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Abstract

In this thesis we discuss how a system of ordinary differential equations (ODE) describing
electro-chemical processes in a heart cell can be solved by numerical methods. The
system is stiff, and explicit numerical solvers are therefore slow. In order to overcome
the stiffness, the system is split into a stiff and a non-stiff part. The split system is solved
by a Strang splitting method and an exponential integrator, based on a commutator free
Lie group method. We outline a theory for estimating the computational cost of a
numerical method. The solvers for the split system are compared to implicit solvers for
the entire system. The conclusion is that it is possible to take out two components which
are responsible for the stiffness of the original system, but that more research needs to
be done in order to make efficient methods which take advantage of the fact.



ii



iii

Preface

I would like to thank my supervisor Brynjulf Owren for all hints and encouragements
during the work on this report. Furthermore, I wish to thank Joakim Sundnes at the
Simula Research Laboratory for providing me with a Matlab implementation of the
Winslow heart cell system. I would also like to thank Martin Kaarby for help with the
implementation of the ESDIRK solver.



iv



CONTENTS v

Contents

1 Introduction 1

2 A mathematical heart model 1

2.1 Physiology of the heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.2 Numerical considerations for the bidomain model . . . . . . . . . . . . . . 4

3 An introduction to numerical methods 5

3.1 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Classical numerical one-step methods . . . . . . . . . . . . . . . . . . . . . 8

3.3.1 Runge-Kutta methods . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3.2 Collocation methods . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Matlab ODE-solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4.1 ODE15S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.2 ODE23S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.3 ODE23TB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.4 ODE23T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Splitting methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6 Exponential integrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6.2 Exponential integrators of order one . . . . . . . . . . . . . . . . . 18

3.6.3 Commutator Free methods . . . . . . . . . . . . . . . . . . . . . . 18

3.6.4 Implementation issues . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6.5 The Expint Matlab package . . . . . . . . . . . . . . . . . . . . . . 20

3.7 Step-size selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Computational cost theory 22

4.1 The step-size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Implicit solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.2 Explicit solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.3 Exponential integrator . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.4 Splitting method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.5 Estimating α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Computational cost per step . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Cost of implicit method . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 Cost of explicit method . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.3 Cost of exponential integrators . . . . . . . . . . . . . . . . . . . . 26

4.2.4 Cost of splitting method . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Total computational cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



vi CONTENTS

5 Results 27

5.1 Splitting a stiff ODE system into a stiff and a non-stiff part . . . . . . . . 28
5.2 Splitting ESDIRK/RK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Exponential integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Comparison of solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Conclusion 40

A The Winslow ODE system 43

A.1 The transmembrane potential . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.2 K+- and Na+- gate variables . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.3 RyR-channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.4 L-type Ca2+-channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.5 Intracellular Ca2+ fluxes (slow buffers) . . . . . . . . . . . . . . . . . . . . 44
A.6 Intracellular ionic concentrations . . . . . . . . . . . . . . . . . . . . . . . 44



1

1 Introduction

Heart disease is, according to the fact section of the World Heart Federation web site
(www.worldheart.org), the world’s number one killer, responsible for one in three
deaths. A good understanding of the heart is essential in order to find a cure for heart
diseases. The heart is a very complicated organ, consisting of an estimated 1010 cells.
In order to fully understand how small scale processes affect the global behaviour of
the heart, a mathematical model of the heart seems to be a good idea. One such heart
model is being developed by researchers at the Simula Research Laboratory in Oslo.
A brief introduction to the physiology of the heart and the mathematical heart model
developed at the Simula Research Laboratory is given in Section 2. The property of
the heart that we are interested in, is the fact that every heart cell is affected by the
electrical activity of the heart. The electrical activity in a heart cell can be modelled
by a system of ordinary differential equations (ODE). Most heart cell models cannot be
evaluated analytically and we need to solve them by numerical methods. Some basic
properties of numerical methods and the concept of stiffness are introduced in Section 3.
Due to the large number of cells in the heart, it is important to be able to solve the ODE
system efficiently. There are many different methods available. Due to possible limita-
tions in computer memory, we will restrict ourselves to one-step solvers. Runge-Kutta
and collocation methods are introduced in Section 3.3. In Section 3.4 we investigate
several built-in solvers of Matlab. We will use the Matlab solvers for comparison with
the numerical methods which we will implement for this thesis. The ODE system which
we study in this paper is stiff. One of the aims of this thesis is to show that it is possible
to split the ODE system into a stiff and a non-stiff part by removing two ODEs from the
original system. A general theory of splitting methods is outlined in Section 3.5 and we
decide to use a Strang splitting method. Another approach to solving the split system
in this paper is by use of exponential integrators. These concepts will be introduced
in section 3.6. Furthermore, we investigate automatic step-size selection for numerical
methods in 3.7. In order to compare different solvers, we propose in Section 4 a cost
theory for numerical one-step methods. Such a theory is important in order to have
an a priori idea of the performance of different classes of solvers, regardless of the way
they are implemented. Thereafter, we compare the solvers of this thesis with respect to
the number of steps, the number of function evaluations, Jacobian matrix evaluations
and linear algebra. Eventually, we conclude that there are good reasons theoretically for
splitting the system, but there are challenges regarding implementation which are not
yet solved.

2 A mathematical heart model

2.1 Physiology of the heart

Electrical activity in the heart is essential to the functioning of the heart and most
grave heart problems are linked to anomalies in the electrical activity [17, p. 1]. This
connection between electrical activity and heart problems can be measured by the use of
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the electrocardiogram (ECG). The ECG is a recording of electrical potential differences
on the body surface, whose origins are in the heart. Although the electrical activity of
the heart has received much attention, there are a few mechanisms which are not fully
understood [17, p. 1]. One example is defibrillation, i.e. the application of an electrical
shock to end a state of seemingly random contraction of the heart cells which prevents
the heart from pumping blood [17, p. 14]. The electrical activity of the heart as it is
globally observed, is the result of billions of small-scale processes in the cells. One way
to investigate this connection between small-scale processes and the global behaviour of
the heart is by mathematical modelling and computer simulations. This field of study
is sometimes referred to as integrative physiology [17, p. 2], and

The field of mathematical modelling in physiology is rapidly gaining popular-
ity, and the potential both for increasing general knowledge and for clinical
applications is huge

[17, p. 15]. In order to explain the ECG measurements, it is possible to view the electrical
activity originating in the heart as a dipole in a conducting volume. However, in order
to make a model which is able to provide more information than is known through the
ECG measurements, it is necessary to take a closer look at what constitutes a heart.
Because of the amount of cells in the heart, the mathematical heart model in [17] is based
on a volume averaged approach called the bidomain model. In the bidomain model the
heart tissue is divided into two domains, the intracellular domain and the extracellular
domain. These are describing the interior and the exterior of the cells, respectively. Both
domains are considered to be continuous and to fill the entire heart muscle. The reason
why it is possible to treat the intracellular domain as being continuous, is that each cell
interior is connected to that of its neighbours through gap junctions which are proteins
to be described more closely below. In both domains there is an electrical potential
which is averaged over a small volume. Because each small averaged volume generally
contains both intracellular and extracellular space, every point of the heart is assumed
to be included in both domains. The bidomain model, which is given by a system of
partial differential equations (PDE) in [17, pp. 70,71], is as follows

∂s

∂t
= F (s, v, t) x ∈ H, (1)

∇ · (Mi∇v) + ∇ · (Mi∇ue) = ∂v
∂t + Iion(v, s) x ∈ H, (2)

∇ · (Mi∇v) + ∇ · ((Mi + Me)∇ue) = 0 x ∈ H, (3)

∇ · (Mo∇uo) = 0 x ∈ T, (4)

ue = uo x ∈ ∂H, (5)

n · (Mi∇v + (Mi + Me)∇ue) = n · (Mo∇uo) x ∈ ∂H, (6)

n · (Mi∇v + Mi∇ue) = 0 x ∈ ∂H, (7)

n · Mo∇uo = 0 x ∈ ∂T . (8)

Here equation (1) is a system of ODEs, which describe the electrophysical behaviour
a heart cell, equations (2)-(3) describe the electrical signal propagation in the heart
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tissue. Furthermore, equation (4) describes the signal propagation in the torus, the
body surrounding the heart. Equations (5)-(7) are describing the border conditions
between the heart and the torus, while equation (8) describes the border condition on
the surface of the entire body. The heart muscle and the torus are denoted by H and T ,
respectively. A schematic drawing of the heart and the torus and their outer borders ∂H
and ∂T can be found in Figure 1. In equation (1), s denotes the variables describing the

Figure 1: Schematic drawing of the heart (H) and the torus (T ), found in [17, p. 24]

state of a cell, v is the electrical potential at the cell and t is time. The other variables
are uo, the potential in the torus, and ue the extracellular potential. For a description
of the other symbols in this PDE system we refer to [17].

Heart cells are so-called excitable tissue, that is, they have the ability to respond
actively to electrical stimuli (see [17, pp. 24-25]). While at rest, the cells contain another
internal ionic concentration than their surroundings. The electrical charge of the ions
leads to a potential difference across the cell membrane, the so-called transmembrane
potential. Under electrical stimuli, the transmembrane potential is changed. If the
stimulus is small, the conductive properties of the cell membrane will not change, and the
potential will quickly readjust to the resting value. When the transmembrane potential
surpasses a certain limit, the conducting properties will change causing a rapid flux of
positive ions into the cell. This leads to the depolarisation of the cell, which means
that the transmembrane potential rise from a negative value of −70− 100mV to zero or
more. After depolarisation, the cell repolarises to its negative resting state. The whole
polarisation cycle is called an action potential. Heart cells stay at the depolarised value
for a significant period of time, this phase is called the plateau phase [17, p. 10]. The
action potential found by the Winslow model is calculated for 500 ms in Figure 2.

