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Abstract

We consider systems of complex exponential functions in spaces of square integrable
functions. Some classical one-dimensional theory is reviewed, in particular, we empha-
size the duality between the Riesz bases of complex exponential functions in L?-spaces
and complete interpolating sequences in PW2-spaces of entire functions of exponential
type. Basis properties for L?-spaces over planar convex domains are then studied in
detail. The convex domain in question is shown to be crucial for what basis properties
the corresponding L?-space possesses. We explain some results related to Fuglede’s
conjecture about existence of orthonormal bases and then a result by Lyubarskii and
Rashkovskii regarding Riesz bases for L?-spaces over convex polygons, symmetric with
respect to the origin. Finally, we make a modest attempt to apply the techniques by
Lyubarskii and Rashkovskii combined with approximation of plurisubharmonic func-
tions using logarithms of moduli of entire functions, to construct a complete system
of exponential functions in the space of square integrable functions over a disk. This
work is not completed yet.
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Chapter 1

Introduction

We start with an informal introduction to some of the problems we will work on in this
text. Consider the space of square integrable functions on the interval [—, 7], that is
L?(—m, 7). It is an elementary fact from Fourier analysis that the set &(Z) = {e™ :
n € Z} constitutes an orthogonal basis for L?(—n, 7). With a suitable normalization
factor it is an orthonormal basis for the same space. There is nothing special about the
interval [—m, w|. Any interval has the same basis property if we change the exponent
set in the system of exponential functions accordingly.

Let us change the exponent set, that is, replace the integers Z with some other discrete
set A. We can then study how properties of the system of exponential functions €(A) =
{e . X € A} in L?(—m, ) changes as we change A. For instance, we can try to find
out what kind of properties A must possess if we want E(A) to be an orthonormal
basis for L?(—n, 7). Alternatively, we can lower the requirements on &(A) and restrict
ourselves to Riesz bases, frames or complete systems. A natural question is then: What
kind of properties of A determines how ”good” the system &(A) is in L?(—x,7)? This
question is intimately connected to sampling and interpolation properties of A in the
space of entire functions of exponential type 7 and in this way methods from function
theory come into use.

Another direction to explore, is similar problems in several dimensions. Let €2 be
some bounded domain in R" and consider the corresponding Lebesgue space, L%(Q).
It is natural to ask for which sets Q the space L?(Q2) has an orthonormal basis of
exponential functions. This is closely related to a conjecture by Bent Fuglede [Fug74],
saying that L?(2) has an orthonormal basis of exponential functions if and only if it is
possible to tile R™ with non-overlapping translates of 2. This has been proved wrong
in dimensions 3 and higher, but it is true for convex sets in the plane. This means
that the only convex sets ) in the plane for which L?(2) has an orthonormal basis of
exponential functions are rectangles and hexagons. One might then wonder what kind
of properties systems of exponential functions have L?(2) when Q is a convex set,
which does not tile the plane by translations. Lyubarskii and Rashkovskii answered
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this question in [LRO0] for convex polygons M symmetric with respect to the origin.
L?(M) has Riesz bases of complex exponential functions. For another natural domain,
namely the disk D C R?, not much is known. However, it is conjectured that no Riesz
basis of exponential functions for L?(D) exists. If this is true, what kind of systems
of exponential functions are there in L?(D)?

Outline of the text

In Chapter 2 we give necessary results from real, complex and functional analysis in
order to make the text self-contained. Most of the material in the chapter is assumed
to be known in advance.

In Chapter 3 we introduce Paley-Wiener spaces of entire functions and their rela-
tions to Lebesgue spaces. The duality between complete interpolating sequences for
Paley-Wiener spaces and Riesz bases of complex exponential functions for L?-spaces
is especially emphasized.

Chapter 4 is about Fuglede’s conjecture. It starts with an informal introduction to
unbounded operators in Hilbert spaces, because this topic is not covered in the course
in functional analysis given at NTNU. The chapter then explains the background
for Fuglede’s conjecture and some simple cases are proved. A summary of the latest
results about the conjecture is given in the end.

Chapter 5 is concerned with the article [LR00] about Riesz bases for L2-spaces over
convex symmetric polygons. Quite a lot of details are given, because the technique
will be used in Chapter 6.

In Chapter 6 we try to use the methods developed by Lyubarskii and Rashkovskii in
[LROO] combined with an approximation technique to get a uniqueness result for a
space of entire functions of two complex variables. This work is not completed yet.



Chapter 2

Preliminaries

We start with some preliminary material from real and complex analysis, functional
analysis and Fourier analysis. Much of the material is assumed to be known from
before and hardly no proofs are given. Other parts of this chapter are not assumed
to be known in advance. For these parts we sometimes illustrate the theory with
examples, but we still give no proofs. References are of course given in any case. It
should be noted that the exposition is not by any means complete. Only definitions
and results needed in this text are stated. The references should be consulted if one
would like to get the full stories.

2.1 Notation

Some words about notation should be said in order to avoid misunderstandings. The
basic notation is given here, more will be introduced when needed.

C will in general denote a positive constant. If a constant changes throughout an
estimate we will sometimes use an index to stress that it is not the same constant. If
f and g are some real valued functions and f < Cyg, we will sometimes write f < g. If
f <gand f > g we write f < g. When f and ¢ has the same asymptotic behaviour,
that is

f(n)

lim ——~ =1
oo g(n)

we write f ~ g.
Let A be a subset of a set X. The characteristic function of A, x4 : X — {0,1}, is

defined as
() 1 ifzeAd
xTr) =
xa 0 ifzdA

#A is the cardinality of the set A.
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The zero set of a complex valued function f : X — C, where X is some set, is
Z(f)y={ze X : f(x) =0}

The end of a proof will be marked with a black rectangle B, and the end of an example
will be marked with a black triangle A.

2.2 Entire functions

We will be particularily concerned with a special class of analytic functions, namely
those who are analytic in the whole complex plane. A reference for this material is
[Lev96].

Definition 2.1 If f analytic in all of C, then f is called entire.

The notation f € Hol(C) will sometimes be used.

Example 2.2 Some examples of entire functions are polynomials and exponential func-
tions and sums and products of such. A

Theorem 2.3 (Liouville) If f is entire and bounded, then f is constant.
Since the only bounded entire functions are the constants, it is of interest to con-

sider entire functions with different growth properties. We start with a couple of
definitions. In the following we define the maximum modulus of a function f as

Mf(T’) = IMaX|z|=p |f(2:)‘
Definition 2.4 The order of an entire function f is defined as

loglog M
py = limsup 08708 41 f(r).
r—o00 log T

The type of an entire function f with respect to the order p is defined as
log M¢(r
oy = limsup gif()
r—00 rP

If f is an entire function of order 1 and of normal type, i.e. 0 < o < 0o, then f is said
to be an entire function of exponential type o.

Example 2.5 Let f(z) =sinmz = % (e'™ — e~"™*) and compute the maximum mod-
ulus on a circle of radius r

My(r) = max| f(2)] = O™ = 06,

|z|=r
where C' is some positive constant. We may then calculate the order

loglog M(r)

log(log C
pf = limsup = lim sup og(log €' + )

=1
r—oo logr r—00 log r
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and the type

) log M¢(r) . log Ce™
oy = limsup ———— = limsup ——— = 7.
r—00 r r—00
Thus we see that sin 7z is an entire function of exponential type 7. A

An infinite product [[>7; (14 ay,) is said to converge if for some M the limit

N
lim (1+apn)

N—oo
n=M

is different from 0 or infinity.

Theorem 2.6 The infinite product [[7°, (1 + an) with 1 4+ a, # 0 converges simul-
taneously with the series Y -2 log (14 a,) whose terms represent the values of the
principal branch of the logarithm.

Define the functions

1 —u, p=20

G(u,p) = .
(u,p) {(1u)exp(u+“22+...+“pp), p>0

The functions G(-,-) are called the Weierstrass primary factors. There is a useful
representation for entire functions in terms of infinite products.

Theorem 2.7 FEach entire function f can be represented in the form

1) = [16 (o).
n=1 "

where g is an entire function, ai,as,... are the non-zero roots of f, and m is the
multiplicity of the root of f at the origin.

If we restrict ourselves to entire functions of finite order, we get what is called the
Hadamard factorization.

Theorem 2.8 An entire function f of finite order p may be represented in the form
— m Py(z) al = 21
)= T e (). (2.1)

where a1, az, ... are all non-zero roots of the function f, p < p, P, is a polynomial in
z of degree q < p, and m is the multiplicity of the root of f at the origin.

Example 2.9 Consider f(z) = sinnz, with zero set Z(f) = Z and order p = 1. sinmz
has the canonical expansion

sinmz = zef1(?) H/ (1 - E) /", (2.2)

n
n=-—00
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The prime means that we should omit the factor corresponding to n = 0. The poly-
nomial P; is to be found. Differentiate both sides of (2.2) logarithmically

oo
1 1
meosTz 1L priyy 4 Z'[ +Z]

sinmz z z—n n
n=—oo
It can be shown that the partial fractions decomposition of w527 is

1 [ 1 1
cos Tz !

T =-+ + =

sintz 2 Z [z —n n] ’

n=-—00

hence P, must be constant. Since

sinmz
lim
z—0 z

:7]"

we get ef1(2) = 7. We have obtained the following product representation for sin 7z

oo

inmz = " (1= ) e

sinmz =z H (1 n) e, (2.3)
n=-—o00

The convergence is absolute for every z € C, so we can simplify the right-hand side
of (2.3) by writing

TZ H (1——) e/ —Wzﬁ (1— %) (1—1—%) ez/"e_z/”:wzﬁ <1—TZ;>.

We now have a nice product expansion for sin 7z

Several complex variables

Quite often we will be working with sets in C? and functions defined in C2, so we need
some general definitions and theory. This will we be given for C". Some references
for the theory of several complex variables are [Sha92] and [Ho6r73]. We identify the
complex n-space as C" = R" + iR" and a point z € C" is given as z = (21, ..., 2n),
where z; = x; +1y; € C, x;j,y; € R, for j = 1,...,n. The notation z = z + iy € C",
where x,y € R™ will also be used. The norm of z € C" is

1/2
2] = (yz1|2 bt |zn|2> .
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C" is equipped with an inner product (-,-) : C" x C" — C, defined by (z,() =
> j=1%jGj for 2, € C". The differential operators

0 10 0N 0
aZj 2 81‘]' Gyj Zi
are fundamental when we define analyticity.

Definition 2.10 A function f € C1(Q2), Q C C" is open, is analytic (or holomorphic)

in Q if it satisfies the system of homogenous Cauchy-Riemann equations

of

— =0, 7=1,...,n,
afj J

for all z € Q. We often write f € Hol(12).

We will be working with zero sets of analytic functions of several variables and need
to give some definitions related to manifolds. The definitions are very brief and one
should perhaps consult a book, e.g. [Sha92].

Definition 2.11 Let X be a topological space. X is called a topological manifold of
real dimension n if X is a Hausdorff space and for every point x € X there exists an
open set U > x homeomorphic to an open set in R™. If the real dimension is an even
number 2n, we sometimes call X a topological manifold of complex dimension n.

Definition 2.12 Let X be a topological manifold of complex dimension n. X is called
an analytic manifold of complex dimension n if there is a family F of homeomorphisms
¢, mapping open sets U, C X to open sets V,, C C" such that

o If ©, ¢ € F, then the mapping
30/ © 9071 : SO(USO N Ucp’) - ‘PI(VW N VL.D’)
is analytic.
Ju.=x
pedF

o If ¢ is a homeomorphism between the open set Uy C X and an open set in C"
and the mapping

oy tpo(UoNUy) — @(UgNU,)

as well as its inverse is analytic for all ¢ € F, it follows that g € F.

Definition 2.13 A non-empty set of points z € C™ that satisfies the system of equa-
tions

n
Doaiz=bj  j=1..k  ajb;€C,
=1
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is called an analytic plane. The complex dimension of an analytic plane is n — k, where

rank(a;); =1 =k < n.

Liouville’s theorem has an n-dimensional generalization.

Theorem 2.14 (Liouville) If the entire function f : C™ — C is bounded in all of C™,
then it is constant.

Consider a function f € Hol(C") and define

My (r) = max| f(2)].

|z[=r

We may now define order and type analogously to the one-dimensional case.
Definition 2.15 The order of a function f € Hol(C"™) is defined as

log log M
py = limsup 0808 ¥ AT) f(r).
r—00 log r

The type of f with respect to the order p is defined as

log M
o :hﬂgpw.

2.3 Subharmonic functions

The following material may be found in [HK76].

Definition 2.16 Let 2 be a domain in the complex plane. A function u : 2 — [—00, 00)
is said to be subharmonic in Q) if it at each point zy € (Q satisfies the following two
conditions:

1. upper semicontinuity:

u(zo) = lim  sup wu(z)
6—0 |z—2z0|<d

2. the mean value inequality:

1 2m )
u(zp) < / u (zo + 7“6“9) dé
0

— 27
with 0 < r < ¢ for some ¢ > 0.

The next example shows that the logarithm of the modulus of an analytic function is
subharmonic.
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Example 2.17 If f € Hol(Q?), then u = log|f| is subharmonic in Q. Condition 1 is
trivially fulfilled. If f(z9) = 0, then u(zp) = —oo and condition 2 is ok. If f(z9) # 0
then some branch of log f is analytic in some neighborhood of zy. Re (log f) = w is
harmonic and therefore subharmonic as well. A

Example 2.18 Let u be subharmonic in a domain 2 and ¢ be an increasing convex
function defined on the range of u. We then have

ou(z)) <ep <2177 /O%u (zo + rew) d@) < % /027rg0 (u (zo + rei9)> dé,

where the last inequality is justified by Jensen’s inequality. Upper semicontinuity
follows trivially, thus ¢ o u is a subharmonic function in €. A

The function in the next example will be used a lot in the following chapters.

Example 2.19 Let f(z) = m|Imz|. The imaginary part of a complex number is a
harmonic function, and therefore also subharmonic. The modulus function is convex,
so we may use the same argument as in Example 2.18 to prove that f is subharmonic.
Definition 2.20 Let M, (r) = sup|,|—, u™ (2), where u™ = max{0, u}. The order of the
subharmonic function u is defined as

. log M, (1)
Py = limsup ————=.
r—o00 ].Og T

The definition above is analogous to the definition of order of an entire function f.
log | f| is a subharmonic function, and this is why there is one less "log” in the definition
of the order of a subharmonic function.

F. Riesz’ theorem on the local representation of a subharmonic function in terms of
an integral is essential in the theory of subharmonic functions.

