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Abstract.

Today, UltraSound (US) images are often used in medical examination and
surgery. An improvement of the quality of these US-images will lead to many
advantages, which is a big motivation for research on this field. One obstacle
in improving the quality of the images is the presence of noise and texture. In
order to distinguish this unwanted information from the interesting objects,
different techniques can be used. Characteristic features, such as the ability
to find vague contours, small objects or edges of small strength, decides if
the technique is suitable for analysing noisy signals. This thesis presents
different techniques for finding objects in US-images by using the continuous
wavelet-transform.

One observation from the analysis is that for edge-detectors using the
wavelet-transform at a single scale, there is a compromise between accuracy
and reliability. One has to choose between detecting small objects or vague
contours. At fine scales one is able to detect small objects, but not objects
with a vague contour without including redundant information. At coarse
scales one is able to detect vague contours without including redundant in-
formation, but one will not detect small objects. The Lipschitz-regularity
and the length of a maxima-line in the time-scale plane works well to find
the points where the signal changes with a long duration, but is less suitable
to find small objects and to remove unwanted information. By using the
value of the wavelet-transform at several scales, it is possible to find vague
contours in images, small objects, and edges of small strength compared to
the strength of the noise. Another important observation from the analysis
is that the use of the circumference of objects is appropriate in order to find
the most important objects in an image. Using this information has been
very useful with respect to the analysis of US-images.

Medical ultra-sound images are in general of varying quality. In addition
the quality of a US-image will typically change within the signal, and changes
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with respect to the quality of the contour of objects and the influence of
noise. The technique which in general is most reliable and produces the best
representations of the US-images analysed in this thesis, uses information
about the amplitude of the wavelet-transform both within and across scales,
in addition to information about the circumference of the objects. This
combined edge-detector is reliable with respect to represent the important
objects in the image, and this representation is often easily obtained by the
edge-detector.
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Chapter 1

Introduction.

1.1 Introduction.

This thesis is a study of different techniques which can be used to detect edges
in 1-D and 2-D signals. The report will focus on difficulties which occur with
respect to noisy signals, in particular to medical US-images. This thesis
presents theory of 1-D and 2-D continuous wavelet transform, and which
information that can be used for edge-detection purposes. By implementing
the different edge-detectors in MatLab and applying them to US-images,
strengths and weaknesses of the edge-detectors will be discussed.

The master-thesis is divided into two main-parts:

• Part I: A theoretic study of properties of the 1-D and 2-D continuous
wavelet-transform.

• Part II: Study of 1-D and 2-D edge-detectors.

Part I begins with presenting theory regarding the 1-D continuous wavelet-
transform. The study begins with defining the wavelet-transform, and illus-
trating the definition and some useful properties. Properties regarding the
decay of the wavelet-transform will be discussed, and illustrated with an ex-
ample. The second chapter of Part I contains a study of the 2-D continuous
wavelet-transform, and some of its properties. Part I ends with a brief dis-
cussion regarding noise, and the uncertainty-principle of edge-detection in
noisy signals.

Part II begins with a discussing how one may identify and relate the
continuous wavelet-transform at different scales. This discussion is one of
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the fundamental issues with respect to the analysis of this thesis. The tools
which are discussed in this chapter, enables the construction of multi-scale
edge-detectors. The discussion and performance of edge-detectors for US-
images rely on the ability to combine information at several scales.

The last two chapters of Part II discuss 1-D and 2-D edge-detectors. In
these chapters it will be discussed how one can combine properties of the
wavelet-transform in order to find the important objects in a signal. The
edge-detectors have been implemented in MatLab, and based on the output
some characteristic features of each of the edge-detectors will be identified.
By comparing with preliminary targets for the US-image, it will be discussed
which edge-detector is the most suitable for the type of US-images analysed
in this thesis.
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1.2 Preliminary Targets and Basic Concepts.

This section serves a two-folded purpose. First, introduce the reader to
underlying ideas of some fundamental concepts of this thesis. These concepts
are elaborately discussed later in the thesis. The second purpose of this
section is to define preliminary targets for the analysis. A survey of what
one may hope to achieve at the end of analysis is discussed. These targets
are defined from an applied viewpoint, i.e. with respect to what is desirable
for use in medical applications.

Sect.(1.2.1) introduces the concepts of edge and edge-detector. The dis-
cussion is not of theoretic disposition, but uses figures and examples to help
the reader to understand the underlying ideas of the concepts. With the help
of examples it will be explained that there exists no optimal edge-detector
for all applications. An edge-detector demand collaboration with an oper-
ator. Applications of edge-detection theory will be discussed, in particular
applications important in the thesis.

Sect.(1.2.2) discusses preliminary targets for the analysis. The primary
target is to analyse one particular ultrasound-image. The key-components of
the image are identified, and information of interest for medical personnel is
discussed. This identification is used to make a brief account of targets for the
analysis. These targets will serve the purpose to compare the performance
of different edge-detectors which will be discussed in this thesis.

1.2.1 Edge and Edge-Detector.

In this section some fundamental concepts of the thesis will be introduced.
The concepts edge and edge-detector will be presented.

The discussion of edge is of intuitive disposition and is included to help
the reader to grasp the most important concept of the thesis. Some examples
of edges are used to visualize the concept. In Ch.(2) the theoretic definition
of edge will be discussed.

Another important concept of the thesis is edge-detector. An edge-detector
is a machinery constituded by several components. The basic components
of an edge-detector will be presented, and some examples of edge-detectors
discussed. At the end a short discussion of what one hopes to achieve by
using edge-detection theory at medical images.

The principal concept of this thesis is edge. When thinking of an edge in
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a function one is most likely to think of a point where the value of the func-
tion changes rapidly. A point where the amplitude of the function changes
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Figure 1.1: Illustration of two different kinds of edges.

rapidly is an edge, and denoted step-edge. An example of a step-edge is
displayed in Fig.(1.1a). Step-edges are typically the most important edges
and are the edges one usually seeks in a function or signal. There exists
other less obvious kind of edges. If the first derivative of the function has a
step-edge at a point, the function has an edge at the point. One denotes the
edge by angle-edge. An example of an angle-edge is displayed in Fig.(1.1b).
In particular step-edges are important in this thesis, but angle-edges will be
encountered. Generally, a point where the function or some derivative of the
function has a step-edge is called an edge. The theoretic definition of edge is
elaborately discussed in Sect.(2.3).

A function typically consists of several edges. An example of a function
with several step-edges is presented in Fig.(1.3). When analysing a func-
tion all edges are usually not of interest. An edge-detector tries to find the
edges in the signal which is of interest for the operator. An edge-detector is
not a single component, but rather a machinery composed of several com-
ponents. A schematic overview of the basic and necessary components of an
edge-detector is illustrated in Fig.(1.2). The basis for edge-detectors is the
function. The first step of detecting the important edges is to find all the
edges in the function. For the signal in Fig.(1.3) this is all the points marked
by a dot. The component detecting all the edges will in this thesis be refered
to as the trivial edge-detector. The wavelet based trivial edge-detector will
be introduced in Sect.(2.3) and Sect.(3.2). The trivial edge-detector does not
take into account the importance of the edges. The set of all edges in the
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Figure 1.2: A schematic overview of the basic components of edge-detection.
The first step in detecting the important edges in a signal is to find the set
of all edges in the signal. An edge-detector uses additional information in
order to locate the important edges in the signal.

signal is typically redundant and contains a lot of uninteresting information.
The second step of detecting edges in a signal is to use some filter on the set
of all edges to separate the important edges from the redundant edges. This
filter may be composed of several components. In Ch.(6) and Ch.(7) filters
separating unwanted from wanted information will be discussed. The output
of the filter should be the information in the signal being of interest for the
operator. It is not yet discussed what is meant by information of interest.
This depends on the actual application. The term edge-detector will in this
thesis both to refer to the filter removing redundant information and the
overall process. The next paragraph discusses examples of edge-detectors.

Consider the signal in Fig.(1.3). The signal have 20 step-edges all marked

Figure 1.3: A signal with 20 step-edges.

by a dot. The optimal edge-detector detecting all edges in the signal should
detect all the dots. The optimal edge-detector detecting the edges where
the overall intensity changes should only detect the step-edge marked by
A. If one is interested in the influence of noise in the signal, the optimal
edge-detector should detect all the step-edges except the step-edge marked
A. All the edge-detectors have their applications. This implies that there is
no edge-detector optimal for all purposes, but varies with respect to which
information is of interest for the operator. This requires that prerequisites
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for the detector are defined prior to the investigation. One has to decide
what information one would like to obtain from the signal.

An adage claims that an image tells more than a thousand words. In
certain contexts it is useful to explain the image by a few words. This
requires that the few words describe the important features of the image. One
application of edge-detection theory is for reducing the amount of information
in the signal. Said equivalently; emphasize the important information in the
image. This thesis will in particular focus on edge-detection in US-images.
For medical purposes this may help the surgeon to focus on the vital objects
in the image when preparing for surgery, or to visualize the objects during
closed surgery.

1.2.2 The Image and Preliminary Targets.

In the previous section the necessity of defining preliminary targets for the
edge-detector prior to analysis was discussed. In this section the prerequisites
for the image in Fig.(1.4) will be discussed. The targets presented in this
section are used to compare edge-detectors, and to see how close the edge-
detectors are to being optimal for this particular image.

Prior to discussing the preliminary targets for the edge-detector, the ob-
jects in the image are identified. The objects medical personnel would like to
get information about are discussed. These objects will be used to define the
targets the optimal edge-detector should satisfy. The primary target for the
analysis is to find an edge-detector good for the ultrasound-image in Fig.(1.4).

The solid grey-white object in the centre of the image is a brain tumour.
The diameter of the brain-tumour is approximately 40 mm. The tumour is
the key-component of the image. This object is of particular interest for med-
ical personnel. The information of interest is the size, its form and relation
with other objects.

Inside the tumour there are several cysts. From Fig.(1.4) it is difficult
to determine the number. Medical personnel are interested in knowing the
existence of cysts and their position within the tumour. The actual number
of cysts is not of importance.

The horizontal white line visual in the middle-left of the image is the cor-
tex. One can in addition observe a fragment of the cortex to the lower-right
of the tumour. This object is not of interest for medical personnel.
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Figure 1.4: The US-image is the foundation of the analysis of edge-detectors.
The US-image displays a brain-tumour(solid white). Inside the tumour there
are small cysts. The horizontal white line is the cortex.

The second topic of this section is to use the identification of the image
to define preliminary targets for the edge-detector, i.e. define what informa-
tion one in advance would like the edge-detector find after analysis. Fig.(1.5)
display the US-image with indications of the vital information in the image.

The line marked A is the upper half of the contour of the brain-tumour.
The transition between the different tissues in this region is ”rather” sharp.
The line marked A should be detected.

The area marked C is the lower half of the contour of the brain-tumour.
One problem with US-images is that the details decrease away from the US-
probe. In addition US-images are vulnerable for shadows. This phenomenon
is causing the blurred edge in the region marked by C. This cause uncer-
tainty on the actual position of the boarder in this region. One proposed
line is marked by the yellow-dotted line. From a medical viewpoint it is
sufficient to detect ”something” similar to the dotted line. One may observe
that the fragment corresponding to the cortex on the right is not marked as
interesting.
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Figure 1.5: The US-image together with a description of the important ob-
jects in the US-image. The region marked A and B should be detected. One
might expect more problems in the region marked as C. Some small objects
are marked by D.

The line marked B is the contour of the cyst(s). The uncertainty of the
number of cysts is discussed. From a medical viewpoint it is not interest-
ing to know the exact number. It is sufficient to consider the collection of
cysts as two distinct cysts and find the separation between these. Fig.(1.4)
indicate that the contour of the cysts is in some areas is curly. In particular
the boarder of the upper cyst is curly. From a medical viewpoint detailed
information of the boarder is not of interest. A sketch of the contour is
sufficient. A boarder similar to the proposed marked B is sufficient for med-
ical purposes. From a theoretic viewpoint it is interesting to see how much
information of the contour is possible to achieve.

The regions marked D is not of interest from a medical viewpoint. The
objects marked will serve to investigate the performance of detecting small
fragments in the image.

From a medical viewpoint the following properties summarizes the opti-
mal edge-detector.
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• Detect the contour marked as A, B and the yellow-dotted line.

• Detect as few additional edges as possible.

The first remark is a minimum requirement. One will not be satisfied if any
of the edges A, B or something similar to the yellow dotted-line are unde-
tected. The information obtained from these edges is what being of interest
for medical personnel. Detecting these edges is therefore an optimal require-
ment for the edge-detector. One will in addition most likely detect additional
edges. Both the cortex, the outer boarder of the image and ”something” in
the upper-right will most likely be detected. The intention with the second
remark is to detect as few edges not corresponding to an object as possible.

From a theoretic viewpoint the following objects will be of interest.

• Detect the objects marked D.

• The contour of the upper cyst(s). It is interesting to see how much
detail is possible to achieve.

• The position of the contour corresponding to the yellow-dotted line.

These items are used to test the reliability of edge-detectors at high-details.
Several edge-detectors will give sufficient output with respect to information
desired from a medical viewpoint.
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Part I

Wavelet-Theory.





Chapter 2

1-D Wavelet-Transform.

In this chapter the theory of 1-D continuous wavelet-transform and its prop-
erties will be discussed.

The target of Sect.(2.1) is to define wavelets and the 1-D continuous
wavelet-transform. In Sect.(2.3) it will be attempted to illustrate why and
how edges may be found by the continuous wavelet-transform. This will
result in a definition of the wavelet-based trivial edge-detector. As indicated
in the previous chapter, the output of the trivial edge-detector typically
contains a lot of unwanted information. In Sect.(2.5) one of the important
characteristics which may be used to find the important edges in a function
will be introduced, the maxima-tree.

One remarkable property of the wavelet-transform is that it is possible
to extract information about which kind of edges one is dealing with. One
may determine if an edge is e.g. a step-edge or an angle-edge. The concept
which makes this possible is the Lipschitz-regularity, and will be defined in
Sect.(2.2). The relation between Lipschitz-regularity and different kind of
edges is discussed in Sect.(2.3), and how one may extract this information is
discussed in Sect.(2.4).

In Sect.(2.6) some obstacles in estimating the Lipschitz-regularity of an
edge in numerical computations will be illustrated. This discussion will result
in various estimates of how one may improve the estimate of the Lipschitz-
regularity. In Sect.(2.7) it will be attempted to estimate the Lipschitz-
regularity of some edges in a signal.
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2.1 1-D Wavelet-Transform.

In this section the topics of wavelet and continuous wavelet-transform will be
presented. These topics will be presented with the help of underlying ideas
and some examples to help the reader grasp some important properties.

In Sect.(1.2.1) the concept trivial edge-detector was introduced as the
first step for identifying the edges of a signal. In this thesis the continuous
wavelet-transform will be used as the basis of the trivial edge-detector. The
wavelet-based trivial edge-detector for 1-D signals will be defined in Sect.(2.3).
The CWT contains additional information which may be used to detect the
important edges in a signal. How this information can be obtained and how
it can be used will be discussed in Sect.(2.4) and Ch.(6).

Gaussian derived wavelets and the wavelet-transform with respect to
these wavelets will be important in the thesis. Examples of these and their
wavelet-transform are calculated for some signals. It will be proved that the
amplitude of step-edges are in some sense reflected by the wavelet-transform.

The section begins with definition and examples of wavelets followed by
definition and examples of the continuous wavelet-transform. Some impor-
tant properties of the concepts will be discussed.

First the definition of wavelet.

Definition 2.1.1 (1-D Wavelet) A 1-D wavelet is a function ψ ∈ L2(R)
such that

Cψ =

∫ ∞

0

|ψ̂(ω)|2

ω
dω <∞. (2.1.1)

Eq.(2.1.1) is known as the ”admissibility condition”. ψ̂ is the Fourier-transform
of ψ. Let

ψu,s =
1√
s
ψ
(t− u

s

)
, (2.1.2)

denote the scaled and translated wavelet. Denote ψ0,s = ψs.

�

By a change of variable one can prove that ψu,s satisfies the admissibility-
condition if and only if ψ satisfy the admissibility-condition. One requirement
for the integral in Eq.(2.1.1) to be finite is that ψ̂(0) = 0. Otherwise the
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integral is divergent. By definition of Fourier-transform (see Def.(B.0.1)),
this implies that;

ψ̂(0) = 0 ⇔
∫ ∞

−∞
ψ(t) dt = 0, (2.1.3)

i.e. wavelets have zero-mean. It is not sufficient that ψ̂(0) = 0, but the zero-
mean property is important for detecting edges in a signal. This characteristic
will help to ensure that points not being an edge are not falsely detected.
Detecting edges in a signal is often done in correlation with removing noise
in a signal, i.e. to find a ”noise-free” version of the function or signal. This
requires the existence of an inverse wavelet-transform. The inverse is only
defined if the admissibility condition is satisfied, justifying the definition of
wavelets by the admissibility-condition1. A proof of the inverse CWT can be
found in [1].

Example 2.1.1 The ”original” wavelet is the Haar-wavelet defined as;

ψ(t) =

{
0 for t /∈] − 1, 1[
−1 for t ∈ [−1, 0]
1 for t ∈]0, 1]

The Haar-wavelet trivially fulfil the latter requirement for a wavelet.
An important class of wavelets is the wavelets corresponding to (the normal-
ized) Gaussian. They are given by;

ψ(t) = (−1)n
dn

dtn
θ(t),

for n ∈ N+, where

θ(t) =
1√
2π
e−

t2

2 ∈ C∞(R).

By rules of Fourier-transform of differentiation and Fourier-transform of the
Gaussian (see Prop.(B.0.1)) it follows;

θ̂(n)(ω) = (iω)nθ̂(ω) = (iω)ne−
1
2
ω2

.

Since ωne−
1
2
ω2 ∈ L2(R) for all n ∈ N the admissibility-condition is fulfilled.

Two important examples of Gaussian derived wavelets are the 1.st and 2.nd

1In a lot of edge-detection literature the admissibility-condition is not used to define
wavelets, only that ψ̂(0) = 0.
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derivative, given by;

ψ1(t) =
1√
2π
te−

t2

2 (2.1.4)

ψ2(t) =
1√
2π

(t2 − 1)e−
t2

2 (2.1.5)

The wavelet in Eq.(2.1.5) is known as The Mexican Hat. Fig.(2.1) display
the wavelets. ψ1 will be used to denote the 1-D wavelet corresponding to the
1.st derivative of the Gaussian, and ψ2 will be used to denote the 1-D wavelet
corresponding to the 2.nd derivative of the Gaussian.

�
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Figure 2.1: (a) The Haar-wavelet. (b) The wavelet corresponding to the 1st
derivative of the Gaussian-function. (c) The wavelet corresponding to the
2nd derivative of the Gaussian-function, ofted denoted The Mexican Hat.

By Ex.(2.1.1) it follows that there exists more than one wavelet. In Sect.(2.3)
it will be explained which wavelets are suitable for detecting different kind
of edges in a signal.

The next step is to define the continuous wavelet-transform (CWT). Sev-
eral definitions may be found in literature. The definition used in this thesis
is by Mallat in [1]2.

Definition 2.1.2 (Continuous Wavelet-Transform.) Let f ∈ L2(R). The
continuous wavelet-transform is defined as;

Wf(u, s) =

∫ ∞

−∞
f(t)

1√
s
ψ∗
(t− u

s

)
dt, (2.1.6)

2Mallat uses several definitions of the wavelet-transform. Be sure to use [1] as a refer-
ence.
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where * represents the complex conjugate.

�

In some applications it can be useful to represent the wavelet-transform as a
convolution-product. Denote f̃ (t) = f(−t). Then;

Wf(u, s) = f ∗ ψ̃s(u). (2.1.7)

Eq.(2.1.7) is particular useful for the Gaussian derived wavelets. Assume
ψ(t) = (−1)nθ(n)(t). Pr.(B.0.2) relates the convolution and differentiation.
The wavelet-transform with respect to this wavelet can be expressed as

Wf(u, s) = f ∗ sn d
n

dun
θs(u) = sn

dn

dun
(f ∗ θs)(u). (2.1.8)

The expression in Eq.(2.1.8) is fundamental of this thesis, and is used through-
out the thesis.
Note: The CWT can be extended to tempered distributions such as the
Dirac δ(t) and the Heaviside-function u(t).

The next step is to compute the wavelet-transform for some examples.

Example 2.1.2 Let f(t) = Au(t) where u(t) is the Heaviside-function, and
A ∈ R. Assume ψ1(t) = − d

dt
θ(t). Then

Wf(u, s) =

∫ ∞

0

A√
s
ψ
(t− u

s

)
dt =

As√
s

∫ ∞

−u/s
ψ(y) dy =

As√
s

∫ ∞

−u/s

−d
dy
θ(y) dy

= Asθ̃s(u) = Asθs(u). (2.1.9)

The last equality follows by symmetry of the Gaussian and the second equality
follows by a change of variable sy = t− u.
Let f(t) = δ(t) be the Dirac. The wavelet-transform of the Dirac is given by;

Wf(u, s) = δ ∗ ψ̃1
s (u) = ψ̃1

s(u) = −ψ1
s(u). (2.1.10)

�

From Ex.(2.1.2) the following observation;

Statement 2.1.1 Assume |A| > |B| for A,B ∈ R, and f(t) = Au(t), g(t) =
Bu(t). Then for all s > 0,

sup
u∈R

|Wf(u, s)| = |Wf(0, s)| ≥ sup
u∈R

|Wg(u, s)| = |Wg(0, s)|. (2.1.11)
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�

This implies that the CWT has larger value for large step-edges than small
step-edges. In Ch.(6) and Ch.(7) edge-detectors using this fact will be dis-
cussed.

2.2 Lipschitz-Regularity.

In this section the Lipschitz-regularity of a function will be defined. The
concept will be illustrated by the help of some properties and examples.

As discussed in Sect.(1.2.1), the notion of edge is closely related to con-
tinuity of the function. Lipschitz-regularity is a quantification of the conti-
nuity of a function. In Sect.(2.3) the relation between Lipschitz-regularity
and edge will be established. One reason for using Lipschitz-regularity is
that the wavelet-transform preserves information about the regularity of the
function. This remarkable property and its consequences will be discussed
in Sect.(2.4).

As indicated in Sect.(1.2.1) step-edges and angle-edges are important in
this thesis. The Lipschitz-regularity of these edges will be calculated. The
relation between the continuity of a function and the Lipschitz-regularity will
be discussed.

The discussion of Lipschitz-regularity begins with definition and proper-
ties. The definition of Lipschitz-regularity will be extended to distributions,
before an example is calculated demonstrating the concept.

Definition 2.2.1 (Lipschitz Conditions, Regularity and Singularity [1])

Local Lipschitz Let n ≤ α < n + 1 for n ∈ N. A function f(t) is said to
be pointwise Lipschitz-α at t0 if and only if there exists an A ∈ R+, an
ε > 0 and a polynomial Pn(t) of degree n such that for all |h| < ε

|f(t0 + h) − Pn(h)| ≤ A|h|α

Global Lipschitz Let n ≤ α < n + 1 for n ∈ N, and ]a, b[ be an open
interval. Then f(t) is said to be globally Lipschitz-α over ]a, b[ if and
only if there exists an A ∈ R and ε > 0 such that for any t0 ∈]a, b[
there exists a polynomial Pn of degree n such that if t0 + h ∈]a, b[

|f(t0 + h) − Pn(h)| ≤ A|h|α
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Lipschitz Regularity The Lipschitz-regularity of f(t) locally at t0 or glob-
ally over ]a, b[ is the superior bound of all α-values such that f(t) is
Lipschitz-α at t0 or over ]a, b[.

Singular f(t) is said to be singular at t0, if it is not Lipschitz 1 at t0.

�

Note that if a function f is globally Lipschitz-α over ]a, b[, then f is at least
locally Lipschitz-α at any t0 ∈]a, b[. Calculating the Lipschitz-exponent of
a function may in practice be a troublesome task. The following properties
may simplify the task of determining the Lipschitz-regularity of a function.

Property 2.2.1 (Continuity) Assume f : R → R is n-times continuously
differentiable in a neighbourhood of t0. Then f(t) is Lipschitz-n at t0.

Proof: Assume f : R → R is n-times continuously differentiable at t0. The
Taylor-expansion formula gives that in a small neighbourhood of t0, f(t) can
be expressed as

f(t) =

n−1∑

k=0

f (k)(t0)

k!
(t− t0)

k + En(t0) = Pn−1(t) + En(t0),

with

En(t0) ≤
|t− t0|n

n!
sup

ν∈]t0−ε,t0+ε[

|fn(ν)|.

From this it follows that

|f(t) − Pn−1(t)| ≤ |t− t0|nK.

Def.(2.2.1) give that the Lipschitz-regularity at t0 is n.

�

Mallat states in [1], [4], [5] and [6] the following three properties of the
Lipschitz-regularity.

Property 2.2.2 (Primitive) If f(t) is Lipschitz-α then its primitive F (t)
is Lipschitz-(α+ 1).

�
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Property 2.2.3 (Derivative) f(t) is globally Lipschitz-α over ]a, b[, α > 1
if and only if f ′(t) is globally Lipschitz-(α− 1) over ]a, b[.

�

Property 2.2.4 (Continuity) If f(t) is Lipschitz-α in a neighbourhood of
t0 for n < α < n + 1 then f is n-times continuously differentiable in a
neighbourhood of t0.

�

The following property is a warning for relation derivation with Lipschitz.

Property 2.2.5 (Derivation [4]) If f(t) is Lipschitz-α then f ′(t) is not
necessarily Lipschitz-(α− 1).

�

A commonly used counter-example proving Prop.(2.2.5) is the function sin 1
t

in the neighbourhood of 0.
The Lipschitz-exponent is by definition only defined for positive α. The

next definition will extend Lipschitz-exponent to negative values for distri-
butions.

Definition 2.2.2 ([4]) Let f ∈ S ′, let α ∈ R/Z and [a, b] be an interval of
R. Then f(t) is said to be uniformly Lipschitz-α over ]a, b[ if and only if its
primitive F (t) is uniformly Lipschitz-(α+ 1) over ]a, b[.

�

Example 2.2.1 The Heaviside. For t 6= 0 the Heaviside is constant and
therefore C∞(]a, b[) if 0 /∈]a, b[. By Prop.(2.2.1), u(t) is Lipschitz-n for all
n ∈ N for t 6= 0. For t = 0, P0(h) = 0 and A ≥ 1 it follows

|u(h)| = u(t) ≤ Ah0 = A. (2.2.1)

It follows that the Heaviside is Lipschitz-0 at 0. Assume that u(t) is Lipschitz-
α at t = 0 for α > 0. Let A ∈ R be arbitrary and P0 = 0. By choosing
ε ≤ 1

A−α , it follows for 0 < h < ε

|u(h)| = 1 < Ahα < Aεα < A(
1

A−α )α = 1.
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This contradicts that the Lipschitz-regularity is larger than 0 at t = 0. By
Def.(2.2.1) the Heaviside has local Lipschitz-regularity 0 at 0, implying that
the global Lipschitz-regularity over R and any interval which contains 0 is 0.

For an angle-edge, for instance f(t) = |t| it follows that for t 6= 0 f(t) is
Lipschitz-n for all n ∈ N. At t = 0 one see by choosing A > 2, P1(h) = h
and α = 1

|f(h) − P1(h)| = ||h| − h| =
{

0 for h ≥ 0
2|h| for h < 0

< A|h|1, (2.2.2)

that f(t) is Lipschitz-1 at 0. Assume that 1 < 1 + α < 2. If f(t) is locally
Lipschitz-(1+α) at 0, it follows that the global Lipschitz-regularity over R is
1 +α. Prop.(2.2.3) give that f ′(t) = u(t)− u(−t) is globally Lipschitz-α > 0
contradicting the fact that u(t) is globally Lipschitz-0 over R.

From the last example it follows that f(t) is globally Lipschitz-α for all 0 <
α < 1. An angle-edge is the 2nd primitive of the Dirac, and by Def.(2.2.2)
it follows that a Dirac is Lipschitz-α for α < −1.

�

2.3 The Wavelet-Transform and Edges.

In this section an definition of edge will be discussed, and how edges can
be detected by the wavelet-transform. The relation between edges and the
wavelet-transform and the zooming-property of wavelets is discussed.

In Sect.(1.2.1) a large class of edges were identified. If a function, in which
the function itself or any derivative has a step-edge at a point, it was said
that this function has an edge at the point. It was not discussed if these were
the only edges. In this section all edges will be identified. This identification
is done by using the Lipschitz-regularity defined in the previous section. It
will be discussed why some wavelets detects edges in a signal. Wavelets allow
one to zoom in or out of the signal. Why one may do this and consequences
will be discussed with the help of an example.

We will see that there exists edges of a more peculiar kind than the
ones introduced in Sect.(1.2.1), and that wavelet corresponding to the 1.st
derivative of the Gaussian is suitable for detecting step-edges.

The section begins with a definition of edges. It is discussed that step-
edges can be detected by certain wavelets, before introducing the zooming-
property of the CWT.
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Definition 2.3.1 (Edge) Assume the function f(t) is Lipschitz-α at t0 n ≤
α < n+ 1, for some n ∈ N. Then f(t) has an edge of order n at t0. (α− n)
characterises the singularity type of the edge.

�

The edges introduced in Sect.(1.2.1) all has singularity-type 0.

Example 2.3.1 The function f(t) = u(t)− u(−t) has an edge of order 0 at
0 see Fig.(2.2). This follows by Ex.(2.2.1) which verified that the Lipschitz-
regularity at 0 is 0. The function g(t) = |t| has an edge of order 1 at 0 see
Fig(2.2).

–1

–0.5

0.5

1

–10 –8 –6 –4 –2 2 4 6 8 10

t

(a) Edge of order 0.
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(b) Edge of order 1.

Figure 2.2: Edges of order 0 and 1. Edges of order 0 will be called step-edges.
Edges of order 1 are called angel-edges.

The steps in the Devils-staircase are edges of order 0. The singularity
type of the steps are bounded by 0.44 < α < 0.64. This is verified in [4].

The Dirac has an edge of order −1 at t0 = 0.

�

It is clear that there exists other kind of edges that the one discussed in
Sect.(1.2.1). These edges are however of little interest for the analysis in
this thesis. Three kind of edges are of interest for the purpose of this thesis;
Dirac-edges, step-edges and angle-edges. The Dirac-edge which will be used
to represent noise, and changes of ”short” duration caused by ”thin” objects
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in the signal. The step-edge will represent sudden changes of ”long” duration
in the signal.