The action potential is to a large extent explained by the physiology of the membrane
delimiting the cell. The cell membrane consists of a double layer of lipids which are
characterised by a polar head attracted to water and a nonpolar tail ([17, pp. 36-38]).
The tails are pointed towards the interior of the membrane, thus making it insulating,
hampering the flow of ions between the interior and exterior of the cell. Embedded in the
cell membrane are a number of large proteins called transport proteins, forming channels
through the membrane. There are several different kinds of transport proteins. Some
proteins are pumps which are able to pump ions against the concentration gradient, i.e.
against the natural direction of flow, and the electrical field by adding energy stored in
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Figure 2: The action potential over 500 ms, given starting value -35 V

an energy-transfer molecule called ATP. The exchanger protein opposes the natural flux
of ions by using the concentration gradient of another ion. In addition there are passive
protein channels which allow the ions to flow according to the electric field and their
concentration gradients. Most of the channels are selective in the choice of which ions
are allowed to pass. Moreover, the channels have the ability to open and close according
to changes in electrical field and ionic concentration. As a result, the equilibrium states
of the cell and its surroundings are different, thus creating the transmembrane potential.
The equilibrium state is reached when the diffusive (chemical) flux of ions is equal and
working against the electrically driven flux.

There are several different mathematical models for modelling the action potential.
As written above, the action potential depends on the total ionic current across the cell
membrane. The first model of ionic currents was developed in 1952, for the ionic current
in a squid nerve cell [17, p. 44]. One of the most accurate and complex of the cell models,
consisting of 33 differential variables was developed by Winslow et al. in 1999 [18]. We
will refer to this system as the Winslow system. Due to physiological considerations,
the Matlab implementation of the Winslow system, which we make use of in this paper
has been reduced to 31 variables. The Winslow system corresponds to equation (1) and
also returns the ionic current Iion from (2). In this thesis, we solve the Winslow system
decoupled from the bidomain PDE system and thus

y′ =

[

∂s
∂t
∂v
∂t

]

=

[

ds
dt
dv
dt

]

=

[

F (s, v, t)
−Iion(v, s)

]

= f(s, v, t) = f(y), y =

[

s
v

]

. (9)

Starting values y0 = y(0) for the Winslow system can be found in [18, p. 585]. We
note that the Winslow system is autonomous, not depending explicitly on t. The 33
differential equations describing the Winslow system are included in Appendix A.

2.2 Numerical considerations for the bidomain model

The discretisation in space of the bidomain PDEs results in a finite element grid with
an ODE system at each node. As a result
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Realistic computations require up to several millions of grid nodes, and each
ODE system may consist of 30 or more ODEs. In this context, the memory
requirement of the multi-step methods becomes very significant

[17, p. 156]. Due to the problem of potential memory shortage, the focus of study has
been on one-step solvers. When an ODE system is coupled with the bidomain PDE
system, and the entire system is solved by the operator splitting method in [17], there
are at least two properties which a solver has to fulfil. Firstly, the time discretisation
of the PDE system forces a limitation to the length of the time steps for solving the
ODE system, this length is typically 0.125 ms [17, p. 172]. Secondly, the accuracy of
the operator splitting procedure for solving the PDE system is limited to two, and

It is therefore not very useful to apply ODE solvers with high order of accu-
racy, because the global accuracy will still be limited by the splitting error

[17, p. 172]. We note that the above mentioned properties for the numerical ODE solver
are only required when coupling the ODE system with the bidomain PDE system. They
are not necessary when solving the ODE system decoupled from the PDE system.

There exist several cell models of ODEs, each of different complexity and different
performance in terms of e.g. stiffness properties. We have chosen the Winslow system
because it is stiff and thus computationally demanding.

3 An introduction to numerical methods

3.1 Stability

Stability is a measure of the extent to which the numerical method shows the same
perturbation sensitivity as the underlying differential equation (see [3, p. 37]). In order
to do stability analysis, we start by reducing the Winslow system to a simpler form.
First, we assume that it is possible to linearise the Winslow system to get a system

y′(t) = J(t)y(t)

where J(t) is the symbol of the Jacobian matrix of the Winslow system. The Jacobian
matrix of a n-dimensional system of equations for which y = (y1, · · · , yn) and f(y) =
(f1, · · · , fn) is

J =















∂f1

∂y1

∂f1

∂y2
· · · ∂f1

∂yn

∂f2

∂y1

. . . · · · ∂f2

∂yn

...
...

. . .
...

∂fn

∂y1

∂fn

∂y2
· · · ∂fn

∂yn















.

Assuming that the Jacobian matrix is constant over an interval to be considered, we
arrive at the system

y′ = Jy, y0 = y(0). (10)
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We assume that the Jacobian matrix is diagonalisable, i.e. X−1JX = Λ, where
Λ is a diagonal matrix with the eigenvalues of J at the diagonal, and matrix X has
the eigenvectors of J as its column vectors. Given an initial condition of (10) as a
linear combination of the eigenvectors of J , all solutions can be expressed as a linear
combination of these eigenvectors. Since Jx = λx, where λ denotes the eigenvalues and
x the eigenvectors, the system (10) is equivalent to the system

y′ = λy, y0 = y(0), (11)

called the Dahlquist test equation. For a discussion of the validity of reducing the general
system (9) to this simple test equations for stability considerations, see [8].

In Section 3.3, we will see that the explicit Runge-Kutta solvers are not suitable
for the Winslow system. In order to explain this fact, we now introduce the rational
function R(z) which is associated to all Runge-Kutta methods. The R(z) is called the
stability function of the method. For a Runge-Kutta method that is used on the initial
value problem (11), the solution is

y1 = R(z)y0, z = hλ.

The stability region or stability domain of a Runge-Kutta method is

S = {z ∈ C; |R(z)| ≤ 1} . (12)

Whenever hλ ∈ S and |R(z)| < 1, the numerical solution yn of (11) will tend to 0 as
n → ∞. If |R(z)| = 1, the solution is constant. If a numerical method is stable on the
entire left half-plane of the complex plane C

−, i.e C
− ⊂ S, it is said to be A-stable.

Since an A-stable method converges in the same domain as the system (11), an A-stable
method is preferable for general numerical integration. A RK-method with stability
function of form

R(z) =
P (z)

Q(z)

where P (z) and Q(z) are polynomials, is A-stable only if the degree of P (z) is inferior
to that of Q(z). It can be shown that the difference of order must not be greater than
two [7, p. 58]. For this reason, explicit Runge-Kutta methods are not A-stable.

For stiff systems, the L-stability of the solver could be important. An L-stable
method is A-stable and in addition

lim
|<(z)|→∞

R(z) = 0,

where <(z) is the real part of z = hλ. The L-stability is desirable because the stability
polynomial approaches zero as the real solution of (11) approaches zero. It seems that L-
stability is not important for the Winslow system. For instance, the performances of the
Matlab solvers ODE23T and ODE23TB are quite similar, and one of the most important
difference between the methods is that the former lacks L-stability (see Section 3.4).
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3.2 Stiffness

When the step size required by a solver for returning accurate output for some ODE sys-
tem is governed by stability concerns rather than by accuracy requirements, the system
is said to be stiff. Typically

Stiff equations are problems for which explicit methods don’t work

[7, p. 2]. A stiff system is also characterised by the property that

the solution to be computed is slowly varying but that perturbations exist
which are rapidly damped

[3, p. 5]. The Winslow system is stiff in both of these respects.

A discussion of how the eigenvalues of the Jacobian matrix of an ODE system indicate
the stiffness of the system is made in [3, p. 9f]. It states that a stiff system is characterised
by the fact that there exists at least one big negative real eigenvalue for the Jacobian
matrix of the system. Thus, for the discussion of the stiffness of the Winslow system,
we have found the negative eigenvalues of the Jacobian matrix, and conclude that the
system is stiff for large negative eigenvalues. In addition to the presence of a large
negative eigenvalue, the system is stiff if there is an eigenvalue of small magnitude and
no large positive real eigenvalues. Moreover, if the eigenvalue is a complex number,
the imaginary part must not be large unless at the same time the real part is large
and negative. The Winslow system is stiff, but does not always satisfy all of these
requirements. Since the eigenvalue of largest magnitude for the Winslow system is real
and negative, we will focus on the real negative eigenvalues for measuring stiffness.

Other ways of measuring stiffness which do not include the eigenvalues of the Jaco-
bian matrix have been proposed, see e.g. [8], but we will only consider the eigenvalue
approach.

The solution of the ODE system (11),

y = y0e
λ(t−t0),

will only converge for negative λ as t → ∞. When the eigenvalues of the Jacobian
matrix of a system (9) are large and negative, the step size h of an explicit Runge-
Kutta method has to be small in order to keep the product z = hλ within the stability
domain. For implicit Runge-Kutta methods and generally for A-stable methods, there
are no restrictions to the range of h. Due to this fact, explicit methods generally require
smaller steps than implicit methods for stiff problems.

In Section 3.3, we will explain that implicit methods require the use of non-linear
iterations which may be costly. Thus, for moderately stiff systems, explicit methods may
still be faster than implicit methods.

Another approach to solving stiff problems is by the use of explicit exponential meth-
ods. The drawback of exponential methods is the cost of calculating the exponential of
a matrix. For a non-linear ODE system like the Winslow system, the matrix of which
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we find the exponential is typically a Jacobian matrix of the entire system or an approx-
imation to it (see Section 3.6).

In order to estimate the eigenvalues of the Jacobian matrix of the Winslow system,
we will make use of a numerical approximation to its Jacobian matrix. A numerical
approximation is typically of the form

∂f(y0)

∂yj
=

f(y0 + hej) − f(y0)

h
.

Here y0 is denoting the initial value at the start of the step, yj is a component of y0, and
ej ∈ R

n is a vector which is zero everywhere except for the element j where it is one.
In this paper we have made use of the built-in Matlab function NUMJAC for numerical
calculations of the Jacobian matrix.

3.3 Classical numerical one-step methods

3.3.1 Runge-Kutta methods

The Runge-Kutta methods are one-step methods which we use several times throughout
this thesis. A Runge-Kutta method is characterised by the formulas

Yi = y0 + h

s
∑

j=1

aijf(t0 + cjh, Yj) (13)

y1 = y0 + h

s
∑

j=1

bjf(t0 + cjh, Yj) (14)

for i = 1, · · · , s. Here Yi is an intermediate approximation to the solution at t0 + cih,
while y0 is the initial value at time t0 and y1 is the numerical approximation to the
solution at time and t1. The RK-methods can also be written in a slightly different form
by using the expression ki = f(t0 + cih, Yi) instead of Yi, i.e. as

ki = f
(

y0 + h
∑s

j=1 aijkj

)

i = 1, · · · , s

y1 = y0 + h
∑s

j=1 bjkj .
(15)

The coefficients aij ,bj and cj are scalars specific for each method and summarised in a
Butcher tableau, as seen in Table 1.