Theorem 2.21 If u is subharmonic in a domain D C C, then u has the following
representation in every compact set G C D

u(z) = [ [ 1og 1z =l + (o) (2.4)

where h is harmonic in G and p is a positive Borel measure. The integral on the right
hand side is called the logarithmic potential of u and u is called the Riesz measure of
u. If u € C*(G), then the Riesz measure has the form due = 5=/Au(¢)dme, where dm
1s the usual Lebesque measure in the plane and A is the Laplace operator.

Plurisubharmonic functions

Definition 2.22 Let 2 C C" be a domain and u : 2 — [—00, 00) be upper semicontin-
uous. We say that u is plurisubharmonic if, for each complex line ¢ = {a + bz} C C",
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a,be C", z € C, the function
z—ula+bz), abeC" z€C,

is subharmonic on 2 N ¢. We sometimes write v € PSH((2).

Definition 2.23 A complex-valued function f € C?(2), Q C C", is said to be pluri-
harmonic if for every complex line £ = {a + bz} C C", a,b € C", z € C, the function
¢ — f(a+ b¢) is harmonic on the set QN 7.

The class of plurisubharmonic functions is properly contained in the class of subhar-
monic functions when n > 1. When n = 1 the classes coincide. Nevertheless, many
of the properties of subharmonic functions are carried over to plurisubharmonic func-
tions.

Example 2.24 If f € Hol(Q2), then log|f| € PSH(Q).

Example 2.25 Let u € PSH(Q2) and ¢ : R — R be a convex monotone non-decreasing
function. Then ¢ o u € PSH(Q).

A two-dimensional analog of Example 2.19 will be important in Chapter 6.

Example 2.26 7|lmz|, 2 € C2. Imz is a pluriharmonic function and the norm is
convex, so 7|Im z| is plurisubharmonic in C2.

2.4 Functional analysis

We first state two of the cornerstones of functional analysis, the Hahn-Banach theorem
and the closed graph theorem. After that, some theory for sequences in Banach spaces
and Hilbert spaces are given. In the end the Lebesgue and Hardy spaces are introduced.
A reference for the basics of functional analysis is [DS58]. Some more specialized
references are presented on the way.

We will denote a general Banach space by X and its dual by X*, while a general
Hilbert space will be denoted by H.

Theorem 2.27 (Hahn-Banach) Let f be a bounded linear functional on a subspace Z
of a Banach space X. Then there exists a bounded linear functional f which is an
extension of f to X, that is f|z = f, and has the same norm, || f|x = ||f||z-

An important consequence of the Hahn-Banach theorem is the following:

Theorem 2.28 Let Z be a closed subspace of a Banach space X and let 6(x)
dist(z, Z). Then there exists a non-trivial functional f € X* such that f|z =

Il =1 and f(x) = 6(x).
Definition 2.29 Let T : D(T') — Y be a linear operator between two Banach spaces
X and Y, where D(T') C X. T is a closed operator if its graph

S(T) ={(z,y) : 2 € D(T), y =T}

0,
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is closed in X x Y.

Theorem 2.30 (Closed Graph Theorem) Let X and Y be Banach spaces and T :
D(T) — Y a closed linear operator, where D(T) C X. If D(T) is closed in X, the
operator T is bounded.

A useful criterion for determining whether a linear operator is closed or not is the
following:

Theorem 2.31 Let T : D(T) — Y be a linear operator, where D(T') C X and X and
Y are Banach spaces. Then T is closed if and only if it has the following property. If
xp — x, where x, € D(T), and Txy, — y, then x € D(T) and Tz = y.

Sequences in Banach and Hilbert spaces

We will be working mostly with Hilbert spaces, but first we define some concepts in
Banach spaces and state some general results. After that we will look more carefully
at sequences in Hilbert spaces. Most of the material is taken from [YouOl]. We start
with some definitions.

Definition 2.32 Given a Banach space X and a sequence {z;} = {z;}72, in X. {z;}
is a Schauder basis if for each x € X there exist unique scalars {¢;} = {cj};il such

that x = Z;’il cjzj. The convergence is to be understood in the norm topology, that
is

n
x—g cjrjll — 0 asn — oo.
Jj=1

In the sequel we will write basis and mean Schauder basis. Not every separable Banach
space has a basis, as shown by Enflo in 1973. Every Hilbert space has one though. In
fact, every Hilbert space has an orthonormal basis (see Definition 2.38). We will need
the notion of equivalent bases, so here is a definition.

Definition 2.33 Two bases {x;} and {y;} for a Banach space X are called equivalent
if - -

Zle‘j <00 = Zijj < 0Q.

j=1 j=1

A criterion for equivalence of bases is given below.

Theorem 2.34 Two bases {x;} and {y;} for a Banach space X are equivalent if and
only if there exists a bounded invertible operator T' : X — X such that Tx; = y; for
all j.

Definition 2.35 Let {z;} be a sequence in a Banach space X. {x;} is complete! in X
if the linear span of {z;} is dense in X.

The word total is also quite common.
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This means that if {x;} is complete in X, then for any x € X and any ¢ > 0 there exists
y € span{z;} such that ||z — y|| < . We repeat a couple of elementary definitions.

Definition 2.36 A sequence {z;} in a Banach space X is called minimal if for each j

the element x; lies outside the closed linear span of the other elements.

Definition 2.37 Let {z;} be a sequence in a Hilbert space H. If

0 kAl
z)) = Coy = C -
(g, x71) kil {1 b

then {x;} is an orthogonal sequence in H. If C' =1, {z;} is an orthonormal sequence
in H.

Definition 2.38 A complete orthonormal sequence in a Hilbert space H is called an
orthonormal basis for H.

A famous criterion for an orthonormal sequence to be complete, is Parseval’s identity.

Theorem 2.39 Let {x;} be an orthonormal sequence in a Hilbert space H. The se-
quence {xz;} is complete in H if and only if Parseval’s identity holds for all x € H,

that is
2
1 = [, 25,
J

forallz € H.

It will be useful to know what biorthogonal sequences are.

Definition 2.40 Let {z;} and {y;} be sequences in a Hilbert space H. They constitute
a biorthogonal system if (x,y;) = 0p;.

For a given sequence {z;} there exists by the Hahn-Banach theorem a system {y;}
biorthogonal to {z;} if and only if {z;} is minimal. The biorthogonal system is
uniquely determined if and only if the minimal system is complete.

We will be working extensively with sequences of the form &(A) = {e/7 1 X € A},
where A is some discrete subset of R"™, in spaces of square integrable functions (more
about these spaces soon). Such spaces do not always possess orthonormal bases of the
form E(A) and we must loosen up the requirements on the basis-like sequence we are
seeking. One such type of sequence is a Riesz basis.

Definition 2.41 A basis for a Hilbert space H is called a Riesz basis if it is equivalent
to an orthonormal basis, that is, if it is the image of an orthonormal basis under a
bounded invertible operator.

It can be proved that {z;} is a Riesz basis for a Hilbert space H if and only if the
sequence {z;} is complete in H, and there exist positive constants A and B such that
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for an arbitrary positive integer n and arbitrary scalars cq, ..., ¢, one has

2
n n n
2 2
AY e < |[D eyl <BY el (2.5)

This characterization is sometimes taken as the definition of a Riesz basis. Condition
(2.5) corresponds to Parseval’s identity for orthonormal bases.

LP-spaces

Given a o-finite measure space (X, M, ). We define the quantities

wmz(éwmwow 1 <p<oo (2:6)

and

||u]| oo = ess sup |u(z)| (2.7)

rzeX

and say that v € LP(X) if u is measurable with respect to the o-algebra M and
llul|, < oo for 1 < p < oo. | -] is a norm if we consider functions with norm equal to
zero to be equivalent. With the norm (2.6) and 1 < p < oo or with the norm (2.7) and
p = oo, LP(X) is a Banach space. For p = 2 it is a Hilbert space. For us, X is usually
a subset of R™ or C", M is the Lebesgue g-algebra and p is the Lebesgue measure.
When we deal with several variables, we will use the notation ”dm,” for the Lebesgue
measure. The subscript x indicates the variable we consider. In one dimension we will
stick to the usual "dx”, where x is the variable in question.

We get a special type of LP-spaces if we let p be the counting measure. Given a
sequence a = {aj}(;il, where a; € C for all j € N. We say that a € ¥ = (P(N) for

1<p<if
1/p

o0
lally = { >_la;" | <. (2.8)
j=1

The space of bounded sequences ¢*° consists of all sequences a = {a; };";1 with

lallso = supla;| < 00, Vj e N. (2.9)
J

More about LP-spaces can be found in [Fol99].

Hardy spaces

We will only need Hardy spaces over the upper half-plane C,, so we skip the alter-
native version of Hardy spaces over the unit disk. The Hardy space over the upper
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half-plane H_% is defined as the set of complex-valued functions f which are analytic
in the upper half-plane and satisfies

sup/ |f(z +iy)|* dz < co.

y>0J -0

The definition can be generalized to other domains and other p than 2. If we give HJQr
the norm

17112 = sup / o+ i) de,

y>0J —co

then H_% is a Banach space. The Hardy space over the lower half-plane H? is defined
analogously. Some properties of functions f € H_%, and similarly for f € H?, are:

1. H_% is a Hilbert space with the inner product
()= | fa)gds

for f,g € H_%
2. The boundary function
fla) = lim f(z +iy)
y—?
exists almost everywhere and HfH%,2 = lfll2w)-
+

3. f can be reconstructed from its boundary values using the Cauchy integral:

f(z) = L &dt, Imz > 0.

i ) t—2

4. If a sequence {\;} C C, is located in a horizontal strip 0 < m <Imz < M < oo
and separated |\ — Aj| > & > 0 for k # [, then

D IFODP < ClIflGe
j

for some constant C' independent of f.

5. The dual space of H_% can be identified with H2 and vice versa. The functional
Fy € (HJQF)* which corresponds to the function 1 € H? is of the form

Fote) = [ et

and
1l 2y = Nl
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We now link Hardy spaces to the Fourier transform.

Theorem 2.42 (Paley-Wiener) A function f is from H? if and only if it admits the
representation

() = % /0 o(t)ei dt,

for some ¢ € L?(0,00). Then

11z = 27l 22 0,009

More on HP-spaces in the upper half-plane can be found in [Dur02, Chapter 11] or in
[Lev96, Chapter 19].

2.5 Real analysis and Fourier analysis

Some basic results from real analysis are needed, namely Fubini’s theorem and the
dominated convergence theorem.

Theorem 2.43 (The Fubini Theorem) Suppose that (X, M, u) and (Y,N,v) are o-finite
measure spaces. If f € L'(u x v), then f e LYv) for a.e. E X, fe Ll( ) for a.e.

y €Y, the a.e.-defined functions g(z) = [ f(z,y)dv and h(y) = [ f(z,y)dp are in
Ll( ) and L' (v) respectively and

s~ [ ey i f et v

holds.

Theorem 2.44 (The Dominated Convergence Theorem) Let (X, M, ) be a measure
space. Let {f,} be a sequence in L'(X) such that f, — f almost everywhere, and
there exists a nonnegative g € L*(X) such that |f,| < g almost everywhere for all n.

Then f € LY(X) and
/fd,u,: lim /fnd,u.

We will not work very much with distributions, but in Chapter 4 we will need to know
what the distributional derivative means.

Definition 2.45 Let 2 C R"™ and let w and v be locally integrable in (), that is
u,v € L{ (Q). The function v is said to be the distributional derivative of u in the

direction x; if
dmg, = — dmy
/ 8:103 m /Q vpdm

for all test functions ¢ € C2°(£2), where C2°(€2) denotes the set of all smooth functions
defined on ) with compact support properly contained in Q.
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The Cauchy principal value needs to be defined.
Definition 2.46 If f € L{ (R"), n € N, we define the principal value of the integral

f(x)dm,
Rn
to be
V.P. f(z)dmg = lim f(x)dmy.
Rn R—o0 Jiz|<R

Much of this text will be concerned with consequences of properties of the Fourier
transform. To be consistent with existing research literature, as well as to avoid some
rather non-standard normalizations (at least from a mathematical point of view), we
will use two different definitions of the Fourier transform. In Chapters 3, 5 and 6 we
will use the following:

Definition 2.47 For f € L'(R") we define its Fourier transform f as

FrE) = f(&) = @) —162) dmy,.

The inverse Fourier transform is defined as

FH(E)

In Chapter 4 we use:
Definition 2.48 For f € L'(R") we define its Fourier transform f as

FrE) = f(&) = | f@e —2mHET) A,

The inverse Fourier transform is defined as

g’—lf(é') _ f( ) 2mi(€,x) dm,.

The Riemann-Lebesgue lemma holds no matter which definition we use.
Theorem 2.49 (The Riemann-Lebesgue lemma) If f € LY(R™) the following holds:

lim |f(&)] = 0.

|§| =00

The Fourier transform can be extended to L2(R™).
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Theorem 2.50 The Fourier transform defined on L*(R™) N L?(R™) extends uniquely
to an operator on L*(R™). The Fourier transform defined on L'(R™) and the operator
obtained by extension to L2(R™) coincides on L'(R™) N L2(R™). If f € L?>(R"), then
f is the limit in L2(R™) of the sequence g, defined by

gn(&) = /n ! Fl@)e € dm,

if we use Definition 2.47 and

gn(f):/_ | f(x)e_szzdmm

if we use Definition 2.48.

Plancherel’s theorem needs to be adjusted according to which definition we use.

Theorem 2.51 (Plancherel) If f,g € L*(R"), then (27)"/?| f|| = || f|| if we use Defi-
nition 2.47 and ||f|| = || f|| if we use Definition 2.48.

All results in this section may be found in [Fol99].






Chapter 3

Paley-Wiener spaces

In this chapter we will introduce a space of entire functions of exponential type which
are square integrable on the real axis, called the Paley-Wiener space. In the first
section we look at the definition, as well as some fundamental theorems. After that
we will describe a certain duality between interpolation problems in the Paley-Wiener
space and systems of exponential functions in L?(—m, ), with an example illustrating
the matter. In Section 3.5 we look at Riesz bases formed by subspaces for L?(—m, 7).
Using this, we are able to relax a separation condition used in the previous sections.
In the end we consider Paley-Wiener spaces of entire functions of several complex
variables and introduce the problems we will work with in the remaining chapters.

