF, where the bias of coarse scale �uid �ow simulation was cor-
rected for. This approach, however, required a calibration step involving �uid
�ow simulations on both �ne and coarse scale. Moreover, their approach re-
quired inversion of empirical covariance matrices, which in most practical set-
tings would be rank de�cient.

In this Thesis, we have combined the idea of Lødøen & Omre (2005) with
Bayesian Kriging (Lee & Zidek 1992), into a hierarchical method we have called
the Hierarchical Scale-Corrected EnKF (HScCEnKF). The main advantages of
this approach is that we only require �uid �ow simulations on a coarse scale,
while being able to predict the outcome on a �ne scale, preserving the rank of
all covariance matrices. This feature is important when we include observations
of 4-D seismic, as these usually appear on a much �ner grid than the coarse
scale grid used for �uid �ow simulation.

The inclusion of 4-D seismic in the EnKF methology requires that there
exists a linear Gaussian relationship between the reservoir and seismic obser-
vations. Combining the work of Buland & Omre (2003), connecting seismic
amplitude versus o�set (AVO) data to rock physics, and the work of Bachrach
(2006) and Batzel & Wang (1992), connecting rock physics to the reservoir prop-
erties, we have developed a linear Gaussian model connecting seismic AVO data
to the reservoir properties.

The Thesis proceeds as follows: In Section 2, we introduce some of the
notation used throughout this Thesis, followed be a short review to the physical
equations governing �uid �ow in a reservoir in its simplest form in Section 3.
The linear Bayesian seismic AVO inversion method is presented in Section 4,
and the concept of Bayesian reservoir history matching is introduced in Section
5. Section 6 presents the model assumptions used in the EnKF together with an
Algorithm in a setting including both observations of production history and 4-
D seismic. Approximate �uid �ow simulation is presented in Section 7, followed
by the model description and an Algorithm for the HScCEnKF in Section 8. The
case study used in this Thesis is presented in Section 9, and Section 10 presents
and discusses the results. Finally we draw some conclusion, and outline further
work in Section 11.
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2 Notation
Throughout this Master's Thesis all vectors, meaning scalar vectors, stochastic
vectors and realisations, will be denoted by boldface small letters. That is
a ∈ Rn×1 means that a is a column vector with n elements and aT ∈ R1×n its
transpose. Capital boldface letters will similarly denote both stochastic matrices
and realisations. The notation A ∈ Rn×m means that A is a matrix with n rows
and m columns, where each entry, aij , is a real number. Further, note that for
two numbers t1 and t2, ∆t1 = t2 − t1, and the notation x̄ for x ∈ Rn×1, will
represent the mean value of the vector given as

x̄ =
1
n

n∑

i=1

xi.

Functions f(•) will denote probability density functions (pdfs). Given the
pdf f(x), then a realisation from this distribution will be denoted by xi ∼
f(x), where the symbol ∼ implies that the realisation follows this distribution.
Conditional probability density function of a multivariate random variable, z,
given another multivariate random variable, y will be denoted by f(z|y).

Using Bayes' rule (Casella & Berger 2002), we can express this in terms of
their joint distribution as follows

f(z|y) =
f(z, y)
f(y)

(1)

∝ f(z, y).

That is, we know the structure of the pdf up to a possibly unknown normali-
sation constant. The multivariate expectation and covariance of a stochastical
vector x, as given in De�nition 1 and 2, Appendix A, will be denoted by µx and
Σx respectively. Further, will the multivariate covariance between two vectors
x and y, as given in De�nition 3, Appendix A, be denoted by Σxy.

Consider a reservoir domain D ⊂ R3, which is discretised into a lattice
LD = Lz × Lxy containing n grid nodes as shown in Figure 1. Here Lz ⊂
R1 corresponds to the nz grid nodes in the vertical direction, and Lxy ⊂ R2

corresponds to the nxy = nx · ny grid nodes in the horizontal plane, giving a
total of n = nx · ny · nz lattice nodes.

Since each lattice node in the discretised reservoir LD contains certain reser-
voir properties, meaning porosity φ, log permeability κ, saturation s, and pres-
sure p, we let the state of the reservoir at a discrete timestep t ∈ {0, . . . , T}, be
described by the vector

rt =
[
κT , φT , sT

t , pT
t

]T ∈ Rnr×1,

where nr denotes the number of lattice nodes times the number of reservoir
properties considered. These properties are considered to be unknown through-
out the reservoir, with log-permeability and saturation being static variables,
and saturation and pressure being spatio-temporal variables.

It should be noted that the variable st includes water, gas and oil saturation.
Since the sum of water, oil and gas saturation is equal to one, it is therefore
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q
(2)
t

q
(1)
t

rt

Figure 1: The Figure shows an oil reservoir discretised into a three-dimensional lat-
tice. Here rt denotes the vector containing the reservoir properties at each
lattice node at timestep t ∈ {0, . . . , T}, and q

(k)
t , k ∈ {1, 2}, denote the vec-

tors containing the production properties for the production and injection
well respectively.
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su�cient to only consider the gas and water saturation as the unknown variables
for saturation. In this Thesis we will further assume that the water saturation
is a known constant, thus the notation st will refer to the gas saturation in the
reservoir at timestep t.

The reservoir production properties at timestep t, denoted by qt ∈ Rnq×1, is
the second uncertain variable. Here nq is the number of injection and produc-
tions wells, times the number of production properties considered. Combining
rt and qt, we get a vector xt ∈ R(nr+nq)×1, containing the state of the reservoir
at given timestep t. For notational convenience let

xt =
[

rt

qt

]
,

refer to the reservoir state at timestep t.
Observed values of the reservoir at timestep t will be denoted by

xo
t =

[
ro

t

qo
t

]
=

[
Drtrt + εrt

Dqtqt + εqt

]
= Dxtxt + εxt, (2)

where Drt and Dqt are shift matrices. Here the two vectors εrt and εqt are
included to model the uncertainties in the observations, and they are assumed
to follow some probability distribution. A model such as the one above will in
this Thesis be refered to as the likelihood model, or forward model. Note that
ro

t can include both observations through well-logs and seismic surveys. For
notational convenience we will let wo

t , ∀t ∈ Two , denote the complete set of
observed well-logs, while do

t , ∀t ∈ Tdo , will refer to the complete set of seismic
data. Here Two and Tdo are the sets of timesteps where observations of well-log
and seismic data are available respectively.
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3 Fluid Flow Simulation
In this section a simple version of the system of equations used in �uid �ow
simulation is presented. Further, we de�ne the term �uid �ow simulator.

Reservoir �uid �ow simulation is generally the process of applying numerical
methods to solve a system of partial di�erential equations that describe �ow in a
porous medium. We now give a brief introduction to this system in its simplest
form. More thorough descriptions, with more complex models can be found in
e.g. Azis & Settari (1979), Ewing (1983), Keoderitz (2005) or Peaceman (1977).

If we consider the �ow of a single �uid in an isotropic medium, that is,
properties of the �uid is independent of the direction, then Darcy's law (Darcy
1856) is given as

u = −K

µ

(
∇p− ρ

g
∇z

)
, (3)

where u = ui + vj + wk, with i, j and k being unity vectors in x, y and
z direction, and u, v, w are �ux components. Moreover, K, p, g and µ are
the permeability tensor, pressure, gravity constant and viscosity respectively.
According to Azis & Settari (1979), the permeability tensor can in most practical
problems be reduced to a diagonal tensor, and if we assume an isotropic medium,
then K = Kx = Ky = Kz. Combining this equation with an equation stating
that the mass should be preserved, namely (Durlofsky 2003)

∂

∂t
(φρ) +∇ · (ρu) + ξ = 0, (4)

we get
∂

∂t
(φρ)−∇ ·

(
ρ

µ
K

(
∇p− ρ

g
∇z

))
+ ξ = 0, (5)

where ρ is the density, φ is the porosity and ξ is a source/sink term representing
a mass �ow rate per unit volume (injection/production). This last equation is
referred to as the pressure equation in the literature. If we ignore the gravity
and assume that the porosity and density are independent of time, Expression
5 is reduced to

∇ ·
(

1
µ

K · ∇p

)
=

ξ

ρ
. (6)

To be able to solve this system, according to Peaceman (1977), we also need a
set of boundary conditions, and functions connecting porosity φ and density ρ
to the pressure:

φ = φ(p), ρ = ρ(p).

When these conditions are set, then the system can be solved using a numerical
solver meaning a �nite di�erence or �nite element method (Iserles 1996, White
1986). Regardless of the complexity of the underlying system, we will from now
on denote the solver of this system of equations as an unknown, possibly highly
complex function ω : Rnr+nq → Rnr+nq . This will further be referred to as the
�uid �ow simulator.
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Assume that we are given the reservoir timestep t− 1, xt−1. Then the state
of the reservoir at a later timestep t, can be written as

[
rt

qt

]
= ω∆t−1

([
rt−1

qt−1

])
+ ε∆t−1 , (7)

where the subscript in the �uid �ow simulator expresses the di�erence between
two consecutive timesteps, and ε∆t−1 ∈ R(nr+nq)×1 is a vector representing
numerical-, and model simpli�cation errors.
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4 Seismic Inversion
Figure 2 shows the outline of a marine seismic survey. An airgun array behind
the seismic vessel is �red, generating waves that propagate in the water until
they reach a subsurface. Here the properties of the medium change, and portions
of the waves are re�ected to the surface where hydrophones on the seismic
streamers behind the vessel registers the amplitudes of the re�ected waves. The
Result is a set of re�ected wave amplitudes do

sk,j, θl
, at di�erent locations j ∈

Lxy, as a function of discretised seismic re�ection travel time sk, k ∈ {1, . . . , S}
and re�ection angles θl, l ∈ {1, . . . , nθ}.

Figure 2: Outline of marine seismic acquisition.

The seismic trace, meaning the set of re�ected wave amplitudes along a
vertical pro�le zj ∈ Lz, for di�erent re�ection angles θ ∈ {θ1, . . . , θnθ

}, at
lattice node j will further be represented by the vector

do
j =

[
do

j,s1, θ1
, . . . , do

j,sS , θ1
, . . . , do

j,s1, θnθ
, . . . , do

j,sS , θnθ

]T
∈ Rnθ·S×1. (8)

In this section we present a forward model connecting the reservoir rt to
the observed seismic data do

t at certain timesteps t ∈ Tdo . Further, we present
a Bayesian solution to the inverse problem of �nding the reservoir properties,
given pre-stack amplitude versus o�set (AVO) seismic data.

Please note that in this Thesis we are not concerned with the complicated
task of preprocessing the seismic data. We therefore refer the reader to e.g.
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Avseth et al. (2005) and Sheri� & Geldart (1995) for further reading on this
topic. Also, in order to get an analytically tractable model such that the seismic
inversion can be performed fast, a simpli�ed linear model, where we invert using
seismic traces separately, is developed.

4.1 Seismic Forward Model
Consider a position y ∈ R3×1 in an isotropic, elastic reservoir domain D ⊂ R3.
Then, according to Sheri� & Geldart (1995), the material properties at y can be
completely described by the pressure wave (P-wave) velocity α(y), shear wave
(S-wave) velocity β(y), and density ρ(y).

Given
[α(y), β(y), ρ(y)], ∀y ∈ D,

a synthetic seismogram can then be found by solving the wave equation describ-
ing the wave propagation (Sheri� & Geldart 1995). In most non-trivial cases,
this must be done by applying a numerical partial di�erential equation solver
such as the �nite di�erence or �nite element methods (Iserles 1996, White 1986).

4.1.1 Seismic Likelihood
Instead of solving the complete wave equation, another approach is instead to
use ray tracing methods (Cerveny et al. 1977). Central in these methods is
Snell's law which for the transition between layer l and l + 1 is given as

sin(θP,l)
αl

=
sin(θP, l+1)

αl+1
=

sin(θS,l)
βl

=
sin(θS, l+1)

βl+1
= const., (9)

and the Zoeppritz' equations (Zoeppritz 1919). Snell's law simply states that
when a P-wave travelling in a solid layer l with a non-normal angle of incidence
θP,l and velocity αl, hits the boundary of a solid layer l + 1, the P-wave is
converted into four re�ected and transmitted P- and S-waves. This process is
shown in Figure 3.

An expression for the distribution of the energy in the four converted waves
as a nonlinear function of the material properties and the angle of incidence, θP,l,
is given through the re�ection and transmission coe�cients in the Zoeppritz'
equation. For small angles of incidence Aki & Richards (1980) showed that the
re�ection coe�cient for a re�ected P-wave can be approximated by

cPP (θP ) = aα(θP , ᾱ, β̄)
∆α

ᾱ∆z
+ aβ(θP , ᾱ, β̄)

∆β

β̄∆z
+ aρ(θP , ᾱ, β̄)

∆ρ

ρ̄∆z
, (10)

where

aα(θP , ᾱ, β̄) =
1
2
(1 + tan2 θP )

aβ(θP , ᾱ, β̄) = −4
β̄2

ᾱ2
sin2 θP

aρ(θP , ᾱ, β̄) =
1
2
(1− 4

β̄2

ᾱ2
sin2 θP ),
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αl+1

αl
θP,l θP,l

θS,l

βl

ρl

θS,l+1

θP,l+1

ρl+1

βl+1

Figure 3: Converted waves generated as an incident P-wave passes the interface be-
tween the solid layers l and l + 1.
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and ∆z is the thickness of the geological layer.
According to (Stolt & Weglein 1985), Expression (10) can be given as a

continuous function of seismic re�ection time by letting ∆s → 0 such that

∆α

ᾱ∆s
→ 1

α(s)
lim

∆s→0

α(s + ∆s)− α(s)
∆s

=
d
ds

ln α(s),

∆β

β̄∆s
→ d

ds
ln β(s),

∆ρ

ρ̄∆s
→ d

ds
ln ρ(s).

As in Buland & Omre (2003), we can generalise the coe�cients in Expression
(10), to time dependent coe�cients by letting the average velocities also be
dependent of time. If we further assume that for each seismic trace

β̄(s)
ᾱ(s)

=
µβ

µα
,

we can write
cPP (θP, k, s) = a(θP, k)T m′(s), (11)

where

a(θP, k) =




1
2(1 + tan2 θP, k)

−4
µ2

β

µ2
α

sin2 θP, k

1
2(1− 4

µ2
β

µ2
α

sin2 θP, k)


 ,

and
m′(s) =

[
d
ds

ln α(s),
d
ds

lnβ(s),
d
ds

ln ρ(s)
]T

.

From now on we will drop the subscript P in the angles of incidence, and write
θk. For each discretised seismic trace dj , j ∈ {1, . . . , nxy}, we then get

cPP,j = Ajm
′
j , (12)

where

cPP,j = [cPP,j(θ1, s1), . . . , cPP,j(θ1, sS), . . . , cPP,j(θnθ
, s1), . . . , cPP,j(θnθ

, sS)]T ∈ Rnθ·S×1

m′
j =

[
m′

j(s1)T , . . . , m′
j(sS)T

]T ∈ R3S×1

and
Aj =

[
AT

j,1, . . . ,A
T
j,nθ

]T
, (13)

with Aj,k ∈ RS×3·S being a block matrix, with aj(θk)T on each block diagonal
element and zero otherwise.

According to Dobrin & Savit (1988), the seismic observations are connected
to the re�ection coe�cients cPP through the convolution model

d(θ, s) =
∫

ωθ(s− u)cPP (θ, u)du + ε(θ, s), (14)
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where ωθ(s− u), is a seismic wavelet dependent on the angle θ and ε(θ, s) is an
error term. Similarly as in Buland & Omre (2003), Expression (14) can further
be discretised such that

dj = WcPP,j + εω, (15)
where

εω = [ε(θ1, s1), . . . , ε(θ1, sS), . . . , ε(θnθ
, s1), . . . , ε(θnθ

, sS)]T ∈ Rnθ·S×1,

and W ∈ Rnθ·S×nθ·S is a block-diagonal matrix with diagonal elements

W k =




w1 0 . . . 0

0 ww
. . . 0

... . . . . . . 0
0 . . . 0 wS



∈ RS×S , k ∈ {1, . . . , nθ}.

Here

wm =





[
ω−(m−1), . . . , ω0, . . . , ωnω

]
, m < nω + 1[

ω−(nω), . . . , ω0, . . . , ωnω

]
, nω + 1 ≤ m ≤ nS − nω[

ω−(nω), . . . , ω0, . . . , ωnω−(nS−m)

]
, m > nS − nω

represents the discretised wavelet along a seismic trace, with length ∈ {nω +
1, . . . , 2nω + 1}.

Since di�erentiation is a linear operation, we can write

m′
j = Dmj , (16)

where

D =
1

2∆s




0 −√2
√

2 0 . . . 0
−1 0 1 0 . . . 0

0 −1 0 1
. . . 0

... . . . . . . . . . . . . ...
0 . . . 0 −1 0 1
0 0 . . . 0 −√2

√
2




∈ R3S×3S .

Combining Expressions (12), (15) and (16), yields

dj = Gjmj + εω, (17)

with Gj = WAjD ∈ RnθS×3S .

4.1.2 Rock Physics Likelihood
Using a similar approach as in Bachrach (2006), we can link the elastic param-
eters α, β and ρ to the reservoir properties φ, s and p through a non-linear
function, g : R3 → R3, by using the Biot-Gassmann theory (Gassmann 1951,
Biot 1962), and the empirical results of Batzel & Wang (1992).
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Gassmann's equation is given on the following form:

Ksat

K0 −Ksat
=

Kdry

K0 −Kdry
+

Kfl

φ(K0 −Kfl)
, Gsat = Gdry, (18)

where

Kdry = e�ective bulk modulus of dry rock,
Ksat = e�ective bulk modulus of the rock with pore �uid
K0 = matrix bulk modulus of the material
Kfl = e�ective bulk modulus of the pore �uid

Gdry = e�ective shear modulus of dry rock
Gsat = e�ective shear modulus of rock with pore �uid

As shown in Mavko et al. (1998), Expression (18) can be equally written as

Ksat1

K0 −Ksat1
− Kfl1

φ(K0 −Kfl1)
=

Ksat2

K0 −Ksat2
− Kfl2

φ(K0 −Kfl2)
,

Gsat1 = Gsat (19)

in a situation with two di�erent �uids. For partially saturated rocks we can,
according to Mavko et al. (1998), model the e�ective �uid modulus as a function
of saturation as follows:

Kfl1(s) =
(

sw

Kb
+

s

Kgas
+

1− sw − s

Koil

)−1

, (20)

where sw, Kb, Kgas and Koil are the water saturation, brine, gas and oil bulk
modulus respectively. We further assume that

Ksat2 = Ksat2(φ,θKφ
) + εKφ

Gsat = Gsat(φ,θGφ
) + εGφ

, (21)

where Ksat(φ, θKφ
) and Gsat(φ,θGφ

) are functions found through e.g. regression
based on well-logs, with θ(•) being the corresponding model parameters such as
regression coe�cients in the case where the model is found through regression,
and ε(•) describes the model errors.

The bulk modulus K of a �uid or gas is according to Mavko et al. (1998)
given as

K = ρ · v2 (22)
where ρ is the density and v is the acoustic velocity in the corresponding �uid.
The results of Batzel & Wang (1992), can therefore be used to connect the bulk
modulus of brine, oil and gas to pressure, through non-linear functions

Kbrine = Kbrine(p,θKbrine
)

Koil = Koil(p, θKoil
)

Kgas = Kgas(p, θKgas) (23)
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Here θK(•) are model parameters, such as temperature, brine salinity, gas gravity
and API gravity (American Petroleum Institute oil gravity), which are assumed
to be known throughout the reservoir. A summary of the these functions can
be found in Mavko et al. (1998).

Combining Expressions (20), (21) and (23), and assuming that Kfl2 = Kbrine

in Expression (19), we can express Ksat1 as a function of porosity, saturation
and pressure, namely

Ksat1 = Ksat1(φ, s, p,θKsat1). (24)

θKsat1 is here a set of physical constants, such as the ones described above, or
regression coe�cients, assumed to be known throughout the reservoir through
well-logs and core samples.

Finally, by using the Expressions in Bachrach (2006), we can establish a
connection between the elastic parameters ρ, α and β and φ, s and p through
the non-linear functions

α = gα(φ, s, p,θα),
β = gβ(φ, s, p,θβ),
ρ = gρ(φ, s, p,θρ).

Again, the notation θα,β,ρ corresponds to known model parameters such as
regression coe�cients, or physical properties of the reservoir.

For notational convenience, we from now on express the relation between
the elastic properties of the reservoir, and the reservoir properties for a seismic
trace through the non-linear function g : R3nz → R3S , such that

mj = g(r−κj ), (25)

where r−κj =
[
φT

j , sT
j , pT

j

]T
∈ R3nz×1.

4.2 Bayesian Linearised Seismic Amplitude vs. O�set Inversion
We will now outline a linear Bayesian inversion method of �nding the reservoir
properties along a seismic trace. Note that in this section we have omitted the
subscript indicating which seismic trace we are examining.

Consider the Graph shown in Figure 4, where single arrows mean that there
is a stochastic relation between the variables and thick arrows imply a deter-
ministic relationship.