The next question is why and how the wavelet-transform detects edges
in a function. To answer these questions, one has to decide in which way
one would like the edges to be detected. This is only discussed for the
Heaviside function u(t) (step-edges). It will be explained how this can be
extended to arbitrary edges of positive order (Primitives of the Dirac) with
singularity-type 0. In college-math one learns that the point at which a

(a) f(t).

(b) f ′(t).

(c) f ′′(t).

Figure 2.3: A smooth function together with its 1.st and 2.nd derivative.

smooth function has maximal growth is the point where the derivative is
maximal. Equivalently this is the point where the 2.nd derivative has a zero-
crossing. Consider Fig.(2.3). Although finding maxima of 1.st derivative is
equivalent of finding zero-crossing of 2.nd derivative, the maxima approach
will be used in this thesis. One reason is that it is possible to extract useful
information of the maxima which is more difficult to extract from the zero-
crossings. How this can be done will be discussed in Sect.(2.5). The idea of
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finding edges in a signal is to imitate this approach. The problem is that a
function with a step-edge is not differentiable at the edge.

Consider the expression of the wavelet-transform for the wavelets corre-
sponding to some derivative of the Gaussian in Eq.(2.1.8);

Wf(u, s) = s
d

du
(f ∗ θ̃s)(u).

Assume f(t) has a step-edge at 0. Pr.(B.0.2) verifies that the convolution
product f ∗ θs(t) is C∞(R), i.e. one can use the above approach to find the
points where the derivative of f ∗ θs(t) is maximal, equivalently the points
where Wf(u, s) is maximal. One is not guaranteed that the maxima are
located at the edge for a general signal. Canny verifies in [3] that the wavelet
corresponding to by the 1.st derivative of the Gaussian is close to optimal
to ensure good localization for step-edges in a signal. Assume g(t) has an
angle-edge at 0. The wavelet-transform with respect to the Mexican-Hat is;

Wg(u, s) = s2 d
2

du2
(g ∗ θs)(u) = s2 d

dt
(f ∗ θ̃s)(u),

by the relation between convolution and derivation, and the since g′(t) = f(t)
in sense of distributions. A similar relation holds for the n.th primitive of
the Dirac and the (n+ 1).st derivative of the Gaussian for any n ∈ N.

There is a second approach to visualise why some wavelets detects step-
edges. Fig.(2.4) show a step-edge at 0 and a wavelet at two locations centred
at 0 and 10. The wavelet is compactly supported and odd3. The wavelet-
transform at a point u can be considered as the difference between the value
of the product f(t)ψs(t− u) of the left versus the right side of u. At a point
where the function changes little, for instance at u = 10 the difference is little
giving a small value of the wavelet-transform is small. This is one reason
why ψ̂(0) = 0 is an important property of wavelets. If however the signal
changes value within the support, the difference between the left and right
will be larger. Since ψ is odd, this difference will be maximal if the function
changes value at the point where the wavelet is centred. The maxima can
be located by finding the maxima of the wavelet-transform. Not all wavelets
are compactly supported. For instance the wavelets corresponding to the
Gaussian are not compactly supported. The energy of these wavelets is
concentrated, and a similar argument as above can be used.

3The ”oddness” of the wavelet is one typical characteristic of wavelets used to detect
step-edges. See e.g. the Haar-wavelet, or the spline-wavelet in Ex.(2.5.1).
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Figure 2.4: Demonstration of why the continuous wavelet-transform detects
step-edges.

(a) Two step-edges.

(b) The two step-edges smoothed with the Gaussian-
function.

Figure 2.5: Demonstration of why the wavelet-transform detects edges by
using convolution.

At this point one may have the impression that a wavelet can only detect
edges of one particular kind, e.g. that the wavelet corresponding to the
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first derivative of the Gaussian can only detect step-edges, and that the
Mexican-Hat only detects angle-edges. If this was the case, one would face
an unwanted situation. With respect to the wavelet corresponding to by
the first derivative of the Gaussian, Ex.(2.1.2) verify that the response of
the wavelet-transform to a Dirac-edge has two maxima. On the other hand
one may verify that the response to an angle-edge has no local maxima.
Similarly one may verify that with respect to the Mexican-Hat, the response
of the wavelet-transform to a step-edge has two maxima, and with respect to
a Dirac-edge there are three maxima. It is clear that by using the maxima-
approach for detecting edges, one has to chose wavelets with care. One has
to chose a wavelet which detects the kind of edges one would like to find,
without including too many maximas. In Sect.(2.5) this topic will be further
discussed.

To sum up; in this thesis edges are detected by local maxima of the
wavelet-transform, denoted Modulus-Maximum.

Definition 2.3.2 (Modulus-Maximum) A modulus-maximum ofWf(u, s)
is point u0 where Wf(u, s) is locally maximum. The maximum should be
strict from either left or right.

�

The last topic which is presented in this section is the zooming-property of
the continuous wavelet-transform. This is one of the properties which make
the wavelet-transform useful for detecting edges. Once again the discussion
is restricted to step-edges, and explained by the help of a figure. One may
observe that the wavelet-transform uses a variable denoted s. The variable
s represents the scale of the wavelet-transform, or the ”zoom”. Signals are
usually not as nice as the ones discussed up to this point, but usually con-
tain several edges. Consider Fig.(2.6c) and Fig.(2.6d). Both are the wavelet-
transform of the signal in Fig.(2.6a) but with two different scales; a fine/small
scale in Fig.(2.6c) and a coarse/large scale in Fig.(2.6d). The zooming prop-
erty allow to focus in or out on structures in the signal; if one focuses in
one the signal one may see that there are two jumps as in Fig.(2.6a), or it
one focus out and see the signal from far away only one step is visible as in
Fig.(2.6b). At coarse scales one will detect overall changes in the function,
while at fine scales one will in addition detect the fine structures. This prop-
erty is useful for detecting important edges in noisy signals. At coarse scales
one will discriminate changes caused by noise and changes of short duration.
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(a) (b)

(c) (d)

Figure 2.6: Demonstration of the zooming-property of the wavelet-transform.

It will be discussed that edge-detection in noisy signals, such as US-images,
would be difficult without the zooming-property of the wavelet-transform.

In Sect.(1.2.1) the first step of detecting the important edges in a signal
was to use a trivial edge-detector to detect all the edges. The 1-D wavelet-
based trivial edge-detector will be defined as the set of all modulus-maximum
at all the scales the wavelet-transform is computed.

Fig.(2.7) illustrate the output of the wavelet-based trivial edge-detector
at some scales. First one may observe the effect of the zooming-property. At
coarse scales there are only a few modulus-maximum, and compared with the
signal, these modulus-maximum correspond to the points where the signal
has relatively large overall changes. At fine scale there are a large number of
modulus-maximum, corresponding to major changes and minor changes in
the signal. Another interesting observation is how the value of the modulus-
maximum differs across scales. For the ”thin” edge or the Dirac-edge in
the centre of the image, the values of the modulus-maximum increases as
the scale decreases. On the other hand, for the step-edge at 200 the value
decreases from approx. 100 at coarse scales to approx. 40 at fine scale. This
coincides with the calculations in Ex.(2.1.2). This characteristic will be used
in the succeeding chapters to distinguish modulus-maximum corresponding
to different kind of edges. The final observation the writer would like to
emphasize is the propagation of modulus-maximum across scales. One may
observe that modulus-maximum at two different scales apparently reflect the
same edge in the signal. This will be discussed in Sect.(2.5) and Sect.(5.1).
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(a) Signal. (b) s = 2.

(c) s = 4. (d) s = 6.

(e) s = 8. (f) s = 10.

Figure 2.7: The output of the wavelet-based trivial edge-detector applied to
the signal in Fig.(2.7a).

2.4 The Wavelet-Transform and Lipschitz-Regularity.

One remarkable property of the wavelet-transform is that it contains informa-
tion about the Lipschitz-regularity of the function. In this section it will be
discussed how this information can be obtained from the wavelet-transform.

This property allow one to distinguish different kind of edges in a function,
such as Dirac-edges, step-edges and angle-edges with Lipschitz-regularity
resp. -1, 0 and 1. This will allow to separate different structures in a function
by estimating the Lipschitz-regularity.

Local and global relations between the Lipschitz-regularity and the CWT
will be discussed, and that the wavelet corresponding to the n’th derivative
of the Gaussian can estimate Lipschitz-regularity for α < n.

The section begins with a presentation of some preliminary theory needed
to obtain a relation between Lipschitz and CWT, before proving the relations
and illustrating the results with some examples.
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Before investigating the relation between the CWT and the Lipschitz-regularity,
the idea behind the first step of the relation will be presented. A consequence
of the definition of Lipschitz-regularity is that there exist an error-function
denoted eα(t) and a polynomial pm(t) of degree m such that;

f(t) = pm(t) + eα(t), (2.4.1)

with

eα(t) ≤ K|t− t0|α.

The underlying idea to estimate the Lipschitz-regularity is to find a wavelet
which annihilates the polynomial-term of Eq.(2.4.1), and find some way to
measure α from the error term. Before discussing how α can be measured,
one need to find wavelets which annihilate polynomial. A wavelet which
annihilate a polynomial of degree of order N −1, is said to have N -vanishing
moments.

Definition 2.4.1 (Vanishing moments) A wavelet ψs(t) is said to have
N vanishing moments if for all 0 ≤ k < N

∫ ∞

−∞
tkψs(t) dt = 0

�

All wavelets have one vanishing moment since ψ̂(0) = 0. By the linearity
of the wavelet-transform, wavelets with N vanishing moments is orthogonal
to all polynomials p(t) of deg(p) ≤ N − 1. Assume ψ(t) has N-vanishing
moments, N > α and m = bαc. Then;

Wf(u, s) =

∫ ∞

−∞
f(t)

1√
s
ψ
(t− u

s

)
dt

=

∫ ∞

−∞

(
pm(T ) + eα(t)

) 1√
s
ψ
(t− u

s

)
dt

=

∫ ∞

−∞
eα(t)

1√
s
ψ
(t− u

s

)
dt,

i.e. the wavelet annihilates the polynomial in the representation of f(t).
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Definition 2.4.2 (Fast decay) A function f has fast decay if there for all
m ∈ N exists a constant Cm ∈ R such that

∀ t ∈ R, |f(t)| ≤ Cm
1 + |t|m

�

The question is how one can construct a wavelet with N -vanishing moments.
The next theorem will guarantee the existence of wavelets with arbitrary
number of vanishing moments, and how these can be constructed.

Theorem 2.4.1 ([1]) A wavelet ψ(t) with fast decay has n vanishing mo-
ments if and only if there exists a θ(t) with fast decay such that

ψ(t) = (−1)n
dnθ(t)

dtn

Moreover, the wavelet has only n vanishing moments if and only if
∫∞
−∞ θs(t)dt 6=

0.

�

One example of a function θ satisfying Th.(2.4.1) is the Gaussian, i.e. the
wavelet corresponding to the N ’th derivative of the Gaussian have N van-
ishing moments.

The next step is to find the relation between the wavelet-transform and
the Lipschitz-exponent. Assume f : R → R is Lipschitz-α at ν. Assume ψ(t)
has N vanishing moments with N > α. Then;

|Wf(u, s)| = |Weα(u, s)| ≤
∫ ∞

−∞
K|t− ν|α

∣∣∣ 1√
s
ψ
(t− u

s

)∣∣∣dt

= K
√
s

∫ ∞

−∞
|xs+ u− ν|α|ψ(x)|dx

≤ K
√
s2α
(∫ ∞

−∞
|xs|α|ψ(x)|dx+ |u− v|α

∫ ∞

−∞
|ψ(x)|dx

)

= Ks
1
2
+α2α

(∫ ∞

−∞
|x|α|ψ(x)|dx+

( |u− v|
s

)α ∫ ∞

−∞
|ψ(x)|dx

)

= As
1
2
+α
(
1 +

( |u− v|
s

)α)
.
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The second equality follows by a change of variable x · s = t − u, and the
second inequality follows by the inequality |a + b|n ≤ 2n(|a|n + |b|n). If f
is uniformly Lipschitz-α over ]a, b[ this equation holds for all ν ∈]a, b[ and
particularly for ν = u.

Theorem 2.4.2 ([1]) If f ∈ L2(R) is locally Lipschitz-α at ν and ψ(t) has
N > α vanishing moments, then there exists an constant A > 0 such that;

|Wf(u, s)| ≤ Asα+ 1
2

(
1 +

( |u− v|
s

)α)
. (2.4.2)

If f is uniformly Lipschitz-α in ]a, b[ and ψ(t) has N > α vanishing moments,
then there exists an constant A > 0 such that;

|Wf(u, s)| ≤ Asα+ 1
2 . (2.4.3)

�

Even if it is a nice result, it will be of little importance in analyzing the
regularity of a function. The Lipschitz-regularity is a priori unknown. The
next theorem will enable to estimate the Lipschitz-regularity.

Theorem 2.4.3 ([1]) Assume ψ(t) has n vanishing moments, and f ∈ L2[a, b]
satisfies

|Wf(u, s)| ≤ Asα+ 1
2

(
1 +

( |u− v|
s

)α′)
(2.4.4)

for α′ < α < n and α /∈ N. Then f is Lipschitz-α at v.
Assume that f is bounded and Wf(u, s) satisfies Eq(2.4.3) for an α < n,
α /∈ N. Then f is uniform Lipschitz-α in [a+ ε, b− ε].

�

This result will be the main tool in analyzing the Lipschitz-regularity of a
function. The α can be computed by the value of the wavelet-transform at
two different scales. For s0 < s1, α can be computed by the equation;

α =
log2(|Wf(u, s1)|) − log2(|Wf(u, s0)|)

log2(s1) − log2(s0)
− 1

2
, (2.4.5)

in the uniform case. In Sect.(2.5) it will be verified that in certain cases a
similar equation may be used to estimate the local Lipschitz-regularity of a
function.
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Example 2.4.1 In Sect.(2.2) the wavelet-transform of the Heaviside was
computed. For s0 < s1 the global Lipschitz exponent around 0 is;

α +
1

2
=

log2(|Wf(0, s1)|) − log2(|Wf(0, s0)|)
log2(s1) − log2(s0)

=
log2(

√
s1) − log2(

√
s0)

log2(s1) − log2(s0)
=

1

2

⇒ α = 0. (2.4.6)

This agrees with the result found in Ex.(2.2.1).

�

2.5 Wavelet-Transform Modulus-Maximum.

In this section some useful properties of the wavelet-transform modulus-
maximum will be discussed, and the concepts maxima-line and maxima-tree
introduced.

In the previous section the relation between the Lipschitz-regularity and
the CWT was established. In order to find the Lipschitz-regularity of a
function, the previous section verified that this could be estimated by com-
puting the decay of the wavelet-transform at all points. This section will
prove that it is sufficient to compute the wavelet-transform at the points of
worst behaviour; at the modulus-maximum of the wavelet-transform. This
will introduce a new problem of connecting modulus-maxima across scales.
The maxima-tree will create a hierarchal structure which relate modulus-
maximum across scales.

This section will prove that irregular structures in a signal can be found
among the modulus-maximum of the CWT. By the help of an example it
will be illustrated that all wavelets are not appropriate to use for across-
scale analysis, i.e. to compare modulus-maximum of the wavelet-transform
at different scales. It will be verified that all Gaussian derived wavelets are
suitable for across-scale analysis.

The section begins with a theorem implying that irregularities can be
found among the modulus-maximum of the CWT. The concept of maxima-
line and maxima-tree is defined and discussed.
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The first theorem implies that it suffices to search for irregularities among
the modulus-maximum of the CWT.

Theorem 2.5.1 ([1]) Let ψ ∈ Cn(R) have fast decay and n vanishing mo-
ments, and ψ(t) be compactly supported. Let f ∈ L1[a, b]. If there exist an
s0 > 0 such that ∀s < s0 |Wf(u, s)| has no local maxima for u ∈ [a, b], then
f is uniformly Lipschitz-n on [a+ ε, b− ε], for an ε > 0.

�

This theorem implies that all irregularities can be found among the modulus-
maximum of the wavelet-transform at fine scales. It does not imply that
all local maxima at fine scales correspond to an irregularity. In order to
find which of the local-maxima correspond to an edge, one has to estimate
the Lipschitz-regularity of the structure in the function which causes the
modulus-maximum. From the discussion in the previous section it follows
that in order to estimate the Lipschitz-regularity, one has to know the value
of the modulus-maximum at least at two different scales. One has to relate
modulus-maximum occurring from similar irregularities in f(t), i.e. find the
maxima-line converging to a modulus-maximum.

Definition 2.5.1 (Maxima Line & Maxima-tree.) A maxima-line is any
connected curve in the time-scale space R×R+ along all points are a modulus-
maximum of the wavelet-transform. The term maxima-tree will be used to
represent the set of all maxima-lines in a signal.

�

Finding maxima-lines and maxima-trees will be an important issue in this
thesis. In fact, the maxima-tree may be used as the basis for a simple edge-
detector. This will be discussed in Ch.(5). The next example illustrates the
maxima-line of the wavelet-transform for two different wavelets, illustrating
an important difference between wavelets.

Example 2.5.1 Consider the wavelet in Fig.(2.8d). The wavelet is a spline-
wavelet of order 1, and given by;

ψ(t) =

{ 0 for |t| ≥ 1
−(t+ 1) for t ∈] − 1,−1/2[
t for t ∈ [−1/2, 1/2]
−(t− 1) for t ∈]1/2, 1[

.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.8: (a) The signal f(t). (b)-(e)-(h) The CWT of f(t) with respect
to the spline-wavelet. The CWT is computed for resp. s > 1, s = 1 and
s < 1. (c) - (f) - (i) The CWT of f(t) with respect to the the wavelet
corresponding to the 1.st derivative of the Gaussian. The CWT is computed
for resp. s > 1, s = 1 and s < 1. (g) - (j) The maxima-line corresponding to
resp. spline-wavelet and Gaussian wavelet.

Assume the signal is given by f(t) = u(t)+u(t−1), see Fig.(2.8a). For s > 1
the CWT of both wavelets treat the two step-edges as one edge. Since both
edges are of the same strength the position of the modulus-maximum is at
t0 = 1/2. This is illustrated in Fig.(2.8(b),(c)). For s = 1 the CWT differs
for the two wavelets. By definition of modulus-maximum the local maxima
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should be strict from either left or right. It can be verified that the value of
the CWT at s = 1 equal 1/4 for all u ∈ [0, 1]. The modulus-maximum of the
CWT with respect to the spline-wavelet is therefore at 0 and 1. The modulus-
maximum of CWT with respect to the Gaussian wavelet is at 1/2. For s < 1
the modulus-maximum for the CWT with respect to spline-wavelet is at 0
and 1. For the CWT with respect to the Gaussian wavelet, the modulus-
maximums split and converge towards 0 and 1 as illustrated in Fig.(2.8i,l).
Fig.(2.8,g,j) display the maxima-line for the two CWT. Note that one of
them is disconnected at s = 1 while the other is connected for all s. I.e. the
maxima-line for the Gaussian-derived wavelet converges towards fine scales,
while for the spline wavelet the maxima-line does not necessarily converge.
The statements of the behaviour of the maxima-line with respect to the will
be verified by Th.(2.5.2) and in Sect.(5.1).

�

This example illustrates an important difference between wavelets. In order
to estimate the Lipschitz-regularity by the CWT one need to relate modulus-
maximum at different scales. If the maxima-lines are disconnected it makes
it difficult to relate modulus-maximum across scales which should be used
to estimate the Lipschitz-regularity. In addition the length of the maxima-
line converging to a modulus-maximum will be an important characteristic
for noisy signals. This will be discussed in Sect.(5.1). The following theo-
rem guarantees that the maxima-line is connected for the Gaussian-derived
wavelets.

Theorem 2.5.2 ([1]) Assume ψ(t) = (−1)nθ(n)(t) where θ(t) is the Gaussian-
function. For any f ∈ L2(R), the modulus-maximum of Wf(u, s) belong to
connected maxima-line that are never interrupted as the scale decreases.

�

Proposisjon 2.5.1 Assume f ∈ L2(R), and ψ(t) = −θ′(t). Then the func-
tion;

Wf(·, ·) : R × R+ → R

is continuous at R × R+.

Proof: Note that the function ψs(t) : R × R+ → R is continuous. For an
arbitrary point (u0, s0) ∈ R×R+ it follows by Schwarz-inequality that for all
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(u, s) ∈ R × R+;

|Wf(u, s)−Wf(u0, s0)| ≤‖ f ‖‖ ψs(t− u) − ψs0(t− u0) ‖ .

Since the norm is continuous, it follows thatWf(u, s) is continuous at R×R+.

�

By the theorem and the property one has the following important conse-
quences with respect to the Gaussian derived wavelets;

• All maxima-lines converges towards finer scale.

• All maxima-lines converges to at least one modulus-maximum.

• Along a maxima-line small changes of scale will results in a small change
of the value of the modulus-maximum.

These properties will be important in Ch.(5).
Two questions come forward at this point, which wavelets should be

used and how one may estimate the Lipschitz-regularity at a point using
Eq.(2.4.4). Th.(2.5.1) verified that the more vanishing moments of a wavelet,
the larger number of different kind of edges can be detected. On the other
hand, the more vanishing moments, the larger number of modulus-maximum.
E.g. the response of a step-edge to the Mexican-Hat had two modulus-
maximum, etc. To reduce the number of necessary computations it is there-
fore necessary to keep as few vanishing moments as possible. In this thesis,
step-edges are typically the interesting edges in the signal. The wavelet corre-
sponding to the 1.st derivative of the Gaussian will therefore be the preferred
wavelet.

The obstacle with using Eq.(2.4.4) to estimate the pointwise Lipschitz-
regularity, is that the estimate requires both α and α′. To circumvent this
problem, one may use the Cone of Influence. Assume supp(ψ) = [−C,C],
for some C ∈ R+. Then supp(ψu,s) = [u−Cs, u+Cs]. The Cone of Influence
of a point ν is defined as;

|u− ν| ≤ Cs.

Assume ν is the point at which a maxima-line converge as s → 0. If all
elements u of the maxima-line converging towards ν are inside the Cone of
Influence of ν, then one may reduce Eq.(2.4.4) to the following simple form;

|Wf(u, s)| ≤ A′sα+1/2.
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I.e. if the spatial position of the elements of a maxima-line does not changes
considerably with respect to the scale, one can use Eq.(2.4.5) to estimate the
Lipschitz-regularity at ν.

2.6 Error-Analysis.

In this section errors one may encounter in numerical analysis will be dis-
cussed, in particular errors which may influence the estimate of the Lipschitz-
regularity.

Theoretically one may estimate the Lipschitz-regularity for all s > 0. This
can typically not be done in practice, nor does it make much sense. The signal
itself is a piecewise constant approximation of ”something”. I.e. the signal is
Lipschitz-0 between most sample-points. Lower bound for s is needed in order
to obtain the wanted information in the signal. Computing the exact value
of the wavelet-transform will typically be very time-consuming. To reduce
computational efforts, an approximation of the wavelet-transform will be
introduced. This approximation will be pointless at small scales. These lower
bounds will cause problems for estimating the Lipschitz-regularity. Recall
that the Lipschitz-regularity was estimated by the CWT as s → 0. The
lower bounds for the scale introduces errors in the estimate of α. Some
errors are discussed and estimated.

First the error caused by approximation of the CWT, oscillations and
smoothening of edges is discussed. Lower bound for the scale is found. At
the end it will be discussed the effect of multiple singularities in the signal,
resulting in an upper bound for the scale. The estimates for the lower and
upper bound will be used in an example in Sect.(2.7).

2.6.1 Approximation errors.

This section presents a formula which approximates the continuous wavelet-
transform, and discusses errors occurring as a consequence of this approxi-
mation.

Computing the exact value of the wavelet-transform is typically an ex-
pensive operation and is typically not obtainable in practice. This motivates
the introduction of an approximation of the wavelet-transform. The pay-off
for using such approximations is that it does not make sense to compute the
wavelet-transform at small scales.
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The presentation begins with deriving an approximation-formula forWf(u, s)
based on the Trapezoid-formula. With the help of an example it will be dis-
cussed why this approximation is senseless at small scales.

Assume f(t) = 0 for t /∈]a, b[ with −∞ < a < b <∞. Assume for simplicity
that a = 0 and b = N for some integer N . The Trapezoid-approximation of
the function f(t) with uniform spacing and sampling-distance 1 is [?];

T (f) =
1

2

N−1∑

n=0

(
yn + yn+1

)
=
y0 + yN

2
+

N−1∑

n=1

yn.

Since f(0) = f(N) = 0 the corresponding estimate for the wavelet-transform
at integer-points un ∈ {u0, ..., uN};

Wf(un, s) =

N−1∑

n=0

f(n)
1√
s
ψ
(n − un

s

)
= f ∗ ψ̃s(un),

where ∗ denoted the discrete convolution, and f̃(t) = f(−t). Calculating
the value of the wavelet-transform by means of discrete convolution is par-
ticular nice for implementation in MatLab. There exist several convolution-
commands in MatLab which is fast, e.g. ”conv2”.

This approximation will cause havoc for the decay of the wavelet-transform
at small scales. It can be verified that with resp. to a step-edge, then for
s > 6/4 the decay of log2(|Wf(u, s)|) is approximately 1/2, while for s < 6/4
it starts to decay (a lot) faster that 1/2. One factor which causes havoc at
small scales is the form the wavelet takes at small scales. Consider Fig.(2.9)

(a) (b) (c)

Figure 2.9: Wavelets corresponding to the 1.st derivative of the Gaussian at
three different scales. The smooth line corresponds to the actual line, while
the line-segments are what taken into account by the approximation.

illustrating the wavelets corresponding to the 1.st derivative for three dif-
ferent scales (a)s = 1/2, (b)s = 1, (c)s = 6/4, and the form of the wavelets
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taken into account by the Trapezoid-formula with integer-approximation. At
large scales the approximated wavelet and the wavelet is only slightly differ-
ent. As the scale decrease the difference between the actual wavelet and the
”wavelet” used by the approximation increases. This difference causes the
sudden decay of the CWT at small scales. In this thesis the lower bound
for the scale will be assumed to be s ≥ 6/4. Because this lower bound will
typically be dominated by other lower bounds discussed in the next sections,
no deep analysis of this error is done.

If one has to analyze the signal for small scales, this problem may be
solved by using a shorter interval in the Trapezoid-approximation of CWT.

2.6.2 Oscillating signals.

This section will present the effect of oscillations in a signal.

Oscillations in signals represent another difference between theory and
numerical analysis. In theory one can avoid the problem of oscillations in
a signal by using sufficiently small scales. As discussed, one does not have
the possibility in the numeric case. Oscillations are present in signals and
are typically caused by texture and noise. Sect.(4.1) will discuss additive
Gaussian White Noise in signals.

The discussion of oscillations is done by considering the oscillations as be-
ing trigonometrically distributed, i.e. can be expressed as a sum of cosines.
This can not be used to represent noise and texture which is randomly dis-
tributed, but will be used as a model of these.

The relation between cosine-distributed oscillations and the CWT is in-
vestigated, and estimates are found. These estimates can be used to find
lower bound for the scale such that the oscillations are not ”felt” by CWT.

Fig.(2.10) display the decay of the wavelet-transform at a modulus-maximum
of a step-edge and a step-edge with added oscillations given as 1/6 cos(4πt)+
1/5 sin(πt). This demonstrates that oscillations affect the decay of the wavelet-
transform. One may observe from Fig.(2.10) that this effect is mostly present
for small scales.

The general expression for oscillations will be assumed to be a sum of
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Figure 2.10: The decay of the wavelet-transform a step-edge with and without
added oscillations.

trigonometric functions, i.e.

N(t) =
k∑

i=1

Cγi,ωi(t) =
k∑

i=1

χ[ai,bi]γi cos(ωit) (2.6.1)

with cos(ωiai) = cos(ωibi) = 0 and −∞ < ai < bi <∞. (2.6.2)

The latter requirement is included to avoid artificial step-edges. The aim
is to find an estimate on the error caused by oscillations in a function, and
from this derive a lower bound for the scale which make the influence of
oscillations small.

Statement 2.6.1 Let f ∈ L2(R), ψ(t) = −dθ(t)
dt

, θ(t) is the Gaussian, and

N(t) =
∑k

i=1 Cγi,ωi ∈ L2(R) be defined as in Eq.(2.6.1). Then;

|W (1)f0(u, s)−W (1)(f0 +N)(u, s)| = |W (1)N(u, s)| = |
k∑

i=1

W (1)C(γi,ωi)(u, s)|,
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and

|W (1)Cγ,ω(u, s)| ≤ γωs2s−
1
2 e−

ω2s2

2 . (2.6.3)

Proof:

|W (1)Cγ,ω(u, s)| = | γ√
s

∫

R
χ[t1,t2] cos(ωt)ψ(

t− u

s
)dt| ≤ | γ√

s

∫

R
cos(ωt)ψ(

t− u

s
)dt|

τ = t− u =
γ√
s
|
∫

R
cos(ωτ + uω)ψ(

τ

s
)dτ |

=
γ√
s
| cos(uω)

∫

R
cos(ωτ )ψ(

τ

s
)dτ − sin(uω)

∫

R
sin(ωτ )ψ(

τ

s
)dτ |

Since cos(ωτ )θ′( τ
s
) is an odd function the first integral equals 0, so

|W (1)Cγ,ω(u, s)| =
γ√
s
| sin(uω)

∫

R
sin(ωτ )ψ(

τ

s
)dτ |

=
sγ√
s
| sin(uω)

[
sin(ωτ )θ(

τ

s
)
]∞
τ=−∞ − ω sin(uω)

∫

R
cos(ωτ )θ(

τ

s
)dτ |

=
sγ√
s
|ω sin(uω)

∫

R
cos(ωτ )θ(

τ

s
)dτ | ≤ sγω√

s2π
|
∫

R
cos(ωτ )e−

τ2

2s2 dτ |

=
2sγω√
s2π

|
∫ ∞

0

cos(ωτ )e−
τ2

2s2 dτ | =
2sγω√
s2π

1

2

√
2s2πe−

ω2s2

2

=
s2γω√
s
e−

ω2s2

2

Where the solution of the integral follows from cosine Fourier-transform.

�

This statement verifies that the error caused by oscillations is closely related
to the amplitude and frequency of the oscillations. I.e. high frequencies and
low amplitude yields little error, while low frequencies and high amplitude
yields a large error. To finish this topic, a similar result will be derived for
arbitrary Gaussian derivatives.