3.1 Paley-Wiener spaces in one variable

A function f € L%(R) is called bandlimited if its Fourier transform f has compact
support. For simplicity, we will assume that the support of f is contained in the interval
[—7, m]. Bandlimited functions are of fundamental importance in signal analysis. In
signal analysis a function is called a signal and the integrability condition (f € L?(R))
means that the signal has finite energy. That a signal is bandlimited means that
its frequencies are bounded. These signals seem to make sense physically, but there
is one drawback. In Theorem 3.1 we will see that bandlimited functions are entire
functions. This implies that they cannot have compact support. In the language of
signal analysis, this means that they are signals which last for an infinitely long period
of time. Nevertheless, this class of functions is used extensively in practial applications.

The celebrated Paley-Wiener theorem [PW34] says that a bandlimited function may
be extended to an entire function of exponential type.

Theorem 3.1 (Paley and Wiener, 1934) A function f has the representation

) = % /_ﬂ Wt dt, (3.1)
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where ¢ € L?>(—m, ), if and only if it is possible to extend f to an entire function of
exponential type © and f € L*(R).

A small proposition is needed before we can prove Theorem 3.1.

Proposition 3.2 If f is an entire function such that | f(z)| < AePFl for all z € C and
|f(z)| < M for all x € R. Then

|f (@ +iy)| < MePlW,

Proof: Assume that y > 0, let ¢ > 0 and let

9(z) = P ().

We have |g(z)| = [f(x)] < M for all z € R and g(iy) — 0 as y — oo. Let N
denote the maximum value of |g(z)| on the positive part of the imaginary axis. The
Phragmen-Lindel6f theorem then implies that |g(z)| < max(N, M) for every z in
the first quadrant. By the same argument we get the same estimate in the second
quadrant. Applying the maximum principle to a large rectangle with lower edge on
the real axis, then gives that M > N. Now, |g(z)| < M and

()] = e E+2| |g(2)] < MrelF+m

for Imz > 0. Let ¢ — 0 and the desired result follows. If y < 0, the same result is
obtained by considering f(—z). n

We follow the proof by Boas given in [YouO1].

Proof of Theorem 3.1: (=) The function f is entire since the integrand is an entire
function of z € C. Plancherel’s theorem yields

1
1l 2m) = Nor 19l L2 (=

hence f is square integrable along the real axis. Moreover,
1 ™ . 1 s
|f(z)\ < / ‘ewt‘ W(t)\ dt < 7€7T|Im2\ ‘w(t)’ dt < CeﬂlmZ\
27 ), 2 -

for all z € C, so f is of exponential type.

(<) Assume that f € L?(R) and that f is an entire function of exponential type 7.
Let ¥ be the Fourier transform of f,

w)= [ s d

Then ¢ € L*(R) and
f@) =5 [ wiea
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We need to show that ¢ (¢t) = 0 for almost every ¢t € R\ [—7,7]. Let R > 0 and
consider the contour yg = [R, R+ iR]U[R+iR,—R+ iR]U[—R + iR, —R]. Define

f(2)e "z,
R
Cauchy’s theorem implies that I = — ffR f(x)e~ ™t dz. We need to show that I — 0
as R — oo when |t| > 7. Since

R
im z)e @t dy =
| / @)t dr = i)

R—oo J_

we will obtain 1(t) = 0 for almost every t € R\ [—7, 7]. Assume that ¢t < —m, then

R R
1< [ Eeileray et [
0

R
|f(z +iR)| dx+/0 |f(=R +iy)| e dy. (3.2)

Denote the three integrals on the right-hand side of (3.2) by I1, Is and I3 respectively.
The function f is square integrable on the real axis and entire, thus |f(z)| < M for
some finite M and all z € R. By Proposition 3.2 |f(z +iR)| < Me™ for all x € R.
This means that Iy < 2RMe(t+7r)R, but t < —m, so Iy — 0 as R — oc.
Write
Ry R
= [T ileray+ e i)enay,

0 1
where 0 < Ry < R. By Proposition 3.2, the function f is uniformly bounded in each
horizontal strip and f(z) — 0 as |#| — oo since f € L?(R), thus for each fixed
Ry, |f(R + iy)| tends to zero uniformly as R tends to infinity for each 0 < y < Rj.
Consider f}i |f(R+ iy)| et dy. Again by Proposition 3.2

/R (R +iy)| e dy < M Re(t+7r)y dy = M (e(t+7r)R _ e(t+7r)R1) -0
Ry Ry t+m

as R and R; tends to infinity. The integral I3 is treated in the same way. If t > 7w, we
may use the same arguments with a similar contour in the lower half-plane to obtain
the same conclusion. [

The space of entire functions of exponential type m which are square integrable on
the real axis is called a Paley-Wiener space, and is denoted PW2. In view of the
Paley-Wiener theorem we have the characterization

PW,%:{f C—C: f(z / Y(t)e#tdt, ¢ € L?(— 7777)}

We equip PW?2 with the inner product (f,g) fR dx This inner product
induces a norm on PW2, thus 1 fllpwz = I fllz2w Wlth thls norm PW? becomes a
Hilbert space, (see e.g. [Sei04, Chapter 6]).

The Whittaker-Kotel’'nikov-Shannon sampling theorem says that every function from
PW?2 can be reconstructed from its values at integers.
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Theorem 3.3 (Whittaker-Kotel'nikov-Shannon) If f € PW2, then

Z fl sm7r z —k)k:) (3.3)

k=—00

and

1Flpwz = £ (F)}Hle2(z)- (3-4)

The series in (3.3) converges both in PW2 and uniformly on compact subsets of C.
Conversely, given {c} € (2(Z), then (3.3) defines a function f € PW2, which solves
the interpolation problem f(k) = cy.

Proof: From the Paley-Wiener theorem we know that each function f € PW2 has

the representation
1 7 -
- 2W/ Y(t)e™ dt (3.5)

where 1) € L?(—, 7). ¢ has a Fourier expansion
i .
Z cre k. (3.6)
k=—o0

The coefficients ¢;, are

1
o | w< Je't dt = f (k). (3.7)
T

Plugging (3.6) and (3.7) into (3.5) gives

LTS i(a— smﬂ' z—k)
_%/sz_:oof(k;)e Z 0=

k=—o00

Cr =

Plancherel’s theorem and Parseval’s identity imply that

1
Ifllpwz = | fllL2m) = \/T—WWHLZPW,W) = HexHlzz) = L () He )
hence the series on the right-hand side of (3.3) converges in the norm of PW?2. For
any f € PW2 we may derive the following estimate from the Paley-Wiener theorem
and Plancherel’s theorem

(2 +iy)] < eV fll pyyz.

A consequence of this inequality is that convergence in PW?2 implies convergence in
horizontal strips, which again implies convergence on compact subsets of C.

Given a sequence {c,} € ¢?(Z). The function defined in (3.3) is easily seen to solve
the interpolation problem. The function defined in (3.6) is from L?(—m,7), thus the
function defined in (3.5) is from PW2. |
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Theorem 3.3 is also known as the sampling theorem. It is fundamental in signal anal-
ysis as it provides the foundation for conversion between digital and analog signals.

One can generalize Paley-Wiener spaces to p # 2. PWZ is the space of entire functions
of exponential type m whose restriction to the real line is in LP(R). When 1 < p < o0,
PWZ£ is a Banach space with the LP(R)-norm. There is an analog of Theorem 3.3
for these spaces, called the Plancherel-Polya theorem. In this case (3.4) is weakened
a bit, instead of equality one has || f|| pyy» < [[{f(k)}[/er(z). More about this matter is
written in [Lev96, Chapter 20].

3.2 Duality

In this section we will explore the duality between systems of complex exponential
functions in L?(—m,7) and interpolation problems for PW2. We will let A = {\;}
denote a sequence of complex numbers located in a horizontal strip and (A) = {e*+t}
the corresponding sequence of complex exponential functions.

Definition 3.4 A is a complete interpolating sequence for PW?2 if for each {a;} € ¢>
there exists a unique f € PW? solving the interpolation problem

f(\x) = ag,
for all k.

The main goal is to prove the following.

Theorem 3.5 A is a complete interpolating sequence for PW?2 if and only if E(A) is
a Riesz basis for L*(—m, ).

A is called a set of uniqueness for PW2 if f|5 = 0 implies that f = 0, for any f € PW2.

Proposition 3.6 &(A) is complete in L?(—n, ) if and only if A is a set of uniqueness
for PW2.

Proof: It is a consequence of the Hahn-Banach theorem that £(A) is complete in
L?*(—m,7) if and only if there does not exist a non-trivial functional F such that
Flgay = 0. L?(—m,7) is a Hilbert space and by Riesz’ representation theorem any
IRt

functional F' applied to the function e is of the form

F(eh) = i P(t)eMt dt (3.8)

for some ¢ € L?(—m, 7). According to the Paley-Wiener theorem the right-hand side
of (3.8) defines a function f € PW2. The function f vanishes at A if and only if F'
vanishes at €(A) and f is non-trivial if and only if F' is non-trivial. n

Let {x} be a sequence in a Hilbert space H. The sequence {(x,z)} is called the
moment sequence of x € H. The set of all moment sequences with respect to the
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sequence {x;} is called the moment space of {x;}. In our case zp(t) = et
\i is some complex number, and H = L?(—m, 7). The moment sequence of a function

Y € L?(—m,7) is of the form

{<¢,ei’\’“'>} - { _:w(t)ew dt}. (3.9)

According to the Paley-Wiener theorem the right-hand side of (3.9) defines a sequence
{f(M\&)}, where f is from PW?2. To solve the interpolation problem stated in Definition
3.4 is therefore equivalent to show that the moment space of a complete sequence
{e™} C L?(—m,7) is equal to £2.

, where

Let us now see that the moment space characterizes complete sequences up to equiv-
alence. Recall that two sequences are equivalent if one can pass between them by the
means of a bounded invertible operator.

Theorem 3.7 Two complete sequences belonging to a separable Hilbert space are equiv-
alent if and only if they have the same moment space.

Proof: (=) Let {z}} and {yx} be complete sequences in H. Suppose that there exists
a bounded invertible operator T': H — H such that Tz = y; for all £k € N. The two
sequences {zy} and {yx} have the same moment space if the system

(x,zr) = (y,yx), k€N, (3.10)
has a unique solution x given y, and a unique solution y whenever x is given. The
solution is clearly x = T*y, where T™ is the adjoint operator of T.

(<) Assume that {z}} and {y;} have the same moment space. For a given y € H the
system (3.10) then has a unique solution € H. We need to show that this implies that
{z1} and {yx} are equivalent, that is, to show that there exists a bounded invertible
operator T': H — H such that Txj = y; for all k.

Let X be the linear span of {z}} and & = S°n_, ¢pay. Define an operator T': H — H
by the relation

N
Tr = Z CrYk-
k=1

The operator is clearly linear and maps {zx} to {yx}. We need to show that T is
well-defined, bounded and invertible. The space X is dense in H, so if the properties
above can be shown, the operator extends uniquely to a bounded invertible operator
defined on the closure of X, i.e. H.

Assume that T is not well-defined. Then there exist scalars {c} such that

N N
Z cprp =0 and Z cryr # 0.
k=1 k=1
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Choose y = Z]kvz1 cryx and let = be the solution of (3.10), then

N N N N
0= <$,20k$k> =Y e (wmn) =D ok (v ) = <y,ZCkyk> = [yl
k=1 k=1 =1

k=1
which is a contradiction. T is well-defined.

To show that T is bounded, we introduce a new operator A : H — H defined by the
relation

Ay = x,
where x is the unique solution to (3.10). We prove that A is linear and bounded. Let
hi,he € H and aq, as be scalars, then

(A(arhy + asha), xg) = (a1h1 + azho, yk)
= a1 (h1, yx) + a2 (ha, yk)
= ay (Ahy, x) + as (Ahg, z)
= (a1 Ah1 + a2 Aha, xy) .

{z1} is complete, thus A(a1h; + asha) = a1 Ahy + a2 Ahy and A is linear. Let {hy} be
a sequence in H such that h, — h and Ah, — ¢, then

(hyyr) = Jim (hns k) = Jim (Ahy, ) = (g, 1)

for all k. By the definition of A, Ah = g, and by the closed graph theorem A is
bounded. Now, let z € X. For every y € H we have

(Tz,y)| = [z, Ay)| < [|=[l[|All[ly]

and
1Tz < [|l=||[|All,

thus T is bounded.

The same argument can be used if one would like to prove the existence of a bounded
linear operator S : H — H, such that Sy, = x,. It then follows that ST =1 =TS
and T is therefore invertible. n

Proposition 3.8 The moment space M of a Riesz basis in a Hilbert space H is equal
to (2.

Proof: If {x;} is a Riesz basis for H then there exists another Riesz basis {y;} for
H, which is biorthogonal to {z)}. Assume that {c;} € 2, then the series Y 77 | cxyk
converges to some element z in H, which satisfies (3.10), thus 2 C M. To prove the
opposite inclusion we consider the expansion z = >, (x, ) yi. It is valid for every
element of H, so {(z,x;)} € /2, thus M C 2. We conclude that M = 2. n
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Proposition 3.8 says that the moment space of a Riesz basis is ¢? and in particular
that the moment space of an orthonormal basis is ¢2. Applying Theorem 3.7 to this
situation, we see that a complete sequence in a Hilbert space is a Riesz basis if and
only if its moment space is £2.

We summarize the results of this section in a chain of equivalences:

A is a complete interpolating sequence for PW2.

0

The moment space of the complete sequence &(A) C L?(—x, ) equals /2.

0

The complete sequence &(A) C L?(—m, ) is a Riesz basis.

Theorem 3.5 is proved.

3.3 A complete interpolating sequence for P>

Given a sequence {c,} € ¢2. The Whittaker-Kotel'nikov-Shannon theorem gives us
the unique solution of the interpolation problem f(k) = ¢ for all k& € Z, where f
should be from the space PW?2. Z is precisely the zero set of sin 7z. In this section we
prove a theorem similar to the Whittaker-Kotel’'nikov-Shannon theorem, where the
interpolation nodes are zeros of a function which is very much like sine.

Definition 3.9 Let f be an entire function with zero set A = {Ap},c5. f is a sine-type
function if

1. all zeros lie in a horizontal strip, [Im Ax| < H, where H > 0,
2. all zeros are uniformly separated, |A\p — N\j| > >0,k #1, e >0,

3. for any 6 > 0 there exist constants depending only on 9§, such that
|f(z)] = emim

whenever dist(z, A) > 4.

We need the following lemma on the derivative of a sine-type function.

Lemma 3.10 Let S be a sine-type function and A = {\i}rez be its zero set. There
exist constants N1 and Ny such that

0< N < |8 (M) < Na<oo for every k € Z.
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Proof: See [Lev96, Chapter 22].