Using the seismic forward model in the previous section, we further assume
that

do|d = Ddod + εdo ,

d|m = Gm + εω,

m = g(r−κ),
(26)
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d

d
o

m r
−κ κ

Figure 4: The �gure shows the graph of the stochastic model considered in the seismic
inversion. Thin arrows imply a stochastic relationship, while thick arrows
imply a deterministic relationship.

where Ddo ∈ Rnθ·Sdo×nθ·S is an indicator matrix that speci�es which locations
seismic observations are available, with Sdo ≤ S, and

εdo ∼ Gaussnθ·Sdo (0, σ2
doI)

εω ∼ Gaussnθ·Sdo (0, σ2
ωI).

We also assign the following prior distribution to r:

r ∼ Gauss4·nz(µr,Σr), (27)

where

µr = [µκ
T ,µφ

T , µs
T , µp

T ]T ∈ R4nz×1

Σr =




Σκ Σκφ Σκs Σκp

Σφκ Σφ Σφs Σφp

Σsκ Σsφ Σs Σsp

Σpκ Σpφ Σps Σp


 ∈ R4nz×4nz .

Here the notation x ∼ Gaussp(µ,Σ) means that x is a p-dimensional vector
having the multivariate Gaussian distribution, as described in Appendix A.1,
with expectation µ, and covariance matrix Σ.

Using the standard linear Gaussian theory in Appendix A.2, we see that

r−κ ∼ Gauss3·nz(µr−κ
,Σr−κ), (28)

where

µr−κ
=




µφ

µs

µp




Σr−κ =




Σφ Σφs Σφp

Σsφ Σs Σsp

Σpφ Σps Σp


 .
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As we can see from the stochastic model de�ned above, the only non-linear
term is the function g(•), connecting the elastic parameters m, to r−κ. If we
assume that the function g has second order continuous partial derivatives in
a neighbourhood of the expected value µr−κ

, and the diagonal elements of the
covariance matrix are su�ciently small, then we can linearise the function g by
Taylor expanding it around the expected value (Høyland 1988). That is,

m = g(r−κ) ≈ g(µr−κ
) + Jg(r−κ − µr−κ

), (29)

where Jg ∈ R3·S×3·nz is the Jacobi matrix of g given as

Jg =




∂g1(φ,s,p)
∂φ

∂g1(φ,s,p)
∂s

∂g1(φ,s,p)
∂p

∂g2(φ,s,p)
∂φ

∂g2(φ,s,p)
∂s

∂g2(φ,s,p)
∂p

∂g3(φ,s,p)
∂φ

∂g3(φ,s,p)
∂s

∂g3(φ,s,p)
∂p




r−κ=µr−κ

.

This again implies that

m ∼ Gauss3S(µm,Σm), (30)

approximately, with
µm = g(µr−κ

)

and
Σm = JgΣr−κJT

g .

The computation of the matrix A in Expression (13), requires that µα, and
µβ are known. By standard Gaussian theory,

m−ρ =
[

ln α
lnβ

]
∼ Gauss2S

([
µm1

µm2

]
,

[
Σm1 Σm12

Σm21 Σm2

])
.

Thus, by De�nition 8 and Result 6 in Appendix A.1, α and β have the log-
Gaussian distribution. That is:

α ∼ ΛS(µα,Σα),
β ∼ ΛS(µβ,Σβ), (31)

with

µα = exp
{

µm1 +
diag(Σm1)

2

}
,

µβ = exp
{

µm2 +
diag(Σm2)

2

}
,

Σα(i,j) = exp
{

µm1,i + µm1,j +
1
2
(Σm1,(i,i) + Σm1,(j,j))

} [
exp{Σm1,(i,j)} − 1

]
,

Σβ(i,j) = exp
{

µm2,i + µm1,j +
1
2
(Σm2,(i,i) + Σm2,(j,j))

} [
exp{Σm2,(i,j)} − 1

]
,

i, j ∈ {1, . . . , S}.
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Using the expressions above, we see that the likelihood model connecting
the reservoir to the seismic observations can be written as:

do = Drr + εd, (32)

where

Dr =
[

0 DdoGJg

] ∈ Rnθ·Sdo×4·nz , (33)

εd = Ddo (µεrdo + εω) + εdo ,

and
µεrdo = G

(
g(µr−κ

)− Jgµr−κ

)
.

Finally, since we have assumed a linear Gaussian relationship in all likelihood
models in the graph shown in Figure 4, and have assigned a Gaussian prior
distribution, the results in Ripley (1996) and Appendix A.2, gives

[
r
do

]
∼ Gauss4nz+nθS

([
µr

µdo

]
,

[
Σr Σrdo

ΣT
rdo Σdo

])
,

where

µdo = DdoGµm, (34)
Σrdo = ΣrDr

T ,

Σdo = DrΣrDr
T + σ2

ωDdoDT
do + σ2

doI. (35)

Thus, by Result 2 in Appendix A.2

r|do ∼ Gauss4nz(µr|do ,Σr|do), (36)

where

µr|do = µr + ΣrDr
TΣ−1

do (do −DdoGµm)

Σr|do = Σr −ΣrDr
TΣ−1

do DrΣr. (37)

We complete this section by outlining the procedure for seismic inversion in
Algorithm 1:

Algorithm 1: Linearised Bayesian Seismic AVO Inversion
for j = 1 to nxy do

Generate εrj ∼ Gauss4nz(0,Σr|do,j)
Evaluate rj = µrj + Σr,jDr

T
j Σ−1

do,j(d
o
j −Ddo,jGjµmj) + εrj
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5 Reservoir History Matching
In this section we present the problem of assimilating unknown reservoir prop-
erties to observations made through reservoir production and seismic surveys,
known as reservoir history matching. We will further outline a statistical ap-
proach to this problem, and �nally a sequential Bayesian algorithm for reservoir
history matching is given.

5.1 History Matching
Consider the stochastic model described in Figure 5. The goal here is to �nd

x
o

0

. . . . . .x0 x1 xT+1xT

x
o

1 x
o

T

Figure 5: The �gure shows the Directed Acyclic Graph (DAG) of the model consid-
ered. Single arrows mean that there is a stochastic relationship between
the variables.

the unknown properties of the reservoir xt, given observations of well-logs wo
t ,

acquired at discrete timesteps t ∈ Two , observed production data from the reser-
voir qo

t , acquired at discrete timesteps t ∈ {1, 2, . . . , T}, and 4-D seismic, do
t ,

acquired at discrete timesteps t ∈ Tdo . We also want to predict the future pro-
duction properties based on previous data, xT+1. This problem can then be
described as a non-linear, ill-posed inverse problem (Omre & Tjelmeland 1996).

Various deterministic methods was earlier used to solve this problem (Keoderitz
2005, Ewing & Lin 1991, Bissel et al. 1992, e.g). These methods however make
it di�cult to quantify any uncertainty linked to the forecast of the reservoir
(Lødøen & Omre 2005). In this report we therefore focus on the Bayesian so-
lution to this inverse problem, where the uncertainty in the reservoir forecast is
represented by the posterior distribution.

As in Section 2 we assume that
xo

t = Dxtxt + εxt,

where εxt follow some type of probability distribution. It is therefore natural
to de�ne a stochastic model for the state of the reservoir.

The model in Figure 5 describes a Directed Acyclic Graph (DAG). By Ripley
(1996), this implies that the state of the reservoir appears as a Markov Process
in time. That is the forward model can equally be written as

f(xt|xt−1, . . . , x0) = f(xt|xt−1)
= ω∆t−1(xt−1) + ε∆t−1 , ∀t ≥ 1.
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By sequential decomposition, the prior model for all evaluated timesteps then
becomes:

f(x0, x1, . . . , xT+1) = f(x0)
T+1∏

t=1

f(xt|xt−1).

Again, using the Markov properties of a DAG, we see that the posterior model

f(x0, . . . ,xT+1|xo
0,x

o
1, . . . , x

o
T−1, x

o
T ) =

f(x0, . . . , xm+1, x
o
0, x

o
1, . . . , x

o
T−1, x

o
T )

f(xo
0, x

o
1, . . . ,x

o
T−1x

o
T )

∝ f(xo
0|x0)f(x0)f(xT+1|xT )

T∏

t=1

f(xo
t |xt)f(xt|xt−1).

The prediction of the future properties of the reservoir is of special interest,
that is, the marginal posterior distribution expressed as

f(xT+1|xo
0, . . . , x

o
T ) =

∫
. . .

∫
f(x0, . . . , xT+1|xo

0, . . . , x
o
T )dx0 . . . dxT . (38)

Using the Law of Total Probability (Walpole et al. 2002) and again the Markov
property of the DAG, we see that a recursive expression for the state of the
reservoir at timestep t is given as

xi
t ∼ f(xt|xo

0, x
o
1, . . . ,x

o
t−1) =

∫
f(xt|xt−1)f(xt−1|xo

0,x
o
1, . . . , x

o
t−1)dxt−1.

(39)
Moreover, realisations honouring the observed value at timestep t, xc,i

t , is given
as:

xc,i
t ∼ f(xt|xo

0,x
o
1, . . . , x

o
t )

∝ f(xo
t |xt)f(xt|xo

0, x
o
1, . . . ,x

o
t−1). (40)

Algorithm 2 describes a general sequential method for the history matching
inverse problem, based on the general formulation in Tarantola (2005). This
algorithm require that we generate realisations from the distribution described
in Expression (40), which we know up to an unknown normalisation constant.
The problem here is that this constant will in most practical applications be
too computer demanding to determine. A solution to this problem is to use a
Markov chain Monte Carlo (MCMC) (Barndor�-Nielsen et al. 2001), rejection
sampling (RS) or sampling importance sampling (SIR) algorithm (Coles et al.
2002, Omre 2000), which again will be a computer demanding process.

However, if f(xt|xo
0, . . . ,x

o
t−1) are assumed to be Gaussian, and the likeli-

hood models are assumed to be Gauss linear, then, as shown in Appendix B,
f(xt|xo

0,x
o
1, . . . , x

o
t ) will be Gaussian, thus making the normalisation constant

analytically tractable. Due to the complexity of the �uid �ow simulator ω∆t(•),
this assumption will unfortunately not be valid. An approximation is therefore
that f(xt|xo

0, . . . ,x
o
t−1) at an arbitrary timestep follow the Gaussian distribu-

tion with empirically estimated parameters, hence making the generation of
xc,i

t very computer e�cient. This method corresponds to the Ensemble Kalman
Filter introduced by Evensen et al. (1998).
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Algorithm 2: Sequential Bayesian History Matching
• Assign some a prior distribution to the model at the initial state,

f(x0).
• Introduce the physical theory connecting xt to xt−1, . . . , x0, namely

the forward model f(xt|xt−1, . . . , x0).
• Assign some likelihood model, f(xo

t |xt), connecting observations
of the �eld, to the true �eld.

• Generate a realisation, from the a posteriori distribution for the
initial state, xc

0 ∼ f(x0|xo
0).

for t = 1 to T do
• Advance model to the next timestep, honouring previous

observations, using the forward model. That is, generate
xt ∼ f(xt|xo

0, x
o
1, . . . ,x

o
t−1)

• Adjust model to honour the observed �eld by
generating a realisation
xc

t ∼ f(xt|xo
0, x

o
1, . . . ,x

o
t−1, x

o
t )

• Predict state of the reservoir in the future, using previous observations:
xT+1 ∼ f(xT+1|xo

0,x
o
1, . . . , x

o
T−1, x

o
T ).
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6 Ensemble Kalman Filter
This section presents the theory and algorithm of the traditional Ensemble
Kalman Filter (EnKF), when applied to a reservoir history matching setting
with observed production and 4-D seismic data.

Consider the model given in Figure 6, where the stochastic variables are
assumed to have the following distributions:

xt|xo
0, x

o
1, . . . , x

o
t−1 ∼ Gaussnr+nq(µt,Σt),

with
µt =

[
µrt

µqt

]

and
Σt =

[
Σrt Σrqt
Σqrt Σqt

]
.

As in Expression (32), Section 4.2, we assume that

do
j,t = Drj,trj,t + εdj,t, ∈ Rnθ·Sdo,j×1, ∀j ∈ {1 . . . nxy}. (41)

Moreover, the observed production is given as

qo
t = Dqtqt + εqt, ∈ Rnqo×1, ∀t > 0, (42)

where Dqt ∈ Rno
q×nq , indicates which observations we have available at timestep

t, εdo,j,t follow the distribution in Expression (32), independent of xt, εdo,k,s,
and εqt, ∀k 6= j, ∀s 6= t, ∀t, and

εqt ∼ Gaussnqo (0,Σq
o
t ),

independent of xt and εrj,t ∀j, ∀t. Note that in this Section we have omit-
ted observations of well-logs, meaning that xo

t only consists of production and
seismic data.

Result 1, Appendix A.2 then gives

qo
t ∼ Gaussnqo (Dqtµqt,DqtΣqtDq

T
t + Σq

o
t ), ∀t ≥ 1,

do
j,t ∼ Gaussnθ·Sdo

j
(µdoj,t,Σdoj,t), ∀j,∀t ∈ Tdo , (43)

where µdoj,t and Σdoj,t are given in Expressions (34) and (35), Section 4.2.
Moreover, Result 2, Appendix A.2, gives

rq
t =

[
rt|xo

0, . . . ,x
o
t−1, q

o
t

] ∼ Gaussnr(µr|qo
t
,Σr|qo

t
), (44)

qq
t =

[
qt|xo

0, . . . ,x
o
t−1, q

o
t

] ∼ Gaussnq(µq|qo
t
,Σq|qo

t
), (45)

rqd
j,t =

[
rq

j,t|do
j,t

]
∼ Gauss4·nz(µrq|do

j,t
,Σrq|do

j,t
), (46)
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.

.

.

.........

do
t

qo
t

xt r
q
t

ω∆t−1

q
q
t

. . .

ω∆t

x
qd
t−1 x

qd
t

Figure 6: The �gure shows the Directed Acyclic Graph (DAG) of the the assimilation
part in the EnKF. Single arrows mean that there is a stochastic relationship
between the variables, while thick arrows imply that there is a deterministic
relationship.

where
µr|qo

t
= µrt + ΣrqtDq

T
t

(
DqtΣqtDq

T
t + Σq

o
t

)−1
(
qo

t −Dqtµqt

)
, (47)

µq|qo
t
= µqt + ΣqtDq

T
t

(
DqtΣqtDq

T
t + Σq

o
t

)−1
(
qo

t −Dqtµqt

)
,

µrq |do,j,t = µr|qo
,j,t

+ Σr|qo,j,tDr
T
,j,tΣ

−1
do,j,t(d

o
j,t − µdo,j,t),

Σr|qo
t
= Σrt −ΣrqtDq

T
t

(
DqtΣqtDq

T
t + Σq

o
t

)−1
DqtΣrq

T
t , (48)

Σq|qo
t
= Σqt −ΣqtDq

T
t

(
DqtΣqtDq

T
t + Σq

o
t

)−1
DqtΣqt,

Σrq |do,j,t = Σr|qo,j,t −Σr|qo,j,tDr
T
,j,tΣ

−1
do,j,tDr ,j,tΣr|qo,j,t,

µdo,j,t is given in Expression (34), and µrq|do
j,t
, Σrq|do

j,t
are given in Expression

(37), replacing µrj,t with µr|qo
j,t

and Σrj,t with Σr|qo
j,t
.

As shown in Appendix B, realisations from the posterior distributions rq
t ∼

f(rt|ro
0, . . . , q

o
t ), qq

t ∼ f(rt|ro
0, . . . , q

o
t ) and rqd

t ∼ f(rq
j,t|do

j,t) in Expressions (44)
to (46) can then be generated as follows:

rq,i
t = ri

t + ΣrqtDq
T
t

(
DqtΣqtDq

T
t + Σq

o
t

)−1 (
qo

t + εq
i
t −Dqtq

t
t

)
,

qq,i
t = qi

t + ΣqtDq
T
t

(
DqtΣqtDq

T
t + Σq

o
t

)−1 (
qo

t + εq
i
t −Dqtq

i
t

)
,

rqd,i
j,t = rq,i

j,t + Σrq ,j,tDr
T
j,tΣ

−1
doj,t

(
do

j,t + εrj,t −Drj,tr
q,i
j,t

)
,
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with εq
1
t , . . . , εq

ns
t

i.i.d∼ Gaussnq(0,Σq
o
t ), independent of

rj
t , qj

t , , εr
j
t , ∀t, i, j,

and εr
i
j,t following the distribution in Expression (32), independent of

rj
t , qj

t , , εqt, εr
i
k,t ∀t, i, j, k 6= j.

As we can see from the expressions above, Σt is the only unknown parameter
required when we want to generate realisations rq

t , qq
t and rqd

j,t. The idea of the
EnKF Algorithm is to use a set of realisations {x1

t , . . . ,x
ns
t }, referred to as an

ensemble, to estimate this unknown covariance matrix Σt. A typical estimator
used will be

Σ̂t =
[

Σ̂rt Σ̂rqt

Σ̂qrt Σ̂qt

]
=

1
ns − 1

ns∑

i=1

(xi
t − x̄t)(xi

t − x̄t)T ,

which is both an unbiased and consistent estimator of Σt (Casella & Berger
2002).

Approximate realisations from the posterior distribution can then be gener-
ated by substituting the covariance matrices in the expressions above, by their
empirically estimated equivalents.

Algorithm 3 summaries the EnKF procedure. Note that the only di�erence
from the EnKF algorithm proposed by Evensen et al. (1998) is that here we also
have included seismic observations at each timestep t ∈ Tdo .
Remark. When the number of ensemble members is less than the dimension
of the reservoir, the estimated covariance matrix will become rank de�cient
(Johnson & Wichern 2002). As long as the prior covariance matrix Σo

(•) is pos-
itive de�nite, the inversion step of the EnKF can in most cases be performed.
However, a low rank representation of the covariance matrix can lead to diver-
gence when the ensemble members are updated (Evensen 2007).
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Algorithm 3: EnKF
for i = 1 to ns do

Generate: xqd,i
0 ∼ f(x0|xo

0)

for t = 1 to T do
for i = 1 to ns do

Generate: xi
t = ω∆t−1(x

qd,i
t−1)

Σ̂t = 1
n−1

∑
i(x

i
t − x̄t)(xi

t − x̄t)T

for i = 1 to ns do
Generate: εq

i
t ∼ Gaussnq

(
0,Σq

o
t

)

rq,i
t = ri

t + Σ̂rqtDq
T
t

(
DqtΣ̂qtDq

T
t + Σq

o
t

)−1 (
qo

t + εq
i
t −Dqtq

t
t

)

qq,i
t = qi

t + Σ̂qtDq
T
t

(
DqtΣ̂qtDq

T
t + Σq

o
t

)−1 (
qo

t + εq
i
t −Dqtq

i
t

)

if t ∈ Tdo then
for i = 1 to ns do

for j = 1 to nxy do
Generate: εω

i
j ∼ Gaussnθ·S (0,Σωt)

Generate: εdo
i
j ∼ Gaussnθ·S (0,Σdo t)

εr
i
j,t = Ddo,j,t

(
µεrdo

i
j,t + εω

i
j

)
+ εdo

i
j

rq,i
j,t + Σ̂rq j,tDr

T
j,tΣ̂

−1
doj,t

(
do

j,t + εr
i
j,t −Drj,tr

q,i
j,t

)

else
rqd,i

t = rq,i
t , ∀i

xqd,i
t =

[
rqd,iT

t , qq,iT

t

]T
, ∀i
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7 Approximate Fluid Flow Simulation
In this section we motivate the use of approximate �uid �ow simulators, present
various upscaling techniques, and outline two downscaling methods that can
incorporate the bias introduced by using a coarse scale �uid �ow simulator.

When the dimension of the reservoir nr, is large, �uid �ow simulation on
the original �ne scale reservoir may be computationally prohibitive in a practi-
cal setting. Since both manual and automatic approaches to history matching
require multiple realisations of the reservoir properties, meaning repeated �uid
�ow simulations, a high number of reservoir grid blocks would restrict the use-
fulness of any history matching procedure.

A solution to this problem is to replace the �uid �ow simulator given in
Expression (7) by an approximate simulator, as shown in Figure 7,

ω
∗

∆0

...... ......x1 xT+1xTx0

ω
∗

∆1

ω
∗

∆T
ω
∗

∆T−1

Figure 7: The �gure shows the Directed Acyclic Graph (DAG) of the approximate
�uid �ow simulator. Thin arrows imply that there is a stochastic relation-
ship.

xt = ω∗∆t−1
(xt−1) + ε∗∆t−1

, (49)

where ω∗∆t : R(nr+nq)×1 → R(nr+nq)×1, and ε∗∆t ∈ Rnr+nq×1 is a centred Gaus-
sian approximation error with covariance matrix Σ∗

∆t. That is

ε∗∆t ∼ Gaussnr+nq(0,Σ∗
∆t).

The covariance matrix Σ∗
∆t will contain the the covariance matrices Σr|r∗

t
and

Σq|q∗
t
outlined in Sections 7.3.1 and 7.3.2.

