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Problem Description
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Simple mechanical systems with symmetry

Lars Sydnes



Abstract. We go through the basic theory of simple mehcanical systems
with symmetry, in an attempt to understand some of the main features of
configuration space reduction. As a part of this, we will look at some special
cases for whom this works out well, and also indicate a direction of further
development.

Preface

This project started when I studied a treatment of the classical three body
problem [6] given by Hsiang and Straume. I understood that they used Riemannian
geometry. However, to gain computational clarity they hided this behind a lot of
vector analysis. As a simple method of book keeping, I tried to formulate as much
as I could of it explicitly in terms of smooth manifolds and Riemannian geometry.
This task lead me away from that three body problem, and into the land of what
we will call Simple mechanical systems.

There exists some books touching this subject (Oliva [9], Bloch [2] and Bullo-
Lewis [5]), but I do not know books treating this subject in its own right. In
my opinion, it is a pity, since Riemannian geometry fits very well together with
classical mechanics. In the beginning of the work with this project I tried to avoid
the literature, discovering the theory on my own. Later in the process I confered
the literature to control my own results and to learn more.

There is a huge literature on classical mechanics in general, focusing on the
Lagrangian and Hamiltonian approach. In my work I have tried to follow another
approach, where I separate out the pure geometrical features. In my opinion, this
sheds light over the relationship between classical mechanics and geometry. I aimed
at a description purely in terms of Riemannian geometry, hiding every variational
principle behind the Riemannain connection. However, I must admit that as the
project evolved, I got into serious difficulties in carrying this out, and I had to use
some variational arguments to work around those problems. So I learned that the
standard approach is very powerful in some situations, and to respect the main-
stream approaches to classical mechanics, a field that has occupied thousands of
bright heads for more than 300 years.

In the beginning of the work with this project I tried to avoid the literature,
discovering the theory on my own. Later in the process I confered the literature to
control my own results and to learn more.

When it comes to the reduction theory, I was very optimistic half a year ago.
I stated and proved a very powerful theorem that seemingly did not exist in the
literature. Ofcourse, the result was not was not true, but I believed in it until I
found a small error in the proof about a month ago(and I could not believe that
I ever believed in that theorem). The ghosts of this theorem still live in this text.
However, it is broken down into special cases.

I want to thank my family for the support during my studies the last five years
in Trondheim.

I will also thank my advisor Eldar Straume for his kind guidance for the last
three years, allowing me to go in both the right and wrong directions.
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1. Introduction

1.1. Simple mechanical systems. The mechanical principles that Newton
formulated in his Principia depended heavily the assumption that the space we
live in can be described in terms of Euclidean geometry. Later, it was developed
formalisms, like the Lagrange and Hamilton- formalisms, that were independent of
the choice of coordinates. I intend to demonstrate that Riemannian geometry is a
convenient setting for a coordinate-free formulation of many problems in classical
mechanics.

However, when Riemannian geometry is introduced, the equations of motion
suddenly reappears as a Riemannian counterpart of Newton’s second law

Force = mass× acceleration.

The reason for this is that the Riemannian geometry can be used to define covariant
acceleration as well as a notion of mass, where the usual scalar mass is replaced by
a tensorial quantity, the kinematic metric.

Example 1.1. Consider a system consisting of two point massesm1,m2 moving
in plane. If we choose a coordinate system, the configuration of such a system may
be described by four real numbers (x1, y1, x2, y2), where (xi, yi) is the position of
particle nr. i. We assume that the forces between the particles is modeled by a
potential function U(x1, y1, x2, y2) (Equal to −potential energy), such that we can
write the equations of motion as

(2)
miẍi =

∂U

∂xi

miÿi =
∂U

∂yi

This can be rewritten in terms of Riemannian geometry. Consider the Riemannian
manifold (M,m) = (R4,m), where

m = m1(dx2
1 + dy2

1) +m2(dx2
2 + dy2

2),

measuring the kinetic energy of motions. For a curve γ(t) = (x1(t), y1(t), x2(t), y2(t)),
the covariant acceleration of such a curve, γ̈ = ∇γ̇ γ̇ = (ẍ1, ẍ1, ẍ2, ÿ2) since the
Christoffels symbols vanish because the coefficients of the Riemannian metric are
constant.

The gradient of U with respect to this Riemannian geometry will be the vector

grad U =
(

1
m1

∂U

∂x1
,

1
m1

∂U

∂y1
,

1
m2

∂U

∂x2
,

1
m2

∂U

∂y2

)
.

Hence, we can write equation (2) as

γ̈ = grad U

Fortunately, this equation is valid for any smooth coordinate system on M . How-
ever, it is hard to believe that we can write the equations of motion in a more
convenient way than equation (2).

The advantage of Riemannian geometry will be clear first at the point where
we want to impose constraints on the system. Suppose for example that we have a
reason to believe that x2

1 + y2
1 + x2

2 + y2
2 = L (For example if the point masses are

joined by a wire of fixed length, passing through the origin.). Then, the motion will
be restricted to the 3-sphere S3 ⊆ R4. Later we will see how we restrict the original
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mechanical system to such submanifold. Anyway, we get a system consisting of
a Riemannian metric on S3 and the restriction Ũ = U |S3 . The geometry on the
sphere will prevent us from writing the equations of motion explicitly in an elegant
way like equation (2). However, the equation

∇γ̇ γ̇ = grad Ũ

is still valid.

This example is easily generalized to more complex systems. And such examples
has given me the personal opinion that Riemannian geometry is a very convenient
setting for understanding of classical mechanics. However, if I want to write down
the equations of motion in a coordinate system (qi), I will write down the Lagrangian
function

L =
1
2
m(q̇i, q̇i) + Ũ(qi),

and then solve the Euler-Lagrange equations
∂L
∂qi
− d

dt

∂L
∂q̇i

= 0

belonging to the Lagrangian formalism.
We will treat this topic in the second half of the first chapter. The first half of

that chapter is devoted to the differential geometric background.

1.2. Symmetry. In the real life, a mechanical problem hardly appears with-
out any symmetry present. In our case such symmetries will be represented by
smooth Lie group actions on smooth manifolds. From the theory of dynamical sys-
tems, we know that such symmetries can be used to reduce the dimension of the
system. Ofcourse, this applies directly to classical mechanical systems. But, we
would rather do this in a more geometric way, allowing the geometry to illuminate
the process.

We will discover Noether’s theorem, the theorem tying together continous sym-
metries and conservation laws. This theorem has a very simple proof in our setting.
However, the main task will be to understand the following problem: Given a
mechanical system with configuration manifold M and a Lie group G of smooth
symmetries: Formulate the equations of motion in terms of a mechanical system
on the orbit space M/G (which may or may not be a manifold) and a method of
lifting of curves in M/G to M .

Symmetries and conservation laws will be treated in the end of the first chapter,
while the reduction problem occurs throughout the second chapter.



CHAPTER 1

Simple mechanical systems

1. Riemannian geometry

Here we review some well known facts from differential geometry. I rely mainly
on the presentations given by Sipvak in [12] and do Carmo [4]. The part explaining
the action of the Lie derivative on the tensor algebra follows partially Kobayashi-
Nomizu [7], with some small differences concering the grading of the tensor algebra.

1.1. Smooth manifolds. In this thesis we will work in the category of finite
dimensional smooth manifolds and smooth maps. Hence, if an object or morphism
can be specified to be smooth, the reader can safely assume that we mean that it
is smooth.

Manifolds will typically be denoted by the letters M,N . The R-algebra of
smooth real valued functions on a manifold M is denoted by F(M), or simply F ,
when the choice of M is obvious.

The tangent and cotangent bundle of the manifold M will be denoted respec-
tively by TM and T ∗M . Some other vector bundles will be denoted by HM ,
VM . For a given (smooth, by default) vector bundle VM → M , the F-module of
(smooth) sections will be denoted by X[VM ]. The fibre of VM over x ∈M will be
denoted by VxM . Hence, TxM will denote the tangent space of M at x ∈M .

For a given vector bundle VM → M , the F-module of sections will be de-
noted by X[VM ]. However, we use the shorthands X(M) = X[TM ] and X∗(M) =
X[T ∗M ].

Given a smooth map f : M → N , there is an associated smooth bundle map
Tf : TM → TN , the derivative of f . This derivative follows the chain rule:
T (f ◦ g) = Tf ◦ Tg. This map is the union of fibre maps Txf : TxM → Tf(x)N .

Given a map f : M → N there is an F-module Xf (M), consisting of vector
fields X on M such that there is a vector field Y on M with Yf(x) = Tf(Xx). In
particular, we note that if f is a diffeomorphism, Xf (M) = X(M). We use the
notation Tf : Xf (M)→ X(N) for the assignment X 7→ Y .

We have a pairing X⊗R F → F , given by 〈X, f〉(x) = Xx(f), the derivative of
f along the tangent vector Xx at x ∈M . This pairing is natural in the sense that
when we have a map

M
f // N,

inducing

F(N)
f∗ // F(M) g 7→ g ◦ f

Xf (M)
Tf // X(N) X 7→ TfX

3
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in such a way that
〈X, g∗f〉 = 〈X, f ◦ g〉 = g∗〈TgX, f〉

whenever X ∈ Xg(M) and g ∈ F(N). This is clear from the definition of the push
forward of tangent vectors

We also have a natural pairing 〈−,−〉 : X⊗ X∗ → F that allows us to identify
X∗ with the F-dual of X. Any map f : M → N will induce a map f∗ : X∗(N) →
X∗(M). f∗ is defined by

〈X, f∗ω〉(x) = 〈(Txf)Xx, ω〉,
and hence this pairing is also natural in the above sense.

The vector space X(M) has a natural Lie algebra structure coming from the
commutator

[−,−] : X(M)⊗R X(M)→ X(M), 〈[X,Y ], f〉 = 〈X, 〈Y, f〉〉 − 〈Y, 〈X, f〉〉.
We call this operation the Lie-bracket . This operation posses a naturality similar
to the naturality of the pairing of vector fields and functions, i.e.

Tg[X,Y ] = [TgX, TgY ] whenever X,Y ∈ Xg(M).

This follows directly from the corresponding property of the paring of vector fields
and functions.