The next result illustrates the power of the duality between solving interpolation prob-
lems in Paley-Wiener spaces and proving properties of systems of complex exponential
functions in Lebesgue spaces.

Theorem 3.11 (Levin) The zero set A = {Ay},cqy of a sine-type function S is a
complete interpolating sequence for PW2.

We need to show that for each given {ay} € ¢?(Z) there exists a unique function
f € PW2 such that f(\) = ay for all k € Z. The proof is split into two parts, that
is an existence part and a uniqueness part.

Proof: (Existence.) Consider a generalized Lagrange interpolating series

Z ar Z)_ i (3.11)

where S is the sine-type function. This is a solution when the sum is finite, we must
therefore show that the corresponding infinite sum is convergent. We define

S(z)
Z TSRz — M)

By the estimate for the derivative of a sine-type function from Lemma 3.10.

0< Ny < [S"(\)] < N3 < oo, (3.12)

we observe that the only possibly unbounded part of fy is gn(2) = Z,]CV:_N P vt
gn has possible singularities in both the upper and lower half-plane C, and C_. We
make a vertical shift, on(2) = gn(z — 2iH ), where H is the constant in condition 1
in Definition 3.9, to collect all singularities in the upper half-plane. Now, the function
¢on € H? and we can estimate its H2-norm. Recall that the dual space of H? may
be identified with Hi, and that the norm of the function ¢y is

N2 = sup
weH2

¥ll=1

/_Z o (2)i(x) da| .

Fix some 1 € Hf_ with norm equal to one, then

‘/ on(z |/00kz $_2ZH )\k@b()d

< M )d
_k:ZN‘/_OOx—QiH—/\kw(w) v
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where the interchange of summation and integration is justified by the dominated
convergence theorem. Further, we may write
x
[ o@)
— 21H — N\,

Z ‘/ x—QzH )\k d:z: - Z |
=27 Y agl|0(2iH + ),

N
k=—N

because a function in H_% can be reconstructed from its boundary values, using the
Cauchy integral. An application of the Cauchy-Schwartz inequality gives us

1/2 N 1/2
o Z lag|[(20H + \p,)| < 27 ( > |ak|2> ( > |¢(2iH+)\k)]2> .
k=—N

k=— k=—N
(3.13)
For the last sum on the right-hand side (3.13), we use another property of H _QH namely
that the sum of the squared modulus of a function evaluated at a separated sequence
is less than some constant times the H_%_—norm of the function. We have

N
Yo [WEH+M)P < C vl .

k=—N

thus

N N 1/2
2 > lagl[(2iH + Ay)| < Cy ( > \ak\2> :

k=—N k=—N

where the constant is independent of N. Since {a;} € £?(Z) the sum on the left-hand
side of the equality above is convergent for any V. Let N tend to infinity, then fy — f
and f € PW2.

(Uniqueness.) We have proved that a solution exists. Assume that the solution is not
unique. This means that there exist functions f1, fo € PW2 such that fi(\z) = aj and
f2(Ax) = ag. Let us consider the function h = f; — fo, then h(A;) = 0 for all k € Z. If
we can show that this implies that A = 0, we are done. Let S be a sine-type function
with zero set equal to A. Then the function ® = % is entire, since h is entire and
Z(S) C Z(h). We want to show that ®(z) = 0 for every z € C. From the definition of

sine-type functions we have
0 < cge™ 2l < 1S(2)| < Cse™m™ 2l < oo
for |z — Ag| > 0 > 0. Since h € PW2 we have the following estimate

1

h)| < o

/ \Imz|t|w( )|dt < K6|Imz\7r’
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hence an estimate for |®(z)| is

[@(2)| = < K/cs,

when |z — Ag| > 0 > 0. The function ® is analytic in the whole complex plane and
particularly inside the disks {z € C: |z—\g| < J, A\ € A}. By the maximum principle
® is bounded in the set {z € C: |z — A\g| < J, A\ € A} as well. Liouville’s theorem
then implies that ® must be constant throughout all of C. It remains to prove that ®
is zero somewhere in C. Since h € PW2, h must be square integrable along horizontal
lines, i.e. it vanishes somewhere where S does not, implying that ® must be identically
0. |

In view of Theorem 3.5, the result above can be read as follows.

Corollary 3.12 If A = {\i} is the zero set of a sine-type function, then E(A) is a
Riesz basis for L?(—m, ).

3.4 More about complex sequences and relations to PWE

Let us for a moment look at the situation through our signal analysis glasses. Theorem
3.3 told us that it is possible to reconstruct a bandlimited signal using regularly spaced
samples of the signal. In practice, a signal is very often disturbed by some noise and
it might be desirable to sampled sparsely at the noisy parts of the signal and more
densely at the parts where the noise is not that present. One is led to irregular sampling
and an immediate question is how dense/sparse one should sample in order to have
a stable reconstruction? Let us introduce two other types of sequences, sampling
sequences and interpolating sequences.

Definition 3.13 A = ()\;) C C is called a sampling sequence for PW? if there exist
constants A and B, 0 < A < B < o0, such that

ANFIP < Y IF QP < BIfIP, Vf e PWE
ALEA

If we do not know whether the solution to the interpolation problem stated in Defini-
tion 3.4 is unique or not, then A is called an interpolating sequence.

From a signal analytic point of view, sampling sequences are such that a signal can
be reconstructed from its values at the points of the sequence in a stable way. The
interpolation property implies that A is non-redundant.

It is clear that the density of the sequence A is important for the sampling or inter-
polating properties of A. If the sequence is too dense, it is hard for a function to fit
the points, while still being from the space PW2. If the sequence is too sparse it will
be hard to reconstruct the function in a stable way. The Beurling densities make this



30 Chapter 3. Paley-Wiener spaces

reasoning precise. Let A be a real and separated sequence and let n'*(r) and n™(r)
be the maximal and minimal number of points to be found in an interval of length 7.
The upper and lower uniform densities of Beurling are then defined as
+ —
DAY = tim ") p(A) = tim )

T—00 r r—00 r

It can then be proved that (see [Sei04])
D™ (A) > 1 = A sampling sequence = D7 (A)>1
D' (A) < 1= A interpolating sequence = DT (A) < 1,

and since a complete interpolating sequence is both sampling and interpolating we see
that the density of such a sequence must be uniform, i.e.

D~ (A)=D"(A) =1.

Ortega-Cerda and Seip completely characterized the sampling sequences for PW?2
in [OCS02], while a complete characterization of the interpolating sequences is not
known.

Full description of the complete interpolating sequences for PV?2

Consider a sequence A of complex numbers. Assuming that A was contained in a
horizontal strip, Pavlov was in [Pav79] able to describe the complete interpolating
sequences for PW?2. Nikol'skii [Nik80] improved Pavlov’s result, getting rid of the
upper bound on the imaginary part of points in A. In 1991, Minkin [Min91] described
the complete interpolating sequences for PW2 without any boundedness assumptions
on A. This result was again generalized by Lyubarskii and Seip [L.S97] to PWZ, where
1 < p < 0o and their description is the one stated here.

Since the sequence A may have elements with unbounded imaginary part, it is nec-
essary to modify the setting of the interpolation problem a bit. For which sequences
A = {\;} = {& +ink} does the interpolation problem

f(Ak) = ag, forallk

have a unique solution f € PWE, when {as} is assumed to satisfy

Z |ag|Pe P (1 + |mp]) < oo
k

We need some preliminaries in order to state the Lyubarskii-Seip theorem.

Definition 3.14 A sequence A C C is said to satisfy the Carleson condition if

i%f H

k£l

> 0.

Ak — A
A — N
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If A is contained in a horizontal strip, then Carleson’s condition is equivalent to the
separation condition, infyz; A — A;| > 0.

Definition 3.15 Let Q(x,r) be a square centered in z € R with side length 2r and
sides parallell to the real and imaginary axis. A sequence A C C is relatively dense if
there exists some 79 > 0 such that A N Q(z,r) # 0 for each x € R.

Pavlov’s characterization involves boundedness of the Hilbert transform JH

U'C:fr—>i (T)dT

Iy t—T

in the weighted space

@) = {75 [ If@lPue) s < oo}

There are several criterions for the Hilbert transform to be bounded in L%,(R) and
one of them can be formulated in terms of the Muckenhoupt (A,) condition for the

weight w:
1 1 Pt
sup /w(fn)dx /w(m)_l/(p_l) dz < 00,
r \lJp 1] Jr

where the supremum is over all intervals I C R, see [HMW73]. Lyubarskii and Seip
uses a discrete version of the Hilbert transform in their characterization, as well as a
discrete version of the (A,) condition:

—1
k+n k+n p
1 3 1 3 ~1/(p-1)
sup — wJ — w < oo,
J
kez \ 1 — n -

where {wy} is the discrete analog of w. We will not dig into the details on how this is
used in the proof, but refer to the article [LS97].

Theorem 3.16 (Lyubarskii and Seip, 1997) Let A = {\x} C C and if 0 € A, let
Xo = 0. A is a complete interpolating sequence for PWE, 1 < p < oo, if and only if
the following three conditions hold.

1. The sequences AN Cy and AN C_ satisfy the Carleson condition in C4 and
C_ respectively, and also infy; [\, — | > 0.

2. The limit
. z
sG)=G-agm T (1-5)
[Ak|<R, k#0

exists and represents an entire function of exponential type .

3. There exists a relatively dense subsequence I' = {~;} C A such that the sequence
{157 ()P} satisfies the discrete (Ap) condition.

Defining F(z) = |S(z)|/dist(z,A), = € R, we may replace statement 3. by the
following:
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3’ FP(z), z € R, satisfies the continuous (Ap) condition.

Let us check that this agrees with our observations in Section 3.3.

Example 3.17 We use Theorem 3.16 to check that the zero set A of a sine-type function
forms a complete interpolating sequence for PW2. A is located in a horizontal strip
and separated, thus the first condition is ok. The second condition is fulfilled since
S is an entire function of exponential type 7 by definition and therefore it has a
representation in terms of an infinite product according to the factorization theorem
of Hadamard. We may shift A vertically, such that 0 < A <Im A, < H < oo, h and
H are some constants, without affecting the interpolation property. Fix some interval
I C R, then

1 |S()]? dist(z, A)? 2 -2
— [ ———=d —————dz < d dz. 14
77 e, St 2 <0 f sl as fls@tan G
S has no zeros on the real line, hence |S(z)|~2 is bounded on for all z € R. Moreover,
S is bounded on the real line, so the right-hand side of (3.14) is bounded. A satisfies
the conditions in Thorem 3.16 and is indeed a complete interpolating sequence for
PW2. A

3.5 Block interpolation in one variable

The material in this section is based on the last section of the article [LR00] and notes
by Yurii Lyubarskii. A similar result was obtained in [AI01] with a different approach.

Let S : C — C be an entire function and A = {\A} its zero set. We assume that all
zeros are simple and that S satisfies the following conditions:

1. 0<4h <|ImA < H <
2. For each € > 0, |S(z)| < ™™= when dist(z,A) > .

The zeros are for simplicity assumed to lie in a strip in the upper half-plane, because
we will work with the L?(R)-norm of rational functions with singularities at A. This
assumption does not affect the generality of the problem, since functions from PW?2
are square integrable on any horizontal line. The number 4 is included for further
convenience. Observe that S satisfies two out of three conditions for being a sine-type
function. If S satisfies the separation condition

‘)\i—)\j|>€, e >0,

for all A;; \; € A, then Theorem 3.11 tells us that A is a complete interpolating
sequence for PW2. In this section we assume that S does not satisfy the separation
condition and we will show that it is still possible to extract a Riesz basis for L?(—, )
from A. The proof will be more involved than the proof of Theorem 3.11. Let us start
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a a—+1

Figure 3.1: There are at most N zeros in each such rectangle, taking their multiplicity
into account.

with some preliminary lemmas. We divide A into smaller pieces, called blocks and
estimate the size of the blocks and the number of zeros in each block.

Lemma 3.18 For all a € R there exists a number N > 0 such that

sup#{ANeEA: a<Red<a+1} <N.
a€R

The lemma is illustrated in Figure 3.1 and a proof can be found in [Lev96].

Corollary 3.19 There exists a partition {Ar} of A such that A = UpAy and
1. sup, M = M < oo, where My, = #A\y,
2. for each k, there exists some € > 0 such that

4e + max Re A < min Re,
AEAL )\EAk+1

3. supy, (diam Ay) = supy, (Sup)\i7)\jEAk |Ai — )\j|> =D < 0.

To each f € PW?2 we associate a Lagrangian interpolation series
)

~ 2 F -

Sea -

We write ~ since we do not know anything about convergence yet. Using the partition
into blocks, we may write

SDIPIRIY Z%

k XeAy
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The inner sums converge, since they are finite sums and none of their terms blow up.

The two main theorems of this section are the following.
Theorem 3.20 Let Gy, A, A and f be as above, then

> NGkIZa ) = 1 w2
k

and f(z) = 3, Gi(2), with convergence both in the sense of PW2 and uniformly on
compact subsets of C.

Theorem 3.21 Let S, A and A be as above and

P(z) =[] (==,

AEAL

where deg Py = My = #Ay. Moreover, let {Qk(2)} be a sequence of polynomials,
where deg Q < My, such that

% 2
Py

2.

k

< Q.
L2(R)

Let 1y, = Qy./Py. For some f € PW2 we then have

f(z) =) S(2)ru(z)
k

in the sense of PW2 and
2 2
Hf”PWﬁ = Z ”Tk:HL?(R) :
k

The constants in the double inequality are independent of the choice of the polynomials
Qr as long as deg Qp < M.

Define a sequence of subspaces X by

Xy = { feH(C): f(z)= S(z)??:((j)) } . (3.15)

It is clear that if Theorem 3.21 holds, then the sequence X}, defined by (3.15) forms
a Riesz basis of subspaces for PW2, which in turn can be mapped to a Riesz basis of
subspaces for L?(—, ) using the Fourier transform.

We need quite a lot of preparations in order to the proofs. First, we state some
important theorems without proofs.

Theorem 3.22 (Minkowski) Suppose that (X, M, p) and (Y,N,v) are o-finite measure
spaces, and let f be an M x N-measurable function on X x Y.
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1. If f >0 and 1 < p < oo, then

([ sevaw) wew] < [[[ o] aw

2.If1 < p < o0, f(r,y) € LP(u) for almost every y, and the function y —
£, y)llp is in LY(v), then f(z,-) € LY (v) for almost every =, then function

z— [ flz,y)dv(y) is in LP(p), and

H/f(-,y) dv(y)

s/wawmm@»

A proof can be found in [Fol99].