Statement 2.6.2 Let f ∈ L2(R) and N(t) be defined as in Statement 2.6.1,
and let ψ(t) = (−1)n dθ

dtn
, where θ(t) is that Gaussian. Then

|W (n)Cγ,ω(u, s)| = (sω)n−1|W (1)Cγ,ω(u, s)| ≤ (sω)n−1γωs2 1√
s
e−

ω2s2

2 (2.6.4)
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Proof: This will be proved by induction, where the induction start is done
in Stat.(2.6.1). Assume that Eq.(2.6.4) holds ∀k < n. Then;

|W (n)Cγ,ω(u, s)| =
γ√
s
|
∫

R
cos(ωt)ψ(

t− u

s
)dt| =

γ√
s
|
∫

R
cos(ωτ + uω)ψ(

τ

s
)dt|

=
γ√
s
| cos(uω)

∫

R
cos(ωτ )ψ(

τ

s
)dτ − sin(uω)

∫

R
sin(ωτ )ψ(

τ

s
)dτ |.

Assume that n = 2m for some m ∈ N. Then cos(ωτ )θ(2m)(τ/s) is even and
sin(ωτ )θ(2m)( τ

s
) is odd and therefore the second integral equals 0. So

|W (n)C(u, s)| =
γ√
s
| cos(uω)

∫

R
cos(ωτ )θ(2m)(

τ

s
)dτ |

= | sγ√
s

[
cos(ωτ )θ(2m−1)(

τ

s
)
]∞
τ=∞ +

sωγ√
s

∫

R
sin(ωτ )θ(2m−1)(

τ

s
)dτ |

= sω(
γ√
s

∫

R
sin(ωτ )θ(2m−1)(

τ

s
)dτ ) = sωW (2m−1)Cγ,ω(u, s).

Assume that n = 2m+1. Then cos(ωτ )θ(2m+1)(τ/s) is odd and sin(ωτ )θ(2m+1)( τ
s
)

is even and therefore the first integral equals 0. So

|W (n)C(u, s)| =
γ√
s
| sin(uω)

∫

R
sin(ωτ )θ(2m+1)(

τ

s
)dτ |

= | sγ√
s

[
sin(ωτ )θ(2m)(

τ

s
)
]∞
τ=∞ +

sωγ√
s

∫

R
cos(ωτ )θ(2m)(

τ

s
)dτ |

= sω(
γ√
s

∫

R
cos(ωτ )θ(2m)(

τ

s
)dτ ) = sωW (2m)Cγ,ω(u, s).

�

The expressions for the influence of oscillations with respect to the CWT
serve two purposes. First, the error caused by oscillations may be chosen
arbitrary small by choosing a high lower bound for the scale. Secondly the
statements imply that the error is closely related to the frequency and am-
plitude of the distributions.

2.6.3 Smoothed signals.

There is one typical difference between (applied) signals and (theoretic) func-
tions. Theoretic edges such as step-edge and angle-edge would typically not



2.6 Error-Analysis. 43

occur in practice. Physical phenomenon can not include instant changes of
state, but rather a ”smooth” transition between states. Still we would like
to treat them both as a step-edge, i.e. both should have Lipschitz-exponent
0. The following theorem estimates the error caused by smoothening of an
edge.

Theorem 2.6.1 ([1]) Let ψ(t) = (−1)nθ(n)(t) with θ the Gaussian. If f(t) =
f0 ∗ gσ with f0 uniformly Lipschitz α < n on [v − h, v + h], and gσ given by

gσ(t) =
1√

2πσ2
e−

t2

2σ2 .

Then there exists an A ∈ R such that

∀(u, s) ∈ [v−h, v+h]×R+ , |Wf(u, s)| ≤ Asα+1/2
(
1+

σ2

s2

)−(n−α)/2

. (2.6.5)

�

One may observe from the Theorem that pre-knowledge of α is required in
order to use Eq.(2.6.5). This is generally unknown. The interesting observa-
tion which may be done from Eq.(2.6.5) is that if σ2

s2
is small, the calculated

α-value is small. I.e. at large scales the error caused by smoothening is
small. This reflects the zooming-property of the wavelet-transform. If one
observe a smoothened edge from a distance is appears to be an instant-edge.
Another useful observation is that for a step-edge and the wavelet ψ1(t), the
theorem gives that the wavelet-transform of a smoothened step-edge decays
faster than a step-edge as the scale decreases.

2.6.4 Influence of multiple edges.

The final part of the error-analysis is to consider the effect of multiple sin-
gularities. The previously discussed causes of error have resulted in lower
bounds for the scale. For multiple singularities an upper bound for the scale
is achieved.

Consider Fig.(2.11). The Lipschitz-regularity at ν = 5 and ν = 10 is 0.
The signal in Fig.(2.11) is used as an example of the influence of multiple
edges of the decay of the wavelet-transform. The upper line in Fig.(2.12)
display the decay of the wavelet-transform at ν = 5. The lower display a line
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Figure 2.11: Piecewise constant signal with a jump at ν = 5 and ν = 10.
The Lipschitz-regularity at both steps equal 0.

decaying as 1/2 corresponding to Lipschitz-exponent 0. From Fig.(2.12) one
may observe that the decay of the wavelet-transform at ν = 5 at the small
scales corresponds to a step-edge. As the scale increases above log2(s) ≈ 0.5
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Figure 2.12: The upper line corresponds to decay of the wavelet-transform
of the signal in Fig.(2.11) at ν = 5. The lower line correspond to an edge
which is Lipschitz-0 at all scales.

the the decay of the wavelet-transform differs. Assume

f0(t) =
{

0 for t /∈ [0, x2]
a for t ∈ [0, x2]

and

f1(t) =
{ 0 for t /∈ [0, x2]
a for t ∈ [0, x1]
b for t ∈ [x1, x2]
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where 0 < x1 < x2. Then the difference of the wavelet-transform at 0 of the
two signals is

|Wf0(0, s) −Wf(0, s)| = | 1√
s

∫
R f0(t)ψ( t

s
)dt− 1√

s

∫
R f1(t)ψ( t

s
)dt|

= | a√
s

∫ x2

0
ψ( t

s
)dt− a√

s

∫ x1

0
ψ( t

s
)dt− b√

s

∫ x2

x1
ψ( t

s
)dt|

= |a−b√
s

∫ x2

x1
ψ( t

s
)dt|

It follows that if the support of the wavelet includes the interval [x1,x2], i.e.
supp(ψs(t)) ∩ [x1, x2] 6= ∅, it affects the wavelet-transform. So for a signal
with multiple edges, one has to ensure that the scale is low enough such that
the support of the wavelet does not include the other edges.

2.7 Example of estimating the Lipschitz-regularity.

To finish off this chapter, the estimates developed in the previous section will
be applied for a 1-D ray in the ultrasound image, see Fig.(2.13) First, the
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Figure 2.13: The image in (a) is the ultrasound-image which is investigated
in this thesis. The horizontal line in (a) correspond to the signal in (b).

edges to be analysed has to be found. The edges which will be analysed are
the modulus-maximum at u ∈ {43, 133, 147, 167, 195, 247, 275, 288, 307, 345, 381, 467}
in Fig.(2.14). The target is to see which of these edges correspond to a step-
edge, and if one can imrove the estimate of the Lipschitz-regularity by using
the error-sources discussed in the previous section. Fig.(2.14) is the wavelet-
transform of the signal in Fig.(2.13) at scale s = 6. The next step is to find
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Figure 2.14: The wavelet-transform for the signal in Fig.(2.13b) at scale
s = 6. The modulus-maximum above 25 will be the edges to be analysed.

the maxima-lines corresponding to these modulus-maximum, and find which
points the modulus-maximum above converge to at small scales. In Fig.(2.15)
the maxima-lines for the scales s ∈ [1, 6] are plotted, and these converges to
the points {43, 136, 142, 167, 197, 245, 279, 284, 307, 344, 376, 469}. First one
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Figure 2.15: The maxima-lines for s ∈ [1, 6] for the signal in Fig.(2.13b).

has to find an estimate for the oscillations in the figure. Since the oscillations
are unknown, the writer choose to approximate the oscillations on the form
as in Eq.(2.6.1), where γi is chosen as the average amplitude, and ωi are the
average frequency. In the signal in Fig.(2.13b), it seems as the oscillations
differs at high values and low values for the signal. The writer assume that
the oscillations in U = [43, 192]∪ [253, 275]∪ [345, 469] is equally distributed,
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and the oscillations in V = [193, 252] ∪ [276, 244] is equally distributed. Fur-
ther the writer assumes that the oscillations in both domains are distributed
as a single term in Eq.(2.6.1). By averaging the amplitude and the frequency
in the two domains, assume that

N(t) = χU8.5 cos(1.1t) + χV 25.33 cos(0.7t)

These values are used to find the lower bounds due to oscillations. One
has to compute three estimates. The edges in U sufficiently far from V are
only affected by χU8.5 cos(1.1t) and similarly for the edges in V far from U .
The edges lying at or close the transition between U and V are affected by
χU8.5 cos(1.1t) + χV 25.33 cos(0.7t). The lower bounds found for the wavelet
corresponding to the 1.st derivative of the Gaussian are;

s0 > 3.825 for the edges in U

s0 > 6.478 for the edges in V

s0 > 6.478 for the edges in close to U and V.

The corresponding lower bounds for Mexican Hat are, according to Thm.(2.6.2);

s0 > 4.489 for the edges in U

s0 > 7.622 for the edges in V

s0 > 7.622 for the edges in close to U and V.

The last two lower bounds equals for at least the 6 first digits in both expres-
sions. The upper bound, should according to Sect.(2.6), be the distance from
the edge to of its closest neighbour-edge. Table(2.1) display the upper and
lower bounds for all the edges which are analysed. In Fig.(2.16) the decay of
the wavelet-transform is plotted for the different edges. Within their respec-
tive allowed values for the scales, shown in Fig.(2.1) the decays are shown in
Table(2.2)

This example illustrates the difficulties in estimating the Lipschitz-regularity
of a modulus-maximum. One may observe that even with error-estimates it
may be difficult to get good estimates for the Lipschitz-regularity, and that
the estimate is worse without esimating which scales should be taken into
account. This uncertainty will cause problems for edge-detectors taking ad-
vantage of the Lipschitz-regularity. This will be discussed in Ch.(6) and
Ch.(7).
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ν s0 s1 s2 [log2s0, log2s2] [log2s1, log2s2]
43 3.825 4.489 23.25 [1.935,4.539] [2.166,4.539]
136 3.825 4.489 1.5 ∅ ∅
142 3.825 4.489 1.5 ∅ ∅
167 3.825 4.489 6.25 [1.935,2.644] [2.166,2.644]
197 6.478 7.622 7.5 [2.696,2.907] ∅
245 6.478 7.622 8.5 [2.696,3.087] [2.930,3.087]
279 3.825 4.489 1.25 ∅ ∅
284 3.825 4.489 1.25 ∅ ∅
307 6.478 7.622 5.75 ∅ ∅
344 6.478 7.622 8 [2.696,3] [2.930,3]
376 3.825 4.489 8 [1.935,3] [2.166,3]
469 3.825 4.489 23.25 [1.935,4.539] [2.166,4.539]

Table 2.1: Table with the bounds for the scales used to estimate the Lipschitz-
regularity of the signal f(t) if Fig.(2.13b). s0 is the bounds due to −θ′(t), s1

is bounds due to θ(2)(t), and s2 is the upper bound due to other singularities.

ν ∆ ∆′ ∆(2)

43 0.44 0.64
167 0.35 0.45
197 0.41 0.82
245 0.6 0.99
344 0.75 0.67 1.48
376 0.461 0.53
469 0.91 0.91

Table 2.2: Table with the estimated values for the decay of the wavelet-
transform. ∆ = α + 1/2 is the estimated decay with respect to −θ′(t) by
using estimated scales for calculation. ∆′ = α + 1/2 is the estimated decay
with respect to −θ′(t) by using all scales s ∈ [1, 6]. ∆(2) = α + 1/2 is the
decay with respect to θ(2).
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(a) Decay of the wavelet-transform at ν =
195(upper) and ν = 43(lower).

(b) Decay of the wavelet-transform at ν =
344(upper) and ν = 469(lower).

(c) Decay of the wavelet-transform at ν =
245(upper) and ν = 376(lower).

(d) Decay of the wavelet-transform at ν =
344(upper) with θ(2) and ν = 167(lower)
with θ′.

Figure 2.16: The slope of the wavelet-transform for some of the edges in the
signal in Fig.(2.13b). The line segments marked with red, indicate the scales
used to estimate the Lipschitz-regularity.
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Chapter 3

2-D Wavelet-Transform.

The aim of the discussion in this chapter is to derive the 2-D wavelet-based
trivial edge-detector. For the purpose of this thesis, such an edge-detector
needs to fulfil two targets. Detect all the edges, and that the output can be
further processed in order to locate the important edges in the signal. As
will be discussed, these targets are fulfilled by using appropriately chosen
2-D wavelets.

In Sect.(3.1), 2-D wavelets and their wavelet-transform will be defined.
2-D wavelets will be defined as a collection of functions which satisfy the 2-D
Admissibility-condition. One difference between the Admissibility-condition
in 1-D and 2-D, is that the 2-D Admissibility-condition is allowed to vary
with respect to (ωx, ωy). It will be discussed that all 2-D wavelets will detect
the edges. If the Admissibility-condition is not constant, one can not directly
use the output to locate the important edges. In this case the value of the
wavelet-transform at an edge, it not invariant with respect to the orientation
of the edge. For the purpose of this thesis, it would be sufficient to require
the 2-D Admissibility-condition to be constant. The present definition has
been chosen in order to illustrate one major obstacle for extending the theory
into several dimensions.

The output of the wavelet-transform can not be used directly in order to
detect the edges in a signal. In Sect.(3.2) it will be discussed how one can
combine the (directional) wavelet-transforms defined in Sect.(3.1), to create
an (undirectional) ”wavelet-transform”. This will be used in order to detect
the edges in a 2-D function.

In the final section of this chapter the relation between the 2-D wavelet-
transform and the 2-D Lipschitz-regularity will be investigated. This relation
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will be used later in the thesis in order to construct edge-detectors which can
be used to find the important edges in an image.

3.1 2-D Wavelet-Transform.

In this section 2-D wavelets and the 2-D wavelet-transform will be introduced.
The target of this thesis is to detect the objects of the US-image in

Fig.(1.4) by using the 2-D wavelet-transform. To do this one has to find
wavelets such that their respective wavelet-transform contains information
which can be used to detect the edges in an image. One obstacle for intro-
ducing the wavelet-theory in several dimensions is that one has to take into
account the orientation of the edges. Two problems emerge in 2-D because of
orientation. First, one has to ensure that all the edges are be detected. This
is necessary for function to be a 2-D wavelet. Second, one has to ensure that
edges of similar strength and similar duration are represented with a simi-
lar value by the wavelet-transform. This is not necessarily true for all 2-D
wavelets, but required if one wants to use the output to separate important
from less important edges.

2-D wavelets will be defined such that there exist an inverse wavelet-
transform. In Prop.(3.1.1) it will be proved that the definition of 2-D wavelets
guarantees the existence of an inverse wavelet-transform. By the help of some
examples, appropriate and less appropriate 2-D wavelets will be introduced.

The discussion begins with a definition of 2-D wavelets, and introducing
some useful 2-D wavelets. Secondly, the 2-D wavelet-transform will be de-
fined, and it will be verified that the definition of 2-D wavelets guarantee the
existence of an inverse wavelet-transform.

Similarly as in the 1-D case, 2-D wavelets will be defined such that an in-
verse 2-D wavelet-transform exists. One difference is that a 2-D wavelet is
not necessarily a single function, but may be composed of several functions.

Definition 3.1.1 (2-D Wavelets) Assume ψk : R × R → R and ψk ∈
L2(R2) for k = 1, ...,K. Then ψ(x, y) =

{
ψ1(x, y), ..., ψK(x, y)

}
is said to be

a 2-D wavelet if there exists two constants 0 < A ≤ B <∞ such that for all
(ωx, ωy) ∈ R2 − {(0, 0)};

A ≤ Cψ(ωx, ωy) ≤ B. (3.1.1)
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Cψ is called the 2-D Admissibility-condition, and is given by;

Cψ(ωx, ωy) =

∫ ∞

0

(
K∑

k=1

|ψ̂k(sωx, sωy)|2
)
ds

s
.

The functions ψk will in this thesis be denoted semi-wavelets. Let u =
(u1, u2), t = (t1, t2) and s > 0. Then

ψu,s(t) =
1

s
ψ
(t1 − u1

s
,
t2 − u2

s

)
,

denotes the scaled and translated wavelet. Let ψ0,s = ψs.

�

Note:The wavelet can also be defined with individual scales. Let u = (u1, u2),
t = (t1, t2) and s = (s1, s2). Then

ψu,s(t) =
1

√
s1
√
s2
ψ
(t1 − u1

s1
,
t2 − u2

s2

)

denote the scaled and translated wavelet. This form of wavelets and the cor-
responding wavelet-transform will not be discussed in this thesis.

�

The next example will introduce some 2-D wavelets which will be important
in this thesis.

Example 3.1.1 Let

Θ(x, y) =
1

2π
e−

x2+y2

2 = θ(x)θ(y),

denote the 2-D Gaussian, where θ is the 1-D Gaussian. The functions cor-
responding to the partial derivative in the x-direction and the y-direction,
denoted by resp. ψx and ψy, are up to sign given by;

ψx(x, y) =
1

2π
xe−

x2+y2

2 = ψ1(x)θ(y)

ψy(x, y) =
1

2π
ye−

x2+y2

2 = θ(x)ψ1(y).
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ψ1 is the 1-D wavelet corresponding to the 1.st derivative of the Gaussian.
Then ψ(x, y) = {ψx(x, y), ψy(x, y)} is a 2-D wavelet. By Prop.(B.0.3) and
Prop.(B.0.1) it follows that;

ψ̂x(ωx, ωy) = ψ̂(ωx)θ̂(ωy) = −(iωx)θ̂(ωx)θ̂(ωy)

ψ̂y(ωx, ωy) = θ̂(ωx)ψ̂(ωy) = −(iωy)θ̂(ωx)θ̂(ωy).

For all (ωx, ωy) ∈ R2 − {(0, 0)};

Cψ(ωx, ωy) =

∫ ∞

0

(
|ψ̂x(sωx, sωy)|2 + |ψ̂y(sωx, sωy)|2

) ds
s

=

∫ ∞

0

(
s2ω2

x|θ̂(sωx)θ̂(sωy)|2 + s2ω2
y |θ̂(sωx)θ̂(sωy)|2

) ds
s

=

∫ ∞

0

(
s2ω2

x|e−(sωx)2/2e−(sωy)2/2|2 + s2ω2
y |e−(sωx)2/2e−(sωy)2/2|2

) ds
s

=

∫ ∞

0

(
s2ω2

xe
−(sωx)2e−(sωy)2 + s2ω2

ye
−(sωx)2e−(sωy)2

) ds
s

=

∫ ∞

0

(
ω2
x + ω2

y

)
se−s

2(ω2
x+ω2

y) ds = lim
t→∞

[
− 1

2
e−s

2(ω2
x+ω2

y)

]s=t

s=0

=
1

2
− lim

s→∞

1

2
e−s

2(ω2
x+ω2

y) = 1/2.

By Def.(3.1.1), ψ(x, y) =
{
ψx(x, y), ψy(x, y)

}
is a 2-D wavelet.

Assume n = (n1, n2) and m = (m1,m2) are unit-vectors in R2, and let
ψn = −∂Θ

∂n
and ψm = −∂Θ

∂m
. Let ψ′(x, y) =

{
ψn(x, y), ψm(x, y)

}
. Note that;

ψn =
∂Θ

∂n
= n ·

(
ψx, ψy

)
⇒ ψ̂n = n ·

(
ψ̂x, ψ̂y

)
.

Assume that the direction of n and m to the x-axis is given by α and β, and
that the direction of the vector (ωx, ωy) to the x-axis is γ. Note that α and β
are fixed. Note that A·B = |A||B| cos(φ) where · is the dot-product, and φ in
the angle between the vectors A and B. By the computations in the previous
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example, it follows that;

Cψ′(ωx, ωy) =

∫ ∞

−∞

(
|ψ̂x(sωx, sωy)|2 + |ψ̂y(sωx, sωy)|2

) ds
s

=

∫ ∞

−∞

(
|θ̂(sωx, sωy)|2s2(|n · (ωx, ωy)|2 + |m · (ωx, ωy)|2)

) ds
s

=

∫ ∞

−∞
|θ̂(sωx, sωy)|2s(ω2

x + ω2
y) ds

(
cos2(α − γ) + cos2(β − γ)

)

=
1

2

(
cos2(α − γ) + cos2(β − γ)

)

First one may note that if n ‖ m ⇒ α = β, then there exists infinitely many
(ωx, ωy) ∈ R2 − {(0, 0)} such that Cψ′ equals 0. The second observation is
that if n ⊥ m ⇒ β = α + π/2, then Cψ′′ = 1/2. Finally, one may observe
that if there exists δ > 0 such that δ < α − β, then the 2-D Admissibility-
condition is satisfied. Given two vectors n ∦ m, then Def.(3.1.1) gives that
ψ′ = {ψn, ψm} is a 2-D wavelet.

Let ψ2 denote the 1-D Mexican-Hat. With a similar approach as above,
one may verify that ψ′′(x, y) =

{
ψ2(x)θ(y), θ(x)ψ2(y), 2ψ1(x)ψ1(y)

}
and ψ′′′(x, y) ={

ψ2(x)θ(y), θ(x)ψ2(y)
}

are 2-D wavelets, with resp. Cψ′′ = 1/2 and 1/4 ≤
Cψ′′′(ωx, ωy) = 1/2 − ω2

xω
2
y

(ω2
x+ω2

y)2
≤ 1/2.

�

Figure 3.1: A 2-D semi-wavelet corresponding to the partial derivative of the
2-D Gaussian.

In Ex.(3.1.2) it will be explained from an geometric viewpoint, what goes
wrong if Cψ(ωx, ωy) = 0 for (ωx, ωy) 6= (0, 0). The first two 2-D wavelet in
Ex.(3.1.1) are suitable for detecting step-edges, and the last two wavelets
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can be used to detect angle-edges. However, the second and the last wavelet
are not suitable for detecting edges. It will detect all edges, but it is not
invariant of the direction of the edge. This means that edges of equal strength
and duration may be given different values of the wavelet-transform. These
statements will be discussed in the next section.

Similarly as with 2-D wavelets, the 2-D Continuous Wavelet-Transform
comes in pairs.

Definition 3.1.2 (2-D Wavelet-transform) Assume f ∈ L2(R2) and ψ ={
ψ1, ..., ψK

}
is a 2-D wavelet. Define for each of the semi-wavelets, the 2-D

Continuous (semi-)Wavelet-Transform as;

W kf((u, v), s) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)

1

s
ψk
(x− u

s
,
y − v

s

)
dxdy, (3.1.2)

for (u, v) ∈ R2 and s > 0. The 2-D Continuous Wavelet-Transform is de-
fined as the collection Wf((u, v), s) =

{
W 1f((u, v), s), ...,WKf((u, v), s)

}
,

for (u, v) ∈ R2 and s > 0.

�

The 2-D wavelet-transform can be expressed as a collection of 2-D convolution-
products,

Wf((u, v), s) =
{
f ∗ ψ̃1(u, v), ..., f ∗ ψ̃K(u, v)

}
, (3.1.3)

where ψ̃(x, y) = ψ(−x,−y). For the 2-D wavelet ψ = {ψx, ψy}, the wavelet-
transform can be expressed as;

Wf((u, v), s) =
{
s
∂

∂x
(f ∗ Θs(u, v)), s

∂

∂y
(f ∗ Θs(u, v))

}
(3.1.4)

The next question is whether one can recover a 2-D signal by its 2-D wavelet-
transform. Reconstruction of signals will not be discussed in this thesis, but
is a typical extension of edge-detection. The machinery of edge-detection and
reconstruction will allow one to manipulate images, e.g. to remove noise in
images. For simplicity the statement is proved with respect to a 2-D wavelet
which is constituted of a pair of semi-wavelets.
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Proposisjon 3.1.1 Assume ψ =
{
ψa, ψb

}
is 2-D wavelet such that;

A < Cψ(ωx, ωy) =

∫ ∞

0

(
|ψ̂a(sωx, sωy)|2 + |ψ̂b(sωx, sωy)|2

) ds
s
< B,

for some constants 0 < A < B <∞. Any f ∈ L2(R2) ∩ L1(R2) satisfies;

f(x, y) =
1

Cψ(ωx, ωy)

∫ ∞

0

(∫∫ ∞

−∞
W af((u, v), s)

1

s
ψa
(x− u

s
,
y − v

s

)
dxdy

(3.1.5)

+

∫∫ ∞

−∞
W bf((u, v), s)

1

s
ψb
(x− u

s
,
y − v

s

)
dxdy

)
ds

s3
.

Proof: The idea of the proof is to show that the right-side, denoted b(x, y), of
Eq.(3.1.5) equals f(x, y). First one may observe that the two inner integrals
equal a convolution-product. I.e.;

b(x, y) =
1

Cψ(ωx, ωy)

∫ ∞

0

(
W af((·, ·), s) ∗ ψas (x, y) +W bf((·, ·), s) ∗ ψbs(x, y)

)
ds

s3
.

By Eq.(3.1.3) it follows that;

b(x, y) =
1

Cψ(ωx, ωy)

∫ ∞

0

(
f ∗ ψ̃as ∗ ψas (x, y) + f ∗ ψ̃bs ∗ ψbs(x, y)

)
ds

s3
.

By Prop.(B.0.6) and Prop.(B.0.4), the 2-D Fourier-Transform of b(x, y), can
be expressed as;

b̂(ωx, ωy) =
1

Cψ(ωx, ωy)

∫ ∞

0

(
f̂(ωx, ωy)s

¯̂
ψa(ωx, ωy)sψ̂a(sωx, sωy)

+ f̂(ωx, ωy)s
¯̂
ψb(sωx, sωy)sψ̂b(sωx, sωy)

)
ds

s3

=
f̂ (ωx, ωy)

Cψ(ωx, ωy)

∫ ∞

0

(
|ψ̂a(ωx, ωy)|2 + |ψ̂b(sωx, sωy)|2

)ds
s

= f̂ (ωx, ωy).

Since b̂(ωx, ωy) = f̂ (ωx, ωy), it follows that b(x, y) = f(x, y).
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�

The next example shows a calculation of the 2-D wavelet-transform, and
illustrates the importance of the direction of the semi-wavelet used by the
wavelet-transform.

Example 3.1.2 Assume f(x, y) = u(x) where u is the Heaviside-function,
and ψx(x, y) = ψ(x)θ(y) and ψy(x, y) = θ(x)ψ(y). Then for (w, v) ∈ R2;

W xf((w, v), s) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)

1

s
ψ(
x− w

s
)θ(

y − v

s
) dxdy

=

∫ ∞

−∞
θ(
y − v

s
) dy

∫ ∞

−∞
u(x)

1

s
ψ(
x− w

s
) dx

=
√
s

∫ ∞

−∞
θ(t) dt

∫ ∞

0

1√
s
ψ(
x− w

s
) dx

=
√
s

∫ ∞

0

1√
s
ψ(
x−w

s
) dx = s3/2θs(w),

with change of variable y − v = ts, and the final equality follows from
Ex.(2.1.2). On the other hand;

W yf((w, v), s) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)

1

s
θ(
x− w

s
)ψ
y − v

s
) dxdy

=

∫ ∞

−∞
u(x)θ(

x− w

s
) dy

∫ ∞

−∞

1

s
ψ(
y − v

s
) dx = 0,

This follows since all 1-D wavelets have 0-mean. This latter computation
illustrate why ψy (or ψx) alone can not be a 2-D continuous wavelet. There
are an infinitely number of functions g(x, y) such that Wg((w, v), s) = 0,
∀(w, v) ∈ R2, e.g. all functions of the form g(x, y) = Au(x−τ ) for A, τ ∈ R.
This implies that there can not exist a unique inverse.

For the function given by h(x, y) = δ(x)δ(y) the semi-wavelet-transform
with respect to ψx(x, y) is given by,

W xh((w, v), s) =
(
δ(x) ∗ ψ̃s(x− w)

)(
δ(y) ∗ θ̃s(x− v)

)
= ψ̃s(x)θ̃s(y) = ψ̃x(x, y).

f̃ (t) = f(−t) and g̃(x, y) = g(−x,−y).
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Similarly one may verify that for the function g(x, y) = δ(x), then;

W xg((w, v), s) = ψ̃1(x)

W yg((w, v), s) = 0.

�

The question is how one can detect edges from the 2-D wavelet-transform. As
discussed in the latter example, ψx does not detects horizontal step-edges and
ψy does not detect vertical step-edges. On the other hand, they both detect
diagonal step-edges. The next section will discuss how one can combine the
two semi-wavelets to easily detect all the edges in a signal.

3.2 Wavelet-Transform and Edges in R2.

In this section it will be discussed how one can detect edges in an image
by using the 2-D CWT. At the end of the section the wavelet-based trivial
edge-detector for images will be presented.

As discussed in Sect.(1.2.1), the first step of detecting the ”important”
edges in a signal is first to find all the edges in the signal. Detecting edges
in a 2-D signal is not as straight forward as in 1-D case. As indicated by
Ex.(3.1.2), an edge may not be ”felt” by the wavelet-transform. It the edge
is not felt by the wavelet-transform, it can not be detected. If the output
of the 2-D wavelet-based trivial edge-detector should be of any use, one has
to be sure that all edges are detected, and equally important, that similar
edges are given a similar value by the wavelet-transform.

The target of this section is to derive a ”wavelet-transform” which is
invariant of the direction of the edge. Such a ”wavelet-transform” should
fulfil three criteria. First, all edges should be detected. This is fulfilled if the
wavelet satisfies the 2-D admissibility-condition. Second, similar edges should
be represented with an equal value by the transform. This criteria is fulfilled
if the admissibility-condition is constant for all (ωx, ωy) ∈ R2 − {(0, 0)}. In
addition one should be able to reconstruct the signal. A natural starting point
for such an investigation is the wavelet-transform defined in the previous
section. The question is how one can use the (semi-)wavelet-transforms to
find a representation of the signal which satisfies the three criteria.
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The investigation begins with considering how one can find points of
maximal-change in smooth functions. From this discussion, it will be de-
scribed how one can combine ψx and ψy and their respective wavelet-transforms
to find the step-edges in an arbitrary function. At the end, it will be dis-
cussed how one can detect angle-edges in a signal. From this discussion it
will be derived that the choice of 2-D wavelet should not only depend on
whether all edges are detected. I.e. it is desirable to use a 2-D wavelet for
which the admissibility-condition is constant.