The approximate �uid �ow simulator ω∗∆t(•) will normally be divided into
three parts:

1. Upscaling,

2. Coarse scale �uid �ow simulation,

3. Downscaling.

7.1 Upscaling
According to Farmer (2002), upscaling generally is the approximation of a sys-
tem of partial di�erential equations by another, often of the same form, in such
a way that the new system can be solved with fewer computing resources. In the
reservoir setting this implies that we apply a function, possibly highly complex,
ν∗ : Rnr×1 → Rn∗r×1, such that

[
r∗t
q∗t

]
=

[
ν∗(rt)
qt

]
+ ε∗t = ν∗(xt) + ε∗t , (50)
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where ε∗t ∈ Rnr+nq×1 is a centred Gaussian variable with covariance matrix Σ∗
t

re�ecting the error introduced by moving the reservoir from a �ne scale to a
coarse scale (Deutsch 2002, Omre & Lødøen 2004, Lødøen et al. 2004). An
illustration of this process is shown in Figure 8. The number of lattice nodes

r
∗

ν
∗

r

Figure 8: The �gure shows the process of upscaling a reservoir, reducing the number
of lattice nodes.

in the reservoir can therefore be considerably reduced, making the �uid �ow
simulation computationally a�ordable.

We now give a brief review of some of the methods used in the upscaling
of a reservoir. A more thorough description can be found in Durlofsky (2003),
Farmer (2002), or Chen et al. (2003).

Reservoir upscaling techniques can, according to Farmer (2002), be classi�ed
as either

• Local-Local,

• Local-Global,

• Global-Local,

• Global-Global.
In a Local-Local method, only the �ne scale reservoir within the corresponding
coarse scale block is considered. An example is taking the arithmetic mean
of the �ne grid blocks within the domain of the coarse grid block. Porosity
and saturation are both volumetric concentrations, and arithmetic averaging
will therefore in theory be correct. As noted by Deutsch (2002), upscaling of
the permeability will be more problematic, where non-linear operation must be
applied. The simplest two methods are the harmonic mean

K∗
h =

[
1
n

n∑

i=1

1
Ki

]−1

, (51)

and the geometric mean

K∗
g =

(
n∏

i=1

Ki

) 1
n

= exp

{
1
n

n∑

i=1

log(Ki)

}
. (52)
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As we can see from Expression (52), the geometric mean is reduced to the
arithmetic mean when we consider the log permeability κ. Thus

log(K∗
g ) = κ∗ =

1
n

n∑

i=1

κi. (53)

Since Local-Local methods by far are the easiest to implement, they are also
the most popular methods used.

Global-Global methods require both �ne, and coarse scale �uid �ow simula-
tion outputs, therefore they will possibly be the most computationally expensive
method to use. According to Farmer (2002), these methods try to minimise a
global functional measuring the di�erence between the �ne and coarse grid so-
lutions. For an introduction to the Global-Local and Local-Global methods, we
refer to Farmer (2002).

7.2 Coarse Scale Fluid Flow Simulation
By coarse scale �uid �ow simulation we simply mean that we replace the �ne
scale simulator ω by a coarse scale equivalent ω̄ : Rnq∗+nr∗ → Rnq∗+nr∗ , that
requires less computer resources. This implies that we solve a set di�erential
equations in a lower dimensional space. The result of this approximation is that
the number of �uid �ow simulations that can be a�orded, in most cases will be
considerably increased.

7.3 Downscaling
Downscaling of the reservoir properties and correcting the production properties,
that is representing the reservoir and production properties on a �ne scale given
a coarse scale representation, can in general be done as follows:

[
rt

qt

]
=

[
as

rt + Artr
∗
t

as
qt

+ Aqtq
∗
t

]
, (54)

where as
rt ∈ Rnr×1 and as

qt
∈ Rnq×1 are shift vectors, and Art ∈ Rnr×nr∗

and Aqt ∈ Rnq×nq∗ are correction matrices (Lødøen & Omre 2005). A more
detailed description will be given in Sections 7.3.1 and 7.3.2. Note that both
of the downscaling procedures presented in this Thesis minimises the Mean
Squared Prediction Error (MSPE) under the Gaussian approximation used in
the EnKF. This is shown in Result 13, Appendix A.3.

7.3.1 Downscaling in The Scale-Corrected Ensemble Kalman Filter
As noted above, the dimension of the reservoir often prohibits �uid �ow sim-
ulation on a �ne scale. Upscaling of the reservoir is therefore done, in order
to perform �uid �ow simulation on a coarser scale. The process of upscaling is
known to introduce bias in the �uid �ow simulation (Omre & Lødøen 2004).
Based on this result, Lødøen & Omre (2005) proposed an empirical statistical
method, where the relation between the reservoir on �ne-, and coarse scale can
be estimated.
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Let

Xt =
[

xt

x∗t

]
=




rt

qt

r∗t
q∗t


 ,

where x∗t ∈ Rn∗r+nq denotes the reservoir on a coarse scale. As in the EnKF
algorithm, the assumption here was that Xt ∈ Rp×1, where p = (nr + nq) +
(nr∗ + nq∗) = u + g, was approximately Gaussian distributed with mean and
covariance matrix given as

µXt =
[

µt

µ∗t

]
=




µrt

µqt
µr∗ t

µq∗
t


 , (55)

and

ΣXt =
[

Σt Σ1∗t
Σ∗1t Σ∗t

]
=




Σrt Σrqt Σrr∗ t Σrq∗
t

Σqrt Σqt Σqr∗
t Σqq∗

t

Σr∗rt Σr∗qt Σr∗ t Σr∗q∗
t

Σq∗rt Σq∗qt Σq∗r∗
t Σq∗

t


 . (56)

By performing �uid �ow simulation on both coarse-, and �ne scale, on a
calibration ensemble X1

t , . . . ,X
nc
t , empirical estimates of the mean and covari-

ance matrix could be obtained. This was referred to the calibration step of the
algorithm.

A larger set of realisations, x∗,1t , . . . , x∗,ns
t , was then used in what was re-

ferred to as the simulation step. Here all �uid �ow simulation was performed
on a coarse scale, hence the number of realisations in the simulation set ns,
was larger than the number of realisations in the calibration set nc. At each
timestep, �ne scale forecasts could be generated using the coarse scale reali-
sations and the empirical estimates from the calibration step. By Result 2,
Appendix A.2, downscaling of the coarse scale reservoir was then done by

ri
t = µ̂rt + Σ̂rr∗tΣ̂

−1
r∗t(r

∗,i
t − µ̂r∗t) + ε̂i

t (57)

qi
t = µ̂qt + Σ̂qq∗tΣ̂

−1
q∗t(q

∗,i
t − µ̂q∗t) + ε̃i

t, (58)

where

ε̂1
t , . . . , ε̂

ns
t

i.i.d∼ Gaussnr(0, Σ̂rt − Σ̂rr∗tΣ̂
−1
r∗tΣ̂r∗rt)

ε̃1
t , . . . , ε̃

ns
t

i.i.d∼ Gaussnq(0, Σ̂qt − Σ̂qq∗tΣ̂
−1
q∗tΣ̂q∗qt).

As we can see from the expressions above, this downscaling method is similar to
the one described in Expression (54), where the bias introduced by performing
the simulation on a coarser grid is corrected for. The downscaled ensemble could
then be assimilated using the EnKF equations described in Section 6.

It should be noted that if we only consider observations of the production
properties, downscaling of the reservoir properties as in Expression (57) is only
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required during prediction of a future reservoir rm+1 (see Lødøen & Omre (2005)
for details). This further omitted the need to compute, and invert Σ̂r∗t, which
will be singular when the number of ensemble members in the calibration set is
smaller than the dimension of the coarse scale reservoir, n∗r (Johnson & Wichern
2002, Result 3.3). This will usually be the case when the dimension of the �ne
scale reservoir is large, since the calibration step of the Scale-Corrected EnKF
also requires repeated �uid �ow simulation on a �ne scale grid.

In order to predict the future reservoir, an ad hoc solution using Bayesian
regularisation was therefore proposed by Lødøen & Omre (2005).

7.3.2 Downscaling in a Hierarchical Bayesian Setting
As noted above, the empirical coarse scale covariance matrix Σ̂∗t, will be singular
when the number of realisations in the calibration set is less than the dimension
of the covariance matrix, which will typically be the case when �uid �ow simula-
tion has to be performed on both �ne and coarse scale. It also requires inversion
of the the matrix Σq

∗
t at each timestep, which will be rank de�cient when we

observe no variability in at least one of the production properties considered.
The idea in this Thesis is to instead use a hierarchical Bayesian approach,

where we assign prior distributions to the expectation and covariance matrix,
calibrate using only coarse scale realisations, and downscale using the posterior
distributions. We will now give a detailed description of the model considered,
some theoretical results, and �nally the algorithm used in our proposed approx-
imate �uid �ow simulator used in the Hierarchical Scale-Corrected Ensemble
Kalman Filter (HScCEnKF) outlined in Section 8.

Note that in the current study we only consider a linear transformation in
the upscaling of the reservoir, ν∗(rt) = Art, where A ∈ Rn∗r×nr . Hence,

[
r∗t
q∗t

]
=

[
Art

qt

]
+

[
ε∗r,t

ε∗q,t

]
, (59)

where ε∗r,t ∼ Gaussnr∗ (µ
∗
εr t

,Σ∗
εr t

) independent of xt, εq
∗
t , ∀t, and εq

∗
t ∼

Gaussnq(µ∗
εq t

,Σ∗
εq t

) independent of xt, εr
∗
t , ∀t.

Omitting the subscript t and using De�nitions 1 and 2 in Appendix A, we
can now write the expectation and covariance of X as

µX =
[

E[x]
E[x∗]

]
=




µr

µq

Aµr + µ∗
εr

µq + µ∗
εq


 .

and

ΣX =




Σr Σrq ΣrAT Σrq

Σqr Σq ΣqrAT Σq

AΣr AΣrq AΣrAT + Σ∗
εr

AΣrq

Σqr Σq ΣqrAT Σq + Σ∗
εq


 .

De�ning B ∈ Rg×u as
B =

[
A 0
0 Inq

]
, (60)
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where In denotes the identity matrix of dimension n × n, we see that the ex-
pectation and covariance matrix of X can be equally expressed as

µX =
[

µ
Bµ + µ∗ε

]
, (61)

ΣX =
[

Σ ΣBT

BΣ BΣBT + Σ∗
ε

]
, (62)

with
µ∗ε =

[
µ∗εr

µ∗εq

]
,

and
Σ∗

ε =
[

Σ∗
εr

0
0T Σ∗

εq

]
.

Consider the model in Figure 9, where xt ∈ Ru×1, x∗t ∈ Rg×1, µXt ∈ Rp×1

and ΣXt ∈ Rp×p ∀ t ∈ {0, 1, . . . , m}. Again,
p = u + g = (nq + nr) + (nq + n∗r).

As in the EnKF we assume that

µXt

........

x
u∗

t−1

.

.

.

x
∗

t
x

u∗

t

x
u

t

ΣXt

Figure 9: The �gure shows the Directed Acyclic Graph (DAG) for one timestep in
the Hierarchical Bayesian approximate �uid �ow simulator. Thin arrows
imply a stochastic relationship, while thick arrows imply a deterministic
relationship.

Xt|xo, xo
1, . . . ,x

o
t−1, µXt,ΣXt ∼ Gaussp(µXt,ΣXt), ∀t ≥ 1 (63)

where, by omitting the subscript t, the parameters in Expression (63) are as-
signed the following prior distributions

µX|ΣX ∼ Gaussp(ηX,
1
ζ
ΣX) (64)

ΣX ∼ W−1
p (Ψ−1

X , ν), (65)
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with

ηX =




ηr

ηq

Aηr + η∗εr

ηq + η∗εq


 =

[
η

Bη + η∗ε

]
=

[
η
η∗

]
,

Ψ−1
X =




Ψr Ψrq ΨrAT Ψrq

Ψqr Ψq ΨqrAT Ψq

AΨr AΨrq AΨrAT + Ψ∗
εr

AΨrq

Ψqr Ψq ΨqrAT Ψq + Ψ∗
εq




=
[

Ψ ΨBT

BΨ BΨBT + Ψ∗
ε

]
,

and ζ being known hyperparameters. Here the notation U ∼ W−1
p (•) means

that the matrix U ∈ Rp×p has the inverted Wishart distribution de�ned in
Appendix A.1.

Since µ∗ = Bµ + µ∗ε, by Result 1 and 2, Appendix A.2, it is su�cient to
only assign a prior distributions on the �ne scale reservoir µ and µ∗ε. It should
be noted, however, that a similar result does not exist for the prior distribution
of ΣX. This is shown in Result 7, Appendix A.2.

Using the Bartlett decomposition (Bartlett 1933) we can, according to Lee
& Zidek (1992), express the matrix above as

ΣX =
[

Σ1|∗ + TΣ∗T T TΣ∗
Σ∗T T Σ∗

]
,

where

Σ1|∗ = Σ−ΣBT
[
BΣBT + Σ∗

ε

]−1
BΣ, ∈ Ru×u,

T = ΣBT
[
BΣBT + Σ∗

ε

]−1
, ∈ Ru×g,

and Σ∗ =
[
BΣBT + Σ∗

ε

]
. Similarly

Ψ−1
X =

[
Ψ1|∗ + ΓΨ∗ΓT ΓΨ∗

Ψ∗ΓT Ψ∗

]
,

where

Ψ1|∗ = Ψ−ΨBT
[
BΨBT + Ψ∗

ε

]−1
BΨ,

Γ = ΨBT
[
BΨBT + Ψ∗

ε

]−1
,

and Ψ∗ =
[
BΨBT + Ψ∗

ε

]
.

As shown in Theorem 1, Appendix A.3, the new variables in the set Θ =
{Σ∗, T ,Σ1|∗}, have the following distributions

Σ∗ ∼ W−1
g (Ψ−1

∗ , ν − u) (66)
Σ1|∗ ∼ W−1

u (Ψ−1
1|∗, ν) (67)

Vec(T )|Σ1|∗ ∼ Nug

(
Vec(Γ), (Ψ−1

∗ ⊗Σ1|∗)
)
, (68)
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where the Kronecker product of two matrices, A ⊗B and the Vec-operator is
de�ned in Appendix A.3.

The theorem also shows that Σ∗ will be independent of Σ1|∗ and T |Σ1|∗
when ν > p. This implies, by De�nition 11, Appendix A.3, that the prior
distribution in Expression (65) can be written as

f(ΣX) = f(Σ∗)× f(T |Σ1|∗)× f(Σ1|∗).

The Hierarchical Bayesian approximate �uid �ow simulator will, as men-
tioned above, only involve �uid �ow simulation on a coarse scale. For notational
convenience, let the ensemble on a coarse scale at timestep t be written as

Lt =
{

x∗,1t , . . . ,x∗,ns
t

}
,

where x∗,it = ω̄∆t−1(x
∗,i
t−1), is assumed to approximately follow a Gaussian dis-

tribution. Thus

x∗,it ∼ Gaussg(Bµt + µ∗
ε t, BΣtB

T + Σ∗
ε),

for all ensemble members i. Using this ensemble, we can estimate the expecta-
tion, and covariance matrix by

x̄∗t =
1
ns

ns∑

i=1

x∗,it ,

and
St =

1
ns

ns∑

i=1

(x∗,it − x̄∗t )(x
∗,i
t − x̄∗t )

T .

Note that this corresponds to the maximum likelihood estimators of the mean
value and covariance matrix of a multivariate Gaussian random variable (Johnson
& Wichern 2002).

As shown in Appendix C, again omitting the subscript t, the posterior dis-
tribution of µX given Θ and L, f(µX|Θ, L), will be Gaussian with parameters

µµX|x̄∗ =

[
η + ns

ns+ζ T (x̄∗ − η∗)
η∗ + ns

ns+ζ (x̄∗ − η∗)

]
=

[
µx|Θ, L

µx∗|Θ, L

]
(69)

and

ΣµX|x̄∗ =
1
ζ

(
ΣX − ns

ns + ζ

[
TΣ∗T T TΣ∗
Σ∗T T Σ∗

])
. (70)

In addition, Σ∗ has the inverted Wishart distribution with parameters

Ψ̂
−1
∗ = nsS + Ψ∗ +

nsζ

ns + ζ
(x̄∗ − η∗)(x̄∗ − η∗)T , (71)

and ν∗ = ν + ns − u degrees of freedom. The posteriori distributions of Σ1|∗
and T will be equal to the prior distributions.
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Finally, the predictive distribution of X, given the covariance matrices Θ
and the ensemble L, f(X|Θ, L), will be Gaussian with expected value

µX|Θ L = µµX|x̄∗ , (72)

and covariance matrix
ΣX|Θ L = ΣX + ΣµX|x̄∗ . (73)

Then, by Result 2, Appendix A.2,
[

x|Θ, L
x∗|Θ, L

]
∼ Gaussu

([
µx|Θ, L

µx∗|Θ, L

]
,

[
Σx|Θ, L Σxx∗|Θ, L

ΣT
xx∗|Θ, L Σx∗|Θ, L

])
, (74)

where µx|Θ, L and µx∗|Θ, L are given in Expression (69) and

Σx|Θ, L =
(

1 +
1
ζ

)
Σ1|∗ +

(
1− ns

ζ(ns + ζ)

)
TΣ∗T T ,

Σx∗|Θ, L =
ns + 2ζ

ns + ζ
Σ∗,

Σxx∗|Θ, L =
ns + 2ζ

ns + ζ
TΣ∗. (75)

Moreover,
x|x∗,Θ, L ∼ Gaussu

(
µx|x∗ ,Σx|x∗

)
,

where
µx|x∗ = µx|Θ, L + Σxx∗|Θ, LΣ−1

x∗|Θ, L(x∗ − µx∗|Θ, L)

and
Σx|x∗ = Σx|Θ, L −Σxx∗|Θ, LΣ−1

x∗|Θ, LΣT
xx∗|Θ, L.

By the same argument as in Section 6, this implies that downscaling of the
reservoir properties can be done by

x = µx|x∗ + ε̃∗, (76)

where
ε̃∗ ∼ Gaussu(0,Σx|x∗).

We will now summarise the steps above, by outlining the algorithm for the
approximate �uid �ow simulator used in the HScCEnKF. As in Section 6, ns

denotes the size of the ensemble. The pseudo code for all of the subroutines in
this algorithm can be found in Appendix D.
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Algorithm 4: Approximate Fluid Flow Simulation In A Hierarchical
Bayesian Setting
for i = 1 to ns do

Generate xc,i
0 ∼ f(x0|xo

0)

Generate ΣX ∼ W−1
p (ΨX

−1, ν)
for t = 1 to T do[

Σ1|∗, T ,Σ∗
]

= Bartlett(ΣX)
for i = 1 to ns do

x∗,it−1 = ν∗(xc,i
t−1)

Generate x∗,it = ω̄∆t−1(x
∗,i
t−1)

for i = 1 to ns do
ΣX = getPosteriorCovMat(x∗t , n, ν, ζ,T ,Σ1|∗,η∗t ,Ψ∗,t, u)
µXt = getPosteriorMu(x∗t , ns, ζ,ΣXt, ηXt, u, g)
xt = downScale(x∗,it ,ΣXt, µXt, u, g)

Remark. In this algorithm we have assumed conditional independence between
xi

t and x∗,jt , ∀t, j 6= i.
Remark. When the number of ensemble members is smaller than the dimension
of the coarse scale reservoir, the posterior covariance matrix Σ∗t ∼ f(Σ∗|Θ, L)
might become ill-conditioned, meaning sensitive to roundo� error (Strang 1988).
As a result of this unwanted feature, the posterior covariance matrices in Expres-
sion (75) might become negative de�nite, due to multiple matrix multiplications
and inversion, of ill-conditioned matrices, which in theory should not happen
when we select a positive de�nite prior covariance matrix.

A solution to this problem is to instead use the posterior mean of the co-
variance matrix given in Theorem 4, Appendix C, and use this in the further
computations.
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8 Hierarchical Scale-Corrected Ensemble Kalman Filter
In this section we present the methology and simpli�cation used when the Hi-
erarchical Scale-Corrected Ensemble Kalman Filter (HScCEnKF) is applied on
a reservoir history matching problem containing both observed production and
4-D seismic.