Along with the F-module X, we have the F-dual X∗, and also the F-tensor-
algebra τ(M) of tensor fields on M . I define this is a G-graded F-algebra, where
G is the semigroup of words generated by two letters, say u, d, where the group
operation is concatenation of words. However, it is usual to group covariant and
contravariant components, and thus construct an algebra graded over N2, like in
Kobayashi-Nomizu [7]

We define this algebra recursively: For two words w1, w2, we define the module
in w1w2-grade in τ(M), τw1w2(M) to be equal to τw1(M)⊗F τw2(M) up to natural
isomorphism, and in particular

τ∅(M) = F(M) τd(M) = X(M) τu(M) = X∗(M),

where ∅ denotes the empty word. We define the multiplication in τ(M) by the
identity function

τw1(M)⊗F τw2(M)→ τw1w2(M)
Given a word w with a u in the i-th position and a d in the j-th position we

can write w = w1uw2dw3 or w = w1dw2uw3, and we get a word cijw = w1w2w3,
simply by deletion of the indicated letters. Associated with this, there is a map

Cij : τw(M)→ τ c
i
jw(M)

defined by
Cij(ω1 ⊗ σ1 ⊗ ω2 ⊗ σ2 ⊗ ω3) = 〈σ1, σ2〉ω1 ⊗ ω2 ⊗ ω3

This map is called the i, j-contraction. The symbol Cij may or may not be applicable
in the different degrees.

Now, we are in position to define the Lie derivative LX associated with the
vector field X. This is the unique derivation in the F-algebra τ(M) commuting
with contractions and preserving degrees, ie,

LX(ω ⊗ σ) = (LXω)⊗ σ + ω ⊗ (LXσ)

LX(Cijω) = Cij(LXω)
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such that

LXf = 〈X, f〉 and LXY = [X,Y ].

The Lie derivative may also be defined as the derivative of tensor fields along
the flow of the vector field. Ie, if ω ∈ τun

(M) and X is an infinitesimal generator
of the local flow θt, then

LXω =
d

dt
θ∗tωVt=0

We say that ω is constant along X when LXω = 0.

1.2. Connections. An affine connection ∇ on a vector bundle VM over a
manifold M is a R-linear map

∇ : X(M)⊗R X[VM ]→ X[VM ],

such that ∇XfY = X(f) + f∇XY and ∇fXY = f∇XY , whenever X ∈ X, f ∈
F , Y ∈ X[VM ].

An affine connection∇ in the tangent bundle TM is called symmetric if∇XY −
∇YX = [X,Y ].

1.2.1. Pullback of connections. Suppose that f : N → M is a map, and that
VM →M is a smooth vector bundle equipped with a linear connection ∇. By the
usual pullback-construction, we get a smooth vector bundle f∗(VM)→ N .

Now, if Y ∈ X[f∗VM ] and X ∈ X(N), we want to define a section ∇XY ∈
X[f∗VM ]: For a given point p ∈ N , there is a neighbourhood U such that f : U →
M is an embedding. By choosing U small enough, we ensure that the restrictions
X|U, Y |U are extendable to smooth vector fields X̃, Ỹ on M . Then we define
∇XY (p) = ∇X̃ Ỹ (f(p)). This is independent of choice of extensions X̃, Ỹ , which
can be verified by inspection of the formula for ∇X̃ Ỹ in a well chosen coordinate
system. Thanks to the local character of smoothness, this gives us a smooth section
∇XY ∈ X[f∗VM ].

The linearity and derivation-property of this operation is preserved during this
pullback. Hence, we get a linear connection

∇ : X(N)⊗R X[f∗VM ]→ X[f∗VM ]

If VM is the tangent bundle TM , every X,Y ∈ X(N) can be regarded as
sections in f∗(TM). Hence, we get a map

∇ : X(N)⊗R X(N)→ X[f∗TM ].

In the case that N is an interval I ⊆ R, this construction gives us the covariant
derivative along curves: For a regular curve γ : I → M , a section of γ∗TM is
essentially the same as a function V : I → TM such that V (t) ∈ Tγ(t)M . On I
we have the special vector field ∂t, coming from the oriented Riemannian structure
on I. In this situation, there is a section ∇∂tV ∈ X[∇]. We refer to this as the
covariant derivative of V along γ, and use the shorthands ∇γ̇V or simply V̇ for this
vector field. In the continuation of this, we establish the notation γ̈ as a replacement
of ∇γ̇ γ̇, and for a covector field p ∈ X∗[γ∗TM ], we write ṗ instead of ∇∂t

p.
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1.3. Riemannian metrics. Informally, Riemannian metric m on a manifold
M is a smooth family of inner products mx on the tangent spaces TxM . More
formal, a Riemannian metric m is a 2-tensor m ∈ τuu(M) = X∗(M)⊗ X∗(M) such
that m(X,Y ) = m(Y,X) and m(X,X)(x) > 0 whenever Xx 6= 0. Possesing such a
device, we can measure lengths of a tangent vectors as well as angles between them.
Integration of lengths of velocity vectors gives a notion of length along curves.

We can regard a Riemannian metric m as a positive definite, symmetric linear
map

m : X(M)⊗F X(M)→ F(M).

This map characterises m completely.
In the same way as an inner product on a vector space V gives a canonical

isomorphism V → V ∗, a Riemannian metric gives a vector bundle isomorphism

m̃ : TM → T ∗M, m̃(vx)(wx) = m(vx, vy),

called the inertia operator . We can obviously recover the metric m from the asso-
ciated inertia operator m̃.

1.3.1. The Riemannian gradient. On any manifold there is a natural derivation
d : F → X∗, f 7→ df , defined by 〈X, f〉 = 〈X, df〉.

On a Riemannian manifold, the inertia operator m̃−1 : X∗ → X gives a canonical
derivation H = m̃−1 ◦ d : F → X. The vector field Hf is called the gradient vector
field of the function f . The gradient is characterized by

m(X,Hf) = 〈X, df〉 = 〈X, f〉.

1.4. The Riemannian connection. On a Riemannian manifold (M,m) there
is a unique symmetric affine connection ∇ on the tangent bundle TM such that

X(m(Y, Z)) = m(∇XY, Z) + m(Y,∇XZ)

for X,Y, Z ∈ X(M). We say that ∇ is compatible with m.
∇X may be extended to a R-linear endomorphism the tensor algebra τ(M).

We indicate only the first step. Any covector field ω on M can be represented by
a vector field Y such that ω = m̃Y . Then we may define

∇Xω = ∇X(m̃Y ) = m̃(∇XY ),

even though this is usually stated as a consequence of the definition of∇X : τ(M)→
τ(M) that emphasises that ∇X is a derivation commuting with contractions.

2. Riemannian submersions

In this section we will investigate some properties of submersions of manifolds.
Starting with some general features depending only on the smooth structure, we
will gradually introduce more and more geometry.

2.1. Surjective submersions. By the term submersion, we will mean sur-
jective submersion, i.e. a surjective map π : M → N (of smooth manifolds) such
that Txπ : TxM → Tπ(x)N is surjective for every x ∈M .

We define the vertical subspace at x ∈M , VxM = ker(Txπ). This gives us
a family VM ⊆ TM of subspaces of the tangent spaces of M . VM is a smooth
distribution with constant rank. This is easily seen since VM corresponds to the
smooth foliation {π−1y}y∈N of M .



2. RIEMANNIAN SUBMERSIONS 7

At x ∈M , we get an isomorphism TxM/VxM ∼= Tπ(x)N . Then, if we choose a
smooth sub-bundle HM ⊆ TM complementary to VM , ie, a bundle such that

TM ∼= VM ⊕HM,

then TM/VM ∼= HM , and hence, Txπ : HxM → Tπ(x)N is an isomorphism. We
call HM a chosen horizontal distribution.

Along with the decomposition T = V ⊕ H, the projections prH : T → H and
prV : T → V can be regarded as smooth tensors of type

(
1
1

)
. Each of them determine

the decomposition, since ker(prV) = HM , ker(prH) = VM and prV = 1− prH
2.1.1. Horizontal liftings. Consider a submersion M → N and a vector field

X ∈ X(N). A vector field Y ∈ X(M) is a lifting of X if and only if

(1) Txπ(Yx) = Xπ(x)

for all x ∈M .
Obviously, such liftings are not in general unique: Assume that Y1, Y2 ∈ X(M)

are lifitngs of X ∈ X(N). As we see from equation (1), this implies that

Txπ((Y1 − Y2)x) = 0,

which is the same as (Y1 − Y2)x ∈ VM . Conversely, you can add a vertical vector
field Y1 ∈ X(VM) to a lifting Y ∈ X(M) of a vector field X ∈ X(N), and the result
Y + Y1 will also be a lifting of X. Hence, lifting of vector fields is a map

L : X(N)→ X[TM/VM ]

If we have defined a horizontal distribution HM , such that TM = HM ⊕VM ,
we get a canonical isomorphism C : TM/VM ∼= HM , and hence, we get a map

L0 : X(N) L // X[TM/VM ] C // X[VM ]

This defines horizontal lifting of vector fields. This can be described in terms of
lifting of single tangent vectors v ∈ TN :

Let v ∈ Tπ(x)N be a vector tangent to N . Let L0xv be the inverse image of v
through the isomorphism Txπ : HxM ∼= Tπ(x)N . We call L0xv the horizontal lifting
of v at x ∈M . For a vector field X ∈ X(N), we note that L0X on M is given by
(L0X)x = L0xXπ(x).

Now, we have almost proved the following result:

Lemma 2.2. If X is a smooth vector field on N , then the horizontal lifting L0X
is the unique horizontal smooth vector field on M that is a lifting of X.

Proof. We let X ∈ X(N). I must prove that L0X is a smooth vector field on
M . The rest is clear from the discussion above. Obviously L0X is a section of the
tangent bundle TM →M , hence we only need to prove that L0X is smooth at any
point x ∈M

Let x ∈M . From the properties of submersions, we know that there exist a
neighbourhood U of x such that π : U → π(U) is diffeomorphic to the projection

π : Rn ⊕ Rm−n → Rn

on the first factor. On this neighbourhood, we get a coordinate-dependent rule H̃
for lifting of vector fields, defined by

H̃(
∂

∂xi
) =

∂

∂xi
,
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such that for any smooth vector field X ∈ X(U) we get a smooth vector field
H̃X ∈ X(U). This vector field has the property that Txπ((H̃X)x) = Xπ(x).