Definition 3.23 A nonnegative Borel measure p is a Carleson measure on the upper
half-plane if for all z € R and all h > 0

(@, + h) x (0,h)) < Ch,
where C' is independent of x and h. The smallest such C is called the Carleson norm
of u.

Theorem 3.24 (Carleson embedding theorem) A nonnegative Borel measure p is a
Carleson measure if and only if there exists a constant C such that

£ (=) du(z) - < Clfllm2,
U, I} <ty

forall f € H_%

A proof of this theorem is given in [Koo80]. A simpler version of this result was
obtained by Gabriel in [Gab35] and the case we will consider is actually simple enough
to be proved by hands. However, we will refer to Carleson’s embedding theorem in
order to be short.

The following results about rational functions will be crucial in the proof of Theorem
3.21.

Lemma 3.25 Let r: C — C be a rational function with the property that

lim r(z) =0.
|z]—o0

Let v be a simple closed curve such that all the poles of r lies in the interior of .
Moreover, let T and T~ be the bounded and unbounded parts of C\ . Then

I (Y -
r(z)_Qm'/WC—de’ zel™.



36 Chapter 3. Paley-Wiener spaces

H+h 1L ,
HT : 7
N
\7
4h L
3h T
a a-+d
L1 L1
LI 1
a—¢€ a+d+e

Figure 3.2: Illustration of the construction in Lemma 3.26.

Proof: This is just a special version of the residue theorem. |

Recall that the degree of a rational function is the maximum of the degree of the
numerator and the degree of the denominator.

Lemma 3.26 Let r be a rational function such that lim, . r(2) =0 and ||7||p2r) =
K. Let degr < M. Since lim, o 7(2) = 0, the degree of r is the degree of the
denominator. Assume that all poles of v are located inside the rectangle

v=la+4ih,a+d+4ih|Ufa+d+4ih,a +d+iH])U [a + 4ih,a + iH]
Ula+iH,a+d+ iH],

where h and H are fived, 0 < d < D = sup; diam Ay, and a € R. Also, let € > 0 and

v =la—¢e+3ih,a+d+e+3ih|Ula+d+e+ 3ih,a+d+e+i(H + h)]
Ula—e+3ih,a —e+i(H + h)]
Ula—e+i(H+h),a+d+e+i(H+h)).

1/2
||r||L2W>=( / |r<z>|2|dz|> < AK.
,Y/

where A depends on M, e, h and D, but is independent of r,a and d.

We then have

The construction in the lemma is shown in Figure 3.2.

Proof: Let m = degr and A1, Ag, ..., Ay, be the poles of r. Define p(z) = H;”Zl(z—)\j),
such that r(z) = q(z)/p(z) for some polynomial g of degree less than or equal to m —1.
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Let p(z) = p(z) = H;nzl(z — ;) and 71(2) = r(2)p(2)/p(2) = q(z)/p(z). We see that

p(x)

The function r; € H_QF, since /_\j e C_, for j = 1,...,m. Now, for any Lebesgue
measurable A C C. define a measure p by

‘p z)

=1 = |nllm) =K

u(A) = length(A N+).

Observe that p is a Carleson measure whose Carleson norm is bounded by some
constant C', which only depends on ¢,d, h and H. We then have

112y = [ IR ldz = [ (@) Pdute) < BOInl
’Y/ ,y/

where the last inequality is justified by Carleson’s embedding theorem (Theorem 3.24)
and B is a positive constant. Moreover,

il = lrll2@w) = K,

hence ||r1 |7, () < BCh VK. An estimate for ||r || L2(y) I8 obtained, but what we really
want is an estimate for ||7|z2(,,. We have

p
r—

7l z2(y) =
L2(v")

and since

min |p(z)| > (min(e, h))™ and
zey’

max |p(z)| < (2H +2h +2¢ + D)™,
zey!

we get that |p(2)/p(z)| < C2 on +'. Hence
7l z2(yy < Callrillp2(yy < BO3K,

where Cs is depending on H, h,e, D and M. [
We are now ready to prove Theorem 3.21.

Proof of Theorem 3.21: From the assumptions in the theorem we have ry = Q/Px
and > 27 ||Tk\|%2(R) < 00. Now, choose the sequence of rectangles

Ve = [ak + 4ih, ap, + dj +4ih] U [ak + dy, + 4ih, a + dg +iH] U [ak + 4ih, ay, —|—iH]
Ulax +iH, ax + dy + iH]|



38 Chapter 3. Paley-Wiener spaces

such that Ay C int(7y), ar+di+3e < apy1 and d, < D+¢/2. Let ;. be obtained from
Yk as it was done in Lemma 3.26 and write Ry (z) = S(2)rg(z). Then Y ) _  Ry(z) =
S(z) > p_,, k() and by the growth assumption on S we have |S(z)| < 1 for all z € R.
We would like to prove that

n 2 n
Z Ry, <C Z Hrk”%Q(R) . (3.16)

k=m L2(R) k=m

Let us start estimating Ay, n(x) = Y p_, 7x(x). The function hy,,, has poles in Cy
and

lim h(z) =
|z|—00
SO hymnm € H?. The dual space of H?> may be identified with H_%, hence h,, ,, may be

considered as a bounded linear functional on Hi We use this to estimate the norm
of hm.n

o0
Hhm,nHL2 = ”hmnHH2 = sup hm,n(x)SO(x) dz|.
apeH —00
llell=

Let ¢ be a function from HJQF, then

‘/megw@mx

By Lemma 3.25 we get

/ " r@)e(r) do| <

—00

n

Z /OO ri(x)p(z) dz|.

k=m 'Y T

<

n

D

k=m

<1

v 270 )

and Fubini’s theorem justifies the change of the order of integration

‘/ ami idw(@dx [ g [ £ anag].

Recall that a function ¢ € HJQr can be reconstructed from its boundary values using
the Cauchy integral, thus

Qg [ 2 arag| =
Az /wC—

n

-3

k=m

n

D

k=m

n

D

k=m

< > Ikl zap el

k=m

JREGEGLS

k
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where the last step is justified by the Cauchy-Schwarz inequality. Using Lemma 3.26
and then applying Cauchy-Schwarz once again we get

D lrkllizepllelzeg < C Y el e@llell ey
k=m k=m

" /2 , 1/2
<C (Z |rm%2<m> (Z HwH%m>> :
k=m k=m

We need to estimate the last factor
n
2
> lellz2¢yry =
k=m

The measure p generated by the system of curves [ J,~ _ 7}, such that for any A C C

u(A) = length (A N < U 7,2)) ,
k=—o00

is a Carleson measure. If now | ¢|| 2 = 1, Carleson’s embedding theorem implies that

n

?ld¢) < 2|dc].
Z/ﬁ (O] <|/Um (O Ic|

k=m k=—o0

| worg <.
he— oo
We have arrived at

2 n

<G Z HrkH%Q(R)7
L2(R) k=m

> Ri(x)
k=m

where C5 does not depend upon m and n. Let m < n and let m,n — oo and then
m,n — —oo to get convergence in L?(R). To get the desired estimate (3.16) we let
m — —oo and n — o0. |

Proof of Theorem 3.20: Let 7, be as above. The residue theorem gives us

A
G2 = 5) Y G

Aehg
s [ 1©
=S5 2R il

_SG) [ 1©)
= omi / SOGE-0%

for (at least) z € C\ (v, Uint(})) and in particular for z € R, such that

_ S(z) f(©)
Gilx) = 2= /% AT (3.17)
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Denote the right hand side of (3.17) by fr. We would like to prove that fi(z) = Gi(z)
for all z € C. To do that we prove the following

e fj is entire
o V) =FN)., AeA,

The function fj is of exponential type less than or equal to 7w and square integrable
on the real line. If all the three points above are proved, then fx|yx = Gi|a and by the
uniqueness part of Theorem 3.11, they are equal in the whole complex plane.

We start by proving that fy is entire. It is possible to choose € > 0 such that {|( —A| <
e}aen, is a disjoint family of disks, containing Aj. The singularities of fj, are the points
A € Ay, thus we may write

_5k) 9
o) =50 2 Jeor. 500G =5 % 1

Since Ay is finite, the singularities are isolated. If we can show that fj is bounded near
each A € Ag, we can use Riemann’s theorem on removable singularities. Fix A\ € Ay
and consider z close to A. Let & = 3|z — A|.

S(2) i
ot | S0

is the only term of (3.18) which contributes to the growth of fx near . We have

£(0)
/M:s 5OG-0%

Observe that | — z| =< |z — A| and that the length of the path of integration is
approximately |z — A|, thus

£(0)
/M:E SOG-0 % =9

15(2)]

| fr(2)] = v

1S(2)]
2

Q)
IS e Ts1 =<

fx is bounded near A and by Riemann’s theorem on removable singularites, fj is entire.

The two other points above is ok because of Cauchy’s integral theorem. The integral
representation in (3.17) is therefore valid for any z € C and we may write Gy, instead

of fk

We will now prove the following;:

1GkllL2®) < Cllfllz2(yy)- (3.19)
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S is bounded on the real line, so we must prove

f(Q)
o d¢ < Ol fllz2¢yy)-
| 4 SOC-0Y '
When (¢ € ~;,, then
H =7 m <c0nstant.
From Minkowskii’s inequality for mtegrals (Theorem 3.22) we get
; 1/2
f(Q) d¢ (©)] ld¢]
— d
‘/ SO o /R G
<[ LSO B [
B Ve |$—C‘2_
f(¢
= d
56l =l o
and from the Cauchy-Schwarz inequality we get
FQ |1 IS 1
| —— d¢| < C ||~ d <Oy ||52s ,
/y,; S(C)‘H'—C LQ(R)| ‘I = HS(C) L2(v}) (/w;; | d) = Hs© L2(v})

since the length of +}, is bounded. S is uniformly bounded from below on J, 7}, thus
the estimate (3.19) is obtained. We are left to show that

Y 1 1z2g) < 1 By
k

e is bounded from above and below on J, 7}, so > |If ||%2(%,€) is bounded if
Dok ||e"7rz‘)"H%2 ) is bounded. We define ®(z) = €™ f(z). The function ® is from H?,

since e“rZPW'2 is a closed subspace of H2, more precisely e/™ PW?2 = HY 2o eQ“TZH 2
(see [Sei04, chapter 5]). The H?-norm of @ is H<I>||H2 = | fllz2r)- Now,

OIAMET SILIAMES By LI / 12(2) fdl.
k k k77

Uk

For any Lebesgue measurable A C C_, define a measure u by

p(A) = length (A N (U 72,)) .
k
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The measure p is clearly a Carleson measure in the upper half-plane, and we may
apply Carleson’s embedding theorem. We have

| eR = [ eer e < el

Cy
and conclude that

S22y < Cl@I3e(cr) = Cllf 32wy
k

Uniform convergence on compact sets follows by the same argument as in the proof
of Theorem 3.3. [

3.6 Paley-Wiener spaces in several variables

In this section we introduce Paley-Wiener spaces of entire functions of several complex
variables and results analogous to the some of the results obtained in Sections 3.1 and
3.2.

Definition 3.27 Given a bounded domain 2 C R", we define the corresponding Paley-
Wiener space by the relation

1

PW% = {f :C" = C; f(z) = W/Qe“’z’wgp(w) dmy,, ¢ € L2(Q)} .

We would like to present a several-dimensional version of the Paley-Wiener theorem
called the Plancherel-Polya theorem. To do this we need some definitions.

Definition 3.28 Let € be a convex set in R". Its supporting function is defined as

Hq(y) = sup (y,&) .
£eN)

A geometrical interpretation of the supporting function when |y| = 1 is as follows.
(y, &) is the projection of £ onto the line spanned by y. Hq(y) is therefore the distance
to the closest hyperplane P perpendicular to y such that the half-space {{£ € R" :
(y,€) > Hq(y)}, whose boundary is P, contains no points of 2. An illustration of the
idea is shown in Figure 3.3. Plancherel and Polya introduced a function called the
P-indicator of a function f. It describes the growth of f in the imaginary part of C".

Definition 3.29 Let a be a point on the unit sphere of R" and let

1
h¢(a;2) = limsup = log |f(x1 + i1 R, ...,xn + i, R)|.

R—o0

The P-indicator of f is defined as

h¢(a) = sup hy(a;x).
zeR"
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N

Figure 3.3: The length of the red and black dotted line is Hq(y).

Theorem 3.30 (Plancherel-Polya) A function f : C™ — C is an entire function of
exponential type and in L*(R™) if and only if there is a bounded domain 2, C R"
and a function ¢ € L?(Qy,) such that

1

Z) = —— W) () dmy, . .
1) = Gy € etwyam, (3.20)

When this representation is valid, the supporting function of the convex hull of Q,
coincides with the P-indicator of the function f.

We present the proof given in [Ron74], but first we need a lemma.

Lemma 3.31 Let f : C — C be an entire function of exponential type satisfying the
following conditions:

1. lim SUPy o0 y~1log |f(iy)| =0
2. f € LY(R).

Then the Fourier transform
= [ sweas

vanishes fort > o.

Proof: The function f must be less than some constant M on the real line. Then
|fI> < M|f| on the real line, which implies that f is from L?*(R). The Paley-Wiener
theorem applies and f vanishes for t > o. |



44 Chapter 3. Paley-Wiener spaces

Proof of Theorem 3.30: (<) Let ¢ € L?(2) and ¢ = 0 in R" \ 2, where (2 is some
bounded convex domain. Then ¢ is also from L!(2) and the integral

/ e"F) p(w) dmy,
Q

makes sense. Suppose that

1

f(Z) = (271')”

/Qei<z’w>cp(w) dmyy. (3.21)

We would like to prove that f is an entire function of exponential type and that f
is from L?(R™). That f € L?>(R") follows from Plancherel’s theorem. Moreover, the
function f is entire since the integral in (3.21) is absolutely and uniformly convergent
in any bounded subset of C”. To prove the growth property, we estimate the function
f- Let a be a point on the unit sphere of R” and let R € R, then

(2m)™

/ ei<x’w>e*R<y’w>g0(w) dmy,
Q
1 / “R(
< e~ YW ()| Ay,
< Gy o€ et

< (2717)" exp <R sup {a, w )/ lp(w)] dmy,
< Cexp(RHq()). (3.22)

1

o +ioR)| = \

For any z € C™ we then have
f(2)] < Ce < Cel,

where a = sup|,|—; Ho(a), thus f is of exponential type.