It is customary to let the coefficients of Table 1 be elements of vectors b, c and a
matrix A. If the elements aij = 0 for i ≥ j, then the method is explicit, otherwise it is
implicit. If a Runge-Kutta method has equal non-zero elements on the diagonal of the
A-matrix, except for the first step which is explicit, it is said to be a Singly Diagonally
Implicit Runge-Kutta method with explicit first step (ESDIRK). We will denote the
explicit Runge-Kutta method by ERK and the implicit Runge-Kutta methods by IRK.

An embedded method is an auxiliary method with different order than the original
method, using the same function evaluations or almost the same function evaluations as
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c1 a11 · · · a1s

c2 a21 · · · a2s
...

...
. . .

...
cs as1 · · · ass

b1 · · · bs

Table 1: Butcher tableau for a general implicit RK-method

0 0 0 0
1
2 1 0 0
1 1

4
1
4 0

1
6

1
6

2
3−1

6
−1
6

4
3

Table 2: Butcher tableau for the method ODE23

the original method. In this way the embedded method provides an almost free local
error estimate. The local error estimate is generally

r̃loc = h

s
∑

i=1

(b̂i − bi)ki,

where b̂i and bi are the b-coefficients from the embedded and the original method re-
spectively. The order of a method consisting of such an embedded pair is written m(n),
where m and n are orders of the original method and the embedded method, respectively.

In this paper we have used an embedded ERK pair of order 2(3) as one of the sub-
methods in a splitting method. The coefficients of the method are written in Table 2.
This RK-pair is identical to the pair which is implemented in the explicit Matlab solver
ODE23. The stability domain of the ODE23 method is drawn in Figure 3. The smallest
domain is for the order two method and the largest one is the order three domain.

The ESDIRK32 method pair, which we have used in the splitting method is given
in Table 3. The method is described in [11, p. 497]. The parameter γ in this method
is chosen for reasons of stability and depends on whether y1 = Y3 or y1 = Y4. We have
chosen the order two method for advancing the step and thus y1 = Y4, ŷ1 = Y3 and
γ = 0.4358665215.

The implementation of IRK methods is more complicated than the implementation
of ERK methods. We will now describe the procedures for implementing IRK methods
which we have used for this paper. A more thorough survey of the implementation
techniques for IRK methods can be found in [7, pp. 118-127]. First, in order to reduce
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Figure 3: Stability domains of the order two ERK method (smallest domain) and a order
three embedded method of ODE23

0 0 0 0 0
2γ γ γ 0 0

1 −γ2+gγ−1
4γ

−2γ+1
4γ γ

1 6γ−1
12γ

−1
12(2γ−1)γ

−6γ2+6γ−1
3(2γ−1) γ

Table 3: Butcher tableau for the method ESDIRK32
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the influence of round-off error, we transform the equations in (13) into

ui = h

s
∑

j=1

aijf(x0 + cjh, y0 + uj), for i = 1, · · · , s (16)

where
ui = Yi − y0.

In order to solve the implicit equations (16), it is necessary to do non-linear iterations,
and Newton iterations are recommended [12]. A Newton iteration is

u
[j+1]
i = uj

i −
F (uj

i )

F ′(uj
i )

where the j denotes the number of iterations for some function F (ui). The function
F (ui) is generally

F (ui) = ui − h

s
∑

j=1

aijf(x0 + cjh, y0 + uj), for i = 1, · · · , s.

For the implementation of regular Newton iterations, we use the system

JFi
(uj

i )∆uj
i = −Fi(u

j
i )

uj+1
i = uj

i + ∆uj .

Here JFi
(uj

i ) = F ′
i (u

j
i ) is the Jacobian matrix of Fi(u

j
i ). In order to reduce the cost of

computing the Jacobian matrix of the system, it is possible to use simplified Newton
iterations. A simplified Newton iteration uses the Jacobian matrix

JFi
(y0) = I − haijJ,

where I is the identity matrix, h is the step size, aij an element for a method, and J
is the Jacobian matrix of an ODE system in state y0, i.e. J = f ′(y0). In other words,
simplified Newton iterations reduce the number of calculations of the Jacobian matrix
of f(y). How to chose starting values for the Newton iteration is described in [7, p. 120].

3.3.2 Collocation methods

In this paper, we will use a collocation method called RadauIIA on the Winslow system.
Collocation methods are methods for which the solution of the system (9) is approxi-
mated by a polynomial that interpolates the solution for s different points of the solution.
Given distinct real numbers c1, · · · , cs, the collocation polynomial u(t) is of degree s and
such that

u(t0) = y0

u̇(t0 + cih) = f(t0 + cih, u(t0 + cih))
y1 = u(t0 + h)

(17)
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where i = 1, · · · , s. It has been shown that a collocation method with s interpolation
steps is equivalent to a s stage RK-method with coefficients

aij =
∫ ci

0 lj(τ)dτ

bi =
∫ 1
0 li(τ)dτ

li(τ) =
∏s

e6=i
τ−cl

ci−ce
,

(18)

where li(τ) is called a Lagrange polynomial and i, j = 1, · · · , s (see e.g. [5, p.27]). After
finding a collocation method, it is in other words possible to write it in a Butcher tableau.
In order to approximate the integral of a collocation polynomial we can use a quadrature
formula

∫ 1

0
g(t0 + τh)dτ ≈

s
∑

i=1

big(t0 + cih).

The quadrature formula has order p when it is exact for polynomials of order less than
p. If the coefficients of the quadrature formula satisfy

1

k
=

s
∑

j=1

bjc
k−1
j ,

for k = 1, · · · , p and p ≥ s, then the collocation method is of order p. Radau methods
are collocation methods of polynomial order 2s−1. The Radau method has either c1 = 0
or cs = 1 in which case we get a RadauIIA method. The RadauIIA method is described
in [7, pp. 72-74] and a Fortran implementation of it called RADAU5 is described in [7,
pp. 565-574]. For this paper, we have used a Matlab-version of the RADAU5 code. The
Matlab code can be found in [4]. The coefficients of the method are written in Table 4.

4−
√

6
10

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−
√

6
36

16+
√

6
36

1
9

16−
√

6
36

16+
√

6
36

1
9

Table 4: Butcher tableau for the RadauIIA formula with s=3 and order 5

3.4 Matlab ODE-solvers

We will compare built-in Matlab ODE solvers to the solvers implemented for this paper,
and we will use one of them (ODE15S) to estimate the exact solution of the Winslow
system. The descriptions of the Matlab ODE solvers were found in [16] and [9].
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3.4.1 ODE15S

The Matlab ODE-solver ODE15S is a multi-step solver based on an improved Backward
Difference Formula (BDF) called the Numerical Differentiation Formula (NDF). For a
description of this method we refer to [16]. An introduction to multi-step solvers can be
found in [7]. We will see in Section 5 that this method is very efficient for the Winslow
system when decoupled from the bidomain model. However, as mentioned in Section 2,
due to of memory concerns for the bidomain model, we are not going to consider multi-
step solvers. Because of the good properties of the solver, we have used it for calculating
an estimate to the exact solution of the Winslow system.

3.4.2 ODE23S

The Matlab ODE-solver ODE23S is based on a modified Rosenbrock formula of second
order. The Rosenbrock method is a special case of a diagonally implicit Runge-Kutta
method. For an description of how to derive the general Rosenbrock formulas we refer
to [7, p. 102-104].

The Rosenbrock method in Matlab is modified, which means that is uses the approx-
imation

J =
∂f(y0)

∂y
(t0.y0) + hB + O(h2).

to the Jacobian matrix. According to [16, p. 6] it is necessary to use this approxima-
tion in order to be able to estimate the local error of the Rosenbrock method without
introducing an extra step.

The modified three stage Rosenbrock method implemented in Matlab is

f0 = f(t0, y0)
k1 = W−1(f0 + hdT )
f1 = f(t0 + 0.5h, y0 + 0.5hk1)
k2 = W−1(f1 − k1) + k1

y1 = y0 + hk2

f2 = f(t1, y1)
k3 = W−1 [f2 − e32(k2 − f1) − 2(k1 − f0) + hdT ]

error ≈ h
6 (k1 − 2k2 + k3).

(19)

Here W = I − hdJ with d = 1/(2 +
√

2) and J ≈ ∂f
∂y (t0, y0), T ≈ ∂f

∂t (t0, y0) and

e32 = 6 +
√

2.
The method uses the result y1 for propagating the solution, and if the step is a

success, the f2 of the current step will be the f0 of the next one. For this reason we will
not need any additional function evaluations. This property is called first-same-as-last
(FSAL), which means that the first stage of a step is the same as the last one from the
end of the previous step.

In the implementation of this method, the Jacobian matrix is recalculated at every
step. This is probably one of the reasons why this method is not among the most efficient
Matlab solvers.
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3.4.3 ODE23TB

The Matlab ODE-solver ODE23TB is based on a numerical method which can be seen as
an implicit Runge-Kutta pair of order 2(3), called TR-BDF2. The method was developed
in the context of device simulation and later implemented in the Matlab ODE-suite by
Hosea and Shampine [9].

0 0 0 0
γ d d 0
1 w w d

w w d

(1 − w)/3 (3w + 1)/3 d/3

Table 5: Butcher tableau for the TR-BDF2 method, where γ = 2 −
√

2, d = γ
2 and

w =
√

2
4 .