Furthermore, the projection prH ontoHM is a smooth tensor field onM of type(
1
1

)
. Hence, the restriction of prH to U will applied to H̃X give a smooth vector

field prH(H̃X) contained in the distribution HU = HM |U . prH(H̃X)−H̃X ∈ VU ,
hence is π∗x((prH(H̃X))) = Txπ((H̃X)x) = Xπ(x). Thus, prH(H̃X) = L0X|U , and
hence, L0X is smooth on the neighbourhood U of x ∈M . �

As noted above, general liftings of vector fields differ form horizontal ones by
vertical vector fields. Now, if we are given a fixed vertical vector field V ∈ X(VM),
we can define the V -lifting, LV X(N)→ X(M) by the formula LV (X) = L0X + V .
We call LV (X) the V -lifting of X.

2.1.2. Lifting of functions and tensors. It is simple to lift a map f : N → P to
M . We define L0f = π∗f = f ◦ π. Similarly, the pullback of ccovectorfields give an
obvious map L0 : X∗(N)→ X∗(M), L0ω = π∗ω. We have the following properties

Lemma 2.3. For X ∈ X(N), ωX∗(N) and f ∈ F(N) we have

〈L0X,L0ω〉 = L0〈X,ω〉 and 〈L0X,L0f〉 = L0〈X, f〉

Proof. This is a direct consequence of the naturality of the pairings involved.
Tπ(L0X) = X, and hence is

〈L0X,L0ω〉 = 〈L0X,π
∗ω〉 = π∗(〈Tπ(L0X), ω〉) = L0〈X,ω〉

By substitution ω ↔ f we get the second part of the lemma. �

The horizontal lifting extends to a well behaved lifting L0 : τ(N) → τ(M),
taking tensor fields on N to tensor fields on M .

2.1.3. The Lie bracket. The horizontal lifting L0X of a vector field X ∈ X(N)
obviously belongs to Xπ(M), and TπL0X = X. From the naturality of the Lie
bracket we get the following important fact, relating the Lie bracket on N to that
of M :

Lemma 2.4.

L0[X,Y ] = prH[L0X,L0Y ] X,Y ∈ X(N),

where prH is the projection onto the horizontal subspaces

Proof. For vector fields X,Y ∈ X(N),

(5) = [Tπ(L0X), Tπ(L0X)] = Tπ[L0X,L0Y ]

However, L0 ◦ Tπ = prH. Hence

L0[X,Y ] = prH[L0X,L0Y ],

and the result is proved. �

2.1.4. Lifting of curves. From the lifting of tangent vectors, we proceed to
lifting of smooth curves. This is essentially a question of integration of lifted velocity
vectors. We look at a non-homogeneous lifting.

Lemma 2.6 (tittel). Let δ be a curve in N with domain Dδ = [a, b], let V ∈
X[VM ] be a vertical vector field on M , and let x ∈ π−1(δ(a)) Then, there exists a
unique curve γV in M such that

γ̇V (t) = L0γ(t)δ̇(t) + Vγ(t) := (LV )γ(t)δ̇(t)
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and γv(a) = x

Proof. This is a direct consequence of the existence and uniqueness theorem
for solution curves of first order differential equations. Locally, on an interval
(t0−ε, t0+ε), we can extend (LV )γ(t)δ̇(t) to a vector field on an open set containing
γ(t0), except when δ̇(t0) = 0, and we get γ|(t0−ε,t0+ε) as an integral curve of this
vector field. The case when δ̇(t0) = 0 is different, but we will not go into the details
here. �

2.2. Riemannian submersions. Now, we look at the special case of a sub-
mersion π : M → N where M is a Riemannian manifold with metric m. In
this case, there is a fairly canonical choice of a horizontal distribution, namely
HM = VM⊥ ⊆ TM . HM will be a smooth distribution since VM is smooth and
the Gram-Schmidt-procedure is smooth. Hence, we have the horizontal lifting for
free, and also the results above.

2.2.1. The induced Riemannian metric. A Riemannian metric m on a manifold
M is completely characterized by the associated map m : X(M)⊗X(M)→ F(M),
taking the pairX,Y of smooth vector fields onM to the smooth function m(X,Y ) ∈
F(M).

The horizontal lifting L0 : X(N) → X(M) will induce a map m̄π : X(N) ⊗
X(N)→ F(M) by the composition

X(N)⊗ X(N) L0⊗L0−−−−→ X(M)⊗ X(M) m−−−−→ F(M)

Now, for vector fields X,Y ∈ X(N), it may or may not be the case that m̃π(X,Y )
can be regarded as a function on N , but when this is the case, m̃π(X,Y ) is contained
in the image of the injective map L0 : F(N)→ F(M), and hence, we get a unique
smooth function mπ(X,Y ) on N determined by

L0(mπ(X,Y ) = m̃π(X,Y ).

In this case the linear map

mπ : X(N)⊗ X(N)→ F(N)

will determine a Riemannian metric mπ on N . mπ is obviously symmetric and
bilinear, and also positive definite since the horizontal lifting L0 : X(N)→ X(M) is
injective.

We have a nice condition for determining if this construction is possible: Recall
that we have an inner product on every tangent space TxM on M , orthogonal
decompositions TxM = HxM ⊕ VxM and canonical linear isomorphisms HxM ∼=
Tπ(x)N . For two points y, z ∈ π−1(x), we get another canonical linear isomorphism
φyz : HyM → HzM , the composition HyM ∼= Tπ(y)N = Tπ(z)

∼= HzM . For all
w ∈M , HwM is equipped with an inner product, by restriction of the Riemannian
metric. Hence, it makes sense to ask if φyz is an isometry.

Lemma 2.7. Let (M,m) be a Riemannian manifold and π : M → N a surjective
submersion. There exists a unique Riemannian metric mπ on N induced by π if
and only if φyz : (HyM,mx)→ (HzM,mz) is an isometry whenever π(y) = π(z).

Definition 2.8. Let (M,m) be a Riemannian manifold and suppose that π :
M → N is submersion. π is called a Riemannian submersion if the composition

HyM ∼= Tπ(y)N = Tπ(z)
∼= HzM
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is an isometry whenever it is defined. The metric mπ on N defined by

mπ(X,Y ) = m(L0X,L0Y ) X,Y ∈ X(N)

is called the Riemannian metric on M induced by π, or simply the induced metric.

For a pair ((M,m), (N,mN )) of Riemannian manifolds, we define a submersion
π : M → N to be a Riemannian submersion of the Riemannian manifolds M,N if
mN = mπ.

Remark 2.9. In the case of Riemannian submersions, the horizontal lifting
can be defined in another perhaps more natural way. Recall the isomorphisms
m̃ : X(M) → X∗(M), m̃π : X(N) → X∗(N) and the pullback map π∗ : X∗(N) →
X∗(M). Now, we have the diagram

X(N)

L0

��

m̃π // X∗(N)

π∗

��
X(M) m̃ // X∗(M)

,

expressing that L0 is essentially the same map as π∗.

2.2.2. The gradient. We now want to express the gradient coming from the
metric mπ on N . We use the notation

π

H for this, and recall that it is defined by
mπ(

π

H f,X) = X(f) for X ∈ X(N) and f ∈ F(N).
The vector field HL0(f) is horizontal since the function L0(f) is constant along

the fibres of π. Indeed, if V is a vertical vector field, V (L0(f)) = 0, and hence
m(V,HL0(f)) = 0. Also L0

π

H f is horizontal, hence, we can compare HL0f and
L0

π

H by looking at the inner product with horizontal vectors.
If X ∈ X(N), then m(HL0f,L0X) = L0X(L0f) = L0(X(f)) = L0(mN (

π

H
f,X) = m(L0(

π

H f),L0X).
This implies that

HL0 = L0
π

H

2.2.3. The connection. For a Riemannian submersion π : (M,m)→ N , we have
Riemannian connections ∇ and

π

∇ associated with the Riemannian metrics m and
mπ on M,N .

Lemma 2.10. For vector fields X,Y on N ,
π

∇X Y = Tπ(∇L0XL0Y ),

Proof. This follows from a long but simple calculation that depends heavily on
the way the horizontal lifting works together with inner products and Lie brackets.

�

3. G-spaces

3.1. Smooth actions on manifolds. A snooth G-space is a manifold with
a smooth action of a Lie group G, ϕ : G → Diff(M), g 7→ ϕg such that the
corresponding map

ϕ : G×M →M ϕ(g,m) = φg(m)
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is smooth. If the map

G×M →M ×M (g,m) 7→ (m, gm)

is proper, then we say that G acts properly on M .
For a point m ∈ M , we have the subgroup Gm ⊆ G, consisting of group

elements g with gm = m. We call Gm the isotropy group at m.
Conjugacy gives an equivalence relation ∼ on the set of subgroups of G: H ∼ K

if there exists a g ∈ G with gHg−1 = K. We denote the conjugacy class of the
subgroup H ⊆ G by (H).

We define the isotropy type of the point m to be the conjugacy class (Gm) of
the isotropy group Gm. The set of points in M with isotropy type (H) will be
denoted by M(H). Since Ggm = gGmg

−1, we know that every M(H) is a G-space.
For a proper action, the isotropy subgroups are compact.

For a given point m ∈ M , we have a map ψm : G → M given by ψm(g) =
ϕg(m). The image Gm = ψm(G) is called the G-orbit of m. The set of G-orbits
constitute a partition of M .

If we assume that G acts properly, we can use the slice theorem to prove there
there is a smooth manifold structure on the set M(H)/G of G-orbits in M(H) such
that π : M(H) →M(H)/G is a submersion. Also following from the slice theorem is
the fact that there exists a unique orbit type (H) such that M(H) is an open and
dense submanifold of M . Therefore, when we work with proper actions, it is often
convenient to discard the set M −M(H).

Hence, we fix the setting of the following discussion: Lie groups act properly
on manifolds, with only one isotropy type. I .e. there is subgroup H ⊆ G such that
M(H) = M .

3.2. Riemannian G-spaces. Under the restriction we made in the last sec-
tion, associated with G-space, there is a surjective submersion

π : M → N = M/G.

Hence, we can define the vertical distribution VM with respect to the action of G.
This distribution consists of precisely the vectors that are tangent to the G-orbits
in M .

Theorem 3.1. When M is a Riemannian manifold with kinematic metric m
and G acts by isometrics, the submersion π : M → N will be a Riemannian sub-
mersion.