From (3.22) we see that hy(a;z) < Hg(a), then
hi(a) < Ho(a). (3.23)

We did not use any other properties of €2, other than that ¢ vanishes identically on
the complement, thus (3.23) holds for the convex hull ¢h, of Q, i.e.

hf(a) < HCth(OJ). (3.24)

(=) Suppose f : C" — C is an entire function of exponential type and from L?(R").
Assume first that f € L'(R"), then its Fourier transform

f&) = f@)e & dm, (3.25)
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exists as an ordinary Lebesgue integral. Consider a straight line through the origin
and let this line be the z/-axis in the new coordinate system 1, ..., 2/,. Also, let 7, 4

be the cosine of the angle between the x;—axis and the zp-axis. Then

n
_ /
Tp = E :xq'an'
q=1

Define a new function

g(ml) = f(al + ’71,1‘%/17 cey Ap + 77171:1:;1)7
where

n
_ ! _
ap = qu’yp,q, p=1,..n.
q=2

Consider the integral

| lota)ldma.

It is finite since f € L'(R") and Fubini’s theorem tells us that

[ o)1zt

—00

exists for almost every (o, ...,x%,) € R"~!. Apply the same change of coordinates to
the integral in (3.25), then

fO=[ f@e & dm,

Rn
n n
— / ) g(x')exp | —i Z & Z Ty Ypg | A
R p=1 q=1
Simple computations show that
n n n n n n n
/ / / /
Z &p Z LqVp,g = L1 Z EpAp,1 + Z &p Z TqApg = T Z EpAp,1 + Z Epap,
p=1 ¢=1 p=1 p=1 ¢=2 p=1 p=1
hence

f(ﬁ)—/R _oxp —iZ§pap / g(z') exp —ixizgp’yp,q doy 3 dafy...dz).

p=1

The inner integral exists for almost every (24, ..., 2},) € R""1. Also, we may write

g(l") — f(al + Zi’}/l,l, ey Qp + Zi’yn’l) Y =0’
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where 2} = 2 +1iy], and g, as a function of 2/, may be extended to an entire function
of exponential type in the complex z{-plane. Moreover,

) 1 . )
lim sup Elog |f(a1 +iRY1,1, s an + iRV 1) = hp(Vi15 0y Y15 Q1,5 ooy Gy

R—o0

< hp(1s s ns1)-
Using Lemma 3.31 we see that
00 n
/ g(a")exp [ —iz] prvp,q dz) =0
oo =
for almost every (z, ..., 2},) whenever
n
Zﬁp’yp,l > hy(V1,15 0 Yni1)-
p=1

Then f(£) = 0 in the half-space > =1 &1 = hp(Y1,15 -5 70,1). The 2-axis was

arbitrary, so f (&) = 0 for all £ outside the intersection of all the halfspaces (¢, ) <
h¢(a), a € R™, i.e. the convex hull of Q. Consequently,

HChQ(a) < hf(Oé)

Let us now examine the case when f € L?(R™), but not necessarily from L*(R™). Let

£(2) = (2) H sin azj'

j=1

EZj

Using the Cauchy-Schwarz inequality we get

/Rn [fe(@)| dmg < </R |f ()] dmz>1/2 /ngsm %d

Both integrals on the right-hand side are finite, hence f. € L'(R"™). We have proved
that the Fourier transform of f. vanishes outside some convex set ()., such that

Ho.(a) < hy(a) = hy(a) +¢

for any o € R"™. We calculate the Fourier transform of f.

1/2

fa(é) = f( Je il >dmcc

_ f(l’) H sin EX e_i<£’x) dmz

R j:l 6.%']‘
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n .
/ Fm)ett®m dmy, e” &) H SIedy dmy
n JR" E.r]

=1
" osinex; .
:/ / [[72 e am. fayam,
1+5 £n+5 A
) dny...dn,
&1— &n—

and see that

limsup f-(¢) = f(€)

e—0

for almost every £ € R"™. For every positive &, we have f (&) = 0 for almost every ¢
outside the convex set with supporting function h; + e. This means that the smallest
convex set {2 i for which f vanishes on the complement has the property

Hgf(a) < hy(a). (3.26)

The function f is of exponential type, so its P-indicator is bounded. Then HQf is

bounded as well, and this implies that 2 i is bounded. Let ¢ = f and we obtain the
representation (3.20).

Finally, compare (3.24) and (3.26) to see that
Ho, (@) = hy()

for all « € R"™. [ |

One of the other basic results in one dimension was the sampling theorem by Whit-
taker, Kotel’'nikov and Shannon. This result is extendable to several dimensions.

Theorem 3.32 Let S = [—m, 7] x -+ x [—7,7] C R™ and let f be a function from
PW2. Then

[e%s) [e%s) kn . .
D f(kl,...,kn)st (3.27)

ki=—oc0 kn=—00 Jj=k1

and
£l pwz = I1f (B, s Kon) 2 my -

The series in (3.27) converges in the norm of PWS% and uniformly on compact subsets
of C".

The proof is similar to the proof of Theorem 3.3 and is omitted.

Our main motivation for introducing Paley-Wiener spaces of several variables is to be
able to say something about complex exponential systems in L?-spaces over domains



48 Chapter 3. Paley-Wiener spaces

in several dimensions. The arguments in the proof of the duality theorem we proved
in Section 3.2 works equally well for several variables, so the duality idea can be trans-
fered to several variables. We are again looking for complete interpolating sequences
for Paley-Wiener spaces in order to get Riesz bases of families of complex exponential
functions in the corresponding L?-spaces.

Not much is known about complete interpolating sequences in several variables. For
most domains 2 C R™ we do not know whether they exist or not. A complete de-
scription is even further away. One reason for this might be that the methods from
the one-variable case does not transfer to several variables. In one dimension, we de-
scribed complete interpolating sequences as the zero set of some generating function.
In several variables this does not work, because the zero set of an analytic function
of m-variables is loosely speaking a complex manifold of dimension n — 1, which is
certainly not a discrete set when n > 1.

However, there are some domains {2 which we know things about. In Chapter 4 we dis-
cuss the domains 2 with the property that L?(2) has an orthonormal basis of complex
exponential functions. This corresponds to precise interpolation in the corresponding
Paley-Wiener space PWS%7 with Parseval’s identity. This problem has gained a lot of
attention the past years because of its relation to a conjecture by Fuglede. Fuglede
conjectured [Fug74] that it is possible to fill up R™ with non-overlapping translates
of Q if and only if L?($2) possesses an orthonormal basis of complex exponential func-
tions. The conjecture has been disproved in a number of cases, but in the case of
convex sets in the plane, Tosevich, Katz and Tao proved in [IKT03] that the conjec-
ture holds. This means that if 2 C R? is convex, then L?(£2) has an orthonormal basis
of complex exponential functions if and only if € is a rectangle or a hexagon, since
they are the only convex sets which tile R? by translations. This leads us to another
question: What if Q € R? is convex, but not a rectangle or a hexagon? What is the
"best’ possible system of exponential functions for L?(2)? What about about polygons
with more vertices? And what about the disk? These questions will be fundamental
in Chapter 5 and Chapter 6.

Chapter 5 will be concerned with convex polygons €2 in the plane, which are symmetric
with respect to the origin. Lyubarskii and Rashkovskii showed in [LR00] that there
exist complete interpolating sequences for PWS% and by duality that there exist Riesz
bases of complex exponential functions for L?(Q). Their technique is based on one-
variable methods, using a generating function whose zero set is a union of hyperplanes.
The pairwise intersections of the hyperplanes is a discrete set, having the desired
interpolating properties.

The next set we look at is the plane disk D. In Chapter 4 we show that there does not
exist orthonormal bases in terms of complex exponential functions for L?(D), so the
next best thing to look for is Riesz bases. One might expect a negative result about
this, mainly because of the following unpublished result by Ortega-Cerda [OCO06].

Theorem 3.33 For any convex smooth bounded domain Q2 C R there are no complete
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interpolating sequences for PW{ when p #2, 1 < p < co.

The proof relies on Fourier multipliers and Fefferman’s theorem and will not be re-
produced here. It is however of common belief that the following is true.

Conjecture 3.34 Let Q2 C R"™ be a convex set. If at least one point on OS2 has a non-
vanishing Gaussian curvature, then there exist no complete interpolating sequences for

PW2.

These observations indicate that we should look for even weaker sequences than the
complete interpolating ones. In Chapter 6 we try to apply the method from the case
of a convex symmetric polygon to the disk to get a set of uniqueness for PW%, which
again will lead to a complete system of exponential functions in L?(D). This work is
not completed yet.

Finally we mention Landau’s generalization of the Beurling densities to several vari-
ables.

Theorem 3.35 (Landau’s density theorem) Let A be a uniformly separated sequence
in R™, U the unit cube in R"™ and Q a subset of R". Define n*(r) and n™(r) as the
largest and smallest number of points from A which can be found in a translate of rU.
The Landau densities are then

+ —
D' (A) = limsup n(r) and D™ (A) = liminf n (T)

r—00 r =00 r

If A is an interpolating sequence for PWgE, then DT (A) < (2%‘” If A is a sampling

sequence for PW2, then D~ (A) > %

A complete interpolating sequence for PVV?2 must therefore have density

]
(2m)™

DY (A) =D (A) =

See the original article [Lan67] for a proof.






Chapter 4

Fuglede’s conjecture

To be able to state the problem of this chapter we need some definitions.

Definition 4.1 Let ) be a Lebesgue measurable subset of R"”. We say that €2 is a
spectral set if there exists a discrete set A C R"™ such that E(A) = {627ri<)‘"> tAeA} =
{ex: A € A} is an orthonormal basis for L?(Q). A is then said to be a spectrum for
Q. The pair (2, A) is sometimes called a spectral pair.

Example 4.2 Let Q = [0,1]" be the unit cube in R™. Then 2 is a spectral set, and a
spectrum for Q is A = Z™. The orthonormal basis is in this case the usual ”Fourier
basis” E(Z"). A

We need the concept of translational tilings.

Definition 4.3 Let 2 be a Lebesgue measurable subset of R™. We say that €2 tiles R"
by translations if there is a discrete subset 7' C R”™ such that

ZXQ(x—i—t) =1,

teT
for almost every x € R".

We are now ready to state Fuglede’s conjecture, also known as the spectral set con-
jecture.

Conjecture 4.4 (Fuglede, 1974) Let Q be a Lebesgue measurable subset of R™. € is
a spectral set if and only if it tiles R™ by translations.

In this chapter we will discuss Fuglede’s conjecture for various cases. The first section
contains some of Fuglede’s motivation for stating the conjecture and one of his results.
In the second section we prove Fuglede’s conjecture for the case when the tiling set
or the spectrum is assumed to be a lattice. After that we give an overview over what
is known in two dimensions and some two-dimensional examples. Finally we have a
brief look at known results in other dimensions and some open questions.



52 Chapter 4. Fuglede’s conjecture

4.1 Origin of the problem and a result by Fuglede

Most of the research papers nowadays only state the conjecture and refer to the original
paper [Fug74] for the functional analytic origin of the conjecture. In this section we
will try to explain the origin of the problem and a result obtained by Fuglede himself.
To be able to understand Fuglede’s result we need some theory for unbounded linear
operators in Hilbert spaces. We start with some general theory for unbounded linear
operators, using the formal expression for the momentum operator from quantum
mechanics defined on various domains to display some of the challenges related to this
class of operators. After a quick look at their spectral theory, we consider a system
of unbounded operators, and this will lead us to a nice result by Fuglede. It should
be noted that the exposition of the material on unbounded operators is of a quite
heuristic nature.

A linear operator between two Banach spaces (we will only work with Hilbert spaces)
for which there is no constant C' such that |[|[D|| < C' is called an unbounded linear
operator. Unbounded operators are a bit different to work with than bounded opera-
tors, in particular the concept of adjoint operators needs to be generalized. Much of
the material which now follows is taken from [DS63, chapter XII].

Recall that for a bounded linear operator 1" : H — H, where H is a Hilbert space,
the adjoint operator 7™ is the operator T* : H — H such that (T'z,y) = (x,T"y)
for all x,y € H. It should be noticed that such an operator always exists, is unique
and is bounded and linear. If 7" = T™, then T is called self-adjoint, so for bounded
self-adjoint linear operators we have

(Tz,y) = (2, Ty), (4.1)

for all z,y € H. For unbounded operators things are not as simple. The Hellinger-
Toeplitz theorem is of basic importance and says that a linear operator T defined
on all of a Hilbert space H satisfying (4.1) for all x,y € H, must be bounded. This
means that an unbounded operator cannot be defined on all of H and immediately
leads to the problem of determining suitable domains for unbounded operators. Later
in this section we will see that important properties (especially symmetry and self-
adjointness) of unbounded operators depend heavily on the choice of domains. First
we will show that in order to have a resonable definition of the adjoint operator, the
domain should be some dense subset of the Hilbert space in question.

Definition 4.5 Let 7' : D(T') — H be a linear operator, where D(T") is a dense subset
of H. The adjoint operator T* : D(T*) — H is defined as follows. The domain of T,
D(T™), is all y € H such that there exists a y* € H satisfying (T'z,y) = (z,y*) for all
x € D(T) and for each y € D(T™) the adjoint operator is defined by y* = T™y.

Observe that for bounded linear operators this definition coincides with the definition
in the text above. Let us see what happens if we define 7" on a set D(T') which is
not dense in H. The orthogonal complement D(T)* of the closure of D(T), D(T),
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contains a non-zero element y;. Then (z,y*) = (z,y*) + (x,y1) = (z,y* + y1) and y* is
not unique. On the contrary, if D(T') is dense in H, then D(T) = H and D(T)* = {0}.
This implies that if (x,y;) = 0 for all z € D(T'), then y; = 0 and y* is unique.

An operator T satisfying (4.1) for all z,y € D(T) is called symmetric. For bounded
linear operators symmetry and self-adjointness is the same. For unbounded linear op-
erators it is not. It can be shown that a densely defined linear operator 71" is symmetric
if and only if 7™ is an extension of T, that is D(T) C D(T*) and T*’D(T) =T.If
D(T) = D(T*) and T = T*, then T is self-adjoint. A self-adjoint operator is therefore
always symmetric, but not vice versa. Notice that for bounded linear operators, also
this definition coincides with the one given earlier. We are now ready for an example,
illustrating the theory just outlined.

Example 4.6 Consider the differential operator D = —i% defined on!
du 9
D(D) =< ue AC|0,1] : 1 € L7(0,1) ¢.

The operator D is easily seen to been unbounded. It can be shown that D(D) is dense
in L?(0,1), see e.g. [Yos80]. For u € D(D) and v € L?(0,1), we have

1
(Du,v) = i/o g—zv(x) dz

L T
:—z’u(l)v(l)+iu(0)”(0)+/o u(w)—z’j—m da

= —iu(1)v(1) + iu(0)v(0) + (u, Dv) .