One question which needs to be answered is how one would like to detect
edges in 2-D. Similarly as in 1-D, one can detect edges both by tracing local
maxima, and by tracing zero-crossings. For instance the Marr and Hildreth
edge-detector in [8] uses zero-crossings to detect the edges. It is easier to
obtain information about the strength of an edge by using the maxima-
approach. Therefore the maxima-approach has been used in this thesis.

Assume f : R×R → R is continuously differentiable in R×R. In college-
math one learn that at a point (x0, y0), the direction of maximal-change is
given by the vector

(
∂f
∂x

(x0, y0),
∂f
∂y

(x0, y0)
)
. The direction in which f changes

maximally can be expressed as;

{
tan−1

( ∂f
∂y

(x0,y0)
∂f
∂x

(x0,y0)

)
if ∂f

∂x
(x0, y0) ≥ 0

π − tan−1
( ∂f

∂y
(x0,y0)

∂f
∂x

(x0,y0)

)
if ∂f

∂x
(x0, y0) < 0 .

The length of the vector at (x0, y0), denoted M(x0, y0), is given by;

M(x0, y0) =

√(∂f
∂x

(x0, y0)
)2

+
(∂f
∂y

(x0, y0)
)2

.

The function f(x, y) has locally maximal growth at (x0, y0) if M(x, y) is
locally maximal at (x0, y0) in the direction of maximal change. As in 1-D,
the idea is to imitate this procedure to general functions f .

Prop.(B.0.7) verify that (f ∗ Θ) is continuously differentiable. One can
therefore use the procedure above to find the points where (f ∗ Θ) has
maximal-growth . One is not guaranteed these points coincide with the
position of the edges in f , or if this procedure will detect all edges, or if arti-
ficial edges are created. In this thesis it will be assumed that Θ is a suitable
function for the purpose of this thesis.
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-
J
J

J
J
JĴ

Edge

Edge direction

W xf((u, v), s)

W yf((u, v), s)?

Figure 3.2: Illustration of how one locally estimate the direction of an edge
in R2.

As verified by Eq.(3.1.4), the CWT with respect to the semi-wavelets
ψx and ψy can be considered as the partial derivative of s(f ∗ Θs(u, v)) in
resp. the x-direction and y-direction. W xf((u, v), s) correspond to how much
f ∗ Θ changes in the horizontal-direction and W yf((u, v), s) to how much
f ∗ Θ changes in the vertical-direction. The next question is how one can
combine these to detect all the edges in a signal. The idea is that instead of
using a semi-wavelet with a fixed orientation for the entire signal, one can
at each point compute the semi-wavelet-transform in the direction which the
signal changes the most. I.e. if the signal at a point changes most in the
direction given by n, then the semi-wavelet-transform at that point should
be computed with respect to the semi-wavelet ψn. The direction of maximal
change of (f ∗ Θ) at a point (u, v) is given by;

Af((u, v), s) =
{

α(u, v) if W 1f((u, v), s) ≥ 0
π − α(u, v) if W 1f((u, v), s) < 0

,

where

α(u, v) = tan−1

(
W 2f((u, v), s)

W 1f((u, v), s)

)
.

This give the direction n(u, v) = (cosAf(u, v), sinAf(u, v)) for which the 2-
D CWT should be computed at (u, v). The absolute value of W nf((u, v), s)
is given by;

|W nf((u, v), s)| = |s ∂
∂n

(
f ∗ Θ

)
| = |s∇(f ∗ Θ) · n| = Mf((u, v), s)
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where;

Mf((u, v), s) =
√
W xf((u, v), s)2 +W yf((u, v), s)2.

Mf((u, v), s) is called the modulus of f . It follows that it is sufficient to
compute the 2-D wavelet-transform with respect to the 2-D wavelet ψ ={
ψx, ψy

}
. The candidate edges are found among the points whereMf((u, v), s)

is locally maximum in the direction given by n(u, v) = (cosAf((u, v), s), sinAf((u, v), s)).
The relations;

W xf((u, v), s) = Mf((u, v), s) cosAf((u, v), s) (3.2.1)

W yf((u, v), s) = Mf((u, v), s) sinAf((u, v), s), (3.2.2)

verify that one can reconstruct the signal from Mf .
The following summarizes the trivial edge-detector in 2-D.

1. Compute W xf((u, v), s) and W yf((u, v), s) for s ∈ {s1, ..., sN}.

2. Compute Mf((u, v), s).

3. Compute Af((u, v), s).

4. Find the modulus-maximum ofMf((u, v), s) in the local direction given
by n(u, v).

The output of the trivial edge-detector is the set of all modulus-maximum
at all the scales where the CWT is computed;

{((xmi , ymi ), sm)} for sm ∈ {s1, ..., sN}.

To round off the section it will be briefly explained how angle-edges can
be detected in R2. This will demonstrate the difference between the 2-D
wavelets ψ′′ and ψ′′′ in Ex.(3.1.1). Assume f : R×R → R has an angle-edge
at (0, 0) in the direction given by n = (n1, n2). This imply that g = ∂f

∂n
has a

step-edge at (0, 0) in the direction given by n. From the previous discussion,
step-edges can be detected by the CWT with respect to the wavelet ψn. I.e.
for u = (u1, u2) and s > 0;

|W ng(u, s)| = |s∇(g ∗ Θs)|

=

((
W af(u, s) +W cf(u, s)

)2

+
(
W bf(u, s) +W cf(u, s)

)2
)1/2

.
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(a) s = 3. (b) s = 4.

(c) s = 5. (d) s = 6.

(e) s = 8. (f) s = 10.

Figure 3.3: The output of the 2-D wavelet-based trivial edge-detector applied
to the signal in Fig.(1.4). The output does only take into account the position
of the modulus-maximum.

W af , W bf and W c are the semi-wavelet-transform computed with the semi-
waveletsψa(x, y) = ψ2(x)θ(y), ψb(x, y) = θ(x)ψ2(y) and ψc(x, y) = ψ1(x)ψ1(y).
From this one may observe the difference between the wavelets ψ′′ and ψ′′′.
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(a) s = 2. (b) s = 3.

(c) s = 4. (d) s = 6.

(e) s = 8. (f) s = 10.

Figure 3.4: The output of the 2-D wavelet-based trivial edge-detector applied
to the signal in Fig.(1.4). The output illustrates the strength of the modulus-
maximum.

The modulus of the semi-wavelets of ψ′′′, will be less for a step-edge which
is not horizontal or vertical. With respect the wavelet ψ′′, the value of the
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wavelet-transform does not depend on the direction of the edge. One should
note that the detection-performance does not differ between the wavelets, i.e.
they detect the same edges. It is a necessity that edges of similar strength are
given a similar value by the wavelet-transform. Otherwise one could not use
the amplitude of the modulus-maximum in order to separate the important
edges in the signal.

3.3 2-D Wavelet-Transform and Lipschitz-Regularity

in R2.

In this section the Lipschitz-regularity of 2-D functions, and its relation with
the 2-D continuous wavelet-transform will be established.

The relation between the wavelet-transform and the Lipschitz-regularity
will allow one to distinguish between different kinds of edges, such as Dirac-
edges, step-edges and angle-edges. This will enable to separate different
features in an image.

The discussion of Lipschitz-regularity and wavelet-transform will be re-
stricted to step-edges, i.e. for α ≤ 1. First, the definition of 2-D Lipschitz-
regularity will be presented, and a proof which relates the 2-D Lipschitz-
regularity at a point to the 1-D Lipschitz-regularity of 1-D rays which go
through the point. Global and local conditions for estimating the Lipschitz-
regularity by the wavelet-transform across scales will be discussed.

The obstacle in 2-D is that a point may be smooth in one direction and be
singular in another direction. The Lipschitz-regularity is defined to estimate
the worst behaviour in the proximity of the point, i.e. the Lipschitz-regularity
measure the smoothness in the direction of worst behaviour.

Definition 3.3.1 (2-D Lipschitz Conditions, Regularity and Singularity [1])

Local Lipschitz Let 0 ≤ α ≤ 1. A function f(x, y) is said to be pointwise
Lipschitz-α at (x0, y0) if and only if there exist an A ∈ R+, an εk, εh > 0
such that for all |k| < εk and |h| < εh;

|f(t0 + k, t0 + h) − f(t1, t1)| ≤ A(h2 + k2)α/2.
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Global Lipschitz Let ]a, b[×]c, d[ be an open interval and 0 ≤ α ≤ 1. Then
f(x, y) is said to be globally Lipschitz-α over ]a, b[×]c, d[ if and only
if there exist an A ∈ R and εk, εh > 0 such that for any (t0, t1) ∈
]a, b[×]c, d[ and t0 + k ∈]a, b[, t1 + h ∈]c, d[;

|f(t0 + k, t1 + h) − f(t0, t1)| ≤ A(h2 + k2)α/2.

Lipschitz Regularity The Lipschitz-regularity of f(x, y) locally at t0 or
globally over ]a, b[×]c, d[ is the superior bound of all α-values such that
f(x, y) is Lipschitz-α at (t0, t1) or over ]a, b[×]c, d[.

The following statement may be useful for establishing the local Lipschitz-
regularity at a point.

Statement 3.3.1 Assume f : R×R → R. Define the function gω : [−ε, ε] →
R by;

gω(t) = f(t0 + t cos(ω), t1 + t sin(ω)),

for ω ∈ [0, π[ and ε > 0. The local Lipschitz-regularity of f at (t0, t1) is less
or equal the local Lipschitz-regularity of gω at 0 for all ω ∈ [0, π[.

Proof: Assume that the local Lipschitz-regularity of f(x, y) equals α at
(t0, t1). By Def.(3.3.1) there exists an A > 0, εh, εk > 0 such that for all
|h| < εh and |k| < εk;

|f(t0 + k, t1 + h) − f(t0, t1)| ≤ A(h2 + k2)α/2.

This inequality holds for |h| < εh and |k| < εk, and therefore holds for all
h = δ cosω and k = δ sinω for all ω ∈ [0, π[ with |δ| < min{εh, εk}. Therefore;

|f(t0 + δ cosω, t1 + δ sinω) − f(t0, t1)| ≤ A(δ2)α/2

⇓
|gω(δ)− gω(0)| ≤ A(δ2)α/2 = A|δ|α.

Def.(2.2.1) gives that gω is locally Lipschitz-α at 0 for all ω.

�

The next example will use this statement to prove that the local Lipschitz-
regularity of f(x, y) = u(x), where u(x) is the Heaviside, equals 0 for any
(t0, t1) = (0, t1), t1 ∈ R.
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Example 3.3.1 Assume f(x, y) = u(x) · 1, and that (x0, y0) = (0, 0). All
1-D rays which go through (x0, y0) equals the Heaviside if the ray is not per-
pendicular to the x-axis, and equal 1 if the ray is perpendicular to the x-axis.
Ex.(2.2.1) and Stat.(3.3.1) give that the Lipschitz-regularity of f is less or
equal 0 at 0. On the other hand, by choosing A = 2, εh, εk = 1/2 it follows
that for all |h| < εh, |k| < εk;

|f(k, h) − f(0, 0)| =
{

0 if k ≥ 0
1 if k < 0

< 2(h2 + k2)0/2 = 2.

A similar computation holds for any t1 ∈ R.

�

In the previous chapter, a definition was used in order to extend the concept
of Lipschitz-regularity for negative values for α. A similar definition will not
be investigated in 2-D. It will be assumed that Dirac-edges are Lipschitz-
(−1).

As in 1-D,there exists a relation between the decay of the wavelet-transform
and the Lipschitz-regularity of a function. This decay is controlled byMf(u, s).
The next theorem relate Mf(u, s) with the uniform Lipschitz-regularity.

Theorem 3.3.1 (Global Lipschitz-regularity.[4]) Assume 0 < α < 1.
The function f ∈ L2(R2) is globally Lipschitz α in ]a, b[×]c, d[ if there exist
a constant A ∈ R+ such that for all (t0, t1) ∈]a, b[×]c, d[,

|Mf((t0, t1), s)| ≤ Asα+1.

�

This theorem proves that the global Lipschitz-regularity can be measured
by the decay of the Mf(u, s) across scales, by using an equation similar to
Eq.(2.4.5).

Proposisjon 3.3.1 (Local Lipschitz-regularity) Assume f ∈ L2(R2) and
ψ(x, y) =

{
ψx(x, y), ψy(x, y)

}
. If there exists an 0 < α < 1, a constant A

and an α′ < α such that;

∀((u, v), s) ∈ R2 × R , |Mf(u, s)| ≤ Asα+1

(
1 +

(∣∣u− t0
s

∣∣∣+
∣∣∣v − t1

s

∣∣
)α′
)
,

then f is Lipschitz-α at (t0, t1).
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Before this proposition is proved, note that there exists an A, εk, εh > 0 such
that equation in Def.(3.3.1) is satisfied, if and only is there exists ε′k, ε

′
h > 0

such that for all h′ < ε′h, k
′ < ε′k;

|f(t0 + h′, t1 + k′) − f(t0, t1)| ≤
(
|h′| + |k′|

)α
.

In addition note that the semi-wavelets ψx and ψy and their partial deriva-
tives, all satisfy that for any m ∈ N there exists a constant Cm such that;

∀ (x, y) ∈ R2, |ψ(x, y)| ≤ Cm
1 + (|x| + |y|)m . (3.3.1)

The idea of the proof is simple; to verify that f satisfied Def.(3.3.1). In-
stead of using f which one do not know anything about, one can use the
reconstruction-formula as a starting-point. With respect to the variable s
one can divide the integral in Prop.(3.1.1) into two integrals;

∫∞
0

=
∫ a
0

+
∫∞
a

.
By Properties of convolution, the integral

∫∞
a

is smooth, i.e. discontinuities
in the reconstruction of f will first appear as a → 0. By establishing decay
conditions for small a, one can derive the desired result.
Proof of Prop.(3.3.1): The 2-D wavelet reconstruction formula proves that
f(x, y) can be written on the form;

f(x, y) =
∞∑

j=−∞

∆j(x, y),

with

∆j(x, y) =
1

Cψ

∫ 2j+1

2j

(∫∫ ∞

−∞
W xf((u, v), s)

1

s
ψx
(x− u

s
,
y − v

s

)
dxdy

+

∫∫ ∞

−∞
W yf((u, v), s)

1

s
ψy
(x− u

s
,
y − v

s

)
dxdy

)
ds

s3
.

To prove that f(x, y) is Lipschitz-α at (t0, t1), one needs an constant C such
that;

|f(t0 + h, t1 + k) − C| ≤ A(|h| + |k|)α.

The idea is to prove that the constant
∑∞

j=−∞ ∆j(t0, t1) satisfies this condi-
tion. One necessary condition is that this sum is finite. The first step is to
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prove that |∆j(x, y)| is bounded for all j ∈ Z and decays as |j| → ∞. Recall
Eq.(3.2.1), Eq.(3.2.2) and the asymptotic decay condition of Eq.(3.3.1). It
follows that;

∆j(x, y) =
1

Cψ

∣∣∣∣∣

∫ 2j+1

2j

(∫∫ ∞

−∞
Mf((u, v), s)

{cosAf((u, v), s)

s
ψx
(x− u

s
,
y − v

s

)

+
sinAf((u, v), s)

s
ψy
(x− u

s
,
y − v

s

)}
dudv

)
ds

s3

∣∣∣∣∣

≤ 1

Cψ

∫ 2j+1

2j

(∫∫ ∞

−∞
Asα

(
1 +

(∣∣u− t0
s

∣∣+
∣∣v − t1

s

∣∣
)α′)

{ Cm

1 +
(
|(x− u)/s| + |(y − v)/s|

)m +
C ′
m

1 +
(
|(x− u)/s| + |(y − v)/s|

)m
}
dudv

)
ds

s2

≤ A ·max{2C ′
m, 2Cm}

Cψ

∫ 2j+1

2j

(∫∫ ∞

−∞
sα
(
1 +

(∣∣u− t0
s

∣∣+
∣∣v − t1

s

∣∣
)α′)

( 1

1 +
(
|(x− u)/s| + |(y − v)/s|

)m
)
dudv

)
ds

s2
.

Since 2j+1 − 2j = 2j there exists an constant K such that;

|∆j(x, y)| ≤ K(2j+1 − 2j)

∫∫ ∞

−∞
2jα
(
1 +

(∣∣∣u− t0
2j

∣∣∣+
∣∣∣v − t1

2j

∣∣∣
)α′)

( 1

1 +
(
|(x− u)/2j | + |(y − v)/2j |

)m
) dudv

22j
.

With the change of variable u′ = 2−j(u − t0) and v′ = 2−j(v − t1), and

since
(
|u − t0| + |v − t1|

)α′
≤
(
|u − x| + |x − t0| + |v − y| + |y − t1|

)α′
≤
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2α
′
((

|u− x|+ |v − y|
)α′

+
(
|x− t0| + |y − t1|

)α′)
it follows that;

|∆j(x, y)| ≤ K2αj
∫∫ ∞

−∞

1 + (|u′| + |v′|)α′
+
(
|(t0 − x)/2j | + |(t1 − y)/2j|

)α′

1 + (|u′| + |v′|)m du′dv′

≤ K2αj

(∫∫ ∞

−∞

1 + (|u′| + |v′|)α′

1 + (|u′|+ |v′|)m du′dv′

+
(
|(t0 − x)/2j |+ |(t1 − y)/2j|

)α′ ∫∫ ∞

−∞

1

1 + (|u′|+ |v′|)m du′dv′

)
.

By choosing m = α′+2, both integrals are convergent. Therefore there exists
an constant K such that;

|∆j(x, y)| ≤ K2αj

(
1 +

(∣∣∣t0 − x

2j

∣∣∣+
∣∣∣t1 − y

2j

∣∣∣
)α′
)
.

Let f (x)(x, y) and f (y)(x, y) denote the partial-derivative of f with respect
to the variable x and y. Since f(g(x), h(y))(x) = g(x)(x)f (x)(u, y)

∣∣
u=g(x)

, and

Eq.(3.3.1) holds for any partial derivative of ψx and ψy, a similar computation
shows that there exists constants K1 and K2 such that;

|∆(x)(x, y)| ≤ K12
(α−1)j

(
1 +

(∣∣∣t0 − x

2j

∣∣∣+
∣∣∣t1 − y

2j

∣∣∣
)α′
)

|∆(y)(x, y)| ≤ K22
(α−1)j

(
1 +

(∣∣∣t0 − x

2j

∣∣∣+
∣∣∣t1 − y

2j

∣∣∣
)α′
)
.

In particular for (x, y) = (t0, t1), it follows that;

|∆j(t0, t1)| ≤ K ′2αj .

Since α > 0 this guarantees fast decay of |∆j(t0, t1)| as 2j goes to zero. By
Prop.(B.0.8) it follows that Mf((u, v), s) ≤‖ f ‖ (‖ ψx ‖ + ‖ ψy ‖). Then;

|∆(t0, t1)| ≤
‖ f ‖ (‖ ψx ‖ + ‖ ψy ‖)

Cψ∫ ∞

0

∫∫ ∞

−∞
|ψx(x− u

s
,
y − v

s
) + ψy(

x− u

s
,
y − v

s
)| dudvds

s3
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With a change of variable su′ = x− u and sv′ = y − v it follows that;

|∆(t0, t1)| ≤ K

∫∫ ∞

−∞
|ψx)(u′, v′) + ψy)(u′, v′)| du′dv′

∫ 2j+1

2j

ds

s2

≤ K2−(1+j).

From this it follows that the coefficients converges for 2j large.

The computations up to this point have verifies the boundedness of the
constant in the beginning of the proof. The next step is to verify that f
satisfy the local Lipschitz-condition at (t0, t1). By using the sum-expressions
of f and C;

|f(x, y)− C| =
∣∣∣

∞∑

j=−∞

(
∆j(x, y)− ∆j(t0, t1)

)∣∣∣.

The next task is to verify that |f(x+h, y+h)−C| < A(|h|+ |k|)α, for some
constant A and |h|, |k| < εh, εk.

The sum in the latter equation will be divided into two at 2J ≥ |t0−x|+
|t1 − y| ≥ 2J−1. Note that for j ≤ J the sum, everything is continuously
differentiable. For j ≥ J it follows by the Taylor-error formula that;

I =
∣∣∣

∞∑

j=J

(
∆j(x, y) −∆j(t0, t1)

)∣∣∣

≤ |
∞∑

j=−∞

(
(x− t0) sup

|h|<|x|
∆

(x)
j (h, y) + (y − t1) sup

|k|<|x|
∆

(y)
j (x, k)

)
|

≤ K
(
|(x− t0)| + |(y − t1|

) ∞∑

j=J

2αj

2j

(
1 +

(|t0 − x| + |t1 − y|)α′

2α′j

)
.
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By using the assumption it follows that;

I = K1

(
|(x− t0)| + |(y − t1|

) ∞∑

j=J

2αj

2j

(
1 +

(|t0 − x| + |t1 − y|)α′

2α′j

)

≤ K2

(
|(x− t0)| + |(y − t1|

) ∞∑

j=J

2αj

2j

((|t0 − x|+ |t1 − y|)α′

2α′j

)

≤ K32
J

∞∑

s=0

2αJ2αs

2J2s

( (2J )α
′

2α′s2α′J

)
≤ 2αK42

α(J−1)

∞∑

s=0

2αs

2s(1+α′)

≤ K5

(
|t0 − x| + |t1 − y|

)α

On the other hand it follows that for small j;

II =
∣∣∣
J−1∑

j=−∞

(
∆j(x, y)− ∆j(t0, t1)

)∣∣∣

≤ K1

∣∣∣∣∣
J−1∑

j=−∞

{
2αj

(
1 +

(∣∣∣t0 − x

2j

∣∣∣+
∣∣∣t1 − y

2j

∣∣∣
)α′
)

− 2αj
}∣∣∣∣∣

≤ K2

J−1∑

j=−∞

{
2αj + 2αj−α

′j
(
|t0 − x|+ |t1 − y|

)α′

+ 2αj

}

≤ K3

(
2αJ + 2(α−α′)J

(
2J
)α′

+ 2αJ

)

≤ K42
α

(
2α(J−1) + 2α(J−1) + 2α(J−1)

)

≤ K5(|x− t0| + |y − t1|)α.

From this it follows that;

|f(x, y)− f(t0, t1)| ≤ I + II ≤ A(|x− t0| + |y − t1|)α,

i.e. f(x, y) is locally Lipschitz-α at (t0, t1).

�

The unfortunate thing after used so much time on a proof is that the result
will not be used in practice. Assume the wavelet has compact support in both
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x- and y-direction. Then by a similar argument as in 1-D, one may verify that
if the spatial position of an modulus-maximum changes little across scales
one can estimate the local Lipschitz-regularity by the following equation;

α =
log2(|Mf((u, v), s1)|) − log2(|Mf((u′, v′), s0)|)

log2(s1) − log2(s0)
− 1.

(u, v) and (u′, v′) are two related modulus-maximum at scales s1 and s0.
In Ch.(2), Th.(2.5.1) reduced the number of computations in order to find

the Lipschitz-regularity of a function, by proving that it suffices to consider
the decay of the wavelet-transform at the modulus-maximum. It will not be
attempted to verify an equivalent statement in 2-D of two reasons. First, an
eventual proof would be very long. Second, this statement would have no
practical applications in the discussion of 2-D edge-detectors, so the reward
for investigating such a proof would be little. In this thesis be assumed that
if Mf(u, s) has no modulus-maximum in ]a, b[×]c, d[ as s → 0, then f is
globally Lipschitz-1 at ]a+ ε, b− ε[×]c+ ε, d− ε[. Another uncertainty in 2-D
is how/if a local maxima of Mf(u, s) converges towards finer scale. In Ch.(5)
assumptions is used in order to relate modulus-maximum across scales.
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Chapter 4

Noise.

In this chapter some concepts concerning the presence of noise in a signal
will be discussed.

One component which typically makes edge-detection difficult is the exis-
tence of noise in signals. Detecting edges in signals without noise is typically
an easy task. In this case there are typically only minor differences be-
tween the performance of different edge-detectors. The problem of detecting
edges in noisy signals is how one can separate modulus-maximum caused by
noise, texture and less important structures in the signal, from the modulus-
maximum caused by important edges. This is further discussed in Ch.(6)
and Ch.(7).

The tools and concepts discussed in this chapter will serve a two-folded
purpose. First, the Wiener-Filtering and the SNR introduced in Sect.(4.2)
and Sect.(4.3) will be the fundation of some edge-detectors presented later
in this thesis. The second purpose of the discussion is to support some
observations which will be made about edge-detectors and the behaviour of
modulus-maximum across scales.

The chapter begins with discussing Gaussian White Noise. The main-
result of this discussion is that the continuous wavelet-transform preserves
information about the noise in a signal. Secondly, the uncertainty-principle
of noisy signals will be discussed. The uncertainty-principle implies that it
is difficult to obtain both good detection and good localization of the edges.
The last section will discuss how one may estimate the noise in a signal.
This estimate will be used in Sect.(6.1) and Sect.(7.1.1) to construct an
edge-detector.
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4.1 Additive Gaussian White Noise.

This section presents additive Gaussian white noise and its response with
respect to the CWT.

The presence of noise is what makes applied edge-detection difficult and
interesting. When constructing edge-detectors for signals which contain
noise, one possible approach is to utilize differences between noise and the
signal itself. Noise is a random process, and may be considered as the reali-
sation of some probability-distribution. It makes little sense to discuss noise
at a single point, but it makes sense to discuss the overall influence of noise
in the signal.

It will be proved that the CWT preserves information about the distribu-
tion of noise in a signal. This relation will be used in Sect.(4.3) to estimate
the noise in the image in Fig.(1.4).

The section begins with a description of additive Gaussian white noise,
before establishing the relation between noise and the wavelet-transform.

In this thesis the noise will be assumed to be additive noise. This mean
that for a signal f , it is assumed to exist a noise-free signal f0 and a random
process n such that;

f(t) = f0(t) + n(t).

In this thesis the noise is assumed to be White Gaussian Noise.

Definition 4.1.1 (Gaussian White Noise.) Gaussian white noise of vari-
ance σ2 denoted nσ is a random process with zero-mean such that;

E[nσ(t1)nσ(t2)] = σ2δ(t1 − t2).

E[·] denotes the expected-value.

�

The definition implies that the noise-coefficients have zero-mean, are dis-
tributed as a Gaussian with variance σ2 and are uncorrelated. That the
noise-coefficients are uncorrelated mean that the influence of noise at a sin-
gle point is independent of the noise in the neighbourhood of the point.

The next statement will establish a relation between noise and its response
to the CWT.
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Statement 4.1.1 Assume nσ(t) is Gaussian white noise with variance σ2.
Then;

E[Wnσ(u, s)
2] = σ2 ‖ ψs ‖2

2 .

Proof: Assume the wavelet-transform is computed with respect to the wavelet
ψs. By Def.(4.1.1) it follows that;

E[Wnσ(u, s)
2] = E

[ ∫ ∞

−∞
nσ(t)ψs(t− u) dt

∫ ∞

−∞
nσ(τ )ψs(τ − u) dτ

]

= E
[ ∫ ∞

−∞
nσ(t)nσ(τ )ψs(t− u)ψs(τ − u) dtdτ

]

=

∫ ∞

−∞
E[nσ(t)nσ(τ )]ψs(t− u)ψs(τ − u) dtdτ

= σ2

∫ ∞

−∞
ψs(t− u)ψs(t− u) dt = σ2 ‖ ψs ‖2

2 .

�

The relation in Stat.(4.1.1) will be used in Sect.(4.3) to estimate σ2.

4.2 The Uncertainty Principle in noisy sig-

nals.

This section will discuss the uncertainty-principle of edge-detection in noisy
signals, introduced by Canny in [3].

Two factors play a critical role when detecting the edges in a signal. The
first target is that one has to detect all the important edges and as few
unwanted edges as possible. The second target it that the position of the
detected modulus-maximum must be as close as possible to the position of
the edges. This section introduces two criteria used to quantify detection-
and localization-performance of an edge-detector, the Signal-to-Noise Ratio
(SNR) and Location (LOC).

Consider Fig.(2.7) illustrating the modulus-maximum at number of scales
of the signal in Fig.(2.7a). At large scales one may observe that the amplitude
of the modulus-maximum corresponding to noise is small compared to the
modulus-maximum corresponding to the important edges in the signal. This
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makes it easier to distinguish between modulus-maximum corresponding to
noise and important edges by using the amplitude of the modulus-maximum.
At small scales the spatial position of the modulus-maximum improves, but
it is more difficult to distinguish between modulus-maximum corresponding
to noise and important edges. In this section quantifications of these obser-
vations will be discussed. This will establish a relation between detection-
and localization-performance, resulting in the uncertainty-principle for noisy-
signals.

It will be derived that for step-edges the detection and localization per-
formance are inversely related. In practice this implies that there exists no
single scale such that the output of the CWT gives both optimal detection
and optimal localization of the edges. This will in particular be the case for
signals where the influence of noise is large, e.g. US-images.

The section begins with introducing the quantities which will be used to
quantify detection-and localization-performance of the CWT. It will be de-
rived that detection- and localization-performance is inversely related. Con-
sequences of this relation will be discussed.

Definition 4.2.1 (Signal-to Noise-Ratio. [3]) Assume f(t) = f0(t) +
nσ(t) where nσ(t) is additive Gaussian noise. The output signal-to-noise
ratio of Wf(u, s) at a point u0 and scale s0 is defined as;

SNR(u0, s0) =
|Wf(u0, s0)|
σ ‖ ψ ‖2

,

where σ2 is variance of the noise.

�

The underlying idea behind the concept is simple. The numerator is the
absolute-value of the CWT. The denominator can be considered as the ex-
pected value of the CWT for the noise only. This was verified by Stat.(4.1.1).
If SNR at a modulus-maximum is small, there is a big possibility that the
modulus-maximum is caused by noise. If the value is large it is a small
possibility that the modulus-maximum is caused by noise.
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Definition 4.2.2 (Localization Criteria. [3]) Assume f(t) = f0(t)+nσ(t)
where nσ(t) is additive Gaussian noise. The Localization-ratio of Wf(u, s)
at the point u0 and scale s0 is defined as;

LOC(u0, s0) =
|
∫∞
−∞ f ′(t)ψ′

s0
(t− u0) dt|

σ
√∫∞

−∞(ψ′
s0

)2(t) dt
.

