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Abstract

We present the cryptographic primitives needed in the construction of electronic voting systems
based on homomorphic encryptions and on verifiable secret sharing. Then “The theory and imple-
mentation of an electronic voting system” by Ivan Damgård, Jens Groth and Gorm Salomonsen
is presented as an example of electronic voting systems based on homomorphic encryptions, while
“Multi-authority secret-ballot election with linear work” by Ronald Cramer, Matthew Franklin,
Berry Schoenmakers and Moti Yung is presented as an example of electronic voting systems based
on verifiable secret sharing. Moreover, the mathematical background for these systems are studied
with particular emphasis on the security issues of the relevant sub-protocols.

Comparing these two examples we find that the presented voting system based on verifiable
secret sharing is more secure then the one based on homomorphic encryptions, both in regard to
privacy and robustness. On the other hand, we find that the presented voting system based on
homomorphic encryptions is more efficient then the one based on verifiable secret sharing.
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Introduction

An electronic voting system is viewed as a set of protocols that allow a collection of voters to cast
their votes, while enabling a collection of authorities to collect the votes, compute the final tally,
and communicate the final tally that is checked by the talliers [CFSY96]. In the cryptographic
literature on voting systems, three important requirements are identified:

• Universal verifiability: After the election any party, including a passive observer, can
convince himself that the election was fair in the sence that the published final tally is
computed correctly from ballots that were correctly cast.

• Privacy: All individual votes will be kept secret from any (reasonably sized) coalition of
parties. Possible degrees of privacy is depicted in Figure 1.1 from [Saf01].

• Robustness: The results reflect all submitted and well-formed ballots correctly, even if
some voters and/or possibly some entities running the election cheat. The possible degrees
of robustnuss are the same as the ones of privacy.

In addition no vote-duplication and receipt-freeness are usually considered desirable properties of
the voting system. No vote-duplication means that is should be impossible to copy another voters
vote (even without knowing what the copied vote is). While receipt-freeness means that the voter
should not be able to get a receipt from the voting system which shows which way the voter voted1.
This property is desirable since the receipt can be used for vote buying and coercion, which is why
the property sometimes is referred to non-coercibility.

Various fundamentally different approaches are known in the literature. One of these is to
use blind signatures and and anonymous channels [FOO93], where the channels usually are im-
plemented using MIX nets [Nef01]. The idea in such a voting system is that the voter prepares
a ballot in clear-text. He then interacts with an authority to show that he is eligible to vote and

1The notion of receipt for electronic voting systems was introduced by Benaloh and Tuinstra in [BT94] where
they showed how previous election protocols all suffer from this defect.

Privacy strength Relies upon Attacks

Policy correctly following a 1. circumvent policy
communication protocol 2. collusion
defined by policy 3. court order

Computational mathematical expressions 1. break the code
and their correct 2. obtain the keys
implementation in 3. collusion
hardware/software 4. court order

Information-theoretic unprovable (non- 1. obtain secrets
computable) relations 2. collusion

3. court order
Fails safe unknowable relations none

Figure 1.1: Four cases of privacy ranked in increasing degree of privacy strength.
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has not already voted. If that is the case the authority issues a blind signature on the ballot. In-
formally this means that the voter obtains the authorities digital signature on the ballot, without
the authority learning anything about the content of the ballot. And, on the other hand, a voter
can not obtain the signature without interacting with the authority. The voter then sends the
ballot to another authority which is responsible for tallying the votes. In order to maintain privacy
this must be done using anonymous channels, which cryptographically can be implemented using
MIX-nets, or the channel may rely on some physical assumption. After all ballots have been re-
ceived they can be counted directly ignoring the ballots without the relevant authority’s signature
[DGS03].

Another approach is to use several servers to count the votes and have voters verifiable secret

share the votes among the servers [CFSY96, Sch99]. In such a voting system each voter sends a
share of his ballot to each authority. This is done in such a way that fewer then some threshold
t gets no information on the vote, while t or more authorities can go together and reconstruct
the ballot. In addition the voter must convince the authorities that the ballot was correctly
constructed, and so he is prevented from voting twice or voting incorrectly. When all the votes have
been cast the servers can jointly compute the result of the election without any side information
becoming public.

A final approach is to use homomorphic encryptions [DGS03, CGS97, BFP+01, DJN03]. In
such a voting system the voter publishes an encryption of his vote represented by a number, which
is encrypted using a homomorphic public-key cryptosystem. When submitting his vote, the voter
must identify himself to prove that he is eligible to vote, and has not voted before. In addition he
must prove knowledge of the fact that his encryption contains a valid vote. This does not violate
privacy since all individual votes remain encrypted, and the proof is zero-knowledge. Informally
this means that the proof is done in such a way that the authorities gain no information about the
content of the encryption, except the fact that it contains a valid vote. Using the homomorphic
property of the cryptosystem the authorities can compute an encryption to the final tally from the
encrypted votes by simple binary operations (usually multiplication). All that is left is to decrypt
the final results. This can be done securely assuming the private-key of the cryptosystem has been
secretly shared among a set of authorities. The shares have to be constructed in such a way that
fewer than some threshold t of the authorities get no information about the key, while a set of t
or more authorities can go together and jointly decrypt the results. This is often called threshold

decryption.
Our goal in this thesis is to understand and compare voting systems based on verifiable secret

sharing and voting systems based on homomorphic encryptions. For this purpose we will use
“Multi-authority secret-ballot election with linear work” by Ronald Cramer, Matthew Franklin,
Berry Schoenmakers and Moti Yung [CFSY96] as an example of electronic voting systems based
on verifiable secret sharing, while “The theory and implementation of an electronic voting system”
by Ivan Damgård, Jens Groth and Gorm Salomonsen [DGS03] will be used as an example of
electronic voting systems based on homomorphic encryptions. The mathematical background for
these systems will be studied, with particular emphasis on the security issues of the relevant sub-
protocols. Furthermore, it is of interest to compare security issues as well as efficiency issues of
the two different voting systems.

The disposition of the thesis is as follows: In Chapter 2 we define the cryptographic primitives
we need for our voting systems. In Chapter 3 we present the voting system based on homomorphic
encryption, while the voting system based on verifiable secret sharing is presented in Chapter 4.
The security and efficiency issues of the two presented systems are compared in Chapter 5, while
Chapter 6 concludes the paper.
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Cryptographic primitives

2.1 Turing machines

Turing machines1 can be seen as an abstraction of computers as we know them today. We will give
an informal description based on the description found in [Cra96], while a formal definition can
be found in for instance [LP98]. To perform some computational task, the Turing machine is pro-
vided with an adequate list of elementary instructions (an algorithm). Similar to a programming
language, each of these instructions must be chosen from some finite set of eligible instructions.
Any (private) input to the machine is placed on the part of memory called knowledge tape. The
machine has also access to an auxiliary tape which can be used to read and write intermediate
results. When the computations dictated by the algorithm have been completed, the machine
halts and output the outcome on the output tape. A Turing machine is called probabilistic if it
also has access to a random tape, which is part of the memory allocated for storage of random bits.
In this case the machine is allowed to read random bits and use them in any of its computations.
A Turing machine is called polynomial time, or sometimes efficient, if the total number of read
and write operations to and from the tape is bounded by some polynomial in the length of the
input. Any computation which can not be performed by a polynomial time Turing machine is
called infeasible or intractable. The probability, ε(·), that a polynomial time Turing machine can
solve some computational problem is said to be negligible in some security parameter l if for any
polynomial p(·), ε(l) ≤ 1/p(l) for all large enough l.

We say that an interactive Turing machine is given to us as a black-box if we are allowed to run
the machine as many times as we desire (but at most a polynomial number of times). Moreover,
we are allowed to put any strings of our choice on its communication tape. If we in addition are
allowed to supply the random bits for the random tape we say that the machine is given to us as
a rewindable black-box.

Before we continue a word of warning about the definition of intractable, infeasible and neg-
ligible. They are based on the asymptotic behavior of the adversary as we increase the value
of the security parameter. This is mathematically convenient when doing proofs, and has nice
connections to standard complexity theory, but one should take care when evaluating the meaning
in practice. The reason for this is that the definition implicitly classifies everything that can be
solved in polynomial time as “easy” and anything else as being “hard”. This is not always accurate
in real life. Even if a problem is asymptotically hard, it might still be easy for those input sizes
we want in a particular application. This does not mean that asymptotical security results are
worthless, only that usage of a scheme in real life should always be supplemented with an analy-
sis of practical state of the art solutions to the (supposedly) hard problem we base ourselves on
[Dam99].

2.2 Intractability assumptions

As most other cryptographic protocols, such as for instance the RSA public-key cryptosystem,
we will base the construction of our voting systems on the assumption that some computational
problem is intractable. In the remainder of this thesis we will assume that the following three
problems are intractable.

1Named after their inventor Alan Turing, who is often considered to be the father of modern computer science.
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Definition. ([Sti02]) The discrete logarithm problem: Given a group G, an element g ∈ G of order
n, and an element h ∈ 〈g〉, find the unique integer a, 0 ≤ a ≤ n− 1 such that ga = h.

Definition. ([DGS03]) The generalized Decision Diffie Hellman problem: Given a ring R an
element g ∈ R of order n and three elements ga, gb, gc ∈ 〈g〉, determine if c = ab mod n.

Definition. ([RK03]) The RSA problem: Given a RSA public-key (n, e) and a ciphertext y, find
m such that me mod n = y.

We will refer to the assumption that these problems are intractable as the discrete logarithm
assumption, the generalized DDH assumption and the RSA assumption respectively.

Note that the generalized DDH assumption is as least as strong as the discrete logarithm
assumption. Given an oracle DL(·), that on input ga outputs a. We can solve the DDH problem
on input (ga, gb, gc), by checking if DL(ga)·DL(gb) mod n = DL(gc).

2.3 Interactive proof systems

An interactive proof system, formally defined below, is a form of conversation between a prover
and a verifier, where the prover tries to convince the verifier that a certain (usually mathematical)
statement is true. If the prover is honest then he will always succeed, while if the prover is
dishonest he will almost certainly fail. An interactive proof system is said to be zero-knowledge
if all the verifier learns from talking to an honest prover is the truthfullnes of the statement, and
nothing more2.

To ensure privacy we want the voter to be able to prove the correctness of an encrypted vote
using such a zero-knowledge proof system. Unfortunately, zero-knowledge proofs usually require
a large number of repetitions before the desired level of confidence is reached, which would be
too time-consuming for a bigscale election. Moreover, zero-knowledge is not necessarily preserved
under general composition of protocols [FS90]. Therefore we will instead look into a class of
honest-verifier-zero-knowledge proofs called Σ-protocols. First we need the following definitions
from [Dam05].

Definition. Let R = {(x, w)} ⊂ {0, 1}∗ × {0, 1}∗ be a binary relation where membership can
be tested in polynomial time. For some (x, w) ∈ R, we may think of x as an instance of some
computational problem, and w as the solution to that instance. We call w a witness for x, and
for any x, its witness set w(x) is the set of w’s such that (x, w) ∈ R.

Definition. Let κ be a function from bit strings to the interval [0, . . . , 1]. The protocol (P, V )
is said to be a proof of knowledge for the relation R with knowledge error κ, if the following is
satisfied:

• Completeness: On common input x, if the honest prover P gets as private input w such that
(x, w) ∈ R, then the verifier V always accepts.

• Knowledge soundness: There exists a probabilistic algorithm M called the knowledge ex-
tractor. This M gets input x and rewindable black-box access to the prover and attempts
to compute w such that (x, w) ∈ R. We require that the following holds: For any prover P ∗,
let ε(x) be the probability that V accepts on input x. There exists a constant c such that
whenever ε(x) > κ(x), M will output a correct w in expected time at most

|x|c

ε(x)− κ(x)

where access to P ∗ counts as one step only, and |x| is the length of the bit-string x.

2Zero-knowledge was first introduced by Goldwasser et. al. in [GMR85]. We refer the interested reader to
[Dam99] for a formal definition of (and a good introduction to) the concept.
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One may think of the error κ(x) as the probability that the prover can on input x convince the
verifier without knowing a correct w. The knowledge soundness requirement assures that being
better than κ(x) requires some ability to compute w. Moreover, the requirement also assures that
the provers ability to compute w gets more efficient the better the prover is at convincing the
verifier. This is based on the paradigm that a machine “knows” something if it can be used to
compute it efficiently. That is, if the simulator M can pull the information out of P ∗, it must
somehow have been in there [Dam05].

2.3.1 Σ-protocols

We will be concerned with protocols of the following form, where x is a common input to both
the prover (P ) and verifier (V ), while the prover has a private input w such that (x, w) ∈ R:

1. P sends a message a

2. V sends a random t-bit string e (we may also say that e has challenge length t).

3. P sends a reply z, and V decides to accept or reject based on the data (x, a, e, z) he has
seen.

We will assume throughout that both P and V are probabilistic polynomial time Turing ma-
chines, so that P ’s only advantage over V is that he knows w.

Definition. ([Dam05]) A protocol P is said to be a Σ-protocol3 for relation R if the protocol is
on the above 3-move form and satisfies the following criteria:

• Completeness: If P and V follow the protocol the verifier always accepts.

• Special soundness: From any x and any pair of accepting conversations (a, e, z), (a, e′, z′) on
input x, where e 6= e′, one can efficiently compute w such that (x, w) ∈ R.

• Special honest-verifier zero-knowledge: There exists a polynomial-time simulator M , which
on input x and a random e outputs an accepting conversation of the form (a, e, z), with the
same probability distribution as conversations between honest P and V on input x.

The following theorem from [Dam05] shows the link between Σ-protocols and proofs of knowl-
edge. Moreover, the theorem shows that the probability that a prover in a Σ-protocol can convince
verifier without knowing a correct witness is negligible in the challenge length t.

Theorem 2.1. Let P be a Σ-protocol for relation R with challenge length t. Then P is a proof
of knowledge with knowledge error 2−t.

Proof. Completeness is clear by definition.
The proof of special soundness (of Σ-protocols) being equivalent to knowledge soundness (of

proofs of knowledge) with knowledge error 2−t is beyond the scope of this thesis. We refer the
interested reader to [Dam05]. �

Example. As a concrete example of a simple Σ-protocol we present Schnorr’s protocol from
[Sch91] for proving knowledge of a discrete log in group G of prime order q. The protocol is a
proof of knowledge for the relation R = {(x, w)} = {((h, g, G), w) | h = gw in G}, and works as
follows:

1. The prover chooses r at random in Zq , and sends a = gr to V .

2. The verifier chooses e at random in Z2t and sends it to P . Here t is fixed such that 2t < q.

3The idea of Σ-protocols as an abstract concept was first introduced by Cramer in his PhD-thesis [Cra96].
Spelled out, the “sig” part of sigma refers to “zig-zag” symbolizing the three moves, while the “ma” part is an
abbreviation of “Merlin-Arthur.” A proof system is said to be of the type Arthur-Merlin if verifier is expected to
send only uniformly chosen bits (see [BM88]).
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3. P sends z = (r + ew) mod q to V , and V accepts if and only if gz = ahe.