We recall the decomposition TM ∼= HM ⊕ VM , where VM ⊥ HM , coming
from the submersion π and the Riemannian metric m. This decomposition is clearly
invariant under the induced action of G on the tangent bundle TM , and hence, HM
and VM are G-vector bundles.

Proof. Assume that x, y ∈M such tat π(x) = π(y). We must prove that φx,y
defined by the diagram

(2) HxM
φxy //

Txπ

∼=

$$I
IIIIIIII HyM

Tyπ

∼=zzuuuuuuuuu

Tπ(x)N
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is an isometry of inner product spaces. Since π(x) = π(y), there exists a g ∈ G
such that y = gx = Lgx, so that the commutative diagram

M
Lg //

  B
BB

BB
BB

B M

~~||
||

||
||

N,

and behold, there is an induced commuttative diagram

TxM
TxLg //

Txπ $$I
IIIIIIII TyM

Tyπ

zzuuuuuuuuu

Tπ(x)N.

Since HM is G-invariant, and TxLg is defined to be an isometry of inner product
spaces, we see that there is an induced map TxLg : HxM → HyM , which is also
an isometry. Moreover, this map is equal to φxy since TxLg fills diagram (2) in the
same way as φxy. �

3.3. The geometry of the orbit space. From the above theorem, we see
that we can apply the machinery of Riemannian submersions to our new situation.
Hence, we get a Riemannian metric mN on N and a corresponding Riemannian
connection

N

∇. In this setting, it is normal to call mN the orbital distance metric.
The name is well chosen, since this metric measures locally the minimal distance
between G-orbits.

4. Simple mechanical systems

Here follows an exposition of the basic properties of simple mechanical systems.
Initially, this is inspired by a treatment of the 3-body problem given by Hsiang-
Straume in [6]. This can be found in my project thesis ”Natural Lagrangian systems
on Riemannian manifolds”written in 2006. Another treatment of this topic is Oliva
[9]. When it comes to the general Lagrangian formalism in classical mechanics, I
use Arnold [1] as a main reference.

4.1. Lagrangian systems. Now we approach the physics. We will look at a
special type of Lagrangian systems on smooth manifolds. A Lagrangian system on
a manifold M is determined by a function L : TM → R. In this context, L is called
the Lagrange function of the Lagrangian system (M,L).

One reason for doing this definition is that we can use L to characterize a certain
class of curves on M , the so called motions of the system. They are meant to model
physical behaviour, in the sense that the points in the space M represents physical
configurations, while a motion γ represents physical change of configuration, ie,
physical motions in the space of configurations.

First we need to consider some calculus of variations. Let Ω(M) denote the set
of smooth curves γ in M defined on compact intervals Iγ ⊆ R. Given two points
x, y ∈ M and an interval [a, b] ⊆ R, we let Ωyx(M ; [a, b]) denote the set of smooth
curves γ : [a, b]→M such that γ(a) = x and γ(b) = y.

A map ϕ : (−ε, ε) → Ω(M), s 7→ ϕs is called a smooth 1-parameter family of
curves if the map (s, t) 7→ ϕs(t) is smooth on its domain of definition.
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A smooth 1-parameter family ϕ of curves, that goes into the subset Ωyx(M ; [a, b]) ⊆
Ω(M) is called a family keeping endpoints fixed. Given a curve γ ∈ Ωyx(M ; [a, b]),
a family ϕ : (−ε, ε) → Ωyx(M ; [a, b]) with ϕ0 = γ is called a variation of γ keeping
endpoints fixed.

Along with L, there is a function Λ : Ω(M)→ R given by

Λ[γ] =
∫
Iγ

L(γ̇)dt

For a smooth 1-parameter family ϕ of curves defined on s ∈ (−ε, ε), Λ gives a
function s 7→ Λ[ϕs].

Λ is said to be stationary at γ if d
dsΛ[ϕs]Vs=0 = 0 for all variations ϕ of γ

keeping endpoints fixed.
γ is said to be a motion of (M,L) if Λ is stationary at γ. It is possible to

deduce a set of second order differential equations that completely characterize the
motions of the system. They are usually expressed as

(1)
∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 i = 1, . . . n,

where (q1, . . . qn, q̇1, . . . , q̇n) is a local coordinate system on TM . This set of
equations is called the Euler-Lagrange-equations.

4.2. Simple mechanical systems. A simple mechanical system is a La-
grangian system such that there exist a Riemannian metric m and a smooth function
U on M such that

L(v) =
1
2
m(v, v) + U(p)

when v ∈ TpM . In this case we call m the kinematic metric of the system, and U
is called the potential function of the system. We also define a quadratic form

T =
1
2
m(v, v),

called the kinetic energy. V = −U is called the potential energy
We can heuristically derive the equation that we call Newton’s equation from

the Euler-Lagrange equations.
In a local coordinate system (qi, q̇i) on TM , we can write the Lagrangian func-

tion on the form

L(qi, q̇i) =
1
2
gij(qi) + U(qi)

Using the summation convention, we write the Euler-Lagrange equations as

∂L

∂qi
dqi − d

dt

∂L

∂q̇i
dqi = 0

Fixing a point x in the coordinate system, we may, without loss of generality assume
that the coordinate system is chosen in such a way that the Christoffels symbols
Γkij all vanish at x. In this case,

∂L

∂qi
dqi = dU

and

(
d

dt

∂L

∂q̇i
)dqi = ∇γ̇m̃γ̇,



14 1. SIMPLE MECHANICAL SYSTEMS

and the substitution p = m̃γ̇ yields (1) on the form

(2) ṗ = dU.

This equation is called Newton’s equation. The mass operator transforms Newton’s
equation in to the equivalent forms

γ̈ = HU, m̃γ̈ = dU, F = m̃γ̈,

where F is the one-form dU . We will not distinguish between the different forms
of this equations. All of them will be called Newton’s equation whenever it is
convenient. The last form of the equation suggests that we can generalize the
notion of simple mechanical systems to include systems consisting of a Riemannian
manifold (M,m) together with a 1-form F ∈ X∗(M), representing a generalized
force. The motions of such systems will then be curves γ such that

F = m̃γ̈

Remark 4.3. (Generalized forces). This can be generalized further, to include
forces represented by smooth functions F : TM → T ∗M .

One option is to introduce dissipative forces, depending on the velocity, model-
ing air resistance and similar phenomena. A possible approach to this is to model
such forces by symmetric bilinear forms R ∈ X∗ ⊗ X∗.

I believe that we also can model magnetic forces, represented by alternating
2-forms ω, such that the resulting force Fω : TM → T ∗M is given by Fω(vp)(wp) =
ω(vp, wp), and the acceleration γ̈ is always perpendicular to γ̇. This can also be
incorporated into the Lagrangian setting. If we let U be a smooth function (repre-
senting the electric potential) and A be a 1-form, we can consider the Lagrangian
function

L(vx) =
1
2
m(vx, vx) +A(vx) + U(x), vx ∈ TxM

The variational principle will then give the equations

〈m̃γ̈, v〉 = dA(γ̇, v) + dU(v)

However, in this thesis we will consider only the case where F can be represented
by a 1-form on M , and with some few exceptions F will be the differential dU of a
smooth function U . When we emphasize the force F , we will talk about the simple
mechanical system (M,m, F ), whose motions are given by ṗ = F .

Remark 4.4. (Conservation of energy). For a simple mechanical system with
generalized force F , we compute the change in kinetic energy along a fixed motion
γ:

dT

dt
=

d

dt

1
2
m(γ̇, γ̇) = m(γ̇, γ̈) = F (γ̇),

Introducing arch length parametrization s, and denoting by ′ the derivative with
respect to arch length, we get γ′ = γ̇t′, and along

dT =
dT

dt
dt =

dT

dt

dt

ds
ds = F (γ̇)t′ds = F (γ′)ds = γ∗F,

ie, the 1-form on the interval Dγ measuring the change of kinetic energy is the
pullback of F through the curve itself. This implies that the change in kinetic
energy along a segment γ[a, b] of a motion of the system,

Tb − Ta =
∫

[a,b]

γ∗F :=
∫
γ

F.
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However, if F = dU for a function U , then this integral is independent of choice
of path between γ(a) and γ(b), and hence we can write

Tb − Ta =
∫ γ(b)

γ(a)

dU = U(γ(b))− U(γ(a)).

This proves that Ta − U(γ(a)) = Tb − U(γ(b)). Consequently, the quantity T − U
is conserved along motions of the system.

4.3. Systems with holonomic constraints. Now we will learn how to con-
struct simple Mechanical systems.

In some cases we want to restrict the motions of a system (M,L) to a subman-
ifold i : N ↪→ M . If we believe that there are forces keeping the motions within
N and that these forces are perpendicular to N , the motions within N will be
modeled by a simple mechanical system (N, iL′), where L′ is the restriction of L
to TN ⊆ TM . The kinematic metric mN is the pullback i∗m and the potential
function

N

U on N is the restriction i∗U of U to N .
The tangent bundle of M is pulled back to a vector bundle

i∗(TM) ↓ N = TN ⊕ nN,

where nN is the orthogonal complement of TN ⊆ i∗(TM) ↓ N with respect to the
inner product imported from TM . nN is called the nnormal bundle of N in M .
Together with this, we have the projections prT onto TM and prn onto the normal
bundle.

The gradient
N

H on the Riemannian manifold (N,mN ) is given by
N

H f = prnHf̃ ,
where f̃ is an arbitrary extension of f to M and pr.

Recall from section 1.2.1 that there is a connection i∗∇ on i∗TM , the pullback
of the Riemannian connection. The Riemannian connection

N

∇ on N is given by
N

∇X Y = prT i
∗∇XY.

Hence, the covariant acceleration
N

∇γ̇ γ̇ of a curve in N is simply the projection of
the acceleration ∇γ̇ γ̇ measured in M onto the tangent bundle of N .

The gradient
N

H on the Riemannian manifold (N,mN ) is given by
N

H f = prnHf̃ ,
where f̃ is an arbitrary extension of f to M and pr.

Hence, Newton’s equations on (N,L′) is simply the projection of Newton’s
equations in the system (M,L) onto TN . The normal part, that is projected away,
will give information about the forces that is needed to keep the motion within N ,
ie, the constraint forces.