As seen from the calculation, with this domain D is neither symmetric nor self-adjoint.
It is easy to find a symmetric restriction D; of D. If we let D(D;) = {u € D(D) :
u(0) = u(1) = 0}, then

(D1u,v) = —iu(1)v(1) 4+ iu(0)v(0) + (u, D1v) = (u, Dyv),

for all u € D1(D), v € L*(0,1), hence D; is a symmetric restriction of D. However,
D; is not self-adjoint, because D(D;) # D(D7). In fact,

D(D7) = {u € L*(0,1) : Dyu € L*(0,1)},

so D(Dy) € D(D7) and Dy is an extension of D;. Consider the operator Dy having
the same formal expression as D, but defined on

D(Dy) ={uecDD): u0)=u(l)}.

fu € ACI0, 1], the set of absolutely continuous functions on the interval [0, 1], then for every & > 0
there exist some § > 0 such that for any set of disjoint intervals (a1, b1), ..., (an,bn), >, (bj—a;) < 0
implies that Z;\Izl |u(b;) —u(aj)] < e. An absolutely continuous function is differentiable almost
everywhere, see e.g. [Fol99].

N
j=1
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Now
(Dou,v) = iu(0) (v(0) — v(1)) + (u, Dav) ,

which means that (Dau,v) = (u, Dyv) if D(D3) = D(D2) and Dy is self-adjoint. A

The example above raises some questions. When can we find some self-adjoint restric-
tion or extension of an unbounded operator? How many self-adjoint extensions are
there? This problem is handled by a theorem of von Neumann [vN29]. We need two
definitions.

Definition 4.7 Let T : D(T) — H be a linear operator, where D(T') is a dense subset
of a Hilbert space H. If T has a closed linear extension it is called closable. If T is a

closed linear extension of T" such that every other linear extension of 7" is an extension
of T, then T is called the closure of T.

Definition 4.8 Let T be a closed symmetric operator defined on a dense subset of
a Hilbert space H. n, is the dimension of the linear subspace N, and n_ is the
dimension of the linear subspace N_, where

Ny ={zeD(T"): TMx =iz}
N_={zeD(T"): Tz = —iz}.

The numbers n, and n_ are called the deficiency indices of T.

Theorem 4.9 (von Neumann, 1929) Let T be a closed symmetric operator defined
on a dense subset of a Hilbert space H with deficiency indices ny and n—. T has a
self-adjoint extension if and only if ny. =n_.

A proof can be found in [DS63].

Example 4.10 Consider the symmetric operator D; as defined above. To calculate
its deficiency indices we need to find the dimension of the subspaces Ny and N_ of
L?(0,1). By simple calculations we see that

N. = {ueD(Dy): —uf —u} = fu=Ce)
No={ueD(D): v =u}={u=Ce"},

where C' is some constant. The dimension of each of the subspaces is clearly 1 and Dq
has by the von Neumann theorem self-adjoint extensions. This is indeed in agreement
with our example above, where we found one such extension. A

It can be shown that D = —z'dd—m has different extension properties when the domain
is a dense subset of the square integrable functions on the real line, the half-line and
an interval. If Dpg is the operator —i% defined on the subset

D(Dg) = {u € AC(R) : % € LQ(R)}
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of L2(R), then Dp is self-adjoint. If we move to the half-line R = (0, 00), then the
operator D, defined on

D(D,) = {u € AC(RY) : % € L2(R,), u(0) = 0}

has no self-adjoint extension and as we saw above, when considered on an interval,
the operator D; has self-adjoint extensions.
We know move on to the spectral representation of self-adjoint operators.

Definition 4.11 Let 7' : D(T) — H be a self-adjoint linear operator, where D(T) is a
dense subset of a Hilbert space H. The operator

U= (T —il) (T +il)™,

where [ is the identity operator, is called the Cayley transform of T'.

Definition 4.12 Let U be a bounded linear operator. If U is bijective and U* = U1,
then U is called unitary.

Proposition 4.13 Let T be as in Definition 4.11. Its Cayley transform U is a unitary
operator.

A proof of this proposition is given in [Lax02].

Definition 4.14 Let M be a closed subspace of the Hilbert space H. The orthogonal
projection from H to M is the operator P : H — M defined by Pr =y if z =y + 2z,
where y € M and z € M+,

For orthogonal projections we have the following equivalence:

Proposition 4.15 A bounded linear operator P : H — H, where H is a Hilbert space,
is an orthogonal projection if and only if P is self-adjoint and P? = P.

Theorem 4.16 Let T be a self-adjoint operator in a Hilbert space H, with domain
D(T). There is a spectral resolution for T, that is an orthogonal projectionvalued
measure E defined for all Borel measurable subsets of R, with the following properties:

EW()=0, BR)=1.

~

2. For any pair of measurable sets A and B, E(AN B) = E(A)E(B).
3. For every measurable set A, E*(A) = E(A).
4

. E commutes with T, that is, for any measurable set A, E(A) maps the domain
D(T) of T into D(T), and for all x € D(T), TE(A)x = E(A)Tx.

5. The domain D(T') of T consists of all elements x for which

/ t2d(E (t) z,z) < 00
R
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and

Tr = /thE (t) . (4.2)

The integral in (4.2) should be explained. Consider the interval I = [m, M] C R and
any decomposition I = U,[t;_1,t;] into disjoint subsets. The integral frﬁ/‘[tdE(t):c is
defined as the limit of the Riemann sums . ¢t"E ((¢j-1,t;]) z, where t* € (t;_1,;],
as max; [t; — tj_1| tends to zero. The expression [, tdE (t)z is then defined as

M
/ tdE (t)z = lim tdE (t) z.
R T Jm

The original proof of the spectral representation for self-adjoint operators given by von
Neumann uses the Cayley transform. The Cayley transform U is a unitary operator
and a spectral representation for this is known. Unitary operators have spectrum on
the unit circle, so their spectral measures are supported by the unit circle. The idea
is to pull back the spectral representation of U with a conformal mapping to get a
spectral representation for the unbounded operator T'. More about this proof, as well
as other proofs, may be found in [Lax02].

The support of the measure F is the spectrum of the operator T. Recall that the
resolvent set p(T") of an operator T' is the set of points A € C for which there exists
a bounded linear operator A, such that A(T — X\) = (T — M)A = I, in other words
A = (T — M)~ The spectrum of T is o(T) = C \ p(T). One can prove (see e.g.
[DS63]) that the spectrum of a symmetric operator, and in particular a self-adjoint
operator, is real. This is the reason why the integration in Theorem 4.16 is done on
the real line and not in the complex plane.

We need a way to define commutation for self-adjoint operators, based on spectral
resolutions.

Definition 4.17 Let 77 and 715 be self-adjoint operators in a Hilbert space H, with
domains D(T) and D(Ts). Commutation in the sense of spectral measures means that

E1(A)Ey(B) = Ex(B)E1(A)

for all Borel sets A, B C R, where E; and Es are the spectral measures associated
with 77 and T5.

Finally, we are ready to the state the problem posed to Bent Fuglede by Irving Segal
in 1958:

Problem: Given the differential operators D; = —i%, j =1,...,n, acting on L?(Q)
J

in the sense of distributions, where 2 C R" is an open connected set. Since each D;

is acting in the sense of distributions, we consider

D(D;) = {ue L*Q): Djuec L*(Q)}
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as its domain. The question is then, for which domains 2 does there exist self-adjoint
restrictions 11, ..., Ty, of D1, ..., D,, which are commuting in the sense of spectral mea-
sures?

Let now T = (T1,...,T,,) be a family of self-adjoint operators in a Hilbert space
H, commuting in the sense of spectral measures. We follow [Fug74] to give some
properties of T'. The domain of 7" is defined as D(T') = N7_,; D(T;). There is a spectral
representation of T', based on the spectral representations for the individual operators
T}, if and only if the operators are commuting in the sense of spectral measures,

T= / tdE(t),
meaning that
7= [ tago).
R

for j = 1,...,n, where F is the spectral measure on R’ associated with T". The support
of E is the spectrum of T', o(T"). By the spectrum of 7" we mean a point A € R such
that A; is in the spectrum of 7} for all j = 1,...,n. The point spectrum o,(7") is the
set of eigenvalues for T'. An eigenvalue for T is a point A € R such that

E({\}) = {ueDT): Tu=ru}+#{0}.

E ({\}) is called the eigenspace associated with the eigenvalue A. It should also be
noticed that the image of the eigenvalue A under the measure FE is the orthogonal
projection operator of H onto E ({A}). If E(0,(T)) = I, then T is said to have a
pure point spectrum. In this case, the union of all the eigenspaces is dense in H and
op(T) = o(T). For T to have a pure point spectrum it is sufficient that the spectrum
is discrete in R".

The goal of this section is to state and prove Fuglede’s result related to the problem
stated above. To do this we need two propositions which we state without proofs, and
a definition. The proofs of the propositions can be found in [Fug74].

Proposition 4.18 LetT and H be as above and let P be a finite dimensional orthogonal
projection on H. Denote a point in the spectrum o(T) by A = (A\1,..., A\p). Assume
there exists a finite constant C' such that

n
lu— Pul® < & |[Tyu = Agul?
j=1

for all w € D(T). Then® 0 # E({\}) < P, that is, \ is an eigenvalue for T with
eigenspace E({\}) contained in the range of P. If E({\}) = P, then X is an isolated
point of o(T') and the distance between A and o(T') \ {\} is larger than or equal to
-2,

?Here we mean the partial ordering obtained by saying that E(\) < P if (E(\)z,z) < (Px,z)
for all z € H. For any self-adjoint operator T, the expression (Tz,z) is real, so the ordering does
certainly make sense.
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Definition 4.19 A non-empty open set 0 C R" is called a Nikodym set if every
distribution u on € such that all Dju are in L?(), j = 1,...,n, is itself in L*(Q). A
connected Nikodym set is called a Nikodym region.

Proposition 4.20 An open connected set Q@ C R"™ is a Nikodym region if and only
if the Lebesgue measure of §2 is finite and there is some finite constant C', depend-
ing on 2, such that the following two conditions are satisfied for any u in the space

{ue L*(Q): Djue L*(Q),j=1,..,n}:
(i) Jull® < [ fo u(@) dme|” + C 7, 1Djul?,

(id) llu— (u,ex) exl® < C X7 | Dju— Ajul®

for any X\ € R™. Recall from the beginning of the chapter that ey = e*™)

Theorem 4.21 (Fuglede, 1974) Let Q C R"™ be a Nikodym region with Lebesque mea-
sure equal to 1.

a) Let T = (Ty,...,T,) denote a commuting (in the sense of spectral measures)
family of self-adjoint restrictions T; of D; on L?(Q), 7 = 1,...,n. Then T has a
discrete spectrum, each point A\ € (7( ) bemg a simple ezgenvalue for T with the
eigenspace Cey, and hence € (o (T')) = {ex: A € o(T)} is an orthonormal basis for
L?(2). Moreover,

oT)=0,(T)={reR": ey e D(T)}.

b) Conversely, let A denote a subset of R" such that E(A) is an orthonormal basis
for L2(Q). Then there exists a unique commuting (in the sense of spectral measures)
family T = (T1, ..., T,,) of self-adjoint restrictions T; of D; on L*(2) with the property
that E(A) C D(T), or equivalently that A = o(T).

Proof:

a) For any A € o(T) let Py be the one-dimensional projection of L?(2) on Cey,
where Pyu = (u,ey) ey for any v € L?(Q). Q is a Nikodym region, so by Proposition
4.20

n
lu— Prul® = [lu— (u,ex) exl|* < C Y || Tju— Ajul®
j=1

and we may apply Proposition 4.18. A is an eigenvalue for 7" with eigenspace Cey,
which is equal to the range of Py. By the last assertion of Proposition 4.18 A must be
isolated. A was an arbitrary element of o(7T'), so o(T') must necessarily be discrete. T'
has then a pure point spectrum and o,(7") = o(T") (no closure on o,(T) is necessary,
since 0, (T") is a discrete subset of R™ and is consequently closed). To prove the last
claim of part a), we observe that we have the following circle of implications

ANea(T)=exe€D(T)=Teyx=Xex = Aeo(T). (4.3)
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This means that

o(T)={AeR": exe DT} ={NeR": Tey = ler}.

b) Assume that €(A) is an orthogonal basis for L?(€2). From (4.3) we have
ACo(T)<= EN) CD(T)

if the operator T exists. The system €(o(7")) is an orthonormal extension of E(A), but
€(A) is dense in L?(Q2), so A must be equal to the spectrum of T'.

To prove uniqueness, we notice that we must have Tjex = Ajey, j = 1,...,n, for
all A € R" such that ey € D(T), since each T} should be a restriction of D; on
L%(Q). Especially, we need to have Tjey = Ajey for A € A, when we would like that
E(A) € D(T). &(A) was assumed to be an orthonormal basis for L?((2), meaning that
T; must be the closure of T]Q = T|ns, where M is the subspace of L?(Q) spanned by
E(A). When a closure exists it is unique.

To prove existence, we define 7 to be the closure of T]Q = Dj|y. Tj is self-adjoint
since Tjey = Ajey for all A € A. D(T;) C D(D;) since Dj is closed and the operators
Ty, ..., T, commutes. We have E(A) C M C D(T). n

4.2 When the tiling set or the spectrum is a lattice

In this section we prove Fuglede’s conjecture with the assumption that the tiling set
or the spectrum is a lattice. We first give the definition of a lattice, its dual lattice
and the fundamental domain of a lattice.

Definition 4.22 Given an invertible n x n matrix A. A set A is called a lattice if
A = AZ"™.
N ={p: (u,\) € Z, VX € A}

is called the dual lattice of A. Qp := A[0,1]" is called the fundamental domain of the
lattice A.

Recall the notation E(A) = {627”“7') : A€ A} ={ex: A€ A}, where A is some dis-
crete subset of R". We first prove that €(Z") is an orthonormal basis for L?([0, 1]")
and then that €(A) is an orthogonal basis for L?(Q+) if A is a lattice with dual lattice
A*. We need two auxillary results.

Theorem 4.23 (Stone-Weierstrass) Let X be a closed and bounded subset of R™ and
let A be an algebra of complex-valued continuous functions that separates points and

which is closed under complex conjugation. If no element of A vanishes at any point
of X then A is dense in C(X).

Proposition 4.24 The set of continuous functions on R™ is dense in L>(R™).
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Proofs of both results can be found in [Fol99].
Proposition 4.25 £(Z") is an orthonormal basis for L? ([0,1]").