Since gz = gr+ew = gr(gw)e = ahc, completeness trivially holds with probability 1. As
for special soundness note that correct answers to two different challenges e1, e2, gives the two
equations z1 = r + e1w mod q and z2 = r + e2w mod q, which gives w = (z1− z2)(e1 − e2)

−1 mod
q. So a cheating prover who does not know w can only be able to answer at most one challenge
value correctly, since otherwise the above equation would imply that he was in fact able to compute
w after all. Thus the error probability for this proof is 2−t, as expected by Theorem 2.1 .

To simulate an accepting conversation simply choose at random z ∈ G and e ∈ Zq and compute
a = gzh−e. Then clearly (a, e, z) has exactly the same probability distribution as real conversations
between the honest prover and the honest verifier.

When the prover chooses r ∈ Zq in the example above, he knows that he will at a later time
reveal z = r + ew mod q. To preserve the zero-knowledge property, it is therefore important that
the prover chooses r such that revealing z does not give away any information about w. This
concept is called shadowing4 .

Definition. ([DGS03]) An element r in a ring R is said to be a shadow of ew ∈ R if revealing
r+ew does not give away any information about w. If in addition r is chosen such that we cannot
distinguish it from a properly chosen random element of R we call r a random shadow. We can
speak of computational, statistical and perfect shadowing depending on how the shadow hides the
underlying elements.

Trivially, by the special honest verifier zero-knowledge property, the verifier can not use the
conversation with the prover to find the witness the prover is using. But if the prover knows a
set of witnesses w(x), can multiple executions of the protocol where the prover uses a different
w ∈ w(x) help the verifier guess what w ∈ w(x) the prover is using. To explore this possibility we
need the following definition based on a formal one from [FS90]

Definition. Let P = (P, V ) be a proof of knowledge for relation R = {(x, w)}. If V cannot
distinguish between two executions of the protocol which differ in the specific witness, w ∈ w(x),
the prover is using, the protocol is witness indistinguishable.

Proposition 2.1. ([CDS94]) Let P be a Σ-protocol, then P is witness indistinguishable.

Proof. Let (a, e, z) be the triplet formed from the conversation between the prover and the verifier.
By the special honest verifier property, the use of any witness w leads to the distribution produced
by the simulator. This means that the distribution of z given any fixed a and e is independent
of w. The proposition then follows by noting that in conversations with a general verifier, the
distribution of a, and hence e, is independent of w. �

We note that in many concrete cases, this proposition is not interesting because there is only
one witness, in which case witness indistinguishability is trivial and can not imply anything.

The following theorem from [FS90] shows that we can compose a new Σ-protocol by using
other Σ-protocols as sub-protocols while still maintaining witness indistinguishability.

Theorem 2.2. Witness indistinguishability is preserved under general composition of protocols.
Specially witness indistinguishability is preserved under both sequential composition, in which the
protocols are executed one after the other, and parallel composition, in which all protocols are of
the same type and run on the same input, and for each j, steps j in all protocols are executed at
the same time.

Proof. The proof of this theorem is beyond the scope of this thesis. We refer the interested reader
to [FS90]. �

4The definition of shadows and shadowing is based on the little information from [DGS03]. No other literature
on the concept has been found.
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2.3.2 The OR-proof

Assume we are given a Σ-protocol P for a relation R, where x0, x1 is common input to P, V and w
is a private input to P such that (xb, w) ∈ R where b ∈ {0, 1}. We want to produce a Σ-protocol
POR that allows a prover to show that given the two inputs x0, x1, he knows w, such that either
(x0, w) ∈ R or (x1, w) ∈ R, but without revealing which is the case.

The idea is that we will ask the prover to complete two instances of the protocol, one with
respect to x0 and the other with respect to x1. If we give the prover a little freedom in choosing
the challenges to answer, he can complete both instances. For xb he can do this for real, while for
x1−b he will have to fake it using the simulator M . More precisely, consider the following protocol
POR

5:

1. P computes the first message ab in P using xb, w as input.

P chooses e1−b at random and runs the simulator M on input x1−b, e1−b, let (a1−b, e1−b, z1−b)
be the output.

P sends a0, a1 to V

2. V chooses a random t-bit string s and sends it to P .

3. P sets eb = s ⊕ e1−b and computes the answer zb in P to challenge eb using xb, ab, eb, w as
input. He sends e0, z0, e1, z1 to V .

V decides to accept the proof if and only if s = e0 ⊕ e1 and both (a0, e0, z0) and (a1, e1, z1)
are accepting conversations.

Theorem 2.3. ([Dam05]) Let ROR = {((x0, x1), w)| (x0, w) ∈ R or (x1, w) ∈ R}. The protocol
POR above is a Σ-protocol for ROR. Moreover, for any verifier V ∗, the probability distribution of
conversations between P and V ∗, where w is such that (xb, w) ∈ R, is independent of b.

Proof. Completeness trivially holds since if the prover is honest (ab, eb, zb) is an accepted conver-
sation by the completeness property of P , while (a1−b, e1−b, z1−b) is an accepted conversation by
the special honest verifier zero-knowledge property of P .

To verify special soundness let two accepting conversations ((a0, a1), s, (e0, e1, z0, z1)),
((a′

0, a
′
1), s

′, (e′0, e
′
1, z

′
0, z

′
1)) with s 6= s′ be given. Then clearly, for some c = 0 or 1, ec 6= e′c. This

means we can compute a witness w from the conversations (ac, ec, zc),(a
′
c, e

′
c, z

′
c) by the special

soundness property of P .
To simulate an accepting conversation simply choose e0, e1 at random subject to s = e0 ⊕ e1

and run M twice, once on input (x0, e0) and once on input (x1, e1). It follows that POR satisfies
special honest verifier zero-knowledge.

Finally assume we are given an arbitrary verifier V ∗. Then observe that the distribution of con-
versations beteem P and V ∗ can be specified as follows. They have the form (a0, a1), s, (e0, e1, z0, z1),
and from the honest verifier property of P we see that a0, a1 are distributed as an honest prover in
P would choose them. Then s has whatever distribution V ∗ outputs given x0, x1, a0, a1. Further-
more, e0, e1 are chosen at random subject to s = e0⊕ e1. Finally, z0 has whatever distribution the
honest prover in P outputs, given that the input was x0 and the first part of the conversation was
a0, e0. A similar conclusion holds for z1. This trivially holds for zb, and follows from honest verifier
zero-knowledge property for z1−b. This shows that the probability distribution of conversations
between P and V ∗ does not depend on b. �

We note that, by the last claim in the theorem above, the protocol POR is witness indistin-
guishable as expected by Proposition 2.1 and Theorem 2.2.

5The construction of this protocol and the following theorem is based on the more general results of [CDS94],
where a protocol for proving that one knows the solution to some subset of n problem instances is presented.
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2.3.3 Non-interactive Σ-protocols

In [FS87] Fiat and Shamir proposed a heuristic method for making Σ-protocols non-interactive.
This was later formalized as the random oracle model by Bellare and Rogaway in [BR93]. The
idea is as follows:

Definition. ([Dam05]) A random oracle is an entity that initially chooses a random function
R : {0, 1}l → {0, 1}t for some l, t. Then any player can send any bit-string a of length l to the
oracle, who will return R(a). Since R was completely random, R(a) is a uniformly chosen string
of length t, and is independent of a.

Given such an oracle, a Σ-protocol can be made non-interactive by having the prover ask the
oracle for a random challenge instead of the verifier. The prover sends a to the oracle, answers
the random challenge e = R(a) resulting in z, and then sends (a, z) to the verifier. The verifier
then calls the oracle with a as input to get the value e, and proceeds to check the answer z as he
normally would have done.

The question is, how does the random oracle model affect a cheating prover or a cheating
verifier? Since a cheating prover cannot get an oracle response on a without calling the oracle, he
has no information on e before he has sent a. In a sense this is almost the same as talking to the
verifier; the only difference is that a cheating prover can call the oracle on different values until
he gets a challenge he can answer. But if the number of possible challenges is exponentially large,
and the prover only has polynomial time, this is not a feasible strategy.

As for the verifier the random oracle model forces a cheating verifier to be honest since the
challenges will always be random and uniformally chosen. Since we assume that the Σ-protocols
are honest-verifier-zero-knowledge, the Σ-protocol becomes zero-knowledge in the random oracle
model. For a more formal definition of zero-knowledge in this model see [Dam05].

To make this knowledge practical in real life we can use a hash function as a heuristic random
oracle [Dam05]. Given a secure one-way hash function H, the prover can answer the challenge
e = H(a) resulting in z, and send (a, z) to the verifier, who checks if (a,H(a), z) is an accepting
conversation. Using this method in an election scheme would presumably result in less commu-
nication complexity and therefore improved efficiency of the scheme. However, recently Xiaoyun
Wang et.al presented a method for finding collision in SHA-1 [WYY05], as well as other popular
hash functions [WFLY04]. No literature has been found to support whether or not the gain in
communication complexity is worth the extra computational complexity of a slower and more
secure hash algorithm such as the pending SHA-256 [Lan06].

2.4 Verifiable secret sharing

Secret sharing schemes were introduced independently by Shamir [Sha79] and Blakley [Bla79] in
1979, and since then much work has been put into the investigation of such schemes. The concept is
as follows: A dealer has some secret s which he distributes to n players by giving each player share

in the secret. This is done is such a way that a coalition of the players larger than some threshold
t can work together to reconstruct s, while any set of less then t players have no information about
the secret (1 ≤ t ≤ n)6. This is called a (t, n)-threshold scheme. A secret sharing scheme is said
to be a verifiable secret sharing scheme if it satisfies the following definition from [Cra99]7.

Definition. A secret sharing scheme is called a verifiable secret sharing scheme if the following
is satisfied.

1. If the dealer is honest, then the distribution of a secret s always succeeds, and the corrupted
players gain no information about s as a result of the distribution phase. At reconstruction,
the honest players recover s. These properties hold regardless of the behavior of the corrupted
players.

6See[Bei96] for a more formal definition of secret sharing.
7The definition is an informal one based on the definition found in [Gen96], but it is satisfactory for our purpose.
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2. If the dealer is corrupt, then the following holds. Either the dealer is deemed corrupt by
the honest players, and all of them abort the distribution phase. Otherwis, the distribution
phase is accepted by the honest players and some value s is uniquely fixed by the information
held by the honest players as a result of the distribution phase. In the reconstruction phase,
the honest players recover the value s. These properties hold regardless of the behavior of
the corrupted players.

The verifiable secret sharing schemes constitute a particular interesting class of secret sharing
schemes as they allow each player to verify that his share is consistent with the other shares,
and therefore forces the dealer and players to be honest. Such protocols is an important tool
in secure multi-party computation. First introduced by Goldwasser et.al in [GMW87], multi-
party computation is a method that allows for a group of people to jointly compute on an agreed
function without revealing their private data. This concept has surprisingly many application
(see [DA01, Gol97]) and, as we shall see, it can also be an important tool in the construction of
electronic voting systems.

As an example of a secret sharing scheme we will now present Shamir’s scheme [Sha79] which
the verifiable secret sharing scheme we will use in Chapter 4 is based upon. The scheme is fairly
intuitive, and is based on the following well known fact: Two points in the plane define a line,
three points define a parabola, and more generally will t points in the plane define a polynomial
of degree t− 1 (see Theorem 2.4 below). Lets take the line as an example and assume we want to
distribute s ∈ F where F is a field. To do this we simple draw a random line trough (0, s) and
send a point on this line to each player. Now, every pair of players can go together and calculate
the line we used to distribute s, and then find the secret where this line crosses the y-axes. But
no single player Pj can find s, since for every s̃ ∈ F there exists a line that goes trough (0, s̃) and
player Pj ’s point. In a similar way we can use a random polynomial of degree t that goes through
(0, s) to distribute the secret. Then any set of at least t players can find the polynomial that goes
through s, by the following theorem from [Cra99].

Theorem 2.4. Let F be a field, and let S be a finite collection of indices such that |S| = t, and
finally let (pi, qi), i ∈ S be a collection of t points in the plane F × F . Then there exists a unique
polynomial f(x) ∈ F [x] of degree less then t such that f(pi) = qi for all i ∈ S.

Proof. We will give a proof by construction using a method called Lagrange interpolation. For
each i ∈ S let

fS,i(x) =
∏

j∈S\{i}

x− pj

pi − pj

Notice that deg(fS,i) = t − 1, fS,i(pj) = 0 for all j 6= i, and that fS,i(pi) = 1 for all i ∈ S. This
means that

f(x) =
∑

i∈S

qifS,i(x)

is exactly the polynomial we are looking for. Moreover, since f(x) is the sum of polynomials of
degree t− 1, f(x) must be a polynomial of degree t− 1 or less. To prove uniqueness assume there
exists a polynomial f ′(x) 6= f(x) of degree less then t such that f ′(pi) = f(pi) for all i. Then
g(x) = f(x)− f ′(x) is a polynomial with at least t zeros (one for each pi), while its degree is less
then t. This is only possible if g(x) = 0, so f ′(x) = f(x) after all. �

We will now present Shamir’s scheme which is based on the idea above. Let F be a finite field
where |F | > n, where n is the total number of players. Let (P1, . . . , Pn) be a set of players where
each player Pi is associated with a distinct element i ∈ F\{0}. Finally let s ∈ F be a secret that
the dealer wishes to distribute. The following is then a secret sharing scheme for n players with
threshold t.
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Shamir’s secret sharing scheme

Distribution. The dealer chooses a random f(x) = ρt−1x
t−1 + · · ·+ ρ1x + ρ0 by setting ρ0 = s

and the remaining ρi to random elements from F . The dealer then sends si = f(i) on a private
channel to player Pi, where si is player Pi’s share in s.

Reconstruction. Using the formula for Lagrange interpolation from the proof above, and defin-
ing

λS,i = fS,i(0) =
∏

j∈S\{i}

−j

i− j
,

we see that a set S of t or more players efficiently can reconstruct s using the following formula:

s = f(0) =
∑

i∈S

siλS,i.