σ2 is the variance of the noise.

�

The localization of an edge improves as LOC increases [3]. I.e. the target
is to get as high value of LOC as possible to obtain as good localization as
possible.

The next step is to consider the behaviour of SNR and LOC for a step-
edge with amplitude A at 0. Assume that f(t) = Au(t) + nσ(t) where nσ(t)
is noise with variance σ2. For s = 1 the expressions for SNR and LOC are;

SNR(0, 1) =
A|
∫∞
0
ψ(t) dt|

σ ‖ ψ(t) ‖ =
A

σ
Σ(ψ), Σ(ψ) =

|
∫∞

0
ψ(t) dt|

‖ ψ(t) ‖

LOC(0, 1) =
A|ψ′(0)|

σ
√∫∞

−∞ ψ′(t)2 dt
=
A

σ
Λ(ψ′), Λ(ψ′) =

|ψ′(0)|√∫∞
−∞ ψ′(t)2 dt

.

For s 6= 1 the corresponding expressions for Λ(ψ′
s) and Σ(ψs) are;

Σ(ψs) =
s−1/2|

∫∞
0
ψ(t/s) dt|

‖ ψ(t) ‖
=
s1/2|

∫∞
0
ψ(y) dy|

‖ ψ(t) ‖
=

√
sΣ(ψ)

Λ(ψ′
s) =

|ψ′(0)|√∫∞
−∞ ψ′(t/s)2 dt

=
|ψ′(0)|

s1/2
√∫∞

−∞ ψ′(y)2 dy
=

1√
s
Λ(ψ′).

From these calculations it follows that the values of SNR and LOC are
inversely related with respect to the scale. This relation implies that the de-
tection performance decrease at fine scales and the localization performance
decrease at large scales. This support the observations made of the signal
in Fig.(2.7). At fine scales the value of SNR is low; causing difficulties in
separating modulus-maximum caused by noise and edges. At coarse scale
the value of LOC is low; causing bad localization of the modulus-maximum.
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Another observation which may be observed from the calculations is that
SNR and LOC can not be large simultaneously. Note that SNR(u, s) ·
LOC(u, s) equals an constant for all s ∈]0,∞]. This implies (in theory)
that there exists no single scale s such that the edges detected by Wf(u, s)
are optimal with respect to both localization and detection-performance. In
practice the question of optimality depends on the strength of noise in the
signal. If the influence of noise is little there is a big possibility that one
can have single-scale edge-detectors which will produce an ”almost” optimal
output, at least from an visual viewpoint. If the influence of noise is large,
there is a small possibility that one can not achieve both good localization and
good detection at a single scale. US-images are typically heavily influenced
by noise. This implies that there will probably not exist a scale such that
one detects all the important edges in the image and that the localization of
these edges is good.

This does not imply that one will stop the investigation of edge-detectors
for US-images at this point. In Ch.(5) a method which enables to bypass
the relation between SNR and LOC will be discussed. This is possible
by relating modulus-maximum across scales. This will enable us to find
the important edges at coarse scales where SNR are high, and trace these
modulus-maximum towards finer scales where LOC is high. This will enable
good localization- and good detection-performance.

4.3 Wiener-filtering.

This section presents a method which estimates the noise in a signal by using
a Wiener-filter.

In the previous section SNR and LOC was introduced as a quantity
of the detection- and localization-performance of an edge-detector. Both
depended on the variance of the noise. In Sect.(6.1) and Sect.(7.1.1) an
edge-detector will be presented based on the noise-estimate and SNR. The
Canny edge-detector uses the probability distribution of noise to separate
the modulus-maximum corresponding to noise from the modulus-maximum
corresponding to the important edges. How this edge-detector performs is
critically dependent on the estimate of the noise.

The section discusses the method Canny used in [3] to find the Wiener-
filter, and how he estimated the noise in signals. At the end this method is
applied to the signal in Fig.(2.7) and image in Fig.(1.4).
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Assume that the noise is added Gaussian white noise. The coefficients of
the wavelet-transform of the noise should be distributed as a Gaussian with
variance σ2 ‖ ψs ‖2

2. This section will explain how Wnσ(u, s) can be obtained
fromWf(u, s) by using a Wiener-filter. The Wiener-filter tries to find a filter
F which separates one of the components of a two-component function. As-
sume that the function f(t) = f0(t)+nσ(t), where nσ(t) is noise. Linearity of
the wavelet-transform implies that Wf(u, s) = Wf0(u, s) +Wnσ(u, s). The
component we wish to isolate is Wnσ(u, s), from which σ2 can be estimated
by Stat.(4.1.1).

The Wiener-filter uses the auto-correlation of Wnσ(u, s) and Wf0(u, s),
and is given by [3];

R1(τ ) =

∫ ∞

−∞
Wf0(u, s)Wf0(u+ τ, s) du

R2(τ ) =

∫ ∞

−∞
Wnσ(u, s)Wnσ(u+ τ, s) du

R3(τ ) =

∫ ∞

−∞
Wf0(u, s)Wnσ(u+ τ, s) du.

The noise and signal is assumed to be independent so R3 = 0. In Ex.(2.1.2) it
was verified that W (kδ)(u, s) = kψ̃s(u), where k is the amplitude. It follows
that;

R2(τ ) = k2

∫ ∞

−∞
ψ̃s(u)ψ̃s(u+ τ ) du = k2

∫ ∞

−∞
ψs(u)ψs(u+ τ ) du

=
−k2

4
√
π

( τ 2

2s2
− 1
)
e−

τ2

4s2 .

As verified by Ex.(2.1.2), Wf0(u, s) = Asθs(u), assumed that f0 has a step-
edge of amplitude A at 0. The auto-correlation is given by;

R1(τ ) = A2s2

∫ ∞

−∞
θs(u)θs(u+ τ ) du

=
A2s2

2
√
π
e−

τ2

4s2 .

The filter F is implicitly defined [3] as the filter satisfying;

R2(τ ) = (R1 +R2) ∗ F (τ ). (4.3.1)
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If the amplitude of the step-edge is large compared with the amplitude of
the noise, one can assume that R1 +R2 ≈ R1, i.e. the filter F is defined as
the filter which satisfies;

k1

( τ 2

2s2
− 1
)
e−

τ2

4s2 = F ∗ k2e
− τ2

4s2 ,

for some constants k1 and k2. A filter of the form;

F (τ ) =
(τ 2

s2
− 1
)
e−

τ2

2s2

can be used as an approximation [3] for F . The filter F was defined to satisfy;

Wf(·, s) ∗ F (u) = (Wf0(·, s) +Wnσ(·, s)) ∗ F (u) = Wnσ(·, s) ∗ F (u),

i.e. the noise-free signal is removed.
The next step is to estimate σ2 from Wn(·, s)∗F (u). Stat.(4.1.1) verified

that E[Wn(u, s)2] = σ2 ‖ ψs ‖2
2. Assume that the wavelet-transform is

calculated for u ∈ Ω, Ω ⊆ N. Then the variance of the values of Wnσ(·, s)
can be estimated by;

E[Wnσ(·, s)2] =
1

|Ω′|
∑

i∈Ω′

Wnσ(ui, s)
2.

Ω′ is a subset of Ω. The next paragraph will determine suitable subsets Ω′

which are can be used to estimate the E[Wnσ(·, s)2].
Canny discussed in [3] two approaches for estimating the noise. The sim-

plest is to estimate σ of all the values, Ω′ = Ω. Canny argued in [3] that
this may be heavily affected by modulus-maximum corresponding to edges
with large amplitude. He rather used some fixed-percent of the modulus-
maximum of smallest amplitude to compute the average amplitude, i.e. Ω′

equals the points in Ω of smallest value. Modulus-maximum caused by noise,
occurs frequently with a Gaussian distribution, while modulus-maximum
corresponding to edges occur infrequently and with larger values. Cannys
method for computing σ2, was to compute the average of the 80% lowest
values. Tab.(4.1) displays the estimate values of σ2 using different percent-
age values. Compared with the example in Sect.(2.7) one may observe that
using 95% of the lowest value to estimate σ results in a noise-estimate which
is close to the ”guessed” estimate in Sect.(2.7).
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100 % 99 % 95 % 80 %
1-D 11 10 8.4 5.4
2-D 11 10.2 8.4 5.5

Table 4.1: Table of noise-estimates for the 1-D signal in Fig.(2.13) and the
US-image in Fig.(1.4). Different percentage-values have been used to calcu-
late the noise-estimates. These values will be used in Ch.(6) and Ch.(7).

Since noise at a point is assumed independent on the values in a neigh-
bourhood of the point, a similar approach has been used to estimate the noise
of the US-image in Fig.(1.4). Recall that the signal in Fig.(2.13) is a hori-
zontal ray of the US-image. To estimate the noise in the image, the writer
has used the above approach to every horizontal line of the US-image. One
may observe from Tab.(4.1) that there is only a minor difference between
the noise-estimates corresponding to the signal in Fig.(2.13) and the image
of Fig.(1.4).
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Part II

Edge-Detectors.





Chapter 5

The Maxima-Tree.

In this chapter it will be investigated how one may connect modulus-maximum
across scales in 1-D and 2-D.

Connecting modulus-maximum across scales is necessary in order to take
advantage of the zooming-property of the wavelet-transform. It is desirable to
know which modulus-maximum at fine scales correspond to which modulus-
maximum at coarse scales. In Sect.(4.2) it was discussed that localization-
and detection-performance of edge-detectors are inversely related. At coarse
scales it is easier to distinguish modulus-maximum corresponding to impor-
tant edges from the less important. At fine scales the spatial position of
the modulus-maximum is good with respect to the position of the edges in
the signal. The target is to connect modulus-maximum across scales which
correspond to similar features in the signal. This relation makes possible
edge-detectors with both good localization- and detection-performance. An-
other motivation for relating modulus-maximum across scales is in order to
estimate the local Lipschitz-regularity of the modulus-maxima. Th.(2.5.1)
verified that it was sufficient to estimate the decay of the wavelet-transform
at the modulus-maximum only. To do this one has to know which modulus-
maximum should be computed versus each other.

There will always be some uncertainty when connecting modulus-maximum
across scales. There is a huge diversity of functions and signals. It is a chal-
lenge to construct a connecting algorithm suitable for all functions, at least if
the computer-efforts should be kept to a minimum. How fast and how much
the signal oscillates and which kind of edges are in the function, are some of
the factors one have to take into account when constructing an connection-
algorithm. The main focus of the discussion is to connect modulus-maximum
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across scales with respect to the signals which are investigated in this thesis.
A surprising bonus of the connection procedure is that the maxima-tree

itself may be used as a simple edge-detector. The maxima-tree will not be
discussed as an edge-detector, but it will be illustrated how one may use
the maxima-tree to detect the important edges in the signal. In Ch.(6) and
Ch.(7) edge-detectors taking advantage of the maxima-tree will be presented.
It will be discussed that these edge-detectors are superior to edge-detectors
which only uses the modulus-maximum at a single scale with respect to the
type of signals analysed in this thesis.

In Sect.(5.1) a 1-D connection-procedure will be presented. How this
algorithm is derived, and how it performs will be discussed. In 2-D there
are (at least) two approaches for how modulus-maximum can be connected
across scales. One may consider the convergence of single modulus-maximum
or the convergence of line-segments (collection of modulus-maximum). How
this can be done will be discussed in Sect.(5.2). One should note that the 2-D
algorithms are not optimal, i.e. false connections may occur. In particular
the discussion of convergence of line-segments across scale is ad hoc. The aim
of the section is to describe how the problems of convergence have been tried
solved with respect to the image in Fig.(1.4) and similar US-images. This
is necessary in order to discuss and illustrate the effect to 2-D multi-scale
edge-detectors.

5.1 1-D Maxima-Tree.

In this section an algorithm creating the 1-D modulus-maximum tree or
maxima-tree will be presented. The motivation behind this construction
and how it is derived will be discussed.

The proposed connection procedure which will be presented requires two
steps. The first step is to find the set of modulus-maximum which possibly
can be connected across scales. This step based on the sign of the modulus-
maximum, and is funded on Prop.(2.5.1). The set of possible connections is
typically redundant. The second step is to remove the redundancy in the set
of possible connections. The first step is based on theoretic facts, i.e. they
are valid for all signals. The second step is based on assumptions. One can
therefore not expect that the proposed algorithm holds for all signals. It will
be discussed when one should suspect problems with the algorithm.

The section begins with a brief account of which information of the
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modulus-maximum are available for constructing the maxima-tree. Two
properties of the sign of the modulus-maximum will be derived. The redun-
dancy of the tree-construction and an algorithm removing the redundancy
will be discussed. At the end the proposed method is briefly compared with
a few alternative methods for connecting modulus-maximum across scales.

In Sect.(2.3) the wavelet-based trivial edge-detector was defined. The out-
put of the trivial edge-detector is all the modulus-maximum at the scales
the wavelet-transform have been computed. Assume the wavelet-transform
is computed for s ∈

{
s1, ..., sJ

}
with si−1 < si. The following information is

available from the output;

• The position {(mj
i , sj)} of the modulus-maximum, where i ∈ {1, ..., Nj}

and sj ∈ {s1, ...sJ}. Nj is the number of modulus-maximum at scale
sj.

• The amplitude aji = |Wf(mj
i , sj)| of the modulus-maximum for i ∈

{1, ..., Nj} and sj ∈ {s1, ...sJ}.

• The sign of the modulus-maximum.

By Th.(2.5.2) it follows that if Wf(u, s) is computed for a dense set of
scales, one may easily determine which modulus-maximum should be con-
nected across scales. In practice one can only compute the CWT for a dis-
crete set of scales. Computing the CWT is typically one of the more time-
consuming operations in edge-detection algorithms. The less scales for which
one has to compute the wavelet-transform, the less computer-effort is re-
quired. In order to determine which modulus-maximum are connected across
scales, one need to exploit some additional information about the modulus-
maximum. The following two properties help to decide which modulus-
maximum can be a member of the same maxima-line, see Def.(2.5.1).

Property 5.1.1 Assume ψ1 is the wavelet given by Eq.(2.1.4) and that the
wavelet-transform has been computed with respect to ψ1. The sign of a
modulus-maximum can not change along a maxima-line.

Proof: Assume (m0, s0) and (m1, s1) are two modulus-maximum ofWf(u, s),
and assume that they are on the same maxima-line. Assume 0 < s0 < s1

and sign(a0) 6= sign(a1), where a0, a1 are the amplitude of the modulus-
maximum. By Th.(2.5.2) the maxima-line is connected, and Prop.(2.5.1)
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implies that there exists a modulus-maximum (m, s) with s0 < s < s1 and
a = 0. If a = 0, the point can not be a modulus-maximum, contradicting
that (m, s) is a modulus-maximum.

�

Property 5.1.2 Assume ψ1 is the wavelet given by Eq.(2.1.4) and that the
wavelet-transform has been computed with respect to ψ1. Two maxima-lines
of opposite sign can not cross.

Proof: Assume (m0, s0) and (m1, s1) are two related modulus-maximum
of positive sign, and (y0, s0) and (y1, s1) are two related modulus-maximum
of negative sign. Assume that m0 > y0 and m1 < y1. Prop.(2.5.1) and
Th.(2.5.2) imply that there exists a s0 < s < s1 such that (m, s) = (y, s),
where m is connected to the maxima-line of m0 and m1 and y is connected
to the maxima-line of y0 and y1. Denote by am and ay the amplitude of the
modulus-maximum at scale s. Then as = ay ⇒ as = ay = 0 contradicting
that they are modulus-maximum.

�

(a) (b)

Figure 5.1: (a) The ”+” corresponds to modulus-maximum with positive am-
plitude. The ”-” corresponds to modulus-maximum with negative amplitude.
(b) The relation between the modulus-maximum by using Prop.(5.1.1) and
Prop.(5.1.2). The dotted lines correspond to possible maxima-lines where
the two properties can not determine which are related.

Fig.(5.1) illustrates how the two properties establish the set of possible con-
nections of modulus-maximum across scales. One may observe that if two
(or several) maxima-lines of similar sign are not separated by a maxima-line
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of opposite sign, the properties can not tell which modulus-maximum are
related in a unique way. This redundancy will be attempted removed in the
next step of the algorithm. An error which may be difficult to remove is
illustrated by the dotted lines in Fig.(5.1b). None or one of the dotted lines
can be solid, but not the both. This may or may not be fixed by the next
step of the algorithm. One can determine which, if any, of the maxima-lines
should be connected by computing the CWT for some additional scales in
between the scales which causes difficulties.

Before presenting how one may remove the redundancy in the set of pos-
sible connections achieved by using Prop.(5.1.1) and Prop.(5.1.2), the be-
haviour of the maxima-line will be investigated. This discussion is restricted
to its simplest form; the function f(t) = u(t) + Au(t− 1) for A > 1, where
u(t) is the Heaviside. I.e. f has step-edges at 0 and 1, and f changes more
at 1 than at 0. The discussion will be done with respect to the wavelet ψ1

in Eq.(2.1.4). By Ex.(2.1.2) it follows that;

Wf(τ, s) =

∫ ∞

0

1√
s
ψ1
s(t− τ ) dt+

∫ ∞

1

1√
s
ψ1
s (t− τ ) dt

= sθs(τ ) +Asθs(τ − 1).

By symmetry of the Gaussian, all modulus-maximum of Wf(τ, s) are within
]0, 1[ for all s ∈ R+. The maxima-lines are found by solving the following
equation for (τ, s) ∈ R+×]0, 1[;

dWf(τ, s)

du
= −ψ1

s(τ ) −Aψ1
s(τ − 1) = 0

⇓

0 = τe−
τ2

2s2 +A(τ − 1)e−
(τ−1)2

2s2

⇓

τe−
τ2

2s2 = A(1 − τ )e−
(τ−1)2

2s2

⇓

ln(τ )− τ 2

2s2
= ln(A) + ln(1 − τ ) − (τ − 1)2

2s2

⇓

g(τ ) := ln(
τ

1 − τ
) = ln(A) +

1

s2
(τ − 1/2) =: f(τ ).
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Figure 5.2: The graphs of f(τ )(thin lines) and g(τ )(thick line) for some
A > 1. The line marked s > s0 corresponds to f(τ ) at coarse scales before
the maxima-line which converges to the small edge appears. The line marked
s = s0 corresponds to f(τ ) at the scale the second modulus-maxima appear,
and the line marked s < s0 corresponds to f(τ ) at small scales.

Note that all factors in the 3.rd equality are strictly positive, and note
from the last equality that the scale determine the slope of f(τ ). Consider
Fig.(5.2) displaying the values of f(τ ) and g(τ ) for u ∈]0, 1[. The points of
intersections between g(τ ) and f(τ ) are the candidate modulus-maximum of
Wf(τ, s). From this the following consequences emerge;

• As s→ ∞ there is only one modulus-maximum. This is positioned at
τ = A

1+A
.

• The maxima-line originating at lims→∞( A
1+A

, s), converges towards the
step-edge of maximal strength.

• The maxima-line at coarse scales converges towards both step-edges if
and only if A = 1.

• If A > 1 there exists an s0 > 0 such that for s > s0 there is only
one solution, s = s0 two solutions and for s < s0 three solutions of the
equation g(τ ) = f(τ ) for τ ∈]0, 1[. The intersection to the left and right
converge towards resp. 0 and 1 as s→ 0. The intersection in the center
converges towards 1/2. The right and left intersection correspond to
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modulus-maximum. The middle intersection corresponds to a local
minimum.

• s0 depends on A. The larger A the smaller value of s0, i.e. the finer
scale before the small step-edge will be detected. Generally one can say
that the larger ratio between two step-edges, the smaller scale before
the small step-edge is detected.

• The larger value of A, the larger minimal spatial distance between the
maxima-lines converging to 0 and 1.

Note in particular that the scale at which the small edge is detected, does not
depend of the strength of the edge only, but of the strength of other edges
in its proximity. The term spatial distance of two modulus-maximum (x, s1)
and (y, s2) will be denoted d(x, y) and is defined as d(x, y) = |x − y|. Let
la : R+ →]0, 1[ denote the maxima-line which converges towards a. la(s) is
the modulus-maximum at scale s of the maxima-line which converges towards
a.

Statement 5.1.1 Let f(t) = u(t)+Au(t−1) for A > 1, where u(t) denotes
the Heaviside. Let the wavelet-transform be computed with respect to the
wavelet ψ1(t). For all γ ∈]0, 1/2[ there exists an A > 1 such that l0 first
appears at γ, where l0 is the maxima-line which converge towards 0. The
scale s0 at which l0 first appears is given by;

s0 =
√
γ − γ2.

The strength A of the step-edge at 1 is given by;

A =
γ

1 − γ
e

−1

2(γ2−γ) e
1

(γ−1) .

Assume (x1, s1) and (x2, s2) are two elements of l0 and (y1, s1) and (y2, s2)
are two elements of l1. Then;

d(x1, x2) = |x1 − x2| < γ

d(y1, y2) = |y1 − y2| < γ

d(y1, x1) = |y1 − x2| > 1 − 2γ.
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Proof: Assume γ ∈]0, 1/2[. At the scale which the modulus-maximum first
appears, the slope of the function f is equal the slope of g. I.e.

f ′(γ) = g′(γ) = − 1

γ2 − γ
> 0

⇓

f(t) = − 1

γ2 − γ
t+ C

Since f(a) = g(a) at the point the maxima-line first appears;

f(γ) = − 1

γ2 − γ
γ + C = ln

( γ

1 − γ

)
= g(γ)

⇓

C = ln
( γ

1 − γ

)
+

γ

γ2 − γ

As previously mentioned, the gradient of f(t) determines the scale of which
the wavelet-transform is computed. I.e. the scale at which m0 appears is
given by;

s0 =

√(
− 1

γ2 − γ

)−1

=
√
γ − γ2.

The value of f(1/2) equals ln(A). I.e;

ln(A) = f(1/2) = − 1

2(γ2 − γ)
+ ln

( γ

1 − γ

)
+

γ

γ2 − γ

A =
γ

1 − γ
e
− 1

2(γ2−γ) e
1

γ−1

The inequalities concerning the spatial distance between the maxima-lines
follow easily.

�

One consequence of this statement is that if the maxima-line converging to
the smallest edge exists, say at (τ, s), then the ratio between the two edges

is larger than τ
1−τ e

−1

2(τ2−τ) e
1

(τ−1) .
The next step of relating modulus-maximum across scales is to process

the set of possible connections established by Prop.(5.1.1) and Prop.(5.1.2).
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The target is to establish which of the possible connections ”most likely”
correspond to the actual maxima-line. Note that in practice there will al-
ways be some uncertainty whether the correct connections are made. This
uncertainty depends on the signal which is analysed. Consider the model
function f(t) = u(t) + Au(t − 1) and assume that A > 1. By the re-
marks prior to Stat.(5.1.1) this implies that a maxima-line converges to one
and only one modulus-maxima at the finest scale, or equivalently that each
modulus-maximum at coarse scale corresponds to one and only one modulus-
maximum at the next finer scale. In one case it is easy to establish the
correct connections; If a modulus-maximum can be connected with only one
modulus-maximum at the next finer scale, Th.(2.5.2) guarantees that these
are connected. The obstacle appears if a modulus-maximum can be con-
nected with several modulus-maximum at the next finer scale, or if several
modulus-maximum can be connected with several modulus-maximum at the
next finer scale. In the following a method which attempts to establish the
correct connections will be presented.

Assume f(t) = u(t) + Au(t − 1), A > 1. The underlying idea of how
the modulus-maximum should be connected across scales is motivated by a
connection-algorithm found in [7]. This algorithm will be briefly discussed
at the end of the section. Assume a modulus-maximum m can be connected
with N modulus-maximum mi at the next finer scale s. The idea is that the
modulus-maximum m should be connected with the modulus-maximum mi

which maximises;

|Wf(mi, s) ·D(di, β)|. (5.1.1)

di = |m − mi| is the spatial distance between the modulus-maximum at
the two scales, and D : R × R+ → R is an appropriate function. The next
paragraph will investigate if such functionD(t, β) exists and eventually which
properties D(t, β) will have to fulfil.

The function D : R×R+ → R will be assumed to satisfy D(a, s) > D(b, s)
for |a| < |b|, and that D(t, β) > 0, ∀(t, β) ∈ R × R+. This assumption re-
flects the observation that spatial distance between two elements of the same
maxima-line, is less than if one element is a member of another maxima-line.
Assume f(t) = u(t) + Au(t− 1), A > 1, and Wf(τ, s) is computed at scales
{s1, ..., sN}. In the following it will be discussed what D(t, β) has to fulfil in
order to make the correct connections by using Eq.(5.1.1).
Case 1: Assume that one modulus-maximum can be connected with only
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one modulus-maximum at the next finer scale. By Th.(2.5.2) they should
connected. Any function D(t, β) which satisfies the above assumptions will
make the correct connection.
Case 2: Assume that one modulus-maximum m at scale s′, can be con-
nected with two modulus-maximum m1 and m2 at the next finer scale s.
Assume in addition that Wf(m1, s) > Wf(m2, s), i.e. m1 > m2. This is
the case between two scales where the second maximaline appears. Assume
d1 = |m −m1| and d2 = |m −m2|. By the observations prior to St.(5.1.1)
d1 < d2, and m should be connected with the modulus-maximum at the
next finer scale of largest amplitude. Any function D(t, β) which satisfies
the above assumptions will make the correct connection.
Case3a: Assume that two modulus-maximum m and m′ at scale si can
be connected with two modulus-maximum m1,m2 at the next finer scale
si−1. This is the case if two maxima-lines of similar sign are not sepa-
rated by a maxima-line of opposite sign. Consider the scenario Wf(m, si) >
Wf(m′, si), i.e. m > m′. We wish to find which of m1 and m2 should
be connected with m. By the observations prior to St.(5.1.1), m should be
connected with the modulus-maximum of largest amplitude, say m1. Then
Wf(m1, si−1) > Wf(m2, si−1). In addition d1 = |m−m1| < |m−m2| = d2.
Any D(t, β) will establish the correct connection.
Case3b: Assume that two modulus-maximum m,m′ at scale si can be con-
nected with two modulus-maximum m1,m2 at the next finer scale si−1. This
is the case if two maxima-lines of similar sign are not separated by a maxi-
maline of opposite sign. Consider the scenario Wf(m, si) > Wf(m′, si), and
we wish to find which of m1 and m2 should be connected with m′. By the
observations prior to St.(5.1.1), m′ should be connected with the modulus-
maximum of smallest amplitude, say m2. In this case Wf(m1, si−1) <
Wf(m2, si−1). By the above observations it follows that d1 = |m − m1| >
|m−m2| = d2. In this case the choice of function D(t, β) is critical. Not any
function D(t, β) will establish the correct connection.

As previously discussed, the larger A the smaller scale before the maxima-
line converging to the small step-edge appears. This implies that the minimal
spatial-distance between the two maximalines increases as A increases. If
D(t, β) decays sufficiently fast with respect to the scale, one might hope that
the correct connections are made in also Case(3b). Let f(t) = u(t)+Au(t−1),
and A > 1. Assume the wavelet-transform is computed with respect to the
wavelet ψ1, and that l0 and l1 are the maxima-lines converging to resp 0 and
1. Assume that l0 and l1 exists for all 0 < s < s0. Let 0 < s1 < s2 < s0
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and let x1 and x2 be points of l0 at scale s1 and s2 and y1 be a point of l1
at scale s1.For the model-function f(t) it follows by Stat.(5.1.1) that there
exist a γ ∈]0, 1/2[ such that;

d(x2, x1) < γ,

d(x2, y1) > 1 − 2γ.

D(t, β) will establish the correct connection in Case(3b), the following in-
equality holds;

|Wf(x1, s1)D(d(x2, x1), β)| > |Wf(y1, s1)D(d(x2, y1), β)|. (5.1.2)

By St.(5.1.1) and monotony of θ(t) and D(t, s) for t ∈ R+ it follows that;

|Wf(x1, s1)D(d(x2, x1), β)| ≥ |Wf(x1, s1)D(γ, β)|

= s1|
(
θs1(x1) +Aθs1(x1 − 1)

)
D(γ, β)|

≥ s1|
(
θs1(γ) +Aθs1(1)

)
D(γ, β)|

|Wf(y1, s1)D(d(x2, y1), β)| ≤ |Wf(y1, s1)D(1 − 2γ, β)|

= s1|
(
θs1(y1) +Aθs1(y1 − 1)

)
D(1 − 2γ, β)|

≤ s1|
(
θs1(1 − γ) +Aθs1(0)

)
D(1 − 2γ, β)|.

So with respect to Eq.(5.1.2) it is sufficient that;

|
(
θs1(γ) +Aθs1(1)

)
D(γ, β)| > |

(
θs1(1 − γ) +Aθs1(0)

)
D(1 − 2γ, β)|

(5.1.3)

For the signal f(t) = u(t) + Au(t− 1), all the components of Eq.(5.1.3) are
positive so if the following inequalities hold;

θs1(γ)D(γ, β) > θs1(1 − γ)D(1 − 2γ, β)

θs1(1)D(γ, β) > θs1(0)D(1 − 2γ, β),

then Eq.(5.1.2) holds. A similar argument holds for all pairs of step-edges
of similar sign. Assume D(t, β) is of the form D(t, β) = e−t

2/β2
for β ∈ R+.

The above inequalities become;

e
− γ2

2s21 e
− γ2

β2 > e
− (1−γ)2

2s21 e
− (1−2γ)2

β2

e
− 1

2s21 e
− γ2

β2 > e
− (1−2γ)2

β2 .
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Since a < b⇒ ln(a) < ln(b), a < b, c < d⇒ a+ c < b+ d and if one assume
that β2 = 2s2

1b
2 for some b ∈ R, the following inequality is obtained;

1 − 4γ + 3γ2

β2
>

γ

2s2

⇓
1 − 4γ + 3γ2 > b2γ.