The method is constructed by first considering the trapezoidal rule

yi+1 = yi +
h

2
(f(xi, yi) + f(xi+1, yi+1)) . (20)

This method is not strongly stable and thus not efficient for very stiff problems. In order
to get a method more suitable for stiff problems, it is possible to make a second step
taken by the multi-step method BDF2. The two steps have different step-sizes. The way
it is implemented in the TR-BDF2 method, we end up with a method with two internal
steps and no memory. For this reason it is possible to regard the method as an one-step
method which, with an embedded error estimate, turns out to be a Singly Diagonally
Implicit Runge-Kutta (SDIRK) pair. The method has been summarised in Table 5.

This method has several nice properties. It is FSAL, and because the elements on
the diagonal are similar, the same simplified Newton matrix can be used to evaluate all
implicit stages. It is also L-stable.

3.4.4 ODE23T

The ODE-solver ODE23T is based on the trapezoidal rule. This method is called the
TRX2 formula and was implemented in Matlab by Hosea and Shampine [9]. The dif-
ference between ODE23TB and ODE23T is that another step with the trapezoidal rule
replaces BDF2. The Butcher tableau of this method is given in Table 6. One main
difference between TRX2 and TR-BDF2 is that the former lacks L-stability [9, p. 25].

3.5 Splitting methods

The basic idea of a splitting method is to divide the vector field of the system one wants
to solve into simpler pieces, which are then treated separately. Considering the Winslow
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0 0 0 0

1
2

1
4

1
4 0

1 1
4

1
2

1
4

1
4

1
2

1
4

1
6

2
3

1
6

Table 6: Butcher tableau for the TRX2 method

system (9), a corresponding split system of a non-stiff and a stiff vector field is

y′ = fns(y) + fs(y). (21)

The exact flows, i.e. the solutions given certain initial values, of the ODE systems

y′ = fns(y) (22)

and
y′ = fs(y) (23)

are φ
[ns]
h and φ

[s]
h , respectively. If we assume that the exact flows can be calculated

explicitly, it is possible to solve the system (23) with the initial value y0 to obtain a
value y 1

2

. From this new value, we solve system (22) to get y1. A system of this kind

can be denoted by the Lie-Trotter splitting formula

Φh = φ
[ns]
h ◦ φ

[s]
h . (24)

It is also possible to start by evaluating the non-stiff part. Then we get the Lie-Trotter
splitting formula

Φ∗
h = φ

[s]
h ◦ φ

[ns]
h ,

which is called the adjoint method of (24). By Taylor-series expansions it can be shown
that for the system (21), the Lie-Trotter splitting formula is a method of order one, i.e.

Φh(y0) = φh(y0) + O(h2),

where φh(y0) is the exact flow of (21). The splitting method which we have implemented
for solving the Winslow system is often called Strang splitting. The Strang splitting is
of form

Φ
[S]
h = φ

[s]
1

2
h
◦ φ

[ns]
h ◦ φ

[s]
1

2
h
. (25)

The Strang splitting could also be written as

Φ
[S]
h = φ

[ns]
1

2
h
◦ φ

[s]
h ◦ φ

[ns]
1

2
h

.
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It has been recommended (see [10]) that when solving a stiff system by the Strang
splitting method, the Strang splitting in (25) should be used because it gives the smallest
local error for sufficiently large step-sizes. Moreover, we chose this splitting method
because we want to reduce the number of function evaluations of the non-stiff system,
which we assume is much more expensive to calculate than the stiff system.

It is possible to view the Strang splitting method as being a composition of a Lie-
Trotter method and its adjoint method with halved step-sizes. An introduction to com-
position methods can be found in [5, pp. 39-41]. The general composition method of
methods with their adjoint method is

Ψh = Φαsh ◦ Φ∗
βsh ◦ · · · ◦ Φ∗

β2h ◦ Φα1h ◦ Φ∗
β1h,

and the order conditions for a method of order p + 1 is

β1 + α1 + β2 + · · · + βs + αs = 1

(−1)pβp+1
1 + αp+1

1 + (−1)pβp+1
2 + · · · + (−1)pβp+1

s + αp+1
s = 0.

(26)

One solution of equation (26) is α1 = β1 = 1
2 (also called the consistency requirement)

and p = s = 1. This means that two consistent one-step methods of order 1 can
be composed into a second-order method. In other words, since Strang splitting is a
composition of the Lie-Trotter method and its adjoint with halved step sizes, the Strang
splitting method is of second order.

A general splitting method for a vector field split into two parts, is a method on the
form

Ψh = φ
[s]
bmh ◦ φ

[ns]
amh ◦ φ

[s]
bm−1h ◦ · · · ◦ φ

[ns]
a2h ◦ φ

[s]
b2h ◦ φ

[ns]
a1h.

The splitting of a system is not limited to two vector fields, but in our case we are
only splitting the system according to stiffness, and two fields is a natural choice (i.e.
stiff/non-stiff). There exist several splitting methods, some of which there are references
to in [5, p. 43]. In this thesis we will only consider Strang splitting for several reasons.
For one reason, the discretisation error in the operator splitting algorithm for the PDE
system is of order two [17, p. 172]. Thus, it possibly suffices to use a numerical method
for the ODE system with order two. Another reason is that we seek to minimise the
number of function evaluations, and a splitting method of higher order than two is likely
to add function evaluations.

It is possible to make splitting methods where one flow is computed exactly (see e.g.
[5, p. 44]). For the Winslow system written on form (27) in Section 3.6, it is possible to
solve the first linear part exactly over one step as y1 = eLy0. This could be an efficient
approach to solving the system since the most stiff part is supposed to be in the linear
part. We will leave this idea for future work.

3.6 Exponential integrators

3.6.1 Background

Exponential integrators are numerical methods which involve an exponential function of
the Jacobian or an approximation to it [13, p. 4]. One advantage of the exponential
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methods is that they usually have good stability properties, which make them suitable for
solving stiff problems. Here we are going to follow [13] and apply exponential integrators
to the Winslow system written on form

y′(t) = f(y(t)) = Ly(t) + N(y(t)), y(t0) = y0. (27)

Here L is a constant matrix which is supposed to carry the stiffness of the system. Since
the Winslow system does not have an independent linear part, we will transform equation
(9) onto the form in equation (27) by setting

N(y) = f(y) − Ly,

where y = y(t). The L is chosen such that Ly becomes the stiff part of the system,
while hopefully making N(y) non-stiff. The problem is that is not evident that the
function N(y) is in fact non-stiff. We will see that for the Winslow system, N(y) is still
quite stiff. In fact there are large positive and negative values in both the real part and
the imaginary part of the eigenvalues. The matrix L depends on y. Thus we have to
recalculate L several times during an integration, and freezing it during each step of the
numerical solver. Different ways of constructing L are discussed in Section 5.

The general form of a one-step exponential linear methods is

Yi =
∑s

j=1 aij(hL)hN(Yj) + ui(hL)y0

y1 =
∑

i=1 bi(hL)hN(Yi) + v(hL)y0,
(28)

where h is the step-size [13, p. 5]. The parameters aij ,bij, ui and v are the coefficients of
the method and are functions of the exponential and related functions. On matrix form
the expression (28) is

Y = A(hL)hN(Y ) + U(hL)y0

y1 = B(hL)hN(Y ) + v(hL)y0,
(29)

where

Y =











Y1

Y2
...

Ys











N(Y ) =











N(Y1)
N(Y2)

...
N(Ys)











.

As in [13, p. 6], the coefficient matrices can be represented in a Butcher style table

M(hL) =

[

A(hL) U(hL)

B(hL) v(hL)

]

.

There are several classes of methods of exponential integrators. In the next sections
we will introduce the exponential integrators which we will use in this paper. Other
methods can be found in the article [13].
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3.6.2 Exponential integrators of order one

Several exponential integrators of order one are presented in [13, pp. 2-4]. In this thesis,
we will use two of these methods. We start by linearising an ODE system (9). This gives

y′(t) = f(y0) + f ′(y0)(y − y0),

where f ′(y) is the Jacobian matrix of f(y). The exact solution of this problem is

y1 = y0 + hφ1(hf ′(y0))f(y0), (30)

where φ1 is a function defined as

φ1(z) =
ez − 1

z
.

The φk-functions play an important part in the construction of exponential integra-
tors. The method defined by (30) is of order two and is called the exponential Euler
method. Following [13] we approximate the Jacobian matrix in equation (30) by L. The
exponential Euler method with approximated Jacobian matrix is commonly called the
Exponential Time Differencing (ETD) Euler method and denoted by

y1 = y0 + hφ1(hL)(Ly0 + N(y0)) = ehLy0 + hφ1(hL)(N(y0)).

The method is also known as the Nørsett-Euler method. This method requires the
computation of one matrix exponential and one φ1-function and is of order one. We
have used this method as a step-size corrector. An alternative method of order one is
the Lawson-Euler method defined by

y1 = ehLy0 + ehLhN(y0).

We also tried to use this method as a step-size corrector.

3.6.3 Commutator Free methods

One class of exponential integrators is the Lie group methods. The theory behind the
Lie group methods tends to be rather abstract and we refer to e.g. [5, pp. 110-128] and
references therein for an introduction to the subject. Lie Group methods include methods
such as the Runge-Kutta Munthe-Kaas (RKMK) methods which are not suitable for
stiff problems [13, p. 21]. In [2] a class of Lie group methods called Commutator Free
(CF) methods were developed. CF-methods are suitable for solving the Winslow system
because they are applicable to problems where L represents the stiff part and they require
relatively few exponential function evaluations. The general Commutator Free Lie group
method is

Yi = Exp
(

h
∑s

j=1 αK
ij (L,Nj)

)

· · ·Exp
(

h
∑s

j=1 α1
ij(L,Nj)

)

· y0

Ni = N(Yi)

y1 = Exp
(

h
∑s

j=1 βK
j (L,Nj)

)

· · ·Exp
(

h
∑s

j=1 β1
j (L,Nj)

)

· y0
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where i ∈ {1, 2, · · · , s}, K counts the number of Exp-evaluations at each stage and αk
ij

and βk
j are parameters of the method. The parameters are determined by an order

theory which is outlined generally and explicitly for orders up to order four in [15]. A
CF-method is explicit if αk

ij = 0 for i ≤ j, else it is implicit. An explicit CF-method of
order four is implemented in the Expint package (see [1]) for Matlab. The method is

0 0 0 0 I

1
2φ1,2 0 0 0 e

1

2
hL

0 1
2φ1,2 0 0 e

1

2
hL

1
2(e

1

2
hL − I)φ1,2 0 φ1,2 0 e

1

2
hL

1
2φ1 − 1

3φ1,2
1
3φ1

1
3φ1 −1

6φ1 + 1
3φ1,2 e

1

2
hL

,

where φ1,2 = φ1(c2hL).