Note that privacy is preserved in the information theoretical sence by the following. Let
|S| = t− 1, then Lagrange interpolation of the following t points

{(0, s′), (i1, si1), . . . , (it−1, sit−1
)}, ij ∈ S

yield a unique polynomial fs′ for each s′ ∈ F . So from the joint view of the players in S, each
secret is equally likely and hence the shares held by S give no information about the real secret
s. It follows that any set of less then t − 1 players can not reconstruct the secret either, since a
smaller set hold even less information.

2.5 Homomorphic encryptions

One of the key problems in constructions of electronic voting systems is ensuring universal verifia-
bility while maintaining privacy. To obtain privacy the ballot of each individual must in some way
be encrypted, and in order to tally the ballots they must at one time be decrypted. The problem
lies in ensuring both that there is no link between the decrypted ballot and the voter who cast it
and that a passive observer can verify that each vote has been counted correctly. To solve this
problem homomorphic encryption schemes are at the heart of most electronic voting systems.

Definition. ([Lip01]) A public-key cryptosystem Λ is a triple Λ = (Gen, E, D), where E and D is
a family of encryption and decryption functions respectivly, and Gen is an efficient key generation
algorithm which generates a key pk. With this key there is an associated message space Mpk,
randomizer space Rpk , ciphertext space Cpk, an encryption function Epk :Mpk ×Rpk → Cpk and
a decryption function Dpk : Cpk → Mpk. We will assume that all three spaces (Mpk,Rpk, Cpk)
are Abelian groups with Cpk written multiplicatively. We say that the public-key cryptosystem
Λ = (Gen, E, D) is homomorphic if Epk(m1; r1)Epk(m2; r2) = Epk(m1 + m2; r1 + r2). Some
examples of homomorphic cryptosystems are the Paillier cryptosystem [Pai99] and the Damgård-
Jurik cryptosystem [DJ01].

Example. We now present a short example of how a homomorphic encryption scheme can be
used to ensure universal verifiability in an electronic voting scheme. Assume we want to perform a
yes/no election, and that we are given a homomorphic encryption scheme where a key pk already
has been generated. To vote each participants simply encrypts −1 or 1 for no or yes respectively.
That is yi = Epk(bi; ri), where bi ∈ {−1, 1} and ri ∈ Rpk, is a vote by participant i on bi. Let
there be n participants, then decrypting y = y1 · · · yn would yield the result of the election, since

y =

n
∏

i=1

yi = Epk(b1 + · · ·+ bn; r) = Epk(m; r),
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where the first equality follows by definition, r =
∑n

i=1 ri, and m =
∑n

i=1 bi represents the total
number of yes votes minus the total number of no votes. Moreover, a passive observer can easily
verify the results by doing the above calculations by himself.

Note that the above protocol will only work as desired if all participant are honest, that is if
they are all following the protocol. A malicious participant can easily skew the election the way he
wants by encrypting a number different from −1, 1. In Chapter 3 we will solve this problem using
a Σ-protocol, while in Chapter 4 we will use verifiable secret sharing, in addition to a Σ-protocol,
to make a voting system that preserves privacy in the information-theoretically sence.

2.6 Commitment schemes

The notion of commitments is at the heart of almost any construction of modern cryptographic
protocols [Dam99]. In Chapter 3 we use commitments to improve the efficiency of the needed
Σ-protocol for proving correctness of the vote.

Making a commitment simply means that a player in a protocol is able to choose a value from
some set and commit to his choice such that he can no longer change his mind. The player does
not have to reveal his choice, although he may choose to do so at a later time. The following infor-
mal physical analogy from [Dam99] illustrates the properties that are essential in a commitment
scheme.

Analogy. Player P wants to commit to some value s. To do so he writes down s on a piece of
paper. He then puts the paper in a box which he locks and gives to player V . When V receives the
box, he cannot tell what is inside before P decides to give him the key. This is called the hiding

property of the commitment. In the meantime, having given away the box, P cannot anymore
change what is inside. Hence, when the box is opened, we know that what is revealed really was
the choice that P committed to originally. This is called the binding property of the commitment.
If P wants to, he can later open the commitment by giving V the key to the box.

Definition. ([DGS03]) A commitment scheme Γ is a triple Γ = (Gen, com, ver), where com and
ver is a family of commitment and verification functions respectivly, and Gen is an efficient key
generating algorithm which generates a key K. With this key K there is an associated message
space MK , a randomizer space RK , a commitment space CK , an opening space BK ⊇ RK , a
commitment function comK(·, ·) : MK × RK → CK , and a verification function verK(·, ·, ·) :
MK × BK × CK → {0, 1}.

Given the key, a commitment to m ∈ MK can be formed by choosing a random r ∈ RK

and computing c = com(m; r). The triple (m, r, c) satisfies verK(m; r; c) = 1. While, to open a
commitment c ∈ CK an element m ∈MK , r ∈ BK is revealed such that ver(m; r; c) = 1.

The binding and hiding property of commitment schemes comes in multiple flavors. A commit-
ment scheme is said to be unconditionally binding if even a prover with unlimited computer power
cannot change his mind after forming the commitment. On the other hand, a commitment scheme
is said to be computational binding if the probability of finding a commitment in CK and two
correct openings of it with different messages m1 and m2 is negligible in the security parameter8.

Similarly is a commitment scheme said to be unconditionally hiding if given m the distribution
of comK(m; r) is uniform in CK . A commitment scheme is said to be statistically hiding if the
distribution is close to uniform CK . That is, with some negligible probability greater then 1/|CK |
the verifier is able to guess m given comK(m; r). And finally, a commitment scheme is said to be
computationally hiding if the probability of finding a correct opening for a given commitment is
negligible in the security parameter9.

8More formally, take any probabilistic polynomial time algorithm P ∗ which takes as input a public key generated
by Gen on input 1l. Let ε(l) be the probability (over random choices of Gen and P ∗) the algorithm outputs a
commitment and two valid openings revealing distinct values. Then the commitment scheme is computational
binding if ε(l) is negligible in l.[Dam99]

9See [Dam99] for a formal definition of this in the bit-commitment scheme scenario.
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Note that a commitment scheme can not be unconditionally biding and unconditionally hiding
at the same time. We refer the interested reader to [Dam99] for an easy explanation of the reason
for this limitation.
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3

An electronic voting system based on

homomorphic encryption

3.1 Introduction

We will now present an electronic voting system based on homomorphic encryptions. The voting
system we present is from “The theory and implementation of an electronic voting system,” by
Ivan Damgård, Jens Groth and Gorm Salomonsen [DGS03].

Resume of the electronic voting system based on homomorphic encryption.

Set-up. Let M be a strict upper bound of the number of voters and let L be the number of
candidates. A vote on candidate number j ∈ {0, . . . , L − 1} is represented as the number M j .
We assume we are in possession of a homomorphic encryption scheme Λ = (Gen, E, D), where a
key pk already has been generated.

Voting phase. Each voter i encrypts his vote yi = Epk(M ji ; ri) and uses a Σ-protocol to prove
that yi indeed is a correctly formed vote.

Tallying. The voting authorities computes

y =
∏

i∈A

yi = Epk(v0M
0 + · · ·+ vL−1M

L−1; r),

where A is the collection of accepted votes, vj is the number of votes on candidate j and r =
∑

i∈A ri. Finally y is decrypted to reveal the results of the election.

The voting system is much like the scheme in the example of Section 2.5. The voter uses a
public-key cryptosystem to encrypt his vote which is represented as a number. When submitting
his encrypted vote he must prove knowledge of the fact that his encryption contains a valid vote.
Because all individual votes will remain encrypted and the proof is zero-knowledge, this does not
violate privacy. On the other hand, since we use a homomorphic encryption scheme, the votes can
be tallied efficiently. By computing the product of all the encrypted votes we get an encryption
of the result, so finally all that is needed is to decrypt this.

Of course, we can not let a trusted center decrypt the results since this would violate universal
verifiability. To solve this, the private key needed for decryption can be secretly shared among a
set of n servers (held by n different authorities) using a (n, t)-threshold secret sharing scheme. This
means that as long as at most t−1 servers are corrupt, or broken into by a hacker, no information
about the private key leaks. On the other hand, if at least t servers behave correctly, the serves
can jointly execute the decryption operation. This is known as threshold decryption[DGS03].

If we set t = b(n − 1)/2c, then we are guaranteed that if a majority of the servers are in
operation and are not corrupted, the election results, and only that will be decrypted. In practice,
one may imagine that some public institutions and political parties could be running these servers
in order to create broad trust in the process [DGS03].
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In the next section we present the building blocks need for both the voting system and the
Σ-protocol, while in Section 3.3 we construct the needed Σ-protocol.

3.2 Building blocks

3.2.1 The commitment scheme

Following the results of [Lip01] we will use a commitment scheme to make the Σ-protocol for
proving correctness of an encrypted vote more efficient. The use of an commitment scheme has two
natural advantages. First, since the commitment scheme (in contrast to the encryption scheme)
does not have to be unconditionally binding, they can be much easier to work with. Second, if we
use an integer1 commitment scheme we can potentially use special properties of Z. In our case we
will be using the property of unique factorization.

We will now present what properties the commitment scheme we need must satisfy. Note
that the reason we need some of the properties below will not be clear until we use them in our
Σ-protocol. First there is a key generation phase in which a public key is generated. In our case
the election authorities will be the ones generating the key, but for now we will just assume that
some public key K has been generated. With this key comes the associated spacesMK , CK ,RK

and BK ⊃ RK , the commitment function comK(·, ·) and the verification function verK(·, ·, ·).
Note that we do allow for openings not corresponding to correctly formed commitments since
the opening space and the randomizer space are not equal. We do demand that the scheme is
computationally binding however.

In order for the commitment scheme to be useful in our voting scheme it must in addition meet
the following requirements.

Abelian groups. The spaces associated with the commitment scheme must be Abelian groups,
and the message space must be the set of integers. That means we have groupsMK = Z, (RK , +) ⊂
(BK , +) and (CK , ·). We assume that both the group and the elements in the groups we work with
can be represented in a suitable manner, that binary operations and inversions can be computed
efficiently, and that we can readily recognize whether an element belongs to a particular group.

Homomorphic property. The commitment scheme we look at must be homomorphic, meaning
that for all m1, m2 ∈ Z and all r1, r2 ∈ BK the following is satisfied:

comK(m1; r1) · comK(m2; r2) = comK(m1 + m2; r1 + r2).

Root opening. Vi demand that our commitment scheme fulfills the following property: For any
c ∈ CK , if we can find e ∈ Z\{0} and m ∈ Z, z ∈ BK such that comK(m; z) = ce then we can
compute an opening of c.

An example of such a commitment scheme is the following variant of the Damgård-Fujisaki
commitment scheme from [DF01]. Note that any commitment scheme that fulfills the above
criteria can be used in our protocol.

1A commitment scheme is called an integer commitment scheme if the scheme allows for committing to arbitrary
size integers.
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Damgård-Fujisaki commitment scheme

Set-up. The receiver (election authorities) generates n as the product of two safe primes2. Let
ord(n) ≤ 2B and let k be our security parameter. The receiver then chooses a square h, and a
random α ∈ [0, . . . , 2B+k] and let g = hα. The key is K = (n, g, h).

Commit. A commitment to an integer m is formed by choosing r ∈ [0, . . . , 2B+2k] at random
and letting the commitment be com(n,g,h)(m; r) = gmhr mod n.

Open. To open a commitment c we produce b, m, r such that 1 = b2 mod n and c = bgmhr. An
honest prover can always use b = 1.3

Theorem 3.1. Under the RSA assumption the Damgård-Fujisaki commitment scheme is statis-
tically hiding and computational binding.

Proof. As for hiding, note that since r is chosen with bit-length at least twice that of order h,
comK(m; r) is statistically close to uniform in 〈h〉 for any value m.

As for binding, suppose some prover P can produce a commitment c and two valid openings
(m, r, b), (m′, r′, b′) with m 6= m′. We then have gmhrb = c = gm′

hr′

b′. Using g = hα and squaring
both sides we get

h2α(m−m′)+r−r′

= 1

Let M = 2α(m −m′) + r − r′, we will argue that M 6= 0. Since α is chosen to be much larger
then the order of h it follows that P does not have full information on α. Even a prover with
infinite computing power can only computer α mod ord(h). Let α = q · ord(h) + res. It follows
that P ’s choice of m, m′, r, r′, is independent of q. Clearly, in order for M to be zero, q must be
a particular value which only occurs with negligible probability since we choose α at random in a
very large interval. Finally, if M 6= 0, we have a multiple of the order of h and this is enough to
factor n, and thus solve the RSA problem [RK03]. �

3.2.2 The encryption scheme

We will now take a closer look on the encryption scheme we will be using in the voting system.
Unlike the commitment scheme, the encryption scheme was designed particularly for this voting
system. We will therefore follow the construction from [DGS03], and present the useful properties
of the scheme afterwards.

Let R be a commuatativ ring, fix some g ∈ R and let G = 〈g〉. We assume that one can
compute addition and multiplication efficiently in R and that a number T can be computed easily,
so that T ≥ ord(g)2. This just requires some upper bound on ord(g) to be known. We will assume
that the generalized Decision Diffie-Hellman assumption holds with respect to R and g. Remember
that this means that given R, g, triples of the form ga, gb, gab are computationally indistinguishable
from triples of the form ga, gb, gc where a, b, c are random in [0 . . . T ]. Note that the choice of T
ensures that the distribution of elements such as ga is statistically close to uniform in 〈g〉 as long
as ord(g) is large.

We can now define an ElGamal style cryptosystem where the private key is chosen at random
in [0 . . . T ] and the public key is (R, g, h) with h = gx. The message space is 〈g〉, and to encrypt
a message m, choose r ∈ [0 . . . T ] at random and output E(m; r) = (gr; mhr). To decrypt a
ciphertext (u, v) we compute D(u, v) = v(ux)−1. This system is semantically secure4 under the

2A prime p is called safe if (p − 1)/2 also is a prime
3The reason we give the prover this extra freedom is that this makes it possible to construct a Σ-protocol for

proving knowledge of commitment opening. We refer the interested reader to [DF01] for details.
4A cryptosystem is said to be semantically secure if a polynomial time adversary cannot with probability greater

than 1/2 distinguish between the encryptions of two given plaintext, or the encryptions of a given plaintext and a
random string.
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generalized DDH assumption [DGS03].
This cryptosystem is not homomorphic however. To solve this problem we redefine the system

by fixing an element w ∈ 〈g〉 and letting the message space be Zord(w). We can now define
E(m; r) = (gr; wmhr). This does not effect the semantic security, but it does make the encryption
homomorphic, since E(m1; r1)E(m2; r2) = E(m1 + m2 mod ord(w); r1 + r2). Unfortunately, now
we have a problem with decryption. Computing D(u, v) = v(ux)−1 yields wm for a correctly
formed encryption. So to decrypt a ciphertext we need to be able to compute discrete logarithms
with base w.