Consider the hierarchical Bayesian model in Figure 10, where we as in Sec-
tions 6 and 7.3.2 assume that

Xt ∼ f(Xt|xo
0, . . . , x

o
t−1,µXt,ΣXt) ∼ Gaussg(µXt,ΣXt),

r∗qt ∼ f(r∗t |xo
0, . . . ,x

o
t−1, q

o
t , µ

x∗
qt

,Σx∗
qt

) ∈ Rnr∗×1,

q∗qt ∼ f(q∗t |xo, . . . , xo
t−1, q

o
t , µ

x∗
qt ,Σx∗

qt
) ∈ Rnq∗×1,

rq
t ∼ f(rt|r∗qt ,µr∗q

rt
,Σr∗q

rt
) ∈ Rnr×1,

rqd
t ∼ f(rt|rq

t , d
o
t ,Σ

r∗q

rt
) ∈ Rnr×1,

µq∗
q =

[
µqt
µq∗

t

]
∼ Gaussnq+nq∗

([
ηqt
ηq∗

t

]
,

1
ζq

[
Σqt

Σqq∗
t

Σq∗qt
Σq∗

t

])
,

Σx∗
qt

=




Σqt
Σqr∗

t
Σqq∗

t

Σr∗qt
Σr∗

t Σr∗q∗
t

Σq∗qt
Σq∗r∗

t
Σq∗

t


 ∼ W−1

nq+nr∗+nq∗ (Ψ
x∗
q

−1

t
, νx∗

q ),

µr∗q

r t =
[

µrt

µr∗|qo
t

]
∼ Gaussnr+nr∗

(
ηr∗

r ,
1
ζr

Σr∗q

r

)
,

Σr∗q

r =
[

Σrt Σrr∗q
t

Σr∗qrt Σr∗q
t

]
= W−1

nr+nr∗

(
Ψr∗q−1

rt
, νr∗q

rt

)
,

and do
t and qo

t follow the same relationship as in Expressions (41) and (42). As
in Section 7.3.2, η(•), Ψ(•), ζ(•) and ν(•) are known model parameters. Also
note that µr∗|qo

t
and Σr∗|qo

t
are similar to Expressions (47) and (48), replacing

the �ne scale expectation vectors and covariance matrices with their coarse scale
equivalents. From now on we will skip the subscript t in our notation.
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Figure 10: The �gure shows the Directed Acyclic Graph (DAG) of the hierarchical
Bayesian model considered. Single arrows mean that there is a stochastic
relationship between the variables, while thick arrows imply that there is
a deterministic relationship.
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8.1 Assimilation With Observed Production
Rewriting Σx∗

q as

Σx∗
q =

[
Σq Σqx∗

Σx∗q Σx∗

]
,

we see that the production on a �ne scale can be found through the downscaling
procedure in Section 7.3.2, where we only consider q and x∗. That is

[
q|q∗,Θx∗

q , L
]

= µ
q|Θx∗

q ,L
+ Σ

q∗|Θx∗
q ,L

Σ−1

q∗|Θx∗
q ,L

(
q∗ − µ

q∗|Θx∗
q ,L

)
+ εq|q∗ ,

(77)
where

εq|q∗ ∼ Gaussnq

(
0,Σq|q∗,Θx∗

q ,L

)
,

Θx∗
q =

{
Σx∗

q 1|∗,T
x∗
q ,Σx∗

q ∗

}
,

and
Σq|q∗,Θx∗

q ,L = Σ
q|Θx∗

q ,L
−Σ

qq∗|Θx∗
q ,L

Σ−1

q∗|Θx∗
q ,L

ΣT
qq∗|Θx∗

q ,L
.

Assimilating the coarse scale ensemble using the �ne scale production can
therefore be done by

[
rq∗

qq∗

]
=




rq∗ + Σ
r∗q|Θx∗

q ,L
Σ−1

q|Θx∗
q ,L

(qo + εq
o − q)

qq∗ + Σ
q∗q|Θx∗

q ,L
Σ−1

q|Θx∗
q ,L

(qo + εq
o − q)


 , (78)

where εq
o ∼ Gaussnq(0,Σq

o). Note that this method corresponds to the method
used in Lødøen & Omre (2005), which was proposed as an alternative to down-
scaling r∗ to r, assimilating r, and �nally upscaling rq to rq∗.

8.2 Assimilation With Seismic Observations
If we consider the mean of the covariance matrix ΣX|L, given in Theorem 4,
Appendix C, we see that the term tr(S̃Ψ

−1
∗ ), where tr(A) denotes the sum of

the diagonal elements of the matrix A, will be a multiplicative factor in the �ne
scale posterior covariance matrix. This implies that in the case where one of the
reservoir properties has a very small prior variance, while another has a very
large variance, the posterior covariance matrix of the reservoir property with the
a priori small covariance will become unphysically large when we consider both
properties simultaneously in the downscaling. Thus we choose to consider log-
permeability/porosity, saturation and pressure as three variables assumed to be
conditionally independent of each other in the downscaling of the reservoir. For
notational convenience, let Dr be the set containing these three new variables.

Consider the �ne scale reservoir property y ∈ Dr, and the coarse scale
reservoir property y∗ ∈ Dr∗ . Realisations from the posterior distribution

f(y|y∗q,Θy∗q

y , Ly
∗q),
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can then be generated as follows:

yq =
[
y|y∗q,Σy∗

y , Ly
∗q

]

= µ
y|y∗q ,Θ

y∗q

y ,Ly
∗q + Σ

yy∗q |Θy∗q

y ,Ly
∗qΣ

−1

y∗q |Θy∗q

y ,Ly
∗q

×
(
y∗q − µ

y∗q |Θy∗q

y ,Ly
∗q

)
+ ε̃y|y∗q , (79)

where
ε̃y|y∗q ∼ Gaussny

(
0,Σ

y|y∗q ,Θ
y∗q

y ,Ly
∗q

)
,

and
Θy∗q

y =
{
Σy∗q

y (1|∗), T
y∗q

y ,Σy∗q

y (∗)

}
.

Here the posterior expectations and covariance matrices have the same structure
as the posterior expectations covariance matrices given in Sections 6 and 7.3.2,
when only considering the reservoir properties y in the corresponding coarse
scale ensemble Ly

∗q.
Inversion of seismic data, can then be done on each trace, by the same

procedure as in Algorithm 3 using posterior block covariance matrices instead
of the empirical estimates.

We will now conclude this section by outlining the complete method used in
the Hierarchical Ensemble Kalman Filter when applied on a reservoir containing
both observed production and 4-D seismic in Algorithm 5. Note that the pseudo
code for all subroutines in this algorithm can be found in Appendix D. Details
concerning the seismic inversion can be found in Sections 4 and 6.
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Algorithm 5: Hierarchical Scale-Corrected Ensemble Kalman Filter
Applied on a Reservoir Containing both Observed Production and 4-D
Seismic.
for i = 1 to ns do

Generate rqd,i
0 ∼ f(r0|do

0)

Σx∗
q ∼ W−1

nq+g(Ψ
x∗
q
−1

, νx∗
q )[

Σx∗
q 1|∗,T

x∗
q ,Σx∗

q ∗

]
= Bartlett(Σx∗

q , nq, g)

Σr∗q

r m ∼ W−1
nrm+nr∗m

(Ψr∗q

r
−1

, νr∗q

r )[
Σr∗q

r 1|∗,m,T r∗q

r m,Σr∗q

r ∗,m
]

= Bartlett(Σr∗q

r , nrm , nrm∗ )

for t = 1 to T do
for i = 1 to ns do

if t− 1 ∈ Tdo then
r∗qd,i

t−1 = ν∗(rqd,i
t−1)

x∗,it = ω̄∆t−1(r
∗qd,i
t−1 , qq∗,i

t−1)

for i = 1 to ns do
Σx∗

q t
=

getPosteriorCovMat(Lt, ns, ν
x∗
q , ζq,T

x∗
q ,Σx∗

q 1|∗, η
x∗
q t

,Ψx∗
q ∗,t, nq)

µx∗
q t

= getPosteriorMu(Lt, ns, ζq,Σx∗
q t

, ηx∗
q t

, nq, g)

qi
t = downScale(x∗,it ,Σx∗

q t
,µx∗

q t
, nq, g)

r∗q,i
t =

assimilateProduction(qi
t, r

∗,i
t , qo

t , Dqt,Σ
q
r∗ t,Σq

o
t , nr∗ , nq)

q∗q,i
t =

assimilateProduction(qi
t, q

∗,i
t , qo

t , Dqt,Σ
q
q∗

t
,Σq

o
t , nq∗ , nq)

if t ∈ Tdo then
for i in 1 to ns do

for all y ∈ Dr do
Σy∗q

y j,t
=

getPosteriorCovMat(Ly
∗q
t , ns, ν

y∗q

y , ζy,T
y∗q

y ,Σy∗q

y 1|∗, η
y∗q

y t
,Ψy∗q

y ∗,t, ny)

µy∗q

y t
=

getPosteriorMu(Ly
∗q, ns, ζy,Σy∗q

y t
,ηy∗q

y t
, ny, nny∗ )

yq,i
t = downScale(y∗q,i

t ,Σy∗q

y t
, µy∗q

y t
, ny, ny∗)

rqd,i
t = seismicInversion(rq,i

t ,do
t,Ddo

t
,Drt,

µεrdo ,Σr∗q

r t, nx · ny, nθ, S,Σωt,Σdo t)

else
r∗qd,i

t = r∗q,i
t , ∀i
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9 Synthetic Model
In the following we present a synthetic case study identical to the one used
in Hegstad & Omre (2001) and Lødøen & Omre (2005). The reservoir which
is inspired by the Troll �eld in the North Sea o�shore Norway, has a size of
104 × 104 × 102 feet3. Further the reservoir has been discretised into n =
50 × 50 × 15 grid nodes, and we assume that the reservoir initially is fully
saturated by oil. As can be seen in Figure 11, there are two horizontal production
wells, and one vertical injection well in the reservoir.

100 feet

q
(2)
t

q
(1)
t

10 000 feet

10 000 feet

Figure 11: Outline of the well con�guration of the reservoir.

In order to investigate some of the strengths and weaknesses of our method,
we use a reference reservoir created by geoscientists familiar with the Troll �eld
(Hegstad & Omre 2001, Omre & Lødøen 2004). Figure 12 displays vertical cross
sections of the log permeability and porosity of the reference �eld. As we can see
from this �gure, the middle part of the reservoir contains higher permeability
and porosity values than the lower and upper part.

The reference production qo
t , was found by running the �ne scale simulator

using the geology of the reference reservoir as input. Figure 13 displays the
resulting reference production when the Eclipse 100 version 2005a simulator
(GeoQuest 2004) is used as the �uid �ow simulator ω. In this study we consider
the oil production rates (opr1 and opr2), gas/oil ratio (gor1 and gor2) and
bottom hole pressure (bhp1 and bhp2) in the production wells, and the bottom
hole pressure in the injection well (bhpi). As we can see from this �gure, the
operating condition in each of the wells switches to a target bottom hole pressure
of 4 100 psi, when the bhp reaches this value. Also note that the injected �uid
is gas, and that the rate of the injection is 65 000 mscf/day. The reference
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Figure 12: Vertical slice of log permeability and porosity of the reference reservoir.
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Figure 13: Reference production as a function of time [days]. The �gure displays
row-wise from top to bottom: opr1, opr2, gor1, gor2, bhp1, bhp2 and
bhpi.
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model was run for 5 844 days, collecting the reference saturation and pressure
in each �ne scale grid block every month. Synthetic seismic data was then
found by using the reference reservoir as input in the nonlinear seismic forward
model, described in Section 4.1, at 0, 300, 900 and 1 800 days. The geophysical
parameters used in the forward model can be found in Table 1 and corresponds
to the values found in Hoversten et al. (2006) and Hegstad & Omre (2001). In
this Thesis we consider two AVO angles; θ1 = 5◦ and θ2 = 15◦. Other seismic
parameters selected, were similar to the ones selected in Hegstad & Omre (2001).

Fixed Parameters Regression Parameters
Oil API 28.5 Kmax 17.0
Brine Salinity 0.07 Kmin 12.0
Gas gravity 0.59 Gmax 5.50
Temperature (◦C) 65.0 Gmin 1.60
sw 0.12 φmax 0.10

φmin 0.40

Table 1: Geophysical model parameters and regression parameters used in seismic
forward model.

Since this is a synthetic model, and no well-logs currently are available, we
choose a linear model for the two functions in Expression (21),

Ksat2 = Kmax + (φ− φmin) · (Kmin −Kmax)
(φmax − φmin)

Gsat = Gmax + (φ− φmin) · (Gmin −Gmax)
(φmax − φmin)

.

The selected parameters above can be found in Table 1. We further selected
the reference production and reservoir as the model parameters in the prior
expectation ηxt, ηqt and ηrt respectively.

The correlation between each grid node in the �ne scale reservoir was chosen
using the same correlation function as in Hegstad & Omre (2001). Figure 14
displays the structure of the correlation matrix Ψρ. As we can see from this
�gure, each lattice node has a correlation of about 0.1 to their two nearest
vertical neighbours, while the correlation to their two nearest lateral neighbours
is close to zero.

The prior covariance matrix for the reservoir Ψr, was then selected as

Ψrt = Ψρ ⊗




σ2
κ σκφ 0 0

σκφ σ2
φ 0 0

0 0 σ2
s 0

0 0 0 σ2
p


 , ∀t

where the Kronecker product ⊗, is de�ned Appendix A.3. The prior covariance
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Figure 14: Structure of the correlation matrix used in the generation of the prior
covariance matrix Ψr.

matrix for the production was selected as

Ψqt =




σ2
opr1 0 0 0 0 0 0
0 σ2

opr2 0 0 0 0 0
0 0 σ2

gor1 0 0 0 0
0 0 0 σ2

gor2 0 0 0
0 0 0 0 σ2

bhp1 0 0
0 0 0 0 0 σ2

bhp2 0
0 0 0 0 0 0 σ2

bhpi




, ∀t.

The parameters σ(•) can be found in Table 2.
Realisations from the prior distribution f(r0|do

0) can be obtained using Al-
gorithm 1 in Section 4, selecting the same seismic model parameters as in Larsen
et al. (2006), using the reference reservoir as the expected value µr and

Σr =




10 · In 0 0 0
0 15 · In 0 0
0 0 In 0
0 0 0 In


Ψr.

Thus, assuming that there is a high uncertainty in the static reservoir properties
log-permeability and porosity in the initial ensemble. Note that the covariance
parameters are similar to the values found in Hegstad & Omre (2001), for log-
permeability, porosity and the production data, while the covariance parameters
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Ψr Ψq

σ2
κ 0.552 σ2

opr1 22 500
σ2

φ 0.0152 σ2
opr2 22 500

σ2
s 0.712 σ2

gor1 0.5
σ2

p 7.752 σ2
gor2 0.5

σκφ 0.006 σ2
bhp1 3 000

σ2
bhp2 3 000

σ2
opri 5 000

Table 2: Parameters used in the prior covariance matrix Ψrt and Ψqt.
.

for saturation, pressure and the correlation between log-permeability and poros-
ity are based on the reference model.

As in Lødøen & Omre (2005), the coarse scale �uid �ow simulator ω̄, runs
on a n∗ = 10× 10× 15 lattice. In order to make the upscaling of the reservoir
properties r, a linear operation, we de�ne the upscaling function ν∗ : Rnr →
Rnr∗ the following way:

• Permeability is mapped by geometric averaging,

• Porosity, saturation and pressure is mapped by arithmetic averaging.

This implies that
r∗ = Ar,

where A ∈ Rnr∗×nr is a sparse block diagonal matrix, with each element be-
ing either zero or 1/25. A reference coarse scale reservoir r∗, and a reference
coarse scale production, was then created by running the coarse scale �uid �ow
simulator with the upscaled static reservoir properties as input values.

As above, we selected the reference coarse scale production and reservoir as
ηq

∗
t and ηr

∗
t respectively. Prior covariance matrices in the error terms of the up-

scaling, Ψεr
∗
t and Ψεq

∗
t
, were further selected as one tenth of their corresponding

�ne scale prior covariance matrices.
Empirical estimates of Cov(q∗) and Cov(q∗, r∗) from the ensemble were also

used as the prior covariance matrices Ψqq∗
t and Ψqr∗

t, at each timestep t. The
degrees of freedom in the prior distribution, were selected as νx∗

q = nq+g+2 and
νy∗q

y = ny∗m + nym + 2, ∀y ∈ Dr, meaning that we made the prior distribution
as �at as possible. Further we set the scaling parameters ζ(•) equal to 1.
Remark. If we assume that the number of grid nodes n = o(105), Algorithm 4
would in the worst case require that we allocate O(1010) bytes of memory in the
covariance matrix Σr|r∗q . Moreover a Cholesky decomposition of this matrix
in order to generate ε̃r|r∗q ∼ Gaussnr(0,Σr|r∗q) would require o(1030) �ops to
complete (Golub & van Loan 1996). Here the notation o(n) and O(n) means
bounded above, and below n respectively (Cormen et al. 2001). In order to be
able to run the Hierarchical Scale-Corrected Ensemble Kalman Filter on the �ne
scale reservoir, we therefore consider subsets of the reservoir in the downscaling
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procedure described in Section 7.3.2. The subsets consists of 5 × 5 × 15 �ne
scale grid blocks and 1 × 1 × 15 corresponding coarse scale grid blocks. The
motivation behind this approximation is that seismic inversion, as described in
Algorithm 1, is performed trace by trace.

We also consider a model with n = 10 × 10 × 15 �ne scale grid blocks and
n∗ = 5 × 5 × 3 coarse scale grid nodes, such that the HEnKF can be run on a
32−bit MATLAB system using Algorithm 5.

Note that the two �ne scale models above from now on will be refered to as
the large and small model respectively.
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10 Results
In this section we consider the results obtained when we run a localised version of
the Hierarchical Scale-Corrected Ensemble Kalman Filter (HScCEnKF) outlined
in Section 8, conditioning on both production and 4-D seismic data, in the large
model de�ned in Section 9, using an ensemble of ns = 100. We also consider
the results obtained on the small model running the HScCEnKF without any
localisation scheme using an ensemble of ns = 20, and the traditional Ensemble
Kalman Filter (EnKF), conditioning on production data only, on the small
model with an ensemble size of ns = 100.

Note that the results have been obtained using the posterior mean of the
covariance matrices instead of sampling from the posterior distributions. This
was done in order to get stable and fast results without the concern of numerical
errors. However, this issue will require a more thorough study.

Due to instabilities in the computation of the Jacobian used in the seis-
mic inversion, very large values for the covariance matrix Σm, was observed at
certain seismic re�ection times s. Since the expected values of P- and S-wave
velocities involves taking the exponential of the these large values, we experi-
enced unphysically large values for µα and µβ . We therefore had to approximate
these two expected values, by omitting Σm from the computation. Alternative
solutions to this unwanted feature has not yet been investigated.

10.1 Hierarchical Scale-Corrected Ensemble Kalman Filter
Figure 15 shows the evolvement in time of a vertical slice of log-permeability
and porosity for one ensemble member at the initial timestep, and after 300, 900
and 1 800 days of updating using the HScCEnKF. As expected, we can clearly
see the added noise in the initial ensemble. Further, we see that the ensemble
member is drawn towards the reference log-permeability and porosity as more
production and seismic data becomes available for assimilation.

The estimated ensemble mean value of log-permeability and porosity at se-
lected times, is shown in Figure 16. As we can see from this �gure, the initial
mean value of the porosity is close to the reference porosity. Further, we see that
the assimilation of additional data in the model does not change the ensemble
mean.

The same trend as in Figure 15 is seen when we look at the corresponding
vertical slice of the estimated ensemble standard deviation for log-permeability
and porosity, shown in Figure 17. Depending on the value of the prior model
parameters, we experienced a layered structure in the estimated standard devi-
ation of the porosity in the initial ensemble, generated using Algorithm 1. This
feature, however, was removed as more data was assimilated into the ensem-
ble. The position of these layers, corresponded to the locations where the P-
and S-wave velocities were unphysically large. A primarily assumption is that
this e�ect arise due to numerical instability in the computation of the Jacobian
matrix. However, a more thorough stability analysis will have to be made in a
future study.

To check if there might be inconsistencies between the updated static proper-
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Figure 15: Localised Hierarchical Scale-Corrected Ensemble Kalman Filter, large
model: Vertical slice of log-permeability and porosity for one ensemble
member. The �rst row shows from left to right; log-permeability after 0,
300, 900 and 1 800 days of updating. The second row shows the poros-
ity at the selected days. The rightmost plots show, from top to bottom,
reference log-permeability and porosity.
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Figure 16: Localised Hierarchical Scale-Corrected Ensemble Kalman Filter, large
model: Vertical slice of the ensemble mean for log-permeability and poros-
ity together with the reference log-permeability and porosity. The �rst row
shows from left to right; ensemble mean value of log-permeability after 0,
300, 900 and 1 800 days of updating. The second row shows the ensemble
mean value of porosity at the selected days. The rightmost plots show,
from top to bottom, reference log-permeability and porosity.
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Figure 17: Localised Hierarchical Scale-Corrected Ensemble Kalman Filter, large
model: Vertical slice of the ensemble standard deviation of log-
permeability and porosity. The �rst row shows from left to right; ensemble
standard deviation for log-permeability after 0, 300, 900 and 1 800 days
of updating. The second row shows the ensemble standard deviation for
porosity at the selected days.

ties, (permeability and porosity) and the spatio-temporal properties (saturation,
pressure and production properties), we rerun the �ne scale �uid �ow simulator
ω, from the initial timestep, using the updated static reservoir properties, with-
out conditioning on the observations. The possible inconsistency might arise
due to linear updates in the HScCEnKF, and the non-linear �uid �ow partial
di�erential equations.