3.6.4 Implementation issues

In order to construct an exponential integrator, it is necessary to compute the matrix
exponential and functions thereof, notably the φk-functions. Different procedures for
finding the matrix exponential are discussed in [14]. For this thesis, we used the matrix
exponential function of Matlab and the φk-functions of the Expint package [1].

It is useful to note that the stiff system is a vector field with just a few non zero
components. The non-vanishing dimensions depend on several variables. This means
that the Jacobian matrix J only has a few non zero rows and a number of non-zero
columns which is inferior to the size of the system. It is possible to take advantage of
this fact by expanding the matrix exponential in the series

eJ =

∞
∑

k=0

Jk

k!
.

Perturbing the rows of the Jacobian to have the non-zero rows as the first rows of the
matrix, we find that the Jacobian matrix can be written as

J =

[

A B

0 0

]

,

where A is a square matrix and B is a rectangular matrix. The matrix exponential is
thus

eJ = I +

[

∑∞
k=1

Ak

k!

∑∞
k=0

Ak

(k+1)!B

0 0

]

= I +

[

eA − IA A−1(eA − IA)B

0 0

]

,

where I is the identity matrix of same dimension as J and IA is the identity matrix of
same dimension as A. The expression A−1(eA − IA) is the φ1-function of A. In this way
it should be possible to reduce the cost of the calculation of the matrix exponential. We
have not taken advantage of this fact in the calculations of this paper, because for now
we are only interested in some of the aspects of the theoretical computation time.
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3.6.5 The Expint Matlab package

The Expint Matlab package is described in [1]. The package consists of constant step
exponential solvers for problems similar to equation (27). We have made a variable
step-size solver by using two solvers from the Expint package with different order.

The solvers of the Expint package are set up with the same user interface. The φk-
functions are made by using diagonal Padé approximants, and they are defined by an
integral representation

φk(z) =
1

(k − 1)!

∫ 1

0
ez(1−x)xk−1dx,

for k = 1, 2, · · · . The φk-functions are calculated once per integration. Since, for the
variable time step solver which we have developed for use in this paper, the linear term
of the solution changes for each step, the φk-functions are calculated once per time step.
We have sought to find two methods within the Expint framework which can be used
to estimate the local error in a step-size solver. We wanted two methods which share
the same φk-functions and exponential functions, because these are the most expensive
parts of the solver. This claim is based on the asymptotic cost theory (see Section 4). A
method pair which satisfies these requirements is the commutator free Lie group method
of order four (CFREE4) and the order one Nørsett-Euler method.

The computational costs of the solvers of the Expint package are listed in [1, p. 22].
Among the one-step exponential methods of order four, the commutator free exponential
method and a four order RKMK method are the theoretically most efficient. As noted
above, the RKMK scheme is not suitable for stiff problems, and thus we have opted
for the commutator free method. The reason for choosing the Nørsett-Euler rather
than the Lawson-Euler method is that the latter does not seem to be suitable for our
problem, giving small steps even at modest accuracy requirements. We see from Table
7 that the commutator free method requires four φk-evaluations and nine matrix-vector
multiplications, while the Nørsett-Euler method needs two φk-functions and two matrix-
vector multiplications. The four stages of the commutator free method require four
function evaluations of the non stiff system, in addition there is one function evaluation
for the Nørsett-Euler method. The function evaluation of the Nørsett-Euler method
coincides with the first function evaluation of the commutator free method. Moreover,
there are less than 31 function evaluations of the stiff part of the system when calculating
the Jacobian matrix. The calculation complexity of the φk-functions would be reduced
significantly if we employ what we know about the sparsity of the Jacobian matrix which
we mentioned in Section 3.6.4.

3.7 Step-size selection

The Winslow system has several transient phases in its different components and the
stiffness of the system varies with the state of the system. Consequently, the step-size
required by a numerical solver depends on the state of the system, and it is useful to
vary the step-size accordingly.
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Name Non stiff p Stiff p Stages s Output r φk-evals mat-vecs

Lawson-Euler 1 1 1 1 1 1
Nørsett-Euler 1 1 1 1 2 2
Cfree4 4 2 4 1 4 9

Table 7: Key properties of the exponential methods of the Expint package used in this
paper [1]

First we will introduce the concept of local error. The exact solution of the system
(9) integrated from t0 to t1 is

y(t1) =

∫ t1

t0

f(y(t))dt.

The solution of a general numerical one step method Φh(y) applied to a system (9) is

y1 = Φh(y0). (31)

The error added to the exact solution from each time step of the numerical method is
called the the local error and is given by

rloc = |y1 − y(t1)|,

where the starting value for the numerical solution is exact. For practical purposes we
use two numerical methods of different order and with the same initial value for the local
error approximation.

For Runge-Kutta methods it is often possible to find embedded pairs, i.e. methods
of different order but with the same internal steps (see Section 3.3).

In the case of splitting methods, it is more difficult to construct a step-size corrector.
One possibility is to use a Lie-Trotter/Strang-pair, since asymptotically for h → 0, the
Strang splitting method has higher order than the Lie-Trotter splitting. Unfortunately,
for stiff ODE systems, the order of the Strang splitting method and the order of the
Lie-Trotter splitting method may not differ for some step-sizes (see [10]). The step sizes
for which the two methods have same order, are determined by some stiffness parameter.
Since the Strang splitting method is not guaranteed to have higher order than the Lie-
Trotter splitting, it could be problematic to make a step size corrector based on such a
pair. Generally, it is difficult to find a method of different order than the splitting method
that does not require many additional function evaluations or at least additional linear
algebra calculations. We have implemented a Strang splitting where each sub-method is
a Runge-Kutta pair. Then, the minimal step-size of the sub-methods is chosen as step-
size for the entire Strang method. One problem with this approach is a large number of
rejected steps. In addition, we seem to lose some information about the global behaviour
of the solution, which may lead to large errors.

For exponential methods, we have used the methods already implemented in the
Expint package, and found a pair of order 4(1), where the order one step-size control
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does not require additional φ-function evaluations. In order to get a better step-size
control, we could use a pair of order 4(2) instead, but we have chosen the 4(1) pair
because it is simple to implement.

There is also a technique called Richardson extrapolation for which the methods of
different order are found by using the same method with different step-sizes for the error
estimation (see e.g. [6, p. 164f]). This technique, however, requires a lot of function
evaluations, and as we seek to minimise the number of function evaluations, we have not
considered Richardson extrapolation.

The size of the next step can be estimated by

hnew = h

(

TOL

rloc

)(1/(p+1))

,

where p is the order of the local error estimate of the method, h is the previous step-
size, TOL is the internal tolerance which we want for the local error and rloc is the
approximation to the local error. There are techniques for optimising the step-size
control, e.g. how to chose an appropriate first step and how to minimise the number of
rejected steps. In this paper the step-size control has been used to indicate optimal step-
size, ignoring step rejections and the cost of the estimation. More on step-size selection
can be found in [7, pp. 123-127].

4 Computational cost theory

The computational cost of a numerical method depends on factors such as the design
of the computer, the numerical method, the methods of linear algebra, the implemen-
tation of the algorithms and properties of the equation system. In this paper, we are
looking at the theoretical cost of a numerical ODE solver in terms of linear algebra
computations and function evaluations, and not its actual speed. One reason for this is
that speed is hardware and programming language dependent, and a good implementa-
tion may require special programming skills beyond the scope of theoretical numerical
mathematics.

This outline is based on the assumption that the ODE system is stiff and non-linear.
Furthermore, we assume that it is possible to reduce the stiff nature of the system by
removing some components from the original system. We then get a stiff system with
few non-zero components and a non-stiff system, which added together gives the original
system. The expression “few non-zero components in the stiff part” means that their
number does not depend on the system size of the original system. The non-stiff part is
still proportional to the original system size.

4.1 The step-size

The step-size of a numerical method is usually determined by the accuracy which we
require for the solution. When solving stiff systems by explicit solvers, the step-size is
determined by stability concerns. We will outline a theory which is valid for all the
numerical solvers of this paper.
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4.1.1 Implicit solver

The length of the steps required by an implicit solver depends on the order of the method,
the required accuracy and the problem on which we are using the solver. Inspired by
the order theory for numerical methods (see [5, p. 47f]), this relation can be expressed
as

αi(y)hpi+1
i ≤ TOL.

Here pi is the order of the method, αi(y) is a function of the state of the system, and
TOL is the local error tolerance per step. The tolerance is set according to how accurate
we want the solution to be. The function αi(y) depends on the ODE system which we
are dealing with. The relation has to be satisfied for all y. In order to ensure this for
constant step solvers, the step-size hi must satisfy the inequality

hi ≤ hic

where hic is the critical or maximum allowed step-size. The computational cost of each
step is assumed constant throughout the integration interval and depends on the implicit
method that we use. For most implicit solvers, it is not necessary to calculate a new
Jacobian matrix at each step. In this case, the cost of the step will depend on whether
or not a new Jacobian matrix is calculated. For the stiff part of the split system, we will
denote the constant cost per step by ci. For a general stiff system, the cost per step of
the implicit solver is ci(n) for a system of size n.

4.1.2 Explicit solver

The explicit solver must also satisfy an accuracy requirement similar to the one for the
implicit solver. The outline of this requirement is identical to the outline above, but the
values may be different, and we denote the accuracy criterion by

αe(y)hpe+1
e ≤ TOL.

The requirement on the step-size of a constant step solver is consequently

he ≤ hec.