The trick is that in some rings we can find certain elements for which computing discrete
logarithms is in fact easy. Let w = α + β, then

wi = (α + β)i =
i

∑

j=0

(

i

j

)

αjβi−j

using standard binomial expansion. Usually i is exponentially large, so this formula does not help
to compute i. But if α is nilpotent, that is if αj = 0 for some (preferably small) j, then most of
the terms in the expansion disappear, and it may therefore be feasible to compute i.

We will now give a concrete example of such an encryption scheme.

Encryption scheme

Set-up. Let R = Zns+1 , where n = pq is an RSA modulus, gcd((p−1), (q−1)) = 2 and s << p, q.
Let g ∈ R have maximal order, that is ord(g) = ns(p−1)(q−1). Set w = n+1 ∈ R, T = ord(g)2

and h = gx for some random x ∈ [0 . . . T ]. The public key is R, g, h, w, while the private key is
x.

Encryption. To encrypt a message m ∈ Zord(w) choose r ∈ [0 . . . T ] at random and output
E(m, r) = (gr, wmhr).

Decryption. To decrypt a ciphertext (u, v) compute D(u, v) = logw(v(ux)−1).

Clearly n is nilpotent in R since ns = 0, so discrete logarithms base w = n + 1 are therefore
feasible to compute by the discussion above. A concrete algorithm for this can be found in
Appendix A. By Lemma 3.1 ord(w) = ns, and the message space for the encryption scheme is
therefore Zns .

Lemma 3.1. ([DJ01]) Let n = pq, where p, q are odd primes. For any s < p, q, the element n + 1
has order ns in Z

∗
ns+1 .

Proof. Consider the integer (1 + n)i =
∑i

j=0

(

i
j

)

nj . This number is 1 modulo ns+1 for some i if

and only if
∑i

j=1

(

i
j

)

nj−1 is 0 modulo ns. Clearly, this is the case if i = ns, so it follows that the

order of 1 + n is a divisor of ns, which means that the order is a number of the form pαqβ , where
α, β ≤ s.

Now set a = pαqβ , and consider a term
(

a
j

)

nj−1 in the sum
∑a

j=1

(

a
j

)

nj−1. We claim that each

such term is divisible by a. This follows from the fact that if j > s, then a divides nj−1, while if
j ≤ s, then j! can not have p or q as prime factors, and so a must divide

(

a
j

)

.

Now assume for contradiction that a = pαqβ < ns. Without loss of generality, we can assume
this means α < s. We know that ns divides

∑a
j=1

(

a
j

)

nj−1. Dividing both numbers by a we see

that p must divide the number
∑i

j=1

(

a
j

)

nj−1/a. However, the first term in this sum after division
by a is 1, and all the rest are divisible by p, so the number is in fact 1 modulo p, and we have a
contradiction. �
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Theorem 3.2. Under the generalized Decision Diffie Hellman assumption the encryption scheme
above is semantically secure.

Proof. Let m be a plaintext and m′ a random string. Then

E(m; r) = (gr; wmgxr),

while, using that w ∈ 〈g〉,

E(m′; r) = (gr; wm′

gxr) = (gr; wmgc),

for some c ≤ ord(g). It follows that if an adversary could distinguish between encryptions corre-
sponding to m and m′ respectively, he would also be able to solve the generalized Decision Diffie
Hellman problem on input (gx, gr, gc). �

Note that a total break of the encryption relies on the discrete logarithm assumption. If an
adversary is able to compute loggh, he will be able to decrypt any given ciphertext.

The threshold decryption only requires that we can compute securely ux mod ns+1 given u
and a secret sharing of x. Damgård et. al. [DGS03] proposes to use the protocol found in [DJ01].
Unfortunately this protocol is not directly applicable. We instead propose the following similar
protocol, where (u, v) is the ciphertext, x is the private key, l is the number of authorities and t
is our threshold.

Threshold decryption

Set-up. The following is appended to the set-up of the encryption scheme above. Using Shamir’s
secret sharing scheme from Section 2.4, we chose at random f(X) =

∑t−1
i=0 ρiX

i mod ns(p−1)(q−
1) by setting ρ0 = x and the remaining ρi to random elements from [0 . . . T ]. The secret share of
the i’th authority will be si = f(i) for 0 ≤ i ≤ l. For verification of the action of the authorities
we need the following fixed public values; for each authority i a verification key ηi = gsi .

Share decryption. Upon receiving (u, v) each authority i computes ui = usi . Then authority
i publishes ui along with a proof that logu(ui)=logg(ηi) using a Fiat Shamir heuristic non-
interactive Σ-protocol. This will convince us that authority i indeed raised to his secret expo-
nent5.

Share combination. If we have the required t (or more) number of shares with a correct proof,
we can combine them into the result by taking a subset S of t shares an combine them to

u′ =
∏

i∈S

u
λS,i

i , where λS,i =
∏

j∈S\{i}

−j

i− j
.

Theorem 3.3. The threshold decryption above outputs the desired ux if t or more authorities
follow the protocol. Assuming the random oracle model and the discrete logarithm assumption
no set of t− 1 authorities or less can compute ux.

Proof. First we show that ux is computed correctly. Let S be a set of t or more correct shares,
then

u′ =
∏

i∈S

u
λS,i

i =
∏

i∈S

(usi)λS,i =
∏

i∈S

usiλS,i = u
P

i∈S
siλS,i = uf(0) = ux,

by the discussion in Section 2.4.

5A Σ-protocol for proving equality of discrete logarithms can easily be derived from Schnorr’s protocol. We give
a discription in Appendix B
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On the other hand in the random oracle model the non-interactive Σ-protocol is zero-knowledge
thereby releasing no information about individual shares to corrupt authorities. Furthermore, no
adversary can compute si =loggηi under the discrete logarithm assumption. It follows from the
discussion in Section 2.4 that a set of t − 1 authorities have no information on x. This implies
that no set of t− 1 authorities or less can compute ux. �

We note that in order the prove that the threshold decryption gives no information about
the content of the encryption we must (if possible) show that, from the view of the corrupted
authorities, the key generation and the decryption protocol can be efficiently simulated with a
statistically indistinguishable distribution. Unfortunately this is outside the scope of this thesis.

The encryption scheme satisfies the following properties which we will note for later.

Homomorphic property. The encryption scheme is homomorphic, that is E(m1; r1)E(m2; r2) =
E(m1 + m2 mod w; r1 + r2) for all m1, m2 ∈ Mpk and all r1, r2 ∈ Rpk

Root opening. The encryption scheme satisfies a weaker root opening property then the com-
mitment scheme. Given a valid ciphertext (u, v) we may extract the plaintext of (u, v) from an
opening of (ue, ve), where 0 < e < p, q. The reason for this is that the plaintext corresponding to
(ue, ve) must be em mod ns, and so we can find m because e is always invertible modulo ns.

In the upcoming construction of the Σ-protocol, any public key cryptosystem with threshold
decryption that satisfies these properties will work, even if the root opening property is only
satisfied for e ∈ {0, . . . , 2t − 1}, where t is some security paramete. Therefore, we describe the
protocols in general terms in what follows. We shall write pk for the public key of the cryptosystem,
and let Cpk be the corresponding ciphertextspace, consisting of only valid ciphertexts.

3.3 Constructing the Σ-protocol

Looking closer at the schemes proposed in literature, the really heavy part of generating a vote
and tallying a vote, both in term of communication complexity and computational complexity,
is producing and verifying the zero-knowledge proof associated with it [DGS03]. Therefore, con-
structing an efficient Σ-protocol is a vital part in the construction of efficient electronic voting
systems based on homomorphic encryptions.

As mentioned in Section 3.2.1, we will follow [Lip01] and use commitments to prove the cor-
rectness of an encrypted vote and then prove that the encryption and commitment hold the same
element. To prove the latter we can use the following Σ-protocol from [DGS03].

Proof of commitment and encryption holding same element modulo n

Common input: A commitment c ∈ CK and an encryption y ∈ Cpk.
Private input for the prover: m ∈ Zn, rc ∈ RK and ry ∈ Rpk so that c = comK(m; rc) and
y = Epk(m; ry).

Initial message. Pick d ∈ Z as a shadow6of em, r′c ∈ RK as a random shadow of erc and
r′y ∈ Rpk as a random shadow of ery. Let ac = comK(d; r′c) and ay = Epk(d mod n; r′y). The
initial message is (ac, ay).

Challenge. Select at random e ∈ {0, . . . , 2t − 1}.

Answer. Set D = em+d, zc = r′c +erc, zy = r′y +ery. The answer to the challenge is (D, zc, zy).

Verification. The verifier checks that (D, zc, zy) ∈ Z × RK × Rpk, comK(D; zc) = acc
e and

Epk(D mod n; zy) = ayy
e.

6Remember that by the definition of shadowing we want to chose d such that revealing d + em does not give
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Assume c = comK(m; ·), and y = Epk(m′; ·) with m 6= m′. Informally the protocol works
by the observation that if the commitment and encryption holds different elements, then either
acc

e 6= comK(d + em; ·) or ayye 6= Epk(d + em′; ·). A proof that this is a Σ-protocol can be found
in [Lip01].

Now that we can prove that the commitment and encryption hold the same element modulo
n, the next question is how to prove that the commitment contains a vote on the correct form.
Remember that to vote on candidate j ∈ {0, . . . , L − 1}, the voter encrypts the number M j .
The idea is to let M be the square of a prime, M = p2. We can now prove that a commitment
cMj to M j is on the correct form by the following. First show that cMj contains the square of
a commitment cpj to pj , and then prove that the contents of cpj multiplied with the content of
another commitment cpL−j−1 equals pL−1. To do this with need a protocol for proving that given
commitments ca, cb, cc the contents of ca multiplied with the contents of cb equals the contents of
cc. The following protocol from [DGS03] accomplishes this.

Proof of multiplicative relationship

Common input: ca, cb, cc ∈ CK .
Private input for the prover: a, b ∈ Z, ra, rb, rc ∈ RK such that ca = comK(a; ra), cb = com(b; rb),
cc = comK(ab; rc).

Parallel proof. Make in parallel with the rest of the protocol a proof of knowledge of commit-
ment opening of cb or cc using a Σ-protocol7.

Initial message. Select d ∈ Z such that it shadows ea. Choose rd, rdb ∈ RK as random shadows
of era and −(ea + d)rb + erc, and send cd = comK(d; rd) and cdb = comK(db; rdb) to the verifier.

Challenge. Select at random e ∈ {0, . . . , 2t − 1}.

Answer. Respond with f = ea + d, z1 = era + rd, z2 = frb − erc − rdb.

Verification. Accept if and only if f ∈ Z, z1, z2 ∈ RK , comK(f ; z1) = cdc
e
a and

cdbc
e
ccomK(0; z2) = cf

b and the parallel proof of knowledge is acceptable.

Informally the protocol works by the observation that if c 6= ab then cf
b = comK(b(ea+d); ·) =

comK(ab; ·)ecomK(bd; ·)comK(0; ·) 6= comK(c; ·)ecomK(db; ·)comK(0; ·) = ce
ccdbcomK(0; ·). A proof

that this is a Σ-protocol can be found in [DJ01].
To prove that an encrypted vote is on the correct form we can now do the following:

1. Encrypt yMj = Epk(M j ; ·) and form commitments cMj , cpj , cpL−1 , cpL−j−1 to M j , pj , pL−1,
pL−j−1 respectively.

2. Use the proof of multiplicative relationship to prove that the the square of the content of
cpj equals the content of cMj .

3. Use the proof of multiplicative relationship to prove that the content of cpj times the content
of cpL−j−1 equals the content of cpL−1 . This shows that the content of cpj is a power of p
less or equal to L− 1.

4. Finally prove that yMj and cMj hold the same element modulo n.

We can make a few improvements to increase the efficiency of the proof. First note that we
can skip the parallel proof of some opening in the proof of multiplicative relationship. The reason

away any information about m. Here we know that e ∈ {0, . . . , 2t − 1} while m ∈ Zn. Thus by selecting d at
random from {−2|n|+2t, . . . , 2|n|+2t} we ensure that the secrecy of m is preserved.

7A Σ-protocol for proving knowledge of commitment opening can be found in [DF01].
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for this is that we in step 3 do a proof of multiplicative relationship where we already know
the opening for cpL−1 = comK(pL−1; 0). The price for this improvement is that we require the
root opening property to be stronger then usual. We require that knowing an opening of cf with
f ∈ Z\{0} makes it possible to find an opening of c. While usually, one only requires that knowing
an opening of ce for a commitment c with e ∈ {1, . . . , 2t− 1} makes it possible to open c [DGS03].

As a second improvement note that the commitment cpj is used in both the multiplication
proof in step 2 and in the multiplication proof in step 3. Since the proof system is special honest
verifier zero-knowledge, we can choose the same challenge e in both these proofs. That means we
can recycle the values d, cd, f and z1 to improve efficiency.

As a last improvement note that we do not really need a commitment to M j . Instead we
can prove directly that the encryption of the vote holds the same element as the square of the
contents of cpj . The reason we can do this improvement is that, on the commitment side in step
2, we use cMj to hold the square of the contents of cpj . But instead of using cMj , we can use

cf

pj = cepj+d

pj directly since, by the homomorphic property, this is a commitment to ep2j + dpj

and therefore contains the interesting p2j itself. Combining these three improvements we get the
following protocol from [DGS03].

Proof of knowledge for a ciphertext containing a valid vote

Common input: Prime p such that M = p2 and an encryption y ∈ Cpk.
Private input for the prover: 0 ≤ j ≤ L and ry ∈ Rpk such that y = Epk(M j ; ry).

Initial message. Choose first ra, rb at random from RK and form commitments ca =
comK(pj ; ra) and cb = com(pL−j−1; rb).
Choose d ∈ Z such that i shadows pj . Choose γ such that it shadows eM j + dpj . Choose
rd, rdb, rγ ∈ RK and r′γ ∈ Rpk as random shadows of era, (epj + d)rb, (epj + d)ra and ery

respectively.
Send cd = comK(d; rd), cdb = comK(dpL−j−1; rdb), cγ = comK(γ; rγ) 8and yγ = Epk(dpj + γ
mod n; r′γ) to the verifier.

Challenge. Select at random e ∈ {0, . . . , 2t − 1}.