Now we can use this to see how simple mechanical systems arise from a lot
of physical situations. A lot of mechanical systems can be modeled as a collec-
tion of, say N point particles with different masses {miVi = 1, . . . N} moving in
three dimensional Euclidean space. Hence, we get a configuration space M = R3N .
Sometimes we may model the interaction between the particles by a potential func-
tion U on M . However, different degrees of rigidity may or may not be of interest.
Rigidity may be modeled by ”approximately infinitely strong” springs joining the
different particles. Such a point of view makes things very complicated.

Fortunately, the forces of constraints often do no work, and then, we can model
the constraints by a submanifold N ⊆ N = R3N .
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Example 4.5. For example, the configuration of a rigid body is determined
by the configuration of a collection of three points of the body not lying on the
same line. Hence, we should start out with the configuration manifold M = R9.
We demand that the body is rigid. Hence the distance between the different points
should be constant. The constraints will then be given by

||xi − xj ||2 = constant,

where xk is the position of the k-th point (k = 1, 2, 3).
This suggests that a system consisting of m rigid bodies should be embedded

into M = (R9)m.

The dynamics in M = R3N , without is determined by a Lagrangian function
L = T +U , where U is the potential function modeling the interaction between the
particles and T is the sum of the kinetic energies of the N particles, ie,

T =
N∑
i=1

1
2
miv

2
i ,

where vi is the velocity of particle nr. i. Hence, (R3N ,L) is a simple mechanical
system. From the above discussion, the restriction of this system to a submanifold
N is a simple mechanical system.

Often it is convenient to determineN independent of the R3N -model. In general
we must however determine the Lagrangian from a more or less explicit (local)
embedding of N into R3N

Example 4.6. The kinematics of a rigid body is determined by three orthogonal
principal axes p1, p2, p3 (and the corresponding moments of inertia) and the position
of the center of mass. Hence, the configuration space N can be described as R3 ×
SO(3). If we are to determine the proper kinematic geometry of N , we need to an
argument closely related to an argument where we embed N into R9.

5. Symmetries and conservation laws

Here we will consider Lie groups acting smoothly on configuration manifolds of
Lagrangian systems and the conservation laws coming from such actions.

5.1. Symmetries. On any manifold M , we can consider the group Diff(M)
consisting of diffeomorphisms on M acting in the natural way. This group also acts
naturally on the tangent space TM by

Diff(M)× TM → TM : (ϕ, vp) 7→ Tϕvp.

Hence, we also get an action

(1) Diff(M)×F(TM)→ F(TM) : (ϕ,L) 7→ ϕ∗(L),

where ϕ∗(L)(v) = L(Tϕ(v)) for all v ∈ TM .
Now, assume that (M,L) is a Lagrangian system. Associated with this system,

we have the set of diffeomorphisms of the configuration space M for which L is
invariant, i,e, the isotropy group

DiffL(M) = {ϕ : M ≈M : ϕ∗L = L} ⊆ Diff(M).

This group will be called the group of Lagrangian symmetries of (M,L), and is
denoted by Iso(M,L).
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Now we assume that (M,L) is a simple mechanical system with kinematic
metric m and potential function U . We can consider the quadratic formQ associated
with the metric m. This gives us a function Q : TM → R. U can also be regarded
as a function on TM , sending the tangent vector vp ∈ TpM to the value U(p) ∈ R.
This gives us two more isotropy subgroups of Diff(M):

Iso(M,K) = DiffQ(M) = {ϕ : M →M |ϕ∗Q = Q}

DiffU (M) = {ϕ : M →M |ϕ∗U = U} = {ϕ : M →M |U(ϕ(p)) = U(p)∀p ∈M}.

In this situation, we get the following result

Proposition 5.2. The group of Lagrangian symmetries of a natural Lagrangian
system (M,L) ,

Iso(M,L) = Iso(M,K) ∩DiffU (M)

as a subgroup of Diff(M).
That is: A diffeomorphism ϕ : M → M is a Lagrangian symmetry if and only

if ϕ is a kinematic isometry preserving the potential function U .

Proof. Expressing the Lagrange function in terms of m and U , we see that
ϕ ∈ Iso(M,L) if and only if

(3) m(Tϕvp, Tϕvp) + U(ϕ(p)) = m(vp, vp) + U(p)

for all p ∈M and all vp ∈ TpM .
Now, assume that ϕ ∈ Iso(M,L). Using the equation above on the 0-section

on the tangent bundle, we infer that

U(ϕ(p)) = U(p)

for all p ∈ M . Hence is ϕ ∈ DiffU (M). Now, we can consider the function L − U .
This will obviously be ϕ-invariant, since both L and U are” and hence is

m(Tϕvp, Tϕvp) = m(Tϕvp, Tϕvp)+U(ϕ(p))−U(p) = m(vp, vp)+U(p)−U(p) = m(vp, vp).

This implies that ϕ ∈ Iso(M,K) ∩DiffU (M)
Conversely we assume that ϕ ∈ Iso(M,m) ∩ DiffU (M). Then we immediately

see from the condition (3) that ϕ ∈ Iso(M,L).
This proves that Iso(M,L) = Iso(M,m) ∩DiffU (M) �

Remark 5.4. In the case that we replace the potential function U by a 1 form
F modeling a force field, we replace DiffU (M) with DiffF (M), the group consisting
of diffeomorphisms ϕ such that ϕ∗F = F . In this case, we will define the group
Iso(M,m, F ) of symmetries of the simple mechanical system (M,m, F ) by

Iso(M,m, F ) = Iso(M,m) ∩DiffF (M)

5.2. The momentum map. Associated with a Lie group G, there is a Lie
algebra g canonically identified with the tangent space TeG at the identity e ∈ G.

Now we will consider a Lie group G acting on a natural Lagrangian system
(M,L) by Lagrangian symmetries. This action can be regarded in a lot of equivalent
ways:

First of all, we have the group homomorphism ϕ : G→ Iso(M,L) sending the
group element g ∈ G to a diffeomorphism ϕg : M →M .
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Also, given any m ∈M , we get a smooth map ψm : G→M , given by ψm(g) =
ϕg(m). Hence, we have a map

ψ : M → C∞(G,M) m ∈M 7→ ψm.

This map induces the tangent map

Teψm : g = TeG→ TmM,

giving the vector bundle map

(5)

g×M ψ∗−−−−→ TM

π

y π

y
M

1M−−−−→ M,

which induces the dual map

g∗ ×M ψ∗←−−−− T ∗M

π

y π

y
M

1M←−−−− M.

Together with the inertia operator m̃ and the projection M × g∗ → g∗, this defines
the G-momentum map JG as the composition

(6) TM
I−−−−→ T ∗M

ψ∗−−−−→ g∗ ×M pr2−−−−→ g∗.

Given vp ∈ TpM and ξ ∈ g,

(7) JG(vp)(ξ) = Kp(vp, Xξ),

where Xξ is the vector field x 7→ ψ∗(ξ, x)

Exercise 1. For two conjugate subgroups H,K ⊆ G, explore the relationship
between JH and JK , and discover the generalized Steiner’s theorem relating angular
momenta about different axes.

5.3. Noether’s theorem. Now we will connect group actions and conserva-
tion laws via momentum maps.

5.3.1. Some helpful results. First we need a lemma concerning Killing fields.
Recall that a Killing field X on a Riemannian manifold (M,K) is a vector field
whose flow consists of isometries. In terms of the Lie derivative LX , this is equiva-
lent to LXK = 0.

Lemma 5.8. (Characterisation of Killing fields). Suppose that (M,K) is a Rie-
mannian manifold with Riemannian connection ∇. A vector field X ∈ X(M) is a
Killing field if and only if

m(∇YX,Z) + m(∇ZX,Y ) = 0

for all Y, Z ∈ X(M).

Proof. Recall form section 1.1 on page 5 that LX commutes with contractions.
sinve LXm = 0 and ∇ is symmetric,

X(m(Y, Z)) = m(LXY, Z) + m(Y,LXZ)

= m(∇XY, Z)−m(∇Y , X) + m(Y,∇XZ)−m(Y,∇ZX).
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However, since ∇ is compatible with the metric m,

X(m(Y, Z)) = m(∇XY, Z) + m(Y,∇XZ),

and the result follows from subtraction of the two equations. �

Another result which is far more obvious is the following:

Lemma 5.9. (Invariance of functions). Given a smooth manifold M and ele-
ments f ∈ F(M), and X ∈ X(M). Then f is invariant under the flow generated
by X if and only if X(f) = 0

This shows that vector fields X generating symmetries of the simple mechanical
system (M,m, U) are characterized by LXm = 0, LXU = XU = 0. Since X 7→ LX
is a Lie algebra homomorphism it is easy to justify that we have Lie algebras

Xm(M) = {X ∈ X|LXm = 0}
XU (M) = {X ∈ X|〈X,U〉 = 0}
XL(M) = {X ∈ X|LXL = 0} = Xm(M) ∩ XU (M),

where we use the notation

LXL(v) =
d

dt
|t=0(L(Tθtv)),

where θt denotes the local flow generated by X.
5.3.2. Noether’s theorem. Now we are able to prove a theorem linking together

symmetry group actions an conservation laws.

Theorem 5.10. (Noether’s theorem). Assume that (M,L) is a natural La-
grangian system on which a Lie group G acts by Lagrangian symmetries. Let
γ : [a, b] → M be a motion of (M,L). In this situation, the momentum map
JG is constant along γ. That is

JG(γ̇(t)) = JG(γ̇(a)) ∈ g∗ for all t ∈ [a, b].

Proof. Let m be the kinematic metric and ∇ be the kinematic connection
associated with (M,L), and we denote by U the potential function, and recall that
G acts by m-isometries leaving U invariant.

Now we let ξ ∈ g be a fixed element. We will show that 〈JG(γ̇(t)), ξ〉 is a
constant along γ. We recall equation (7), and see that

〈JG(γ̇(t)), ξ〉 = Kγ(t)(γ̇(t), Xξ(γ(t)),

where Xξ : p 7→ ψ∗(ξ, p) is the Killing field associated with ξ, and that Xξ(U) = 0.
The time derivative of this is equal to

(11) d

dt
Kγ(t)(γ̇(t), Xξ) = Kγ(t)(∇γ̇ γ̇(t), Xξ) +Kγ(t)(γ̇(t),∇γ̇Xξ).