In addition there is a stability requirement which has to be taken into account in case
the underlying problem is stiff. The concept of stability was introduced in Section 3.1.
Based on this theory, the stability requirement is

|λhe| ≤ d̃. (32)

Here λ is a stiffness parameter, which in applications could be the most negative real
eigenvalue, but which is any good parameter measuring the stiffness. For a discussion
of different ways of determining the stiffness parameter of an ODE system, see e.g. [8].
The parameter d̃ is a constant determined by the numerical method. The exact solution
of (11) (for a linear system) after n time steps of length he is

yn = eλheny0 = (eλhe)ny0.
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In order to assure convergence of the method, the condition |eλhe | < 1 must be fulfilled.
When |eλhe | = 1, the solution is constant. A large λhe leads to fast convergence. Thus
λhe in (32) should be as large as possible, i.e. close to d̃. This is a problem for a
method with variable step-size, because the step-size corrector is then likely to reject
steps frequently. In order to avoid this, we multiply d̃ by a safety factor γ < 1 to get a
parameter d = γd̃. In the notation of this section and by application of the definition of
stiffness in Section 3.2, the problem is stiff if

αe(y)hpe+1
e ≤ TOL ⇐⇒ |λhe| > d.

Each step of the explicit solver is associated with a cost function ce(n), depending on
the size of the system n.

4.1.3 Exponential integrator

The requirement on the step-size for an exponential integrator is similar to the expression
proposed for the implicit integrator

αexp(y)h
pexp+1
exp ≤ TOL.

The cost per step depends on the system size n and is denoted by cexp(n).

4.1.4 Splitting method

The splitting method solves different parts of the original problem separately, by using
different solvers. In addition to the error committed by the solvers of each part, the
global method adds an error. Subjected to the same argumentation as for the implicit
method, the error can be defined as

αs(y)hps+1
s ≤ TOL.

The computational cost per step depends on n and is denoted by cs(n).

4.1.5 Estimating α

In order to make the above theory practically useful, it is necessary to find a way to
estimate α. The α(y) depends on both the method and the problem at hand. One
idea for estimating α for a wide range of methods including Runge-Kutta methods,
partitioned methods, splitting methods and commutator free Lie group methods is by
use of B-series. The B-series approach is proposed for finding the order conditions of a
method, but by studying first non-vanishing term of the series it should be possible to
get an expression for the error of the method. For an introduction to B-series, see e.g.
[5, p. 52f.]. A procedure for finding the error term by B-series is not straight forward,
and involves unknowns which would have to be estimated. Especially for methods of
high order, the B-series approach tends to be intricate and technical. Also because the
B-series has to be calculated for all values of y during integration, this method could be
very complicated for a non-linear system, e.g. the Winslow system. For the time being,
we will leave the α as an unknown function.
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4.2 Computational cost per step

The computational cost per step depends on several factors. We chose to regard the
cost as a function of the problem size and the right hand side of the ODE system (9).
In the following part, it is necessary to bear in mind that the function f and thus the
computational cost of it may depend on the state of the system, although here we will
assume that the cost is constant. In addition there are several constant factors. There
are two main sources of computational time consumption. These are the evaluation
time of the function and the linear algebra. For the computational cost, we will use
O-notation, i.e.

O(nq) = Cnq,

where C is some constant, n is the system size and q is some integer.
For the Winslow system, the function evaluations are expensive and therefore we

seek to find a method which minimises the number of function evaluations. In order
to get an impression of the cost of the Winslow system, we used the built-in Matlab
command PROFILE. We noted that for the multi-step solver ODE15S, the Winslow
function evaluations takes about 45% of the total time, for Runge-Kutta-like solvers
ODE23S, ODE23T and ODE23TB the proportion of times spent at calculating the
Winslow system was approximately 70%, 40% and 50% respectively. It is important to
keep in mind that these proportions change slightly for each run of the solver. They
might also change for other implementations of the Winslow system.

4.2.1 Cost of implicit method

The most expensive part of the linear algebra of an implicit method is the inversion of
the Jacobian matrix. Non-iterative schemes typically require O(n3) binary operations
for doing LU-factorisations. In addition, the calculation of the Jacobian matrix requires
n function evaluations. Generally, it is difficult to anticipate whether it is the linear
algebra or the function evaluations which are most costly.

An expression for the cost per step of an implicit method is

ci = O(n)cf + O(n3).

Here cf is the cost associated with the evaluation of the function. The use of O-notation
is not absolutely correct, but because of the n-dependency of cf , we have chosen to let
the two terms of the addition be independent of each other.

It is important to note that the Jacobian matrix does not need to be updated at each
step. When the previous Jacobian matrix is kept, we can also keep the LU-factorisation
of the previous step, and the cost is reduced to

costi = O(1)cf + O(n2).

In the case that we have a split system where the stiff part is small, i.e. the number of
non-zero elements of the function does not depend on n, the expression can be simplified
as

ci = O(1)cf + cm.
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Here cf is still the cost of a function evaluation, and cm = O(1) is the cost of the linear
algebra. We will make use of the last expression in the expression for the cost of the
splitting method.

4.2.2 Cost of explicit method

The explicit method is characterised by a linear algebra cost of O(n) from scalar-vector
multiplications and vector additions. It uses only O(1) function evaluations. The cost
of the explicit method is consequently

ce = O(1)cf + O(n).

4.2.3 Cost of exponential integrators

Exponential integrators require the computation of the matrix exponential and functions
thereof. Matrix exponentials generally cost O(n3), where the notation hides a constant
considerably larger than that for the LU-decomposition of an implicit method (see [14,
pp. 5 and 16]). Thus, the total cost of the exponential integrator is

cexp = O(1)cf + O(n3).

In Section 3.6, we saw that the matrix exponential for the stiff part of the Winslow
system, may not depend on n. In this case, the multiplications of equations (29) are
the asymptotically most expensive part of the exponential integrator. Now, the cost per
step of the exponential integrator is

cexp = O(1)cf + O(n2).

We also notice that the cost of evaluating the Winslow system cf is really the cost
of evaluating N(y) of equation (27). Although the cost of evaluating N(y) is higher
than that of evaluating f , we assume that the difference in computation complexity is
negligible.

4.2.4 Cost of splitting method

The computational cost per time step is the sum

cs(n) =

sp
∑

k=1

γkck

where sp is the number of partitions of the original vector field, γk is the number of calls
to each sub-method and ck is the cost per step of each sub-method. Thus, the Strang
splitting using an implicit and an explicit method has the cost function

cs = 2ci(ns) + ce(nns) ≈ 2ci + ce(nns) =

2O(1)cfs
+ 2O(1) + O(1)cfns

+ O(nns) ≈ O(1)cf + O(n).
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Here we assume that the cost of evaluating the stiff system is negligible in comparison
with the non-stiff system, and that the non-stiff system is approximately as expensive
as the original system. We note that the O-functions above change after the ≈-sign.

4.3 Total computational cost

The total cost of the method is

ctot =

N
∑

i=1

c
[i]
method,

where N is the total number of steps, c
[i]
method is the cost of step number i for some

method. For a method with constant step-size and constant cost per step, the total cost
of an integration is

ctot = Ncmethod.

For the Winslow system, the constant step-size approach is slow, e.g. because the
region of very negative eigenvalues which determines a critical step-size is small. There-
fore, the step-size of a constant step solver is much shorter than necessary for most of
the system. In the case of variable step-size, the cost of the step-size control has to be
taken into account. This cost depends on the number of rejected steps and the cost of
the method which we use to estimate the local error. For Runge-Kutta methods, there
are embedded methods which require only O(n) additional linear algebra computations.
As seen in Section 3.7, the step-size selector of splitting methods, could be another split-
ting method. An exponential method could use another exponential method as step-size
corrector, possibly without calculating new exponentials.

In table 8 we have summed up the cost per step of the different solvers of this paper.
Since the solvers are not directly comparable, it is not possible a priori to recommend
one, but both the Strang splitting and the exponential method we study in this paper
could be less expensive per step than an ESDIRK method. It is important to notice
that the function evaluations needed to find the Jacobian matrix are not included in the
table, but hidden in the calculation of the Jacobian matrix.

5 Results

In this section, we will show the results which we obtained when splitting the Winslow
system and solving the split system by a Strang splitting method and an exponential
integrator. We will measure the quality of a solver by investigating the cost of obtaining
a small global error. The global error is given by

rglobal = |yn − y(tn)|,
where yn and y(tn) are the solution at time t = tn for the numerical and exact solu-
tions, respectively. The methods implemented for this thesis were rather slow in actual
computation time, therefore we have restricted ourselves to an integration interval of 10
ms.



28 5 RESULTS

Strang split
CFREE4 ESDIRK32 ODE23/ESDIRK32

Jacobian matrix of
- entire system yes
- stiff part yes yes

Function evaluations
- of entire system 4
- of stiff part 2 · 3
- of non stiff part 4
- of N(y) 4

φ-evaluations 4

LU-factorisation
- system size full not full

Table 8: Some key cost parameters for the numerical methods of this paper

5.1 Splitting a stiff ODE system into a stiff and a non-stiff part

We have seen that the stiffness of a system like (9) is indicated by large negative eigenval-
ues of the Jacobian matrix. As mentioned in Section 3.1, explicit Runge-Kutta methods
tend to be unstable if the absolute value of the product of the most negative eigenvalue
and the step-size is greater than a certain stiffness parameter which depends on the
numerical method. Therefore, stiff systems force the step-size to be small. A study of
the eigenvalues of the numerically approximated Jacobian matrix of the ODE-system
for different values of y, revealed that there was one large negative eigenvalue value,
which may be responsible for the stiffness of the system. The y-values at which we cal-
culated the Jacobian matrix were determined by the solution of the Winslow system by
Matlab solver ODE15S at tolerance 10−10. The extreme eigenvalue was associated with
an eigenvector which was dominated by the variable PC1

and PO1
(see Appendix A).

Variable PO1
depends strongly on PC1

, and both variables depend on variable
[

Ca2+
]

ss
.

Consequently, by removing the corresponding differential equations, i.e. 12 and 30, from
the system, we hoped that the resulting system would have smaller negative eigenvalues.
Computing the eigenvalues of the Jacobian matrix of the reduced system, we noticed
that the most extreme eigenvalues had disappeared. Constructing a new ODE system
of the differential equations for PC1

and
[

Ca2+
]

ss
, we observed that the eigenvalues of

this system are as extreme as the eigenvalues of the original system. In this way it was
possible to split the original system into a stiff and a non-stiff system. It is important
to notice that the stiffness change for different states of the system, and thus for some
states, the “non-stiff” system may be more stiff than the “stiff” system. As we proposed
in Section 3.6 for the exponential integrators, we have transformed the split system into

y′(t) = f(y(t)) = Ly(t) + N(y(t)), y(t0) = y0.