Answer. Send f = epj + d, z1 = era + rd, z2 = frb − rdb, z3 = fra + rγ , z4 = ery + r′γ and

D = eM j + dpj + γ to the verifier.

Verification. Check that cd, cdb, cγ ∈ CK , f, D ∈ Z, z1, z2, z3 ∈ RK and z4 ∈ Rpk.

Verify that comK(f ; z1) = cdc
e
a, cdbcomK(pL−1; 0)ecomK(0; z2) = cf

b , comK(D; z3) = cf
acγ and

Epk(D; z4) = yeyγ .

Theorem 3.4. The proof system above is a Σ-protocol for proving that y is a ciphertext holding
a vote of the correct form. It is statistical special honest verifier zero-knowledge if the commitment
scheme is statistically hiding and the shadows are statistically hiding.

Proof. Theorem 3.4 follows as a corollary to Theorem 3.5 proven later. �

One of the advantages of the approach to building the Σ-protocol above is that we can extend
it to the situation where each voter is allowed to cast several votes on different candidates. Let N
be the number of candidates a voter may vote for. Notice that it is sufficient for a voter to give an
encryption of the sum of the votes and then prove that the sum is correct. That is, if we write the
candidates in increasing order 0 ≤ j1 < · · · < jN < L, we can encrypt y = Epk(M j1 + · · ·+M jN ; ·),

8We have here corrected a typographical error in [DGS03].
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and then use a Σ-protocol that proves that y is on the correct form. To prove this we can do the
following:

1. Encrypt y = Epk(M j1 + · · · + M jN ; ·) and form commitments c1, . . . , cn to pj1 , . . . pjN ,
c′1, . . . c

′
N to pj2−j1−1, . . . pL−jN−1 and c′′1 , . . . , c′′N to M j1 , . . . , M jN .

2. Use the proof of multiplicative relationship to prove that the square of the content of ci

equals the content of c′′i for i = 1 . . .N .

3. Use the proof of multiplicative relationship to prove that the content of ci(c
′
i)

p equals the
content of ci+1 for i = 1 . . .N , where cN+1 = comK(pL; 0). This proves that, up to a
difference in sign, all commitments are different, all contain a power of p and all exponents
lie in the interval [0, . . . , L− 1].

4. Compute the commitment c′′1 · · · c
′′
N . This is a commitment to a vote which we have shown

is on the form M j1 + · · · + M jN , where 0 ≤ j1 < . . . jN < L. Finally, use the proof of
multiplicative relationship to prove that the content of y equals the content of c′′1 · · · c

′′
N .

We can make similar improvements as we did for the single vote scenario. First note that we
can skip the parallel proof of some opening in the proofs of multiplicative relationship. The reason
we can do this is that we already know the opening for comK(pL; 0), and in the multiplication
proof to cN (c′N )p = cN+1 we show that we know an opening of cN and so on.

For the second improvement we note that the commitments c1, . . . , cN are being used in two
proofs of multiplicative relationship. This means that we can make the protocol more efficient by
using the same challenge e in all the proofs, since this allows us to recycle the d, cd, f, z1 parts of
the multiplication proofs.

As a last improvement we note that since we use the same challenge e in all the proofs we can
avoid supplying the commitments c′′1 , . . . c′′N in a similar manner as the single candidate scenario.
Combining all these ideas we get the following protocol from [DGS03].
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Proof of knowledge for a ciphertext containing a valid vote on multiple candidates

Common input: Prime p such that M = p2 and y ∈ Cpk.
Private input for the prover: 0 ≤ j1 < · · · < jN < L and ry ∈ Rpk such that y = Epk(M j1 +
· · ·+ M jN ; ry).

Initial message. Choose at random r1, . . . , rN , r′1, . . . , r
′
N from RK , and form commit-

ments c1 = comK(pj1 ; r1), . . . , cN = comK(pjN ; rN ), c′1 = comK(pj2−j1−1; r′1), . . . , c
′
N =

comK(pL−jN−1; r′N ).
Choose d1, . . . , dN ∈ Z such that they shadow epj1 , . . . , epjN , and γ ∈ Z such that it shadows
ep2j1 + d1p

j1 + · · ·+ ep2jN + dNpjN .
Choose rd1

, . . . , rdN
∈ RK as random shadows of er1 . . . , erN . Choose r1b, . . . rdN b ∈ RK as

random shadows of −p(epj1 + d1)r
′
1 + er2, . . . ,−p(epjN + dN )r′N + erN+1, where rN+1 = 0.

Choose rγ ∈ RK as a random shadow of (epj1 + d1)r1 + · · ·+ (epjN + dN )rN , and r′γ ∈ Rpk as a
random shadow of ery.
Send cd1

= comK(d1; rd1
), . . . , cdN

= comK(dN ; rdN
), cd1b = comK(d1p

j2−j1 ; rd1b), . . . , cdNb =
comK(dNpL−jN ; rdnb), cγ = comK(γ; rγ) and yγ = Epk(d1p

j1 + · · · + dNpjN + γ mod n; r′γ) to
the verifier.

Challenge. Select at random e ∈ {0, . . . , 2t − 1}.

Answer. Send f1 = epj1 + d1, . . . , fN = epjN + dN , z1,1 = er1 + rd1
, . . . , z1,N = erN + rdN

,
z2,1 = pf1r

′
1 − er2 − rd1b, . . . , z2,N = pfNr′N − erN+1 − rddN b, z3 = f1r1 + · · · + fNrN + rγ ,

z4 = ery + r′γ , D = e(M j1 + · · ·+ M jN ) + d1p
j1 + · · ·+ dNpjN + γ to the verifier.

Verification. Check that cd1
, . . . , cdN

, cd1b, . . . , cdNb, cγ ∈ CK , yγ ∈ Cpk,
f1, . . . , fN , D ∈ Z, z1,1, . . . , z1,N , z2,1, . . . , z2,N , z3 ∈ RK and z4 ∈ Rpk. Verify
that comK(f1; z1,1) = cd1

ce
1, . . . , comK(fN ; z1,N ) = cdN

ce
N , ce

2cd1bcomK(0; z2,1) =

(c′1)
pf1 , . . . , ce

N+1cdNbcomK(0; z2,N) = (c′N )pfN , comK(D; z3) = cf1

1 · · · c
fN

N cγ , where
cN+1 = comK(pL; 0). Finally check that Epk(D mod n; z4) = yeyγ .

Note that we can make the protocol above non-interactive by using the Fiat-Shamir heuristics
discussed in Section 2.3.3. Given a suitible strong cryptographic hash-function H thought of
as a random oracle, the prover uses e = H(cd1

, . . . , cdN
, cd1b, . . . , cdNb, cγ , yγ) as the challange to

compute to the answer z. The prover then sends (a, z) to the verifer who uses the above verification
procedure to check if (a,H(cd1

, . . . , cdN
, cd1b, . . . , cdNb, cγ , yγ), z) is an accepting conversation. To

prevent vote duplication, a bit string specific to each voter can also be included in the hash function.
In case the proof is done interactivly this bit string could be incorporated in the challange.

Theorem 3.5. The proof system above is a Σ-protocol proving that y encrypts a correct vote
on multiple candidates. If the commitments are statistically hiding and the shadows and random
shadows are statistically hiding, then the proof system is statistical honest verifier zero-knowledge.

Proof. We want to show that the protocol above satisfies the definition of a Σ-protocol with
respect to completeness, special soundness and special honest verifier zero-knowledge.

Completeness. We want to show that if the prover is honest a honest verifier will always accept.
So, assume the prover is honest, then

comK(fi; z1,i) = com(epji + di; eri + rdi) = comK(pji ; ri)
ecomK(di; rdi

) = ce
i cdi

,

for all i,

ce
i+1cdibcomK(0; z2,i)= comK(pji+1 ; ri+1)

ecomK(dip
ji+1−ji ; rdib)comK(0; pfir

′
i − eri+1 − rdib)

= comK(epji+1 + dip
ji+1−ji ; pfir

′
i)comK(pji+1−ji−1p(epji+1 + di); pfir

′
i)

= comK(pji+1−ji−1pf ; pfir
′
i) = comK(pji+1−ji−1; r′i)

pfi = (c′i)
pfi ,
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for all i,

comK(D; z3)= comK(e(M j1 + · · ·+ M jN ) + d1p
j1 + · · ·+ dNpjN + γ; f1r1 + · · ·+ fNrN + rγ)

= comK(pj1(epj1 + d1) + · · ·+ pj1(epj1 + d1) + γ; f1r1 + · · ·+ fNrN + rγ)

= comK(pj1f1 + · · ·+ pjN fN + γ; f1r1 + · · ·+ fNrN + rγ) = cf1

1 · · · c
fN

N cγ ,

and

Epk(D mod n; z4)= Epk(e(M j1 + · · ·+ M jN ) + d1p
j1 + · · ·+ dNpjN + γ mod n; ery + rγ′)

= Epk(M j1 + · · ·+ M jN ; ry)eEpk(d1p
j1 + · · ·+ dNpjN + γ; rγ′) = yeyγ .

So completeness trivially holds with probability 1.

Special soundness. We want to show that from two acceptable answers to two different chal-
lenges we can find 0 ≤ j1 < · · · < jN < L and ry ∈ Rpk such that y = Epk(M j1 + · · ·+ M jN ; ry).
So let f1, . . . , fN , z1,1, . . . , z1,N , z21

, . . . , z2,N , z3, D, z4 and f ′
1, . . . , f

′
N , z′1,1, . . . , z

′
1,N , z′21

, . . . , z′2,N ,
z′3, D

′, z′4 be answers to challenges e and e′, both satisfying the criteria specified in the verification
step. On the encryption side we then have

Epk(D; z4) = yeyγ and Epk(D′; z′4) = ye′

yγ ,

which gives
Epk(D −D′; z4 − z′4) = ye−e′

.

By the root-opening property we can now find a plaintext for y. Let v be this plaintext.
On the commitment side we have

comK(f1; z1,1) = cd1
ce
1 and comK(f ′

1; z
′
1,1) = cd1

ce′

1 ,

which gives

comK(f1 − f ′
1; z1,1 − z′1,1) = ce−e′

1 .

By the root-opening assumption of the commitment scheme we can now find an opening of c1. By
the same argument we can also find an opening of c2, . . . cN . Let a1, . . . , aN denote the content of
these commitments.

From the second part of the multiplication proof we have

ce
N+1cNbcomK(0; z2,N) = (c′N )pfN and ce′

N+1cNbcomK(0; z′2,N) = (c′N )pf ′

N ,

which gives
comK(0; z2,N − z′2,N)comK(pL; 0)e−e′

= (c′N )fN−f ′

N

We now know an opening of the commitment on the left hand side. We also know that f ′
N 6= fN

since 1 = comK(0; 0) and the left side can not be opened to zero by the binding property. Therefore,
by the root-opening assumption, we can find an opening of c′N . Moreover, the content of c′N is
non-zero since the left side opens to something non-zero. We can now, in a similar manner,
go backwards and find an opening of c′N−1, . . . , c

′
1. Let bN , . . . , b1 denote the contents of these

commitments.
We now have openings for the commitments c1, . . . , cN , c′1, . . . , c

′
N and y. Furthermore, by the

binding property of the commitment scheme, these openings must be the only ones that the prover
can produce. What is left to argue is that the opening of the encryption satisfies the requirements
of the proof. In that case, we have extracted a witness for the vote being on the correct form.

We get from

comK(fN − f ′
N ; z1,N − z′1,N) = ce−e′

N ,

that

fN − f ′
N = aN(e− e′)⇒

fN − f ′
N

e− e′
∈ Z.
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From
(c′N )fN−f ′

N = comK(0; z2,N − z′2,N)comK(pL; 0)e−e′

,

we see that
p(fN − f ′

N)bN = (e− e′)pL.

This implies that
aNbN = pL−1,

which means that |aN | = pjN for some 0 ≤ jN < L. In a similar fashion we deduce that
|a1| = pj1 , . . . , |aN−1| = pjN−1 with 0 ≤ j1 < · · · < jN−1 < jN .

We now proceed to the link between the commitments and the encryption. We have

comK(D; z3) = cf1 · · · cfN and comK(D′; z′3) = cf ′

1 · · · cf ′

N

which implies that
comK(D −D′; z3 − z′3) = cf1−f ′

1 . . . cfN−f ′

N

Using the fact that for all i we have ai =
fi−f ′

i

e−e′ , the above equation gives us

D−D′ = (f1 − f ′
1)a1 + · · ·+ (fN − f ′

N)aN = (e− e′)(a2
1 + · · ·+ a2

N ) = (e− e′)(p2j1 + · · ·+ p2jN ).

On the encryption side the equation

Epk(D −D′; z4 − z′4) = ye−e′

,

shows that v, the content of y, satisfies

D −D′ = (e− e′)v mod n.

Since (e− e′) is invertible modulo n we deduce that

p2j1 + · · ·+ p2jN = v mod n.

In other words, the witness (v, ry) consists of a correctly formed vote on the form v = M j1 + · · ·+
M jN , where 0 ≤ j1 < · · · < jN < L, and the random number ry involved in the encryption. This
shows that the protocol satisfies the special soundness property.

Special honest verifier zero-knowledge. Given the common input and a challenge
e ∈ {0, . . . , 2t − 1} we wish to simulate a proof of the encryption containing a vote on the right
form.

We start by picking random r1, . . . rN , r′1, . . . , r
′
N ∈ RK and form commitments

c1 = comK(p0; r1), . . . , comK(pN−1; rN ) and c′1 = comK(1; r′1), . . . , c
′
N = comK(1; r′N ). Note that

by the hiding property of the commitment scheme these commitments are indistinguishable from
properly formed commitments to pj1 , . . . , pjN and pj2−j1−1, . . . , pL−jN−1.

We now pick f1, . . . , fN as shadows for epj1 , . . . , epjN and D as a shadow for f1p
j1 + . . . fNpjN .

With this choice of f1, . . . , fN , D they are indistinguishable from the f1, . . . fN and D of a real
proof. by the definition of shadows.

We may also pick z1,1, . . . , z1,N , z2,1, . . . z2,N , z3 ∈ RK and z4 ∈ Rpk as random shadows so
that thy are indistinguishable from those in a real proof.

We can now compute yγ = Epk(D; z4)y
−e, cγ = c−f1

1 · · · c−fN

N comK(D; z3),

cd1
= comK(f1; z1,1c

−e
1 , . . . , cdN

= comK(fN ; z1,N)c−e
N ) and cd1b = comK(0; z21

)−1cpf1

1 c−e
2 , . . . ,

cdNb = comK(0; z2,N)−1cpfn

N c−e
N+1.