Figure 18 displays the simulation results for all production properties, when
rerunning after 0, 300, 900 and 1 800 days of updating, compared to the ref-
erence production. As we can see from this �gure, the uncertainty is initially
relatively large. Further, we observe that this uncertainty is reduced as more
data is assimilated into the ensemble. Moreover, we see that all of the ensemble
members reproduces the true reservoir production after 1 800 days of updating,
which was expected when we compared the development in log-permeability and
porosity of an ensemble member to the reference reservoir.
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Figure 18: Localised Hierarchical Scale-Corrected Ensemble Kalman Filter, large
model: Production properties from reruns of the 20 �rst updated
�ne scale ensemble members compared to the �ne scale reference pro-
duction (thick line). The �gure shows from left to right; the ini-
tial ensemble, the ensemble after 300, 900 and 1 800 days of updat-
ing. The production properties considered are, from top to bottom;
opr1, opr2, gor1, gor2, bhp1, bhp2, bhpi.
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10.2 Comparison of Local and Global Downscaling Scheme
To investigate the possible loss of lateral connection in the downscaling when
using the localised scheme, we run the HScCEnKF without performing any
localisation on the smaller model outlined in Section 9, with ns = 20 ensemble
members.

Figure 19 shows the evolvement in time of a vertical slice of log-permeability
and porosity for one ensemble member at the initial timestep, and after 300, 900
and 1 800 days of updating using the HScCEnKF. As above the ensemble mem-
ber is drawn towards the reference log-permeability and porosity as more pro-
duction and seismic data becomes available for assimilation.

The estimated mean value of log-permeability and porosity in the ensemble
at selected times is shown in Figure 20. Similarly as above, using the larger
model with the localised scheme, we can see from this �gure that the initial
mean value of the porosity is close to the reference porosity. Comparing this
�gure to Figure 16, we see that decreasing the number of ensemble members
has led to a slight increase in deviation between the reference reservoir and the
initial ensemble mean.
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Figure 19: Hierarchical Scale-Corrected Ensemble Kalman Filter, small model: Ver-
tical slice of log-permeability and porosity for one ensemble member. The
�rst row shows from left to right; log-permeability after 0, 300, 900 and
1 800 days of updating. The second row shows the porosity at the se-
lected days. The rightmost plots show, from top to bottom, reference
log-permeability and porosity.

The same trend as in Figure 19 is seen when we look at the corresponding
vertical slice of the estimated ensemble standard deviation for log-permeability
and porosity, shown in Figure 21.

As above, we check if there might be inconsistencies between the updated
static properties, and the dynamic properties, by rerunning the �ne scale �uid
�ow simulator ω from the initial timestep, without conditioning on the observations,
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Figure 20: Hierarchical Scale-Corrected Ensemble Kalman Filter, small model: Ver-
tical slice of the ensemble mean for log-permeability and porosity together
with the reference log-permeability and porosity. The �rst row shows from
left to right; ensemble mean value of log-permeability after 0, 300, 900 and
1 800 days of updating. The second row shows the ensemble mean value
of porosity at the selected days. The rightmost plots show, from top to
bottom, reference log-permeability and porosity.
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Figure 21: Hierarchical Scale-Corrected Ensemble Kalman Filter, small model: Verti-
cal slice of the ensemble standard deviation of log-permeability and poros-
ity. The �rst row shows from left to right; ensemble standard deviation for
log-permeability after 0, 300, 900 and 1 800 days of updating. The second
row shows the ensemble standard deviation for porosity at the selected
days.
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Figure 22: Hierarchical Scale-Corrected Ensemble Kalman Filter, small model: Pro-
duction properties from reruns of the 20 �rst updated �ne scale ensemble
members compared to the �ne scale reference production (thick line). The
�gure shows from left to right; the initial ensemble, the ensemble after 300,
900 and 1 800 days of updating. The production properties considered are,
from top to bottom; opr1, opr2, gor1, gor2, bhp1, bhp2, bhpi.
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using the updated static reservoir properties at the same report times as above.
The outcome of the simulations is shown in Figure 22. As we can see from
this �gure, the uncertainty is initially large, and similarly to the results above,
this uncertainty is reduced as more data becomes available. Since the gas-
breakthrough times, and switching from target rate to bottom hole pressure in
well controls, happen between 900 and 1 800 days, we see that the uncertainty
in bottom hole pressure and the gas-oil ratio has the highest reduction between
these two report times.

It is worth noticing that there seems to be a trend in the initial ensemble
leading to an early gas-breakthrough. This trend is present until after 1 800 days
when observations of gas-breakthrough have been made, and we get a seemingly
unbiased production forecast using the updated ensemble. The reason for this
trend is that our initial ensemble has too little uncertainty, and that the number
of ensemble members is small. Rerunning using an ensemble that initially has
a better coverage, removes this trend as shown in Figure 23.

If we compare Figures 22 and 23 with Figure 18, we can see that the initial
uncertainty in production is larger in the small model than in the larger model,
due to the method from which the initial ensemble was generated. Local devia-
tions from the ensemble mean in each grid block for a �ne scale model, will not
in�uence the general �uid �ow of the reservoir to the same degree as it would
in a coarser model.

Since the localised downscaling scheme is performed on a di�erent scale
than the global downscaling it is di�cult to draw any conclusions from the
results above concerning the possible loss in lateral connection. However, we
can see that the ensemble updated using the local scheme almost reproduces the
reference production after only 300 days of updating, with a relatively small level
of uncertainty compared to the ensemble from the smaller model, updated using
the global scheme. This e�ect could be a result of the additional assumptions we
have made in our model, and that the localised scheme is more sensitive to the
prior model parameters. Therefore we rerun the model assuming that the initial
expected values of the porosity is a linear function of the log-permeability, that
is, µφ0 = a01 + a1µκ0. The results when we assimilate data, and rerun using
the updated static properties, on both the large and small model, are shown in
Figures 24 and 25. The model parameters a0 and a1 were chosen by regression
using the reference reservoir.

As we can see when comparing these two �gures, the localised scheme adjusts
more quickly to the prior model parameters, than the global scheme, and there
is a higher uncertainty in the predicted production properties for the ensemble
running with the global scheme.
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Figure 23: Hierarchical Scale-Corrected Ensemble Kalman Filter, small model: Pro-
duction properties from reruns of the 20 �rst updated �ne scale ensemble
members compared to the �ne scale reference production (thick line). The
�gure shows from left to right; the initial ensemble, the ensemble after 300,
900 and 1 800 days of updating. The production properties considered are,
from top to bottom; opr1, opr2, gor1, gor2, bhp1, bhp2, bhpi.
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Figure 24: Localised Hierarchical Scale-Corrected Ensemble Kalman Filter, large
model, assuming µφ0 = a01 + a1µκ0: Production properties from re-
runs of the 20 �rst updated �ne scale ensemble members compared to the
�ne scale reference production (thick line). The �gure shows from left to
right; the initial ensemble, the ensemble after 300, 900 and 1 800 days of
updating. The production properties considered are, from top to bottom;
opr1, opr2, gor1, gor2, bhp1, bhp2, bhpi.
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Figure 25: Hierarchical Scale-Corrected Ensemble Kalman Filter, small model, as-
suming µφ0 = a01 + a1µκ0: Production properties from reruns of the
20 �rst updated �ne scale ensemble members compared to the �ne scale
reference production (thick line). The �gure shows from left to right;
the initial ensemble, the ensemble after 300, 900 and 1 800 days of up-
dating. The production properties considered are, from top to bottom;
opr1, opr2, gor1, gor2, bhp1, bhp2, bhpi.
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10.3 Traditional Ensemble Kalman Filter
The traditional EnKF conditioned on production data, with an ensemble size of
ns = 100, was run on the small model outlined in Section 9, in order to compare
the performance of the HScCEnKF to the traditional approach. The evolvement
in time of a vertical slice of log-permeability and porosity is shown in Figure
26. From this �gure we can see that the ensemble member diverge from the
reference reservoir as more data becomes available. A similar behaviour can be
seen from the reruns of the updated static reservoir properties in the 20 �rst
ensemble members, shown in Figure 27. As we can see from these two �gures the
small number of ensemble members leads to a poor estimate of the covariance
matrix, Σrq. Thus, the ensemble diverge from the reference reservoir.

These results illustrate one of the strengths with a hierarchical Bayesian
approach, where the prior assumptions ensure a full rank representation of the
posterior covariance matrices. However, the success of the HScCEnKF above,
is closely related to the selected hyperparameters in the prior distributions.
At the initial timesteps, we experienced a similar behaviour in the HScCEnKF
ensemble posterior to data assimilation. This e�ect was due to the poor selection
of Ψr∗q, which was selected as the estimated covariance, Σ̂r∗q∗ . As the ensemble
was drawn towards the reference reservoir, this unwanted feature was corrected
for, and data assimilation reduced the uncertainty in the ensemble instead of
increasing it.
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Figure 26: Traditional Ensemble Kalman Filter, small model: Vertical slice of log-
permeability and porosity for one ensemble member. The �rst row shows
from left to right; log-permeability after 0, 300, 900 and 1 800 days of
updating. The second row shows the porosity at the selected days. The
rightmost plots show, from top to bottom, reference log-permeability and
porosity.
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Figure 27: Traditional Ensemble Kalman Filter, small model: Production properties
from reruns of the 20 �rst updated �ne scale ensemble members compared
to the �ne scale reference production (thick line). The �gure shows from
left to right; the initial ensemble, the ensemble after 300, 900 and 1 800
days of updating. The production properties considered are, from top to
bottom; opr1, opr2, gor1, gor2, bhp1, bhp2, bhpi.
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10.4 Consistency of Approximate Fluid Flow Simulation
In order to check if the hierarchical Bayesian approximate �uid �ow simulator
de�ned in Section 7.3.2 is consistent, we perform �uid �ow simulation on the
small model, downscaling every �fth month using the global scheme, without
conditioning on any data. If the simulator is consistent, we would expect the
distribution of the downscaled ensemble to re�ect the prior distribution. More-
over, we should not be able to spot any trends when we look at the di�erence
between the coarse scale ensemble prior to downscaling, and the coarse scale
ensemble posterior to downscaling and upscaling. That is r∗t ∼ ru∗

t ∀t where,
as in Section 7.3.2, r∗t denotes the coarse scale ensemble prior to downscaling,
and ru∗

t denotes the coarse scale ensemble posterior to downscaling/upscaling.
Note that in this study, the parameters of the prior covariance matrix were three
times larger than above.

Figure 28 displays line plots of κ∗t − κu∗
t and φ∗t − φu∗

t for the 20 ensemble
members, after the �rst six updates. Initially we can see a higher uncertainty
due to the seismic inversion performed in the generation of the initial ensemble.
After four updates, the di�erences are stabilised, and we see a similar behaviour
as we continue updating for 1 800 days, downscaling every 150 days.
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Figure 28: Hierarchical Bayesian approximate �uid �ow simulation, small model: Dif-
ference between the coarse scale ensemble members prior to downscaling
and posterior to downscaling and upscaling. Downscaling was performed
every 150 days. The �rst row shows from left to right; di�erence in log-
permeability after 150, 300, 450, 600, 750 and 900 days of updating. The
second row shows the di�erence in porosity the selected times.

Figure 29 shows a vertical slice of the estimated standard deviation in the �ne
scale ensemble after 900, 1 200, 1 500 and 1 800 days of updating, downscaling
every �fth month. As we can see from this �gure, the standard deviation shows
a similar, and stable behaviour for all four report times. The same trend can
be seen in the vertical slice of log-permeability and porosity, for one ensemble
member at the same four report times. This is shown in Figure 30.
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Figure 29: Hierarchical Bayesian approximate �uid �ow simulation, small model:
Vertical slice of the ensemble standard deviation of log-permeability and
porosity. The �rst row shows from left to right; ensemble standard de-
viation for log-permeability after 900, 1 200, 1 500 and 1 800 days of
updating. The second row shows the ensemble standard deviation for
porosity the selected days.
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Figure 30: Hierarchical Bayesian approximate �uid �ow simulation, small model:
Vertical slice of log-permeability and porosity for one ensemble member.
The �rst row shows from left to right; log-permeability after 900, 1 200,
1 500 and 1 800 days of updating. The second row shows the porosity the
selected days. The rightmost plots show, from top to bottom, reference
log-permeability and porosity.
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10.5 Sensitivity to Prior Model Parameters
To investigate the sensitivity of the results with respect to the choice of prior
model parameters, we redid the analysis on the small model, using the global
downscaling scheme with two di�erent selections of prior hyperparameters, ref-
ered to as the �rst and second case.

For the �rst case, the hyperparameter of the expected value was tuned such
that:

ηt = ηr
t −

1
1.5

(ηr
t − η̄r

t ) + εηr ,

where the superscript r indicates the corresponding values of the reference
model, and εηr ∼ Gaussnr(0,Σηr), with Σηr selected based on the estimated
variance in the reference reservoir. This implies that all values were dampened
towards the mean values before white noise was added. Figure 31 shows this
e�ect for the log-permeability and porosity together with a realisation from the
initial ensemble.
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Figure 31: First case: Comparison of the model prior parameters η for porosity
(top) and log-permeability (bottom) before and after modi�cation, to-
gether with a realisation from the ensemble at the initial timestep shown
in blue. The values of the reference reservoir are shown in red, while the
dampened prior parameters with added noise are shown in black.

In the second case, we selected ηt as the mean value within the three sep-
arating layers of the reference reservoir, as can be seen from the line plot in
Figure 32. The prior parameters of the covariance matrix, were in this study
selected three times higher than the values found in Section 9.

If we consider the static properties of one ensemble member in the �rst case,
shown in Figure 33, we see that high permeable middle layer is no longer as
distinguishable as in the �gures above. Similarly to the results above, the en-
semble member moves towards the ensemble mean after 1 800 days of updating.
This, however, is not shown here.

Figure 34 shows the evolvement of the static properties of one ensemble
member for the second case. As above, the ensemble moves towards the ensemble
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Figure 32: Second case: Comparison of the model prior parameters η for porosity
(top) and log-permeability (bottom) before and after modi�cation to-
gether with an ensemble at the initial timestep shown in blue. The values
of the reference reservoir are shown in red, while the dampened prior
parameters are shown in black.
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Figure 33: Hierarchical Scale-Corrected Ensemble Kalman Filter, small model, damp-
ened prior parameter η with added white noise: Vertical slice of log-
permeability and porosity for one ensemble member. The �rst row shows
from left to right; log-permeability after 0, 300, 900 and 1 800 days of
updating. The second row shows the porosity at the selected days. The
rightmost plots show, from top to bottom, reference log-permeability and
porosity.
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mean, but due to the higher prior variance, the mean is not reproduced after
1 800 days of updating as above.
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Figure 34: Hierarchical Scale-Corrected Ensemble Kalman Filter small model, damp-
ened η, increased prior variance: Vertical slice of log-permeability and
porosity for one ensemble member. The �rst row shows from left to right;
log-permeability after 0, 300, 900 and 1 800 days of updating. The second
row shows the porosity at the selected days. The rightmost plots shows,
from top to bottom, reference log-permeability and porosity.

The results obtained when rerunning the �ne scale �uid �ow simulator ω us-
ing the updated static variables for the �rst case as input, are shown in Figure
35. As we can see from this �gure, shifting the prior values for the expecta-
tion leads to a bias in the estimated production for all of the reruns. Due to
the smoothening of the permeability and porosity compared to the reference
reservoir, we observe an early gas-breakthrough in the reruns.

Figure 36 shows results of the rerun using the updated static parameters for
the second case. As we can see from this �gure, the added prior variance leads
to a higher uncertainty in the initial ensemble. As above, this uncertainty is
reduced as more observations are available. Comparing the results in Figures 35
and 36, we notice that the second case provides a much better match with the
reference production than the �rst case. This is both due to a better coverage
of the sample space in the prior distribution through higher prior covariance,
and a better selection of η.
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Figure 35: Hierarchical Scale-Corrected Ensemble Kalman Filter, small model, damp-
ened prior parameter η with added white noise: Production properties
from reruns of the 20 �rst updated �ne scale ensemble members com-
pared to the �ne scale reference production (thick line). The �gure shows
from left to right; the initial ensemble, the ensemble after 300, 900 and
1 800 days of updating. The production properties considered are, from
top to bottom; opr1, opr2, gor1, gor2, bhp1, bhp2, bhpi.
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Figure 36: Hierarchical Scale-Corrected Ensemble Kalman Filter, small model, damp-
ened η, increased prior variance: Production properties from reruns of the
20 �rst updated �ne scale ensemble members compared to the �ne scale
reference production (thick line). The �gure shows from left to right;
the initial ensemble, the ensemble after 300, 900 and 1 800 days of up-
dating. The production properties considered are, from top to bottom;
opr1, opr2, gor1, gor2, bhp1, bhp2, bhpi.
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10.6 Summary
The results above have shown us some of the strengths and weaknesses of a
Hierarchical approach to the EnKF. The major strength of the HScCEnKF is
that all covariance matrices are ensured to have full rank, which is not the case
in a traditional approach. As we saw in Section 10.3, a poor representation
of the covariance matrix led to a divergence from the reference reservoir in the
traditional EnKF. The major weakness is that additional prior assumptions have
to be made through the selection of hyperparameters in the prior distributions.
This will be a complicated task for a non-synthetic case study.

The use of a hierarchical Bayesian approximate �uid �ow simulator in this
study has shown that the success depends both on the selection of the η and Ψ.
During the downscaling phase of the reservoir properties, we compute the pos-
terior mean, given in Expression (69), Section 7.3.2. If the di�erence between
the coarse scale ensemble mean x̄∗, and the prior model parameter η∗, is small
compared to the values in the Bartlett decomposed posterior covariance matrix
T r∗

r , the posterior expectation will only experience small changes. Thus, we ex-
perience results as shown in Figure 35, where data assimilation does not correct
the error in the prior distribution. Better selection of the prior hyperparame-
ters, however, led to a more correct representation of the reservoir production
properties as shown in Figure 35.

When the prior assumptions concerning the reservoir deviate much from the
true �eld, inclusion of seismic data and observed production, was not able to
fully correct for this feature in the current study. However, a thorough sensitivity
analysis with respect to selection of the prior covariance matrix has not been
performed in the current study.

Tuning the prior model has shown that in a hierarchical EnKF, we sacri�ce
the unbiasedness of the EnKF, for consistency. In both the HScCEnKF and the
traditional EnKF, the selection of prior model is therefore extremely important.
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Reservoir history matching where the reservoir properties are presented on a
�ne scale, will, due to repeated �uid �ow simulations, in most cases be com-
putationally too demanding. Upscaling of the reservoir to a coarser scale must
therefore be done, such that multiple �uid �ow simulations can be a�orded. The
Ensemble Kalman Filter (EnKF) then gives a sequential Bayesian method for
performing production history matching on a coarse scale.

The inclusion of 4-D seismic data, which typically appear on a very �ne
scale, requires a method of representing the reservoir on a �ne scale given the
reservoir on a coarser scale. Traditional downscaling procedures are, however,
known to introduce bias in production forecasts. The Scale-Corrected EnKF
was therefore introduced as a method for correcting this bias. This method,
however, required �uid �ow simulations both on a �ne and coarse scale, and
inversion of empirical covariance matrices which in most practical settings will
be singular.

In this Thesis we have developed an hierarchical Bayesian extension to the
EnKF and the Scale-Corrected EnKF, where only multiple �uid �ow simula-
tions on a coarse scale is required. The key assumption with this methology, is
that the state of both �ne and coarse scale reservoir, conditioned on previous
observations of seismic and production, can be approximated by a multivariate
Gaussian distribution. Moreover, by assigning natural conjugate prior distribu-
tions to the expectation and covariance matrix of this distribution, and de�ning
linear Gaussian likelihood models, we ensured analytical tractability in all pos-
terior distributions. Hence, a completely recursive method suitable for parallel
computing was obtained.

The method was implemented and tested on a synthetic reservoir inspired
by the Troll Field o�shore Norway, including production history and synthetic
4-D seismic data from a reference model. High dimension of the reservoir,
and limited computer resources, revealed some of the the weaknesses of this
methology.

The primary concern is the need to generate high dimensional matrices hav-
ing the inverted Wishart distribution, which is a computationally demanding
task. Moreover, the downscaling of the reservoir involves inverting and mul-
tiple matrix multiplications of potentially ill-conditioned matrices, introducing
numerical errors which could lead to negative de�nite covariance matrices when
the number of ensemble members is small. An initial solution to these problems
has been to use the posterior expectation, instead of sampling from the inverted
Wishart distribution.

A localised technique performing downscaling sequentially on subsets of the
reservoir was suggested in order to run the proposed algorithm within reasonable
time on the full scale synthetic model. We also considered a model with reduced
dimension such that the method could be tested without any localised computer
scheme.

The results obtained has shown that the success of the HScCEnKF depends
on the choice of initial parameters in the reservoir model. It is of utmost im-
portance that the prior model parameters are selected such that they re�ect the
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true reservoir. This is a very complicated task which should be performed in
collaboration with both geophysicists and reservoir engineers.