Unfortunately this equality can not be solved for all γ ∈]0, 1/2[. The left side
is less than zero for γ ∈ [1/3, 1/2[, while the right side is strictly positive for
all γ ∈]0, 1/2[. This implies that either there exists no function of the form
D(t, β) = e−t

2/β2
which establishes the correct connections by Eq.(5.1.1), or

that some of the above inequalities are too strict. These questions will not
be further investigated. Instead the unsolvability of the above inequality will
be discussed for some values of b. If b = 1 the above inequality holds for
all γ ∈]0, 0.232[, if b = 1/2 the above inequality holds for γ ∈]0, 0.3[ and
if b = 1/4 the above inequality holds for all γ ∈]0, 0.3233[. By St.(5.1.1)
this implies that if A is larger than resp. 1.357, 1.115 and 1.07 the correct
connections are made by Eq.(5.1.1). Equivalently, if d(x1, x0) is less than
resp. 0.232, 0.3 and 0.323 the correct connections are made regardless of
A > 1. It may be tempting to choose b to be very small in order to ensure
that the correct connections are made for as low A as possible. For small
values of b the effective width/support of D(t, β) becomes narrow. This may
cause problems in numeric implementations. b should be chosen such that
D(t, β) is ”numerically” strictly larger than 0 for all t ∈]0, 1[. In addition it
is very little to gain by choosing b < 1/4. For the representation illustrated
in Fig.(5.3), the value of b is 1. It appears that the correct connections are
made.

A summary of the proposed algorithm can be formulated as;

1. ComputeWf(u, s) for s ∈ {s1, ..., sN} and find the modulus-maximum.

2. Use Prop.(5.1.1) and Prop.(5.1.2) and find the possible connections of
the modulus-maximum across scales.

3. If a modulus-maximum m at coarse scale can be connected with N
modulus-maximum {mi}Ni=1 at the next finer scale, connect the modulus-
maximum at coarse scale to the modulus-maximum at the finer scale
which maximises |Wf(mi, s)D(di, s)|. di is the spatial distance between
m and mi.
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Note in step 3, that the modulus-maximum are traced from the coarse scales
and ”forced” to connect with something at the next finer scale. This guaran-
tee that all modulus-maximum at coarse scales converge towards a modulus-
maximum at the finest scale. This coincides with Th.(2.5.2). This would
not necessarily be true if one used a fine-to-coarse tracking of the modulus-
maxima. In addition the algorithm guarantees that one modulus-maximum
corresponds to at most one modulus-maximum at the next finer scale. I.e.
a ”1-1” relation between modulus-maximum is guaranteed. This will enable
one to combine the good detection-performance at coarse scales together with
the spatial accuracy at fine scales. One can therefore construct edge-detectors
with good detection- and localization-performance. Note that if a maxima-
line should split, i.e. if two step-edges have similar strength, the proposed
algorithm fails to include both modulus-maximum. The algorithm will force
a 1-1 connection.

As discussed, the proposed algorithm fails to establish the correct con-
nections if the strength of two step-edges is almost equal or equal. In addi-
tion, false connections may occur at small scales with the presence of noise.
The relative part of the amplitude of the wavelet-transform corresponding
to noise increase as the scale decreases. This may therefore cause false con-
nections. On the other hand one may observe from Fig.(2.7) that the sign
of modulus-maximum caused by noise is typically alternating. This will not
prevent the possibility of false connections, but together with Prop.(5.1.2)
this will restrict the spatial errors caused by eventual false connections. An-
other source of error is that one tries to make an algorithm designed for a
model-function to hold for a general signal. For instance is there are several
close edges in the signal. In the design of the algorithm, a pair of step-edges
was used as the starting point. Because the Gaussian decays fast, this as-
sumption will not cause errors if the edges are sufficiently isolated. If for
instance one is dealing with three step-edges of similar sign with (almost)
equal strength and they are equally close to each other, the behaviour of
the maxima-line will be different than what discussed in Stat.(5.1.1). If the
signal contains smoothened edges this may be another source of false connec-
tions. As discussed in Sect.(2.6.3), the wavelet-transform of a smoothened
step-edge decays faster than a step-edge.

In order to verify the performance of the algorithm in practice, the algo-
rithm is applied to the signal in Fig.(2.13). Fig.(5.3) illustrates the output of
the algorithm. The input to the algorithm are all the modulus-maximum at
scale s = 2, 3, 4, ..., 22. This is a much larger range of scales than what will be
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(a)

(b)

(c)

Figure 5.3: The maxima-tree corresponding to the signal in Fig.(2.13). The
proposed algorithm has been used to construct the maxima-tree. (a) s ∈
[2, 10]. (b) s ∈ [2, 22]. (c) The signal.

used in the discussion of the edge-detectors. This has been done to test the
algorithm at both fine and coarse scales. In Fig.(5.3) there are no apparent
false connections made by using this algorithm on the signal in Fig.(2.13).

After relating modulus-maximum across scales, one may assign to each
modulus-maximum at the finest scale a quantity indicating at which scale it
is first detected. The length in time-scale plane of the maxima-line converging
towards the modulus-maximum at the finest scale. Assume that there are N
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modulus-maximummi at the finest scale. Assign to each modulus-maximum
mi the class [mi]

N
i=1 containing the modulus-maximum converging towards

mi. In this thesis, the length of the maxima-line which converges towards
mi is defined as the number of elements in [mi]. In addition to the three
remarks in the beginning of this section, one may now assign the following
quantities to each modulus-maximum at the finest scale;

• The length li = |[mi]| of the maxima-line which converges towards mi.
| · | denote the number of elements.

• The weighted average amplitude āi of the modulus-maximum which
converge towards mi for i ∈ {1, ..., N}.

For a modulus-maximum m at scale s, the weighted value of the wavelet-
transform at the modulus-maximum is given by s−1/2Wf(m, s).

As mentioned in the introduction, the maxima-tree may be used as an
(simple) edge-detector. The key-component of this edge-detector is the length
of the maxima-lines. Note in Fig.(5.3a) that all but one of the seven modulus-
maximum at the coarsest scale converges towards the most important fea-
tures in the signal. The exception is the modulus-maximum which converges
towards 440. Compared to the other edges, this edge is of little impor-
tance. This exception represents a unique characteristic feature of this edge-
detector, namely its (relative) invariance to the of the strength edges. A
small edge will have a long maxima-line if there are no stronger edges in
the proximity of the edge. This agrees with the observations made at the
beginning of the section.

The second task is to compare the proposed algorithm to with a few alter-
native methods from the literature. The first algorithm is by Lu et al. and is
found in [7]. This method is the motivation behind the proposed algorithm.
Although they may appear similar, there are some major differences between
the methods. One obvious difference is the function D. The function D is
by Lu et al. defined as the reproducing kernel between the wavelets at the
two scales, say s1 and s0. If the wavelet is given by ψ1

s , the corresponding
expression of D(t, s0, s1) is given by;

D(t, s1, s0) = Ke
−1/2 τ2

s1
2+s0

2
(
τ 2 − s1

2 − s0
2
)
,

whereK is some constant. Note that D(t, s0, s1) has the form of the Mexican-
Hat, and that the Mexican-Hat is not monotone. Monotony was the basic
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assumption about the function D(t, β) in the proposed algorithm. The algo-
rithm of Lu et al. can be formulated as;

1. ComputeWf(u, s) for s ∈ {s1, ..., sN} and find the modulus-maximum.

2. Connect a modulus-maximum with the modulus-maximum at the next
coarser scale which maximizes |a1

jD(dj , s0, s1)|. a1
j is the amplitude of

the modulus-maximum at the coarse scale, and dj is the spatial distance
between the modulus-maximum.

3. If a modulus-maximum can be connected with several modulus-maximum
between two scales, use Prop.(5.1.1) to establish which modulus-maximum
should be connected. If there is still not a 1-1 correspondence between
modulus-maximum, connect the modulus-maximum which is most sim-
ilar with respect to the amplitude and the spatial position.

In difference to the proposed method, this method uses a fine-to-coarse track-
ing of the modulus-maximum, i.e. the method begins at the finest scale.
This may fail to ensure that all modulus-maximum converges towards finer
scale. This may be observed in Fig.(5.4). Therefore one may encounter
that modulus-maximum at coarse scale does not correspond to any modulus-
maximum at finest scale. This is not in accordance with Th.(2.5.2). Worse,
the function D(t, s0, s1) does not necessarily establish the correct connec-
tions in Case(3b). This phenomenon is causing that there are often several
connections between maxima-line of similar sign in Fig.(5.4). This is caused
by a too slow decay of the ratio D(ε, s0, s1)/D(1 − ε′, s0, s1) with respect
to scale. This error may cause that the final maxima-line converging to a
modulus-maximum, may be given shorter time-scale length than it actually
has. This phenomenon may be observed in Fig.(5.4). The final difference is
that this method can be more tricky to implement, in particular the second
remark in step 3 of the algorithm may be tricky.

One commonly encountered method for establishing the maxima-tree, is
by regarding the Lipschitz-regularity of the possible connections [4]. This
method is based on the set of possible connections obtained after using
Stat.(5.1.1) and Stat.(5.1.2). The first step is to estimate the Lipschitz-
regularity between each possible connection. Then, if a modulus-maximum
m can be connected with several modulus-maximum at the next finer scale,
m should be connected with the modulus-maximum which gives a Lipschitz-
value most similar to the Lipschitz-values of the maxima-line which converges
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Figure 5.4: The red lines correspond to the maxima-tree corresponding to
the signal in Fig.(2.13) by using the algorithm of Lu et al. for s ∈ [2, 22]

towards m. One may wonder how this is possible at the coarsest scales. In
practice it is typically not a problem to relate modulus-maximum at the
coarsest scales based on the sign and spatial position. It may however be
tricky at fine scales. This method is efficient and reliable for manually estab-
lishing the correct connections, and may be more reliable for avoiding false
connections at scales where the noise appears. Another advantage with this
method is that is not coloured by assumptions made about the function or
signal which is analysed, i.e. one does not need to use a function on the
form f(t) = u(t) + A(t) as a starting-point. The algorithm should in prac-
tice be reliable for all signals. On the other hand this method is trickier to
implement. One may observe from Fig.(2.16) that a ”similar” decay does
not necessarily imply that the decay is (almost) constant. ”Similar” decay
should be understood as the decay which preserves a ”similar behaviour” as
the decay towards a modulus-maximum.

The latter and the proposed connection algorithm will return similar
maxima-tree for the signal in Fig.(2.13) and other similar signals. The dif-
ference between these methods is the effort needed to implement the meth-
ods. The proposed method is by far simpler to implement. For the signal
in Fig.(2.13) it is not necessary to use Prop.(5.1.2) to establish the cor-
rect connections. It suffices to find the modulus-maximum which maximises
Eq.(5.1.1) of similar sign. This makes this method fast and very easy to
implement. The Lipschitz-method is easy to use manually, and will be more
reliable for a wider range of signals. The problem is that this method is
trickier to implement.
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5.2 2-D Maxima-Tree.

In this section different approaches for connecting modulus-maximum across
scales in 2-D will be investigated.

In 1-D, the starting-point for the proposed connection-algorithm was some
facts based on the sign. These facts hold for all signals. In order to obtain an
1-1 connection of modulus-maximum across scales, some assumptions about
the signals were used to achieve the desired representation. In 2-D there are
very few theoretic facts which can be used as a foundation of the algorithm.
Instead assumptions are used to create the connection-algorithm.

The section will begin with discussing how one may connect single modulus-
maximum across scales, before presenting a method for connecting line-
segments across. This will enable to create 2-D edge-detectors which take
advantage of information from several scales. One consequence of discussing
line-segments is that one can obtain information about the size of the objects
in the image. Why and how this can be done, is discussed in the last section.

5.2.1 Connecting modulus-maximum across scales in

2-D.

In this section a procedure which connects modulus-maximum across scales
in 2-D will be presented.

A similar method as in 1-D will be used to relate modulus-maximum
across scales in 2-D. Before this algorithm can be applied, one has to find the
modulus-maximum which can be connected. In the previous section the sign
of Wf(u, s) was used to reduce the number of possible connections. In 2-D,
the orientation of modulus-maximum will be used to reduce the number of
possible connections.

The section begins with a brief summary of the information one may as-
sign to each modulus-maximum, before discussing assumptions used to relate
modulus-maximum across scales. At the end a connection algorithm will be
presented.

The following information of the modulus-maximum in 2-D is available from
the 2-D continuous wavelet-transform;

• The position of the modulus-maximum {((xji , y
j
i ), sj)} for i ∈ {1, ..., Nj}

and sj ∈ {s1, ..., sJ}. Nj is the number of modulus-maximum at a given
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scale sj .

• The orientation of a modulus-maximum, given by Af((xji , y
j
i ), sj).

• The amplitude of a modulus-maximum given by Mf((xji , y
j
i ), sj).

The definition of Af((x, y), s) and Mf((x, y), s) is found in Sect.(3.2). In
the previous section, Th.(2.5.2) and two consequences of Prop.(2.5.1) were
used to find which modulus-maximum could be connected across scales. As
discussed in Sect.(3.3), there are some uncertainties of the structure of the 2-
D modulus-maximum plane. It is uncertain whether all modulus-maximum
converge towards finer scales, and eventually how a modulus-maximum con-
verges. In this thesis it will be assumed that all modulus-maximum converges
towards the finest scale. The relation between modulus-maximum across
scales is an important property when analysing noisy signals. As discussed
in Sect.(4.2), it is difficult to achieve both good detection- and localization-
performance without relating modulus-maximum across scales. In order to
relate modulus-maximum across scale, some assumptions are used of how
modulus-maximum can be related across scales. The pay-off for relying on
assumptions only, is that this connection-procedure is more vulnerable for
false connections.

First, one needs to find the possible connections of modulus-maximum
in 2-D. Assume that {((xNi , yNi ), sN)} is a modulus-maximum as scale sN .
One has to decide which modulus-maximum at the next finer scale this
modulus-maximum may be connected with. A modulus-maximum in 2-D
is typically one of several modulus-maximum which constitute a connected
line-segment. The first obstacle is to decide which of the modulus-maximum
in the line-segment at the next finer scale, the modulus-maximum can be con-
nected with. Fig.(5.5) illustrate the problem of determining which modulus-
maximum should be connected across scales. It will not be discussed which
of the possible connections that are more correct. In this thesis the possible
connections at the next finer scale will be restricted to the modulus-maximum
which intersects the line given by m + nt. m is the position of the modulus-
maximum at coarse scale, and n is the direction of the modulus-maximum.
In Fig.(5.5) this is illustrated by a solid red line. Note that the assumption
is not reflecting a theoretic fact. This assumption will not guarantee that
the correct modulus-maximum are connected across scales, nor will it guar-
antee that all modulus-maximum converge towards finer scale. The problem
with convergence is caused by the possibility that the assumption does not
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Figure 5.5: The black line corresponds to scale sN and the blue line corre-
sponds to scale sN−1 with sN > sN−1. The red dot is a modulus-maximum
at coarse scale. The red lines show the possible connections to modulus-
maximum at fine scale.

find any candidate modulus-maximum at the next finer scale. One should in
particular be careful for false connection at the end of line-segments, or if a
line-segment breaks up between two scales. Assume the modulus-maximum
connected at fine scale are close to the modulus-maxima which should have
been connected and a member of the same line-segment. Continuity of the
wavelet-transform ensures that such false connections will not seriously affect
the estimate of the Lipschitz-regularity. If the modulus-maxima at the next
finer scale is on another line-segment, then a false connection will be criti-
cal. However, if the critical false connections are few and appear spuriously,
these error-connections will not seriously corrupt the ”visual” output of the
edge-detector.

In 1-D, the sign of the modulus-maximum was used to reduce the num-
ber of possible connections between two scales. The corresponding quantity
in 2-D is the orientation of a modulus-maximum. Unfortunately one does
not have the possibility of establishing equally strict statements about the
orientation of a modulus-maximum as the sign did in 1-D. However, if the
signal is sufficiently nice and the CWT is computed for a sufficiently dense
set of scales, one may say that the orientation of a modulus-maximum should
not ”change too much”. The procedure of finding the candidate connections
across scales can be formulated as follows;
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(a) (b)

(c) (d)

(e)

Figure 5.6: The 2-D maxima-tree for the US-image in Fig.(1.4).
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• Given two scales s0 and s1 with s0 < s1, and a modulus-maximum m
with orientation n at scale s1. The candidate connections at scale s0

are the modulus-maximum which intersects the line given by m+nt for
t ∈ [−Ω,Ω], Ω ∈ R+. The orientation of

{
mi

}
i=1N should be similar to

the orientation of m. N is the number of possible connections at the
next finer scale.

The orientation-condition should be chosen loose enough to allow that the
orientation changes as the details of the contour increases. One obstacle in
2-D, is that if an edge of small strength is (almost) perpendicular to an edge
of large strength, the modulus-maxima corresponding to the two edges will
be close at all scales. In 1-D an edge of large strength would prevent the
existence of modulus-maxima corresponding to small edges at coarse scales.
Therefore the orientation-condition should be chosen sufficiently strict to
prevent false connections caused by edges with a different orientation. Ω > 0
should be chosen large enough to allow that the spatial accuracy of the
contour increases. On the other hand, Ω should be chosen small enough to
reduce the likeliness of false connections, e.g. at the end of line-segments
or in case of breaking of the line-segments. Without the Ω-condition, the
algorithm would ”force” a connection regardless of the spatial position of the
modulus-maxima at fine scale. The connections made by this statement are
typically redundant. Similarly as in 1-D, this redundancy will be achieved
removed by the next step of the algorithm.

In the previous section a connection algorithm based on the spatial po-
sition of the modulus-maximum and the amplitude was investigated. It will
be attempted to reduce the 2-D problem to a 1-D problem, and then use
the algorithm from the previous section. In 2-D the discussion will be re-
stricted to its simplest case, two parallel step-edges. Assume that the 2-D
signal is given by f(x, y) = u(x) +Au(x− 1) for some A > 1. With respect
to the semi-wavelet ψ = ψ1(x)θ(y) and v = (v1, v2), the expression for the
continuous wavelet-transform becomes;

W nf(v, s) = W xf(v, s)

=

∫ ∞

−∞
θs(y) dy

(∫ ∞

0

ψ1
s(x− v1) dx+A

∫ ∞

1

ψ1
s(x− v1) dx

)
.

I.e. one may use a similar algorithm as in the previous section with Wf(τ, s)
replaced withMf((x, y), s) and d((x1, x2), (y1, y2)) =

√
(x1 − y1)2 + (x2 − y2)2.
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The procedure for connecting modulus-maximum across scales can be
summarized by the following algorithm;

1. ComputeW xf((x, y), s),W yf((x, y), s),Mf((x, y), s) and Af((x, y), s)
for s ∈ {s1, ..., sN}.

2. Find local maxima of Mf((x, y), s) in the local direction given by
Af((x, y), s) for s ∈ {s1, ..., sN}.

3. Find the set of possible connections between modulus-maximum across
scales based on spatial-position and the orientation of the modulus-
maximum.

4. If a modulus-maximum m at coarse scale can be connected to N
modulus-maximum mi at the next finer scale s, connect m to the
mi which maximizes |Mf(mi, s)D(di, s)|. di is the spatial distance
between m and mi.

After this algorithm has been applied, one may for each modulus-maximum
mi at the finest scale define the class [mi]. The class [mi] contains the
modulus-maximum which converge towards mi. Assume there areN modulus-
maximum mi at the finest scale. The following quantities can now be assigned
to each modulus-maximum at the finer scale;

• The length li = |[mi]| in time-scale plane of the maxima-line converging
to mi for i ∈ {1, ..., N}.

• The weighted average amplitude āi of the modulus-maximum along the
maxima-line converging to mi for i ∈ {1, ..., N}.

The uncertainty related to the behaviour of the modulus-maximum sur-
face in 2-D, causes that this connection algorithm should always be followed
with a visual investigation to ensure that there are no spurious connections.
In practice, it suffices that the majority of connections are correct. A few
isolated spurious connections will not seriously corrupt the visual output.

5.2.2 Connecting line-segments across scales in 2-D.

In this section convergence of line-segments across scales will be discussed.
In the previous section, the uncertainty of how a single modulus-maximum

converges in 2-D was discussed. In order to circumvent the problem of how
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single modulus-maximum converges in 2-D, one can consider convergence of
line-segments. This will avoid some of the problems which were discussed in
the previous section. Unfortunatly, this method will introduce new obstacles.
Some of these obstacles, and how they are tried avoided in this thesis will
be discussed. A consequence of dealing with line-segments rather than single
points, is that one can extract information of the length (within a scale) of
line-segments. This quantity may (optimally) be used to represent the cir-
cumference of an object. This will prove a very useful tool for identifying
the important objects in the US-signal in Fig.(1.4). In Ch.(7) edge-detectors
taking advantage of the convergence of line-segments will be discussed. It
will be illustrated that these edge-detectors will be particularly useful for
analysing the US-image. Although the connection-algorithm can be unsta-
ble and ad hoc, it is able to visualise the effect of taking advantage of the
convergence of line-segments across scales.

The section begins with an illustration of the problem of disconnected
line-segments and some of the problems with convergence of line-segments.
The underlying idea of how disconnected line-segments have been connected
across scales in this thesis will be presented.

Fig.(5.8b) and Fig.(5.7) illustrate resp. the modulus-maximum at two scales
from the image in Fig.(5.8a) and a segment of the signal in Fig.(1.4). Three
phenomenons may be observed. First, from Fig.(5.7) one may observe that
modulus-maximum are typically chained together into connected line-segments,
representing the boarder of the objects in the signal. The number of iso-
lated modulus-maximum is relatively small. Second, the length of the line-
segment typically reflects the ”size” or circumference of the object. The
modulus-maximum of major objects are typically chained together into long
line-segments, while modulus-maximum corresponding to noise, texture and
smaller objects are chained together into shorter line-segments. The third
observation is that connected line-segments have a tendency to break up into
smaller line-segments as the scale decreases. The first and second observa-
tion represents how one may use this discussion to separate noise from the
edges in the signal. If one could exploit these observations one would pos-
sess a powerful tool for identifying major objects in the image. The third
observation represents the obstacle.

One of the goals of this section is to connect line-segments which encircle
(a part of) an object. Recall the behaviour of SNR across scales; at coarse
scale it was easy to find the important edges, while at fine scale the spatial
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(a) (b)

Figure 5.7: (a) The edges of the signal in Fig.(1.4) at a fine scale. (b) The
edges of the signal in Fig.(1.4) at a coarse scale. One may observe that
some of the connected maxima-lines appear to represent the same object in
Fig.(1.4), but with a different resolution.

(a) (b)

Figure 5.8: Illustration of an obstacle in relating line-segments inside a scale
in 2-D. (a) The signal. (b) The red lines correspond to fine scale, and the
black lines correspond to coarse scale.

accuracy was good. This motivated the construction of the maxima-tree.
From Fig.(3.3) it may appear that a similar phenomenon exists regarding
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the length of line-segments. One can easily find the important edges based
on the length of the line-segments at coarse scales, but the spatial accuracy is
poor. At fine scale the spatial accuracy is good, but because of the splitting
of line-segments, it is more difficult to find the important objects based on
the length of the line-segments.

Fig.(5.7) illustrates how a line-segment encircling an object breaks up
into several line-segments between two scales. In Fig.(5.8) it is illustrated
how one line-segment break up to encircle four objects. Recall from the pre-
vious sections that in the construction of 1-D and 2-D maxima-tree one tried
to achieve a 1-1 correspondence between modulus-maximum across scales.
This was desirable in order to construct an edge-detector with both good
detection- and localization-performance. In the case of convergence of line-
segments, a 1-1 correspondence is desirable in order to benefit from length
of line-segments at coarse scales. The problem is that this is not necessarily
justifiable. Assume one line-segment encircling an object breaks into several
line-segments encircling the same object as in Fig.(5.7). In this case a 1-1
correspondence can be justified. A 1-1 correspondence can be achieved by
connecting all the line-segments at fine scale which originate from one line-
segment at coarse scale. However, if one line-segment at coarse scale breaks
up into several line-segments encircling several objects, one may encounter
problems with justifying a 1-1 correspondence. For instance in the signal in
Fig.(5.8) one would like to be able to separate the four circles as different
objects. Since they all originate from the same line-segment they would in
case of a 1-1 correspondence not be separable. This problem of convergence
in will not be addressed in this thesis. In order to reduce (but not eliminate)
this problem, one may select the range of scales with care. For instance for
the US-image in Fig.(1.4) one may see in Fig.(3.3) that the interesting objects
remains in shape for s ≥ 4. For small scales it loses some of its structure.

It this thesis, connecting line-segments across scales is based on the fol-
lowing statement in [7];
Two line-segments should be connected if they are separated by a small gap,
and the corresponding line-segment at the next coarser scale is connected.
Two line-segments which have been connected, is said to be in the same class
of line-segments which have been connected inside a scale. The first criteria;
that the gap between two line-segments should be small, will help to avoid
some false connections caused by the phenomenon illustrated by Fig.(5.8).
How small the gap should be allowed is uncertain. In this thesis an appro-
priate upper limit for the gap has been found by experimenting. The cor-
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responding connection-procedure using the estimated limit for the gap, has
been successful for the US-image in Fig.(1.4) and the US-images displayed in
App.(A). The last question is how to find the ”corresponding line-segment”
at the next finer scale. If the connection-procedure for modulus-maximum
discussed in the previous section were fail-safe, this would be a relatively
easy task. One could connect all line-segments at the next finer scale, to-
wards some modulus-maximum of the line-segment at coarse scale converges.
Unfortunately such an algorithm will be vulnerable for false connections. In-
stead line-segments are connected across scale based on the following obser-
vation in Fig.(3.3). Two corresponding line-segments across scales have some
points in common, i.e. some modulus-maxima at both scales have equal spa-
tial position. With this observation, a line-segment at fine scale is related to
a line-segment at the next coarser scale, if they have some modulus-maxima
which have the same spatial position. Although, this connection-procedure
may appear unreliable, it has been ”fairly” successful with respect to analy-
sis of the US-image in Fig.(1.4) and similar medical US-images displayed in
App.(A). Note that this observation is supported by the fact that at large
scales the contours in the image behaves as step-edges. The average spatial
position of a line-segment at two scales will therefore be similar. This in-
crease the likeliness of intersection of two corresponding line-segments across
scales.

This procedure is unstable for s ≤ 3. At fine scales the density of the
modulus-maximum will cause false connections. In addition, all edges at fine
scale begin to behave as Dirac-edges. The (average) spatial position of a
Dirac-edge will change across scales. This is not a problem with respect to
the main-purpose of this thesis; to achieve a representation which can be
used for medical applications. For this purpose it is not necessary to use the
modulus-maximum at scales less than s = 5. In one case on is certain that
this algorithm will break down, if there is an edge on the form f(x, y) = δ(x)
in the image. In this case there will for each y be two modulus-maximum,
see Ex.(3.1.2). The spatial-position of these modulus-maximum will not be
equal at different scales, i.e. they will not have any modulus-maximum in
common at two different scales. This is not a problem for the US-image in
Fig.(1.4), but this caused problem when attempting to analyse a CT-image,
see Fig(A.5). In this case the ”skin” behaves as the function f(x, y) = δ(x).

One should use this algorithm both from coarse to fine and from fine to
coarse scales. It may occur that a line-segment are disconnected at coarse
scale and connected at fine scales.
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After connecting line-segments inside and across scales, some additional
quantities about the line-segments can be introduced;

• The length {Lsk} (inside a scale) of connected (inside scales) line-segments,
k ∈ {1, ...Ns} and s ∈ {s1, ..., sN}. Ns is the number of distinct classes
of connected line-segments at scale s.

• The average amplitude Ās
k of the connected line-segments, k ∈ {1, ...,M}

and s ∈ {s1, ..., sN}. Ns is the number of connected line-segments at
scale s.

• The length {lk} k = 1, ..., N (across scales) in the time-scale plane
of the line-segments converging towards a (connected) line-segment at
the finest scale. The length is the number of scales there exist a line-
segment converging to the line-segment at the finest scale. N is the
number of (connected) line-segments at the finest scale.

• The weighted average amplitude āsk k = 1, ..., N of the line-segments
converging to a line-segment at the finest scale. N is the number of
connected line-segments at the finest scale.

The 1.st quantity does not necessarily correspond to the circumference of
an object. If the boarder of an object at coarsest scale is constituted of
several line-segments, the set of related line-segments at the finest scale do
not correspond to the circumference of the object. It is however not necessary
that the related line-segments correspond to the circumference, but the longer
the line-segments the easier to distinguish noise from edges. If eventually the
circumference is obtained this is a nice bonus.

The uncertainty of how line-segments (and points) converge in 2-D is
unfortunate. One is not guaranteed that correct connections are made. If
however the correct connections of line-segments are done across and inside
scales, one has a powerful tool for identifying the important edges in the sig-
nal. This will be illustrated in Ch.(7), where edge-detectors taking advantage
of these properties will be introduced. Without destroying the excitement
the writer can reveal that edge-detectors taking advantage the behaviour of
either line-segments or modulus-maximum across scales, are superior to edge-
detectors which depend on the modulus-maximum at a single scale only. This
holds in particularly for noisy signals, such as US-image in Fig.(1.4). In this
thesis, the output of the edge-detectors will always be visually investigated.
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One will be able to identify false connections if they appear in the output. If
they do not appear in the output, there is no need for further investigation,
at least for the purpose of this thesis.
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Chapter 6

1-D Edge-Detectors.

In this chapter the 1-D edge-detectors will be presented.

This far in the thesis, properties of the CWT and the modulus-maximum
have been discussed from a relatively theoretic viewpoint. It is time to inves-
tigate how these properties can be combined in order to locate the important
edges in a 1-D signal. The signal which will be investigated is the 1-D signal
in Fig.(2.13). This signal is a 1-D ray of the US-image in Fig.(1.4).

Three 1-D edge-detectors will be discussed; one single-scale and two multi-
scale edge-detectors. This will be used to visualise differences between single-
and multi-scale edge-detectors with respect to noisy signals. The motivation
behind the edge-detectors are found throughout the thesis; Stat.(2.1.1) and
the section about SNR is the basis for the single-scale detector. The maxima-
tree, and the discussion about the Lipschitz-regularity are the foundations
for the multi-scale edge-detectors.

6.1 Probability & Amplitude Thresholding.

The first edge-detector is the simplest and the most obvious; to threshold the
amplitude of the modulus-maximum. This can be done by estimating the
probability-distribution of the noise in the signal, e.g. by using a Wiener-
filter.