With these choices, we have a simulated proof that due to the hiding property of the commit-
ment scheme and the semantic security of the cryptosystem looks entirely like a normal proof with
challenge e. This means that we have demonstrated the special honest verifier zero-knowledge
property of the proof system.
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Finally. we see from the proof of special honest verifier zero-knowledge that if the commitments
c1, . . . , cN , c′1, . . . , c

′
N are statistically hiding and that all the shadows and random shadows are sta-

tistically hiding, then the entire proof system is statistical special honest verifier zero-knowledge.�

If we want, we can make some small alternations to the protocol above to open for the possibility
for a voter to vote on less then N candidates and/or the possibility for a voter to vote multiple
times on the same candidate. The possibility for a voter to vote on less then N candidates can be
obtained by including N dummy candidates, while if we want the voter to be able to vote multiple
times on the same candidate, we can let c′1, . . . c

′
N instead be commitments to pj2−j1 , . . . , pL−jN

and, at the same time, remove the power p in the multiplication proof (ci)(c
′
i)

p = ci+1.
We will now present a randomized verification algorithm which makes the verification procedure

in Σ-protocol above more efficient Notice that one thing we must do several times during the
verification procedure is to compute two elements in CK in two different ways, such as comK(f ; z1)
and ace, and then check to see if they are identical. Since computing some of these elements can
be complicated we want to reduce the time used in this process.

As an example assume we are given multiple pairs (c1, d1, . . . cn, dn) in CK and that we wish
to check if these are pairwise identical. To do this we can choose s1, . . . , sn at random from
[0, . . . , 2t − 1] and then check if cs1

1 · · · c
sn
n equals ds1

1 · · · d
sn
n . The reason we can do this is, given

that CK is a group with no non-trivial elements of order less then 2t, we have with probability at
least 1− 21−t that cs1

1 · · · c
sn
n 6= ds1

1 · · · d
sn
n if there exists i such that ci 6= di [DGS03]. Here t may

be a smaller security parameter than in the Σ-protocols since the computation happens only on
the verifiers side, and the prover has therefore no opportunity to actively cheat.

The reason this is interesting is that in the Σ-protocol ci = comK(mi; ri) for some mi, ri known
to the verifier. This means that cs1

1 · · · c
sn
n can be computed as comK(s1m1 + · · ·+ snmn; r1s1 +

· · · + rnsn). Given that the binary operations are faster to compute in MK and RK than in
CK this will make to verification more efficient. Since the probability of catching any cheating
grows exponentially with t, we can typically choose t reasonably small. Accordingly, the extra
computational effort required to compute the additional exponentiations to s1, . . . , sn is dwarfed
by the savings we get by not having to verify each commitment opening itself [DGS03].

Using this idea in the voting scheme on multiple candidates the verification procedure, after
some calculations becomes the following.

Randomized verification algorithm

Verification. Check that cd1
, . . . , cdn

, cd1b, . . . , cdNb, cγ ∈ CK , yγ ∈ Cpk, f1, . . . , fN , D ∈ Z,
z1,1, . . . , z1,N , z2,1, . . . , z2,N , z3 ∈ RK and z4 ∈ Rpk .
Select at random s1, . . . , sN , s′1, . . . , s

′
N , s ∈ {0, . . . , 2t − 1}. Verify that

comK(s1f1 + · · ·+ sNfN + sD + es′NpL; s1z1,1 + · · ·+ sNz1,N + s′1z2,1 + · · ·+ s′Nz2,N + z3)

=cs
γcs1

d1
· · · csN

dN
(c−1

d1b
)s′

1 · · · (c−1
dNb

)s′

N ces1+sf1

1 c
e(s2−s′

1)+sf2

2 · · ·

c
e(sN−s′

N−1)+sfN

N (c′1)
pf1s′

1 · · · (c′N )pfN s′

N

3.4 The voting system

We are now ready to present the voting system. As before, let M = p2, where p is a prime, be a
strict upper bound on the number of voters, let L be the number of candidaties, and let N be the
total number of candidates a voter may vote on. A vote on candidates number 0 ≤ j1 < . . . jN < L
is represented as the number M j1 + · · ·+ M jN .
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The electronic voting system based on homomorphic encryption.

Set-up. The election authorities generates the public-key pk of the encryption scheme in
Section 3.2.2, and distributes the private key x amongst themselves. Also the election
authorities generates the public-key K of the Damgård-Fujisaki commitment scheme in Section
3.2.1.

Voting phase. Each voter i encrypts his vote yi = Epk(M j1 + · · ·+ M jN ; ri) and uses the
Σ-protocol of Section 3.3 to prove that yi indeed is a correctly formed vote.

Tallying. The voting authorities computes

y =
∏

i∈A

yi = Epk(v0M
0 + · · ·+ vL−1M

L−1; r),

where A is the collection of accepted votes, vj is the number of votes on candidate j and
r =

∑

i∈A ri. Finally the election authorities jointly decrypt y using the threshold decryption
described in Section 3.2.2 to reveal the results of the election.

Theorem 3.6. Under the discrete logarithm assumption, and the RSA assumption the voting
system above satisfies universal verifiability, computational robustness and computational privacy.

Proof. First consider privacy. Theorem 3.2 ensures that no information about an encrypted vote
leaks under generalized the Decision Diffie Hellman assumption (which is at least as strong as the
discrete logarithm assumption). By Theorem 3.5 and Proposition 2.1 the Σ-protocol do not reveal
any information about the vote if the commitment scheme, shadows and random shadows are
statistically hiding. We know that commitments are statistically hiding from Theorem 3.1. If the
Σ-protocol is done non-interactively using Fiat-Shamir heuristics the protocol is zero-knowledge
by the discussion in the Section 2.3.3. Finally by Theorem 3.3 privacy is preserved under the
discrete logarithm assumption as long as at most t− 1 authorities collude or are hacked into.

As for robustness, we note that in order for a voter to cast a non-valid vote, he must somehow
during the Σ-protocol convince the authorities that the commitment, and therefore the encryption
containing the non-valid vote, is of the correct form. Assuming that the voter can not break the
binding property of the commitment scheme, Theorem 2.1 shows that this can only happen with
probability 2−k, where k is the length of the bit-string challenge used in the Σ-protocol. Thus, in
order for a voter to cast a non-valid vote with probability greater then 2−k the voter must break
the binding property of the commitment scheme which, by Theorem 3.1, is at least as hard as
solving the RSA problem. On the other hand, if some of the authorities try to cheat Theorem
3.3 ensures that robustness is preserved as long as some threshold t of the authorities is operating
properly.

Finally, universal verifiability is satisfied since a passive observer can check that the product
of the votes is equal to the product computed by the authorities. Moreover, the passive observer
can verify that the final tally was decrypted using only values from authorities who passed the
proof of knowledge, thereby ensuring that the correct shares was used during decryption. �
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4

An electronic voting system based on

verifiable secret sharing

4.1 Introduction

We will now present an electronic voting system based on verifiable secret sharing. The voting
system we present is from “Multi-authority secret-ballot election with linear work” by Ronald
Cramer, Matthew Franklin, Barry Schoenmakers and Moti Yung [CFSY96].

We assume two basic means of communication is available to the parties in the system. The
first is a bulletin board, which is a broadcast channel with memory that can be observed and
read by all parties. Each party controls his own section of the board in the sense that he can
post messages exclusively to his own section, but not to the extent that he can erase or overwrite
previously posted messages. The second mean of communication are private channels to support
private communication between the voters and authorities. For this task any secure public-key
encryption scheme is suitable, possibly using the bulletin board to post corresponding encryptions.

The participants in the scheme are n authorities A1, . . . An and m voters (V1, . . . Vm). Infor-
mally the scheme work as follows. Each voter Vi prepares a vote by choosing a random bi ∈ {1,−1}
and encrypts it resulting in Bi0. After preparing the vote Vi publishes Bi0 to the bulletin board.
Then each voter acts as the dealer in a verifiable secret sharing scheme and distributes a verifiable
share of bi to each authority using a private channel. The voter also post some values proof(Bi0)
to the bulletin board to prove that Bi0 indeed encrypts a value in {1,−1}. Later, voter Vi, may
cast a vote vi ∈ {1,−1} by publishing a value di = bivi. At the end of the election the authorities
can compute the aggregate value T =

∑m
i=1 vi, which represents the total number of yes-votes

minus the total number of no-votes. How this value can be computed from the shares will be
explained in Section 4.3.3.

In the next section we will present the encryption scheme together with the commitment scheme
needed for the verifiable secret sharing scheme, which we present in Section 4.3. Finally the voting
system is presented in Section 4.4.

4.2 The commitment and encryption scheme

As mentioned we will be using verifiable secret sharing (VSS) to ensure privacy in our election
scheme. Unfortunately, most VSS schemes, such as [CDM00], relay on exponentially many inter-
actions between the shareholders, which would be to time consuming for a big-scale election. By
the results of [Ped92] no non-interactive VSS scheme which does not relay on some computational
problem exists. We will follow [Ped92] who uses a commitment scheme based on the assumption
that the discrete logarithm problem is intractable to construct a non-interactive verifiable secret
sharing scheme. Remember that the discrete logarithm assumption is the assumption that given
a group G, an element g ∈ G of order n and an element h ∈ 〈g〉, the problem of finding an unique
integer a such that ga = h is intractable.

Let G = {Gk} be a family of groups of prime order such that the group operations can be
performed efficiently, group elements can be efficiently sampled with uniform distribution and
group membership as well as equality of group elements can be efficiently tested. Let Gen be a
probabilistic polynomial time generator that on input 1k outputs a description of a group G ∈ Gk
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Voter Verifier

v = 1 v = −1
α, z−1, e−1, r1 ∈R Zq α, z1, e1, r−1 ∈R Zq

B ← gαh B ← gα/h
a−1 ← gz−1(Bh)−e−1 a−1 ← gr−1

a1 ← gr1 a1 ← gz1(B/h)−e1

e1 ← s− e−1 e−1 ← s− e1

z1 ← r1 + αe1 z−1 ← r−1 + αe−1

B,a−1,a1

−−−−−−→
s ∈R Zq

s
←−−−−

e−1,e1,z−1,z1

−−−−−−−−−→

s
?
= e−1 + e1

gz−1
?
= a−1(Bh)e−1

gz1
?
= a1(B/h)e1

Figure 4.1: Encryption and proof of validity of ballot B. Here ∈R Zq means that the elements are chosen

at random from Zq, while
?
= means that the verifier checks if the equality holds.

(including the group order) and two random elements g, h from G. Each family G for which
it is reasonable to assume the intractability of the discrete logarithm problem is suitable for our
purpose of constructing an efficient and secure commitment scheme. A well-known family however,
is obtained by choosing large primes p and q at random such that q divides p− 1. Then G is the
unique subgroup of order q in Z

∗
p.

We will now present Pedersens commitment scheme together with an efficient proof of validity
from [CFSY96]. The reason we include a proof of validity is that, in the election scheme to
follow, we will use the commitment scheme together with the proof of validity to encrypt a value
v ∈ {1,−1}. For later we will refer to the below as a commitment scheme if we do not use the
proof of validity, and as an encryption scheme if we do1.

The Pedersen commitment scheme with efficient proof of validity.

Set-up. The participants, or a designated subset of them, run Gen(1k) and obtain a group Gq

of prime order q, and random group elements g and h.

Commit. A commitment to v ∈ Zq is formed by choosing α ∈ Zq at random and letting the
commitment be B = com(Gq ,g,h)(v, α) = gαhv.

Open. A participant can later open B by revealing both v and α. A verifying party then checks
whether B = gαhv , and accepts v as the committed value.

Proof of validity. To demonstrate that an encrypted value v is indeed in {1,−1}, without
revealing it, the voter and the verifier execute the efficient proof of validity in Figure 4.1.

The commitment and encryption scheme satisfy the following property which we will note for
later.

1The word encryption here is a bit misleading since the “encrypted” value never will (or can) be decrypted. We
will use the encryption in the voting system in the same way as the commitments will be used in the upcoming
verifiable secret sharing scheme. All this aside, we will still follow [CFSY96] and call this part an encryption.
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Homomorphic property. The commitment and encryption scheme is homomorphic, that is for
all α, v ∈ Zq

com(Gq,g,h)(v1, α1)com(Gq ,g,h)(v2, α2) = com(Gq ,g,h)(v1 + v2 mod q, α1 + α2 mod q)

Theorem 4.1. Under the discrete logarithm assumption, the commitment and encryption scheme
is unconditionally hiding and computationally binding. Furthermore, the proof of validity is a
witness indistinguishable Σ-protocol proving that a given encryption is indeed an encryption of a
value from the set {1,−1}, thereby releasing no information about the actual value.

Proof. To prove unconditionally hiding note that for every fixed v the map comGq,g,h(v, α) :
Zq → Gq is an isomorphism. It follows that the distribution of comGq ,g,h(v, α) is uniform in Gq .

If any party is able to open a commitment or encryption c in two different ways, i.e to present
values α, v, α, v′ such that B = gαhv = gα′

hv′

with α 6= α′ and v 6= v′, it follows that they can
compute loggh = α−α′

v′−v
, which contradicts the discrete logarithm assumption.

To prove that the proof of validity is a witness indistinguishable Σ-protocol for the relation,

ROR = {(v, α)|B = gαhv, v = 1 or v = −1},

we will construct the protocol using the protocol POR from Section 2.3.2. The proof then follows
from Theorem 2.3. As the sub-protocol P of the protocol POR we can use a variant of Schnorr’s
protocol for proving knowledge of discrete logarithms from the example in Section 2.3. Remember
that Schnorr’s protocol, proving that we know α = loggh in a group of prime order q, is of the
following form. The prover sends a = gr and answers the random challenge e with z = r + eα.
The verifier then checks that gz = ahe.

We now want to prove that we know α = logg(Bh−v), v ∈ {1,−1} so we need to do a minor
adjustments to the protocol. Consider the following: The prover sends a = gr and answers
the random challenge e with z = r + eα. The verifier then checks that gz = a(Bh−v)e. Since
gz = gr+eα = gr(gα)e = a(bh−v)e completness trivially holds with probability 1. Special soundness
holds by the same argument as Schnorrs original scheme. That is, answer to two different challenges
gives the two equations z1 = r + e1α mod q and z2 = r + e2α mod q, which combined yields
α = (z1 − z2)(e1 − e2)

−1 mod q. To simulate an accepting conversation we just choose z, e ∈ Zq

at random and compute a = gz(Bh−v)−e.
Below we use the above protocol as the subprotocol P in the protocol POR from Section 2.3.2

to obtain a Σ-protocol for the relation ROR. The “blueprint” for construction is written in italic,
while ⇒ and ⇐ represents what the prover should do if v = 1 and v = −1 and respectivly. If the
action is the same in both cases we represent this by ⇔.