The estimation of hyperparameters, such that they re�ect the true reservoir,
will be a very important task for future development, as the the success of a
hierarchical EnKF scheme, depends heavily on the choice of these parameters.
The methology for both seismic inversion and approximate �uid �ow simulation
should further be applied to a real case study, in order to validate some of the
assumptions made in the models. Well-logs needs to be included in the prior
model, and approximations made should also be assessed through the use of
MCMC sampling techniques.

The use of more sophisticated localisations schemes in the downscaling pro-
cedure should be considered, by e.g. considering larger neighbourhoods, which
can be done without increasing the computational demands dramatically.
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13 Appendix

A Theoretical Results
First we present three de�nitions of the multivariate expectation and covariance.

De�nition 1. The expectation of a multivariate random vector x given as

µx = E[x] =
∫

xf(x)dx,

De�nition 2. The covariance of a multivariate random vector x is given as

Σx = Cov(x) = E
[
(x− µx)(x− µx)T

]
.

De�nition 3. The covariance between two multivariate random vectors x and
y is given as

Σxy = Cov(x, y) = E
[
(x− µx)(y − µy)T

]
.

A.1 Multivariate Probability Density Functions
We begin this Appendix by introducing some multivariate distributions, and
their probability density functions (pdfs).

De�nition 4 (Gaussian distribution). Consider a k -dimensional random vector
y. Then

y ∼ Gaussk(µy,Σy),

means that y has a multivariate Gaussian probability density function (pdf),
with expectation µy and covariance matrix Σy. That is (see e.g Johnson &
Wichern (2002) )

f(y) =
1

(2π)k/2|Σy|1/2
exp

{
−1

2
(y − µy)TΣy

−1(y − µy)
}

. (80)

De�nition 5 (Wishart distribution). Let

x1, . . .xν
i.i.d∼ Gaussp(0,Σ)

Then
M =

ν∑

i=1

xix
T
i ,

is said to have the Wishart distribution with scale matrix Σ, and ν degrees of
freedom. That is, M ∼ Wp(Σ, ν). The pdf of M is then given by

f(M) =
|M |−(ν−p−1)/2 exp

{−1
2tr(Σ−1M)

}

2νp/2πp(p−1)/4|ΣZ |ν/2
∏p

i=1 Γ
(

1
2(ν + 1− i)

) ,

where
Γ(α) =

∫ ∞

0
xα−1e−xdx. (81)
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and tr(•) denotes the trace operator, which in the case of a matrix A ∈ Rn×n

is given by

tr(A) =
n∑

i=1

aii.

De�nition 6 (Inverted Wishart distribution). Let M ∼ Wk(Σ, ν). Then Z =
M−1 is said to have the inverted Wishart distribution, Z ∼ W−1

k (Σ, ν), with
corresponding pdf (Mardia et al. 1979),

f(Z) =
|Z|−(ν+k+1)/2 exp

{−1
2tr(Σ−1Z−1)

}

2νk/2πk(k−1)/4|Σ|ν/2
∏k

i=1 Γ
(

1
2(ν + 1− i)

) . (82)

De�nition 7 (Multivariate student t). Let w be a k -dimensional random
vector. Then

w ∼ tk(µw,Σw, ν)

means that w has the multivariate student t pdf. That is (see e.g Mardia et al.
(1979) )

f(w) =
Γ((ν + k)/2)|Σw|−1/2

(πν)k/2Γ(ν/2)[1 + ν−1(w − µw)TΣ−1(w − µw)](ν+k)/2
. (83)

De�nition 8 (Multivariate log-Gaussian). Let x be a p -dimensional vector hav-
ing the Gaussian distribution with parameters µx and Σx. Then u = exp{x}
is said to have the multivariate log-Gaussian distribution with parameters µu

and Σu, denoted by u ∼ Λp(µu,Σu).

A.2 Properties of Some Multivariate Distributions
We now outline some important results for the multivariate distribution above.
Result 1 (Linear Combinations). Let x ∼ Gaussp(µ,Σ). Further, let A ∈
Rg×p, then

y = Ax ∼ Gaussg(Aµ,AΣAT ).

Proof. See (Johnson & Wichern 2002, Chapter 4)

Result 2. Let

z =
[

x
y

]
∼ Gaussp

([
µx

µy

]
,

[
Σx Σxy

Σyx Σy

])
.

Then
x ∼ Gaussg(µx,Σx)
y ∼ Gaussm(µy,Σy)

x|y ∼ Gaussg(µx|y,Σx|y),

where
µx|y = µx + ΣxyΣy

−1(y − µy)

and
Σx|y = Σx −ΣxyΣy

−1Σyx
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Proof. See (Mardia et al. 1979, Chapter 3).

Result 3 (Properties of the Wishart distribution). Let U ∈ Rk×k be a random
matrix having the Wishart distribution with parameters ΣU and ν. Then

E[U ] = νΣU (84)

Proof. From De�nition 5, we see that

E[U ] =
ν∑

i=1

E[xix
T
i ] = νΣU

Result 4 (Properties of the inverted Wishart distribution). Let U ∈ Rk×k be
a random matrix having the inverted Wishart distribution with parameters ΣU

and ν. Then
E[U ] =

ΣU
−1

ν − k − 1
(85)

Proof. See Mardia et al. (1979, Chapter 3) or Anderson (2003, Chapter 6).

Result 5. Given a random variable x ∈ Rn×1 with corresponding pdf f(x).
Assume there exists functions g : x → y and h : y → x such that the trans-
formation y = g(x) and x = h(y) = g−1(y) is one-to-one. Then the pdf of
y ∈ Rn×1 is given by

f(y) = f
(
g−1(y)

) |J | (86)
where J is the determinant of the Jacobian given as

J =
∣∣∣∣
∂g−1(y)

∂y

∣∣∣∣ ,

and |J | denotes the absolute value of J .

Proof. See Edwards & Penney (1998)

Result 6 (Properties of the multivariate log-Gaussian distribution). Let u ∼
Λp(µ,Σ). Then the pdf of u is given by

f(u) =
|Σ|−1/2

(2π)p/2

p∏

i=1

1
ui

exp
{
−1

2
(log(u)− µ)TΣ−1(log(u)− µ)

}

Moreover, the expectation is given by

µu = exp
{

µ +
diagp(Σ)

2

}
,

where diagp(Σ) is a p -dimensional vector containing the diagonal elements of
Σ, and element (i, j) of the covariance matrix is given by

Σu(i,j) = exp
{

µi + µj +
1
2
(σii + σjj)

}
[exp{σij} − 1]
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Proof. By De�nition 8 and Result 5

f(u) = f(x(u))|Jxu|
where x ∼ Gaussp(µ,Σ) and

Jxu =

∣∣∣∣∣∣∣∣∣∣∣∣

1
u1

0 0 . . . 0
0 1

u2
0 . . . 0
. . .

. . .
0 0 0 . . . 1

up

∣∣∣∣∣∣∣∣∣∣∣∣

=
p∏

i=1

1
ui

Thus,
|Σ|−1/2

(2π)p/2

p∏

i=1

1
ui

exp
{
−1

2
(log(u)− µ)TΣ−1(log(u)− µ)

}
.

Element i of the µ is given by

E[ui] = E[exp{xi}] = E
[
exp{1T

i x}]

where 1i is a vector where all elements are zero, except element i which is one.
By the de�nition of the multivariate expectation (Anderson 2003), this gives

E[ui] =
∫ |Σ|−1/2

(2π)p/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ) + 1T

i x

}
dx

=
∫ |Σ|−1/2

(2π)p/2
exp

{
−1

2
(x− µ̃)TΣ−1(x− µ̃)

}
dx

exp
{
−1

2
µTΣ−1µ +

1
2
µ̃TΣ−1µ̃

}
,

where µ̃ = µ + Σ1i. Since the integral above simply is the integral of a multi-
variate Gaussian pdf, we get

E[ui] = exp
{
−1

2
µTΣ−1µ +

1
2
µ̃TΣ−1µ̃

}

= exp
{
1T

i µ +
1T

i Σ1i

2

}

= exp
{

µi +
σii

2

}
.

Thus,
E[u] = exp

{
µ +

diagp(Σ)
2

}
.

By a similar calculation as above,

E[uiuj ] = E
[
exp{(1i + 1j)T x}]

=
∫ |Σ|−1/2

(2π)p/2
exp

{
−1

2
(x− µ̌)TΣ−1(x− µ̌)

}
dx

exp
{
−1

2
µTΣ−1µ +

1
2
µ̌TΣ−1µ̌

}
,
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where µ̌ = µ + Σ(1i + 1j). Since Cov(ui, uj) = E[uiuj ]−E[ui]E[uj ], we get

Σu(i,j) = exp

{
(1i + 1j)T µ +

1T
i Σ1i + 1T

j Σ1j

2
+ 1T

i Σ1j

}

− exp
{

(1i + 1j)T µ +
1T

i + 1T
i Σ + 1jΣ1j

2

}

= exp
{

µi + µj +
1
2
(σii + σjj)

}
[exp{σij} − 1]

Result 7 (Linear combinations of inverted Wishart distributions). Assume

Σ ∼ W−1
u (Ψ, ν)

and
Σε ∼ W−1

g (Ψε, ν)

Further, let

ΣX =
[

Σ ΣBT

BΣ BΣBT + Σε

]
,

where B ∈ Rg×u, and

R =
[ −BT MT

12 −M12B M12

MT
12 0

]
,

with

MT
12 =

ν∑

i=1

yiz
T
i ,

yi ∼ Gaussu(0,Ψ), and zj ∼ Gaussg(0,Ψε), independent ∀i, j.
Then

[ΣX
−1 + R]−1 ∼ W−1

u+g(ΨX, ν),

where
ΨX =

[
Ψ + BTΨεB −BTΨε

−ΨεB Ψε

]
,

Proof. By De�nition 6, M = Σ−1 ∼ Wu(Ψ, ν) and Mε = Σε
−1 ∼ Wu(Ψε, ν).

In addition, by De�nition 5,

M =
ν∑

i=1

yiy
T
i

and

Mε =
ν∑

i=1

ziz
T
i ,
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where

y1, . . . ,yν
i.i.d∼ Gaussu(0,Ψ)

z1, . . . , zν
i.i.d∼ Gaussg(0,Ψε).

By (Mardia et al. 1979, Appendix A),

ΣX
−1 =

[
M + BT MεB −BT Mε

−MεB Mε

]
,

Now let xi = yi −BT zi, then by Result 2,

wi =
[

xi

zi

]
∼ Gaussp

([
0
0

]
,

[
Ψ + BTΨεB −BTΨε

−ΨεB Ψε

])
.

Thus,

MX =
ν∑

i=1

wiw
T
i = ΣX

−1 + R ∼ Wp(ΨX, ν),

and �nally
[ΣX

−1 + R]−1 ∼ W−1
p (ΨX, ν)

A.3 General Results
We now outline some De�nitions, and general results needed in the proofs of
the main theorems.

De�nition 9. The Vec-operator applied on a matrix x ∈ Rn×m gives

Vec(X)T = [X11, . . . , Xn1, X12, . . . , Xn2, . . . , X1m, . . . , Xnm]

Also let Vec−1Vec(X) = X.

De�nition 10. Given two matrices A ∈ Rn×n and B ∈ Rm×m. Then the
Kronecker product A⊗B ∈ Rnm×nm, and is given by

A⊗B =




Ab11 Ab12 . . . Ab1m
... ... ...

Abm1 Abm2 . . . Abmm


 .

De�nition 11. We say that multivariate random variable x is statistically
independent of y if

f(x, y) = f(x)f(y) ∀x, y

Result 8. Given three matrices A, B C and D such that AT BCDT exists.
Then

tr(AT BCDT ) = Vec(A)T (D ⊗B)Vec(C) (87)



A.3 General Results 79

Proof. Using properties of the Kronecker product and the Vec operator (Brewer
1978), namely

tr(AXB) = Vec(AT )T (I ⊗X)Vec(B),
(A⊗B)(C ⊗D) = (AC ⊗BD)

and
Vec(AB) = (I ⊗A)Vec(B)

= (BT ⊗ I)Vec(A),

we get
tr(AT BCDT ) = Vec(A)T Vec(BCDT )

= Vec(A)T (D ⊗ I)Vec(BC)

= Vec(A)T (D ⊗ I)(I ⊗B)Vec(C)

= Vec(A)T (D ⊗B)Vec(C)

Result 9.
E[X] = E[E[X|Y ]] (88)

Proof. For the univariate case, this is shown in Ross (2003, Chapter 3). From
the de�nition of the expectation of a vector, or matrix (Johnson &Wichern 2002,
Chapter 2), the result follows.

Result 10.
Cov(X) = E[Cov(X|Y )] + Cov(E[X|Y ]) (89)

Proof.
Cov(X) = E[(X − E[X])(X − E[X])T ]

= E[XXT ]− E[X]E[X]T .

Moreover,
E[Cov(X|Y )] = E

[
E[(X|Y −E[X|Y ])(X|Y − E[X|Y ])T ]

]

= E
[
E[(X|Y )(X|Y )T ]

]− E[X|Y ]E[X|Y ]T

= E[XXT ]−E[X|Y ]E[X|Y ]T ,

where the last expression follows since for a matrix X ∈ Rn×p

E
[
E[(X|Y )(X|Y )T ]

]
i,j

= E

[
E

[
p∑

k=1

XikXjk|Y
]]

= E

[
p∑

k=1

E[XikXjk|Y ]

]

=
p∑

k=1

E[XikXjk]

= E[XXT ]i,j , ∀(i, j) ∈ {(1, . . . , n)× (1, . . . , p)}.
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Again using Expression (88) we get

Cov(E[X|Y ]) = E
[
(E[X|Y ]−E[E[X|Y ]])(E[X|Y ]−E[E[X|Y ]])T

]

= E[X|Y ]E[X|Y ]T − E[X]E[X]T .

The result follows by inserting these last two expressions into Expression (89).

Theorem 1. Let
ΣX =

[
Σ11 Σ12

ΣT
12 Σ22

]

have the inverted Wishart distribution with parameters

Ψ−1 =
[

Ψ11 Ψ12

ΨT
12 Ψ22

]

and ν. Further, let

Σ1|∗ = Σ11 −Σ12Σ−1
22 ΣT

12

T = Σ12Σ−1
22

Σ∗ = Σ22.

Then

Σ1|∗ ∼ W−1
u (Ψ1|∗, ν)

Vec(T )|Σ1|∗ ∼ Gaussug(Vec(Γ), (Ψ−1
∗ ⊗Σ1|∗))

Σ∗ ∼ W−1
g (Ψ∗, ν − u),

where

Ψ1|∗ = Ψ11 −Ψ12Ψ−1
22 ΨT

12

Γ = Ψ12Ψ−1
22

Ψ∗ = Ψ22.

Moreover, Σ∗ is statistically independent of Σ1|∗ and Vec(T )|Σ1|∗ when ν >
u + g + 1.

Remark. This result is di�erent from the one obtained by Caselton et al. (1992),
and used in Lee & Zidek (1992). They claimed that

Vec(T )|Σ1|∗ ∼ Gaussug(Vec(Γ), (Σ1|∗ ⊗Ψ−1
∗ ))

Proof. Since the block matrix ΣX only depends on the three matrices Σ11, Σ12

and Σ22, we can write

f(ΣX) = f(Σ11,Σ12,Σ22)



A.3 General Results 81

As shown in Caselton et al. (1992), we can use the Bartlett decomposition
(Bartlett 1933), to express Σ and Ψ as

Σ = T∆T T

≡
[

Iu T
0 Ig

] [
Σ1|∗ 0
0 Σ∗

] [
Iu T
0 Ig

]T

=
[

Σ1|∗ + TΣ∗T T TΣ∗
Σ∗T T Σ∗

]

Ψ = NΛNT

≡
[

Iu Γ
0 Ig

] [
Ψ1|∗ 0
0 Ψ∗

] [
Iu Γ
0 Ig

]T

,

where the di�erent matrices are de�ned in the theorem. Now, by general prop-
erties of the determinant and the trace operator (Mardia et al. 1979, Appendix
A),

Σ−1 =

[
Σ−1

1|2 −Σ−1
1|2T

−T TΣ−1
1|2 Σ−1

∗ + T TΣ−1
1|2T

]
,

and
|Σ| = |Σ∗| · |Σ1|2|.

Thus,

f (Σ11(•),Σ12(•),Σ22(•)) ∝ |Σ|−(ν+p+1)/2 exp
{
−1

2
tr

(
Ψ−1Σ−1

)}

∝ |Σ∗|−(ν+p+1)/2 × |Σ1|∗|−(ν+p+1)/2×

exp
{
−1

2
tr

(
Ψ1|∗Σ

−1
1|∗ + Ψ∗Σ−1

∗ + Ψ∗(T − Γ)TΣ−1
1|∗(T − Γ)

)}

Then, by Result 5,

f(Σ1|∗,T ,Σ∗) = f (Σ11(•),Σ12(•),Σ22(•)) |J |,

where by Deemer & Olkin (1951) and Mardia et al. (1979, Appendix B)

J =

∣∣∣∣∣∣∣∣

∂Σ11(•)
∂Σ1|∗

∂Σ11(•)
∂T

∂Σ11(•)
∂Σ∗

∂Σ12(•)
∂Σ1|∗

∂Σ12(•)
∂T

∂Σ12(•)
∂Σ∗

∂Σ22(•)
∂Σ1|∗

∂Σ22(•)
∂T

∂Σ22(•)
∂Σ∗

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

Iu2 (?) (??)
0 diagu(Σ∗) (? ? ?)
0 0 I2

g

∣∣∣∣∣∣
= |Iu2 ||diagu(Σ∗)||Ig2 |
= |Σ∗|u.
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Here diagu(W ) is a diagonal block matrix, where the u diagonal elements
are the matrices W . Hence,

f(Σ1|∗, T ,Σ∗) ∝ |Σ|−(ν−2u+p+1)/2 × |Σ1|∗|−(ν+p+1)/2

exp
{
−1

2
tr

(
Ψ1|∗Σ

−1
1|∗ + Ψ∗Σ−1

∗ + Ψ∗(T − Γ)TΣ−1
1|∗(T − Γ)

)}

(90)
From this last expression we see that

f(Σ∗) ∝ |Σ|−(ν−u+g+1)/2 × exp
{
−1

2
tr

(
Ψ∗Σ−1

∗
)}

,

which we recognise as the kernel of the inverted Wishart pdf. Therefore

Σ∗ ∼ W−1
g (Ψ−1

∗ , ν − u)

Similarly, using Result 8 and other general properties of the Kronecker product
(Brewer 1978, Mardia et al. 1979),

f(T |Σ1|∗) ∝ exp
{
−1

2
tr

(
Ψ∗(T − Γ)TΣ−1

1|∗(T − Γ)
)}

∝ exp
{
−1

2
tr

(
(T − Γ)TΣ−1

1|∗(T − Γ)Ψ∗
)}

∝ exp
{
−1

2
tr

(
Vec(T − Γ)T (Ψ∗ ⊗Σ−1

1|∗)Vec(T − Γ)
)}

∝ exp
{
−1

2
tr

(
Vec (T − Γ)T (

Ψ−1
∗ ⊗Σ1|∗

)−1 Vec (T − Γ)
)}

Since the expression above is the kernel of a multivariate Gaussian pdf,

Vec(T )|Σ1|∗ ∼ Gaussug

(
Vec(Γ),

(
Ψ−1
∗ ⊗Σ1|∗

))
.

Again using Expression (90) and properties of the Kronecker product (Anderson
2003)

f(Σ1|∗) ∝ |Σ1|∗|−(ν+p+1)/2 exp
{
−1

2
tr

(
Ψ1|∗Σ

−1
1|∗

)}

×
∫

exp
{
−1

2
tr

(
Vec (T − Γ)T (

Ψ−1
∗ ⊗Σ1|∗

)−1 Vec (T − Γ)
)}

dT

∝ |Σ1|∗|−(ν+p+1)/2 exp
{
−1

2
tr

(
Ψ1|∗Σ

−1
1|∗

)} ∣∣(Ψ−1
∗ ⊗Σ1|∗

)∣∣−1/2

∝ |Σ1|∗|−(ν+u+1)/2 exp
{
−1

2
tr

(
Ψ1|∗Σ

−1
1|∗

)}

Thus,
Σ1|∗ ∼ W−1

u (Ψ−1
1|∗, ν).

Finally, since

f(Σ1|∗, T ,Σ∗) = f(T |Σ1|∗)f(Σ1|∗)f(Σ∗),

by De�nition 11 the theorem follows.
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Result 11. Assume
Vec(T ) ∼ Gaussug (Vec(Γ), (A⊗Σ))

Where T ∈ Ru×g, Γ ∈ Ru×g, A ∈ Rg×g and Σ ∈ Ru×u. Note that this implies
that A = AT and Σ = ΣT . Further, let B ∈ Rg×g be a symmetric matrix.
Then

E[TBT T ] = tr(AB)Σ + ΓBΓT

Proof. From De�nitions 9 and 10,

Vec(T ) =




T (1)

T (2)
...

T (g)


 ∼ Gaussug







Γ(1)

Γ(2)
...