In Stat.(2.1.1) it was verified that the absolute-value of the wavelet-
transform is large in neighbourhoods where the signal changes much and with
a long duration. In this section an edge-detector taking advantage of this will
be presented. The underlying idea of why this will separate the noise from
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the important edges, is that the important edges typically changes much and
with a long duration. On the other hand, noise changes little and with a short
duration. One advantage with the presented method is that a threshold-value
can be obtained automatically. In this case, the edge-detector requires no
collaboration with the operator. Another advantage of this method is that
in its simplest form only require the computation of the wavelet-transform at
a single scale. This reduces the amount of computations, and therefore the
method is fast. One can also use this method without estimating the noise;
by guessing a threshold. In this case the method is no longer automatic.

In Sect.(4.2), SNR was introduced as a quantification of the likeliness of a
modulus-maximum to correspond to an important edge. The larger value of
SNR at a modulus-maximum, the more likely that it corresponds to an edge.
In this section it will be discussed how big SNR of a modulus-maximum
has to be in order to represent an important edge. It will be discussed
and illustrated that the method using a noise-estimate is not adequate with
respect to the type of signals which is analysed in this thesis. A lot of
redundant information is present in the output. Representations closer to
the optimal are found by guessing a value for the threshold.

The section begins with a discussion of how the threshold can be esti-
mated, before presenting a single- and multi-scale algorithm for detecting
the important edges in a signal. At the end, the output of the edge-detector
will be discussed.

A modulus-maximum will be rejected to represent an important edge based
on its probability to correspond to noise. Assume the variance of the noise is
σ2, and that the noise is Gaussian distributed. The probability-distribution
of the noise is given by;

p(a) =
1√

2πσ2
e−

a2

2σ2 .

The aim is to reduce the probability of including a false edge. Assume that
candidate edges with probability less than some probability threshold P%

are rejected to represent an important edge. This implies that all modulus-
maximum with amplitude less than A% is assumed to be noise, where A% is
the solution of;

∫ A%

−A%

p(t) dt = P%.
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(a) Signal

(b) s=3 (c) s=3 (d) s=3

(e) s=5 (f) s=5 (g) s=5

(h) s=6 (i) s=6 (j) s=6

(k) s=8 (l) s=8 (m) s=8

Figure 6.1: The edges detected by using a threshold for the amplitude of the
modulus-maximum. (b)-(e)-(h)-(k): The red dots indicate edges in common
for both representations. The green dots indicate additional edges in the rep-
resentation obtained by using noise-estimate. In (c)-(f)-(i)-(l) the modulus-
maximum kept by using the threshold obtained by using noise-estimate. In
(d)-(g)-(j)-(m) the modulus-maximum kept by using a guessed value of A%.
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In Sect.(4.2), SNR was introduced as a quantity to measure the likeliness
of a modulus-maximum to correspond to an important edge. The larger
value of SNR at a modulus-maximum, the more likely that it corresponds
to an important edge. It was not discussed how large the value of SNR
had to be at a modulus-maximum in order to be considered as an important
edge. From above, the strength of an edge must be above A% to avoid being
refused as noise. Combined with the expression of SNR, the threshold for
the modulus-maximum becomes;

T% = SNR(A%) =
A%

σ

∫∞
0
ψs(t) dt

‖ ψ ‖2
=
A%

σ
Σ(ψs) =

A%

σ

√
sΣ(ψ).

If a modulus-maximum m should be classified as an important edge, then;

|Wf(m, s)|
σ ‖ ψ ‖2

>
A%

σ

√
sΣ(ψ) = T%.

The amplitude of a modulus-maximum corresponding to a smooth step-
edge decays faster than for a step-edge as the scale decreases. A smooth
step-edge represents a slow change of state in the signal. By Th.(2.6.1) it fol-
lows that the wavelet-transform with respect to the wavelet ψ1 in Eq.(2.1.4)
of a smooth step-edge, decays faster than for a step-edge. This may cause
some edges to be rejected at fine scales. In Sect.(5.1), a method for relat-
ing modulus-maximum across scales was discussed. The result was for each
modulus-maximum mi, the class [mi] of the modulus-maximum which con-
verge towards mi. A suggested multi-scale approach to detect the edges in a
signal, is to include all modulus-maximummi at the finest scale which satisfy
that some elements of [mi] is above the threshold.

The edge-detector can be summarized by the following algorithm:

1. Compute Wf(u, s) for s ∈ {s1, ..., sJ}.

2. Locate the modulus-maximum ms
i at each scale. If J > 1, connect

modulus-maximum across scales. Let [mi] for i ∈ {1, ...N} denote the
set of modulus-maximum which converges towards mi. N is the number
of modulus-maximum at finest scale.

3. Estimate the noise in the signal, e.g. by using Wiener-filtering pre-
sented in Sect.(4.3).
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4. Decide a threshold of the probability for an edge to correspond to noise,
typically P% ∈ [80, 100]. Find the lower bound A%.

5. Calculate T%,s = A%

n0
Σ(ψs).

6. • (Single scale): If SNR(m1
i , s1) > T%,s1 , the modulus-maximum

mi is included as an edge in the signal, otherwise rejected.

• (Multi scale): If SNR(mj
i , sj) > T%,sj for any mj

i ∈ [mi] the
modulus-maximum mi is included as an edge in the signal, other-
wise rejected.

Without using a noise-estimate one should skip Step 3 and guess a value of
A% in Step 4.

Consider Fig.(6.1) demonstrating the algorithm applied to the signal in
Fig.(6.1,a) with and without a noise-estimate. First one may observe that
the algorithm using a noise-estimate is not appropriate for the purpose of this
thesis. For the analysis in this thesis, one is not only interested in removing
noise, but also modulus-maximum corresponding to texture and less impor-
tant edges. Without a noise-estimate, one may observe that at fine scales
there are still unwanted edges in the representation. These are edges of short
duration, i.e. they are felt as Dirac-edges. The Lipschitz-regularity is approx-
imately −1 for such edges. This implies that the amplitude increases as the
scale decreases, in difference to step-edges for which the amplitude decreases
across scales. Observe for instance in Fig.(6.1c) that one can not remove the
modulus-maximum at approx. 150 without removing the modulus-maximum
at 50. The first one could do without, but the second is an edge one would
like to preserve. Similarly, one may observe that such a separation is no
problem at coarse scales, but at coarse scales it is more difficult to detect the
edge at 270. This coincides with the discussion of the uncertainty-principle
of edge-detection in Sect.(4.2). Another observation is that there is little to
gain by using the multi-scale approach. In the representation without using
a noise-estimate, the edge at u = 460 is not included at small scales. In
Sect.(2.7) it was calculated that this edge was Lipschitz-0.41, i.e. it behaves
as a smoothened edge. This causes the amplitude of this edge to decrease
faster and is therefore discriminated at fine scales. The disadvantage of this
method of using multi-scale information, is that it only includes and not ex-
cludes modulus-maximum. If one begins at a too fine scale, one is not be
able to remove the ”unwanted” edges which often appear at fine scales. In
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addition it only exploits information from one single scale to decide which
edges should be included. It does not take into account the behaviour of a
modulus-maximum across scales. This is why this edge-detector is treated
as a single-scale edge-detector.

All but the first of the representations in Fig.(6.1,d,g,j,m) gives an accept-
able representation of the signal. With respect to the preliminary targets de-
fined in Sect.(1.2.2), the representation in (g) is closest to the optimal. One
may note that for finding the optimal solution, this edge-detector depends
on two parameters; which scale to be used and the appropriate threshold for
the amplitude. This makes it difficult to find a representation which is close
to optimal.

The conclusion with respect to analysis of noisy signals, is that using a
threshold of the amplitude of the modulus-maximum at a single scale is a
pay-off between accuracy and the quality of the representation. At fine scales
on is able to detect small objects in the signal, but there is a large presence of
unwanted information. In addition an edge representing a smooth transition
between tissues may not be detected at fine scales. At coarse scales one will
detect the large objects in the signal without including unwanted information,
and one is able to detect smooth edges. The disadvantage is that at coarse
scales one will not detect small objects in the signal.

6.2 Multi-scale Edge-Detectors.

In this section two multi-scale edge-detectors will be presented.
In the previous section it was concluded that using the information of the

modulus-maximum at a single scale only was not optimal with respect to the
application of this thesis. In this section it will be investigated how one may
exploit the behaviour of the modulus-maximum at several scales to locate the
important edges in a 1-D signal. By using information across scales, one will
be able to avoid the uncertainty of which scale should be used as the finest.
For instance it was discussed in the previous section that one could not use
amplitude-threshold at scales finer than s = 5 without including unwanted
information. In this section the finest scale is s = 2.

The discussion begins with the underlying idea of the edge-detectors, and
a brief summary of the properties used by the edge-detectors. Some in-
teresting observations of the output will be discussed, and based on these
observations some unique characteristics of each edge-detector will be iden-



6.2 Multi-scale Edge-Detectors. 123

tified.
The edge-detector which uses the Lipschitz-regularity (denoted Lipschitz

edge-detector) of a modulus-maximum will be good for finding the points
where the signal changes with a long duration, but less good for finding
the points where the signal changes most. Another disadvantage with the
Lipschitz edge-detector is that it can be difficult to find a thresholds which
give an optimal representation. The second multi-scale edge-detector will
be capable to find the points where the signal changes the most, and works
well for removing unwanted information. It will be concluded that this is the
most suitable for the analysis in this thesis of the edge-detector discussed in
this thesis. The disadvantage with the detector is that one can not estimate
or guess a threshold which gives an acceptable representation. On the other
hand it is the detector from which it is easiest to find the threshold which
gives a representation close to optimal.

The discussion begins with a brief summary concerning the length of a
maxima-line. The two edge-detectors and their characteristics will be dis-
cussed.

In Sect.(5.1) the length li of a maxima-line was defined as;

li = |[mi]| = (the number of modulus-maximum converging to mi),

for i ∈ {1, ..., N}, and N is the number of modulus-maximum at the finest
scale. The maxima-tree in Fig.(5.3b) will be used for the discussion of the
edge-detectors in this section. In this case the maxima-tree contains too few
scales in order to be appropriate for edge-detection, see Sect.(5.1). Some
additional information is needed in order to find the important edges in the
signal.

The underlying idea behind the Lipschitz edge-detector is that decay
of modulus-maximum corresponding to noise differs from the decay for a
step-edge. The difficulty is that the Lipschitz-regularity is invariant to the
strength of the edge. By imposing a threshold on the length of the maxima-
line, this edge-detector should be able to find the most important edges in
a signal. The discussion in Sect.(2.6), and the example in Sect.(2.7) illus-
trates the necessity of a close investigation of each modulus-maximum in
order to estimate which scales should be taken into account for estimat-
ing the local Lispchitz-regularity. A similar investigation is not realistic
in general; it requires manual investigation, and will be time-consuming.
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(a) Signal.

(b) Histogram of Lipschitz-values. (c) Maxima-tree.

(d) (e) The tree-branches with aver-
age Lipschitz-regularity larger than
−0.6.

(f) (g) The tree-branches with average
Lipschitz-regularity larger than 0.

Figure 6.2: The edges detected by using the average Lipschitz-regularity of
the maxima-lines. (b) The histogram of the average Lipschitz-regularity of
the tree-branches. (e)-(g) Displays the tree-branches with average Lipschitz-
regularity larger than resp. −0.6 and 0. (d)-(f) The points which are detected
as edges. The modulus-maximum with the shortest maxima-line are not
included to represent an edge.
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The quantity used as a representation of the Lipschitz-regularity, is the av-
erage Lipschitz-regularity of the maxima-line which converges towards the
modulus-maximum. The algorithm can be summarized as;

1. Compute theWf(u, s) for s ∈ {s1, ..., sN}. Find the modulus-maximum
mj
i for i ∈ {1, ..., Nj} and sj ∈ {s1, ..., sJ} where Nj is the number of

modulus-maximum at scale sj.

2. Find [mi] for i ∈ {1, ..., N1}.

3. Compute the length li = |[mi]| of the maxima-line converging to the
modulus-maximum mi for i ∈ {1, ..., N}.

4. Compute the average Lipschitz-regularity of the maxima-line converg-
ing to mi.

5. Remove the modulus-maximum with average Lipschitz-regularity smaller
than TLip and length less than a given threshold. TLip is typically
smaller than 0 and larger than −1.

An appropriate threshold for TLip can be difficult to determine. From the
discussion in Sect.(2.6), the threshold will depend on influence of noise and
smoothness of the edges in the signal. An appropriate threshold for the
Lipschitz-regularity have in this thesis been found by experimenting with
different values of TLip ∈]− 1, 0[. Experience has proved that TLip ≈ −1/2 is
a good starting-point for the signals analysed in this thesis.

Fig.(6.2e,g) illustrates the maxima-branches with average Lipschitz-regularity
larger than −0.6 and 0. In Fig.(6.2d,f) the modulus-maximum with the
longest maxima-lines have been marked as edges in the signal. Observe that
the modulus-maximum which are kept with TLip = 0 and long maxima-line,
are the 4 points where the signal changes most in addition to the edge at
469. As discussed in Sect.(2.7), the edge at 469 is felt as smoothened by the
wavelet-transform. The 4 large edges are less influenced by close edges. In
addition these edges are felt as smoothened by the wavelet-transform, such
that the estimated Lipschitz-regularity increases. Observe that the step-edge
at 50 is not included with TLip = 0. This is the edge one should expect to
behave most as a step-edge. One can conclude that 0 is a too strict value of
TLip for the signal analysed in this thesis.

One unique characteristic-feature of this edge-detector is its ability to
remove edges of short duration. This is illustrated by the ”instant” edge at
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270. Such edges behave as Dirac-edges. Their corresponding Lipschitz-value
is therefore approximately −1. Another characteristic-feature of this edge-
detector is its ”invariance” of the strength of the edge. This is illustrated by
the small edges at 410 and 440 in Fig.(6.2d). As discussed in Sect.(5.1), the
length of a maxima-line depends not only on the strength of the edge, but
also on edges in its proximity. The Lipschitz-value of an edge is invariant
of the strength. The consequence is that the corresponding edge-detector is
relatively ”invariant” to the strength of an edge.

Unfortunately none of the characteristic-features of this edge-detector are
shown to an advantage with respect to the analysis of this thesis. The Dirac-
edge at 297 represents one possible separation between the cysts in Fig.(1.4).
This was not necessary to detect from a medical viewpoint, but it was one
of the objects one would like to detect from a theoretic viewpoint. The
invariance of the strength of an edge is not desirable in this thesis. One seeks
the points where the signal changes the most. By exploiting the detection
performance of the maxima-tree, see Sect.(5.1), one will be able to remove
small edges by including coarser scales in the maxima-tree.

The amplitude of a modulus-maximum corresponding to a major edge
is large at several scales, while a modulus-maximum corresponding to noise
is large for a few scales only. The second multi-scale edge-detector takes
advantage of this observation. In [7] this detector was introduced to be
effective for finding the points of large change in a noisy signal. In Sect.(5.1),
the average amplitude āi of the maxima-line converging to mi was defined
as;

āi = (weighted average amplitude of the modulus-maximum along

the maximaline converging to mi).

The algorithm assigns to each modulus-maximum at the finest scale the
quantity,

P1(mi) = āi · li.

Step 1 and Step 2 of this algorithm is similar with the latter algorithm. The
algorithm can be summarized by the following steps;

3. Compute the average amplitude āi of the tree-branch converging to mi.

4. Compute P1(mi) = li · āi for i ∈ {1, ..., N}.
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5. Find an appropriate threshold TP1 separating important from less im-
portant modulus-maximum.

(a) Signal.

(b) Histogram of P1 values. (c) The maxima-tree.

(d) (e) TP1 = 200

(f) (g) TP1 = 300

Figure 6.3: The edges detected using P1. (e)-(g) The tree-branches corre-
sponding to modulus-maximum at s = 2 with P1 values larger than resp.
200 and 300. (d)-(f) The points marked as edges.

Observe that this algorithm combines the length and the amplitude of a
maxima-line into a single quantity to represent the modulus-maximum at the
finest scale. A consequence is that a modulus-maximum with a long maxima-
line is not necessarily included, or that a short maxima-line is excluded. P1
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arrange the modulus-maximum in a hierarchic structure. Modulus-maximum
corresponding to a large edge with a long duration is assigned the largest
values. The smallest values are modulus-maximum corresponding to edges of
small strength which exists for a short duration, such as noise. A threshold
is found by considering the values of P1 in a histogram. By choosing an
appropriate value for the threshold, denoted TP1 , one should be able to obtain
a nice representation of the most important edges in a signal.

Fig.(6.3) illustrates the algorithm applied to the signal in Fig.(6.3a). By
comparing the difference between the two representations, one may observe
the hierarchical structure of the values of P1. Another observation is that
the algorithm does not discriminate edges based on their Lipschitz-regularity;
both Dirac-edges and step-edges are included in both representation. In dif-
ference to the Lipschitz edge-detector, this method will enable one to distin-
guish step-edges of small strength from step-edges with large strength. This
method will detect smooth-edges, i.e. edges corresponding to a slow change
of state in the signal. In the previous section it was observed that by using
a threshold of the modulus-maximum, such edges would be discriminated at
fine scales.

The disadvantage of this method is that there is no predefined value
of the threshold. In the previously discussed methods, one could in advance
estimate or guess some appropriate threshold which would give a useable rep-
resentation of the signal. This is not as easy with this method. In Sect.(7.1.2)
it will be discussed how one can find a natural threshold with this method.
Because there are relatively few modulus-maximum in the 1-D case, this dis-
cussion is postponed. The values of P1 corresponding to important edges
are typically discretely distributed (depending on the interval used to make
the histogram). This enables the operator to exclude edges until the optimal
representation is obtained. For the histogram in Fig.(6.3g) one have in the-
ory 8 possibilities of a threshold, assuming that all values below 100 is noise.
In practice it requires at most 3 guesses to obtain a nice representation. For
both the Lipschitz-method and in particular the method using an amplitude
threshold one may in worst case use several attempts to find a good represen-
tation. In this detector it is only necessary to vary one threshold, while for
two other detectors one may have to experiment with 2 different parameters
in order to find the optimal representation. It is easier to find the optimal
threshold for the latter edge-detector.

The representation obtained in Fig.(6.3e) contains all the edges of the
signal in Fig.(6.3a). All the points which at the first glance appears to be an
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edge in the signal, are represented as an edge. The representation obtained
in Fig.(6.3g) is optimal with respect to the preliminary targets defined in
Sect.(1.2.2), taken into account the position of the ray in the signal, see
Fig.(2.13). Comparing with the preliminary target and the US-image one
see that all the edges which one was interested in detecting, are marked as
an edge.

With respect to the analysis of noisy-signals, the conclusion is that P1

will detect edges of large strength corresponding to a change of state in the
signal of both short and long durtation. In addition P1 will detect an edge
representing a slow change of state in the signal, i.e. a smooth edge.

The Lipschitz edge-detectors will detect edges corresponding to a change
of state in the signal of long duration, ”independent” of the strength of the
edge. Edges corresponding to a change of state in the signal of short duration
will not be detected, regardless of the strength of the edge.



130 1-D Edge-Detectors.



Chapter 7

2-D Edge-Detectors.

This chapter contains a discussion about 2-D edge-detectors.

We have now reached the target of the thesis; to find the edges in the
US-image in Fig.(1.4). The purpose of this section is to visualise how one
can combine properties of the 2-D continuous wavelet-transform, and create
an edge-detector which is suitable for the US-image.

The investigation follows a similar procedure as in the previous section.
The discussion begins with investigating two single-scale edge-detectors, be-
fore introducing three multi-scale edge-detectors. Based on the output, some
characteristics of each edge-detector will be identified. (Dis-)advantages of
the edge-detectors with respect to the analysis of this thesis will be discussed.
The preliminary targets discussed in Sect.(1.2.2) will be used to compare how
close a representation is to being optimal.

Similarly as in the previous section, it will be concluded that the edge-
detector which take into account the amplitude of modulus-maximum at
several scales are more appropriate with respect to the analysis of this thesis.
Another conclusion is that with respect to the application of this thesis,
the edge-detectors which exploit information about line-segments are more
suitable that the edge-detectors which only exploit the behaviour of a single
modulus-maximum.

The chapter begins with discussing two single-scale edge-detectors which
exploit the amplitude of a modulus-maximum, and the length and ampli-
tude of a line-segment. Three edge-detectors which take advantage of the
behaviour of modulus-maximum and line-segments across scales will be dis-
cussed.
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7.1 Single-Scale Edge-Detectors.

7.1.1 Amplitude-Thresholding.

In this section it will be discussed how one can detect edges in an image by
using a threshold of the amplitude of a modulus-maximum.

The algorithm which will be presented is a single-scale version of a more
general multi-scale edge-detector developed by Canny in [3]1. The advantage
of the method is that it requires minimal computational effort, and is easy to
implement. In addition it has the advantage that the value for the threshold
can be pre-estimated.

The 2-D algorithm which will be presented is similar to the 1-D formula-
tion in Sect.(6.1). The difference is that a two-threshold method is used, in
[3] denoted thresholding with hysteria. Using a threshold with hysteria will
help to preserve connected line-segments in the representation of the image.

First thresholding with hysteria is explained, before presenting an algo-
rithm for detecting edges based on the amplitude of the modulus-maximum.
At the end of the section, the performance of the edge-detector will be dis-
cussed with respect to the image in Fig.(1.4) and the preliminary targets
defined in Sect.(1.2.2).

One problem which often occurs for edge-detectors based on a threshold
of the amplitude of the modulus-maximum, is a phenomenon called streak-
ing. The problem of streaking is discussed in [3]. Modulus-maximum of the
CWT are often connected into a line-segment representing the boundary of
an object. The problem which one may encounter is that the amplitude
of the modulus-maximum varies along the line-segment. Streaking occurs if
one part of the line-segment is above a threshold, while another part is below
the threshold. This phenomenon may be observed in Fig.(7.1,b,e,h). This
results in broken boundaries in the representation of the objects. One pos-
sible solution to avoid this problem is presented in [3], as thresholding with
hysteria. Thresholding with hysteria uses two thresholds, one high and one
low threshold. If a modulus-maximum is above the high threshold, it should
immediately be marked as an edge. If a modulus-maximum is above the low
threshold and connected to a line-segment which at some point is above the
high threshold, it should also be marked as an edge. The algorithm can be

1Canny argued in [3] that there is typically little to gain by using several scales. This
coincides with the observations made in the 1-D case.
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formulated as;

1. Compute W xf(u, s) and W yf(u, s) for some s ∈]0,∞[.

2. Find the modulus-maximum of Mf(u, s) in the direction given by
Af(u, s).

3. Estimate the noise in the signal, e.g. by using a Wiener-filter as pre-
sented in Sect.(4.3).

4. Decide a threshold for the probability for an edge to correspond to
noise, typically P% ∈ [80, 100]. Find the lower bound A% for the am-
plitude of Mf(u, s).

5. Calculate the high threshold Thigh = A%

n0

√
sΣ(ψ), and the low threshold

Tlow = αThigh for some α ∈]0, 1[.

6. If a modulus-maximum is above Thigh it should be marked as an edge.
If a modulus-maximum is above Tlow and connected to a line-segment
which at some point is above Thigh, the modulus-maximum should be
marked as an edge.

Without using a noise-estimate skip Step 3 and Step 4 and guess appropriate
values for Thigh and Tlow. Eventually one can skip Step 3 and guess a value for
A% in Step 4. When using thresholding with hysteria one can with advantage
use a high value of Thigh (or A%). Similarly to the 1-D case, the representation
obtained by using a noise-estimate typically contains too much unwanted
information. In this thesis, A′

% ≈ 2A% has been an appropriate starting
point for finding a usable representation. A% is the threshold obtained by
using a noise-estimate. An appropriate starting-point for the low threshold
has been Tlow ≈ 0.3Thigh.

Fig.(7.1) illustrates the algorithm applied to the US-image in Fig.(1.4).
One thing which may be observed, is the relation between SNR and LOC.
At small scales the details of the representation are high, but there are a
large number of unwanted edges. This corresponds to a high value of LOC
and a small value of SNR. At coarse scales the representation of the ob-
jects is of low detail, but there are few unwanted edges. This corresponds
to a low value of LOC and a high value of SNR, and agrees with the dis-
cussion in Sect.(4.2). In Fig.(7.1,b,e,h) one may observe the phenomenon
of streaking. This phenomenon is mostly present at small scales. This is
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(a) Tlow . (b) Thigh. (c) Thysteria.

(d) Tlow . (e) Thigh . (f) Thysteria.

(g) Tlow . (h) Thigh. (i) Thysteria.

Figure 7.1: Edge-detection using thresholding with hysteria. The representa-
tions are found with respect to the ”optimal” threshold, i.e. noise-estimation
has not used. (a)-(b)-(c) s = 3. (d)-(e)-(f) s = 4. (g)-(h)-(i) s = 6.

not surprising taken into account the relation between SNR and the scale.
At coarse scales it should be easier to separate the modulus-maximum corre-
sponding to important objects, such that the entire line-segment is preserved.
Another observation regarding streaking is that it in particular occurs at the
upper-right of the tumour and in the region marked C in Fig.(1.5). In these
regions the transition between tissues changes slowly, i.e. the edge is smooth.
This causes the value of the wavelet-transform in these regions to be smaller
than in regions where the transition between tissues is sharp. One may for
instance observe that streaking is not a problem for the remainder of the
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boarder marked A and for the cysts.
The advantage of this method is its simplicity, and that it requires lit-

tle computational effort. In addition it is a nice property that a threshold
can be pre-estimated. In this case the edge-detector requires no feedback
from an operator. Unfortunately, the representation obtained by using a
pre-estimated threshold, e.g. by using Wiener-filtering, is not adequate with
respect to the purpose of this thesis. Better representations are obtained by
a manual investigation with different values for the threshold. The disadvan-
tage is that it may require a lot of effort to find the threshold which gives the
best representation of the signal. Similarly as in 1-D, one will have to change
both the threshold and the scale in order to find the best representation.

To finish the discussion, the representations obtained in Fig.(7.1,c,f,i) are
compared with respect to the preliminary targets defined in Sect.(1.2.2). All
the representations fulfil the first minimum-criteria; to detect the contours
marked A,B and (something) like the yellow-dotted line. The representations
more or less fail to fulfil the second criteria; all representations have additional
unwanted edges. For the representation in Fig.(7.1,c,f) this is unsatisfactory.
For the representation in Fig.(7.1,i) the number of additional edges are low.
This representation is acceptable. With respect to the optional requirements
discussed in Sect.(1.2.2), the representations in Fig.(7.1,c,f) give a high detail
representation of the upper-right cyst, and detects the objects marked D. The
last representation does not fulfil any of the optional requirements.

The conclusion regarding this edge-detectors performance to noisy im-
ages, is similar as the for the 1-D edge-detector. With respect to find an
representation of the image, there is a pay-off between details and the relia-
bility. At fine scales one can detect small objects, but there is a large presence
of unwanted information. In addition one may have problems to detect an
edge representing a slow change of state in the signal, i.e. a smooth edge. At
coarse scales one will avoid the presence of unwanted information and detect
smooth edges, but not to detect small objects in the image.

7.1.2 Spatial Edge-Detector.

In this section a single-scale edge-detector exploiting the length and the am-
plitude of a line-segment will be discussed.

In the previous section it was concluded that using information of the
amplitude of a single modulus-maximum, was not appropriate in order to
obtain a nice representation of the US-image. In Sect.(5.2.2) it was discussed
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that a line-segment corresponding to a major object, typically is longer than
for noise and small objects. The edge-detector which will be discussed in
this section, combines this with the observation that a large edge has a
corresponding large value of the modulus-maximum. A nice property of
this edge-detector, is that it can easily be combined with a multi-scale edge-
detector which will be presented in Sect.(7.2.2). The resulting edge-detector
will prove effective for analysing the US-image. In Sect.(6.2) it was discussed
that one disadvantage with using P1 to find the edges, was that it was difficult
to pre-estimate or guess an appropriate threshold. In this section it will be
discussed how one in certain cases can obtain an automatic threshold for
P1 and similar quantities which will be introduced in this and the following
section.

Two slightly different methods will be presented in this section; with
or without connecting line-segments inside a scale. The motivation, advan-
tages and how one can connect line-segments inside a scale, was discussed in
Sect.(5.2.2).

Based on the output of the detector it will be observed that this edge-
detector works well to detect large objects with a sharp contour. It has
problems to detect small objects, and to detect objects with a vague contour.
The effect of connecting line-segments inside a scale will be illustrated.

The section begins with a discussion of the underlying idea behind the
edge-detector, and how a threshold can be found. The algorithm will be
presented and applied to the image in Fig.(1.4).

The underlying idea behind this edge-detector is based on two observations;
a large step-edge has corresponding large value of the modulus-maximum,
and a line-segment corresponding to a major object is typically longer than
for noise etc. These observations are supported by Fig.(3.3), Fig.(3.4) and
the discussion in Sect.(5.2.2). One problem with considering the length of
a line-segment is that it tends to break up towards finer scale. This is a
disadvantage if one tries to exploit the size or circumference of an object to
detect the major objects. In Sect.(5.2.2) it was discussed how one could con-
nect line-segments inside a scale, and therefore preserve information about
circumference or size of the object. The edge-detector which is discussed in
this section can be applied both with and without connecting line-segments
inside a scale. Note that if one uses connected line-segments, the algorithm
is no longer a single-scale edge-detector (because it uses information from
several scales).
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To each (class of connected) line-segment {mi}Ni=1 where N is the num-
ber of distinct (classes of connected) line-segments, the following quantity is
assigned;

Psp(mi) = Li · Āi.

Li is the length of the (class of connected) line-segment mi, and Āi is the
average amplitude of the (class of connected) line-segment corresponding to
mi. After this quantity is assigned to each (class of connected) line-segment,
one has to find a threshold separating the values corresponding to noise and
important edges. The following paragraph discusses how a threshold can be
obtained, and introduces the natural threshold.