The first term on the right hand side is equal to Kγ(t)(HU,Xξ) by Newton’s equa-
tion. But, this is equal to 0, since U is assumed to be G-invariant. The second
term is equal to 0 by lemma 5.8. Hence is the left side of equation (11) equal to 0,
and we conclude that

〈JG(γ̇(t)), ξ〉 = Kγ(t)(γ̇(t), Xξ)

is constant along motions γ of the system. Since we proved this for an arbitrary
ξ ∈ g, this implies that JG(γ̇(t)) is a constant in g∗. �
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Remark 5.12. This theorem has a (M,m, F )-counterpart. Using equation
(11), we must replace the first term on the right side by 〈Fγ(t), Xξ〉, and Noether’s
theorem comes on the form

d

dt
JG(γ̇(t)) = ψ∗γ(t)F,

where ψ∗xF is the element of g∗ such that 〈ψ∗xF, ξ〉 = 〈Fx, ψxξ〉 = 〈Fx, Xξ〉.

This formula applies for all choices of F as long as G acts on (M,m) by isome-
tries. Hence, we can use it even if F is not G-invariant.

Remark 5.13. Note that the substance of the proof of Noether’s theorem is
contained in lemma 5.8. The rest of the proof is a simple computation.

Remark 5.14. This theorem may also be formulated at the level of infinitesimal
symmetries. A killing field such that X(U) = 0 is called an inifinitesimal symmetry
of the simple mechanical system. From the proof of Noether’s theorem, we realize
that the quantity m(X, γ̇) is conserved along motions of the Lagrangian system.
Hence, the conservation law is properly represented by the 1-form m̃X

Conversely, if we start with a conservation law given by a 1-form ω such that
ω(γ̇) is conserved along Lagrangian motions, then the vector field X = m̃−1ω will
be an infinitesimal symmetry of the Lagrangian system. Hence, there is a 1 − 1-
correspondance between symmetries and conservation laws represented by 1-forms.

Larger collections of infinitesimal symmetries can also be represented by Lie
algebra (anti)-homomorphisms g→ X(()M), such as in the case of a smooth action
of a Lie group. In this general setting, we can define a momentum map J : TM → g∗

in the same way as above. This can be regarded as an g∗-valued 1-form on M .
The momentum map-construction gives a 1− 1-correspondance between the set of
Lie algebras (anti)-homomorphisms g → X(M) going into the set of infinitesimal
symmetries and the set of g∗-valued 1-forms giving constants of motion.

5.4. Equivariance of the momentum map. We prove that the momentum
map is equivariant with respect to the coadjoint action on g∗.

As stated above, the action ϕ of G on M is lifted in a natural way to an action
Tϕ of G on the tangent bundle TM , where Tϕ(g, vp) = Tpϕg(vp).

We also have a natural action of G on g×M given by the adjoint action

Ad : G× gM → gM : (g, (m, ξ)) 7→ (gm,Adgξ)

Now I want to prove that the map ψ∗ in (5) is equivariant with respect to those
actions. But, first, we need to look at this on a lower level.

Given any g ∈ G and m ∈ B we obviously have a commutative diagram

G
ψm−−−−→ M

Adg

y ϕg

y
G

ψgm−−−−→ M,
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since ϕg ◦ ϕm(h) = ϕghm = ϕ(ghg−1)gm = ψm ◦ Adg(h) for all h ∈ G. At e ∈ G,
this induces the commutative diagram

(15)

g
ψm∗−−−−→ TmM

Adg

y ϕg∗

y
g

ψgm∗−−−−→ TgmM

,

which proves that we get a commutative diagram

G× (g×M) Ad−−−−→ g×M

1G×ψ∗
y ψ∗

y
G× TM Tϕ−−−−→ TM

since
ψ∗ ◦Ad(g, (m, ξ)) = ψgm∗ ◦Adg(ξ)

= ϕg∗ ◦ ψm∗(ξ)
= Tϕ ◦ (1G × ψ∗)(g, (m, ξ))

This proves that ψ∗ is G-equivariant.
If we take the dual of the diagram (15), we get the diagram

g∗
ψ∗m←−−−− T ∗mM

Ad∗g

x ϕ∗g

x
g∗

ψ∗gm←−−−− T ∗gmM.

and in a similar way as above we prove that the diagram

G× (g∗ ×M) Ad∗←−−−− g∗M

1G×ψ∗
x ψ∗

x
G× T ∗M ϕ∗←−−−− T ∗M

is commutative, proving that ϕ∗ is G-equivariant with respect to the right coadjoint
action Ad∗ on g∗M and the action ϕ∗ of G on T ∗M given by ϕ∗g(ωm)(vg−1m) =
ωm(ϕg∗vg−1m). Note that both Ad∗ and ϕ∗ are right actions.

The inertia operator I : TM → T ∗M is also in a sense G-equivariant. We have
the usual action

Tϕ : G× TM → TM,

and also the left action
ϕ̃∗ : G× T ∗M → T ∗M

given by ϕ̃∗(g, ω) = ϕ∗(g−1, ω). Here we see that

ϕ∗g−1(I(vm))(wgm) = m(vm, ϕg−1∗wgm) = m(ϕg∗vm, wgm) = I(ϕg∗vm)(wgm)

And hence is the diagram

G× TM Tϕ−−−−→ TM

1G×I
y I

y
G× T ∗M ϕ̃∗−−−−→ T ∗M
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commutative.
Now, if we define the (left) coadjoint action Ãd

∗
: G × g∗M → g∗M by

Ãd
∗
(g, (m, ξ)) = Ad∗(g−1, (m, ξ)) we see that we get a commutative diagram

G× TM 1G×I−−−−→ G× T ∗M 1G×ψ∗−−−−−→ G× (g∗ ×M)
1G×pr1−−−−−→ G× g∗

Tϕ

y ϕ̃∗
y Ãd

∗
y Ãd

∗
y

TM
I−−−−→ T ∗M

ψ∗−−−−→ g∗ ×M pr2−−−−→ g∗,

where the last vertical arrow denotes the ordinary coadjoint action of G on g∗ given
by

〈Ãd
∗
gµ, ξ〉 = 〈µ,Adg−1ξ〉.

This proves the following result.

Proposition 5.16. The G-momentum map JG is a G-equivariant map TM →
g∗ with respect to the coadjoint action of G on g∗ and the lifted action of G on TM .

5.5. A right inverse of the momentum map. Assume that we are given a
fixed value µ ∈ g∗ of the momentum map JG. For a point x ∈M , this value µ may
or may not be in the image of TxM under the G-momentum map JG. The best that
we can hope for is that there is a submanifold Mµ ⊆M such that µ ∈ im(JG|x) for
all x ∈Mµ. First we do a general observation:

We have the following commutative triangle:

g×M I //

ψ∗ $$H
HH

HH
HH

HH
g∗ ×M

TM

JG

::uuuuuuuuu

.

To see that this is commutative, we compute the effect on an element η ∈ g:
Let (ξ,m) ∈ g ×M . Then 〈m̃(ξ,m), η〉 = mm(ψm(ξ), ψm(η) = 〈JG(ψm(ξ)), η〉 =
〈JG ◦ ψ(ξ,m), η〉.

By the assumption that all the isotropy subgroups are conjugate, ψ∗ is a bundle
map of constant rank, and hence ker(ψ∗) ⊆ g×M is a subbundle. This bundle is i
fact identical to the subset kerI ⊆ g×M : ψ(ξ,m) = 0 if and only if mm(Xxi, v) = 0
for all vectors v ∈ TmM . But Xξ is vertical, and hence this condition holds if and
only if it holds for every vertical vector v ∈ VmM . But ψ : g→ VmM is surjective,
and hence the condition holds if and only if mm(Xxi,Xη) = 0 for all η ∈ g.. But,
the last condition is just another form of 〈I(ξ,m), η〉 = 0 . Hence ψ∗(ξ,m) = 0 if
and only if I(ξ,m) = 0.

Because the image of ψ∗ is equal to VM , this gives us the inner triangle of
isomorphisms

g×M π //

ψ∗

$$I
IIIIIIIIIIIIIIIIIIIIII

g×M
ker(ψ∗)

Ĩ
∼=

//

∼=

ψ̃∗ ##G
GGGGGGG

im(I) ⊂ g∗ ×M

VM

∼=
JG

<<yyyyyyyyy

∩

TM

JG

::vvvvvvvvvvvvvvvvvvvvvv

.
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This has a useful application: For a given µ, we consider the set Mµ defined
above. We denote by VM ↓ Mµ the restriction of the vertical bundle VM to Mµ.
The momentum map JG : VM ↓ Mµ → im(I) ↓ Mµ is an isomorphism. Hence,
the section (µ,m) in im(I) ↓Mµ corresponds to a unique section Xµ in VM ↓Mµ.
This vector field can be characterized in the following way: Xµ(m) is the unique
vertical vector such that JG(Xµ(m)) = µ.

A motion γ in M with JG(γ̇) = µ must be a curve in Mµ. further more, the
vertical component of the velocity vector prV γ̇(t) = Xµ(γ(t), since Xµ(γ(t)) is the
unique vertical vector with JG(Xµ(m)) = µ.

Then, we should be interested in the differential topology of Mµ. I cannot say
anything general about this. Fortunately, it often happens thatMµ is a submanifold
of M . Hence, we will assume this whenever we talk about Mµ even though it is not
generally true.

However, it is true in one very important situation: If G acts freely, then it is
easy to see that ψ∗ : g×M → TM is injective. Following from this, I is injective, and
of dimensional reasons, it is an isomorphism. Hence ψ∗◦I−1 is a right inverse of JG,
so that, for any m ∈M and µ ∈ g∗ there is a v ∈ VmM , namely v = ψ∗ ◦ I−1(µ,m),
such that JG(v) = µ. We give another example:

Example 5.17. We letM = R3, G = SO(3) and ψ the standard representation.
We use the standard identifications g = R3, g = R3, so that [ξ, η] = ξ × η, and if
ξ = (x1, x2, x3) and µ = (m1,m2,m3), then 〈ξ, µ〉 = Σiaimi. We equip R3 with the
usual Riemannian metric. Ie, we consider the motion of a particle in R3 with mass
m = 1. In this setting, the SO(3)-momentum is the usual angular momentum with
respect to the origin 0.