Γ(g)


 ,




a11Σ a12Σ . . . a1gΣ
a21Σ a22Σ . . . a2gΣ
... ... ... ...

ag1Σ ag2Σ . . . aggΣ





 ,

where x(i) is the i'th column vector of the matrix X, we have by Result 2
Cov(T (i), T (j)) = aijΣ

E[T (i)] = Γ(i)

Thus,

E[TBT T ] = E




g∑

i=1

g∑

j=1

T (j)bjiT
T
(i)




=
g∑

i=1

g∑

j=1

bjiE
[
T (j)T

T
(i)

]

=
g∑

i=1

g∑

j=1

bji

(
Cov(T (j),T (i)) + E[T (j)]E[T (i)]

T
)

=
g∑

i=1

g∑

j=1

bji

(
ajiΣ + Γ(j)Γ

T
(i)

)

=
g∑

i=1

g∑

j=1

bijajiΣ +
g∑

i=1

g∑

j=1

Γ(j)bjiΓT
(i)

= tr(AB)Σ + ΓBΓT .

Result 12. The likelihood function in a multivariate Gaussian model can be
written as

f(x1, . . . ,xn; µ, Σ) ∝ f(x̄|µ, Σ)× g(S;Σ) (91)
Proof. By adding and subtracting x̄ we get (Mardia et al. 1979)

f(x1, . . . ,xn;µ, Σ) ∝ |Σ|−n/2 exp

{
−1

2
(x̄− µ)T

(
Σ
n

)−1

(x̄− µ)

}

× exp
{
−1

2
tr

(
nSΣ−1

)}

∝ f(x̄|µ, Σ)× g(S;Σ),



84 A THEORETICAL RESULTS

where f(x̄|µ, Σ) is a pdf similar to that de�ned in Expression (106), and g(S;Σ)
is a function dependent only on S and Σ.

Remark. In the case when the number of samples is larger then the number
of variables, g( ; ) is replaced by the pdf of S, namely the Wishart (Mardia
et al. 1979).

Result 13. Consider a multivariate stochastic vector
[

x
x∗

]

where x ∈ Ru×1 and x∗ ∈ Rg×1 Further, let x̂ = g(x∗) be a predictor of x given
x∗. Then x̂ = E[x|x∗] minimises the Mean Squared Prediction Error (MSPE)
given by

E
[
(x− g(x∗))T (x− g(x∗))

]

Proof. By Bayes' rule,

f(x, x∗) = f(x|x∗)f(x∗).

Hence,

MSPE =
∫ ∫

(x− g(x∗))T (x− g(x∗))f(x|x∗)f(x∗)dxdx∗

=
∫

f(x∗)
[∫

(x− g(x∗))T (x− g(x∗))f(x|x∗)dx

]
dx∗

=
∫ [

E[xT x|x∗]− 2g(x∗)T E[x|x∗] + g(x∗)T g(x∗)
]
f(x∗)dx∗.

Since f(x∗) > 0, ∀x∗, the expression above is minimised by

x̂ = arg min
a

{
E[xT x|x∗]− 2aT E[x|x∗] + aT a

}
,

where a = g(x∗).
Using the results of (Mardia et al. 1979, Appendix B), we get

∂

∂a

(
E[xT x|x∗]− 2aT E[x|x∗] + aT a

)∣∣
a=x̂

= −2E[x|x∗] + 2x̂ = 0.

Thus,
x̂ = E[x|x∗].
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B Ensemble Kalman Filter
In this section, we show that with the assumption of a Gaussian distribution in
the forward model, the EnKF algorithm generates realisations from the correct
posterior distribution. Note that here we only have considered the model where
observations of the reservoir production properties qo

t has been obtained, but
a similar argument holds when we include both seismic observations ro

t , and
reservoir production properties.

Let
xt =

[
rt

qr

]
∈ Rnr+nq ,

be a vector containing the reservoir state, and production properties at time
t. Assume that observations production properties of reservoir have been made
prior to the current timestep.

Let

xt|ro
0, q

o
1, . . . , q

o
t−1 ∼ Gaussnr+nq(µt,Σt).

Further, we assume
qo

t = Dtqt + εt (92)

ro
0 = D0r0 + ε0,

where
εt ∼ Gaussnq(0,Σo

t ), independent of xt, εs ∀t, s 6= t, (93)

ε0 ∼ Gaussnr(0,Σ
o
0), independent of xt, εs ∀t, s 6= t, (94)

Dt ∈ Rnq×nq , i ∈ {1, 2, . . .}, and D0 ∈ Rnr×nr . Result 1 then gives

qo
t |qt ∼ Gaussnq(Dtqt,Σ

o
t ), independent of rt, (95)

ro
0|r0 ∼ Gaussnr(D0r0,Σo

0), independent of q0. (96)

Using the de�nition of the multivariate expectation (Johnson & Wichern
2002) we can write

µt =
[

µrt

µqt

]
.

Similarly, using De�nition 2, the covariance matrix of xt can then be partitioned
into

Σt =
[

Σrt Σrqt
Σqrt Σqt

]
.

Result 14. Let

xt|ro
0, q

o
1, . . . , q

o
t−1 ∼ Gaussnr+nq(µt,Σt),

and
qo

t |qt ∼ Gaussnq(Dtqt,Σ
o
t ), independent of rt.
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Then

rc
t = rt|ro

0, q
o
1, . . . , q

o
t−1, q

o
t ∼ Gaussnr(µrc

t
,Σrc

t
)

qc
t = qt|ro

0, q
o
1, . . . , q

o
t−1, q

o
t ∼ Gaussnq(µqc

t
,Σqc

t
) (97)

where

µrc
t

= µrt + ΣrqtD
T
t (Σo

t + DtΣqtD
T
t )−1(qo

t −Dtµqt)

µqc
t

= µqt + ΣqtD
T
t (Σo

t + DtΣqtD
T
t )−1(qo

t −Dtµqt), (98)

and

Σrc
t

= Σrt −ΣrqtD
T
t (Σo

t + DtΣqtD
T
t )−1ΣrqtDt

Σqc
t

= Σqt −ΣqtD
T
t (Σo

t + DtΣqtD
T
t )−1ΣqtDt (99)

Proof. By applying Result 1, to Expression (92), we know that

qo
t ∼ Gaussnq(Dtµq, DtΣqtD

T
t + Σo

t ).

Then, by Result 2

rc
t ∼ Gaussnr(µrc

t
,Σrc

t
)

qc
t ∼ Gaussnq(µqc

t
,Σqc

t
)

with

µrc
t

= E[rt] + Cov(rt, q
o
t )Cov(qo

t )
−1(qo

t − E[qo
t ])

µqc
t

= E[qt] + Cov(qt, q
o
t )Cov(qo

t )
−1(qo

t − E[qo
t ])

and

Σrc
t

= Cov(rt)− Cov(rt, q
o
t )Cov(qo

t )
−1Cov(rt, q

o
t )

T

Σqc
t

= Cov(qt)− Cov(qt, q
o
t )Cov(qo

t )
−1Cov(qt, q

o
t )

T .

Since

Cov(qt, q
o
t ) = Cov(qt,Dtqt + ε)

= ΣqtD
T
t ,

and

Cov(rt, q
o
t ) = Cov(rt, Dtqt + ε)

= ΣrqtD
T
t ,

the result follows.
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Result 15. Given realisations

xt =
[

rt

qt

]
∼ f(xt|ro

0, q
o
1, . . . , q

o
t−1) = Gaussnr+nq(µt,Σt).

Realisations
rc

t ∼ f(rt|ro
0, q

o
1, . . . , q

o
t−1, q

o
t ),

and
qc

t ∼ f(qt|ro
0, q

o
1, . . . , q

o
t−1, q

o
t ),

can be generated by

rc
t = rt + ΣrqtD

T
t (Σo

t + DtΣqtD
T
t )−1(qo

t + εt −Dtqt)

qc
t = qt + ΣqtD

T
t (Σo

t + DtΣqtD
T
t )−1(qo

t + εt −Dtqt), (100)

where
εt ∼ Gaussnq(0,Σo

t ).

Proof. Result 2 states that rc
t and qc

t both will follow the multivariate Gaussian
distribution with expectation and Covariance given by

E[rc
t ] = E[rt + ΣrqtD

T
t (Σo

t + DtΣqtD
T
t )−1(qo

t + εt −Dtqt)]
= µrc

t

E[qc
t ] = E[qt + ΣqtD

T
t (Σo

t + DtΣqtD
T
t )−1(qo

t + εt −Dtqt)]
= µqc

t

and

Cov(rc
t) = Cov

(
rt + ΣrqtD

T
t (Σo

t + DtΣtD
T
t )−1(qo

t + εt −Dtqt)
)

= Cov(rt) + KrCov(εt −Dtqt)Kr
T + 2Cov (rt,Kr [εt −Dtqt])

= Σrt + Kr(Σo
t + DtΣqtD

T
t )Kr

T − 2ΣrqtD
T
t Kr

T

= Σrc
t

Cov(qc
t) = Cov

(
qt + ΣqtD

T
t (Σo

t + DtΣtD
T
t )−1(qo

t + εt −Dtqt)
)

= Cov(qt) + KqCov(εt −Dtqt)Kq
T + 2Cov (qt,Kq [εt −Dtqt])

= Σqt + Kq(Σo
t + DtΣqtD

T
t )Kq

T − 2ΣqtD
T
t Kq

T

= Σqc
t

Here
Krt =

[
ΣrqtD

T
t (Σo

t + DtΣqtD
T
t )−1

]
,

and
Kqt =

[
ΣqtD

T
t (Σo

t + DtΣqtD
T
t )−1

]
. (101)

Corollary 1.

xt|•, qo
t ∼ Gaussnr+nq

([
µrc

t

µqc
t

]
,

[
Σrc

t
Σrqt(I −DT

t Kq
T
t )

(I −KqtDt)Σrq
T
t Σqc

t

])
,

(102)
with µrc

t
, µqc

t
, Σrc

t
, Σqc

t
and Kq given in Expressions (98), (99) and (101).
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Proof. Using Result 15 we see that

Cov(rc
t , q

c
t) = Cov (rt + Kr(qo

t + εt −Dtqt), qt + Kq(qo
t + εt −Dtqt))

= Σrqt −ΣrqtD
T
t Kq

T
t −KrtDtΣqt

+ Krt(Σo
t + DtΣqtD

T
t )Kq

T
t

= Σrqt(I −DT
t Kq

T
t ).

Then by Result 2, the Corollary follows.

Result 16. Let
x1

t , . . . , x
n
t

i.i.d∼ Gaussnr+nq(µt,Σt),

and
ε1
t , . . . , ε

n
t

i.i.d∼ Gaussnr+nq(0,Σo
t ).

Further, let

Σ̂t =
[

Σ̂rt Σ̂rqt

Σ̂qrt Σ̂qt

]
=

1
n− 1

n∑

i=1

(xi
t − x̄t)(xi

t − x̄t)T ,

where x̄t is the arithmetic mean. Then

xc,i
t =

[
ri

t + Σ̂rqtD
T
t (Σ̂

o
t + DtΣ̂qtD

T
t )−1(qo

t + εi
t −Dtq

i
t)

qi
t + Σ̂qtD

T
t (Σ̂

o
t + DtΣ̂qtD

T
t )−1(qo

t + εi
t −Dtq

i
t)

]

d→ Gaussnr+nq

([
µrc

t

µqc
t

]
,

[
Σrc

t
Σrqt(I −DT

t Kq
T
t )

(I −KqtDt)Σrq
T
t Σqc

t

])
,

where d→ denotes �convergence in distribution �,

µrc
t

= µrt + ΣrqtD
T
t (Σo

t + DtΣqtD
T
t )−1(qo

t −Dtµqt)

µqc
t

= µqt + ΣqtD
T
t (Σo

t + DtΣqtD
T
t )−1(qo

t −Dtµqt)

Σrc
t

= Σrt −ΣrqtD
T
t (Σo

t + DtΣqtD
T
t )−1ΣrqtDt

Σqc
t

= Σqt −ΣqtD
T
t (Σo

t + DtΣqtD
T
t )−1ΣqtDt

and
Kqt =

[
ΣqtD

T
t (Σo

t + DtΣqtD
T
t )−1

]
.

Remark. The result above simply restates the procedure used in the Ensemble
Kalman �lter (Evensen et al. 1998), which was an extension of the original
EnKF proposed by Evensen (1994).

Proof. Since Σ̂t is a consistent estimator for Σt, then by the Central Limit
Theorem (Mardia et al. 1979, Theorem 2.9.1), Strong Law of Large Numbers
(Casella & Berger 2002) and Corollary 1, the result follows.
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C Hierarchical Scale-Corrected Ensemble Kalman Fil-
ter

We now consider the Hierarchical Bayesian model described in Figure C.1.

µX

ΣX

X

Figure C.1: The �gure shows the Directed Acyclic Graph (DAG) of the Hierarchical
Bayesian model considered. Here X ∈ Rp×1, µX ∈ Rp×1 and ΣX ∈ Rp×p

are distributed as in Expressions (103) to (105).

X =
[

x
x∗

]
∼ Gaussp

([
µ
µ∗

]
,

[
Σ Σxx∗

ΣT
xx∗ Σ∗

])
, (103)

where x ∈ Ru×1 and x∗ ∈ Rg×1. Further, let

µX =
[

µ
µ∗

]

and
ΣX =

[
Σ Σxx∗

ΣT
xx∗ Σ∗

]
,

such that
µX ∼ Gaussp(ηX,

1
ζ
ΣX) (104)

and
ΣX ∼ W−1

p (ΨX
−1, ν), (105)

where
ηX =

[
η
η∗

]
,
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and
ΨX

−1 =
[

Ψ Ψxx∗

ΨT
xx∗ Ψ∗

]
.

As shown in Theorem 1, we can write the prior distribution in Expression
(105) in terms of new variables in the set Θ = {Σ1|∗, T , Σ∗} as

Σ1|∗ = Σ−Σxx∗Σ−1
∗ ΣT

xx∗

T = Σxx∗Σ−1
∗

Σ∗ = Σ∗.

Where these variables follow the distribution given in Theorem 1. Assume we
have generated realisations

x∗1, x
∗
2, . . . , x

∗
n

i.i.d∼ Gaussg(µ∗,Σ∗),

where i.i.d means independent identically distributed.
The sample mean is given as

x̄∗ =
1
n

n∑

i=1

x∗i .

Then

E[x̄∗] = E

[
1
n

n∑

i=1

x∗i

]

=
1
n

n∑

i=1

E[x∗i ]

=
1
n

n∑

i=1

µ∗ = µ∗,

and

Cov(x̄∗) = Cov

(
1
n

n∑

i=1

x∗i

)

i.i.d=
1
n2

n∑

i=1

Cov(x∗i )

=
1
n2

n∑

i=1

Σ∗ =
1
n
Σ∗.

By using the general multivariate Gaussian theory (Mardia et al. 1979, Chapter
3), we see that

x̄∗|µ∗,Σ∗ ∼ Gaussg

(
µ∗,

1
n
Σ∗

)
. (106)

For notational convenience we now de�ne the matrix of samples L ∈ Rg×n as

L =
[

x∗1, . . . ,x∗n
]
.
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The sample covariance matrix is given by

S =
1
n

n∑

i=1

(x∗i − x̄∗)(x∗i − µ∗)T .

This corresponds to the maximum likelihood estimator of the covariance matrix
when the samples are i.i.d. Gaussian. Note that when the number of elements in
the random vector x∗ is large, which is typically the case in reservoir simulation,
the the number of samples you to generate tend to be restricted. This implies
that the matrix S will not in most practical applications have full rank (Johnson
& Wichern 2002, Result 3.3). Which again means (Strang 1988) that S is
singular, consequently its inverse S−1, does not exist, and we can not use the
general results concerning the relationship between the sample mean vector and
the sample covariance matrix in the multivariate Gaussian case (Johnson &
Wichern 2002, Chapter 4).

In the following theorems, we consider a hierarchical Bayesian setting as the
one described in Figure C.1. We also assume to have generated realisations
x∗1, x

∗
2, . . . ,x

∗
n

i.i.d∼ Gaussg(µ∗,Σ∗), then we have the following properties of the
various posterior distributions.

Theorem 2.
µX|Θ, L ∼ Gaussp(µµ|x̄∗ ,Σµ|x̄∗) (107)

where

µµX|x̄∗ = ηX +
([

T
Ig

]
⊗

(
n

n + ζ

))
(x̄∗ − η∗)

=

[
η + n

n+ζ T (x̄∗ − η∗)
η∗ + n

n+ζ (x̄
∗ − η∗)

]
=

[
µµ|x̄∗
µ∗µ|x̄∗

]
(108)

ΣµX|x̄∗ =
1
ζ

(
ΣX − n

n + ζ

[
TΣ∗T T TΣ∗
Σ∗T T Σ∗

])
. (109)

Theorem 3.
Σ∗|L ∼ W−1

g (Ψ̂
−1
∗ , ν + n− u). (110)

where
Ψ̂
−1
∗ = nS + Ψ∗ +

nζ

n + ζ
(x̄∗ − η∗)(x̄∗ − η∗)T (111)

Σ1|∗|L ∼ W−1
u (Ψ−1

1|∗, ν) (112)
Vec(T )|Σ1|∗, L ∼ Gaussug

(
Vec(Γ), (Ψ−1

∗ ⊗Σ1|∗)
)

(113)

Theorem 4. The posterior mean of ΣX is given by

Σ̂ = α
ΨX

ν − p− 1
+ (1− α)Σ̃ (114)
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where
α =

ν − p− 1
ν + n− p− 1

, (115)

Σ̃ =




[
1+tr(S̃Ψ

−1
∗ )

ν−u−1

]
Ψ1|∗ + ΓS̃Γ

T
ΓS̃

S̃Γ
T

S̃


 , (116)

and
S̃ =

1
n

(
nS +

nζ

n + ζ
(x̄∗ − η∗)(x̄∗ − η∗)T

)
.

Theorem 5. Let Xf denote the future observations of the reservoir then

Xf |Θ, L ∼ Gaussp(µµX|x̄∗ ,ΣX + ΣµX|x̄∗) (117)

with µµX
|x̄∗ and ΣµX|x̄∗ given in Expressions (108) and (109) respectively.

Theorem 6. The predictive distribution of XT
f = [xT

f , x∗Tf ], given realisations
from the course scale reservoir L is

x∗f |L ∼ tg

(
η∗ +

n

n + ζ
(x̄∗ − η∗),

c− d

q
Ψ̂∗, q

)
(118)

xf |x∗f , L ∼ tu

(
η + Γ(x∗f − η∗),

c + (x∗f − η∗)TΨ−1
∗ (x∗f − η∗)

ν + 1− u
Ψ1|∗, ν + 1− u

)

(119)

where

q = ν + n + 1− p

c = 1 +
1
ζ

d =
n

ζ(n + ζ)

Remark (Theorem 2). If we set F = 1, A = n, β̂2 = x̄∗, β = µ and β0 = η,
this result is equivalent to Theorem 2.1 in Lee & Zidek (1992). Also note that
this implies that they actually did not need to restrict their Kriging predictor to
cases when the the number of samples n is larger than the number of covariates
k. This because the Gaussian multivariate likelihood function always can be
written as shown in Result 12 which need not be a pdf.

Remark (Theorem 6). This theorem is stated for completeness, although it is not
used in this Thesis. As shown in Theorem 1 the proof of the equivalent theorem
given in Lee & Zidek (1992) was based on a non-valid assumption concerning the
distribution of T |Σ1|∗. We therefore give a detailed proof were this is corrected
for.
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Proof Theorem 2. Consider the pdf of µX|Θ, L namely f(µX|Σ1|∗,T ,Σ∗, L).
Using Expressions (91) we get

f(µX|Θ, L) ∝ f(L|µX, Σ∗,Σ1|∗, T )× f(µX|Σ∗,Σ1|∗, T )

∝ |Σ∗|−n/2 exp

{
−1

2

n∑

i=1

(x∗i − µ∗)TΣ−1
∗ (x∗i − µ∗)

}

× f(µX|Σ∗,Σ1|∗, T )

∝ f(x̄∗|µ∗,Σ∗)× g(S;Σ∗)× f(µX|Σ∗,Σ1|∗, T )

∝ f(x̄∗|µX,ΣX)× f(µX|ΣX)
∝ f(x̄∗,µX,ΣX)
∝ f(µX|x̄∗,ΣX)

Let the matrix E ∈ Rg×p be given by

E =
[

0 Ig

]
,

where 0 ∈ Rg×u is a matrix containing only zeros, and Ig denotes the identity
matrix ∈ Rg×g. Using this matrix we see that

x̄∗|µX,ΣX ∼ Gaussg

(
EµX,

1
n

EΣXET

)
. (120)

From the expression above we see that

f(x̄∗|ΣX) =
∫

f(x̄∗|µ∗,ΣX)f(µ∗|ΣX)dµ∗

∝
∫

exp

{
−1

2
(x̄∗ − µ∗)T

(
Σ∗
n

)−1

(x̄∗ − µ∗)

}

× exp

{
−1

2
(µ∗ − η∗)T

(
Σ∗
ζ

)−1

(µ∗ − η∗)

}
dµ∗

∝ exp

{
−1

2
x̄∗T

(
Σ∗
n

)−1

x̄∗
}

×
∫

exp

{
−1

2
µ∗T

(
Σ∗

n + ζ

)−1

µ∗ − 1
n + ζ

(nx̄∗ + ζη∗)T

(
Σ∗

n + ζ

)−1
}

dµ∗.