1. P computes the first message ab in P using xb, w as input.

⇒ P chooses r1 ∈ Zq at random and computes a1 = gr1 .

⇐ P chooses r−1 ∈ Zq at random and computes a−1 = gr−1 .

P chooses e1−b at random and runs the simulator M on input x1−b, e1−b, let (a1−b, e1−b, z1−b)
be the output.

⇒ P chooses z−1, e−1 ∈ Zq at random and computes a−1 = gz−1(Bh)−e−1 .

⇐ P chooses z1, e1 ∈ Zq at random and computes a1 = gz1(B/h)−e1 .

P sends a0, a1 to V .

⇔ P sends a−1, a1 to V .

2. V chooses a random t-bit string s and sends it to P .

⇔ V chooses at random s ∈ Zq and sends it to P .

3. P sets eb = s ⊕ e1−b and computes the answer zb in P to challenge eb using xb, ab, eb, w as

input. He sends e0, z0, e1, z1 to V .
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⇒ P sets e1 = s− e−1 and computes z1 = r1 + e1α.

⇐ P sets e−1 = s− e1 and computes z−1 = r−1 + e−1α

⇔ P sends e−1, z−1, e1, z1 to V .

V decides to accept the proof iff s = e0⊕e1 and both (a0, e0, z0) and (a1, e1, z1) are accepting

conversations.

⇔ V verifies that s = e1 + e−1, gz1 = a1(B/h)e1 , gz−1 = a−1(Bh)e−1 .

It is easy to see that the protocol above is the same as the proof of validity in Figure 4.1. By
Theorem 2.3 the proof of validity in Figure 4.1 is therefore a witness indistinguishable Σ-protocol
proving that a given encryption is indeed an encryption of a value from the set {1,−1}. �

Jumping ahead a bit, envision that the voter posts an encryption of his vote and that all other
participants must verify its validity. As depicted in Figure 4.1, a source of randomness is required
in the program for the verifier. For this purpose, one can use some unpredictable physical source of
randomness [CF85], or agree on mutually random bits by cryptographic means. A more practical
way is of course to use the Fiat-Shamir heurstics discussed in Section 2.3.3 [CFSY96]. Let H be a
suitible strong cryptographic hash function thought of as a random oracle. In the non-interactive
version of our proof of validity, the challenge s is computed as s = H(b, a−1, a1). The set of values
e−1, z−1, e1, z1 is denoted by proof(B). Given the values in proof(B), any participants can check
the validity of B by verifying that e−1 + e1 = H(B, gz−1(Bh)−e−1 , gz1(B/h)−e1). Similar as in
Section 3.3, a bit string specific to each voter can be included in the hash function to prevent
vote duplication. In case the proof is done interactivly this bit string could be incorporated in the
challange.

4.3 Pedersens verifiable secret sharing scheme

4.3.1 Introduction

We will now present Pedersens verifiable secret sharing scheme, which is an extension of Shamirs
scheme from Section 2.4. Let q be a prime. Rembember that in Shamirs scheme the dealer, D,
distributes a secret s by choosing a random polynomial f ∈ Zq [x], of degree at most t − 1 such
that f(0) = s and then give each player Pi the share f(i). A set S of t or more players can later
find s from the formula

s =
∑

i∈S

si

∏

j∈S\{i}

−j

i− j
.

Our goal is to extend this scheme with a verification protocol, V P , such that any participant
who have (honestly) accepted their shares in V P can find s. More formally V P must satisfy the
following definition from [Ped92]. Here |x| is defined as the length of the binary representation of
an integer x.

Definition. A verification protocol, V P , takes place between D and P1, . . . , Pn. It must satisfy
the following two requirements.

1. If the dealer follows the distribution protocol and if both the dealer and Pi follow V P , then
Pi accepts with probability 1.

2. For all subsets S1 and S2 of {1, . . . , n} of size t such that all parties (Pi)i∈S1
and (Pi)i∈S2

have accepted their shares in V P the following holds except with negligible probability in
|q|: If si is the secret computed by the participants in Si (for i = 1, 2) then s1 = s2.

A share is correct if it is accepted in V P .
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Even though the definition above allows for any kind of interaction between the participants
we will be concerned with non-interactive verification protocols. In the non-interactive version the
dealer distributes some extra information along with the shares, and in the verification protocol
each player verify that their share is consistent with this extra information.

Note that, in the definition above, there is no reference to the actual secret s the dealer is
distributing when defining the correctness of a share. The reason for this is that during the
verification protocol the players have no information about s and thus the secret is whatever
the dealer claims. After the verification protocol the secret is defined as the value which any t
participants will find when combining their shares. This is not well defined if the dealer manages
to distribute inconsistent shares2, but the definition guarantees that the dealer will almost always
get caught when trying to cheat.

4.3.2 The scheme

Let a group Gq and two random elements g, h be given such that Pedersens commitment scheme
from Section 4.2 can be applied, and let K = (Gq , g, h) The following is then a non-interactive
verifiable secret sharing scheme found in [Ped92].

Pedersen’s verifiable secret sharing scheme.

1. D publishes a commitment, using Pedersen’s commitment schmeme, to s: B0 = comK(s, α)
for a randomly chosen α ∈ Zq .

2. D chooses H ∈ Zq [x] of degree at most t− 1 satisfying H(0) = s at random, and computes
si = H(i) for i = 1, . . . , n.

Let H(x) = s + H1x + · · · + Ht−1x
t−1. D chooses G1, . . . , Gt−1 ∈ Zq at random and

uses Gi when committing to Fi for i = 1, . . . , t − 1. D broadcast Bi = comK(Hi, Gi) for
i = 1, . . . , t− 1.

3. Let G(x) = α + G1x + · · · + Gt−1x
t−1 and let ai = G(i) for i = 1, . . . , n. Then D sends

(si, ai) to each player Pi via a private channel.

When Pi has received his share (si, ai) he verifies that

comK(si, ai) =
t−1
∏

l=0

Bil

l . (4.1)

Lemma 4.1. Let S ⊂ {1, . . . , n} be a set of t players such that equation 4.1 holds for these t
players. Then these players can find a pair (s′, a′) such that B0 = ga′

hs′

.

Proof. Using Lagrange interpolation the players in S can find two unique polynomials H ′, G′

satisfying H ′(i) = si and G′(i) = ai for all i ∈ S. Let h = gd. Then

hH′(i)+dG′(i) = comK(si, ai) = hsi+dai ,

for all i ∈ S. Thus (H ′ + dG′)(i) is the unique polynomial of degree at most t − 1 mapping i to
si + dai. Let Bj = gGj hHj = hHj+dGj = hbj , then

b(x) =

t−1
∑

j=0

bjx
j =

t−1
∑

j=0

(Hj + dGj)x
j =

t−1
∑

j=0

Hjx
j + d

t−1
∑

j=0

Gjx
j ,

2Shares that not all lie on the same polynomial of degree at most t − 1.
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satisfies b(i) = si + dai for all i ∈ S. And in particular

B0 = hb0 = hH′(0)+dG′(0) = gG′(0)hH′(0).

Therefore it is sufficient to put s′ = H ′(0) and a′ = G′(0). �

Note that the players in S do not have to find H ′ in order to find the secret. It is more
efficient to use the formula s =

∑

i∈S λS,isi, where λS,i =
∏

j∈S\{i}
i

i−j
. We can also find α by

the formula α =
∑

i∈S λS,iai.

Theorem 4.2. Under the assumption that the dealer cannot find loggh except with negligible
probability in |q|, equation 4.1 satisfy the definition of a verification protocol.

Proof. If all participants follow the protocol, then Pi always accepts since

t−1
∏

l=0

Bil

l =

t−1
∏

l=0

(gGihHi)il

= gα+G1i+···+Gt−1it−1

hs+H1i+···+Ht−1it−1

= gaihsi = comK(si; ai).

Now let D∗ be an algorithm that on input (s, n, t) outputs two subsets S1, S2 of (1, . . . , n) of size
t and (B0, . . . Bt−1, (si, ai)i∈S1

, (sj , aj)j∈S2
) such that for all i ∈ S1 and all i ∈ S2,

comK(si, ai) =
t−1
∏

l=0

Bil

l .

According to Lemma 4.1 we can use the sets S1 and S2 to find pairs (s1, a1) and (s2, a2) respectively
such that B0 = comK(s1, a1) = comK(s2, a2). Now assume that D∗ has output shares such that
s1 6= s2. Then by the proof of Theorem 4.1 we can find loggh as a1−a2

s2−s1
. This shows that computing

loggh is at least as hard as distributing inconsistent shares, and the theorem follows. �

As a consequence of Theorem 4.2 all the shares satisfying the verification procedure are con-
sistent unless the dealer succeeds in finding loggh before the last share has been sent.

The following theorem shows that fewer than t players get no information about the secret.
For any subset S ⊂ {1, . . . , n}, let viewS denote all the messages the players in S see,

viewS = (B0, . . . , Bt−1, (si, ai)i∈S)

Theorem 4.3. For any S ⊂ {1, . . . , n} of size at most t−1, Prob[D has secret s|viewS ] =Prob[D
has secret s] for all s ∈ Zq .

Proof. It is sufficient to show that any set of t − 1 players get no information about the secret.
The theorem will then follow by the fact that any set of less then t − 1 players holds even less
information.

So let S ⊂ {1, . . . , n} be a set of t−1 players, let viewS = {B0, . . . , Bt−1, (si, ai)i=1,...,t−1}, and
let (s, α) be the values distributed by the dealer using polynomials H(x) = s+H1x+ · · ·+Ht−1(x)
and G(x) = α + G1x + · · · + Gt−1x

t−1. For any s′ ∈ Zq , there exists a unique α′ ∈ Zq such
that comK(s′, α′) = B0. And, by Theorem 2.4, for every such pair (s′, α′) there exists unique
polynomials H ′ and G′ of degree at most t− 1 satisfying

H ′(0) = s′, H ′(i) = si, i = 1, . . . , t− 1,

G′(0) = α′, G′(i) = ai, i = 1, . . . , t− 1.

Let H ′(x) = s′ + H ′
1x + · · ·+ H ′

k−1x
k−1 and G′(x) = α′ + G′

1x + · · ·+ G′
t−1x

t−1. In order to show
that viewS contains no information about the secret, we must show that Bi = comK(H ′

i , G
′
i) for

i = 1, . . . , t − 1, since this is true for the polynomials chosen by the dealer. As in the proof of
Lemma 4.1 there is one and only one polynomial of degree at most t− 1 satisfying hf(i) = gaihsi

(with s0 = s, a0 = α′), and (H ′ + dG′)(x) satisfies this for d =loggh. But since H(i) = H ′(i) and
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G(i) = G′(i) for i = 1, . . . t − 1 and for i = 0 we have hs+dα = gαhs = B0 = gα′

hs′

= hs′+dα′

, it
follows that (H + dG)(x) satisfies this aswell. This means that for each i = 1, . . . , t − 1 we must
have Hi + dGi = H ′

i + dG′
i, which gives

comK(Hi, Gi) = gGihHi = hHi+dGi = hH′

i+dG′

i = gG′

ihH′

i = comK(H ′
i , G

′
i)

This means that for the players in S, each s′ ∈ Zq is consistent with the information in viewS ,
and the theorem follows. �

By the results above we see that Pedersen’s scheme satisfies the definition of verifiable secret
sharing from Section 2.4. If the dealer is honest, then all sets of t honest participants will be able
to reconstruct the secret by Theorem 4.2. No corrupted player can disrupt the reconstruction
since all participants can verify that the shares posted by the players during reconstruction satisfy
equation 4.1. This means that the reconstruction will be a success as long as at most n − t
players are corrupted. If the dealer is corrupt, any player receiving inconsistent shares can post a
complaint. The dealer must then publish the share sent to that player. If there are n− t or more
complaints the dealer is deemed corrupt, while if the distribution is accepted t or more players
can reconstruct the secret by Theorem 4.2.

4.3.3 Linear combination of shares

Assume that two secrets s′ and s′′ has been distributed by Pedersens scheme. Because of the
homomorphic property of the commitments and the linear property of polynomials3, each player
can locally compute on their shares in s′, s′′ to get shares in any linear combination of s′ and s′′.
To see this let (s′i, a

′
i) and (s′′i , a′′

i ) be Pi’s share of s′ and s′′ respectively, and let (B′
0, . . . , B

′
t−1)

and (B′′
0 , . . . , B′′

t−1) be the broadcasted messages when the two secrets where distributed. Each
player Pi can then compute (B0, . . . , Bt−1) corresponding to a verifiable distribution of s = s′ +s′′

mod q by the formula Bj = B′
jB

′′
j for j = 0, . . . , t− 1. Furthermore Pi’s secret share, (si, ai) of s

is given by si = s′i + s′′i mod q and ai = a′
i + a′′

i mod q. By insertion it is easy to see that if both
(s′i, a

′
i) and (s′′i , a′′

i ) are correct shares, then (si, ti) is a correct share of s,

gaihsi = ga′

i+a′′

i hs′

i+s′′

i = ga′

ihs′

iga′′

i hs′′

i =

t−1
∏

l=0

(B′
l)

il
t−1
∏

l=0

(B′′
l )il

=

t−1
∏

l=0

(B′
lB

′′
l )il

=

t−1
∏

l=0

Bil

l .

If we instead want to compute the secret as s = ks′ mod q for some k ∈ Zq , then Pi can compute
his share (si, ai) and (B0, . . . , Bt−1) as follows, si = ks′i mod q, ai = ka′

i mod q and Bj = (B′
j)

k

for j = 0, . . . , t− 1. Again we see that (si, ai) is a correct share by insertion,

gaihsi = gka′

ihks′

i = (ga′

ihsi)k = (

t−1
∏

l=0

(B′
l)

il

)k =

t−1
∏

l=0

(B′k
l )il

=

t−1
∏

l=0

(Bl)
il

.

In both the above cases Lemma 4.1 implies that any t shareholders who have accepted their
shares in s′ and s′′ can find a pair (s, a) such that gahs = E0. Furthermore, it is an immediate
consequence of Theorem 4.3 that fewer than t persons have no information about s if s′ and s′′ is
distributed correctly.