For a motion γ, the SO(3)-momentum is given by µ(t) = γ × γ̇. But, bu the
well known properties of ×, µ(t) ⊥ γ(t) and hence Mµ ⊆ µ⊥, the subspace of R3

perpendicular to µ. Conversely, if x ∈ µ⊥, then there is an y ∈ span{x × µ} such
that x× y = µ. Hence, Mµ = µ⊥. This is clearly a submanifold of R3.

Exercise 2. Make an example where Mµ ⊆M is a horrible subspace.





CHAPTER 2

Reduction theory

1. Heuristic description of a method of reduction

The next sections contains some ideas about how we would like configuration
space reduction to work. The objective is to understand how we can use configu-
ration space symmetries to give a simpler formulation of the equations of motion,
and to get a better understanding of the dynamics.

Motions γ of the mechanical system on the configuration space M gives us
curves δ = π ◦ γ in the reduced configuration space N = M/G. We hope to be able
to describe the reduced curves δ as motions of a mechanical system on the reduced
configuration space N . Together with this, we want a simple method to reconstruct
γ from δ given that we know some appropriate initial conditions. It turns out that
this is possible only in some very special cases. Hence, our main task will be to try
to understand the difficulties with this approach.

First we will describe one idea about how this should work in some particular
nice situations, and simultaneously discover the obstructions against usage of such
a method in a general setting. However, we will always assume that we have the
optimal differential topological situation, and thus concentrate on the more geomet-
ric obstructions. For instance, we assume that the G-action on the configuration
manifold M gives us a smooth submersion π : M → N = M/G onto the reduced
configuration manifold.

The idea behind this reduction method is that if we know the G-momentum µ
of the motion γ, we are able to determine the component prV γ̇ of γ̇ along G-orbits
at any relevant point. Referring to section 5.5, page 23, we write prV γ̇ = Xµ.
Hence, if we know the horizontal component prHγ̇ of γ̇, we will know γ̇, and we
canreconstructt γ. But, prHγ̇ = L0δ̇, where δ = π ◦ γ. Hence, if we know δ, we
know prHγ̇.

2. Systems admitting free actions

Now we consider a differential-topological optimal simple mechanical system
(M,m, U) with symmetry group G, acting properly on M . For the moment, we
assume that G acts freely.

Let µ ∈ g be a given momentum. There is a unique vector field Xµ on M with
JG(Xµ(m)) = µ for all m ∈ M . From the discussion above, we see that we now
know the vertical component of the velocity of every motion with G-momentum µ.

In this situation, we may decompose the kinetic energy of a motion into two
parts,

T = TV + TH,

25
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where

TV =
1
2
m(prV γ̇)

2 =
1
2
mX2

µ and TH = m(prHγ̇)
2 = mN δ̇

2.

This gives us the following expressions for the Lagrangian function:

L = T + U = (TH + TV) + U = TH + (TV + U) = TH + Ũ

TH can be regarded as a function on the tangent bundle TN of the reduced con-
figuration space. But, why should not Ũ be a function on N . Obviously this is not
generally true. However, let us imagine that this is true, and look at the variational
principle for the Lagrangian systems involved. We write L̃µ = TH + Ũ = T̃ + Ũ
for the Lagrangian down on the reduced configuration space. Since 2TH(γ̇) =
m(prHγ̇)2 = mNδ

2, the Lagrangian system (N, L̃µ) can be regarded as a simple
mechanical system with kinematic metric mN and potential function Ũ

2.1. The variational approach. First, we assume that γ is a motion of the
simple mechanical system (M,m, U). This implies that the integral functional

Λ[γ] =
∫ b

a

[T (γ̇) + U(γ)]dt

is stationary at γ with respect to smooth variations keeping the endpoints fixed.
But, this implies that Γ is stationary at γ with respect to variations that keep both
endpoints and momentum µ fixed. Let γs(t) be such a variation. Such a variation
gives us a variation δs(t) of the reduced motion δ. Now,

Γ[γ] =
∫ b

a

L(γ̇)dt =
∫ b

a

L̃(δ̇)dt =def Λ̃[δ],

and hence, Λ̃ is stationary at δ with respect to variations of δ that are projections
of variations of γ keeping endpoints and momentum fixed.

However, given any variation δs of δ keeping endpoints fixed, we can construct
a variation γs of γ keeping endpoints fixed, such that π ◦ γs = δs, simply by letting
s 7→ γs(t0) be the horizontal lifting of s 7→ δs(t0). Thus, δ must be a stationary
point of Λ̃ with respect to smooth variations keeping endpoints fixed. Hence, the
curve δ is a motion of the simple mechanical system (N, L̃µ), and the curve γ can
be reconstructed from δ.

Now, we want to go in the reverse direction. Let δ : [0, 1]→ N be a motion of
the system (N, L̃µ). Given any x ∈ π−1(δ(0)), there is a unique motion γ : [0, ε]→
M of (M,L) with

γ(0) = x and γ̇(0) = Xµ(x) + L0δ̇(0).

We know that γ projects down to a motion δ̃ of (N, L̃µ). Obviously, δ̃(0) = δ(0) and
˙̃δ(0) = δ̇(0). Hence, by uniqueness of motions with given initial velocity, δ̃ = δ on
their common domain of definition. Hence, δ is, up to correct choice of parameter
domain, the projection of a motion of (M,L). Hence, every motion of (N, L̃µ) is
the projection of a motion in (M,L).

From this discussion, we see that in the case of free group actions, we get into
trouble when m(Xµ, Xµ) is not G-invariant. Hence, we need another approach for
that situation. We close this discussion by demonstration of some situations where
this technique is effective:
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2.2. Horizontal reduction. If we assume µ = 0, the reduction is easy, since
µ = 0 is equivalent to prV γ̇ = 0. In this case, γ is equal to a horizontal lift L0δ of
the reduced curve δ. Hence γ̇ = L0δ̇, and therefore

∇γ̇ γ̇ = ∇L0δ̇
L0δ̇ = L0(

N

∇δ̇ δ̇).

The potential function U on M projects to a function Ũ on N , where the gradients
are related by

HU = L0(HŨ),
and hence

∇γ̇ γ̇ = HU ⇔ N

∇δ̇ δ̇ =
N

H Ũ .

We conclude that γ is a motion of (M,m, U) with G momentum µ = 0 if and only
if γ projects to a motion δ of the Lagrangian system (N,mN , Ũ).

Remark 2.1. This applies also to systems (M,m, F ) given by a generalized
force F if the force F is both G-invariant and annihilates vertical vectors, ie, if the
vector field m̃−1F is G-invariant and perpendicular to G-orbits.

2.3. Abelian Routh reduction. In this section, we assume that G is an
abelian group acting freely1 on M .

This is the typical situation when we have chosen a coordinate system (q1, . . . , qn)
with one or more cyclic variables. That is variables (xi) such that ∂L

∂xi
= 0. A col-

lection of cyclic cordinates gives us a collection {Xi} of coordinate vector fields,
and as we all know, such vector fields commute, i.e, [Xi, Xj ] = 0. Hence, the vector
fields represents a commuttative (local) transformation group. A treatment of the
reduction in this case is found in the article [10] written by E.J.Routh in 1877.

Since G is abelian, the adjoint and coadjoint representations are trivial, and
hence, for a given momentum µ ∈ g∗, the associated vector field Xµ ∈ X(M) is
G-invariant. This follows from the formula TϕgXµ = XAd∗gµ = Xµ, coming from
the equivariance of the momentum map. See proposition 5.16 on page 22.

This implies that the function m(Xµ, Xµ) ∈ F(M) is G-invariant, since

m(Xµ, Xµ)(ϕgx) = m(TϕgXµ, TϕgXµ) = m(Xµ, Xµ)(x).

Because of this, there is a function Rµ on N such that L0R
µ = m(Xµ, Xµ).

The potential function U is also G-invariant, and projects to a function Ũ on N .
We can write the Lagrangian function of the original system as

L = T + U = TH + L0(Rµ + Ũ).

The function TH depends only on the velocity of the projected curve δ. Hence,
TH(γ̇) = 1

2mN δ̇
2. Hence, there is a natural choice of a Lagrangian system on N ,

given by the Lagrange function

L̃µ(v) =
1
2
mNv

2 + (Rµ + Ũ)

As noted in section 2.1, the motions of (M,L) are exactly the curves that projects
to motions of (N, L̃µ).

1This is only slightly less general than assuming that the action has one unique isotropy type.
(Gx) = (Gy) implies Gx = Gy , since G is abelian. Hence, we can replace the action of G by a

free action of G/Gx on M .
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Remark 2.2. This approach will be successful also when we only assume that
µ is invariant under the coadjoint action of G on g∗. This can be found in for
example Smale [11]. The horizontal reduction is a special case of this, since 0 ∈ g∗

always is invariant under the coadjoint action of G on g∗.

2.4. Left-invariant mechaical system on a Lie group. Now, we let M =
G be a Lie group, and consider the left translation action of G on itself. We
let L : TG → R be a G-symmetric Lagrangian function for a simple mechanical
system on G. Since G acts transitively on itself, the potential function U must be
a constant, and hence we may assume U = 0. Thus we see that L is completely
determined by the kinematic metric m which must be left invariant.

Now, a trivialisation of TG is given by

hL : TG→ g×G hL(v) = (TLπ(v)−1π(v)),

the left trivialisation. Since m-is left invariant

m(v, w)(g) = m(TLg−1v, TLg−1w)(e), ∀g ∈ G

and hence m is determined by its action on tangent vectors at the identity element
e, which is essentially the same as the elements of the Lie algebra g. Looking at
this from the point of view of left invariant vector fields, we see that m(X,Y ) is a
constant function if X,Y are left invariant.

To summarize this: A left invariant metric m determines, and is determined
by an inner product on the Lie algebra g of left invariant vector fields. Now, we
have a fixed inner product (−,−) on g, and hence we also have a fixed isomorphism
ι : g → g∗, induced by this inner product. The inner product m is then expressed
at g×G as

m((ξ, g), (η, g)) = (ξ, η)

By dualisation of the left trivialisation hL : TG → g × G, we obtain a triv-
ialisation h∗L : g∗ × G → T ∗G. For µ ∈ g∗, g ∈ G and v ∈ TgG, we have
h∗L(µ, g)(v) = 〈(µ, g), (hLv)〉 = 〈µ, TLg−1v〉

Now we want to express the mass operator m : TG → T ∗G with respect to
the left trivialisations. Let vg, wg ∈ TgG. 〈m(vg), wg〉 = m(vg, wg). Assume that
hL(vg) = (ξ, g), hL(wg) = (η, g). This means that TLg−1vg = ξ, and so on. Since
m is left invariant, we have

m(vg, wg) = m(ξ, η) = (ξ, η) = 〈ι(ξ), η〉 = 〈ι(ξ), TLg−1wg
〉.