Let

Σ̃ =
(

Σ∗
n + ζ

)−1

,

and
µ̃ =

1
n + ζ

(nx̄∗ + ζη∗).
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Since the integral of the kernel of a multivariate Gaussian distributed variable
is proportional to one in distribution, we get

f(x̄∗|ΣX) ∝ exp

{
−1

2
x̄∗T

(
Σ∗
n

)−1

x̄∗
}

×
∫

exp
{
−1

2
(µ∗ − µ̃)T Σ̃

−1
(µ∗ − µ̃)

}
dµ∗ × exp

{
+

1
2
µ̃T Σ̃

−1
µ̃

}

∝ exp
{
−1

2

(
x̄∗T

[
n− n2

n + ζ

]
Σ−1
∗ x̄∗ − 2η∗T

nζ

n + ζ
Σ−1
∗ x̄∗

)}
.

(121)

The multivariate Gaussian pdf as de�ned in Expression (80) with parameters
µY and ΣY can always be written in the following manner:

f(y) ∝ exp
{
−1

2
(yTΣY

−1y − 2µY
TΣY

−1y)
}

.

Comparing this last expression with the one in Expression (121), we observer
that

x̄∗|ΣX ∼ Gaussg(EηX,
n + ζ

nζ
EΣXET ). (122)

Now since both x̄∗|ΣX and µX|ΣX are multivariate Gaussian with param-
eters given in Expressions (104) and (122), then by Result 2,

µX|x̄∗,ΣX ∼ Gaussp(µµ|x̄∗ ,Σµ|x̄∗). (123)

Where

µµ|x̄∗ = E[µX|ΣX] + Cov(µX|ΣX, x̄∗|ΣX)Cov(x̄∗|ΣX)−1(x̄∗ −E[x̄∗|ΣX])

and

Σµ|x̄∗ = Cov(µX|ΣX)−Cov(µX|ΣX, x̄∗|ΣX)Cov(x̄∗|ΣX)−1Cov(µX|ΣX, x̄∗|ΣX)T .

The only unknown element in the two expressions above is Cov(µX|ΣX, x̄∗|ΣX),
but since

E[x̄∗|µX, ΣX] = E[x̄∗|ΣX] + Cov(µX|ΣX, x̄∗|ΣX)T Cov(µX|ΣX)−1(µX −E[µX|ΣX])

= EηX + ζΣT
x̄∗µX

ΣX
−1(µX − ηX) = EµX,

we see that
Cov(µX|ΣX, x̄∗|ΣX) =

1
ζ
(EΣX)T =

1
ζ
ΣXET .

Inserting this into the expressions above, we get

µµ|x̄∗ = ηX +
1
ζ
ΣXET nζ

n + ζ
Σ−1
∗ (x̄∗ −EηX)

= ηX +
[

T
Ig

]
⊗

(
n

n + ζ

)
(x̄∗ −EηX)
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Σµ|x̄∗ =
1
ζ
ΣX − 1

ζ2

[
TΣ∗
Σ∗

](
nζ

n + ζ

)
Σ−1
∗

[
Σ∗T T Σ∗

]

=
1
ζ

(
ΣX − n

n + ζ

[
TΣ∗T T TΣ∗
Σ∗T T Σ∗

]
.

)

Proof Theorem 3. Consider the posterior pdf f(Θ|L). Using the results in
Chapter 3 of Ross (2003)

f(Θ|L) ∝ f(Θ, L) ∝ f(L|Θ)f(Θ)

∝
∫

f(L|Θ, µ)f(µ|Θ)dµf(Θ)

∝ f(Θ)g(S;Σ∗)
∫

f(x̄∗|µ, Θ)f(µ|Θ)dµ

∝ f(Θ)g(S;Σ∗)f(x̄∗|Θ)
∝ f(x̄∗|Σ∗)g(S;Σ∗)f(T |Σ1|∗)f(Σ1|∗)f(Σ∗)

Inserting the prior distribution in Expression (105), and the likelihood function
given in Expression (91), we get

f(Σ∗|L) ∝ f(x̄∗|Σ∗)g(S;Σ∗)f(Σ∗)

∝ |Σ∗|−1/2 exp
{
−1

2
(x̄∗ − η∗)T nζ

n + ζ
Σ−1
∗ (x̄∗ − η∗)

}

× |Σ∗|−(n−1)/2 exp
{
−1

2
tr(nSΣ−1

∗ )
}
× |Σ∗|−(ν−u+g+1)/2 exp

{
−1

2
tr(Ψ∗Σ−1

∗ )
}

∝ |Σ∗|−(ν+n−u+g+1)/2 exp
{
−1

2
tr

([
nS + Ψ∗ +

nζ

n + ζ
(x̄∗ − η∗)(x̄∗ − η∗)T

]
Σ−1
∗

)}
.

Comparing this last expression with the pdf in Expression (82), we can see that
Σ∗|L has the distribution given in Expression (110). Further, we �nd that

f(T |L, Σ1|∗) ∝ f(T |Σ1|∗) (124)

f(Σ1|∗|L) ∝
∫

f(T |Σ1|∗)f(Σ1|∗)dT

∝ f(Σ1|∗)×
∫

f(T |Σ1|∗)dT

∝ f(Σ1|∗). (125)

Where the probability density functions in Expressions (124), and (125) are
given in Expressions (113) and (112) respectively.

Proof Theorem 4. Using Expressions (110) to (113), together with Expression
(85) and the a priori assumption of independence between T and Σ∗, we get

E[Σ∗|L] =
Ψ̂

ν + n− p− 1
=

Ψ̂∗
a

, (126)
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E[Σ1|∗|L] =
Ψ1|∗

ν − u− 1
, (127)

E[TΣ∗|L] = E[T |L]E[Σ∗|L]

= E
[
E[T |L, Σ1|∗]|L

] Ψ̂∗
a

=
ΓΨ̂∗

a
. (128)

Expression (87), together with Expression (88) and Result 11 further gives

E[TΣ∗T T |L] = E
[
E[TΣ∗T T |L, T ]|L]

= E
[
TE[Σ∗|L]T T |L]

=
1
a
E

[
E[T Ψ̂∗T T |L, Σ1|∗]|L

]

=
1
a
E

[
tr

(
Ψ̂∗Ψ−1

∗
)
Σ1|∗ + ΓΨ̂∗ΓT |L

]
.

=
1
a
tr(Ψ−1

∗ Ψ̂∗)E[Σ1|∗|L] +
1
a
ΓΨ̂∗ΓT

=
1
a
tr(Ψ−1

∗ Ψ̂∗)
Ψ1|∗

ν − u− 1
+

1
a
ΓΨ̂∗ΓT . (129)

The posterior mean of Σ is thus given by

Σ̂ =
[

E[Σ1|∗|L] + E[TΣ∗T T |L] E[TΣ∗|L]
E[Σ∗T T |L] E[Σ∗|L]

]
.

Inserting Expressions (126) to (129) into the expression above, we get

Σ̂ =
1
a

[
a+tr(Ψ−1∗ Ψ̂∗)

ν−u−1 Ψ1|∗ + ΓΨ̂∗ΓT ΓΨ̂∗
Ψ̂∗ΓT Ψ̂∗

]

= α
ΨX

ν − p− 1
+ (1− α)Σ̃,

with α and Σ̃ de�ned in Expressions (115) and (116).

Proof Theorem 5. Using Result 2, together with Expressions (103) and (107),
we see that

E[Xf |µX, L, Θ] = µX = E[Xf |L, Θ] + ΣXf µΣ−1
µ|x̄∗(µX − µµ|x̄∗)

= E [E[Xf |µX, L, Θ]|L, Θ] + ΣXf µX
Σ−1

µ|x̄∗(µX − µµ|x̄∗)

= µµ|x̄∗ + ΣXf µX
Σ−1

µ|x̄∗(µX − µµ|x̄∗)

Cov(Xf |µ, L, Θ) = ΣX = Cov(Xf |L, Θ)−ΣXf µX
Σ−1

µ|x̄∗Σ
T
Xf µX

Solving this equation with respect to ΣXf µX
yields ΣXf µX

= Σµ|x̄∗ . Inserting
this into the second equation we get.

Cov(Xf |L, Θ) = ΣX + Σµ|x̄∗ .
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Again using Result 2, we see that
[

Xf |L, Θ
µX|L, Θ

]
∼ Gaussp+p

([
µµ|x̄∗
µµ|x̄∗

]
,

[
ΣX + Σµ|x̄∗ Σµ|x̄∗

Σµ|x̄∗ Σµ|x̄∗

])
.

Thus, Xf |L, Θ follows the distribution in Expression (117).

Proof Theorem 6.

f(Xf |L) =
∫ ∫ ∫

f(Xf |Z, L)× f(Σ∗|L)× f(T |Σ1|∗, L)

× f(Σ1|∗|L)dΣ∗dΣ1|∗dT (130)

As shown in Lee & Zidek (1992), we can rewrite Expression (117) as

f(Xf |Θ, L) ∝ |Σ∗|−1/2|Σ1|∗|−1/2 exp
{
−1

2
(A + B)

}
, (131)

where

A =
1

c− d
(x∗ − µ∗µ|x̄)TΣ−1

∗ (x∗ − µ∗µ|x̄),

B =
1
c
[T (x∗ − µ∗µ|x̄)− (x− µµ|x̄)]TΣ−1

1|∗

× [T (x∗ − µ∗µ|x̄)− (x− µµ|x̄)],

d =
n

ζ(n + ζ)

and c = 1+ 1
ζ . Inserting the results of Expressions (110) to (113) and (131) into

Expression (130) further gives

f(Xf |L) ∝
∫
|Σ∗|−(ν+n+1−u+g+1)/2

× exp
{
−1

2
tr

([
1

c− d
(x∗ − µ∗µ|x̄)(x∗ − µ∗µ|x̄)T + Ψ̂∗

]
Σ−1
∗

)}
dΣ∗

(132)

×
∫ ∫

|Σ1|∗|−1/2 exp
{
− 1

2c
[T (x∗ − µ∗µ|x̄)− (x− µµ|x̄)]T

× Σ−1
1|∗[T (x∗ − µ∗µ|x̄)− (x− µµ|x̄)]

}

× |Ψ−1
∗ ⊗Σ1|∗|−1/2

× exp
{
−1

2
(T − Γ)T (Ψ−1

∗ ⊗Σ1|∗)−1(T − Γ)
}

dT (133)

× |Σ1|∗|−(ν+u+1)/2 × exp
{
−1

2
tr

(
Ψ1|∗Σ

−1
1|∗

)}
dΣ1|∗ (134)

The �rst integral we recognise as the integral of the kernel of an inverse Wishart
pdf with parameters

C =
[

1
c− d

(x∗ − µ∗µ|x̄)(x∗ − µ∗µ|x̄)T + Ψ̂∗

]−1

(135)
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and degrees of freedom

νC = ν + n + 1− u

This implies that the the integral in Expression (132) is proportional to |C−1|νC/2 =
|C|−νC/2.

As noted in Lee & Zidek (1992), the second integral is equal to the pdf of
(xf − η)|Σ1|∗, x∗f when

(xf − η)|T, Σ1|∗, x
∗
f ∼ Gaussu(T (x∗f − η∗), cΣ1|∗)

and T |Σ1|∗, x
∗
f has the distribution given in Expression (113). From Johnson

& Wichern (2002, Result 4.6), we then know that

(xf − η)|Σ1|∗,x∗f ∼ Gaussu(µD,ΣD), (136)

where, by using Expressions (88), (89) and some general properties of the Kro-
necker product, (Brewer 1978), and the Vec operator, namely

Vec(x) = x,

when x ∈ Rn×1,

µD = E[(xf − η)|Σ1|∗, x∗f ]

= E[E[(xf − η)|T, Σ1|∗,x
∗
f ]|Σ1|∗,x∗f ]

= E[T (x∗f − η∗)|Σ1|∗, x∗f ]

= Γ(x∗f − η∗)

ΣD = Cov
(
(xf − η)|Σ1|∗, x∗f

)

= E
[
Cov

(
(xf − η)|T, Σ1|∗

)
|Σ1|∗

]

+ Cov
(
E[(xf − η)|T, Σ1|∗, x

∗
f ]|Σ1|∗, x∗f

)

= E[cΣ1|∗|Σ1|∗,x∗f ] + Cov
(
T (x∗f − η∗)|Σ1|∗, x∗f

)

= cΣ1|∗ + Cov
(
Vec

(
T (x∗

f − η∗)
)
|Σ1|∗, x∗f

)T

= cΣ1|∗ + Cov
((

(x∗f − η∗)T ⊗ Iu

)
Vec(T )|Σ1|∗,x∗f

)

= cΣ1|∗ +
(
(x∗f − η∗)T ⊗ Iu

)
Cov(Vec(T )|Σ1|∗)

(
(x∗f − η∗)T ⊗ Iu

)T

= (c⊗Σ1|∗) +
(
(x∗f − η∗)T ⊗ Iu

)
(Ψ−1

∗ ⊗Σ1|∗)
(
(x∗f − η∗)⊗ Iu

)

=
([

c + (x∗f − η∗)TΨ−1
∗ (x∗f − η∗)

]⊗Σ1|∗
)

≡ (w ⊗Σ1|∗) = wΣ1|∗.
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Writing v = (xf − η)− Γ(x∗f − η∗) we get

f(Xf |L) ∝ |C|−νC/2

×
∫
|wΣ1|∗|−1/2 exp

{
−1

2
vT (wΣ1|∗)−1v

}

× |Σ1|∗|−(ν+u+1)/2 × exp
{
−1

2
tr

(
Ψ1|∗Σ

−1
1|∗

)}
dΣ1|∗

∝ |C|−νC/2w−u/2

×
∫
|Σ1|∗|−(ν+u+1+1)/2 exp

{
−1

2
tr

([
1
w

vvT + Ψ1|∗

]
Σ−1

1|∗

)}
dΣ1|∗

This last integral we recognise as the kernel of an inverse Wishart distributed
variable with parameters

G =
[

1
w

vvT + Ψ1|∗

]−1

and νG = ν + 1 degrees of freedom. Therefore the integral is proportional to
|G|−νG/2, and by using Result A.2.3 in Mardia et al. (1979)

f(Xf |L) ∝ |C|−νC/2w−u/2|G|−νG/2

∝
∣∣∣∣Ψ̂∗ +

1
c− d

(x∗ − µ∗µ|x̄)(x∗ − µµ|x̄)T

∣∣∣∣
−νC/2

× w−u/2

∣∣∣∣
1
w

vvT + Ψ1|∗

∣∣∣∣
−νG/2

∝
∣∣∣Ψ̂∗

∣∣∣
−1/2 (

1 + (x∗ − µ∗µ|x̄)T ((c− d)Ψ̂∗)−1(x∗ − µ∗µ|x̄)
)−νC/2

× w−u/2

∣∣∣∣
1
w

∣∣∣∣
u(ν+1)/2

|wΣ1|∗|−ν/2|wΣ1|∗|−1/2

× (
1 + vT (wΨ1|∗)−1v

)−(ν+1−p+p)/2

∝
∣∣∣Ψ̂∗

∣∣∣
−1/2 (

1 + (x∗ − µ∗µ|x̄)T ((c− d)Ψ̂∗)−1(x∗ − µ∗µ|x̄)
)−νC/2

× (
1 + [(xf − η)− Γ(x∗f − η∗)]T (wΨ1|∗)−1

[(xf − η)− Γ(x∗f − η∗)]
)−(ν+1)/2

.

Comparing this last expression to the pdf of the multivariate student t distribu-
tion in Expression (83), we see that xf |x∗f , L has the distribution in Expression
(119). Similarly by Bayes' rule

f(x∗f |L) ∝
∣∣∣Ψ̂∗

∣∣∣
−1/2 (

1 + (x∗ − µ∗µ|x̄)T ((c− d)Ψ̂∗)−1(x∗ − µ∗µ|x̄)
)−(ν+n−u+1)/2

By a similar argument as above, we see that f(x∗f |L) has the multivariate stu-
dent t distribution given in Expression (118).
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D Algorithms
In this section we present the pseudo code for some of the subroutines used
in the Hierarchical Scale-Corrected Ensemble Kalman Filter. Note that these
algorithms have not been optimised.

Algorithm 6: Bartlett Decomposition
function

[
Σ1|∗,T ,Σ∗

]
= Bartlett(ΣX, u, g)

[Σ,Σxx∗ ,Σ∗] = partitionMatrix(ΣX, u, g)
Σ1|∗ = Σ−Σxx∗Σ−1

∗ ΣT
xx∗

T = Σxx∗Σ−1
∗

Σ∗ = Σ∗

Algorithm 7: Inverse Bartlett Decomposition
function [ΣX] = invBartlett(Σ1|∗, T ,Σ∗)

ΣX =
[

Σ1|∗ + TΣ∗T T TΣ∗
Σ∗T T Σ∗

]

Algorithm 8: Partition Matrix
function[Σ,Σxx∗ ,Σ∗] = partitionMatrix(ΣX, u, g)
p = u + g
Σ = ΣX(1 : u, 1 : u)
Σxx∗ = ΣX(1 : u, u + 1 : p)
Σ∗ = ΣX(u + 1 : p, u + 1 : p)
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Algorithm 9: Sample Posterior Covariance Matrix
function[ΣX] = getPosteriorCovMat(L, n, ν, ζ,T ,Σ1|∗, η∗,Ψ∗, u)
L = [x∗1, . . . , x

∗
n]

x̄∗ = 1
n

∑n
i=1 x∗,i

S = 1
n

∑n
i=1(x

∗,i − x̄∗)(x∗,i − x̄∗)T

Ψ̂∗
−1

= nS + Ψ∗ + nζ
n+ζ (x̄∗ − η∗)(x̄∗ − η∗)T

Generate Σ∗ ∼ W−1
g (Ψ̂

−1
∗ , ν + n− u)

ΣX = invBartlett
(
Σ1|∗, T ,Σ∗

)

Algorithm 10: Posterior Expectation
function[µX] = getPosteriorMu(L, n, ζ,ΣX,ηX, u, g)
L = [x∗1, . . . , x

∗
n]

[Σx,Σxx∗ ,Σx∗ ] = partitionMatrix(ΣX, u, g)
x̄∗ = 1

n

∑n
i=1 x∗,i

µX = ηX +
(

n
n+ζ

)[
Σxx∗Σ−1

x∗

Ig

]
(x̄∗ − η∗)

Algorithm 11: Posterior Mean Covariance Matrix
function[ΣX] = getPosteriorMeanCovMat(L, n, ν, ζ, η∗,ΨX, u, g)
p = u + g
L = [x∗1, . . . , x

∗
n][

Ψ1|∗,T ,Ψ∗
]

= Bartlett(ΨX, u, g)
x̄∗ = 1

n

∑n
i=1 x∗,i

S = 1
n

∑n
i=1(x

∗,i − x̄∗)(x∗,i − x̄∗)T

S̃ = 1
n

(
nS + Ψ∗ + nζ

n+ζ (x̄∗ − η∗)(x̄∗ − η∗)T
)

α = ν−p−1
ν+n−p−1

Σ̃ =




[
1+tr(S̃Ψ

−1
∗ )

ν−u−1

]
Ψ1|∗ + ΓS̃Γ

T
ΓS̃

S̃Γ
T

S̃




Σ̂ = α ΨX
ν−p−1 + (1− α)Σ̃

Algorithm 12: Downscale
function[x] = downScale(x∗,ΣX, µX, u, g)
[Σx,Σxx∗ ,Σx∗ ] = partitionMatrix(ΣX, u, g)
Σx|x∗ = Σx −Σxx∗Σ−1

x∗ΣT
xx∗

Generate εx|x∗ ∼ Gaussu

(
0,Σx|x∗

)

x = µx + Σxx∗Σ−1
x∗ (x∗ − µx∗) + εx|x∗
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Algorithm 13: Assimilate With Production Data
function[x] = assimilateProduction(q, x, qo,Dq,Σx

q ,Σq
o, nq, nx)

Generate εq
o ∼ Gaussnq(0,Σq

o)
[Σx,Σxq,Σq] = partitionMatrix(Σx

q , nx, nq)
xq = x + ΣxqΣ−1

q (qo + εq
o −Dqq)

Algorithm 14: Assimilate With Seismic Data
function[rqd] =
seismicInversion(rq, do, Ddo , Dr, µεrdo ,Σr, nxy, nθ, S,Σω,Σdo)
for j = 1 to nxy do

Generate: εω ∼ Gaussnθ·S (0,Σω)
Generate: εdo ∼ Gaussnθ·S (0,Σdo)
Σdo = DrjΣr,jDr

T
j + Ddo,jΣωDT

do,j + Σεdo

εr = Ddo (µεrdo + εω) + εdo

rqd
j = rq

j + Σr,jDr
T
j Σ−1

doj

(
do

j + εrj −Drjr
q
j

)