4.4 The voting system

We are now ready to present the voting system of [CFSY96]. Again, the participants in the scheme
are n authorities A1, . . . An and m voters (V1, . . . Vm). Privacy and robustness of the scheme are
as follows. No collusion of fewer then t authorities can reveal an individual vote, while the election
is successful if at least t authorities operate properly (1 ≤ t ≤ n). We include a mechanism

3That is given H(x) and H ′(x), then aH(x) + bH′(x) = (aH + bH′)(x)
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to postpone the decision on what to vote until the preparation of the election is complete. This
enables most of the work to be done offline before the election, while voting is simplified to posting
just one bit of information.

The voting system work as follows. Each voter Vi prepares a vote by choosing a random
bi ∈ {1,−1} and encrypt it as Bi0 = gαhbi using a random α ∈ Zq , and posts Bi0 to the
bulletin board. Then each voter acts as the dealer in Pedersens scheme with threshold t and
distributes a verifiable share (bij , aij) of bi to authority Aj via a private channel, and publishes
the commitments (Bi1, . . . Bi,t−1). The voter also post proof(Bi0) to the bulletin board to prove
that Bi0 indeed encrypts a value in {1,−1}. Later, voter Vi, may cast a vote vi ∈ {1,−1} by
publishing a value di = bivi. Now each authority Aj can compute their shares (Tj , Sj) in the final
results in the manner explained in Section 4.3.3. The share (dibij , diaij) is Aj ’s share in vi, and
thus (Tj , Sj) = (

∑n
i=1 dibij ,

∑n
i=1 diaij) is a share in the final results. Now, by the discussion of the

last section, (Bdi

il )l=0,...t−1 corresponds to a verifiable distribution of vi = dibi, and furthermore

(
∏m

i=0 Bdi

il )l=0,...,t−1 corresponds to a verifiable distribution of (Tj , Sj). So, when Aj publishes his
share (Tj , Sj) during reconstruction of the final tally, each authority can check that this value is
correct by verifying that

gSj hTj =
t−1
∏

l=0

(
m
∏

i=0

Bdi

il )jl

At the end of the election t authorities with correct shares can reconstruct the aggregate value
T =

∑m
i=1 vi reduced modulo q such that −q/2 < T < q/2 represents the total number of yes-votes

minus the total number of no-votes. The total number of yes-votes is thus (m + T )/2. For these
numbers to be correct it is a requirement that m < q/2.

We assume that the group Gq and the members g and h are generated as described in Section
4.2. In particular, it then follows that loggh is not known to any participants.

Ballot construction

Each voter Vi prepares a masked vote bi ∈ {−1, 1} in the following way.

1. The voter chooses bi randomly from {−1, 1} and computes the ballot Bi0 = gαihbi , where
αi is randomly chosen from Zq . The voter also computes proof(Bi0). Finally, the voter
determines polynomials Gi and Hi,

Gi(x) = αi + αi1x + · · ·+ αi,t−1x
t−1

Hi(x) = bi + βi1x + · · ·+ βi,t−1x
t−1,

where the coefficients αil, βil, 1 ≤ l < t, are chosen at random from Zq . Also, for these
coefficients the voter computes the commitments Bil = gαilhβil

2. The voter posts Bi0, proof(Bi0),Bi1, . . . , Bi,t−1 to the bulletin board.

3. All participants verify whether ballot Bi0 is correctly formed by checking proof(Bi0).

4. The voter sends the respective shares (bij , aij) = (Hi(j), Gi(j)) to authority Aj using a
private channel.

5. Each authority checks the received share (bij , aij) by verifying that

gaij hbij =

t−1
∏

l=0

Bjl

il .
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Vote casting

To cast a vote, Vi simply posts di ∈ {1,−1} such that vi = bidi represents the desired vote.

Tallying

1. Each authority Aj posts the sum Sj =
∑m

i=1 aijdi and the sub-tally Tj =
∑m

i=1 bijdi.

2. Each tallier checks the share (Tj , Sj) posted by authority Aj by verifying that

gSjhTj =

t−1
∏

l=0

(

m
∏

i=0

Bdi

il )jl

3. From t pairs (Tj , j) that correspond to authorities for which the shares (Tj , Sj) are correct,
each tallier can compute the final tally T from the formula:

T =
∑

j∈A

Tj

∏

l∈A\{j}

l

l − j
,

where A denotes a set of t correct authorities.

We assume, without loss of generality, that in a successful election the shares of every voter have
been accepted by all authorities. That is, all verification in the last step of the ballot construction
are successful. In case an authority receives a share that does not pass this step the authority may
post the share so that anybody can verify that the share is not correct and that it corresponds to
the posted encryption of step 4 of the ballot construction [CFSY96].

Theorem 4.4. Under the discrete logarithm assumption, our secret-ballot election scheme satisfies
universal verifiability, computational robustness and information-theoretic privacy.

Proof. To prove universal verifiability first note that only correct ballots are counted on account
of Theorem 4.1. Further, to prove that the final tally is correct, we reason as follows for each
correct authority Aj . Let G(x) =

∑m
i=1 diGi(x) and H(x) =

∑m
i=1 diHi(x). By the binding

property of the encryption Bi0
4, and the discussion of Section 4.3.3 we have:

t−1
∏

l=0

(
m
∏

i=0

Bdi

il )jl

= gG(j)hH(j)

So by the assumption that the verification in step 2 of the tallying protocol holds for (Tj , Sj),
we thus have gG(j)hH(j) = gSjhTj , which implies Sj = G(j) and Tj = H(j) under the discrete
logarithm assumption. As a consequence, the final tally T is indeed equal to H(0) and thus
represents the result of the election if the verification in step 2 of the tallying holds for at least t
authorities. This deals with universal verifiability and robustness.

To prove privacy we note that the proof of validity is information-theoretically secure by
Theorem 4.1, and that the verifiable secret sharing scheme used is information-theoretically secure
by Theorem 4.3. Thus fewer than t authorities do not obtain any information about individual
votes, other than what can be derived from the finally tally. �

We note that a multi-way election with L possible candidates can be performed by doing L
elections in parallel, where yes-vote in election j represents a vote on candidate j. We can restrict

4Here we assume we use the Fiat-Shamir heuristic non-interactive Σ-protocol. If we instead use he interactive
Σ-protocol we remove the need for this extra assumption.

35



the number of candidates a voter Vi may vote for by adding a requirement on the sum of Vi’s
votes. That is let vil be Vi’s vote in parallel election l, if we only allow a vote on at most one
candidate, then we require that

∑L
l=1 vil ≤ 2 − L. Cramer et.al list numerous extensions to this

approach that possibly are more efficient. We refer to [CFSY96] for the details.
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5

Discussion

We will now compare the two presented voting systems with respect to security and efficiency.
There are two important properties to consider when comparing the security issue of the two
systems. One thing to consider is how well robustness is preserved. In other words, how secure is
the voting system against attempts to cheat by voters and/or authorities running the election? The
other consideration is how well privacy is preserved. In other words, how secure the encryptions
are at hiding the individual votes? In the remaining we will refer to the respective voting systems
by references to the papers where they first were presented. That is, we will refer to the voting
system based on homomorphic encryption presented in Chapter 3 as [DGS03], while the voting
system based on verifiable secret sharing presented in Chapter 4 will be refered to as [CFSY96].

We will consider robustness first. In order for a voter to cheat in [DGS03], i.e. cast a non-valid
vote, he must somehow during the Σ-protocol convince the authorities that the commitment, and
therefore the encryption containing the non-valid vote, is of the correct form. Let k be the length
of the bit-string challenge used in the Σ-protocol. By the proof of Theorem 3.6, we know that,
in order to accomplish this with probability greater then 2−k, the voter must break the binding
property of the commitment scheme, which is at least as hard as solving the RSA problem.

In order for the voter to cheat in [CFSY96] he must, as above, somehow during the Σ-protocol
convince the authorities that the encryption containing the non-valid vote is of the correct form. If
the proof is done interactively this can only happen with probability 2−k by Theorem 2.1. While if
the proof is done non-interactively, using the Fiat-Shamir heuristic, the cheating prover can, after
answering the challenge, break the binding property to cast a non-valid vote. This is by Theorem
4.1 at least as hard as solving the discrete logarithm problem.

Comparing the two we see that, if the Σ-protocol is done interactively in both voting systems,
[CFSY96] is more secure then [DGS03], since robustness in the latter relies on the RSA assumption.
If both Σ-protocols are done non-interactively it is difficult to say which voting system is most
secure since they rely on different intractability assumption.

Now, if some of the authorities try to cheat Theorem 4.2 ensures that robustness in [CFSY96]
is preserved as long as some threshold t of the authorities are operating properly. And similary
robustness in [DGS03] is preserved if at least t authorties operate properly by Theorem 3.3. This
means that both voting systems are secure against corrupt authorities (or authorities hacked into)
as long as at least t of the authorities are operating properly.

We will now consider privacy. In [DGS03] privacy is preserved if the cryptosystem is semanti-
cally secure, no information about the vote leaks during the performance of the Σ-protocol, and
no authority can decrypt individual votes. By the proof of Theorem 3.6 it follows that privacy is
preserved under the discrete logarithm assumption and as long as at most t−1 authorities collude
or are hacked into.

In [CFSY96] privacy is preserved by the fact that the encryption with proof of validity is
unconditionally hiding by Theorem 4.1. Thus privacy is preserved as long as at most t − 1
authorities collude or are hacked into by Theorem 4.3.

Comparing the two we see that privacy in [DGS03] rely on some computational problem, while
privacy in [CFSY96] is preserved in the information-theoretical sence. The extent to which lack
of information-theoretic privacy is harmful may be difficult to estimate. For instance, it is hard to
predict what happens if fifty-year old votes of a U.S. president are published – although breaking
the encryption methods for the currently widely used security parameters will probably be much
more harmful [CGS97]. We note that none of the voting systems are receipt-free since a vote-buyer
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or coercer can be convinced upon receiving the vote and the random number used to encrypt the
vote that the voter voted as desired. However, both these voting system can be made receipt-free
using the method from [HS00].

We will now compare the two voting system with respect efficiency. Since [CFSY96] is a yes/no
election, while [DGS03] is a multi-way election some assumptions are needed. Let L be the number
of candidates a voter may vote for. In [DGS03] the really heavy part is the Σ-protocol for proving
correctness of the encrypted vote. We will assume that Σ-protocol in [DGS03] is at least as efficient
as performing the proof of validity in [CFSY96] L times in parallel (which is, to say the least, a
very plausible assumption). We will also assume that t authorities jointly decrypting the results in
[DGS03] is about as efficient as t authorities jointly computing the final tally in [CFSY96] (which
is also a very plausible assumption looking at the modular exponations needed in both cases). It
then follows that [DGS03] is more efficient then [CFSY96] (in particular in a big-scale election),
since the voters only have to interact with one authority in [DGS03], while each voter have to
interact with each authority in [CFSY96]. We also note that Cramer et.al in [CGS97] presented a
more efficient version of [CFSY96] based on homomorphic encryptions instead of verifiable secret
sharing.
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6

Conclusion

We have presented two fundamentally different voting systems, one based on homomorphic en-
cryptions, and one based one verifiable secret sharing. Comparing the two we found that the one
based on verifiable secret sharing was more secure with respect to both privacy and robustness. On
the other hand, we found that the one based on homomorphic encryptions was the more efficient
of those two.
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A

Computing discrete logarithm

We want to construct an algoritm that on input (1 + n)i ∈ Z
∗
ns+1 computes i. If we define the

function L by L(b) = (b− 1)/n, then clearly we have

L((1 + n)i mod ns+1) = (i +

(

i

2

)

n + · · ·+

(

i

s

)

ns−1) mod ns.

The idea of the algorithm is to extract the value part by part, so that we first extract i1 = L((1+n)i

mod n2) = i mod n. Now we can extract the rest by the following induction step: In the j’th
step we know ij−1 = i mod nj−1. This means that ij = ij−1 + knj−1 for some 0 ≤ k < n. Now
consider the following equation

L((1 + n)i mod nj+1) = (ij−1 +

(

ij
2

)

n + · · ·+

(

ij
j

)

nj−1) mod nj .

If we plugg in ij = ij−1 + knj−1 and notice that each term
(

ij

t+1

)

nt satisfies
(

ij

t+1

)

nt =
(

ij−1

t+1

)

nt

mod nj for 0 < j < t, since the contribution from knj−1 vansihes modulo nj after multiplication
by n. This means we get

L((1 + n)i mod nj+1) = (ij−1 + knj−1 +

(

ij−1

2

)

n + · · ·+

(

ij−1

j

)

nj−1) mod nj .

Now we can just rewrite the above equation to get what we want,

ij = ij−1 + knj−1

= ij−1 + L((1 + n)i mod nj+1)− (ij−1 +
(

ij−1

2

)

n + · · ·+
(

ij−1

j

)

nj−1) mod nj

= L((1 + n)i mod nj+1)− (
(

ij−1

2

)

n + · · ·+
(

ij−1

j

)

nj−1) mod nj .

This equation leads to the following algorithm from [DJ01], where a = (1 + n)i:

i := 0;
for j := 1 to s do

begin

t1 := L(a mod nj+1);
t2 := i;
for k := 2 to j do

begin

i := i− 1
t2 := t2i mod nj ;

t1 := t1 −
t2nk−1

k! mod nj ;
end

i := t1;
end
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Proving equality of discrete

logarithms

We want to construct a Σ-protocol for proving equality of discrete logarithms. Noticing that run-
ning Schnorr’s protocol for proviing knowledge of discrete logaritms two times in parallel acom-
plishes this we get the following protocol.

Proving equality of discrete logarithms

Common input: u, ũ, v, ṽ ∈ Z
∗
ns+1 .

Private input for the prover: y such that y =loguũ =logvṽ.

Initial message. Select r such that it shadows ey. Send a = ur mod ns+1 and b = vr mod
ns+1 to the verifier.

Challenge. Select at random e ∈ {0, . . . , 2t − 1}.

Answer. Respond with z = r + ey,.

Verification. Accept if and only if uz = aũe and vz = bṽe.

Completness is trivial. If the prover is honest then uz = ur+ey = ur(uy)e = aũe and similary
vz = vr+ey = vr(vy)e = bṽe. To show special soundness note that correct answer to two different
challanges gives equations z = r + ey and z′ = r + e′y, and it follows that the prover can compute
y = (z− z′)(e− e′)−1 mod ns+1. Finally note that an acception conversation can be simulated by
choosing e, z and random and then compute a = uzũ−e and b = vz ṽ−e.

This Σ-protocol can be made non-interactive assuming the random oracle model. Given a
cryptographically secure hash-function H, the prover answer the challange e = H(a, b), resulting
in z. The verifier then checks if e = H(uzũ−e, vzṽ−e).
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