We have also investigated the eigenvalues of the Jacobian matrix of N(y(t)).
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(a) The original Winslow system of 31 variables

0 50 100 150 200 250 300 350 400 450 500
−300

−250

−200

−150

−100

−50

0

(b) The reduced ODE system of 29 variables
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(c) The small stiff ODE system of two variables
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(d) The ODE system N(y) for the exponential
integrator

Figure 4: Distribution of the most extreme negative eigenvalue of the original and the
partitioned systems for time from 0 to 500 ms

Min. eigenvalue Max. eigenvalue

Original system −1.6916 × 104 1.7578 × 103

Modified system −286.1646 7.0087
Resulting stiff system −1.6916 × 104 −7.8256 × 10−9

The system N(y) −8.6429 × 103 9.7284 × 104

Table 9: The extreme real part of the eigenvalues of the Jacobian matrix for the Winslow
system
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(a) The original Winslow system of 31 variables
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(b) The non-stiff part of the ODE system
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(c) The stiff part of the ODE system
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(d) The ODE system N(y) for the exponential
integrator

Figure 5: Distribution of the most extreme positive eigenvalue of the original and the
partitioned systems for time 0 to 500 ms. This shows that the large initial eigenvalues
are lost in the partitioning
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(b) The ODE system N(y) for the exponential
integrator

Figure 6: Distribution of maximum and minimum imaginary parts of the eigenvalues.
The non-stiff part of the partitioned system shares the pattern of the original system,
albeit with smaller magnitude. For the stiff system the imaginary parts are always zero.
The eigenvalues of the ODE system N(y) has very large imaginary parts

In Figure 4 we see how the largest negative eigenvalues of the original system, the
reduced system and the system of the variables taken out of the system are distributed in
a time span from 0 to 500 ms. We see that initially the modified, “non-stiff”, system has
considerably smaller negative eigenvalues than the original system. We then observe that
the original system goes through phases where the eigenvalues are not that extreme. The
stiff system goes towards a phase where the most extreme negative eigenvalue approaches
zero. This indicates that the supposedly stiff system is only stiff initially. The non-
stiff system on the other hand experiences two regions of moderately large negative
eigenvalues. This means that the two variables which we have split out of the system are
responsible for the most negative eigenvalues, globally speaking, but that the negative
eigenvalues of some regions are dominated by other variables. The assumption that the
N(y)-function of equation (27) is non-stiff, is to a certain degree refuted by the fact
that the eigenvalues of its Jacobian matrix are large and negative. Still, the negative
eigenvalues are smaller than for the original system.

The fact that the Winslow system can be split into a stiff and a non-stiff part by
filtering out some of the components of the system, suggests using a splitting method.
There is however also the possibility of using different solvers for the stiff and the non-stiff
states of the original system. When to change between the solver for the system in the
stiff state and the solver for the non-stiff state can be determined a priory by a analysis
similar to the one above. Alternatively, it could be determined by implementation of an
automatic stiffness detector (see e.g. [7, p. 21]). In this paper we will only investigate
the splitting approach.

Investigating the maximum eigenvalues, we find that initially the original system
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has large positive eigenvalues. Apparently, the large positive eigenvalues are lost when
partitioning the system, as can be seen from Figure 5. The stiff system does not have
any positive eigenvalues, and Figure 5c only displays the eigenvalues closest to zero. For
the N(y)-system there are even larger positive eigenvalues than for the original system.

Regarding the imaginary part of the eigenvalues, it can be seen from Figure 6 that
there is only initially a non-zero imaginary component. The same pattern which can be
seen for the original system is also seen for the non-stiff partition. The stiff partition
has no non-zero imaginary component of its eigenvalues. As was the case for the original
system, there are also large positive and negative imaginary parts of the Jacobian matrix
of the N(y)-system.

5.2 Splitting ESDIRK/RK

The motivation for using a splitting method is that we hope that the step-size of the
splitting method is considerably larger than for an explicit system while the computation
time per step is less than for an implicit method. We saw in Section 4 that theoretically,
this might be the case.

In Section 3.7, we were discouraged from using a step-size corrector based on the
Strang splitting method and the Lie-Trotter splitting method for the Winslow system.
Instead, we proposed to have a step-size controller in each sub-method of the Strang
splitting method, hoping that this would give sufficiently good step-sizes for the entire
system. The initial motivation for choosing this step-size corrector was that we wanted
to investigate the step-size of the stiff and the non-stiff part of the Winslow system.

First, we applied a step-size corrector to the non-stiff part of the splitting method in
order to see if the step-sizes of an explicit solver for the non-stiff part of the Winslow sys-
tem increase with respect to the original system. Then, by applying a step-size corrector
to the stiff system as well, we see from Table 10 that the step length is determined by the
explicit system for most parts of the calculation interval, except from the part where the
stiff system has most negative real eigenvalues. Since the implicit method is supposed
to be A-stable, it is not evident from the point of view of stiffness why it should limit
the step-size more than the explicit solver in the stiff phase. One explanation is that the
stiff system is in a transient phase, as seen in Figure 8, and that the small step-sizes are
due to accuracy requirements.

In Figure 7, we see that in the phase where the negative eigenvalues of the Jacobian
matrix of the Winslow system are small, the splitting method generally does not accept
larger step-sizes than the explicit ODE23 solver, although it does in some regions. In the
stiff region of the original system, however, the step-size of the Strang splitting method
increases considerably with respect to the step-size of the entire system solved by an
explicit RK-method. A problem with the comparison is that we have not taken into
account the global error of the numerical solutions. In order to measure the quality of a
solver we are interested in the step-size required in order to get a sufficiently small global
error. Nevertheless, the step-sizes of the ODE23 solver in the stiff region are so small
that the Strang splitting method is very likely to accept larger steps than the explicit
method even when global error is taken into account.
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Figure 7: The step-size obtained by a simple step-size selector from time 0 to 5 ms. The
splitting method accepts larger steps than the explicit solver in the stiff region.
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Figure 8: A transient phase in the stiff part of the system may explain the need for small
step-sizes for the implicit solver in the splitting method
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A problem with the splitting method for which the step-size selectors are put in each
sub method, is the large global error. Compared to a reference solution obtained with
Matlab solver ODE15s with internal error 10−12 at time 10.0107, we find that the norm of
the difference of each component is 0.0840. Compared to the total norm of the reference
solution 159.4921, the relative error is 5.2692 · 10−4. For an internal error of 10−4 this
error is perhaps not very high, but the number hides the fact that some components
of small magnitude may have an considerable error. The qualitative difference between
the reference solution and the splitting method for the above case is plotted in Figure
9a. In comparison, a splitting method with constant step-size 10−4 is qualitatively very
accurate, although it has an error after 3.0001 seconds of 3.8959 · 10−4. For the explicit
method with step-size control and internal error 10−6, the error is qualitatively nice and
the final error is 1.4407 · 10−8.

In order to minimise the error of the sub-methods of the Strang splitting, we exchange
the ESDIRK method and the explicit method in the Strang splitting scheme by Matlab
solver ODE15S. We see that the local error gets smaller, but still it is considerable. By
comparing the result of a Strang splitting method using only ODE15S and a calculation
by ODE15S on the original system, we observe in Figure 9b a large local error which
coincides with the transient phase of the stiff system as mentioned above. In other words,
a large local error at this point seems to be unavoidable for the Strang splitting. More
work needs to be done in order to find a step-size corrector which is able to minimise
the negative effects of this peak in the local error for the rest of the integration. As
mentioned above, a run of the Strang splitting method with small constant step-size
gives a more accurate global result.

The asymptotic cost theory presented in Section 4 gives the same asymptotic cal-
culation time per step for the explicit solver and the splitting method (except for the
constants hidden in the O-notation). Assuming that the step-size selection of the split-
ting method is not considerably more costly than for the explicit Runge-Kutta solver,
the splitting method may have advantages over the explicit method. As yet however,
the implementation of the splitting method is slow in terms of actual computation time,
and we have not yet found a good step-size corrector for it. Implementation issues must
be studied further before we can conclude that there is in fact a fast splitting method.

5.3 Exponential integration

We have solved the split system by use of the Expint package for Matlab. We have used
two different approaches for making a system of form (27). First we let L = J , where
J = J(y0) is the Jacobian matrix of the Winslow system at the start of each step, and
N(y) = f(y) − Ly. The second approach was to construct the matrix

L∗ =

(

fs1(y)
ys1

0

0 fs2(y)
ys2

)

,

where fs1(y) and fs2(y) are the two non-zero elements of the stiff system, and ys1 and
ys2 are the corresponding state variables. We then let N ∗

1 = fns and N∗
2 (y) = f(y)−L∗y.
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Figure 9: The splitting method with a simple step-size corrector is not able to reproduce
the results of a reference solution
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Time Step-size Step-size change Method
0.0594 0.0606 0.0198 ERK
0.1002 0.0442 0.0049 ERK
0.3788 0.0476 0.0203 ERK
0.4696 0.0335 0.0109 ERK
0.4922 0.0249 0.0073 ERK
0.5097 0.0189 0.0023 ERK
0.5263 0.0170 0.0018 ERK
2.6050 0.0323 0.0199 ESDIRK
2.6174 0.0289 0.0263 ESDIRK
2.6201 0.0204 0.0134 ESDIRK
2.6270 0.0148 0.0133 ESDIRK
2.6285 0.0092 0.0067 ESDIRK
2.6310 0.0075 0.0011 ESDIRK
2.6310 0.0063 0.0048 ESDIRK
2.6326 0.0025 0.0010 ESDIRK
2.7328 0.0204 0.0033 ERK

Table 10: Survey of step-size changes larger than 10−6.