But this expresses that m(vg) = h∗L(ι(ξ), g). Hence is the mass operator expressable
as

m : g×G→ g∗ ×G, m(ξ, g) = (ι(ξ), g)

2.4.1. The momentum map. Associated with the action of G on itself and the
kinematic metric m, there is a momentum map J : TG→ g∗.

Let g ∈ G be a fixed element. Then we have the mapping ψg : G→ G : h 7→ hg,
namely the right translation by g, Rg. The associated tangent map at e is then
TeRh : g→ TgG, this gives the bundle isomorphism ψ : g×G→ TG given by

ψ(ξ, g) = TRgξ

This is in fact a trivialisation of the tangent bundle, and we can call it the right
trivialisation.
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Now, we dualize this, to get a map ψ∗ : T ∗G→ g∗ ×G. Explicitly,

〈ψ∗(ωg), (ξ, g)〉 = ωg ◦ ψ(ξ, g) = 〈ωg, TRgξ〉

We can express this in terms of the left trivialisation of T ∗G, and we get

〈ψ∗(µ, g), (ξ, g)〉 = 〈µ, TLg−1TRgξ〉 = 〈µ,Adg−1ξ〉

This map is essentially the left coadjoint representation

Ad∗ : g∗ ×G→ g∗ ×G Ad∗(µ, g) = (Ad∗gµ, g).

Form this, and the expression of the mass operator ι, we see that the momentum
map J : TG→ g∗ defined by the compositions

TG
m−−−−→ T ∗G

ψ∗−−−−→ g∗ ×G π−−−−→ g∗

hL

y∼= h∗L

x∼= id

y id

y
g×G ι−−−−→ g∗ ×G ψ∗−−−−→ g∗ ×G π−−−−→ g∗

,

is given by

〈J(ξ, g), η〉 = 〈Ad∗gι(ξ), η〉 = 〈ι(ξ), Adg−1η〉 = (ξ,Adg−1η)

in terms of the left trivialisations. And hence,

(3) J(ξ, g) = Ad∗gι(ξ)

2.4.2. The associated submersion. The submersion associated with this sym-
metric system is G → ∗, i.e, a rather trivial one. We have one vector field on ∗,
namely the 0 section of the bundle {0}×∗ → ∗. The horizontal lifting of this vector
field is the 0-section of the tangent bundle. We look at the non-horizontal motions:

2.4.3. The vector field associated with a given momentum. For a given µ ∈ g∗,
we get a unique vector field Xµ such that J(Xµg) = µ for all g ∈ G. The simple
reason of this is that the unprojected version

J : TG→ g∗ ×G

of the momentum map is a bundle isomorphism.
First I want to compute Xµ in terms of the trivialisation hL : TG ∼= g ×

G. Inverting equation (3), we see that the representative at g ∈ G of Xµ, ξ =
ι−1Ad∗g−1(µ). Hence is (ξ, η) = 〈Ad∗g−1(µ), η〉 whenever η ∈ g. More important,
Xµ(g) = TLg(ι−1Ad∗g−1(µ)).

2.4.4. The equations of motion. The equations of motion of the Lagrangian
system (G,L) will be

(4) ∇γ̇ γ̇ = 0

We know that the momentum map is constant along motions of this system. We
also know that every initial state v ∈ TG gives a unique initial momentum. Hence,
from the existence and uniqueness-theorem of integral curves smooth vector fields,
we infer that the motions of (G,L) with initial angular momentum µ are exactly
the integral curves of the vector field Xµ.

Hence, we have reduced the equation of motion to

(5) γ̇(t) = Xµ(γ(t)) = TeLγ(t)(ι−1Ad∗γ(t)−1(µ))
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With this, we have reduced the equations of motion to a first order equation in an
unusual way. We look at how this works in the case of the free rigid body:

Example 2.6. The configuration space of the rigid body is the group SO(3).
For this group, we usually identify the Lie algebra g with the space of skew sym-
metric 3× 3-matrices. We may identify g∗ with the same space, and let µ ∈ g∗ act
on ξ ∈ g by

〈ξ, µ〉 = tr(µξ),
where ξµ is the product of the matrices representing ξ and µ.

An inner product (−,−) on g may be represented by a symmetric matrix A,
such that (ξ, η) = tr(ηAξT ). In this case, the associated operator ι : g→ g∗ is given
by ι(ξ) = AξT , and the inverse is then given by ι−1(µ) = (A−1µ)T . For a motion
g(t) with g−1ġ(t) = ξ(t), the momentum µ is equal to g−1AξT g.

The adjoint action of G on g is given by Adgξ = gξg−1 (Remember that both
g and ξ are matrices), and hence

〈ξ,Ad∗gµ〉 = 〈Adgξ, µ〉 = tr(()µgξg−1) = tr(()g−1µgξg−1g) = 〈ξ, g−1µg〉,

since tr(−) is Ad-invariant. We conclude that Ad∗gµ = g−1µg. Hence, we get
equation (5) on the form

(7) ġ = g(A−1g−1µg)T = ggTµT g(A−1)T = µT g(A−1)T = −µgA−1,

remembering that g−1 = gT when g ∈ SO(3). If we, as above, write ξ = gT ġ, and
we note that ξA = −Aξ, since A is symmetric and ξ is anti-symemtric, we end up
with

Aξ = gTµg

Since, µ and A are constants, and µ = gAξgT , we get

Aξ̇ = ġtµg + gTµġ = ġT gAξgT g + gT gAξgT ġ = ξTAξ +Aξξ = [Aξ, ξ],

an equation that is called the Euler-equation. Finally, we deduce a generalization
of this:

2.4.5. The Euler-Poincaré equations on compact groups. The reduction above
is somewhat nontraditional, so I think that I will enclose the Euler-Poincare-
equation. The essence is contained in the identity µ̇ = 0, i.e., that the momentum
is constant along motions of the Lagrangian system.

To be able to handle this situation, we must equip our Lie group G with a bi-
invariant Riemannian metric 〈〈−,−〉〉. The possibility of this is a well known fact.
Taking 〈〈−,−〉〉 for granted, we get an inner product 〈〈−,−〉〉 on g and a canonical
isomorphism κ : g ∼= g∗. 〈〈−,−〉〉 is Ad-invariant, and the map κ : g → g∗ will be
Ad−Ad∗-equivariant, since

〈κAdgξ, η〉 = 〈〈Adgξ, η〉〉 = 〈〈ξ,Adg−1η〉〉 = 〈κξ,Adg−1η〉 = 〈Ad∗gκξ, η〉

We can express m(−,−) in terms of 〈〈−,−〉〉: There exists an operator A : g → g
such that m(ξ, η) = 〈〈Aξ, η〉〉. Hence is ι(ξ) = κ(Aξ), and

J(ξ, g) = Ad∗gι(ξ) = Ad∗gκAξ = κAdgAξ

Using this, we translate µ̇ = 0 into d
dtAdγ(t)Aξ(t) = 0, where ξ(t) = TLγ(t)−1 γ̇(t),

which is translated to
Aξ̇ = [Aξ, ξ].
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Example 2.8. When G = SO(3), and we identify g with R in the usual way,
such that [ξ, η] = ξ × η (cross product of vectors), and we put A on the diagonal
form diag(λ1, λ2, λ3), we get the Euler-equations

λ1ẋ1 = (λ2 − λ3)x2x3

λ2ẋ2 = (λ3 − λ1)x3x1

λ3ẋ3 = (λ1 − λ2)x1x2.

3. A possible general reduction procedure

A simple mechanical system (M,L) can be regarded as a dynamical system on
the manifold TM . Hence, for a Lagrangian symmetry action of a Lie group G on
M we could expect to end up with a dynamical system on (TM)/G. For simplicity,
we assume that G acts freely.

We can describe (TM)/G as a vector bundle over M/G: We know that TM is
canonical isomorphic to the Whitney sum VM⊕HM , ie,the sum of the vertical dis-
tribution and the horizontal distribution coming from the Riemannian submersion
π : M →M/G. But both these bundles are G-bundles over M .

First we describe (HM)/G: To vectors v, w in the horizontal distribution HM
project to the same element of (VM)/G if and only if there is an element g ∈ G
with Tϕgv = w. But this is the case if and only if v and w are projected to the
same vector in T (M/G). Hence, (HM)/G ∼= T (M/G).

Then we describe (VM)/G: As noted implicitly in section 5.5, there is a bijec-
tion HM ∼= g×M . HM is a G-bundle, and there is an action of G on g×M given
by

(g, (ξ,m)) = (Adgξ,m)
From section 5.4 we see that the isomorphismHM ∼= g×M is in fact an isomorphism
of G-bundles, and hence is (HM)/G ∼= (g×M)/G. But (g×M)/G is a kind of a
twisted product bundle with fibre g over the base space M/G. Following Cendra
et.al. [3], we use the notation g̃ for this bundle.

From this we see that we can describe (TM)/G as the Whitney-sum

(TM)/G ∼= T (M/G)⊕ g̃.

We denote the projection TM → T (M/G)⊕ g̃ by π.
The Lagrangian function L : TM → R is, by assumption, G-invariant. Hence,

there is a function l : T (M/G)⊕ g̃→ R such that L = l ◦ π.
This suggests that we could try to formulate a variational problem on T (M/G)⊕

g̃. The problem, as noted above is that it is difficult to know the proper restrictions
on the variational principle. From the discussion in section 2.1, we see that we
can allow all variations of projected curves δ = π ◦ γ. However, the correct choice
of variations in the g̃-part is not obvious to me. This is treated by Marsden and
Scheurle in [8], and they also state some explicite equations. In essence, I hope that
this approach can lead to a dynamical system on T (M/G)⊕ g̃ consisting of a a set
of equations strongly related to the Euler-Poincaré-equations on G, coupled to a set
of equations coming from a simple mechanical system on M/G with a generalized
force depending on the g̃-part of the system.
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