Proof: Orthonormality is easily checked by applying Fubini’s theorem. Denote the
linear span of &(Z") by A. We need to check that A is dense in L?([0,1]"). A is
clearly an algebra, since exe. = €pypr, K,k € Z™. A separates points, since we for
any =,y € [0,1]", z # y, can find f € A such that f(z) # f(y). Also €; = e_,, so
A is closed under complex conjugation. [0, 1] is closed and bounded and no element
of A vanishes at any point of [0, 1]™, thus the Stone-Weierstrass theorem applies. The
span of £(Z™) is dense in C([0,1]™) in the supremum norm and therefore also in the
L?-norm. Proposition 4.24 then implies that span of £(Z") is dense in L?([0,1]"). m

Proposition 4.26 Let A be a lattice. E(A) is an orthogonal basis for L? (Qa~), where
Qa~ is the fundamental domain of the dual lattice A*.

Proof: Let \,\ € A, then
(ex,en) = / AN dmy, = 0,
Q=

since (A — N, z) € Z when x € A*, hence E(A) is an orthogonal system. The density
argument in the proof of Proposition 4.25 is also valid for £(A), so E(A) is a basis. =

A useful working criterion for a set to be spectral, is the following:

Proposition 4.27 Let Q2 C R"™ be of unit Lebesgue measure and A C R™ be a discrete
set. A is a spectrum for Q if and only if

Y lRale =N =1 (4.4)

AEA
for almost every x € R™ and A= N € Z (xqa), A # N, \, N € A.

Condition (4.4) is fundamental in the construction of a multiresolution analysis in the
theory of wavelets. More about this can be found in [Dau92, chapter 5.

Proof: The criterion for £(A) to be an orthonormal system in L?(Q) is that (e, ex) =
0, whenever A\, \" € A and X # X\ and that (ey,e)) = 1. We have

(ex,ex) = / dm, =1Q| =1
Q

and
{ex,en) = /Q‘c’)%i(m}eQMW’z> dm, = Xa(A = X),

hence E(A) is orthonormal if and only if A — X € Z(xq), whenever A\, N € A and
A # N. We want £(A) to be an orthonormal basis, so we also need completeness of
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€(A) in L%(Q). Completeness of an orthonormal system in L?()) is equivalent to the
validity of Parseval’s identity

o Kfed = 11f e - (4.5)

A€A

for any function f € L?(Q). It is enough to have (4.5) fulfilled for a dense subset of
L?(£2), because we will then have it for the closed linear span of the dense subset, i.e.
all of L?(). The trigonometric polynomials are dense in L?(f2), so we only need to
consider f(-) = 2™} for almost every & € R". Then (4.5) takes the form

S [tale - VP =1.

AEA

Theorem 4.28 (Fuglede, 1974) Let Q C R™ and suppose that A is a lattice with dual
lattice A*. Then Q tiles R™ with translation set A if and only if A* is a spectrum for
Q.

This result was first proved by Bent Fuglede in [Fug74]. The proof we give here is
taken from the short note [Ios07] by Alex Iosevich.

Proof: Assume for simplicity that [Q2] = 1. Taking Definition 4.3 and Proposition 4.27
into account, we must prove that

ng(x +A) =1forae zeR" & Z IXa (€4 w)|* =1 for a.e. £ € R™.
AEA pEA*

Let
f@)=> xal@+A) and F(&)= > [t +pl*.

AEA pEA*

(=) We assume that f(x) =1 for almost every x € R". F' is periodic with respect to
A*, so we denote the fundamental domain of A* by Qa~. Qa~ obviously tiles R™ with
A*. From Proposition 4.26 we know that (A) = {€?*) : X\ € A} is an orthogonal
basis for L? (Qa~). F is clearly in L? (Q+), so we may compute its Fourier coefficients.

- 1

F(X) e 2HEN N [Ra(€ + p)|* dme

HEA*

1 .
“ o X [ e e+ dme. (46)
Qxx

S e

~Qas] Jog,.

A change of variables gives

1 —omile— .
r.hs. of (4.6) = 0 Z / e 2T 190 (€)1 dmy
| A*| MGA* Q)\*‘f'u
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1
|Qax| Jrr

since (A, p) € Z and Q- tiles R with A*. The Fourier transform of [{a(€)[? is xa*Xq,
thus

e~ 2N 130 (6) dme,

. . 1 e
/ o~ 2miEN) \XQ(S)F dmg = / xo(A — z)Xq(z) dm,

2N @+ )
Qa+]

1
|Q A

A tiles Q, so if A # {0, ...,0}, then

2N (24 N)]

=0
|Qa=

and if A = {0, ...,0}, then

Qn@+N ol 1
Gnl Jon] 1oaT (4.7

From the definition of the fundamental domain of a lattice, we see that
|Qal1Qa+] = 1. (4.8)

We now compute the Fourier coefficients of f. The function f is in L? (Q,) and it is
A-periodic. Let p € A*, then

P 1

fw) 2w S g (24 M) dm,

1 / —2mi{z,pm)
:—Z e Hxa (z+A) dmy
1

—27TZ<£E7},L>

e xa(x)dmy,

Qs Jre
_ Xa(w)
1Qal

We have assumed that f(z) = 1 for almost every z, thus f(p) =1if p={0,..,0} and
f(p) = 0if p # {0,...,0}. This means that f(0) = |Q||Qa|"" = |Qa|™" = 1, which
implies that |Qa| = 1. Because of (4.7) and (4.8) we get that

- 1
F(0,..,0) = —— = |Q4| = 1.
(00 = gy ~ 19
We saw above that F(A) = 0 if A # {0, ...,0}. It now follows that F(¢) = 1 for almost
every ¢ € R™.
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(«<) From the above we know that f(u) = |Qa|™! Ra (). We assume that F(£) = 1
and this implies that yo(u) = 0 if u # {0, ...,0}, which in turn means that

f(w) =0, (4.9)
if p#40,...,0}. If = {0,...,0}, then by direct computation

. _ Xe(0..,0) 1
£(0,...,0) = BN |Qax].

Equation (4.7) and our assumption gives that

. 1
F(0,...,0) = O]

=1,

which implies that |[Qa+| = 1 and then that f(0,...,0) = 1. Together with (4.9) we get
that f(z) =1 for almost every x € R™. |

4.3 Results in the plane

In this section we start with some examples. We prove explicitly that neither the
triangle nor the disk are spectral sets. Later in the section we give a much more
general result which comprises the two examples. Nevertheless, the explicit proofs are
interesting in their own right. In the first case we have an example of infinite systems
of orthogonal exponential functions which are not complete. The second example
deals with a case where every system of orthogonal exponential functions is finite.
Our examples consequently illustrate two different things that can prevent a set from
being spectral. Both examples originate from [Fug74].

Example 4.29 (A triangle is not a spectral set) Let 2 be the triangle

Q={(z,y) eR*: 2,y >0,z +y<1}.
We want to show that there exist infinite families of orthonormal exponential functions
in L?(2) and that none of them are complete in L?(2).

Recall the notation E(A) = {ey : A € A} = {V2e*™) . X € A}. Notice the
normalization factor v/2, which is included because we want to work with a simple
triangle ) and a simple set A.

Assume that (0,0) € A and let A = (a,8) € R? The following relation must be
fulfilled in order to have orthogonality

(ex,e0) = 2/ 2™ T H0Y) 4z dy = 0. (4.10)
Q
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Equation (4.10) means that
1 ( omi 27
_ ﬁ—a—ﬁemo‘+aem>:0. 4.11
) e

Consequently,
a,8#0, a#p and B — a— ferio + 2B,

In order to fulfill the last equality above we need o and [ to satisfy e
hence

2mice e27rzﬂ — 1’

A= (p,q), with p,qeZ\{0}, p#q. (4.12)

In other words, €(A) is orthonormal in L?(Q) if and only if every A € A — A with
A # (0,0) satisfies (4.12). This means in particular that the mapping

A>(o,f)—a€eR (4.13)

must be injective. An example of a set with this property is the set A = {(—p,p) :
p € Z}.

Let us now consider an arbitrary set A with the properties above, and prove that it
cannot be complete in L?(Q2). Let

S ={(z,y) eER?’: 0<uz,y< 1/2}

and define f = ysey, where A\g = (po, qo0) € Z x Z is given. Clearly f € L?(Q2) and we
can easily calculate its norm

1/2 ;1/2
1=z " [ aray =12

Recall that an orthonormal system &(A) C L?(f2) is complete in L*(Q) if and only if
Parseval’s identity

11220 = D (Fren)

AEA

holds for every f € L2(Q). After some calculations we find that |(f,ex)|* # 0 if and
only if po — p and g9 — ¢ are odd numbers. If none of the five points

(po,q0)s (Po+1,90), (Po —1,4q0), (Po,q0+1), (pPo,q0 — 1)
belongs to A, then

4 1 4
Sientss X (gt o) <U2= 1l

AEA k=35,...

which clearly contradicts Parseval’s identity. Next, by the injectivity of the mapping
(4.13) it is possible to choose five integers g1, ..., g5 such that none of the points (0, ¢;)
is in A. If we apply the result above to A\g = (0, ¢;) for j = 2, 3,4, we see that for each
of the j’s one of the points (1, ¢;) or (—1, g;) belongs to A. It is clear that this violates
the injectivity of the mapping (4.13), thus no orthonormal system of the form E(A)
can be complete in L?(€2). A
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Figure 4.1: A rectangle tiles R? in the obvious way. A hexagon tiles R? in a honeycomb
looking way, while a disk does not tile R? by translation.

In the next example we prove that the plane disk is not a spectral set. This was
first shown in [Fug74]. A more general result, also by Fuglede, was proved in [Fug01]:
There does not exist an infinite set A such that any two elements in E(A) are pairwise
orthogonal in L?(B), where B is the unit ball in R™.

We give two proofs, both based on the same idea, but the argumentation differs a bit.
The first one is from [Kol04], while the second is Fuglede’s original proof.

Definition 4.30 Let 2 be a Lebesgue measurable subset of R™ and let A C R" be a
discrete set. We say that Q packs R™ with A at level ¢ if

> xa(z+A) <t
AEA

for almost every z € R™. We say that Q + A is a packing.

We will need a circle packing theorem by the Norwegian mathematician Axel Thue:

Theorem 4.31 (Thue, 1890) The best possible packing of non-overlapping identical
disks is the one obtained by a hexagonal tiling, as shown in Figure 4.1. The density

of this packing is ﬂ/\/ﬁ, i.e. the packing level is w/\/ﬁ
See [PA95] for a proof.

Recall that A C R has asymptotic density, dens (A) = p, if

i FANBR() _

R—oo  |Br(x)]
for all z € R"™, where Bg(x) is the ball of radius R centered in x.
Proposition 4.32 Let Q C R” tile R" with A. Then dens (A) = Q.

Proof: Fix x € R” and let R be some positive number. Assume that € tiles R"™ with
A. This means that ) ., xa(§ — A) = 1 for almost every £ € R™. Then

BR<:c>r:/B( S xal€ — A) dmg

) NeA
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S /B()XQ<£—A>dmg

[A—z|<R
= #(AQBR(I‘))/ XQ(E—)\) dmg.
Bpr(z)
Let R — 0o, then dens (A) = Q" |
Proposition 4.33 If Q+A is a packing at level £, then A has density uniformly bounded

by 019
The proof of this proposition is almost identical to the proof above.

Proof: Fix x € R™ and let R be some positive number. By assumption, the set €2
packs R" at level £, i.e. 3\ .y xo(§ —A) < £ for almost every £ € R".

| Br(x / > xa(6 = A) dme
B

() xen
Z / (€ = \)dmg
b Saer/ B
= J#(An BR(:C))/ xal€ — A) dme.
Br(z)
If we let R — oo, we get dens (A) < £]Q] " |

Example 4.34 (The disk is not a spectral set) Let D = {z € R? : |z < =}, then
|D| = 1. Also, let A € R%, \, X € A and |\ — X| = p. We would like to find a relation

between A and the Bessel function of order 1. Choose a coordinate system such that

A =X =(p,0), then

N ,
(ex,en) = / 2mA=N) Ay, = / TP Ay,
D D

We change to polar coordinates

. v
/ e27rzp1'1 dmx _ / T‘/ e2mpr cos de dr
D 0 -7

and work with the inner integral

/ eZmiereost qg — / [cos (2mpr cos @) + isin (2mpr cos 0)] d6.
Both integrands are even, hence

/ [cos (2mpr cos @) + isin (2mpr cos 6)] df = 2 / cos (2mpr cos @) df
0

—Tr
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—|—2i/ sin (2mprcosf) df. (4.14)
0

The last integral on the right-hand side of (4.14) is zero, since

T /2 T
sin (2wpr cos ) df = / sin (27prcos (a+ =) ) da = 0.
| i (2mreos (o 5)

According to [SL98|, the first integral on the right-hand side of (4.14) is
2/ cos (2mpr cos ) df = 2w Jy(2mpr),
0

where Jj is the Bessel function of order 0. Using the formula [ zJy(z)dz = zJi ()
from [SL98|, where J; is the Bessel function of first order, we have

yvmoomo 1/vm
(ex,ex) = / r/ 2miereost 4g dr = / 2mrJo(2mpr) dr = 2¢/7J1(27p).
0 -7

’ (4.15)
From (4.15) we see that £(A) is orthonormal in L?(D) if and only if the distance
between any two points in A is a zero of the Bessel function J;. Assume that D is
a spectral set. The first zero of J; is approximately 3,832, thus the smallest distance
between points in A is approximately rq = 1,081. Now, center a disk D; of radius
r0/2 in each point of A. This is a packing of the plane at level . We would like to find
this £ and use Thue’s theorem to obtain a contradiction. From Plancherel’s theorem
we have

/ Rp(E)[? dme = 1
R2

and since A is assumed to be a spectrum for D we have from Proposition 4.27 that

Do lkpE+ NP =1

AEA

Proposition 4.32 now gives that dens (A) = 1. Taking Proposition 4.33 into account,
we get

2\ —1
1=dens(A) </ (T) .

Thue’s theorem gives that

T
<U<——

V12’

which implies that ro < 2 / 1214 ~ 1,075 < 1,081. We have got a contradiction and
D is not a spectral set.

[e=]\V]

T

~|

Alternatively, we could have argued in the more geometric way Fuglede did. If A
consists of 3 elements constituting an equilateral triangle, then €(A) is an orthonormal
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system if the sidelength of the triangle is a zero of the Bessel function Ji. If A consists
of 4 elements, then the 6 different lines joining the elements can not have the same