For N∗
1 , the solver breaks down in the region of large negative eigenvalues. For N ∗

2 (y),
the solution is also unstable. We have therefore settled for the first approach. The
global error is 0.0069 when calculated with respect to the same reference solution as we
used in Section 5.2. But by taking a qualitative look at the output, it is clear that the
solution by Expint is considerably closer to the reference solution. It is not possible to
see differences as we saw in Figure 9a.

We implemented a step-size corrector for the fourth order commutator free method
of the Expint package, CFREE4, by use of the ESDIRK23 method. The resulting step-
size versus time in Figure 10a shows a step-size pattern which is fluctuating in the stiff
region. For a step-size corrector based on the Lawson-Euler exponential solver, the
step-size in the stiff region is not fluctuating, but small as can be seen in 10b. By the
use of the Nørsett-Euler method in the step-size corrector, we obtained, for a tolerance
of 10−2, a more fluctuating pattern of step-sizes comparable to those obtained by the
ESDIRK23 based step-size control. For more accurate integration, the step-size was not
fluctuating and the step-sizes were larger than for the step-size corrector based on the
Lawson-Euler method. The step-sizes are plotted in Figure 10c. The global error of
the CFREE4/Nørsett-Euler scheme is compared to the reference solution and plotted in
Figure 11a. We observe that the global error does not only depend on time, but also on
the state of the system. The observation of large global error in a region is supported
by the large local error in the same region in Figure 11b.

In order to answer the question whether the N(y) system is stiff or not, we saw in
Section 5.1 that the Jacobian matrix of the ODE system N(y) has large negative real
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Figure 10: Step-size for numerical solution of the Winslow system by exponential inte-
grator CFREE4 from the Expint package
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Figure 11: Estimations of global and local error for numerical solution of the Winslow
system by exponential integrator CFREE4 from the Expint package

eigenvalues. Although the eigenvalues are not as large as the negative eigenvalues of
the original system, they are much larger than the negative eigenvalues of the non-stiff
system. It is important to bear in mind that large negative eigenvalues do not necessarily
imply stiffness if for instance the system is in a transient phase. In the Expint solvers,
the N(y) is solved by an explicit method, and in the next section we see in Figure 12a
that the number of steps taken by the Expint solver is comparable to some of the implicit
solvers of Matlab. In other words, it is possible that the N(y) system is not very stiff.

5.4 Comparison of solvers

We will measure the quality of a solver by the cost of obtaining a small global error.
We calculated the global error for the built-in Matlab solvers of Section 3.4 for internal
tolerances 10−2, 10−4, 10−6, 10−8 and 10−10 with respect to a reference solution obtained
by ODE15S with relative and absolute internal tolerance 10−12. Then, we did the same
procedure for the RADAU5 method, the Strang splitting method and the exponential
integrator. The results are plotted in Figure 12. We see that the ODE15S method uses
few function evaluations, but since ODE15S is a multi-step solver we will not investigate
this solver further. The step-sizes of the RADAU5 method are generally large. Since
we imposed a step-size restriction on the solver because of the coupling of the ODE and
the PDE in the bidomain heart model, we are not able to take advantage of the large
time steps of the RADAU5 solver. Note should be taken however that it is possible to
interpolate the solution of the RADAU5 solver in order to get the solution at the time
that we are interested in. Especially for high accuracy, the RADAU5 method is efficient
in terms of function evaluations compared to the one-step implicit solvers of Matlab.

Function evaluations of the Winslow system are costly, as seen in Section 4.2, and we
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therefore want to reduce their number. The method based on the Expint-solvers generally
performs better than the Strang splitting procedure. It is, however, important to note
that the most expensive part of the exponential integrator, namely the calculation of the
matrix exponential, is not included in this comparison. The number of time steps for
the Strang splitting and the Expint method were calculated by the step-size controllers
discussed in Sections 5.2 and 5.3. In order to make an estimation of the number of
function evaluations, LU factorisations and Jacobian matrix evaluations, we multiplied
the number of steps by a suitable number from Table 8. In other words, we do not
take into account the cost of the step-size selector. For the Strang splitting method,
the number of function evaluations is taken to be the number of evaluations of the
non-stiff part of the Winslow system. For the Expint-solver, we count the number of
N(y)-evaluations. We see that the Strang splitting method performs considerably worse
than the other solvers.
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Figure 12: Cost efficiency of different numerical methods applied to the Winslow system
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6 Conclusion

In theory, a stiff system split into a stiff and a non-stiff part and which is solved by a
numerical splitting method is supposed to accept longer steps than an explicit method
while having a smaller cost per step than an implicit method. We showed that it is
possible to split the Winslow system into a stiff and a non-stiff system by removing two
variables. In order to find the step-size of the splitting method, we constructed different
step-size selectors. We have so far been unable to construct an efficient step-size selector
which is cheap and which gives the system a small global error. Nevertheless, we were
able to show that the non-stiff part of the system could be solved by an explicit solver
with larger step-size than that required for the entire system. A step-size selector based
on Runge-Kutta pairs for the sub-integrators of a Strang splitting method did not appear
to be an optimal way for determining the step-size.

In order to solve the Winslow system by an exponential integrator, we had to calculate
the Jacobian matrix of the stiff part of the system and make a new non-stiff part which
depends on the Jacobian matrix of the stiff part. The new non-stiff part of the system
appeared to have large negative eigenvalues, still we were able to solve the system by use
of solvers from the Expint package for Matlab. The step-size of the exponential integrator
is larger than for the explicit solver, still much shorter than for the best implicit solvers.
The global error of the exponential method with step-size corrector does not only depend
on time, but also on the state which the system has reached. More work has to be done,
probably on the step size corrector, in order to get a more accurate solution for all states
of the system.

Although theoretically the splitting of the Winslow system and the solving of the
system by a splitting method or an exponential method might be more efficient than
using an implicit solver on the entire system, more work has to be done in order to make
good methods for the split system. The most promising of the splitting methods has
been the exponential integrator. We believe future work should focus on modifying this
solver in order to take advantage of the special properties of the Winslow system such
as the sparsity of the Jacobian matrix. The problem of such a specific solver is that it
may not work for other cell models than the Winslow model.

An alternative approach to solving the Winslow system could be to use different
solvers for different states of the system. Since there are several implicit solvers which
solve the Winslow system well, and the Winslow system is not very stiff after an initial
phase, this could be a good idea for future work.
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A The Winslow ODE system

A.1 The transmembrane potential

dV
dt = −(INa + ICa + ICa,K + IKr + IKs + Ito + IK1 + IKp + INaCa + INaK + Ip(Ca) + ICa,b + INa,b)

A.2 K+- and Na+- gate variables

dm
dt = αm(1 − m) − βmm

dh
dt = αh(1 − h) − βhh

dj
dt = αj(1 − j) − βjj

dXKr

dt =
X∞

Kr−XKr

τXKr

dXKs

dt =
X∞

Ks
−XKs

τXKs

dXto

dt = αXto(1 − Xto) − βXtoXto

dYto

dt = αYto(1 − Yto) − βYtoYto

Here all coefficients only depend on the transmembrane potential V .

A.3 RyR-channel

dPC1

dt = −k+
a

[

Ca2+
]4

ss
PC1

+ k−
a PO1

dPO1

dt = −k+
a

[

Ca2+
]4

ss
PC1

− k−
a PO1

− k+
b

[

Ca2+
]3

ss
PO1

+ k−
b PO2

− k+
c PO1

+ k−
c PC2

dPO2

dt = −k+
b

[

Ca2+
]3

ss
− k−

b PO2

dPC2

dt = k+
c PO1

− k−
c PC2

All the k-coefficients are constant. The stiffness of the system is to a great extent
attributed to the state variable PC1

.
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A.4 L-type Ca2+-channel

dC0

dt = βC1 + ωCCa0 − (4α + γ)C0

dC1

dt = 4αC0 + 2βC2 + ω
b CCa1 − (β + 3α + γa)C1

dC2

dt = 3αC1 + 3βC3 + ω
b2 CCa2 − (2β + 2α + γa2)C2

dC3

dt = 2αC2 + 4βC4 + ω
b3 CCa3 − (3β + α + γa3)C3

dC4

dt = αC3 + gO + ω
b4 CCa4 − (4β + f + γα4)C4

dO
dt = fC4 − gO

dCCa0

dt = β′CCa1 + γC0 − (4α′ + ω)CCa0

dCCa1

dt = aα′CCa0 + 2β′CCa2 + γaC1 − (β′ + 3α′ + ω
b )CCa1

dCCa2

dt = 3α′CCa1 + 3β′CCa3 + γa2C2 − (2β′ + 2α′ + ω
b2

)CCa2

dCCa3

dt = 2α′CCa2 + 4β′CCa4 + γa3C3 − (3β′ + α′ + ω
b3

)CCa3

dCCa4

dt = α′CCa3 + γa4C4 − (4β′ + f ′ + ω
b4

)CCa4

dy
dt = y∞−y

τy

A.5 Intracellular Ca2+ fluxes (slow buffers)

d[HTRPNCa]
dt = k+

htrpn

[

Ca2+
]

i
([HTRPN ]tot − [HTRPNCa]) − k−

htrpn [HTRPNCa]

d[LTRPNCa]
dt = k+

ltrpn

[

Ca2+
]

i
([LTRPN ]tot − [LTRPNCa]) − k−

ltrpn [LTRPNCa]

A.6 Intracellular ionic concentrations

d[K+]
dt = −(IKr + IKs + Ito + IK1 + IKp + ICa,K − 2INaK)

AcapCsc

VmyoF

d[Ca2+]
i

dt = βi

(

Jxfer − Jup − Jtrpn − (ICa,b − 2INaCa + Ip(Ca))
AcapCsc

2VmyoF

)

d[Ca2+]
ss

dt = βss(Jrel
VJSR

Vss
− Jxfer

Vmyo

Vss
− ICa

AcapCsc

2VmyoF )

d[Ca2+]
JSR

dt = βJSR(Jtr − Jrel)

d[Ca2+]
NSR

dt = Jup
Vmyo

VNSR
− Jtr

VJSR

VNSR

The stiffness of the system is to a large extent due to
[

Ca2+
]

ss
. The parameters of

the equation system can be found e.g in [18].