In Sect.(6.2) it was discussed that one disadvantage with using P1 to
detect the edges in the 1-D signal, was that one could not guess or esti-
mate a threshold. In this paragraph it will be discussed how one sometimes
can find such a threshold, denoted the natural threshold. Whether such a
threshold exists or not, depends on the quantity used to represent the line-
segments/modulus-maximum in the signal. The following method has been
very successful for the US-image in Fig.(1.4) with respect to some of the
quantities used in this thesis. In order to find a threshold-value, one displays
the values of Psp in a histogram. If the signal is sufficiently nice (with respect
to Psp), the threshold will appear almost by itself in the histogram. The idea
is that the quantity Psp divides the line-segments into two disjoint sets, one
assumed to contain all the uninteresting information and the other the inter-
esting information. The following discussion holds only if the quantity Psp

yields such a separation of the modulus-maximum. For instance for the quan-
tity P ′ = (amplitude of a modulus-maximum) (equivalent to the previously
discussed detector), one can not find a threshold by the following presented
approach for the US-image investigated in this thesis. Fig.(7.2) illustrates
what is meant with the statements ”threshold-value appears by itself” and
two disjoint sets. The first set is assumed to contain the large infrequently
occurring values. With respect to Psp this corresponds to line-segments of
long length and large average amplitude. The other set is assumed to be the
cluster concentrated at small values. This cluster contains line-segments of
small length and small average amplitude, such as noise and small objects.
The cluster behaviour in Fig.(7.2) is a typical behaviour of noise. The thresh-
old is assumed to be a value separating the two sets, i.e. separate the large
cluster from the infrequently occurring values. The term natural threshold
will refer to the smallest value which separates the cluster from the discretely
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Figure 7.2: Illustration of a histogram illustrating the values of Psp for a
signal. Values of Psp corresponding to noise is assumed to be gathered in the
cluster at low values. A threshold value is some value separating the cluster
from the infrequently occurring values.

distributed values. This threshold will depend on the size of the histogram,
so some slack has to be allowed. In this thesis, the histogram-size has been
chosen to be 100 for all the quantities P1, Psp, Psc and P . As discussed in
the previous chapter, one disadvantage with using P1 was the difficulty of
guessing or estimate a threshold which would give a usable representation
of the signal. By using the natural threshold one can obtain a usable repre-
sentation. The ideal situation is if an almost optimal representation follows
from the natural threshold. This will depend on how well the quantity used
to represent the line-segments/modulus-maximum is adapted to the signal
with respect to which information is wanted. In this and the following sec-
tion, it will be discussed how the quantities Psp, Psc and P is adapted to the
US-image in Fig.(1.4). The latter two quantities will be introduced in the
next section. This method for finding the threshold may appear unreliable
and random. In fact this method has been used with success for the majority
of the representations in this chapter and in the appendix.

The algorithm can be formulated as;

1. ComputeW xf(u, s) andW yf(u, s) for some s ∈]0,∞[. Find the modulus-
maximum of Mf(u, s) in the direction given by Af(u, s).

2. Identify the line-segments {mi}Ni=1. N is the number of line-segments
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at scale s.

3. Find the length Li of each line-segment for i ∈ {1, ..., N}.

4. Find the average amplitude Āi of each line-segment for i ∈ {1, ..., N}.

5. Calculate the product Psp(mi) = Āi · Li, and display the values in a
histogram.

6. Find an appropriate threshold, and remove the line-segments with Psp

value below the threshold.

If the line-segments have been connected, one uses ”class of connected line-
segments” rather than ”line-segment” in the above algorithm

Fig(7.3,a,c) illustrates the output of this algorithm, without connecting
line-segments inside a scale. One may observe that a problem occurs in the
regions where the contour of the tumour is vague, e.g. in the region marked
C in Fig.(1.5). The contour of an object in such regions is often broken
into several small line-segments. In addition these edges are smoothened,
and as discussed in Sect.(2.6), the modulus-maximum corresponding to a
smooth edge decay faster towards finer scales. The value of Psp of these line-
segments will often be hidden in the cluster making them difficult to recover
without including unwanted information. Observe that the representation of
the cysts and A are equal in both the algorithm with and without connecting
line-segments. The contour for these objects is sharp.

In Fig.(7.3,b,d) the line-segments are connected by the method discussed
in Sect.(5.2.2). Two ”false” connections appear in the output. The upper line
of the cortex is considered to be connected to the boarder of the US-image,
and the line-segments underneath the tumour are considered to be one line-
segment. Both of these ”false” connections are caused by the phenomenon
discussed with respect to Fig.(5.8) in Sect.(5.2.2). The reason for the false
connection, is found by considering Fig.(3.3). One may observe the increased
performance in the low-contrast regions, compared to the representations in
Fig.(7.3,a,c). Because this edge-detector exploits information from coarse
scales, one will avoid problems caused by breaking-up of line-segments. One
may observe that there are no small gaps in the representation, e.g. to the
upper-right of the tumour and upper left of the boarder of the image. This
helps to obtain a nice representation of the image. Note that the natural
threshold in this case gives an almost optimal representation.
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(a) TPsp = 7500. (b) TPsp = 15000.

(c) TPsp = 15000. (d) TPsp = 25000.

(e) Histogram of the values of Psp

without connecting line-segments
inside scales.

(f) Histogram of the values of Psp

with connecting line-segments in-
side scales.

Figure 7.3: The edges detected by using the quantity Psp at s = 5. (e) -
(f) The histogram is enlargened in the region of the separation between the
”noise-cluster” and the infrequently occuring values.
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(a) s=3. (b) s=3.

(c) s=4. (d) s=4.

Figure 7.4: Illustration of the edges detected using Psp. (a) - (c) No prepro-
cessing has been done for the edges. (b) - (d) The line-segments have been
connected inside the scale as described in Sect.(5.2.2).

One advantage of this algorithm is its ability to remove small line-segments
corresponding to noise. One may observe that there are only a few unwanted
edges in the representations. Another advantage of this method, is that it
preserves connectedness of line-segments. This is desired in order to obtain
a nice representation of the signal. A disadvantage is that objects with small
circumference maymbe hidden among the noise. For instance it may be trou-
blesome to detect the objects marked D in Fig.(1.4). This may be observed
in Fig.(7.3a), where one of the objects marked D is recovered by including a
part of the cluster at small values.

Fig.(7.4) illustrates the representations obtained at fine scales, with and
without connecting line-segments inside scale. One may wonder why one of
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the small objects marked D in Fig.(1.5) are present in all representations.
This is caused by the simple reason that this object at these scales is con-
nected to the boarder of the large cyst. In Fig.(7.4c) one may observe that
a piece of the contour of the upper cyst is removed. The line-segment repre-
senting this contour is disconnected at s = 4. One of these line-segments are
not sufficiently long in order to not being discriminated by Psp. Compared
with the fine scale representations in Fig.(7.1,c,f) one may observe that Psp

is good for removing unwanted information, but struggles in low-contrast
regions. When using Psp with connecting line-segments inside the scale, one
may observe increased performance in the low-contrast regions. One has
some problems with removing unwanted information to the right of the tu-
mour. The line-segments at the upper-right are at these scales connected to
the boarder of the image, and are not possible to remove.

The representation in Fig.(7.3c) and Fig.(7.4,a,c) fails to fulfil the minimum-
requirements defined in Sect.(1.2.2), and do not fulfil any of the additional re-
quirements. The representations in Fig.(7.3,a,b,d) and Fig.(7.4,b,d) do fulfil
the minimum-requirements. They give a nice representation of the contours
marked A, B and the yellow-dotted line in Fig.(1.5).

The edge-detector which use Psp works well for detecting objects of large
strength and large circumference in the image, but will not detect small
objects. At fine scales Psp will not detect an edge corresponding to a vague
contour, i.e. a smoothened edge.

7.2 Multi-Scale Edge-Detectors.

7.2.1 Lipschitz Edge-Detector.

This section will present a 2-D multi-scale edge-detector based on the Lipschitz-
regularity of the modulus-maximum.

In Sect.(3.3) the relation between the decay of the CWT and Lipschitz-
regularity was established. This relation enables one to distinguish different
kind of edges in the signal, such as noise and step-edges.

In Sect.(5.2) it was discussed how modulus-maximum could be connected
across scales. The 2-D maxima-tree plays the main role for the edge-detector
presented in this section. The Lipschitz-regularity is invariant of the strength
of an edge, i.e. the Lipschitz-regularity does not tell which edge is larger than
the other. In order to find which edges are more important, one can use the
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length of the maxima-line in time-scale plane.
This algorithm will be applied to the image in Fig.(1.4), and the perfor-

mance will be discussed. It will be verified that the edge-detector is accept-
able for detecting the main-characteristics in the image. One characteristic
feature of this method is its ”invariance” to the strength of the edge. It will
be concluded that thresholding the length of the maxima-lines is not suffi-
cient to remove edges of small strength. Another characteristic feature of
this edge-detector is its ability to remove edges of short duration.

The section will begin with a discussion of the uncertainty of how a thresh-
old of the Lipschitz-regularity can be found, before presenting the algorithm.
At the end this edge-detector will be applied to the image in Fig.(1.4) and
the result discussed.

The 2-D algorithm which separates modulus-maximum based on its Lipschitz-
regularity and the length of the maxima-line, is identical to the algorithm
presented in Sect.(6.2). Similarly as in 1-D, one problem is to decide a
threshold for the Lipschitz-regularity. Consider the histogram in Fig.(7.5) il-
lustrating the average Lipschitz-regularity of the modulus-maximum at scale
s = 5. One may observe that there is no separation of the values of the

Figure 7.5: The average Lipschitz-regularity of the maxima-lines converging
to the modulus-maximum at scale s = 5.

Lipschitz-regularity. The ”connectedness” of the Lipschitz-values is a prob-
lem for estimating a threshold for the Lipschitz-regularity.

Fig.(7.6) illustrates this edge-detector applied to the image in Fig.(1.4).
One may observe that thin edges are discriminated. This may be observed
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(a) TLip = −0.2, L = 0. (b) TLip = −0.6, L = 0.

(c) TLip = −0.2, L = 3. (d) TLip = −0.6, L = 3.

(e) TLip = −0.2, L = 5. (f) TLip = −0.6, L = 5.

Figure 7.6: The edges detected by using the average Lipschitz-regularity and
the length of the maxima-lines.

in the representation of the upper cysts, the separation between the cysts
and the cortex. These edges correspond to a change of state in the signal
of short duration. Their corresponding Lipschitz-estimate are therefore low.
Unfortunately this property is not required for the applications of this thesis.
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The second characteristic-feature of the algorithm is its ”invariance” to the
strength of the edge. From Fig.(7.6) one may observe that there are several
responses which are not removed by thresholding the length of the maxima-
lines. One example is the small line-segment above the cyst at the top.
The edge this line-segment reflects, is not of large strength, see Fig.(1.4).
An interesting observation is that the more strength of an edge, the longer
spatial distance before small edges is included. This is in particular evident
around the contours marked A and B in Fig.(1.5). One may observe the
buffer-zone around these edges where there are none of the small edges. This
follows (almost) by the discussion in Sect.(5.1). The distance to parallel line-
segments are forced to be large by a similar reason as discussed in Sect.(5.1).
To perpendicular line-segments, the distance can be closer. In these regions
thresholding the length of the maxima-lines is be effective. In regions where
the distance to strong edges is large, this effect decreases. As in 1-D, this
may be adjusted by including coarser scales in the 2-D maxima-tree.

With respect to the preliminary-targets defined in Sect.(1.2.2), the edge-
detector satisfies the first target; to find the contour of the tumour. The
performance to detect the cysts is not satisfactory. Taken into account the
edge-detectors discussed previously, this edge-detector performs badly in pre-
serving connectedness in the representaion, and it contains a lot of unwanted
information.

The conclusion is that the Lipshitz edge-detector works well for finding
the points where the signal changes state with a long duration, and is effective
for removing edges of short duration.

7.2.2 Scaling Edge-Detector.

This section will present an edge-detector which uses the amplitude of line-
segments across scales to find the important edges in a signal.

The quantity Psc which will be introduced in this section, is similar to P1

discussed in Sect.(6.2). The difference is that instead of considering the am-
plitude of a modulus-maximum across scales, one will in this section consider
the amplitude of a line-segment across scales. In Sect.(7.1.2) it was concluded
that Psp had difficulties to detect edges in regions with low contrast. In this
section it will be investigated if one can detect edges corresponding to objects
with vague contours by using the evolution of line-segments across scales. In
addition it will be investigated if this edge-detector detects objects of small
size in the image. The evolution of line-segments across scales contains useful
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information which can be used to find the important edges in a noisy-image.
This was observed for the similar 1-D edge-detector in Sect.(6.2).

In order to investigate whether Psc works better to detect vague contours
and small objects in the US-image in Fig.(1.4) one has to be careful. In order
to investigate how it handles vague contours, it will not make sense to use line-
segments which are connected inside scales. As one may observe in Fig.(7.3)
one effectively avoids the problem with the vague contour underneath the
tumour by connecting line-segments inside scales. Therefore this problem
will be investigated by using an alternative approach for connecting line-
segments.

Based on the output of the edge-detector it will be concluded that the
quantity Psc works well in to detect vague contours and to detect small ob-
jects. A disadvantage with Psc is that it is less useful to remove edges of small
strength. This is caused by a similar phenomenon as for the Lipschitz edge-
detector. A line-segment corresponding to a small edge may exist for several
scales. In addition a major obstacle concerning convergence of line-segments
across scales will be visualised.

The section begins with a presentation of the algorithm for the edge-
detector, and discussing an alternative method for connecting line-segments
across scales. This algorithm will be applied to the image in Fig.(1.4). The
output will be discussed with respect to the preliminary targets defined in
Sect.(1.2.2). At the end of the section, the edge-detectors in this section and
Sect.(7.1.2) will be combined.

In Sect.(5.2.2) it was discussed how one could relate line-segments across
scales and obtain an ”1-1” relation between line-segments across scales. The
motivation was to ensure that the objects used in the computations were sim-
ilar with respect to the length. This was done by using information of the
line-segment at coarse scale, and try to make the line-segments at finer scale
to inherit this information. Assume there are N line-segments {mi}Ni=1 at the
finest scale, and let [mi] denote the line-segments which converge towards mi.
Assign to each line-segment at the finest scale the quantity;

Psc(mi) = li · āi.

li is the length in time-scale plane of the line-segment which converge towards
mi, i.e. the number of scales there exist line-segments converging towards mi.
āi is the (weighted) average amplitude of the line-segments which converge
towards mi. The algorithm can be summarized as:
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(a) TPsc = 40. (b) TPsc = 65.

(c) TPsc = 100. (d) TPsc = 125.

(e) TPsc = 170. (f) Histogram of the values of Psc.

Figure 7.7: The edges detected by applying Psc to line-segments. The line-
segments have been connected inside scales. The scales used in the compu-
tation are s ∈ [5, 10].

1. Compute W xf(u, s), W yf(u, s) and Mf(u, s) for s ∈ {s1, ..., sJ}.

2. Compute Af(u, s), and find the modulus-maximum of Mf(u, s) in the
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direction given by Af(u, s) for s ∈ {s1, ..., sJ}.

3. For each line-segment mi at scale s1, find the set [mi] of line-segments
at coarse scales which converge towards mi.

4. Assign to each mi, the quantity Psc(mi) = li · āi.

5. Find a threshold which separates the noise from the important edges.

An alternative method to ensure that line-segments across scale are sim-
ilar with respect to the length, is to divide the line-segments at coarse scale.
Instead of using a line-segment at coarse scale to connect line-segments at
finer scales, one can use the line-segments at fine scale to divide line-segments
at coarser scales. How this can be done in practice will not be discussed in
this thesis. Instead a short cut has been used. The information which is
wanted to obtain from coarse scales, is the average amplitude of the (dis-
connected) line-segment which converges towards the line-segment at finest
scale. Let mi denote a line-segment at the finest scale. One needs an esti-
mate of the average amplitude of the line-segment at scale s which converges
towards mi. This estimate is defined to be the (weighted) average ampli-
tude of the modulus-maximum at scale s which converges towards mi. In
Sect.(5.2.1) it was discussed how modulus-maximum converges in 2-D. At
the end of this section the above algorithm will be used with disconnected
line-segments rather than connected line-segments, and explained why we
are interested in this.

Fig.(7.7) illustrates the output of the ”first” algorithm applied to the
image in Fig.(1.4). I.e. line-segments have been connected inside scales.
The ”false” connections are the same as those discussed in Sect.(7.1.2). One
may observe in the histogram, that the separation between the cluster and
the infrequently occurring values is less evident than for Psp. It is clear
that there is a cluster of noise at small values, and a cluster of infrequently
occurrences at high values, but the exact point of separation is vague. Both
40, 65, 100 and 125 are justifiable as the natural threshold for Psc. Note
that this threshold will depend on the histogram-size. One reason why there
is not an equally evident separation as for Psp, is that Psc does not use
information about the length of the line-segments. In an image with objects
of large circumference, the Psp-values of these objects become very large.
One problem with Psc is that it may include edges of small strength. This is
caused by the similar phenomenon which caused difficulties for the Lipschitz
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algorithm. An edge of small strength may exist for several scales if the spatial
distance to edges of large strength is sufficiently long. One evident example
is the line-segment underneath the large cyst in Fig.(7.7,a,b,c,d). The edge
which this line-segment represents is not of large strength. One advantage
with Psc, is that it does not discriminate edges based on its size, i.e. if its
line-segment is short. For instance one of the objects marked D in Fig.(1.5)
is present in Fig.(7.7,a,b,c).

The output satisfies the minimum-requirements for the edge-detector.
The contour of the tumour and the cysts are all present. For high values of
the threshold TPsc there are few unwanted edges. Observe that the contour
in the lower half is nice at all scales. For the representation in Fig.(7.7a,b,c)
one of the objects marked D in Fig.(1.5) is represented.

One nice property of this edge-detector is that it can easily be combined
with the edge-detector presented in Sect.(7.1.2). To each line-segment at the
finest scale assign the quantity;

P (mi) = Psp(mi) · Psc(mi).

Consider Fig.(7.8) illustrating the output with respect to P . One may
observe that some of the unwanted edges which has been present after using
Psp and Psc separately, are removed in this representation. The representa-
tion obtained in Fig.(7.8c) is the superior representation with respect to the
preliminary targets defined in Sect.(1.2.2). Note that the natural threshold
gives an almost optimal representation.

One question is still not answered. The purpose of introducing Psc was
to improve the performance to detect vague contours, i.e. smooth edges.
When using line-segments which have been connected inside scales, one ef-
fectively avoids the problem-area underneath the tumour for the US-image
in Fig.(1.4). This can be observed in Fig.(7.3,b,d). In order to verify whether
the performance of Psc (and P ) increases in regions with low contrast, the
algorithm will be applied for line-segments which have been disconnected.
I.e. the line-segments have been divided towards coarse scales rather than
connected towards finer scale. In Fig.(7.3,a,c) one may observe that in this
case Psp struggles underneath the tumour. The target is to see if Psc and P
performs better to detect the contour under the boarder. Fig.(7.9) illustrates
the output of Psc and P with respect to the second approach. There are some
problems in representations in (a) and (c) under the tumour. This result is
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(a) TP = 1e6. (b) TP = 1.5e6.

(c) TP = 6e6. (d) Histogram of the values of
TP .

(e) Histogram of the values of
TP .

Figure 7.8: The edges detected by using P . (d) - The histogram is enlarged
in the region of the separation between the cluster and the infrequently oc-
curring values. (e) - The histogram.

not what one would hope for or expect by using information from several
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(a) Psc (b) Psc

(c) P (d) P

(e) Psp

Figure 7.9: The edges detected by using P and Psc. In this case the line-
segments have been disconnected at coarse scales. (a)-(c) s ∈ [5, 10], (b)-(d)
s ∈ [6, 10]. (a)-(b) Psc has been used to find the edges. (c)-(d) P has been
used to find the edges. (e) Psp has been used to find the edges at s = 6.

scales. What goes wrong is in fact not a weakness of Psc, but a problem with
convergence of modulus-maximum in 2-D. One may observe in Fig.(3.3) that



152 2-D Edge-Detectors.

the line-segment representing the boarder underneath the tumour, drastically
changes path between s = 5 and s = 8. The path include the entire region
underneath the tumour at coarse scales, and at fine scales changes to a path
which is closer to the tumour. This causes that the line-segment ”missing”
in the representation to exist only for a few scales. The information at coarse
scales is in fact gathered in the short line-segment which is underneath the
tumour. If the boarder had not changed so dramatically and so fast, it is very
likely that Psc would have detected the ”missing” line-segment. This state-
ment is supported in Fig.(7.9,b,d,e). In this case, Psc has been computed for
s ∈ [6, 10]. At these scales one will avoid the problem of convergence under-
neath the tumour, see Fig.(3.3). Psp has still problems to detect the contour
in this region. One may observe that the representations in Fig.(7.9,b,d) is
good with respect to the preliminary targets discussed in Sect.(1.4).

Even with the problems, it is not false to conclude that Psc works better
in regions of low contrast. This is supported by the representations of other
medical US-images displayed in App.(A).

The problem of convergence of modulus-maximum illustrates one advan-
tage of connecting line-segments inside scales. In this case one will be less
vulnerable for such problems. Recall that by relating line-segments from
coarse scale, both paths underneath the tumour were used to represent the
boarder under the tumour. Another advantage with connecting line-segments
can be observed in Fig.(7.9d,e). The representation of the upper cyst is com-
posed of two line-segments. In this case there is only a 1-pixel gap between
the line-segments. The length of the smallest line-segment is not sufficient
to prevent it from being discriminated by P and Psp.

The conclusion is that Psc works well to detect edges corresponding to
vague contours and detect small objects in a noisy image. In addition Psc

can detect edges of relatively small strength compared to the strength of the
noise. The edge-detector which uses P works well to detect the objects of
large strength, and will detect vague contours better than Psp. In addition
P will avoid including objects of small strength such as Psc. Each of Psc

and Psp weaknesses are the strength of the other. Combined the strengths
seem to cancel the weaknesses, resulting in an edge-detector which is good
for detecting objects of large strength in the signal.
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7.3 Summary.

In the previous two chapters several edge-detectors have been discussed and
applied to the image in Fig.(1.4). Some of their most characteristic-features
with respect to the analysis of noisy signal are summarized below.

For the edge-detectors which use a threshold of the amplitude of the
modulus-maximum at a single scale, there is a pay-off between accuracy and
reliability. At fine scales one is able to detect objects of small size, but there
is a lot of unwanted information. In addition one may not detect smooth
edges. At coarse scales it is easier to detect smooth edges, and there will
be less unwanted information in the representation. The disadvantage with
using the wavelet-transform at coarse scales is that one may not detect small
objects in the signal.

The edge-detector which uses the Lipschitz-regularity of a modulus-maximum
and the length of its maxima-line is good for detecting an edge of long du-
ration. An edge of short duration will not be detected. This edge-detector
is not suitable to detect small objects in the signal, but is suitable to find
points where the signal changes of small strength over a long duration.

Psp works well for detecting objects with large circumference and large
strength, but may not detect small objects. At fine scales this edge-detector
may have difficulties to detect an edge representing a vague contour of an
object in the image, i.e. a smooth edge.

The edge-detector based on Psc works well to detect small objects in the
signal, and detect smooth edges. In addition, this edge-detector may detect
edges of a relatively small strength compared to the strength of the noise.

The edge-detector using P = PspPsc inherits the qualities of Psp and Psp.
The ”weaknesses” of each of the quantities are the others ”strengths”, and
the resulting edge-detector works well in order to find the objects of largest
strength in the image.

An experience during the work of this thesis is that it is important to
keep control of possible errors and other parameters which would change the
result.

7.3.1 Sources of errors.

One source of error is the uncertainty regarding the convergence of modulus-
maximum across scales, and how to connect line-segments across and in-
side scales in 2-D. These uncertainties were discussed in Sect.(5.2.1) and
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Sect.(5.2.2). In the latter chapter some faults of the convergence of modulus-
maximum and line-segments have been illustrated.

A parameter which has had a great influence on the results, the output,
and the discussion regarding the differences between the edge-detectors, are
the scales used in the analysis. If one for instance had used s = 10 as
the finest scale, it would be very little that would differ between the edge-
detectors with respect to the analysis of the US-image in Fig.(1.4). Another
parameter which would change the result is the range of scales used for
the analysis. With respect to the analysis of the image in Fig.(1.4), this
would in particular influence the performance of the edge-detector using the
Lipschitz-regularity. By using coarser scales, one could take advantage of an
increased use of the length of the maxima-tree to remove small edges. This
was discussed for the 1-D Lipschitz edge-detector.

7.3.2 Conclusion.

The results of the investigation in this thesis will be discussed in two differ-
ent parts. The analysis of the ultra-sound image in Fig.(1.4) will be used to
conclude which edge-detectors discussed in this thesis are most appropriate
for such kind of medical US-images. This discussion is supported by rep-
resentation of several US-images displayed in App.(A). In addition general
edge-detection in images will briefly be discussed.

The edge-detectors using a threshold of the amplitude of modulus-maximum
and the Lipschitz-regularity are not suitable for edge-detection in general
medical US-images. The quantities Psp and Psc and their respective edge-
detectors do often return nice representations of US-images, but they are not
reliable for general US-images. The edge-detector using the quantity P is the
most reliable for the largest class of medical US-signals. The representations
obtained by using P are often close to optimal.

In general edge-detection in images relies on how one is able to design
quantities which are able to separate the interesting information from the
less interesting. These quantities depend on the quality of the image, and
which kind of information is desired to obtain. One can for instance use a
different weighting on the average amplitude of line-segments across scales,
to e.g. reward coarse scale information. One can reward line-segments which
form closed curves, decay with a certain rate or reward objects with a cer-
tain shape. The choice of quantity should depend on the signal and the
information one would like to obtain.



Appendix A

Edge-Detection in Medical
Images.

This section contains several representations of medical images using Psp, Psc

and P . For each of the images, some observations will be discussed.

A.1 US-image # 1.

The boarder of the object in the US-image in Fig.(A.1a) is vague. In order
to obtain a representation, the wavelet-transform has been computed for
s ∈ [10, 15]. The interesting information in this US-image is the contour to
the middle-left in the image.

A.2 US-image # 2.

For the US-image in Fig.(A.2a) the performance of the edge-detectors were
disappointing. For this US-image one should use a larger range of scales.
By including coarser scales, one would be able to remove some of the line-
segments within the object. One may observe in Fig.(A.2a) that the strength
of the boarder at the top of the large object is smaller than for the irregu-
larities within the object. In addition the boarder at the top is vague and
indefiniable, causing the representation of the boarder at the top to be bro-
ken into small line-segments. This cause that one is not able to recover the
contour at the top, without including the irregularities within the object.
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(a) US-image. (b)

(c) (d)

Figure A.1: (a) US-image # 1. (b) The edges detected by using Psc. (c) The
edges detected by using Psp. (d) The edges detected by using P . For all the
representation a natural threshold has been used.

A.3 US-image # 3.

The representations of the US-image in Fig.(A.3a), is a good example of how
Psc and Psp cancel each others weaknesses. One may observe that Psp has
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(a) US-image. (b)

(c) (d)

Figure A.2: (a) The US-image. (b) The edges detected by using Psc. (c) The
edges detected by using Psp. (d) The edges detected by using P . For all the
representation a natural threshold has been used.

problems in the lower right of the large solid white object. The contour of the
object in this region is vague. Psc includes a lot of uninteresting information
corresponding to objects of small strength. On the other hand P gives a
close to optimal representation of the US-image.
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(a) US-image. (b)

(c) (d)

Figure A.3: (a) The US-image. (b) The edges detected by using Psc. (c) The
edges detected by using Psp. (d) The edges detected by using P . For all the
representation a natural threshold has been used.

A.4 US-image # 4.

The representation of the US-image in Fig.(A.4a) all seem to have a problem
with detecting the boarder to the upper-left of the large object. The problem
is that this boarder is almost invisible, i.e. the difference between the strength
of the object on the inside and the outside of the object is small.
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(a) US-image. (b)

(c) (d)

Figure A.4: (a) The US-image. (b) The edges detected by using Psc. (c) The
edges detected by using Psp. (d) The edges detected by using P . For all the
representation a natural threshold has been used.

A.5 CT-image.

The image in Fig.(A.5a) is a CT image. The representation in Fig.(A.5b) is
a segment of the CT-image in the proximity of the spine. In order to detect
the objects in the segment it suffices to use Psp. Psp is suitable since the
contour of the objects is sharp and the objects are of large strength.
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(a) CT-image. (b)

Figure A.5: (a) The CT-image. (b) The edges detected by using Psp at s = 2.



Appendix B

The Fourier-Transform and
Convolution.

Definition B.0.1 (1-D Fourier-Transform. [1].) For a function f ∈ L1(R)
the Fourier-transform is;

f̂ (ω) =

∫ ∞

−∞
f(t)e−iωt dt (B.0.1)

�

Proposisjon B.0.1 (Derivation. [1],[9].) If f ∈ Cn(R)∩L1(R) and if all
the derivatives f (k) for k = 1, 2, ..., n are in L1(R), then

f̂ (k)(ω) = (iω)kf̂ (ω), for k = 1, ..., n. (B.0.2)

�

Proposisjon B.0.2 (Convolution and Differentiation, [9].) Let f be in
L1(R) and let g be in Cp(R). Assume g(k) is bounded for k = 0, ..., p. Then
f ∗ g ∈ Cp(R) and (f ∗ g)(k) = f ∗ g(k) for k = 1, ..., p.

�

Definition B.0.2 (2-D Fourier-Transform. [1]) For a function f ∈ L1(R2)
the 2-D Fourier-transform is given by;

f̂(ωx, ωy) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−iωxxe−iωyy dxdy (B.0.3)



162 The Fourier-Transform and Convolution.

�

Proposisjon B.0.3 (Separable. [1]) If f ∈ L1(R2) and there exists h, g ∈
L1(R) such that f(x, y) = h(x)g(y), then f̂ (ωx, ωy) = ĥ(ωx)ĝ(ωy).

�

Proposisjon B.0.4 (Scaling. [1]) If f ∈ L1(R2), and assume s > 0. Then
the Fourier-transform of f(t/s) equals sf̂(sω).

�

Proposisjon B.0.5 (Gaussian. [1]) If f(t) = e−at
2
, then f(ω) =

√
π
a
e−aω

2/4a2
.

�

Proposisjon B.0.6 (Convolution and 2-D Fourier-Transform. [1]) If
f ∈ L1(R2) and h ∈ L1(R2). Let g(x, y) = f ∗ h(x, y). Then ĝ(ωx, ωy) =

f̂ (ωx, ωy)ĥ(ωx, ωy).

�

Proposisjon B.0.7 (N-dim Convolution and Differentiation, [10].) If
f ∈ L1(Rn), g ∈ Ck(Rn), and ∂αg is bounded for bαc ≤ k, then f ∗ g ∈
Ck(Rn).

�

Proposisjon B.0.8 (Boundedness by convolution,[10]) If f ∈ L1(Rn)
and g ∈ Lp(Rn), 1 ≤ p ≤ ∞, then f ∗ g exists a.e. f ∗ g ∈ Lp(Rn) and
‖ f ∗ g ‖p≤‖ f ‖1‖ g ‖p.
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